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Abstract

Neural networks have become the standard for high accuracy computer vision.
These algorithms can be built with arbitrarily large architectures to handle an ever
growing complexity in the data they process. State of the art neural network ar-
chitectures are primarily concerned with increasing the recognition accuracy when
performing inference on an image, which creates an insatiable demand for energy
and compute power. These models are primarily targeted to run on dense compute
units such as GPUs. In recent years, demand to allow these models to execute in
limited capacity environments such as smartphones, however even the most com-
pact variations of these state of the art networks constantly push the boundaries
of the power envelop under which they run. With the emergence of the Internet
of Things, it is becoming a priority to enable mobile systems to perform image
recognition at the edge, but with small energy requirements.

This thesis focuses on the design and implementation of an object detection neural
network that attempts to solve this problem, providing reasonable accuracy rates
with extremely low compute power requirements. This is achieved by re-imagining
the meta architecture of traditional object detection models and discovering a
mechanism to classify and localize objects through a set of neural network based
algorithms that are better aimed to mobile and embedded devices.

The main contributions of this thesis are: (i) provide a better image processing
algorithm that is more suitable at preparing data for consumption by taking ad-
vantage of the characteristics of the ISP available in these devices; (ii) provide a
neural network architecture that maintains acceptable accuracy targets with mini-
mal computational requirements by making efficient use of basic neural algorithms;
and (iii) provide a programming framework for how these systems can be most ef-
ficiently implemented in a manner that is optimized for the underlying hardware
units available in these devices by taking into account memory and computation
restrictions.
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1 Introduction

Biological visual systems are easily able to recognize objects due to large amounts
of specialization and adaptation through natural evolution. These systems are
interconnected with other parts of the nervous system, such as memory and rea-
soning centers in the brain, so the task of vision is hardly something that can be
separated and resolved in a standalone manner. However, this is what computer
vision systems today try to achieve, primarily because the subtle complexities of
biological vision is extremely difficult to replicate. However, it is still possible to
take inspiration on how certain aspects of naturally evolved vision works, to mimic
simplistic functionality.

Initially, computer vision systems took a very synthetic approach to the problem.
Image recognition algorithms such as SIFT [1], SURF [2], or HOG [3] are based
on manually tuned feature descriptors, and although they are loosely based on bi-
ological principles, such as sensitivity to certain orientations, they continue to be
based mostly on geometric qualities in the image and easily fail as the complexity
of shapes and forms varies. In recent years, however, it has become evident that a
better approach is necessary. One of the most successful of these has been biologi-
cally inspired deep networks [4], where input images are processed through several
layers of feature extractors and are eventually classified as one out of several target
labels. These works are based on the findings by Hubel and Wiesel [5] where two
main types of cells were identified in the primary visual cortex of cats, the so called
simple cells and complex cells, connected through a cascading hierarchical model.
The first functional model to be inspired by these findings was the Neocognitron,
introduced by Fukushima [6], wherein two types of cells similarly take on the roles
of local feature extractors to achieve tolerance against deformation.

Later work by LeCun [7] introduced the convolutional neural network (CNN) as
a more robust system for the identification of handwritten characters in scanned
documents. Again, a similar dual cell type system is used, where a convolutional
layer extracts features and a subsampling layer reduces the input space to tolerate
the space-wise variations of these features. These convolutional neural networks

1



1 Introduction

form the foundation for most modern image recognition systems today, which are
based on hierarchical deep learning techniques, and they have proven to be a
powerful solution when applied to a large variety of complex recognition tasks.

The power of convolutional neural networks lies in the ability of the network to
learn an optimal set of filters able to extract the most distinguishing features
present in an image training data set. As with regular neural networks, when this
process is performed over various consecutive layers, a strong non-linearity in the
sample data can be modeled by these complex networks. The network is then
capable of successfully classifying images it had never been exposed to previously
during its training phase. The capacity to generalize the model in this manner
allows them to have large flexibility in the characteristics of the image data they
can successfully classify.

As a result, systems based on convolutional neural networks started to continuously
win multiple academic image recognition competitions, such as large scale image
recognition [8], handwritten digits [9], and traffic signs [10], wherein they always
outperform considerably the results obtained by other types of systems – and in
some cases even the results obtained by a panel of humans that have been subjected
to an identical classification task over the same test data. Today, there is little
doubt that CNNs have become the standard for perception based computer vision.

The problem, however, is that these systems are computationally expensive, and
must be deployed on large compute nodes. It is therefore very challenging to fit
the algorithms required for this kind of task into a mobile environment where
computing capacity is limited. The main focus of this work is to demonstrate how
a CNN based system can be implemented in low energy environments like mobile
and embedded devices, while still being capable of performing the complex task of
real time object detection.

1.1 Contributions

The specific contributions introduced in this work are as follows:

1. An algorithm to pre-process images to extract salient features while main-
taining a normalized data distribution which is adapted to the image pipeline
of camera based devices.
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1.2 Organization

2. A neural network architecture framework to design models that require min-
imal compute resources to perform recognition in low energy environments.

3. An algorithm to share the activation maps of a classifier backbone in order
to extend the classification task into an object detection task.

4. An algorithm to combine the results of spatially distributed inference results
to find discrete objects.

5. An ensemble-based inference methodology to provide context information
and increase the robustness of detections.

6. A description of how to most efficiently implement the proposed neural net-
work by better targeting the available hardware resources in mobile and
embedded devices.

1.2 Organization

In this work, an in-depth look is given at the development of a CNN based computer
vision system, with special emphasis on its implementation in low power mobile
and embedded portable devices.

In Chapter 2, a brief review of neural networks, and its application to computer
vision through convolutional neural networks. The types of layers commonly used
for this kind of network are described, and the connection between CNNs and
biologically inspired computer vision systems is established.

The primary topic of this thesis appears in Chapter 3, where the proposed neu-
ral network architecture is described, along with the corresponding algorithms to
tackle the task of object detection in low power environments. The chapter be-
gins explaining the imaging pipeline of mobile devices and describes how to adapt
the image pre-processing algorithm of contrast normalization to this environment.
Next, the basic architecture of the backbone classification network is provided,
with an explanation on certain design elements that make it more applicable to
mobile devices. This chapter then explains how this backbone can be extended
to handle to problem of localization by adapting the network architecture using
shared convolutional maps. Finally, an algorithm for analyzing and collapsing
multiple coalescing detection results on a shared map is provided, which is a more
mobile friendly alternative to what is utilized in state of the art object detection
networks.
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Next, Chapter 4 gives an overview of the hardware and environment characteristics
of mobile and embedded devices. Information on the compute units found in
such hardware is reviewed, along with a discussion on how memory access routes
can affect the implementation of these systems. This is followed by a detailed
explanation of different optimization methods that can be used to implement the
software that runs the proposed object detection network.

Chapter 5 provides the experimentation methodology and gives the results ob-
tained. A sample baseline application and its corresponding neural network model
are described. This application is then used as baseline to perform several ex-
periments on, which help to establish the correctness of the proposed methods.
Chapter 6 follows a similar objective but on a more detailed real world application
use case. This chapter follows the development of an ear recognition application
from start to finish, explaining how the proposed method allows the implementa-
tion of such a system in a compact portable hardware device.

The work finishes with Chapter 7 providing the conclusions of this work and raises
some points of discussion and future lines of research.
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2 Background

Computer vision describes the activity where a machine observes the real world
through an image capture device and extracts useful and actionable information
from it. It is therefore an important interface between the world and the ma-
chine, becoming a vital stepping stone for agents to display artificial intelligence
capabilities.

Before treating the subject in detail, it is important to understand more about
computer vision and its relationship to artificial intelligence.

2.1 A History of Deep Learning

The field of computer vision spans from the simple extraction of features to infer
basic pieces of information, up to fully understanding and decoding of the visual
content of a scene. This understanding is the natural first step towards reason-
ing and deduction, which marks one of the characteristics of a general artificial
intelligence acting in the real world.

Defining intelligence itself is a tricky matter, multiple definitions have been pro-
posed over the years, some examples that stand out might be:

By "general intelligent action" we wish to indicate the same scope
of intelligence as we see in human action: that in any real situation
behavior appropriate to the ends of the system and adaptive to the
demands of the environment can occur, within some limits of speed
and complexity. [11]

Intelligence is the capacity of a system to adapt to its environment
while operating with insufficient knowledge and resources. [12]

These two definitions allude to two very interesting recurring characteristics: (i)
intelligence mimics human behavior, and (ii) intelligence is action that is bounded
by limited resources.
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2 Background

Given that the only fully working model of intelligence that is known is human
behavior, it is natural that this becomes the ideal upon which artificial agents
can model their own functions. The human brain is therefore the epitome of in-
telligence, and understanding its functionality can ultimately lead to discovering
principles that can be either directly or indirectly applied to its synthetic counter-
parts.

The brain, in essence, is a large network of neurons. This simplified view of the or-
gan has formed the basis for one of the potential solutions to artificial intelligence:
Artificial Neural Networks (ANN). In fact, many of the most important advance-
ments in artificial intelligence stem from basic neural networks which simulate
(albeit at a high level) the complexity of biological neurons. These are mathemati-
cal models that exhibit similar patterns in functionality as their natural analogues.
At the same time, observations from the implementation of ANNs have made their
way back into neuroscience to help better understand and model the human brain.
As a result of this cross-fertilization, the field of computational neuroscience has
become an important interface between these two very distinct disciplines, with
much important research originating from this area seeing its application into novel
concepts in machine vision.

A deep neural network (DNN) is a specialization of the ANN, as it advances the
modeling of the brain by adapting a hierarchical extraction and flow of informa-
tion. This hierarchy of information and processing can be most notably seen in
the visual cortex of the brain. Some of the pioneering research into neuroscience
carried out over half a century ago was precisely to better understand this hierar-
chical structure in the visual cortex of mammals. Inspiration from these findings
found its way into the development of an even further specialization of DNNs,
the convolutional neural network (CNN). The CNN is a type of network that is
specifically built for visual tasks by virtue of the mathematical modeling of the
functionality seen in the so-called “simple” and “complex” cells of the visual cortex.

Although ANNs first appeared as a research direction many decades ago, the field
as a whole came to a stagnating halt after it became apparent that regardless
of their basis on biology, the these networks had many hard to solve difficulties
modeling the real world. As a result, research in ANNs stopped for the most part
at the beginning of the century, with almost no new applications making use of
them for well over a decade. During this time, computer vision tasks returned to
the tried and true practice of engineering hand-made features and inferring from
them via shallow machine learning classifiers.
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However, in 2012, a sudden explosion of interest in ANNs was sparked by the
results of that year’s ImageNet challenge [8], the first time a CNN-based system
outperformed, by a large margin, the results from traditional computer vision
methods. This single event is seen by many as the spark that initiated the current
artificial revolution we are currently undergoing, as it resulted in an outpour of
research and applications of DNN-based systems into computer vision tasks, but
also to many other areas of Artificial Intelligence. This newfound interest in neural
networks has initiated an entire new field which has come to be known as Deep
Learning.

2.2 The complexity of computer vision

The Convolutional Neural Network (CNN) [13] has become a general solution for
image recognition with variable input data. CNNs consist of two stages – one
for automated feature learning, and another for classification – both of which can
be successfully trained in tandem through gradient descent of the error surface
[14]. Its results have consistently outclassed other machine learning approaches in
large scale image recognition tasks [15], outperforming even human inspection of
extensive datasets [16].

Compared to other feature-based computer vision methods such as SIFT [1] or
HOG [3], CNNs are much more robust and tolerant to shape and visual variations
of the images or objects intended to be recognized. However, contrary to such
methods, an execution of a CNN will only recognize features on a single image block
of size equal to the input dimensions of the network. As CNNs are usually trained
with small image patches, this recognition area is likewise small. As a result, to
run image recognition over a larger image size, it is necessary to repeatedly apply
the same network over multiple regions. This is a very common technique named
sliding windows, albeit a time consuming one as the execution time naturally grows
in proportion to the number of sampled blocks.

With the increasing use of embedded hardware, it has naturally become a priority
to endow mobile devices with computer vision capabilities. The use of CNNs, when
applied through a sliding window methodology, allows a large range of important
image recognition tasks to be carried out, many of which would have a great impact
on the everyday usage of mobile hardware by end users. Some examples of this are
text recognition [17] for visual language translators, human action [18] and face
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[19] recognition for greater user interactivity with social applications, or even traffic
sign recognition [20] for embedded automotive applications. The unique task of
logo recognition is taken as a sample usage of mobile implemented CNNs in this
work, something which would have large opportunities for commercial applications
to increase company brand loyalty, perception and awareness among consumers,
depending on the context it is used in. However, the same methods and network
architecture described here would be equally applicable to solving similar problems,
such as those described above.

Due to the high computational requirements of a CNN, the need for mobile com-
puter vision has traditionally been met by outsourcing image analysis to a remote
server in communication with the device over an internet connection. This ap-
proach, while effective, introduces large delays and is hardly an appropriate so-
lution when user interactivity and real-time responsiveness are paramount. As
embedded hardware capacity continues to grow with each new generation of low
energy processors, this trend has gradually shifted towards implementing image
recognition algorithms on the device itself with all computations carried out lo-
cally. Regardless, these devices continue to display performance limitations, as well
as having intrinsic architecture constraints which result in slow memory access. It
is therefore important to find new possible optimizations, so as to better utilize
the computational power of the device.

2.3 Deep Convolutional Neural Networks

This chapter provides the background material for neural networks, making an
emphasis on the biological concepts behind these mathematical models, and how
they can be applied to supervised learning tasks in machine learning.

2.3.1 Neural Networks

Artificial neural networks consist of a machine learning model inspired by the
structure of biological neurons in the brain, and the connective networks they form.
They are constructed through a connective network of independently operating
cells, through which information flows from one end of the network to the other,
being processed in a different manner at each node it passes through in accordance
to the activation behavior of that neuron. They are modelled after natural neurons
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in the human brain, and although the behavior of brain cells is far more complex,
the basic idea behind the biological version can be transferred quite sucessfully to
a mathematical representation.

Biological Fundamentals of Neural Networks

Neurons in the brain are connected to each other through synapses, connections
usually formed from the axon of an emitting cell to the dendrites in the receiving
cell. The synapses transmit electrical and chemical signals from one neuron to an-
other through a process called synaptic transmission [21]. Every neuron connection
forms a presynaptic – postsynaptic relationship with each other, where the former
is the neuron transmitting a signal, and the latter is the neuron receiving the in-
formation. Note that a neuron that is postsynaptic can itself also be presynaptic
to yet another cell, thereby building networks of chained connections formed by
the sequential linking of cells.

When a neuron does not receive any external stimulation, it holds a negative rest
potential voltage which has been adapted to an optimal value for the specific task
the cell carries out. Different neurons will usually have very different potentials,
though usually negative. A neuron is stimulated when it receives a synaptic trans-
mission from another cell connected to its dendrites. If the incoming transmission
is strong enough to overcome the rest potential and reach a predetermined thresh-
old, the neuron will trigger one or more spikes that are then transmitted to all
other neurons connected to its axon. The voltage level of the spike is constant, but
the frequency and number of spikes transmitted will be regulated by the neuron
in a manner proportional to the combined stimulation it received.

The connections formed by a synapse between two cells can have either an exci-
tatory or inhibitory effect on the receiving neuron’s stimulation. An excitatory
synapse will act as previously described increasing the neuron’s potential volt-
age. An inhibitory synapse, on the other hand, will act in the opposite manner
by further lowering the neuron’s potential – thereby making it more difficult for
other incoming transmissions to overcome it and reach the required threshold value
needed to trigger a spike. As there may be both types of synapses present on the
receiving end of each cell, complex patterns of excitatory and inhibitory stimula-
tions can result in different behaviors altering the signals this cell itself transmits
to others.

The system portrayed here describes the basic system by which cells communicate
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Figure 2.1: Basic structure of a feed-forward MLP neural network.

with one another, as well as the manner in which information can be either for-
warded or restrained throughout the connected network – depending on the unique
behavior governing the actions of each individual neuron. Although this is a very
simplified representation of what in reality is a much more complex nervous sys-
tem, it is possible to create an artificial model that mimics these basic properties,
thus forming the core of what an artificial neural network attempts to achieve.

Mathematical Model of a Neural Network

An artificial neural network is modeled as multiple neurons arranged in consec-
utive layers, where the neurons in one layer are only connected forward to other
neurons in the immediately adjacent layer. This forms a feed-forward connective
architecture, where data flows in only one direction throughout the network. This
simplistic feed-forward version of the system portrayed is also called a Multi Layer
Perceptron (MLP), and its basic structure is shown in figure 2.1.

An individual neuron in the network is modeled as a linear combination of its own
bias level plus the individually weighted input signals coming from neurons in the
previous layer. The bias is a constant amount, set during training, and unique to
each neuron. In a way, this mimics the potential voltage of natural cells, acting as
a resistance against the stimulus received from other neurons. In the mathematical
model, however, the bias is not limited to negative values which can lead to the
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bias acting as support to other neuron’s stimulations.

Stimuli from other neurons is combined linearly, proportional to weights that have
been pre-established during training as optimal for an efficient combination of
signals. The weights for each connection can take on any value, either positive
or negative, causing the connection to have an analogous excitatory or inhibitory
synaptic effect to the receiving neuron’s stimulation.

The output of a neuron is thus given by:

yj = g

(
bj +

∑
i

wijyi

)
(2.1)

Where i represents each of the neurons in the previous layer that connect to the
currently computed neuron j, such that yi is the output value of each neuron in
the preceding layer, modulated by the values wij corresponding to the weight of
each corresponding connection. The bias of the current neuron is given by bj .
The function g(x) is a nonlinear activation function, resulting in the neuron’s final
output which is assigned to yj .

Before transmitting this stimulus combination to other neurons, the calculated
value is passed through a non-linear activation function. Similar to the natural
system, the activation function acts as a filter to regulate the output of the neuron.
The mathematical model uses a continuous function such as a hyperbolic tangent
to achieve this, the primary reason being that this function is easy to derive, a
property that greatly aids the training process. Additionally, the interval of values
produced by the hyperbolic tangent function is in (−1, 1), which helps to avoid the
output values from blowing out of proportion if too strong stimuli were received
as input.

g(x) = tanh(x) =
e2x − 1

e2x + 1
(2.2)

dg

dx
= 1− g(x)2 (2.3)

The combined effect of multiple neurons all acting in this manner, each one con-
tributing varying output values modulated by a weight in each connection, all
trying to overcome or reinforce a unique bias value for each receiving neuron, and
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then re-transmitting a signal unto the next layer of neurons – is the basis by which
MLPs are formed and how information travels through the network.

If an MLP is structured correctly, and its parameters are tuned to the right con-
figuration, the network can work as a computing machine capable of receiving
input data, processing it internally, and producing a result. This is achieved by
keeping open neurons on the first (input) layer where data can be written directly
and transmitted to the following layer. The next (hidden) layer can process and
manipulate the data, and re-transmit it to either additional hidden layers or to
the network’s final stage. The last layer (output) layer consists of neurons whose
individual activated outputs correspond to the final output of the network, thus
providing the results of the information processing. Although this is a different
computing paradigm than that of a traditional Von Neumann architecture, it is
quite valid and capable of executing complex programs, such as the well known
example of implementing the XOR operation, which is a simple but non-linear
function, through an artificial neural networks consisting of a single hidden layer.

In particular, programs to model data are of specific interest and one of the tasks
MLPs are better suited for – that is, to predict the ideal output values given a set of
input data. The combination of multiple linear calculations over multiple layers is
capable of modeling very complex non-linear data approximations, making MLPs
one of the most powerful machine learning systems available.

The challenge arises in programming the MLP so that it behaves as desired. In
addition to the inherent structure with which it is initially laid out, an MLP
is parameterized by the weights in each connection and the bias values for each
neuron. Adjusting these values will affect the behavior of the system, and if the
correct combination of values is found, the model will be able to produce accurate
predictions. This is achieved by training the neural network, a process involving
the exposure of the network to multiple examples of input data along with the
ideal outputs each data sample is expected to produce. One step at a time and
for each data sample, the training procedure will adjust the network’s parameters
in an attempt to more closely match the desired target values. This is performed
through the Backpropagation algorithm [22].

2.3.2 Neural Networks in Computer Vision

Artificial neural networks have also broad applications in computer vision. Again,
following inspiration from biological systems – in this case on the functions in the
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visual cortex of the brain – a mathematical model can be built that mimics the
behavior of natural systems.

Hubel & Wiesel Visual Cortex Model

The work by [5] played an important role in the understanding of how the visual
cortex operates, particularly the cells responsible for orientation selectivity and
edge detection of visual stimuli in the V1 primary visual cortex. Two main types
of cells were identified here, having elongated receptive fields and therefore having a
better response to elongated stimuli – such as lines and edges. These cells received
the names of simple and complex cells.

Simple cells have distinct excitatory and inhibitory regions, both forming elemen-
tary elongated patterns in one particular direction, position and size for each cell.
If visual stimulation reaches the cell in the exact same orientation and position
such that it aligns itself perfectly with the patterns created by the excitatory re-
gions, and at the same time the inhibitory regions do not get stimulated – the
neuron gets activated and responds accordingly.

Complex cells operate in a similar manner. Like simple cells, they have a particular
orientation they are sensitive to. However, they do not have position sensitivity.
Therefore, a visual stimulation needs only to arrive in the correct direction to
activate this neuron, regardless of the exact position it falls on.

Another important fact about the cells in the visual cortex is the structure that
they form. Along the cortex hierarchy, proceeding from the V1 region of the
visual cortex and proceeding to the V2, V4, and IT regions, one finds that the
complexity of the ideal stimuli for each cell increases in complexity. Simultaneously,
the activations of neurons become less sensitive to position and size. This happens
as cells activate and propagate their own stimuli to other cells they are connected
to in this hierarchy, primarily due to alternating simple and complex cells.

Mathematical Model of Convolutional Neural Networks

Most of the groundwork of the deep convolutional neural network (DCNN) was laid
out by [7]. Originally intended for handwritten character recognition, these systems
have evolved into more complex algorithms that are able to classify images from
any source, as well as other similarly structured data. For DCNNs to be effective,
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the input data should have strong local correlation, meaning that data points close
in space should be related to one another by a causal relationship. Data should also
be statistically invariant over space, otherwise explained as there being relatively
similar values, ranges and deviations across the input so that features learned in
one portion of the image are equally applicable elsewhere [23].

In fact, there is no requirement for the data to be two dimensional at all, evidenced
by the many successful applications of this type of network with other data types.
For exmaple, with 1D data as used in time series prediction [24], non-visual 2D
data networks for spoken word spectra analysis [25], and even 3D data for video
and motion classification [26] or volumetric recognition [27]. The rest of this work
will center on the applications of DCNNs to visual stimuli and will therefore focus
2D data sets.

Traditionally, the architecture of image recognizers has always been divided into
two separate functions. The first of these being a fixed feature extractor that trans-
forms input images into a low dimensional representation vector holding charac-
teristics found in the input image. The resulting vector should not only be easily
comparable, but also relatively invariant to transformations and distortions in the
input image image dataset. Next, a classification module takes this low dimen-
sional vector and interprets it by classifying the data into one of several possible
target labels.

The difficulty with such an architecture is the feature extraction stage, which
usually requires manual fine-tuning of the parameters to find the features needed
which can then be successfully classified. The advantage of DCNNs over previous
systems, then, is the unification of both procedures into a single neural network
system. Using backpropagation, the DCNN is able to automatically learn the
parameters that will produce the most optimal set of feature extractors, as well as
learn the optimal way to classify those same features into discrete target classes.

A DCNN is composed of several specialized layers, the first few of which form the
feature extraction stage, and the latter compose a classifier. The basic architecure
can be seen in figure 2.2. The feature extraction stage is built with alternating
convolutional and subsampling layers.

This alternating structure between neuron types is influenced by the Hubel &
Wiesel model of the visual cortex previously described in section 2.3.2. Convolu-
tional neurons have similar properties to the biological simple cells, in that they
are highly sensitive to the edges of an image, in particular to the orientation of
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Figure 2.2: The usual architecture forming a deep convolutional neural network.

edges and the position where they appear in the image. Subsampling layers, on
the other hand, are modeled after complex cells, in that the sampling procedure ef-
fectively blurs away position sensitivity by bundling together the activation values
from neighboring pixels. Finally, the structure in the biological model is mimicked
by the convolutional neural network as well, in that further layers increase the
complexity of the neuron responses while increasing the tolerance for positional
invariance.

Convolutional Layer

In the feature extraction stage, the single value neurons forming traditional MLPs
are replaced by matrix processors which perform an action over the 2D image
data passing through them, instead of a single scalar value. The output of each
convolutional neurons is given by:

Yj = g

(
bj +

∑
i

Kij ⊗ Yi

)
(2.4)

Compare with equation 2.1, noting that the output of the neuron Yj is now a
matrix, as are the outputs Yi of each connected neuron in the preceeding layer,
all of which are convolved (⊗ operator1) with the corresponding kernel filters Kij

of each connection. These kernels replace the scalar weights of the MLP version

1Existing literature often makes use of the ∗ symbol to denote the convolution operator, instead
of the ⊗ symbol. However, both of these refer to the same matrix operation.
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Figure 2.3: Example of performing convolution an image with different kernel fil-
ters, where it can be seen that each kernel enhances the edges that
most closely resemble it’s approximate orientation.

of the network. The term for bias for the receiving neuron bj , and the nonlinear
activation function g(x) are identical to the original MLP equation.

The convolution operator has the effect of filtering the input image data with a
previously trained kernel. This transforms the data in such as way that certain
features, determined by the shape of the kernel, become more dominant by having
a higher numerical value assigned to the pixels representing them. Kernels have
specific image processing capabilities, and in fact, symmetrical and normalized
kernels can convolve images for edge detection and other image processing tasks
[28]. As can be seen in figure 2.3, however, the kernels learned by a DCNN will
usually have more intricate shapes and structures to extract composite features
which may have non-trivial purposes within the feature extraction stage of the
neural network system.

The convolution operation is calculated iteratively over each pixel in the output
data space. For each pixel, the matrix inner product is taken of the kernel with
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Figure 2.4: The convolution operation works by masking the input image with the
same shape of the kernel at the corresponding position, a pointwise
multiplication is then made and the results are summed together.

the corresponding masked area in the input image. A diagram of the operation is
depicted in figure 2.4.

Other than this mathematical modification to handle bundled image data at each
neuron, the operation of a neuron in a DCNN is essentially the same as that of a
neuron in an MLP.

Max-pooling

In principle, DCNNs should have a small amount of tolerance over tiny pertur-
bations in the input image data. For example, if two essentially identical images
differ only by a translation over a few pixels, the network should be able to treat
both identically, and not expect to learn an entirely new set of feature extractors
to account for such a small divergence. This is achieved by reducing the sampling
of the output from the convolutional neuron. By having a lower resolution, the
same features which would otherwise differ only by a few pixels in their position,
will now be assigned to the same subsampled output position.

The original specifications of DCNN suggested using simple subsampling (averag-
ing) of the values in subsequent regions of pixels. However, it was demonstrated
by [29], based on biological evidence on the functions of the visual cortex [30], that
max-pooling is a much more effective method to reduce data size. Max-pooling ef-
fectively finds the maximum value over every consecutively sampled pixel window.
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Figure 2.5: A 2:1 max-pooling operation applied on a 4×4 image reduces it to
2×2, with each new pixel corresponding to the maximum value of the
subsampled pixels in the original image.

As a result, the data size of the input is reduced by a factor equal to the size of
the window over which this function operates. Figure 2.5 depicts this operation.

Linear Classifier

The last stage in a DCNN is that of a linear classifier, which is exactly identical
to the latter stages of a typical MLP.

The input of this classifier is given by the output of the last step in the DCNN
feature extractor. By the time the data reaches this stage, the input images should
have been distilled into a lower size representation of multiple extracted features,
having been reduced several times over the course of several convolutional and
max-pooling layers. This last stage should now be able to do a final non-linear
classification over the feature vector to finally recognize the original input image.
Therefore, the output layer of the classifier consists of one neuron for each of the
target labels over which the data is being classified.

2.3.3 Computational complexity of CNNs

Convolutional Neural Networks are computationally expensive algorithms. This
chapter analyzes the complexity of the forward pass of a CNN, thereby showing
the importance of fast and efficient processing platforms for the computation of
these systems.
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The calculation of the activation maps Yl for a layer l can be expressed as:

Yl = g(Wl ⊗ Yl−1) (2.5)

Where g(·) represents the activation function, and the ⊗ operation represents a
layer-wide convolution operation. This process repeats for each of a total of L
convolutional layers. Each of these layers has Ml neuron units, with weights Wl

composed of convolutional kernels of dimensions K ×K, such that:

Wl ∈ RK×K×Ml (2.6)

The activation maps for a particular layer, can be represented as:

Yl ∈ RH×H×Ml (2.7)

Where H represents the spatial dimension of the maps. The input data to the
network is treated as the zeroth layer’s activation map, that is, a 2D color image
of square dimensions H×H, and three color channels such thatM0 = 3. Assuming
the use of padded convolutional operations and ignoring the effects of pooling or
strided convolutions, the activation maps of all subsequent layers are assumed to
have the same spatial dimensions as the input data for simplicity.

Using equation 2.5, it is possible to expand the computation for each activation
map in a layer as:

Yl,n,x,y = g(

Ml−1∑
m

K∑
k1

K∑
k2

Wl,k1,k2) · Yx,y ∀x ≤ H, y ≤ H,n ≤M (2.8)

This process is repeated for all layers, and it is therefore possible to see that the
total number of multiply-and-accumulate (MAC) for a forward pass of a single
layer can be expressed as:

Nmacs = L ·M2 ·H2 ·K2 (2.9)
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2.4 Mobile and Embedded Devices

Convolutional neural networks are computationally heavy and complex algorithms
to execute. Normally, it is necessary to have a large compute budget in order to
properly run such a network and obtain its results within a reasonable amount
of time. This is even more important when performing inference over a sequence
of images from a continuous video stream, as the results need to be ready within
a similar amount of time as is available between one video frame and the next,
otherwise the system will stutter and the frame rate will lag.

2.4.1 Cloud Computing vs Edge Computing

As a result of all this, state of the art computer vision systems usually run on
large computer systems that consume a considerable amount of energy. This is
usually the realm of computer vision systems running on the cloud, which is to
say, in a large data center where energy and compute resources are available in
abundance. However, these systems are far away from the source of the data, where
the "distance" here is not just a metric of space, but also of the time and energy
required to transfer the data from its source to the compute device. As a result,
while the computation might be in abundance in such a system, the bandwidth
required to maintain an active video data stream can put considerable tolls on the
communication infrastructure to maintain such an application.

On the other hand, there is a large movement towards running such systems on
the edge. This is a term utilized to explain that a particular system executes on
one or more small devices deployed much closer to the source of the data. This
offsets the pressure on the communication infrastructure and exchanges it towards
requiring multiple compute resources to be available to handle the computations at
the source. The communication between these edge devices and a central control
system is now reduced to only a transfer of already processed results, rather than
the full raw data. The major benefit of such a system is that it can be much more
portable, as it doesn’t rely on an expensive or fixed communication pipeline, and
can instead be deployed virtually anywhere.

The difficulty that arises with edge computing, obviously, comes from requiring
efficient computing resources, as small and inexpensive devices rarely have large
compute capabilities, as they do not have access to large sources of energy, and they
must often rely only on battery power or other low energy sources. The successful
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deployment of an edge computing system, therefore, depends on the development
of efficient algorithms that can make the best possible use of the limited available
resources on such devices.

2.4.2 Mobile Devices

When describing edge computing, the most natural platform that can be described
is the mobile phone. It estimated that over 5 billion people in the world have
access to a personal mobile phone device, with over half of these devices being
smartphones specifically. A smartphone is a very common platform that has the
three essential elements required for such computer vision edge application: (i) a
camera to act as a visual sensor and receive real world imagery, (ii) a microprocessor
to act as a computation system on which to execute the computer vision algorithm,
and (iii) a communication line to the internet to access virtually any other device
in the world to transmit the results.

To facilitate things even more, the large majority of smartphones in existence use
one of two operating systems: Google Android or Apple iOS. Either of these two
platforms have common APIs that aid in making software development compatible
across as many devices as possible. Furthermore, these two systems make use
of stores which provide for an easy way to distribute and update the developed
application to already deployed devices. As such, smartphones are a natural choice
to deploy edge applications, as the system can make use of a widely available
infrastructure that is already in place, thereby greatly minimizing the cost and
effort required to deploy such systems.

Although a good choice, mobile phones also have their drawbacks, and this comes
primarily in the form of device fragmentation. In this context, fragmentation
refers to an ever growing variety of different types of smartphones in the world. It
is estimated that there are over 60 thousand different variations of smartphones in
the world today. Although operating systems and software frameworks are very
common among them, the hardware capabilities of these devices obviously vary
enormously, and it becomes impossible to predict how all devices will react when
running a particular application. The three requirements for edge computing,
while usually always present, may be extremely different between one smartphone
to the next, having an unprecedented effect on the performance and accuracy of a
computer vision model that might execute on it.
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2.4.3 Embedded Devices

An embedded device usually refers to a full computing system, including some kind
of microprocessor, memory, and input/output peripherals that are all deployed
within the same integrated circuit or circuit board. These systems are usually
purpose built, and support only a very specific application subset. As opposed
to smartphones, these devices may not always be suitable for general computing
tasks, but on the other hand, they can usually be customized with characteristics
that are specific to the application task. Their use cases can vary wildly on a large
number of different electronic applications, ranging from music players, watches,
traffic light controllers, PLCs, medical imaging systems, or even avionics. Under
some definitions of the term, a smartphone could also be considered an embedded
device itself. However for the purposes of this work, a distinction is maintained
between both platform types.

In the context of edge applications, embedded devices usually refers to low energy
and portable variations of such systems, usually with on-board sensors such as
embedded cameras, and some kind of networked I/O. An ever finer subset of these
devices might be those that are targeted for Edge AI applications. This is a
type of device that will often have some type of compute block that accelerates
MAC (multiply and accumulate) computations, which form the basis of the large
majority of linear algebra algorithms, and by extension, machine learning and
neural network computations.

Some commonly available examples of these Edge AI embedded devices are those
based on the hardware platforms: (i) Intel Movidius VPU, (ii) NVIDIA Jetson
GPU, and (iii) Google Coral Edge TPU. Each of these platforms define specific ac-
celerators (VPU, GPU, and TPU) that are capable of efficiently executing parallel
MAC computations, usually within the energy requirements ranging between 0.5
to 15 Watts. This can be considerably less than a standard smartphone, while pro-
viding a larger compute throughput for MAC operations due to their specialized
accelerators. These three platforms are often found in publicly available devel-
opment kits with accessible SDKs, facilitating the entry point for developing and
deploying prototype applications based on such platforms.

Naturally, there exist many other such devices, which are more production oriented,
or more specific to a particular task or industry. An example of this would be in
the field of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving
(AD), where far more specialized and robust systems exist for those particular uses
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cases. Some examples might be Renesas V3H, Texas Instrument TDA4, and Xilinx
ZYNQ, which are based on even more specialized ASIC or FPGA microprocessors
to accelerate the types of algorithms often found in automotive perception and AI
systems that require the use of cameras, radars and other sensors.

This work will focus on the Intel Movidius VPU platform as an embedded device
baseline. This system was chosen as it’s one of the most power efficient platforms
from those previously described, requiring only 1 watt to power the VPU micro-
processor, while achieving a neural network inference throughput that exceeds by
far what can be obtained with a standard smartphone. Furthermore, this is the
platform of choice to provide smart computer vision features to the widely available
DJI aerial drones, which can open up very interesting edge applications.
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3 Efficient Object Detection Neural
Network

The main contribution of this work is to provide an architecture framework upon
which a highly efficient object detection neural network can be built, such that the
inference compute requirements are minimal and can execute efficiently in limited
compute environments. This chapter explores the architecture proposed and de-
tails the motivation for the choices made in the architecture design and algorithms
utilized. Great attention is placed on the imaging pipeline, to understand how
to better devise an image pre-processing algorithm that is better suited to these
hardware environments. Based on the results of this algorithm, a classification
CNN architecture is proposed as primary backbone to carry out feature extraction
tasks. This network is then adapted to extend its inference spatially and share
its activation maps with neighboring locations in the image such as to create a
localization algorithm. The localization information from the network must be
further processed to collapse it into individual object detection results, for which
a discrete inference algorithm is adapted and described.

3.1 Motivation

While the fields of artificial intelligence, computer vision and neural networks con-
tinue to advance, requiring always bigger and more complicated models, there is
always room for ultra low energy devices to do inference with miniature models at
the lowest end of the spectrum. These devices can then be deployed in large scale
at low cost for applications such as Internet of Things and Edge AI.

Usually such miniature models are limited to processing basic sensor information
that can be expressed in the form of a time series or other variable scalar amounts.
The challenge is in developing model architectures that are capable to perform
inference on more complex types of data, such as the task of computer vision on
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images. Computer vision models still require complicated and computationally
expensive architectures.

The computer vision task resolved by this work is specifically that of object detec-
tion. This task processes a large input image and detects within the image space
one or more objects of interest, creating as its inference result a set of bounding
boxes, each of which is marked with an object type (or class), a classification con-
fidence, and the coordinates that determine the position of this object within the
image space.

Presently, object detection is considered a mostly solved task, by the availability
of architectures such as RCNN [31] and its variations (Fast RCNN [32], Faster
RCNN [33], and Mask RCNN [34]), which breaks down the problem into a two-
stage solution: (i) the first stage acts as a region proposal network to "find" possible
objects of interest, while (ii) the second stage fine tunes these regions and properly
classifies and fine tunes their localization.

Similarly, single stage detectors have also been developed which solve the problem
in a single pass. Examples are SSD [35] and YOLO [36] plus its variations (YOLO
v2 [37], YOLO v3 [38]). In this case, a more intricate architecture is developed to
help with the multiple scales objects can appear at in the image. The main part
of the network acts as a feature extractor, and two heads in the end the network
act on these features at different scales to perform per-anchor classification and
localization regression.

The two-stage models usually have greater accuracy while the single-stage networks
run faster. However, both of these architectures have a common flaw: They rely on
a heavy feature extractor backbone to power the object detection feature. While
this backbone can be swapped with smaller and more efficient networks, there is a
limit of diminishing returns that doesn’t allow these meta-architectures to perform
properly if the backbone network is too small. As such, it is not practical to run
these networks in ultra low energy devices.

These state of the art systems all compete with each other obtaining ever improving
accuracy metrics. And while there is considerable effort being placed on their
efficiency for low energy devices, most of these improvements come from reducing
the size of the backbones [39] or creating better interconnections between the layers
to improve the learning through better flow of gradient information [40]. This helps
such networks have extremely high detection and recognition accuracy on a large
variety of object types, with extremely high variability in the data.
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Another drawback of these systems is that they have been built with generalization
of general object datasets [41] in mind. That is, they are intended to perform
well for detecting well regardless of the hardware configuration they are running
on. Therefore, little attention is paid to the preparation of the input data, and
the network itself must spend more compute resources processing the image and
extracting low level feature information, something which could otherwise be aided
with the underlying imaging hardware available to the system.

When deploying a computer vision model in the domain of edge computing, how-
ever, you can bypass some of these design requirements. Primarily, the types of
objects an edge object detector might be required to detect could be extremely
simple to power basic IoT applications. So a neural network is not required to have
expensive network backbones to process everything from cats and dogs to different
types of vehicles, as is the case of the benchmark datasets that most state of the
art object detection networks are developed for. Furthermore, when deploying to
a particular hardware device (or type of device), it is possible to design architec-
tures that more efficiently make use of available hardware features, both for image
processing as for the network inference algorithms themselves.

This work therefore explores the development of a specialized neural network ar-
chitecture that can be deployed with minimal compute resources on low energy
mobile and embedded devices. The novelty of this system is rooted on several
concepts which are explored in detail in this chapter.

3.2 Imaging Pipeline

This section explores the traditional hardware imaging pipeline for camera-based
devices. Understanding how this pipeline works allows making better decisions on
the image processing algorithms used to prepare the input image for consumption
by the neural network.

3.2.1 Camera Sensor

The main component of a camera device is the image sensor. The components of
camera sensor are sensitive to a wide range of wavelengths, and as such, light of
any color can activate the sensor, making it impossible for a sensor to differentiate
among different colors in the light that reaches it. The simplest way to reconstruct
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color information is to split the incoming light through a Philips prism and redirects
it to three separate sensors, each one treated with a color filter to limit their
sensitivity to a narrower wavelength bandwidth in each of red, green and blue
wavelength ranges. The three images from these sensors can then be put together
to form a traditional 3-channel RGB image. This method is depicted in Figure 3.1.
While very effective and the result is a very high quality color image, this system
requires multiple sensors and extremely precise optical paths, which results in
an increased hardware cost. As such, this system is not very ideal for a mass
deployment of camera-based hardware devices.

Figure 3.1: A 3-CCD sensor system used to maintain create quality color images
with the help of a prism that separates the optical path in three for
each of three sensors, each with a different color filter. The result is
three individual images that then correspond to to each of the three
color channels of a final image.

As a result, an alternative method exists which makes use of a single sensor to
form a color image, thereby greatly reducing the manufacturing cost. This method
consists of a single photosensor array that instead of being treated with a single
color filter, it has a Color Filter Array (CFA) forming a Bayer Pattern. This filter
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array is a grid pattern where each pixel has different color sensitivity, such that
the resulting image interlaces pixels of different colors. This system is shown in
Figure 3.2.

Figure 3.2: A color filter array forming an RGGB Bayer pattern on top of a a
camera photosensor array to preserve color information through the
use of a single camera sensor.

Each photosensitive element in a sensor with a Bayer CFA is sensitive to one of
three different light wavelengths, blocking out light outside of that range. There-
fore, each subset of pixels with the same color filter form each channel of the color
image. This process is visualized in Figure 3.3. An RGGB Bayer pattern cor-
responds to a CFA with one red, two green and one blue pixel for each 4 pixel
quadrant. This is the most common CFA pattern, but it’s not the only one. Other
variants exist for different applications, but the RGGB pattern is the most widely
adopted one as it tends to produce the most natural-looking color representation.

3.2.2 ISP

All camera based hardware devices make use of an Image Signal Processor (ISP)
that can be implemented either as efficient image processing hardware blocks, or
purely as programmable software running on traditional compute hardware blocks.
The purpose of an ISP is to transform the raw RGGB data from the CFA sensor
to a usable image that an end application can make use of.

The most important part of the ISP is the demosaicer. When working with a
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Figure 3.3: A Bayer CFA filter on a sensor causes each photosensitive element of
the sensor array to react to a narrow range of light wavelengths, thereby
separating at the pixel-level color information in the resulting image.

single sensor with a CFA, it can be seen that the resulting image has sparse color
information. Each of the three resulting color channels has pixels that are not
necessarily packed next to each other, but rather are spread out through the image
through a predetermined strided pattern. Note also that the green channel holds
twice as much information as the red and blue channels.

In contrast to the three-sensor system, camera sensors with CFA patterns obviously
reduce the image resolution of each of the resulting color patterns. To combat this,
the demosaicer implements an interpolation algorithm such as the one that can be
seen in Figure 3.4. Demosaicing essentially uses a bilinear interpolation filter to
generate the missing color information on pixel locations where each channel lacks
any data. By integrating information from the surrounding pixels, the missing
information can be re-generated through this interpolation, resulting in a three
color channel image where each channel has the full original resolution of the
image sensor.

The ISP is also responsible for a series of other image manipulation operations,
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Figure 3.4: A demosaicing algorithm helps to fill in the missing color data for each
channel on pixels where no data is available as a result of the CFA
color sparsity.

such as color correction, denoising, sharpening, gamma correction, defective pixel
correction, among many others. Different hardware systems will have different ISP
pipelines that perform different operations, according to the characteristics of the
image sensor and the intended usage of the final produced images.

However, something that is very common among all ISP pipelines is a color space
transformation to and from RGB into other color spaces such as YUV. This is
because many of the operations that an ISP pipeline performs can be better im-
plemented when they work in this YUV color space. Therefore, the ISP often
maintains a copy of the image data in the YUV color space, making YUV one of
the possible output formats for most ISPs. One particular but very common use
case for this is in video recording, as many video encoders and decoders can work
more efficiently in this color space. Therefore, instead of obtaining an RGB image
from the ISP and converting it to YUV in software, it is often possible to directly
request YUV data from the ISP instead.

3.2.3 YUV Color Space

Historically, the RGB color space is the preferred color model when dealing with
digital imaging. The reason being its compatibility with other systems and easy
visualization. Additionally, the reason for colors to be digitally represented in this
manner is primarily biological in nature, as the human visual system is trichro-
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matic and composed of three types of cone cells – each one sensitive to a different
wavelength of light, roughly corresponding to red, green and blue. As a result,
most screen displays are composed of pixels of these three colors such as to better
activate the light receptor cones in the human retina, and to generate a signal that
can display an image on such screens, information for these three color channels
needs to be given separately. Needless to say then, RGB images are composed
of three channels, one for each of these same three component colors. Image in-
tensity is given by the common increase of the values in all three color channels
simultaneously, whereas chromatic information comes from the variation in values
of the three channels for every pixel in a photograph. This leads to relatively large
amount of redundancy in the input data, as all three channels will usually have a
high level of correlation between them when the saturation of the image is low.

Given that these three color channels are all as important as one another, they
need to be treated with almost equal importance by the neural network – but this
leads to wasted resources spent in extracting redundantly similar features for each
data channel separately. The question arises if there is a better way to represent
the image data such as to help with the neural network’s learning process, making
as efficient use as possible of the given data distribution. As usual, we look to the
biological visual system for inspiration on how to better treat this information. It
is well known that the human visual cortex is much more sensitive to changes in
luminance than to changes in color [42]. It is for this reason, that image recognition
with purely grayscale representations of images is actually possible, albeit with
lower accuracy than with full color information. Therefore, it would be beneficial
to have a system where the intensity can be treated with the attention it demands,
while still making use of chromatic data, but only as supporting information.

There exist various color models which follow such a structure. HSL being one
of the better known ones, where the three data channels represent hue (H), satu-
ration (S) and luminosity (L). Similarly the Lab color space uses one channel for
lightness (L), and two channels for opponent color information (a and b). Finally,
another well known system is the YUV color model, where the image intensity is
represented in one channel (Y) and the color information is given in two supporting
channels (U and V). An example of an image represented in this colorspace can
be seen in Figure 3.5. Although all three of these color models have very different
specifications, it can be expected for the training process to proceed with roughly
the same efficiency using either of these. However, the YUV space is chosen for the
system presented in this work for two particular reasons: (i) it is readily available
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in the ISP as this color space is used for many other image processing algorithms,
and (ii) it can be computed from an RGB image via a simple and efficient linear
transformation, therefore it doesn’t introduce any biases or non-linear factors.

Figure 3.5: A visualization of the YUV and RGB color spaces, where the Y data
channel corresponds to luminosity information and the two U and V
planes are two opposing chromacity channels.
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The transformation between these two color spaces is therefore extremely efficient
and can be implemented as a series of element-wise MAC computations for all
pixels in the image.
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3.2.4 Color Compression

Within YUV color formats there exist various ways to transfer the color informa-
tion. As the luminosity channel carries proportionately far more information than
the chroma channels, it is possible to compress the image size by reducing the res-
olution of the chroma channel planes, while keeping the luminosity channel intact.
The reason behind this is that the human visual system is far more sensitive to
changes in intensity information than changes in hue. As a result, it is possible to
maintain almost the same visual quality (as perceived by human vision) of an im-
age when performing this compression of the chroma channels and reconstructing
back the full color image.

This compression becomes an important part of image processing and transfer
systems, and as can be expected, there are various standards that define how this
compression happens and by what factor the chroma data is downsampled. This
is usually represented in an N : M : L format, where N represents how many
pixels, out of every four, carry their original luminosity information. M and L

then represent the same but for each of the two chroma channels respectively. A
visualization of this compression can be seen in Figure 3.6.

Figure 3.6: Three different compression levels for YUV color information, ranging
from full information at every pixel (4:4:4, also referred to as YUV444),
down to a single chroma pixel for every four luminosity pixels (4:2:0,
also known as YUV420).

The compression levels of 4:4:4 and 4:2:0 result in chroma channels that maintain
the original aspect ratio of the image, while a compression level of 4:2:2 results in
chroma channels with an aspect ratio twice as wide as the original image, due to
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the asymmetric dropping of color information pixels in both dimensions. Figure 3.7
shows the effect of the different compression levels on image quality. There also
exist other formats that allow for even further compression but they are no longer
useful for image processing as too much information is lost. For the purposes
of this work, we choose 4:2:0 (commonly referred to as YUV420) as this level
allows data compression, while maintaining spatial proportions correctly without
requiring additional interpolation or resizing.

Figure 3.7: The effects of the three different compression levels and how they im-
pact the visual quality of the image.

The next question comes on how the image data is actually packed on a camera
byte stream. This is dependent on different hardware criteria related to the camera
sensor and the device ISP. Usually, these formats are standardized across a range
of devices, and it will depend on hardware vendors which format(s) are available
for consumption by the image processing software. In the case of Android phones,
however, a very common image data format is NV21, which is best described
graphically in Figure 3.8.

This particular format is useful in that the order in which data is packed allows
for a very efficient method for extracting the image channel information. Note: In
accordance to video standards, most hardware cameras output image data in Y UV
format, but a slight distinction is that digital cameras actually use the Y CbCr

format, which is the digital equivalent of the Y UV analog format specification,
where the difference between the two spaces simply reflects some minor variations
in the transformation coefficients to correct for some common biases that result
from digital signaling. However, it is customary to refer to this format simply as
Y UV as well, so following convention, the Y UV term will be used here.
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Figure 3.8: The NV21 image format which packs a YUV420 chroma-subsampled
image into a byte stream consisting of contiguous luma values, followed
by interleaved chroma values.

3.2.5 Contrast Normalization

Computer vision neural networks analyze input images to produce their results.
As with any machine learning algorithm, it is extremely important to pre-process
the input data in a manner that leads to better analysis by the system.

Prior to processing the image data by the first layer of neurons, the luminosity
channel of the image is normalized. The purpose of this is to make a preemptive
attempt at levelling out the effects caused by illumination differences. There exist
a wide variety of changes that an image can undergo due to varying conditions
at the time it is captured. The idea is to normalize the intensity value variations
due to light, while keeping the intrinsic changes that are due to the object’s own
shape. After all, exposure and brightness information has lower importance than
shape and edge information when determining the identity of an object.

As can be expected, there are various methods for accomplishing this task, with
varying degrees of success. The correct choice of pre-processor to use will vary for
each application in particular, but regardless of the chosen algorithm, this is always
an important step to take, as with any other machine learning task demanding the
normalization of data prior to processing. In other machine learning algorithms,
this process is sometimes known as feature scaling, a reference to the fact that it
multiplies the data by a factor which globally spreads it out to better cover over a
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predefined interval – normally zero-centered.

For this work, however, contrast normalization is proposed as a method that can
better accentuate the features that are most important to an image. The main rea-
son being that this system is biologically inspired [43, 44] usually outperforming
other alternative methods. As opposed to many common pre-processing algo-
rithms, contrast normalization is non-linear, which allows for the introduction of
better features into the input data.

This process is primarily calculated through image convolution operations, mak-
ing it somewhat more expensive computationally than other statistics-based algo-
rithms. However, the feature enhancement provided by this algorithm compensates
its computation cost by effectively reducing the amount of operations that the neu-
ral network backbone must perform to extract very similar features. The effect
provided by contrast normalization can be seen in Figure 3.9.

Figure 3.9: An example of the effect that contrast normalization has on an image,
where the output values have been remapped to a [0, 255] range for
visualization purposes.

Contrast normalization has the effect of enhancing edges and salient features in the
image. Edges in an image are mainly the result of a sudden change in value, either
from low to high or high to low. These sudden gradient changes are translated to
positive or negative values by the contrast normalization process, while areas of
constant value or with only small and gradual change tend towards zero.

It is important to note that this normalization is applied on an image in YUV
color space with 4:2:0 chroma compression, but only on the luminosity channel.
The color channels are not modified in any way, as shifting any of their values
would have the effect of remapping image color hues significantly which would
only lead to confusion in the neural network, something which is not desirable
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when the chromatic value of specific regions in the images have great significance
attached vital for accurate classification. Furthermore, due to the nature of the
YUV color space, the typical values of U and V chroma channels are already zero
centered, and range within an acceptable [-1, 1] value distribution.

The contrast normalization filter is achieved by applying convolution with a Gaus-
sian kernel. As Gaussian kernels are fully separable, this can be applied much
more efficiently via the separable convolution method [45]. This basically applies
two sets of 1D Gaussian convolutions on the input data, one horizontally and one
vertically. The 1D convolution kernel used is a single row Gaussian vector. This
operation is considerably less computationally expensive than a full 2D kernel.
That is, separable convolution has a complexity of O(2n), compared to O(n2) in
the case of the full 2D Gaussian kernel.

The contrast normalization filter is performed by the following set of operations:

CS(I,K) = I −
(
KT ⊗ (K ⊗ I)

)
(3.3)

CD(I,K) =
I√

KT ⊗ (K ⊗ (I ◦ I))
(3.4)

CN (I,K) = CD
(
CS(I,K),K

)
(3.5)

Where I is the input image at each operation, usually modified with a 1D Gaus-
sian kernel vector K and its corresponding transposed kernel KT to perform a
convolution in both the horizontal and vertical directions of the image.

The CS(I,K) function is a subtractive operation, where the dual convolutions
have the effect of generating a localized mean representation of the input image,
thus, subtracting this mean from the original input image yields a zero-centered
normalized image.

The CD(I,K) function is a divisive operation, where the dual convolutions operate
on the input image squared (element-wise matrix multiplication by itself). The
square root of this amount represents a localized standard deviation of the input
image, thus, dividing the input by its own standard deviation results in a normal
distribution with σ = 1.

The final CN (I,K) function to implement the contrast normalization operation,
then, is that of the previous two operations applied sequentially with the same ker-
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nel, resulting in a normalized image with values centered around 0, and a standard
deviation of 1 – priming it for a machine learning algorithm to process. The local-
ized convolutions applied throughout the process also have the effect of flattening
gradients over the image, while enhancing the ever important edge outlines describ-
ing the object contours, both of which are ideal for easier recognition. Figure 3.10
shows this effect on the distribution of values of the input image luminosity data,
and the output of the algorithm on that same data distribution.

Figure 3.10: Top: A histogram of the value distribution of the input luminosity
channel for the image in Figure 3.9, which can be seen to fall within
the [0, 1] value range, and with peaks at either end. Bottom: A
histogram of the values of the output of the contrast normalization
algorithm applied to that image, where the ranges now fall within
a [-1, 1] range, they are zero-centered and following a Gaussian bell
shape distribution.

The other important optimization that happens in this operation is striding. All
convolution operations are applied with a stride of 2× 2, which essentially means
that the filter skips every other row and column of the input image. As a result,
the output image has a resolution of one half the width and height of the input
image. This causes the result of the contrast normalization pre-processor on the
luminosity channel to have the exact same size as the chroma subsampled channels
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due to the 4:2:0 color compression.

The end result of this operation is three color channels in YUV color space, all
with the same resolution which is half of that of the input image size. All three
channels will be zero centered and in the range of [-1, 1]. The luminosity channel
will further have a standard deviation of 1, and the chroma channels will have
unmodified magnitudes that the computer vision system can still use to attribute
color information to different regions of the image. This image is now ready to be
processed by the neural network.

3.3 Network Architecture

The backbone of the neural network requires an architecture that is better guided
towards efficient execution, as neural networks are very compute intensive, this
becomes the bottleneck of the entire system. Having an optimized architecture is
a delicate balance between runtime speed and prediction accuracy, and therefore
requires a good trade-off to be made when targeting an edge application.

3.3.1 Classifier Backbone

The neural network architecture used for this detector system starts with the
development of a classifier-like network. This network has the task of taking an
input image and predicting an output class label.

The nature of the task, therefore, already dictates the input and output shape
constraints: The input shape must match the dimensionality of input images, wile
the output shape must be a vector with as many elements as there are target
classes.

The network on which our system is based upon is a standard CNN. Figure 3.11
depicts the layer structure of such a network, and it is the reference architecture
used throughout this work to describe the concepts of the proposed framework.
Note that the depicted architecture represents a standard template which can be
used to build larger or smaller versions of the network, by adapting either the size
of the input images, the number of layers, or the neurons on each layer. Naturally,
such changes will have an impact on the trade-off between accuracy and runtime
performance.
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Figure 3.11: A typical convolutional neural network architecture, with three input
neurons for each color channel of an analyzed image patch, two feature
extraction stages of convolutional and max-pooling layers, and two
linear layers to produce a final one-vs-all classification output.

In the initial stages of the CNN, a neuron consists of a two-dimensional grid of
independent computing units, each producing an output value. As a result, every
neuron will itself output a grid of numerical values, a data structure in R2 referred
to as an activation map. When applying CNNs to image analysis, these maps
represent an internal state of the image after being processed through a connective
path leading to that particular neuron. Consequently, maps will usually bear a
direct positional and feature-wise relationship to the input image space. As data
progresses through the network, however, this representation turns more abstract
as the dimensionality is reduced. Eventually, these maps are passed through one
or more linear classifiers, layers consisting of traditional single unit neurons which
output a single value each. For consistency, the outputs of these neurons are treated
as 1×1 single pixel image maps, although they are nothing more than scalar values
in R0.

3.3.2 CNN Layers

The first layer in the network consists of the image data to be analyzed, usually
composed as the three color channels. The notation NjXKj is used to describe all
subsequent layers, where Nj is the neuron map count of layer j, X ∈ {C,MP,L}
denotes the layer type group (Convolutional, Max-Pooling, and Linear), and Kj is
the parameter value for that layer. So for example 12C5 describes a convolutional
layer of 12 neurons with a kernel size of 5. In this manner, a configuration for the
full network can be given by stating the individual layers, where for example the
network depicted in Figure 3.11 can be defined as having the configuration:

12C5 + 12MP2 + 32C5 + 32MP2 + 128L + 2L
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The network has several feature extraction stages composed of a combination of
convolutional and max-pooling layers. The first part of every C → MP feature
extraction stage is the convolutional layer. Here, each neuron linearly combines the
convolution of one or more preceding maps. The result is a map slightly smaller
than the input size by an amount known as the kernel padding, which arises from
the boundary conditions of the valid convolution algorithm. It is defined as Kj/2−1,
where Kj is convolutional kernels size of layer j. Therefore, the layer’s map size
will be given by Mj = Mj−1 − Kj/2 − 1, where Mj−1 is the the preceding layer’s
map size. Note that although not explicitly stated in the network configuration,
each convolutional layer is inherently followed by a non-linearity function, such as
tanh(x).

A max-pooling neuron acts on a single map from a preceding convolutional neuron,
and its task is to subsample a pooled region of size Kj . The result is a map size
that is inversely proportional to said parameter by Mj = Mj−1/Kj. The data may
then be passed to one or more additional C →MP feature extractors.

Linear layers classify feature maps extracted on preceding layers through a linear
combination similar to a Multi Layer Perceptron (MLP) – always working with
scalar values – such that Mj = 1 at every layer of this type.

Figure 3.12 shows how information flows through the various layers of the CNN,
leading to this classification for a given input image among two possible classes that
this particular network was trained for. From left to right, the flow starts with YUV
image information. The first convolutional stage consisting of 12 convolutional
units producing image-like activation maps of roughly half the size of the input
images. This 12C5+12MP2 stage produces twelve activation maps (only the first
three are visualized for brevity). This data then flows to the second convolutional
stage, a 32C5 + 32MP2 layer configuration that produces 32 activation maps of
even lower resolution.

These two convolutional stages serve as a form of feature extractor that reduce
the input image to a lower dimensional representation. By repeated convolutions
and max-pooling operations, the data is reduced from a tensor of size 32×32×3 =
3072 data points, to one of size 5×5×32 = 800. These 800 data points serve as
the input for the final stage of the CNN, a simple MLP which is able to classify
the 800 non-linear features extracted from the input image into the final number
of target classes the recognizer is trained upon.

The output layer in the linear classifier has as many neurons as there are classes
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Figure 3.12: Visualization of the first three neuron maps at each stage of the CNN
when performing inference on an input image window of size 32× 32.
Note the data size reduction induced at each stage. The output of
this execution consists of two scalar values, each one representing the
likelihood that the analyzed input image belongs to that neuron’s cor-
responding class. In this case the logo has been successfully recognized
by the higher valued output neuron for class “Logo”.

in the problem to solve, plus one. The extra output neuron usually corresponds to
a catch-all background class for negative classifications. This layout fully defines
the proposed neural network classification backbone.

3.3.3 Connectivity Mapping

The connectivity of the neural network is very important in that prior domain
knowledge can be integrated into the system, and in this manner mold the algo-
rithm to better suit a particular goal. Unlike traditional neural networks, neurons
in each layer are not simply connected to all neurons in the previous layer, but
rather, information bottlenecks can be introduced through selective connectionism
that force the influence of data to take specific routes within the network, thereby
modifying the behavior of individual neurons in a particular manner. This concept
is largely rooted in how specific neural pathways exist within the visual cortex.

As explained in section 3.2.3, more importance needs to be assigned to the lumi-
nosity channel of the input image than to the color data channels. Structure-wise,
this influence is built into the system through a custom connection map between
the first two layers. By doing this, the prior knowledge of asymmetrical channel in-
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fluence can be embedded into the network model. A connectivity mapping is thus
formed between the input neurons and the first convolutional layer in such a way
that the Y channel input neuron fully connects to proportionately larger subset of
the convolutional neurons in the first layer, whereas each of the U and V channel
input neurons connect to only smaller subsets of neurons each. Assigning more
connections to certain neuron greatly increases the effect its stimulus information
has over the entire system state. It is important to note here that each channel
will be processed separately on this first convolutional layer of the CNN, and it is
not until the next feature extractor stage where the information from all channels
is finally mixed together. The final classifier backbone architecture implementing
this connectivity mapping can be seen in Figure 3.13.

In the next layer, each of the non-linear max-pooling neurons is directly connected
to exactly one convolutional neuron in the preceding layer. This is merely due to
the fact that these neurons are meant to operate only over a single image, therefore
taking only one input each. The activated output of these layers, however, connects
to the next stage of the CNN in a more intricate manner.

This next stage of the network consists of another convolutional layer. As the con-
volution operation is one of the most expensive operations throughout the network,
the connectivity map between these two layers is modified so as to reduce the total
number of operations needed to be performed, especially since this is the most
computationally demanding layer of the CNN structure. Specifically, 12 neurons
in the first convolutional layer fully connected to 32 neurons in the following stage
would require 12×32 = 384 convolution operations. Keeping in mind the recursive
nature of the convolution algorithm, this seemingly low number of convolutions
actually represents 1.9 million arithmetic operations, not taking into account the
memory lookup calculations performed by the algorithm.

On the other hand, if a sparse connectivity map is used between these two stages,
the required number of operations can be considerably reduced – by implementing
a 1/3 random connection map, for example. That is, each neuron in the second
stage connects only to 1/3 of the neurons in the previous layer – thereby decreasing
the amount of convolutions performed proportionally to the map reduction factor.
In this case, only 4×32 = 128 operations are needed, exactly one third as many as
in the fully connected case.

This process reduce the computational cost of the network, but another way of
looking at this is by considering that given a fixed number of computations, it is
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3.3 Network Architecture

Figure 3.13: The proposed convolutional neural network backbone architecture
with a 12C5 + MP2 + 32C5 + MP2 + 128L + 10L configuration, but
with a bottleneck in the connectivity mapping between the YUV im-
age information and the first convolutional layer, and again between
the convolutional feature extraction stages 1 and 2, where a 4 → 32
connectivity map is used, thus generating only 128 neural connections.
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3 Efficient Object Detection Neural Network

actually more beneficial for the network to learn more unique data structures to
have more neurons with sparse connectivity than fewer neurons with dense connec-
tivity. This sparse connectivity can be overcome by the Backpropagation algorithm
as it will forcefully learn the most optimal use of the available connections and each
neuron will learn the best possible kernel weights for the few connections it has
access to.

In larger neural networks, this procedure is often achieved by different methods of
network pruning [46, 47]. Pruning is often done as an iterative task, where a neural
network is first trained with full dense connections, then the connections that are
activated the least are selectively removed, after which, the network is trained again
to make the model adapt to the new connectivity. This process is often repeated for
a few iterations until some convergence criteria is reached. However, such methods
applied on extremely small neural networks such as the one proposed by this work
do not yield good results due to codependent neural pathways. Therefore, forcing
a sparse connectivity at the design stage allows training the model in one single
pass with this constraint already built in, and as such, it leads to better learning
for such network architectures.

3.4 Neural Spatial Extension

To solve the task of object detection, it is necessary to find not only what an object
is, but also where in the image it is located. The problem of object detection
therefore can be divided into two parts: (i) classification, and (ii) localization.
And this must be done for one or more objects that may appear in the image.

As expected, the task of classification is partially solved by the classifier described
in Section 3.3. However, a classifier classifies a full image as belonging to one class
or another, and is not capable of producing any information related to localization
within the image.

Therefore, the inference methodology must be adapted to provide contextual infor-
mation according to the position of objects within the input image space. State of
the art object detection systems, such as SSD [35] resolve this problem by adding
an extra head to the network, which acts as a regression layer to predict a contin-
uous numerical value for each of the four coordinates that define a bounding box.
While extremely effective and accurate, this process obviously places additional
computational requirements on the neural network implementation.
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This section describes an alternative method by which localization information can
be extracted by extending the spatial inference space of the network. This infor-
mation can then be further analyzed to produce the final bounding box locations
to localize objects in the input image.

3.4.1 Sliding Window

The proposed concept of shared maps is rooted on the traditional approach of the
sliding window. A sliding window is a brute force methodology by which inference
over a large image can be performed by moving a window throughout the entire
image and classifying each region through a computer vision model such as a CNN
in this case. This form of brute force search basically goes through the whole image
to find where within the image something of interest might be located.

This sliding window approach is mainly defined by two quantities, the window size
S, usually fixed to match the CNN’s designed input size; and the window stride T ,
which specifies the distance at which consecutive windows are spaced apart. This
stride distance establishes the total number of windows analyzed W for a given
input image. For an image of size Iw × Ih, the window count is given by:

W =

(
Iw − S
T

+ 1

)(
Ih − S
T

+ 1

)
=⇒ W ∝ IwIh

T 2
(3.6)

Figure 3.14 shows this method applied on an input image downsampled to 144×92,
extracting windows of S = 32 for the simple case where T = S/2. A network
analyzing this image would require 40 executions to fully analyze all extracted
windows. The computational requirement is further compounded when a smaller
stride is selected – an action necessary to improve the resolving power of the
classifier: at T = S/8, 464 separate CNN executions would be required.

3.4.2 Shared Maps

The method proposed introduces a system where the stride between regions of
interest has no significant impact on the execution time of the C → MP feature
extraction stages, as long as the selected stride is among a constrained set of
possible values. This is achieved by allowing layers to process the full image as
a single shared map instead of individual windows. Constraints in the possible
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Figure 3.14: An overview of the sliding window method, where an input image is
subdivided into smaller overlapping image patches, each being indi-
vidually analyzed by a CNN. A classification result is then obtained
for each individual window.

stride values will result in pixel calculations to be correctly aligned throughout the
layers, a critical requirement for this system to perform inference correctly.

CNNs have a built-in positional tolerance due to the reuse of the same convolutional
kernels over the entire neuron map. As a result of this behavior, their output is
independent of any pixel offset within the map, such that overlapping windows
will share convolved values. This is demonstrated in Fig. 3.15.

This leads to the possibility of streamlining the feature extractors by running their
algorithms over the full input image at once. Hence, each C → MP neuron will
output a single map shared among all windows. This greatly reduces the expense
of calculating again convolutions on overlapping regions of each window. Figure
3.16 shows an overview of the shared map process, which passes the input image
in its entirety through each stage of the network.

By doing this, the output layer now produces a continuous and localized class
distribution over the image space, a result which contrasts greatly to that of a
single classification value as was previously seen in Fig. 3.12. An account of the
window size and stride is also displayed, illustrating how it evolves after each layer,

Figure 3.15: Two adjacent windows extracted from an input image, passed through
the 12C5 + 12MP5 feature extractor. A detailed view of the convolved
maps in the overlapping top-right and bottom-left quarters of each
window shows that these areas fully match.
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3.4 Neural Spatial Extension

Figure 3.16: The shared map execution method for a convolutional neural network,
where each layer processes an entire image in a single pass, and each
neuron is now able to process maps with dimensions that far exceed
the layer’s designed input size.

while the total window count remains the same. Here, the correspondence of each
32×32 window in the input image can be traced to each one of the pixels in the
output maps.

More importantly, however, the output of this execution consists of image maps
where each pixel yields the relative position of all simultaneously classified win-
dows. Similar to the per-window execution method, the intensity value of a pixel
in the output map represents the classification likelihood of the corresponding
window. Note how the relative position of the logo in the input image has been
discovered after only one shared map execution of the network. It is this positional
context that provides the basis for localization, and as such it turns a classifica-
tion network performing inference on a single image patch to an object detection
problem that performs inference over a larger image space, with results encoding
information to locate the relevant objects.

49



3 Efficient Object Detection Neural Network

3.4.3 Stride Configuration

The operation of the shared map process relies greatly on the details of the dimen-
sionality reduction occurring at each layer within the network. For this reason, it
is necessary to lay certain constraints that must be enforced when choosing the
optimum sliding window stride.

At each layer, the window size and stride are reduced until they eventually become
single pixel values at the final linear layers. The amount of reduction at each stage
varies according to the type of the layer and its parameters. All of these quantities
can be found in a well defined manner as given by:

Sj =


Sj−1 −Kj − 1 if j ∈ C
Sj−1/Kj if j ∈MP
Sj−1 if j ∈ L

(3.7)

Tj =

{
Tj−1 if j ∈ C ∪ L
Tj−1/Kj if j ∈MP

(3.8)

Where the window size Sj and its stride Tj at layer j depends on the various
parameters Kj of the layer and the window size and stride values at the preceding
j−1 layer. This equation set can be applied over the total number of layers of the
network, while keeping as the target constraint that the final size and stride must
remain whole integer values. By regressing these calculations back to the input
layer j = 0, one can find that the single remaining constraint at that layer is given
by:

T0 ≡ 0 mod
∏

j ∈MP
Kj (3.9)

In other words, the input window stride must be perfectly divisible by the product
of the pooling size of all max-pooling layers in the network. Choosing the initial
window stride in this manner, will ensure that every pixel in the final output map
is correctly aligned throughout all shared maps and corresponds to exactly one
input window. Fig. 3.17 follows the evolution of the window image data along
the various layers of the sample network architecture, showing this pixel alignment
throughout the CNN.
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3.4 Neural Spatial Extension

Figure 3.17: The CNN layers and their effect on the window pixel space, illustrated
in one dimension for simplicity. Two successive 32×32 windows W 1

and W 2 are shown. Overlapping pixels at each layer are shaded.
Starting with an input layer window stride T0 = 4, the final output
layer results in a packed T6 = 1 window stride, so that each output
map pixel corresponds to a positional shift of 4 pixels in the input win-
dows, a relationship depicted by the darkened column path traversing
all layers.
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3.5 Discrete Inference of CNN Output

The output from the convolutional neural network as seen in Figure 3.16 consists
of multiple individual maps, where each one gives a visual depiction of the relative
confidence, per class, that the network predicts for every window that has been
sampled.

The common practice to obtain a final classification from such an output value set
is to identify which class has a higher output value from the CNN for each each
sampled window (here, each pixel in the output map). While efficient, results from
this procedure are not always ideal because they only take into account windows
separately and interactions between contiguous windows are ignored.

Furthermore, maximum value inference is prone to false positives over the full
image area. Due to their non-exact nature, neural network accuracy can decrease
by finding patterns in random stimuli which eventually trigger neurons in the final
classification layer.

In the previous example, the output classification maps were very clear and they
easily define where the objects of interest are located. However, in more cluttered
images, the classification maps may not be as confident and can produce much
noisier outputs. Such an example can be seen in Figure 3.18 where there exists some
confusion in the classification results and some blobs in these output maps seem
to indicate falsely detected objects. However, such occurrences tend to appear in
isolation around other successfully classified image regions. It is therefore possible
to improve the performance of the classifier by taking into account these nearby
classification windows.

There exist many statistical approaches in which this can be implemented, such
as (i) influencing the value of each window by a weighted average of neighbor-
ing windows, or (ii) boosting output values by the presence of similarly classified
windows in the surrounding area. However, we propose discrete energy minimiza-
tion through belief propagation [48] as a more general method to determine the
final classification within a set of CNN output maps. The main reason being that
graphical models are more flexible in adapting to image conditions and can usually
converge on a globally optimal solution.
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3.5 Discrete Inference of CNN Output

Figure 3.18: The shared map execution method for a convolutional neural network,
where the output classification maps are less confident and produce
somewhat noisier results.

3.5.1 Pairwise Markov Random Field Model

Images can be treated as an undirected cyclical graph G = (N , E), where nodes
ni ∈ N represent an entity such as a pixel in the image, and graph edges eij ∈ E
represent the relationship between these nodes. If, for simplicity, 4-connectivity is
used to represent the relationship between successive nodes in a graph; then each
node will be connected to four others corresponding to its neighbors above, below,
and to each side of the current element.

The output space of the convolutional neural network can therefore be represented
in this manner through a graph. However, instead of describing pixel intensity
values, each node in the graph represents the classification state of the corre-
sponding window. This state takes on a discrete value among a set of class labels
c ∈ C ≡ {BG,Logo} corresponding to the classification targets of the CNN. Thus,
each node in the graph can take on one of several discrete values, expressing the
predicted class of the window that the node represents. Figure 3.19 (Left) displays
the structure of such a graph.

It can be seen that if nodes represent classification outcomes, there is a strong
relationship between them. The reason is that continuity throughout a map tends
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Figure 3.19: Left: A subset of the MRF graph G formed by the CNN output
space, where each node ni represents the classification state of a cor-
responding window analyzed with the network, whose outputs are
implemented into this system as the observed hidden variables O.
Nodes have a 4-connectivity relationship with each other represented
by the edges eij thus forming a grid-like cyclical graph. Right: A
detail of the potential energies assigned to each of two nodes {n1, n2}
connected by edge e12. The singleton potentials Θ a

i correspond to the
energy associated with node i if assigned to class a, and the pairwise
potentials Θ ijab are the changes in energy that occur by assigning
class a to node ni and class b to node nj .
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to be preserved over neighboring regions due to strong local correlation in in input
images. This inflicts a Markovian property in the graph nodes where there is
a dependency between successive nodes. Therefore, this graph follows the same
structure as an MRF, and any operations available to this kind of structure will
be likewise applicable to the output map.

3.5.2 Energy Allocation

To implement energy minimization on an MRF, it is necessary to assign energy
potentials to each node and edge. These energies are usually adapted from observed
variables, and in this case, they correspond to the values of the output maps and
combinations thereof. Therefore, MRF optimization over a graph G can be carried
out by minimizing its Markov random energy E, given by:

E(G) = E(N , E) =
∑

ni ∈ N
Θi(ni) +

∑
eij ∈ E

Θij(eij) (3.10)

Here, Θi(·) corresponds to the singleton energy potential of node ni, and Θij(·) is
a pairwise potential between nodes ni and nj . Starting from the CNN output map
observations, the singleton potentials can be assigned as:

Θi =


ω 0

i

ω 1
i
...

ω C
i

 (3.11)

ω a
i =

∑
c ∈ C

{
1− (O c

i )
2 if a = c

(O c
i )

2 otherwise
(3.12)

Where C is the total number of classes in set C (2 in the sample CNN architecture),
and O c

i is the observed CNN value for window ni ∈ N and class c ∈ C. In this
manner, each ωa

i value is an MSE-like metric that measures how far off from ideal
training target values did the CNN classify window ni as. Thus, a lower potential
value will be assigned to the most likely class, while a higher potential value will
be given to other possible classes at this node.

Pairwise potentials can be defined as:
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Θij =


δ 00

ij δ 01
ij . . . δ 0C

ij

δ 10
ij δ 11

ij δ 1C
ij

...
. . .

δ C0
ij δ C1

ij δ CC
ij

 (3.13)

δ ab
ij =| O a

i −O b
j | (3.14)

Where each value δabij is a straightforward distance metric that measures the jump
in CNN output values when switching from class a to class b between windows ni
and nj . Thus, these potentials will be small if the same class is assigned to both
nodes, and large otherwise. Fig. 3.19 (Right) shows all energy assignments per
node pair.

It is worth noting that these Θij pairwise potentials between neighboring windows
are the only feature that sets apart this process from the traditional winner-takes-
all approach.

3.5.3 Energy Minimization by Belief Propagation

Applying an efficient implementation of Belief Propagation to find the lowest pos-
sible energy state of the graph will now yield an equilibrium of class assignments
throughout the image output space.

Due to the cycles inherent of image-bound graphs, a special variation of the al-
gorithm must be used, in this case Loopy Belief Propagation [49]. This variation
requires the minimization to be run several times until the solution converges and
an equilibrium is found. However, due to various existing optimizations for this
algorithm, this process is very straightforward and can be solved in polynomial
time.

Qualitative results of this algorithms can be seen in Figure 3.20, where a com-
parison is visualized between the proposed method and the traditional method of
independently finding the maximum confidence for each classification window.
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Figure 3.20: Comparison of the final “Logo” classification and localization, applying
the classical maximum value per class extraction vs. our proposed
energy minimization inference method on the two CNN output maps
introduced in Figure 3.18.

3.6 Robustness by Ensembles

Training a miniature neural network such as the one described here, and expecting
it to be capable to properly detect complex objects and distinguish them from
background clutter and noise of real-world imagery can be extremely naive.

In practice, a classification neural network of this type will be quite capable at
properly recognizing the large majority of samples that are presented to it. Thus,
when tested against a set of cut-out sample images to perform classification, its
true positive inference performance will be quite good. However, it will be prone
to make many mistakes when presented with background images or noise, and this
becomes apparent when dealing with the larger problem of object detection.

The network is trained with a background class to help it learn the difference
between an ear and background noise, but no matter how the training for this
class is prepared, a CNN of this size will always be prone to false detections simply
due to the internal functionality of neural networks. There will always be patterns
or combination of features that can be easily found on natural imagery which will
randomly trigger internal neural pathways and thus produce a large false positive
rate as well—this could be though of as a type of artificial pareidolia.

To combat this problem, there are two possible solutions. The most obvious answer
would seem to be design and train a larger network architecture. While effective,
and capable to reduce the number of false positives, there are diminishing results
with having a single heavy architecture attempt to resolves this task.

The alternative solution is to create an ensemble of neural networks consisting
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Figure 3.21: The three scales that are used for every data sample in the training
dataset to train a 3-CNN ensemble system.

of multiple classifiers, each one different in a specific manner. Normally, these
ensembles all analyze the same data input, and their different outputs are then
combined to create a final result whose accuracy will usually be larger than that
of any single classifier running by itself [20].

A variation on this idea is proposed here, in that the ensemble of networks does
not process the same data, but rather different data is presented to each member of
the ensemble. Therefore, each of the classifiers must then be trained to specialize
in the kind of data which will be presented to it, and it will become an expert for
that particular preparation of the data.

The main idea then is to feed to three neural networks three different images,
each one corresponding to the same image region being analyzed but at different
cropping scales. Figure 3.21 depicts the three different scales which are ingested by
the proposed 3-CNN ensemble. We appropriately label each of the three networks
used to analyze these as S, M, and L (for their corresponding size abbreviations of
Small, Medium and Large).

The purpose of the three scales is mainly to train specialized networks for the spe-
cific purposes of contextual information at different receptive field sizes. Training
a network with any single one of these scales would specialize it in that particular
data, but the network would be oblivious to other natural image data with similar
structure but not really belonging to a true object of interest, and thus leading
it to produce a large number of false positives which would end up affecting the
overall detection accuracy. However, the three networks working together as a
committee of classifiers produces a much more robust result that is far more re-
silient against noise, as a true positive hit will require the activation of all three
networks simultaneously, simply by integrating contextual information into the
system.

Each of the three neural networks produces three output values, which correspond
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Figure 3.22: Data flow in the inference process of 3-CNN ensemble system, where
each network has been trained for three possible classes K ∈ A,B,C.

to the likelihood of each target class having been perceived in that network’s input.
We denote the output values as O K

Z , where Z ∈ {S,M,L} represents the network
index denoted by its size, and K represents the set of output classes the networks
have trained for. Each of these outputs will lie in the [−1,+1] range as the neural
networks have been trained with those target values.

To combine the outputs of all three networks as a unified ensemble, we filter each
class output with the corresponding values across all three networks, after each
one has been linearly rectified. The final outputs of the ensemble are defined by:

O K =
∏

Z∈S,M,L

dO K
Z e+ (3.15)

Where dxe+ ≡ max(0, x), is a linear rectification operation. By passing through
only the positive values of each interim output, we avoid interference from multi-
ple negative values, any of which then has the effect of zeroing the final output.
Figure 3.22 depicts the process visually.

The net effect of this process, then, is to have all three networks work in tandem,
where only the detections for which all three networks are in full agreement will
survive. Furthermore, the final output will be weighed by the individual network
certainty, and thus regions where all three networks have a high confidence output
will outweigh regions where the output distribution is more disparate.

When this 3-CNN system is used in conjunction with the filtering provided by
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the belief propagation algorithm presented in Section 3.5, the end result is an
extremely robust inference system composed of very light and simple component
neural networks.

3.7 Dealing with Scale

State of the art neural networks, like SSD [35] have very interesting multi-scale ar-
chitectures that integrate pyramidal inference at different image scales. However,
such networks are capable of affording to do that due to their heavy and complex
backbone architectures. The proposed network architecture is too small to sup-
port this kind of operation, so the problem of scale is left as a traditional pyramid
of images approach. This essentially means resizing the image at multiple scales
and performing inference individually on each of these levels. Multiple overlap-
ping detections from different scales can be resolved with a simple Non Maximum
Suppression (NMS) algorithm [50, 51].

3.8 Summary of the Proposed Architecture

This chapter covered multiple aspects of the design of an object detection neu-
ral network. A network architecture was proposed that has special connectivity
mapping to take advantage of the YUV color space in which ISPs work, as well as
the chroma compression that inherently results from this way of representing color
information. The color compression in the chroma channels is complemented by
contrast normalization performed in the luma channel through a series of efficient
convolutional operations.

The proposed system also shows how to extend the basic classification system to
a spatially extended inference framework that is capable of performing object de-
tection without requiring specialized layers or additional computational overhead.
An algorithm based on Belief Propagation is described that is capable to better
analyze the final output shared maps in order to produce cleaner discrete out-
puts from a series of non-confident classification window results. Finally, another
method for filtering false positives was presented, based on a multi-scale ensemble
of neural networks, each of which follows the guidelines developed thus far.

The architecture design is inherently designed with computational efficiency in
mind. However, the runtime implementation of the software that executes such
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a system is just as important. The development of this software will be explored
next in Chapter 4.
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4 Implementation in Mobile and
Embedded Devices

4.1 Application Overview

The application developed for this work consists of the implementation of a neural
network for object detection. It is important to note that this is an inference only
application, and does not support any training of the neural network. The neural
network model is trained offline in a separate system, and the learned parameters
are then transferred to the edge application so that it can perform inference on the
images it captures from its camera. The image is then pre-processed and fed to the
neural network. The results of the network are then computed to retrieve the final
detection bounding boxes and this data is sent back to do further processing on
these results at the application level. Then the process repeats for the next frame
all over again. Figure 4.1 depicts the main loop logic and executing order. As can
be seen, this application mainly runs inside of an iterative loop. Therefore, it is
important to reduce the time spent on computation as much as possible, which
can be achieved by efficient and optimized programming and making better use of
the underlying hardware.

4.2 Android Smartphone Platform

As discussed in Section 2.4.2, smartphones are a natural choice for deployment
of Edge AI applications due to the overwhelming amount of already deployed
devices, but also due to the platform having all of the important requirements to
successfully execute an edge computing application.

In traditional computer systems, the various compute components are discrete and
separate from one another. A computer’s CPU and its RAM memory, for exam-
ple, are different devices and connect to each other via a memory bus. Similarly,
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Figure 4.1: The application overview diagram depicting the main loop of the sys-
tem.

a GPU is usually a separate device that connects with the CPU via a PCIe bus.
On smartphones however, microprocessors are developed as a System on a Chip
(SoC), a type of integrated circuit that holds all the main processing components
required by such a device. In these circuits, the CPU, the ISP, the DRAM mem-
ory, and several other blocks are all integrated into a single package. And while
specific details might vary greatly from one manufacturer to another, or from one
generation to the next, the overall concept remains the same. Figure 4.2 shows
the diagram of a common type of SoC.

Of particular interest in these architectures is the Central Processing Unit (CPU).
As is common for any type of computer application, the CPU takes on the re-
sponsibility of handling main application logic by running instructions compiled
into a binary executable. The CPU is good at running sequential instruction sets
extremely fast. However, certain types of arithmetic instructions, especially those
that can run as parallel computations in a SIMD fashion, can benefit from a com-
ponent of the ARM Cortex CPU: the Advanced SIMD execution units. These
components are able to execute vectorized instructions from the NEON Instruc-
tion Set. These NEON instructions are capable of executing 4, 8, or 16 parallel
vectorized operations simultaneously, thereby achieving a significant throughput
speedup when running algorithms that can take advantage of parallel computa-
tions of this type. Figure 4.3 shows the memory access configuration when working
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Figure 4.2: The block diagram of the Qualcomm Snapdragon SoC, a very common
type of smartphone microprocessor.
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Figure 4.3: The CPU memory access route for mobile SoCs.

with these components. The CPU cores and the NEON units both share access to
the same memory bank and as such they can operate interchangeably on the same
memory locations.

The other important component in SoCs is the Graphics Processing Unit (GPU).
Although the GPU is used primarily to drive on-screen graphics, modern GPUs
are excellent parallel processors, capable of running a large amount of concurrent
SIMD operations. This is knows as General Purpose GPU (GPGPU) computing,
and usually entails using traditionally graphics oriented pipelines in a more generic
manner via specialized compute APIs. GPU designs vary largely, but a traditional
SoC GPU is usually capable of running up to 32 simultaneous SIMD operations,
which would seemingly make it a better choice than CPUs or NEON units. How-
ever, GPUs may usually run at different clock speeds, and have different memory
access routes than the CPU, even though both share the exact same memory bank.
Figure 4.4 visualizes this type of memory routing. GPUs only have access to a spe-
cific allocation of the memory bank, and as such, require copying the memory to
and from the allocation used by the CPU. This puts an additional overhead on
the execution of GPGPU code as memory bandwidth in these SoCs is limited,
and must be managed carefully. Therefore, GPGPU code is usually favorable only
when large amounts of operations can execute continuously on a single allocation
of data, such as to reduce the number of memory copies that must be performed
between the CPU and GPU address spaces.
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Figure 4.4: The GPU memory access route for mobile SoCs.

The Android ecosystem provides an easily accessible Software Development Kit
(SDK) that allows easy and often guided development of user applications through
the Java language. The Android SDK therefore gives the developer access to vir-
tually all functionality that an application might be required to use. However, the
Android Java SDK sits on top of native C++ libraries and the Android Runtime,
and as such does not have low level access to many hardware level instructions.

The NEON instruction set, specifically, requires development at the native C++
level, as there exist no bindings to access these instructions from the Java SDK
layer. To handle such kinds of programs, the Android platform gives developers
access to the Native Development Kit (NDK). This provides a way of executing low
level hardware instructions via C++ code, which can be compiled into a library,
which can then be accessed from the Java SDK layer.

Similarly, to access the GPU, it is often necessary to make use of GPGPU SDKs
that are usually accessible only through native layer. This is the case of OpenCL,
a parallel programming language designed to execute SIMD kernels in parallel
compute devices such as GPUs. The OpenCL kernel is compiled at runtime by an
OpenCL driver specific for the SoC GPU being targeted.

Yet another possible compute unit is the Digital Signal Processor (DSP), tradi-
tionally aimed to processing audio signals, some SoCs expose general compute
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capabilities that can be programmed and executed on these units, by providing
a low level C++ SDK. Such applications are usually tied to a specific DSP from
one particular SoC manufacturer, and as such are hardly portable to other types
of smartphone devices.

Therefore, to have access to all these low level routines, it is necessary to generate
the application via the Android NDK in order to make the best possible use of
the hardware resources available in the smartphone’s SoC. However, an inevitable
problem of this approach comes about by device fragmentation. As explained in
Section 2.4.2, device fragmentation occurs when there is an extremely large variety
of devices. As a result of this, the development efforts must be largely multiplied as
it is necessary to support a wide array of different hardware configurations, many
of which might not even support NEON or OpenCL instructions to begin with.

To tackle this problem, the Android platform has introduced an abstract parallel
programming language known as Renderscript. As the name suggests, this started
as a graphics programming language, however it evolved into having GPGPU sup-
port, and supports generic non-graphical workloads. The Renderscript language
abstracts many of the problems related to device fragmentation by providing a uni-
fied language framework which can execute on any of the available compute blocks
of the smartphone it is running on. The development effort is shifted towards
the manufacturer to develop Renderscript-specific drivers that support all or most
of these compute units. Possible compute backends for Renderscript applications
include GPU, DSP, and NEON, with a standard generic fallback of executing the
program as sequential instructions on the CPU when no other hardware specific
drivers are available for the device it runs on.

It is interesting to note, however, that Renderscript does not allow targeting a
specific compute unit. Rather, the Renderscript drivers choose at runtime the
most suitable compute backend to run on, depending on the type of the kernel,
the type of memory it needs to operate on, and the current load on the device.

As a result, Renderscript was chosen as the language of choice to develop and
experiment on.

4.3 Movidius VPU Platform

The Intel Movidius VPU platform consists of an embedded device designed specifi-
cally to accelerate computer vision and neural network inference tasks. The device
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Figure 4.5: The block diagram of the Intel Movidius Myriad X VPU, a computer
vision accelerator embedded device.

is capable of approximately 1 TFLOPS of computing capability, but only con-
sumes 1 Watt of power. This high efficiency makes it an excellent deployment
environment for Edge AI implementations.

Figure 4.5 shows the hardware block diagram of a Myriad X VPU, the current gen-
eration device of this platform. Primarily, the VPU consists of a dual core CPU
capable of performing general computation tasks. The VPU also has several other
co-processor cores, such as two Neural Compute Engine (NCE) cores, which are
MAC operation accelerators capable of performing the most fundamental arith-
metic operations of neural networks extremely efficiently. The platform also has
16 SHAVE SIMD processors for general vectorized computation, extremely useful
to develop custom image processing algorithms. The VPU also has an integrated
ISP to process the image stream from a camera.

The Myriad X VPU platform is available on different deployment packages de-
pending on the use case. For developers, the most accessible form factor is as a
USB device known as the Neural Compute Stick 2 (NCS2). This device connects
to a standard computer via the USB connector and acts as a neural co-processor
to offload the main system from any operations that can run on it. Another choice
is the MV0235 developer kit system, a standalone board that doesn’t need an
accompanying system to operate. Furthermore, this developer kit board has an
embedded camera which makes it very suitable to develop and test computer vision
tasks with. Besides developer packages, other production ready form factors also
exist, depending on the application.
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The VPU does not run an operating system. Everything, including the custom
application developed for it, runs via programmable firmware that must be flashed
on the board. This firmware is developed via an SDK known as the Myriad Devel-
oper Kit (MDK). Traditional C++ code can be written with it which will run on
the VPU’s CPU. To access the SHAVE or ISP cores, specialized APIs within the
MDK must be used, with some operations are available only through assembly in-
structions. The NCE cores are only programmable via assembly level instructions.
However, OpenVino provides a framework to perform inference of neural networks
on the Myriad X, which makes use of these NCE cores.

4.4 Optimized Parallel Programming

To make use of Renderscript as a method to implement the object detection neural
network, it is necessary to develop multiple kernels to support each of the possible
network layers. This is mainly the convolutional layer, the max-pooling layer, and
the linear layer. However, an efficient and optimized implementation introduces
some additional requirements, which will be explored in more detail in this section.

Several algorithm optimizations are performed to these kernels in order to obtain
the most optimal implementation of the layers. The optimizations are built into
various stages of the kernel logic, but will be explored here individually. These op-
timizations have two main objectives: (i) reduce the number of instructions that
need to be executed to carry out an algorithm, or use instructions that can be
completed in fewer cycles, and (ii) increase the arithmetic intensity of an algo-
rithm in order to reduce the memory bandwidth required to transfer data between
hardware units.

4.4.1 Loop Unrolling

Image processing operations are highly iterative in nature. For example, a naive
implementation of a convolutional neural network layer can involve up to 6 levels
of nested loops. With the help of parallel SIMD programming, a lot of these loops
can be removed, as they all act independently from one location of the image to
another. However, the inner two nested loops are not as easy to parallelize as
they act on a single pixel of the image data. Listing 4.1 shows two equivalent
pieces of code, one inside a for loop, and one unrolled as individual statements.
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Although syntactically they perform the same operations, the second piece will
usually execute faster as it does not have the overhead of loop control.

Listing 4.1: Example of unrolling a for loop over three iterations.

1 void loop(int loops , float * a, float * b, float * c) {
2 for (int i = 0; i < loops; i++) {
3 c[i] = a[i] * b[i];
4 }
5 }
6

7 void unrolled_loop_3(float * a, float * b, float * c) {
8 c[0] = a[0] * b[0];
9 c[1] = a[1] * b[1];

10 c[2] = a[2] * b[2];
11 }
12

13 loop(3, a, b, c, d);
14 unrolled_loop_3(a, b, c, d);

4.4.2 Kernel Specialization

In cases where the number of iterations is constant, the compiler will often do loop
unrolling automatically when the application is built. However, most network
layer implementations are either data dependent or configuration dependent. This
means the number of iterations may not be known at the time the application
is built. For example, a generic convolutional layer kernel may have its inner
loop loop over 9 or 25 iterations, depending if the layer is using a 3 × 3 or 5 × 5

convolution kernel.

In such cases, loop unrolling and other configuration specific optimization can still
be performed simply by specializing the kernel and having multiple implementa-
tions, one for each possible configuration. This reduces the flexibility of a kernel,
as its execution will no longer be dynamic and adaptable based on configuration
parameters. However, this will allow each possible kernel configuration to execute
in the most optimal manner possible.
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Figure 4.6: The usual configurations of the different memory levels available to
either CPU or GPU cores.

4.4.3 Memory Access Patterns

The hardware compute units in a mobile SoC have access to different memory
levels. There is the global DRAM memory bank which is accessible to both CPU
and GPU units, and is usually implemented as DDR memory. This memory space
usually ranges between several hundreds of megabytes to a few gigabytes. Band-
width and latency to access this memory bank can often be a bottleneck, as DRAM
requests can usually take a few hundred cycles to operate. Although it is possible
to do latency hiding by more appropriately scheduling and interleaving memory
requests and arithmetic operations, at some point the overhead of accessing this
memory bank too frequently becomes inevitable.

Closer to the compute unit there usually are one or more levels of memory cache.
This memory area is much faster to access, with considerably lower latency and
higher bandwidth to the compute unit. However, the size of these caches is
very limited, and usually ranges between several hundreds of kilobytes to a few
megabytes. Figure 4.6 shows the different levels of memory that may be present
in an SoC for different compute unit types.

Memory caching is handled by the hardware memory controller, and as the name
suggests, it is used to keep a temporary copy of any data requested from the main
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global memory bank. This is especially useful due to the nature of DRAM memory
requests, which only work in chunks of 128 bytes. That is to say, requesting any
element in DRAM will always return 128 contiguous bytes. Keeping this chunk
of memory in cache can help to speed up access to other contiguous memory
elements, as a single request to DRAM will bring all 128 bytes to the faster cache
unit, instead of requiring a large number of individual DRAM requests. This, of
course, requires algorithms that are better optimized to make good use of this
characteristic. Especially since the size of cache memory is limited, and if the
cached data is not used quickly, it will be overwritten by other DRAM requests.

This effect can be most easily appreciated by adapting the order in which memory
is accessed, especially when dealing with images or general matrices are stored in
DRAM. There exist two methods to store 2D matrices in memory: (i) row major
format, or (ii) column major format. Figure 4.7 shows the difference between both.
It is customary to store image data in the row major format. The underlying reason
is related to the per-line readout mode of CMOS image sensors, the raw data
collected from the sensor is dumped line by line to the target memory allocation,
and from there on, all following operations in the ISP happen in this same row
major data format. As a result, the image as obtained from the camera grabber,
regardless of the pixel packing format, will always follow row major format as well.

It therefore follows that using a memory access pattern where the data requested
from DRAM for subsequent operations is in the same row as the current operation
will greatly speed up the operation of the algorithm, as the total number of DRAM
requests will be lower.

4.4.4 Layer Fusion

An additional level of memory access consists of the registers. Registers are located
within the actual core unit, and as such, they are the closest and therefore faster
memory type. However, they are also extremely limited, as depending on the type
of core, these register banks may be only a few bytes in size, that is, there may
only be a very small number of registers, as few as 16, available to each compute
unit. Conceptually, these registers hold the values of variables that individual
instructions are operating on. Some registers, such as the Program Counter (PC)
are restricted and the hardware has a specific use for them, but others are available
and normally assigned depending on the instruction set generated by the compiler.

As this type of memory is the fastest and has practically zero latency, it is essential
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Figure 4.7: There are two possible ways to store matrix information in memory,
depending on the order of indexing.

to make as much use of it as possible. It is completely up to the compiler to have
the final decision on how registers are used and when the values of a register
are reused for the next operation, or they get overwritten by a different variable
requested from cache or DRAM. However, some decision in the code design may
help to maintain memory active in registers for longer, which can have a visible
impact on the overall throughput of the algorithm. This technique is known as
register reuse.

Essentially, there are two ways to achieve register reuse. First, it is good practice
to limit the number of local variables in a function. By reducing register pressure,
it is far more likely that the values being operated on will be kept in local core
registers rather than relying on accessing cache or DRAM.

Second, it is essential to try to keep intermediate algorithm results in local variables
for as long as possible, instead of writing them back to arrays or pointers. This will
guide the compiler to making more efficient register assignment choices. Of course
for trivial operations, underlying compiler optimizations may already do this, but
one instance where this practice is most apparent is in layer fusion.
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Fusing operations essentially means doing multiple operations at once. Listing 4.2
shows a simple example of how a fused multiply and accumulate operation can
replace individual multiply and accumulate functions. Due to the 256 array size it
operates on, each non-fused function would be forced to request multiple cache lines
to fulfill the operation. As the mul_32() and acc_32() operations are executed
sequentially, it will force access to DRAM to write the results of the former and
then again to retrieve the inputs of the latter. In the fused mac_32() function,
however, values are read only once and written only once. Thus reducing the
number of DRAM requests.

Listing 4.2: Simplified example of fusing a MAC operation in order to encourage
register reuse and maintain intermediate values locally, thus reducing
the frequency of memory access to cache or DRAM.

1 void mul_32(float * a, float * b, float * c) {
2 for (int i = 0; i < 32; i++) {
3 c[i] = a[i] * b[i];
4 }
5 }
6

7 void acc_32(float * a, float * b, float * c) {
8 for (int i = 0; i < 32; i++) {
9 c[i] = a[i] + b[i];

10 }
11 }
12

13 void mac_32(float * a, float * b, float * c, float * d) {
14 for (int i = 0; i < 32; i++) {
15 d[i] = a[i] * b[i] + c[i];
16 }
17 }
18

19 mul_32(a, b, res);
20 acc_32(res , c, d));
21

22 mac_32(a, b, c, d);

This concept is even more important in the fusion of neural network layers, as
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the operations are obviously more complex than simple MACs, and memory ac-
cess patterns can be quite more complex. A good use case of layer fusion is the
convolutional layers. In the proposed neural network architecture they are always
followed by max-pooling layers. Compared to convolution, the max-pooling opera-
tion is much simpler and has lower arithmetic intensity. Therefore, requiring a full
DRAM request cycle in between the convolutional and max-pooling layers can be
quite inefficient. Fusing these two layers, therefore, yields significant throughput
benefits as it will essentially cut in half the amount of DRAM requests.

4.4.5 Efficient Configuration Data

As can be seen, optimizing memory access is extremely important for optimization.
In the case of neural network layer implementation, this is not limited only to the
input and output image data, but also to the parameter data that must be operated
with. As part of this work, a binary data format was developed that optimizes the
access to the layer configuration and learned parameters at runtime. Figure 4.8
depicts the structure of this data format.

This data format is first used to store in a file the network configuration and
parameters retrieved from a neural network training procedure, at which point the
file can then transferred to the mobile device. During launch of the application, the
file is read and its contents are mapped directly to memory, so that the structure
of the data in DRAM follows the exact same structure.

The beginning of the data structure holds a header section containing the network
and layer configuration. This can be considered metadata that holds the informa-
tion required at program start to configure and layout the Renderscript kernels
that will need to be executed, and the order in which they must operate.

The main part of the data structure holds the payload section containing all the
learned parameters of the network. In the case of convolutional and linear layers,
these are the weights for each neuron. The order of weight values is arranged in
such a manner that allows them to be read in a row-major format. The weights
for different neurons are also positioned in the same order as the execution in the
corresponding Renderscript kernel is performed. This allows for better matching
and aligning of the weight values with the corresponding image elements they must
operate on, while minimizing the number of DRAM requests that are necessary to
fetch weight data.
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Figure 4.8: Network configuration and layer parameters are stored in a binary file
that can be consumed by the mobile application.
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5 Experiments and Results

The proposed neural network architecture described in Chapter 3 and its imple-
mentation as reviewed in Chapter 4 are explored in an experimental manner in
this chapter, to determine its validity and applicability to an object detection task
targeting low energy devices.

Two types of experiments are carried out: (i) tests on the accuracy of the neural
network, to verify how different architecture design decisions impact the final ac-
curacy of the system, and (ii) tests on the runtime of the neural network, to verify
how different architecture and implementation designs affect the efficiency of the
system.

To carry out accuracy experiments, a baseline neural network is trained which is
used to validate various metrics related to the capacity of the system to properly
detect objects. For this, a simple object detection task has been devised, where
the purpose of the neural network is to find and recognize objects among a number
of possible classes in sample images.

To perform the runtime experiments, several mobile and embedded devices are
used to benchmark the neural networks deployed on them. These devices provide
a broad range of compute capabilities and represent common edge devices which
could be used to deploy this kind of system. The neural network is deployed with
the runtime optimizations previously outlined.

5.1 Object Detection Baseline Model

This section explores how a baseline model is created to run the various experi-
ments under. As a toy example, a company logo recognition system is devised.
This is created with purely synthetic data which results in an easy to produce
training dataset.
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The idea of using company logos was of particular interest as it inherently requires
recognizing relatively complicated forms and shapes. However, it is easy to see
how this seemingly trivial process can just as well extend to many other inter-
esting applications, such as recognizing traffic signs for advanced driver assistance
applications, or recognizing warning and content labels in automated package sort-
ing applications.

5.1.1 Synthetic Data Generation

Convolutional neural networks, as with just about any other machine learning
algorithm, rely greatly on both the quantity and quality of the data used for their
training. The accuracy of a CNN is directly related to its ability to extract the
correct representation features from input images, as well as the ability to correctly
generalize to never before seen inputs. The model can only acquire these abilities
through a vast amount of training data that thoroughly covers the expected input
space that the model will be exposed to at run time.

In this sense, input space refers to the variance observed in the image of an object
under different photographic conditions. It is important to note that this variance
is not trivial at all. Under varying conditions, the numerical values that make
up the image pixels not only increase or decrease in response to the brightness
perceived, but instead can go through much more complex changes, such as hue
shifts due to white balance issues arising from different light sources, or color
saturation differences due to varying camera sensitivity conditions.

This obviously only takes into account different illumination effects on the object.
More importantly, however, due to viewpoints differences formed by the relative
position between the target object and the camera, both in distance and in the
angle between them, the object will cast a very different 2D projection of itself onto
the camera’s view at every state. As the final model should be ideally capable of
recognizing an object regardless of the viewpoint, it is quite important to train the
system to recognize it under different perspective views. Additionally, there is the
issue of external clutter, as sample images will rarely portray the object isolated
but rather will have other clutter in the background that the object detection
system should similarly learn to ignore.

When facing an image recognition task, one of the first steps that is must be taken
is the gathering a large representative dataset for training the model and testing its
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performance. This should preferably be done under differently unique conditions
as described above, and carefully labeling each sample image in accordance to the
target image found in it. Additionally, when dealing with naturally photographed
images, each sample object needs to be bounded to an area matching as close
as possible the area where the object itself is located. The data collection step,
therefore, presents a laborious task in any image recognition project, especially
if the data is not available beforehand. This is usually one of the most time
demanding procedures in building such as system, as natural images of target
objects are difficult to acquire, and even more so if it is required to systematically
capture all possible variations that the object can be seen under.

The recognition task developed for this benchmark, natural images of company
logos, presents a particularly difficult problem – in that such images are not read-
ily available, at least not in the volume required for fully training a neural net-
work. This makes it highly impractical to manually photograph the vast amount
of uniquely different and accurately labeled logo samples for an ever increasing
amount of target training images.

For this reason, a method is proposed to artificially generate large amounts of
samples through a computer program that can output a virtually limitless amount
of such images. Starting with a clean representation of each logo image to be
trained, several thousand samples can be created from this seed image to be used
as training data. By performing random perturbations in each of the possible
distortions described, the final samples will contain all sorts of small and subtle
variations that will make them distinct from one another, with the full set of them
covering an ample region of the expected input space.

Perspective Projection of Planar Objects

Company logos are a perfect example of a planar object, which can be represented
as a 2D image freely rotated in 3D space. The image shape, regardless of the
variable viewpoint of the camera, will maintain planar invariance within itself. As
a result, viewpoint variance can be simulated through a series of linear transfor-
mations applied to the seed image. As it is necessary to simulate a pinhole camera
view, the full perspective projection transformation [52] must be used instead.
This can be seen in Figure 5.1.

A perspective projection matrix based on the pinpoint camera model with the
Viewpoint positioned at the origin ~O is applied to the seed image whose position
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Figure 5.1: The perspective transformations performed in order to simulate differ-
ent orientations of the object over the background.

is denoted by the vector ~A, whose components Ax, Ay, Az denote the values for
the translation in the x, y and z axes, and the rotations in each of these axes is
given by θ, γ, and ψ respectively. These six values are randomized for each new
data sample generated. The resulting ~B representation is the standard perspective
projection matrix applied to the seed image, as given by:

~B =

 1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)


 cos(γ) 0 sin(γ)

0 1 0

−sin(γ) 0 cos(γ)


 cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 ~A

(5.1)

Each of the six variable values are limited to a pre-defined range so as to yield
plausible viewpoint variations which allow for correct visual recognition. The ex-
act ranges used will vary on the implementation requirements of the application,
but in general, the z-translation limits will be approximately ±30% of the distance
between the seed image and the viewpoint, the x and y translations will be ±15%

of the width of the seed image, and the θ, γ and ψ rotations will be ±30◦ around
their corresponding axes. The Z Volume depicts in particular the effect of trans-
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lation along the z axis (the camera view axis), where the seed image can be seen
projected along the Viewing Frustum at both the Near Limit and Far Limit of the
z-translation parameter.

Clutter and background simulation is performed at the Far Clipping Plane of
the projection, a different texture is placed at this plane for each of the generated
sample images. This texture is selected randomly from a large graphical repository
of random natural images, such as randomly sampled patches from images in the
COCO dataset [41]. The purpose of this texture is to create synthetic background
noise and plausible surrounding context for the target shape, where the randomness
of the selected texture allows the neural network to learn to distinguish between
the actual traits of the target shape and what is merely clutter noise surrounding
the object.

Illumination Variance

To account for the many possible variations in lighting, the image samples should
also have their color information shifted in several different ways.

Initially, the image is adjusted so that the black and white point values are shifted
from their original levels. These changes have the effect of simulating different
camera exposure levels, which are affected not only by the actual amount of light
shining on an object and then reaching the camera sensor, but also by the au-
tomatic exposure adjustments performed by the camera’s internal hardware in
response to the global light levels received.

Next, the gamma factor of the image is adjusted randomly, either increasing or
decreasing it, such as to simulate the effects of different sensitivity levels of the
perceived image by the camera’s sensor.

Image hue also needs to be adjusted so as to simulate the difference between the
color temperature of a light source and the white balance setting under which the
device’s camera may be operating. Usually a subtle change not exceeding 10°in
either direction is sufficient.

Finally, color saturation can be reduced by a random amount, as different exposure
and lighting combinations can lead to desaturated colors in the images captured
by a camera.

This completes the data generation procedure. Figure 5.2 shows a sample of
what the final training data set looks like on nine different logo classes, and one
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Figure 5.2: Example of the final set of artificially generated data samples with all
of the randomly assigned distortions applied.

background-only class. Note that some classes use multiple seed images to simulate
the possible design differences that a logo can take.

Given that the proposed network architecture is essentially a classification net-
work, the training dataset is created as square patches with the target object
covering most of the area in the generated image. The test dataset is generated
in a similar manner, but with a larger random background surrounding the target
object. The exact location of the object within this extended image is recorded
as an annotation to the image. This information will be used to measure the lo-
calization performance of the network when performing object detection through
shared maps.

5.1.2 Network Architecture

Once the training dataset is ready, the next step is to define a configuration for
the neural network. The input image size is the first, and possibly most important
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Table 5.1: Multiple input size configuration values and its effect on the CNN clas-
sification performance.

Parameters Performance

Input Kernel Pooling No. of SoC Compute Mean
Size Size Size Operations Time (ms) Error (%)

16×16 3×3 2 110,954 0.02 12.54
24×24 5×5 2 481,418 0.08 1.32
32×32 5×5 2 1,121,418 0.17 0.44
48×48 7×7 2 4,907,882 0.49 0.15
64×64 7×7 4 10,038,378 1.77 0.18

parameter that must be set in the CNN architecture. It defines the data size over
which the network will run, requiring all tested images to first be resized to match
these dimensions.

A fine balance must be found when selecting the input data size, the reason being
that this setting will affect both the performance and the accuracy of the model.
If the size is too small, the model will be fast, but it won’t have enough pixel data
to make correct decisions on what exactly it is viewing, so classification accuracy
will drop. if the size is too big, there will be a lot of data to work with which
will aid the model’s accuracy rating but more calculations will be required and
performance may be too slow for real time usage.

Table 5.1 shows a few different values for possible image input sizes. The kernel
size of the convolutional layers as well as the window size for the max-pooling layers
are varied for each tested size. The number of arithmetic operations required to
execute the full CNN with these parameters is calculated. As can be expected, the
number of calculations is proportional to the time it takes to process the neural
network. The classification accuracy on the test dataset can be seen in the last
column. This provides sufficient evidence that a 32×32 input image size is the
most optimal for this particular system.

5.1.3 Training

The network is trained in such a way that it will learn to distinguish target objects
from background noise – something essential for a system that will be constantly
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Figure 5.3: The effect of contrast normalization on the mean error learning curves.

exposed to non-activating visual stimuli. The system should therefore, not only
learn to distinguish one trained logo from another, but also whether the image it
currently sees is a logo at all. This is an essential requirement when extending the
classifier to performed shared map object detection.

The training targets, then, are ideal one-vs-all vectors, where the i-th element of
the vector corresponding to the class index takes on a value of +1, while all other
elements are assigned a -1 value instead. The (-1,+1) interval, being zero-centered,
helps in the training phase by having evenly and symmetrically distributed target
values.

The network is trained through Stochastic Gradient Descent [53], where the con-
figuration parameters are updated after every single training image. This requires
the image data set to previously shuffled so as to avoid any biasing that may occur
from training over the same class for too many sequential steps. Figure 5.3 shows
the mean classification error over 10 training epochs of two learning runs. This
figure also shows the effect of using contrast normalization on the training proce-
dure. Not only is the final accuracy better, as will be discussed in more detail in
the experiments below, but the training optimizer converges quicker as well due to
the better distribution of data values.
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Table 5.2: Confusion matrix and global mean error of the DCNN, using the pro-
posed classification backbone network.

Classes Error

BG C1 C2 C3 C4 C5 C6 C7 C8 C9
BG - 14 6 16 0 8 15 20 0 3 2.562%
C1 6 - 0 0 0 0 0 0 0 0 0.969%
C2 2 0 - 2 0 0 0 0 0 0 0.125%
C3 3 0 0 - 0 0 0 19 0 0 0.687%
C4 0 0 0 0 - 0 0 0 0 0 0.000%
C5 4 0 0 0 0 - 0 0 0 0 0.125%
C6 8 0 0 0 0 0 - 0 0 0 0.250%
C7 21 0 0 6 0 0 0 - 0 0 0.844%
C8 0 0 0 0 0 0 0 0 - 0 0.000%
C9 0 0 0 0 0 0 0 0 0 - 0.000%

Classification Error 0.478 %

Table 5.2 gives a summary of the baseline accuracy and confusion matrix achieved
with this approach.

5.2 Results

The test devices used to report runtime results are:

• SoC: OnePlus 7T Smartphone with Qualcomm Snapdragon 855+; an SoC
with GPU capable of 110 GFLOPS

• VPU: Intel Movidius Development Kit MV0235 with a Myriad X; a VPU
capable of approximately 1 TFLOPS

The SoC test application is developed for the Android OS using a Renderscript
compute backend. The VPU test application is developed with the Myriad MDK
framwork and OpenVino.

Unless otherwise noted, the baseline architecture configuration is the described in
Figure 3.13, with a layer configuration of:

12C5 + 12MP2 + 32C5 + 32MP2 + 128L + 2L
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There is no defined criteria by which this configuration was chosen. As can be
expected, the larger a network is, the better it will perform, but also the slowest it
will execute as. So in practice it’s a matter of setting a compute or energy budget
under which the system needs to run, and selecting the configuration that best fits
within that constraint.

The selected architecture uses bottleneck YUV channel mapping for the first convo-
lutional layer, and 1/3 random connectivity mapping between the first and second
convolutional stage. The shared map configuration uses a T0 window stride of
8 × 8. The input image size of the network is 32 × 32 but due to the subsam-
pling performed by contrast normalization, the effective receptive field input size
is 64 × 64. Belief Propagation and a 3-CNN ensemble system is used by default,
with each network in the ensemble having the configuration described so far.

The object detection experiments are performed on a test dataset fold consisting
of square images of size 640 × 640. Each image has randomly a number between
1 and 5 logo objects, at random positions and scales, all generated synthetically
on top of background images following the same procedure described in the image
above.

Inference is performed with a 4 scale image pyramid to handle objects of different
sizes. The pyramid levels are created at factors of one half starting from the
original size: 320× 320, 160× 160, and 80× 80.

No threshold is set for any of the experiments to better analyze the performance
of the models at different operating points. Therefore, mean Average Precision
(mAP) [54] is used as metric to report accuracy of the object detection tasks. The
mAP metric is calculated with an IOU of 0.5 by default in all cases.

In all of the following experiments, several variations are tested to determine best
configurations, algorithms, or any other design decisions in the object detection
algorithm. The default reference configuration is highlighted in in bold in the
tables of all results.

Most of the results reported follow a similar structure: for each configuration
tested, an mAP accuracy metric is provided and execution run times in both
reference platforms. An average over 100 test runs for each of these configurations
was taken as the execution time for each of the methods and platforms reported.
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Table 5.3: Results of using different pre-processing methods for the input image.

Algorithm mAP Execution Time (ms)

SoC VPU

None 67.8 — —
Feature Scaling 70.2 0.3 0.6*
Mean Subtract 69.3 0.3 0.6*
Histogram Equalization 85.0 3.7 1.6
Min/Max Normalization 75.2 3.4 1.9
Contrast Normalization 87.4 2.2 0.8

5.2.1 Image Pre-Processing Algorithm

The pre-processing algorithm proposed in this work is Contrast Normalization.
However, the suitability of this algorithm is tested against other alternative meth-
ods for image preparation, or a lack thereof. Table 5.3 shows these results.

As can be seen contrast normalization clearly results in a higher mAP accuracy
metric, while maintaining reasonable compute times in comparison to the other
options. It’s interesting to see that the Myriad X VPU has a much more efficient
implementation of separable convolutions, so the effect of contrast normalization
in that platform is extremely small.

Histogram normalization is a close rival, but the runtime of this algorithms is
considerably higher, due to global statistics needing to be collected for the entire
image, which is an expensive operation in parallel processing. A similar effect can
be seen on min/max normalization as this requires a global reduction operation to
be performed which is similarly expensive.

The execution time reported is for the pre-processing algorithm by itself, without
taking into account the neural network, as the object detection system is identical
for all configurations presented here. Note that the Feature Scaling and Mean
Subtract algorithms in the Myriad X VPU were implemented via OpenVino oper-
ations which adds a fixed overhead, so the reported times are not representative
of the operation when fused to the rest of the neural network.
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Table 5.4: Results of using different color spaces for the input image.

Color Space Contrast Normalization mAP Execution Time (ms)

SoC VPU

RGB None 67.8 — —
RGB 3 Channels 82.9 5.8 1.9

HSL* None 69.3 0.6 0.4
HSL* L Channel 83.2 2.7 0.9
HSL* 3 Channels 79.7 6.1 2.1

LAB* None 71.3 1.2 0.7
LAB* L Channel 85.2 3.1 1.2
LAB* 3 Channels 83.3 6.7 2.5

YUV None 71.0 — —
YUV Y Channel 87.4 2.2 0.8
YUV 3 Channels 83.1 5.8 1.9

5.2.2 Image Color Space

Table 5.4 shows the effect of using different color spaces. For each color space
tested, contrast normalization was applied on a different subset of color channels,
or on none at all, as the effects of color space are intertwined with the choice and
application of pre-processing.

Although these experiments are done on synthetically generated data, which does
not pass through the camera ISP, the effects of color space conversion are not
reflected in the case of the YUV experiments, as this color space would normally
be readily available from the ISP.

Note that the HSL and LAB color spaces do include conversion overhead in the
execution time however, due to color space conversion, as these are not supported
by the standard imaging pipelines. Execution times therefore include both contrast
normalization when applicable and color space conversion when necessary.

As can be seen, the YUV color space with contrast normalization applied only on
the Y channel resulted in superior mAP values. Applying contrast normalization
on all three YUV channels not only is more computationally expensive, but has a
detrimental effect on the accuracy results.
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Table 5.5: Results of different bottleneck connectivity mapping between the input
image and the first convolutional feature extractor.

Color Space Channel Connectivity mAP Execution Time (ms)

SoC VPU

RGB R:4 G:4 B:4 82.9 17.4 1.9
RGB R:2 G:8 B:2 82.7 17.4 1.9
RGB R:8 G:2 B:2 81.3 17.3 1.9
RGB R:12 G:12 B:12 87.8 28.7 3.3

YUV Y:4 U:4 V:4 82.8 17.3 1.9
YUV Y:8 U:2 V:2 87.4 17.4 1.9
YUV Y:10 U:1 V:1 86.7 17.4 1.9
YUV Y:12 U:12 V:12 88.1 28.7 3.4

When no contrast normalization is applied, the YUV color space still has an ad-
vantage on RGB, but this is an effect of the first stage Y channel connectivity, as
will be further explored in the next experiment.

5.2.3 First Stage Connectivity Mapping

Experiments on the connectivity bottlenecks in the first stage are reported in
Table 5.5.

The connectivity column describes how many convolutional neurons in the first
feature extractor stage is connected to each of the input color channels. As can
be seen, the Y:8 U:2 V:2 connectivity configuration as defined in the proposed
architecture provides the best trade-off of accuracy against compute time.

As expected, a dense 12 neurons per channel connectivity, where all color channels
are connected to all neurons in the first layer does produce higher accuracy, but
at a cost of roughly 60-70% higher execution time.

For experimentation, special connectivity schemes were attempted also for the
RGB color space, giving more connections to either the red or green channels
exclusively, to compare against the Y channel preference on the YUV color space—
but these results were not significant.

Execution time includes the pre-processing and all neural network executions.
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Table 5.6: Results of sparse connectivity mapping between first and second convo-
lutional stages.

Connectivity mAP Execution Time (ms)

(Sparsity) SoC VPU

12 → 32 (1/1) 88.0 24.1 2.6
6 → 32 (1/2) 87.9 19.2 2.1
4 → 32 (1/3) 87.4 17.4 1.9
2 → 32 (1/6) 69.4 16.1 1.7
1 → 32 (1/12) 57.1 14.9 1.5

12 → 64 (1/1) 89.8 33.0 3.4
6 → 64 (1/2) 89.3 25.2 2.7
4 → 64 (1/2) 88.3 19.8 2.3
2 → 64 (1/6) 70.2 16.1 2.0
1 → 64 (1/12) 54.5 16.2 1.7

5.2.4 Second Stage Connectivity Mapping

Sparsity in the connectivity mapping between the first and second stage convo-
lutional stages is summarized in Table 5.6. For all experiments, the first stage
feature extractor maintained a number of 12 convolutional neurons, but only the
number of connected neurons varied.

As can be seen, the 1/3 sparsity provides a good balance of execution time against
accuracy. As in the previous experiment, the fully dense 1/1 factor provides a
higher accuracy but at an increased computational cost.

It’s interesting to see how accuracy quickly drops off in the least dense configuration
with a 1/12 sparsity factor, but this is expected as a lot of the processing power
in the neural network is lost if the connectivity is restricted too much.

Variations with the second feature extraction stage with a higher amount of neu-
rons (64) was also tested to see the effects of such a design while maintaining
similar sparsity limitations. With the exception of the most sparse configurations,
it’s as usual expected that a larger network configuration will have higher accuracy,
but these effects were not very significant.

The execution times reported include both pre-processing and all neural networks
executed.
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Table 5.7

T0 W OC Execution Time (ms) Speedup

Per-Window Shared Map

SoC VPU SoC VPU SoC

4×4 6,596 98.4% 1,290 110 22 2.4 58.6x
8×8 1,711 93.8% 340 37 17 1.9 20.0x
12×12 772 85.9% 152 17 15 1.7 10.1x
16×16 459 75.0% 84 9.3 13 1.6 6.4x
20×20 284 60.9% 41 5.0 11 1.4 3.7x
24×24 215 43.8% 34 4.2 10 1.4 3.4x
28×28 151 23.4% 22 2.2 9.8 1.3 2.2x
32×32 130 0.00% 19 1.6 8.7 1.2 2.1x

5.2.5 Shared Maps

Table 5.7 shows results on different shared map window configurations. Experi-
ments were conducted with several input layer stride T0 configurations, from the
closest packed 4×4 to the non-overlapping 32×32 layouts. A total window count
W over the full 4 level pyramid, as well as the window overlap coverage OC per
input map is given for each of the stride selections. The speedup factor is calcu-
lated showing the performance improvement of our method over the other in the
SoC platform.

Choice of stride mainly affects the resolution of the localization of detected ob-
jects. The denser packed stride configurations will yield localization coordinates
at discrete steps of 4 pixels, while the less packed non-overlapping configuration
will result in coordinates that vary in steps of 32 pixels.

It is of great interest to note the final 32×32 configuration. Regardless of the
fact that there is no overlap at this stride, a 2.1 speedup is still observed over
running the windows individually. This is due to the inherent reduction in memory
bandwidth through the system’s pipelined execution approach, where the entire
image needs to be loaded only once per execution. This contrasts the traditional
approach where loading separate windows into memory at different times requires
each to be individually sliced from the original memory block – a very expensive
operation in the limited memory throughput of mobile devices.
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Table 5.8: Results of various inference algorithms for result analysis after classifi-
cation.

Algorithm mAP Execution Time (ms)

SoC VPU

Maximum Value 80.3 0.4 0.3
Weighted Average 82.9 0.8 0.4
Neighbor Boosting 83.1 1.7 0.7
Energy Minimization 87.4 2.2 0.7

Table 5.9: Results of using different types of ensembles against a single neural
network.

Networks Ensemble Type mAP Execution Time (ms)

SoC VPU

1-CNN — 77.9 6.3 1.2
2-CNN Same 78.7 10.9 1.4
2-CNN Scaled 81.8 11.7 1.4
3-CNN Same 79.4 16.9 1.9
3-CNN Scaled 87.4 17.4 1.9
5-CNN Same 79.9 25.3 2.4
5-CNN Scaled 89.1 27.9 2.4

5.2.6 Energy Minimization by Belief Propagation

Table 5.8 gives an indicative comparison of the system against the competing
techniques previously described in Section 3.5.

Execution time reported is for this algorithm only, not including neural network
inference.

5.2.7 3-CNN Ensemble

Table 5.9 shows different ensemble configurations that were experimented with,
ranging between 1 to 5 neural networks, and providing either same or scaled data.

Same data consists on training different networks with different parameters and
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Table 5.10: Results of a comparison between the proposed object detection system
and state of the art SSD-based object detection neural networks.

Networks Ensemble Type mAP Execution Time (ms)

SoC VPU

CNN 12C5 + 32C5 87.4 17.4 1.9
CNN 24C5 + 64C5 88.9 33.3 3.7
CNN 48C5 + 128C5 90.2 57.2 10.3

SSD Mobilenet v2 96.3 390 45
SSD Resnet 18 95.3 756 101
SSD Resnet 32 97.2 1314 192

executing them all on the same input image patches. This is the traditional method
of doing ensembles. Scaled data, as per the proposed system, consists on providing
data at different scales, corresponding to the scale of data each network was trained
with. This provides more context information and provides better protection to
the network against false positives.

5.2.8 State of the Art Neural Networks

Table 5.10 provides the results for a really interesting experiment. Three variations
of the proposed system are compared against state of the art SSD [35] object
detection models with either a Resnet [40] or Mobilenet v2 [55] backbone.

These SSD networks are considered state of the art in object detection, and they
certainly outmatch the accuracy of the proposed system. Especially since the data
complexity of the benchmark application is considerably lower than what these
models are capable to work with. However, even the Mobilenet v2 backbone has
a considerably high inference time, which on a mobile smartphone SoC makes
impractical for continuous real time operation.

The proposed system, on the other hand, even though the mAP metrics can not
match what SSD achieves, the accuracy is still competitive, while the execution
time is an order of magnitude lower.

Note: The proposed system executes on the platforms with the implementation
detailed in Chapter 4, while the SSD models execute with Tensorflow Lite on the
SoC and OpenVino on the VPU.
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5.3 Discussion

This chapter has reviewed several experiments performed with the proposed object
detection system. The various design decisions described in Chapter 3 have been
reviewed through a series of ablation tests. Some of these decisions have proven to
be the most optimal configuration, while others are chosen as a matter of trade-off
between achieving a certain level of accuracy while maintaining the execution time
low.

The same applies to the final experiment present comparing against higher com-
plexity models. These results present the spirit with which this work is put forth.
The system developed in this work is extremely efficient and fast in execution time.

It is important to note that the execution time is proportional to energy consump-
tion, which is an even more important metric in edge computing devices. Obviously
camera systems run at slower frame rates than what this system can execute at.
But the fact that the detection system completes its cycle in a short period of time
results in finite power sources to last for longer, extending the usable lifespan of
portable devices that might be executing such a system. Furthermore, a system
running under low loads like this is far less likely to throttle due to thermal con-
ditions, which is a frequent occurrence in mobile SoCs that rely only on passive
cooling techniques.
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To demonstrate how the proposed system can be deployed in real world applica-
tions, a sample use case has been developed based on the efficient object detection
network proposed in this work. This application attempts to resolve the problem
of ear detection as an alternative to traditional biometric algorithms.

6.1 Introduction

The problem of people recognition by means of identifying them biometrically by
their ear has received considerable attention in the literature [56–59]. However, for
an ear recognition system to be accurate, the first and obvious step it must take
is to properly detect the presence and location of an ear within an image frame.
This seemingly simple task is often made more difficult because in practice, such
images very commonly present the subject’s ear in poses which are much different
to those a system is usually trained for. Furthermore, occlusion and partially
visible ears is very common in natural images, and it presents a challenge which
must be addressed.

An issue to consider is the great importance of robustness against pose variation
and occlusion when an ear detection algorithm is put to practice. It is worthwhile
to note that most of the detection systems listed above are not tested nor developed
for difficult occlusion scenarios, such as partial occlusion by the hair, jewelry, or
even hats and other accessories. The most likely reason is simply the lack of public
datasets containing appropriately occluded images. Furthermore, to the best of
our knowledge, there is no major research that has been performed on the effect
of ear occlusion in natural images.
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Table 6.1: Details on the contents of the various datasets used in this work.

Dataset Dataset
Size Subjects Images per

Subject
Resolution
Size pixels

Content Source

AMI [60] 700 100 7 492× 702
Closeup ears,
both sides Photo

UND [61, 62] 464 114 4 1200× 1600
Bust profile,
right side only Photo

Videos (Train) 950 5 190 1920× 1080
Head profile,
both sides V ideo

Videos (Test) 910 7 130 1920× 1080
Head profile,
both sides V ideo

UBEAR v1.0 [63] (Train) 4497 127 35 1280× 960
Head profile,
both sides,
and masks

V ideo

UBEAR v1.1 [63] (Test) 4624 115 40 1280× 960
Head profile,
both sides V ideo

6.2 System Description

6.2.1 Datasets

The existence of ear-centric data is limited and sparse. There exist no standard
datasets upon which a large body of work can be contrasted with. In this work,
however, we attempt to use a variety of datasets in order to establish some bench-
marks upon which future works can be built upon. For this purpose, we use a
total of four datasets in our experiments. Three of these are public and only one is
private. Each of these datasets has a set of features which make them particularly
useful for a particular task, and each one introduces new challenges. As such, we
use them all to base a selection of real-world experiments on each. Table 6.1 gives
an overview of the content in each dataset.

The first dataset is the AMI dataset [60], a collection of 700 closeup images of
ears. These are all high quality images of ears perfectly aligned and centered in
the image frame, as well as having high photographic quality, in good illumination
conditions and all in good focus. This dataset is therefore exemplary in order to
test the recognition sensitivity towards different ears, however, due to the closeup
nature of the images, they are not really well suited for ear localization tasks.

The second dataset used is the UND dataset [61, 62]. A collection of photographs of
multiple subjects in profile, where the ear covers only a small portion of the image.
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The photographic quality of these images is very high, and again all in constant
and good illumination, and with none of the ears being occluded by hair or other
objects. The poses of subjects varies very slightly in relation to the camera, but
not so much as to introduce distracting effects due to head rotation and pose. As
a result, these images are suitable in testing the specific task of localization among
a large image frame, while avoiding the challenges of viewpoint and illumination
variation.

The third dataset is the Video dataset. A private collection of 940 images com-
posed of HD frames extracted from short video sequences of voluntary participants.
There are 14 image sequences of 7 subjects—one for each person’s ear. Each se-
quence consists of 65 frames from a span of approximately 15 seconds in time
extracted from a continuous video. The subjects were asked to rotate their heads
in various natural poses following smooth and continuous motions throughout the
sequence. The illumination and environment are relatively consistent across all
videos, and subjects were asked to move any potential occlusion away from their
ears. We use this dataset primarily to test the detector sensitivity only towards
different relative rotations of the subject’s head in relation to the camera, while
avoiding challenges due to variable illumination. The higher number of images per
subject, combined with a low number of total subjects, are useful to also reduce
the effect from using a large number of wildly variable ear shapes in the tests, and
again, concentrate mainly on their pose. A variation of this dataset was created
and set aside for training purposes. This comprised profile image frames from an
additional 5 participants, different from the subjects in the test dataset.

The final and perhaps most important dataset we use is the UBEAR [63] dataset.
This is a very large collection of images of subjects shot under a wide array of
variations, which spans multiple dimensions—not only in pose and rotation, but
also in illumination, occlusion, and even camera focus. These images, therefore,
simulate to a very good degree the conditions of photographs in non-cooperative
environments were natural images of people would be captured ad hoc and used
to carry out such a detection. These images, although definitely being ear-centric,
make no attempt at framing or capturing the ear under perfect conditions, and
as such reflect a real-world test scenario. As our main interest in this work is the
detection of ears in natural images, this then becomes our main dataset to test the
fullest potential of the system we propose.
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6.2.2 Convolutional Neural Network

The target use case of the system is to perform real time ear detection, especially
with input video streams. For this, a system that can run quickly is a fundamental
requirement. For this reason, an optimized architecture is needed. The target
classes we seek to recognize with the neural network are only three: (i) Left Ear,
(ii) Right Ear, and (iii) Background—referred to by their corresponding abbrevi-
ations: LE, RE, and BG in all the following descriptions of the system. As the
data variability within each class is relatively low, with many training data sam-
ples having a similar set of characteristic ear features, the network can perform
relatively well by learning only a small number of unique features (unlike the case
of large modern CNNs). Therefore, a small neural network, with a low layer and
neuron count is enough to learn the training data used by this system.

Furthermore, a size of 64×64 is selected for the input data of the network, as
images at this size carry enough features and information to properly define the
ear shape, while at the same time not being so large that the system would require
large convolutional kernels to properly analyze the images.

Finally, as shared maps execution will be used to do the analysis over full images,
the maximum accumulated pooling factor needs to be kept small. This ensures
that the stride size on the final output map is still small for fine localization to
take place. For this reason, 3 convolutional and pooling layers are decided as the
base of the architecture.

Knowing these three constraints, for the input and output, and the maximum
number of layers, through a process of iterative trial and error, a final architecture
was decided upon as follows:

18C5 + MP3 + 36C5 + MP2 + 36C5 + MP2 + 144L + 3L

6.2.3 Training Data

Through a 3-CNN ensemble method, the system will comprise three individual
neural networks, we already know beforehand that the training data will need to
be gathered in accordance to the requirements for each of the individual networks.
Each network will essentially analyze three different crop sizes of each region, so
the data for all three can be prepared simultaneously by simply starting with one
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dataset, and extending it by cropping and scaling accordingly to generate the data
for the two other sizes.

Existing image datasets consisting of annotated ear photographs are very scarce
and small in volume. Creating sufficiently large amounts of training data, therefore,
required a lot of manual labor in image manipulation. The dataset UBEAR v1.0
was particularly helpful, as described in Section 6.2.1, in that it includes for each
of its images a ground truth mask. This mask outlines the exact location of the ear
in each image, and this aided in cropping out the corresponding bounding boxes
for each ear. Not all patches from this dataset could be used, however, as many
were extremely blurry and not appropriate for training. In the end, approximately
3,000 images were used from this set for training data.

Furthermore, we supplemented the training data with additional samples that were
manually cropped from video frames. These originate from the Videos (Train)
dataset described in Section 6.2.1. With this addition, the training dataset now
consisted of roughly 4,000 images.

To increase the dataset size even more, the data was augmented in two ways:
(i) images were randomly modified by adding small translations, rotations and
rescales; and (ii) images were horizontally flipped, and the resulting image was
assigned to the opposite ear dataset. This artificial augmentation boosted the
training data size tenfold. It now consisted of approximately 40,000 images, or
20,000 for each ear.

In order to prepare for the training of our final 3-CNN architecture, we processed
the images for each ear side into three separate sets, for each of the 3-CNN scales:
S, M, and L. This was done by simply cropping and rescaling each sample appro-
priately.

The process was repeated for both sides, thus producing six separate image col-
lections for left and right ears, at each of the three scales. Finally, one more
background noise dataset was also created, of the same size as the others, and con-
sisting of randomly cropped patches from a large flickr photo database and from
non-ear regions of the UBEAR and Videos training sets.

In total, we ended up with seven distinct collections for training purposes, each
one consisting of roughly 20,000 images. Figure 6.1 shows an example of these.
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Figure 6.1: [
Training Dataset Subset]A small subset of each of the seven datasets used for

training. From top to bottom: Left-Small, Left-Medium, Left-Large, Right-Small,
Right-Medium, Right-Large, Background, prepared in YUV color space.

6.2.4 Network Training

Our final neural network classifier was trained with the three-scale collection de-
scribed above. Each of the three networks used a 3-class training dataset compiled
from left and right ears at the corresponding network scale, and a copy of the
background image collection.

The structure of all three networks was exactly the same, and is the one described
in Section 6.2.2. The input consists of an image resized to a square of size 64×64 in
the YUV color space. The input images are then passed through a pre-processing
step which consists of Contrast Normalization process, which helps to enhance
image edges and redistribute the mean value and data range.

Each network is trained with its corresponding small, medium or large datasets. A
standard SGD approach was used for training, and ran for a duration of approxi-
mately 24 iterations until no further improvement could be made on the test-fold
of the data. Ideal targets for each of the output labels were assigned in the [−1,+1]

range, where active labels are positive, and inactive labels are negative. This distri-
bution was chosen in this manner (as opposed to the more traditional [0, 1] range)
to aid with the 3-CNN inference.
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Table 6.2: Final confusion matrix of the training data fold.

Classified As /
Real Class Left Ear Right Ear Background Total in Class Accuracy (%)

Left Ear 16,040 56 88 16,184 99.11
Right Ear 46 16,064 74 16,184 99.26
Background 63 194 15,927 16,184 98.41

Total 48,552 98.93

Table 6.3: Final confusion matrix of the testing data fold.

Classified As /
Real Class Left Ear Right Ear Background Total in Class Accuracy (%)

Left Ear 3964 34 49 4047 97.95
Right Ear 14 4002 31 4047 98.89
Background 8 42 3997 4047 98.77

Total 12,141 98.54

All datasets are divided into training and testing folds, at an 80% to 20% ratio
as per standard machine learning training practices. The final results of training
over these two sets are summarized in Tables 6.2 and 6.3.

6.2.5 Detection

Runtime operation of the network is performed through shared map execution of
CNNs. This allows for an optimized method of inferring detection predictions from
a full image frame in a manner that is much more efficient than the traditional
sliding window approach.

The process requires the input image to be first prepared as a multi-scale pyramid.
This is simply to be able to detect ears in all possible sizes relative to the image
frame, so as to be able to properly carry out the detection, regardless of the
subject’s relative distance to the camera.

Each of these pyramid levels will be given to each of the three networks to be
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Figure 6.2: [
3-CNN Layout]Shared map execution of one of the CNNs over a sample input

image.

analyzed independently. Each network, thus, creates three output maps per level,
corresponding to each of the target classes trained, LE, RE, and BG. Figure 6.2
depicts the shared map execution of one of the networks for a particular pyramid
level of size 274× 366.

Every pixel in each of these output maps corresponds to that class’ predicted likeli-
hood at a window whose location can be traced back to the input image according
to the shared map’s alignment and position configuration. Figure 6.3 shows how
windows can be re-constructed from these shared maps and they correspond pre-
cisely to the multiple detections that a traditional sliding window approach would
produce, but at a fraction of the computing time. These multiple detections can
be grouped together via Non-Maximum Suppression [50] with an IOU of 0.5.

A summary of this whole process is listed below:

for all P ∈ {PyramidScales} do

ImageCN = CoNorm(ImageP )

for all Z ∈ {L,M,S} do

O LE
Z , O RE

Z , O BG
Z ← LBP (SharedMap(ImageCN , NetworkZ))

end for

for all K ∈ {LE,RE,BG} do

O K
P ← Ensemble(O K

S , O K
M , O K

L )

end for
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Figure 6.3: Sample of multiple overlapping detections casted as individual detec-
tion windows on an input image.

end for

for all K ∈ {LE,RE} do

G K ← NMS(O K
P )

if G K > Threshold then

Keep(G K)

else

Discard(G K)

end if

end for

The correct threshold to use should be carefully decided upon depending on the
type of data being analyzed. In the case of the AMI database, where images are
already prepared as cropped ears, the system detects no False Positives whatsoever,
and thus the threshold value decision does not affect the False Positive rate in any
way. In this case, a very low (or zero) threshold can be chosen in order to maximize
the number of correctly detected ears. This can be seen in the results shown in
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Figure 6.4: Threshold sensitivity on ear detections: (Top) AMI Dataset Detec-
tions, (Bottom) UBEAR Dataset Detections.

Figure 6.4 (Top), where the accuracy rate of varying threshold amounts is depicted.

In the case of natural images in non-cooperative environments as with the UBEAR
dataset, the effect of false positives is much more important, as can be seen in
Figure 6.4 (Bottom), where small variations in the threshold value lead to a drastic
drop in the false positive rate, while not significantly affecting the accuracy of
detected ears.

6.3 Experiments

6.3.1 Test Methodology

Multiple experiments were conducted with the various datasets in order to evaluate
the system’s accuracy in different scenarios. For all tests, the experiment was
carried out with the 3-CNN method proposed in this work. To contrast the results,
the same tests were also performed with a standard Haar Cascade Classifier trained
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on similar data as implemented in OpenCV [64], and executed with a similar
sliding window configuration while post-processing them with the same window
grouping algorithm.

In all cases, the results reported are defined as follows:

• True Positive: Detection groups which successfully enclose the bounding
box of an ear within the image.

• False Positive: Detection groups which mis-classify the side of the ear
detected, or which erroneously detect noise in the image that does not cor-
respond to an actual ear.

• False Negative: Ears in an image which failed to be detected by the net-
work entirely, or whose final detection group confidence value was below the
selected threshold.

• True Negative: This value would usually describe the rate at which non-
ear noise is successfully ignored by the classifier. However, in the case of full
image frames, this would greatly offset the result bias by greatly increasing
the overall classification accuracy needlessly. We avoid recording this on
purpose such that the results given represent the true nature of correctly
classified ears only.

The performance metrics reported for all cases are the precision which measures
the exactness of the classifier; the recall which measures its completeness; and the
F1 metric which provides a balance between precision and recall, and is therefore a
more objective comparison of the performance of two classifiers. Furthermore, the
traditional accuracy rate is also reported, in order to provide a basic performance
metric.

6.3.2 Video Analysis

We test the detection accuracy on individual video frames. An experiment was
carried out with the Video dataset as described in Section 6.2.1. The purpose of
this test is to ensure that both ears can be correctly classified as either left or right,
while working with data of variable head poses.

Results of these tests is presented in Table 6.4, where it can be seen that our
system greatly outperforms Haar in this particular task.
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Table 6.4: Results of testing over the Videos dataset.

Haar 3-CNN

Subset
Size

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Middle 470 97.60 97.60 95.32 97.60 99.57 99.79 99.36 99.68
Upwards 162 100 69.75 69.75 82.18 95.95 91.03 87.65 93.42
Downwards 284 98.77 57.09 56.69 72.36 94.83 95.19 90.49 95.01

Left Ear 455 97.85 71.21 70.11 82.43 97.07 97.29 94.51 97.18
Right Ear 461 98.53 88.57 87.42 93.29 97.98 96.46 94.58 97.21

Complete Dataset 916 99.05 80.07 79.45 88.55 97.59 96.95 94.68 97.27

The significance of this test is in the ability to continuously detect the same ear on
a moving image sequence, regardless of head orientation. The high detection rate
ensures that the ear is consistently detected during the majority of each video’s
duration, except for a few odd frames where detection might fail from time to
time. However, a few frames later, the ear is found again and detection continues
as normal. This result rate would therefore allow for a tracking mechanism to be
successfully implemented in such video streams.

6.3.3 Image Resolution

Detecting images of subjects at a great distance from the camera is usually prob-
lematic. To quantitatively measure the performance of the system in cases where
the relative size of the image is very small, various tests were performed on the AMI
dataset with the ears previously resized at different scales, ranging from 16 × 16

up to 96× 96. The results of both the combined 3-CNN system as well as that of
the individual S, M, and L CNNs are displayed in Figure 6.5 (Top).

This shows that even ears which are found at scales much lower than the networks’
input size of 64 × 64 can still be successfully detected, albeit at a lower rate
depending on the actual size.

Figure 6.5 (Bottom), in particular, explains the dropoff in resolving power at
smaller scales. The S CNN is the first one to fail at diminishing scales, as could
be expected due to the nature of the data this network analyzes. Meanwhile, the
other two CNNs continue to detect with sufficient accuracy at even the smallest
scales. Arguably, it could be said that a system without the S scale might do
better for this particular purpose, as the dropoff exhibited by the S CNN is the
main reason behind the 3-CNN difficulty in detecting smaller sized ears. However,
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Figure 6.5: Image resolution and ear size sensitivity: (Top) Individual CNNs,
(Bottom) 3-CNN System.

the S CNN has been shown before to be essential for noise differentiation, and as
such, this side effect is an acceptable trade-off.

6.3.4 Non-cooperative Natural Images

Traditional computer vision approaches usually require the ear to be perfectly
aligned, or at the very least in the same plane as the photograph projection, thus
imposing restrictions that are very restrictive when analyzing real world imagery.
Due to the ability of CNNs to learn multiple representations of the same object,
and given the pose variety used in the training data, the final trained system is
capable of detecting ears at very different angles with respect to the camera.

The UBEAR dataset contains labels for each image which facilitates its partitioning
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according to the relative pose of the subject in relation to the camera. Tests were
run over the full dataset and the results were divided according to the angle of the
subject’s gaze. These results are depicted in Figure 6.6 and summarized in Table
6.5.

The common trend of our 3-CNN outperforming Haar continues to be seen here.
However, the real significance behind these results is that Haar, not unlike most
traditional computer vision approaches, is highly dependent on viewpoint, and its
performance largely drops off as the angle varies from the more normal "Middle"
and "Towards" angles. Meanwhile, our 3-CNN system maintains a very similar and
stable performance rating regardless of the angle at which the ear is presented.

Further UBEAR labels can be used to split the data into additional folds, such as
ear sidedness. As expected, the system works mostly the same for either left or
right side ears. The small differences in the results might just be due to a random
variation in the images, and not to a real side preference of the classifier.

Finally, we tested the system on images which were marked to have occlusion
against those that did not. Occlusion is not a defined label in the UBEAR dataset,
therefore, for this study, we manually defined this data fold based on a subjective
decision of which images could be considered as occluded. This is because degrees
of occlusion can vary from merely a few small strands of hair or a small earring,
to very large accessories or full sections of hair covering well over half of the ear.
The final occlusion threshold decision was made to mark only those ears which had
their outline covered at least 25%. This resulted in approximately one third of the
images to be marked as occluded.

Not surprisingly, the 3-CNN system performs better when no occlusion is present.
However, it is worth noting that even when analyzing occluded ears, the 3-CNN
system outperforms Haar when it analyzes clearly visible, and non-occluded ears.

A final study was performed on gender sensitivity of the detector. The classifiers
are not necessarily sensitive to the different shapes of male and female ears. How-
ever, a visible disparity can be seen, simply due to the fact that female ears are
far more likely to be occluded by longer hair or more prevalent accessories such as
large earrings. Thus, gender sensitivity results closely resemble those of occlusion
sensitivity.

Figure 6.7 shows a few selected samples of the 3-CNN and its detection in particu-
larly challenging images, due to either occlusion or extreme viewpoint perspectives.
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Figure 6.6: Detection performance of our 3-CNN system vs Haar on the differ-
ent data folds of the UBEAR dataset: (Top Left) Angle Sensitivity,
(Top Right) Occlusion Sensitivity, (Bottom Left) Gender Sensitiv-
ity, (Bottom Right) Ear Side Sensitivity.

Table 6.5: Detection performance of our 3-CNN system vs Haar on the different
data folds of the UBEAR dataset, grouped by: Angle, Gender, Ear Side,
Occlussion, and Total.

Haar 3-CNN

Subset
Size

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Middle 1392 95.90 74.31 72.03 83.74 89.89 93.92 84.95 91.86
Upwards 813 85.87 30.42 28.97 44.93 87.47 84.94 75.73 86.19
Downwards 784 88.65 16.23 15.90 27.44 85.68 84.57 74.09 85.12
Outwards 789 89.96 30.34 29.35 45.37 85.92 71.26 63.81 77.91
Towards 829 95.10 73.24 70.57 82.75 79.70 84.40 69.47 81.99

Male 3403 94.17 51.58 49.99 66.65 86.10 87.84 76.93 86.96
Female 1204 91.06 42.47 40.77 57.92 86.99 77.83 69.71 82.15

Left Ear 2289 93.49 47.33 45.82 62.84 83.64 83.11 71.48 83.37
Right Ear 2318 93.42 51.07 49.30 66.04 88.97 87.32 78.79 88.14

Occlusion 1491 89.70 36.49 35.03 51.88 85.01 71.63 63.60 77.75
No Occlusion 3116 94.70 55.24 53.59 69.78 86.79 91.53 80.34 89.10

Complete Dataset 4607 93.45 49.22 47.58 64.48 86.31 85.23 75.08 85.77

111



6 Application Use Case

Figure 6.7: Sample detections on particularly difficult images from the UBEAR
dataset, including extreme head orientations and occlusion.

6.3.5 Summary

To conclude, Table 6.6 lists a summary of all total results across all four datasets
while comparing our 3-CNN system with the well known Haar Cascade Classifier
algorithm.

As can be seen, the CNN based system always outperforms the Haar algorithms
in all sets, by an amount ranging between 10% to 29% in the F1 metric. This
is particularly so in the UBEAR dataset, since the Haar classifier is incapable
of modelling the higher variety of internal representations required to properly
classify images in that dataset.

Figure 6.8 shows a summary of these results. It is important to remark that that
our proposed system has stable performance figures across the first three datasets,
all of which consist of perfect purpose-made ear photography. The results only
slightly drop when presented with natural images due to the challenges already
described. This is in contrast to the Haar classifier, which has wildly disparate
results, demonstrating the large dependency of this system on the particular con-
ditions of one dataset or another.
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Table 6.6: Summary of the total results over all four datasets contrasting the Haar
and 3-CNN algorithms.

Dataset Algorithm Positive Negative Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

UND [61, 62]
3-CNN Positive 461 20 95.84 99.35 95.25 97.57Negative 3 0

Haar Positive 270 7 97.47 58.44 57.57 73.07Negative 192 0

Videos
3-CNN Positive 890 22 97.59 96.95 94.68 97.27Negative 28 0

Haar Positive 727 7 99.05 80.07 77.47 87.31Negative 181 0

AMI [60]
3-CNN Positive 693 0 100.00 99.00 99.00 99.50Negative 7 0

Haar Positive 382 7 98.20 55.12 54.57 70.61Negative 311 0

UBEAR [63]
3-CNN Positive 3814 605 86.31 85.23 75.08 85.77Negative 661 0

Haar Positive 2227 156 93.45 49.22 47.58 64.48Negative 2298 0

Figure 6.8: Results of our 3-CNN system compared to the Haar classifier over the
various test datasets.
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7 Conclusions

In this work, an efficient object detection system based on deep convolutional neu-
ral networks was presented. All the design decisions involved in the development of
this system were reviewed in full detail, although there were some subtleties in the
implementation and programming details which for brevity were not mentioned
here.

A method for pre-processing image data was described, which treats the image
through the YUV color space as given by ISPs in mobile systems. The algorithm
takes advantage of design elements such as color information compression and the
availability of an optimized convolutional operation that can execute efficiently
in hardware. A neural network backbone architecture as described which uses
a minimal amount of connections and neurons to produce classification inference
results. This network was adapted and extended spatially in a method called
shared maps such as to transform the classification-only ability of the backbone
to a classification and localization capability which are essential cornerstones of
object detection. The final element in the proposed architecture was a discrete
inference algorithm which uses energy minimization as a method to reduce the
active detections and find the true location of an object.

A review for implementing efficiently this neural network system was also provided,
given the commonly available hardware compute units present in standard edge
computing devices. The hardware and compute characteristics of different compute
elements were reviewed, as well as their capabilities and a description of how they
can be programmed from software with optimization in mind to perform neural
network inference.

This thesis has demonstrated that it is possible to develop a highly efficient CNN-
based object detection system that is capable of running in constrained environ-
ments. Compared to state of the art detection systems, this architecture provides
limited, but acceptable accuracy at several orders of magnitude faster execution
time, a measure that translates to expended energy in edge computing devices.
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7 Conclusions

The work presented here opens up many interesting possibilities regarding the
types of computer vision systems that can be deployed in the edge. While this
architecture may not be powerful enough to drive mission critical decision making
systems, it does provide a solution for mass detection in large quantity deploy-
ments. It also provides a framework upon which to build further and continue
developing more capable systems.

As technology continues to advance and embedded devices continue becoming more
economical, it is naturally possible to continue scaling up the size and complexity
of the systems that can be deployed on them. However, many of the optimization
considerations established in this work will continue having an impact on future
generations of mobile computer vision deployments.

As future lines of research it would be of great interest to study the efficient
implementation of other types of neural network systems, for example recurrent
neural networks capable of analyzing sequences of images for tasks such as behavior
prediction.

To conclude, this has proven to be an interesting research project, but this is only
the beginning of what is surely to be a fruitful field to continue working on.
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A Convolutional Layer Kernel

A full version of the code of a Renderscript kernel. This kernel makes use of all
the optimization techniques described in this work, including:

• Loop unrolling is applied for the inner loops of convolution.

• Kernel specialization is applied by fixing this sample kernel to a particular
configuration.

• Memory Access Patterns are maintained in row-major format for all inputs
and outputs.

• Layer Fusion is achieved by fusing the convolutional layer with the max-
pooling layer.

• Efficient Configuration Data used when reading the kernel weight values.

• Approximation of non-linearity functions by a piece-wise linear function.

Listing A.1: macros.rsh Renderscript header file with some commonly used
macros.

1 #pragma version (1)
2 #pragma rs java_package_name(
3 eu.fsmc.convis.compute.renderscript.process
4 )
5

6 #define IK(ip, kp) input[ip] * kernel[kp]
7

8 #define CONVOLUTION_3x3_ROW(ip, kp) \
9 IK(ip - 1, kp - 1) + \

10 IK(ip , kp ) + \
11 IK(ip + 1, kp + 1)
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12

13 #define CONVOLUTION_5x5_ROW(ip, kp) \
14 IK(ip - 2, kp - 2) + \
15 IK(ip - 1, kp - 1) + \
16 IK(ip , kp ) + \
17 IK(ip + 1, kp + 1) + \
18 IK(ip + 2, kp + 2)
19

20 #define CONVOLUTION_3x3(ipa , ip, ipb) \
21 CONVOLUTION_3x3_ROW(ipa , 1) + \
22 CONVOLUTION_3x3_ROW(ip , 4) + \
23 CONVOLUTION_3x3_ROW(ipb , 7)
24

25 #define CONVOLUTION_5x5(ipaa , ipa , ip, ipb , ipbb) \
26 CONVOLUTION_5x5_ROW(ipaa , 2) + \
27 CONVOLUTION_5x5_ROW(ipa , 7) + \
28 CONVOLUTION_5x5_ROW(ip , 12) + \
29 CONVOLUTION_5x5_ROW(ipb , 17) + \
30 CONVOLUTION_5x5_ROW(ipbb , 22)
31

32 #define MAXPOOLING_2x2(p1, p2, p3, p4) \
33 max(max(max(p1, p2), p3), p4)
34

35 #define TANH_APPROX(x) \
36 (x < -1 ? -1 : (x > 1 ? 1 : x))
37

38 #define TANH_EXACT(x) \
39 tanh(x)
40

41 #define MAP(om, im) mapping[im + om * mapInputs]
42

43 }
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Listing A.2: c5mp2fused.rs Renderscript kernel for 5×5 convolutional layer fused
with a 2× 2 max-pooling layer.

1 int *mapping;
2 int mapInputs;
3 int mapOutputs;
4

5 float *input;
6 int inputWidth;
7 int inputHeight;
8 int inputMapWidth;
9 int inputMapHeight;

10

11 float *bias;
12

13 float *kernels;
14 int kernelSize;
15 int paddingSize;
16

17 float *output;
18 int outputWidth;
19 int outputHeight;
20 int outputMapWidth;
21 int outputMapHeight;
22

23 void root(const int32_t *v_in , int32_t *v_out ,
24 uint32_t x, uint32_t y) {
25 int om = y / outputMapHeight;
26 int my = y % outputMapHeight;
27

28 int pm = x / outputMapWidth;
29 int mx = x % outputMapWidth;
30

31 int ix = pm * inputMapWidth + paddingSize + mx * 2;
32

33 float tl = bias[om];
34 float tr = bias[om];
35 float bl = bias[om];
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36 float br = bias[om];
37

38 for (int im = 0; im < mapInputs; im++) {
39 int inputMap = MAP(om, im);
40 int iy = inputMap * inputMapHeight +
41 paddingSize + my * 2;
42

43 int ip = ix + iy * inputWidth;
44 int ipa = ip - inputWidth;
45 int ipaa = ipa - inputWidth;
46 int ipb = ip + inputWidth;
47 int ipbb = ipb + inputWidth;
48 int ipbn = ipbb + inputWidth;
49

50 float *kernel = kernels + (om * mapInputs + im) *
51 (kernelSize * kernelSize );
52

53 tl += CONVOLUTION_5x5(
54 ipaa , ipa , ip , ipb , ipbb
55 );
56 tr += CONVOLUTION_5x5(
57 ipaa + 1, ipa + 1, ip + 1, ipb + 1, ipbb + 1
58 );
59 bl += CONVOLUTION_5x5(
60 ipa , ip , ipb , ipbb , ipbn
61 );
62 br += CONVOLUTION_5x5(
63 ipa + 1, ip + 1, ipb + 1, ipbb + 1, ipbn + 1
64 );
65 }
66

67 int op = x + y * outputWidth;
68

69 float res = MAXPOOLING_2x2(tl, tr , bl, br);
70

71 output[op] = TANH_APX(res);
72 }
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B Summary in Spanish

This Appendix provides a summary in the Spanish
language of the key contents of this thesis.

Introducción

Los sistemas visuales biológicos son capaces de reconocer objetos fácilmente debido
a una gran cantidad de especialización y adaptación a través de la evolución na-
tural. Estos sistemas están interconectados con otras partes del sistema nervioso,
como los centros de memoria y razonamiento en el cerebro, por lo que la tarea
de visión no es algo que pueda separarse y resolverse de manera independiente.
Sin embargo, esto es lo que los sistemas de visión artificial tratan de lograr hoy
en día, principalmente porque las sutiles complejidades de la visión biológica son
extremadamente difíciles de reproducir. Sin embargo, todavía es posible inspirarse
en cómo funcionan ciertos aspectos de la visión natural, para imitar funciones
sencillas.

Inicialmente, los sistemas de visión artificial adoptaron un enfoque sintético para
resolver el problema. Los algoritmos de reconocimiento de imágenes como SIFT
[1], SURF [2] o HOG [3] se basan en descriptores de características ajustadas
manualmente, y aunque están lejanamente basados en principios biológicos, como
la sensibilidad a ciertas orientaciones, estos utilizan principalmente las cualidades
geométricas de la imagen y fallan fácilmente a medida que incrementa la comple-
jidad de las formas. En los últimos años, sin embargo, se ha hecho evidente que es
necesario una solución mejor. Uno de los algoritmos más exitosos han sido las redes
neuronales profundas inspiradas biológicamente [4], donde las imágenes de entrada
se procesan a través de varias capas de extractores de características y finalmente
se reconocen como pertenecientes a una de varias clases posibles. Estos trabajos
se basan en los hallazgos de Hubel y Wiesel [5] donde se identificaron dos tipos
de células dominantes en la corteza visual primaria de los animales mamíferos, las
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llamadas células simples y células complejas, conectadas a través de un modelo
jerárquico en cascada. Inspirado por estos hallazgos, el Neocognitron introducido
por Fukushima [6], hace uso de dos tipos de células que asumen de manera similar
los roles de extractores de características locales para lograr tolerancias contra la
deformación.

Más adelante, LeCun [7] introdujo la red neuronal convolucional (CNN por sus
siglas en inglés) como un sistema más robusto para la identificación de caracteres
escritos a mano en documentos escaneados. Nuevamente, se utiliza un sistema
similar con dos tipos de células, donde una capa convolucional extrae caracterís-
ticas y una capa de submuestreo reduce el la dimensionalidad de la imagen para
tolerar las variaciones geométricas de estas características. Estas redes neuronales
convolucionales forman la base de la mayoría de los sistemas de reconocimiento de
imágenes modernos de la actualidad, que se basan en técnicas jerárquicas de apren-
dizaje profundo y han demostrado ser una solución poderosa cuando se aplican a
una gran variedad de tareas de reconocimiento complejas.

Hoy en día, no cabe duda de que la CNN se ha convertido en el estándar para la
visión artificial. Sin embargo, el problema es que estos sistemas son computacional-
mente costosos y deben implementarse en ámbitos grandes de computación. Por
lo tanto, es muy difícil adaptar los algoritmos necesarios para este tipo de tarea en
un entorno móvil donde la capacidad computacional es limitada. El objetivo prin-
cipal de este trabajo es demostrar cómo se puede implementar un sistema basado
en CNN en entornos de baja energía como dispositivos móviles y embebidos, sin
dejar de ser capaz de realizar la compleja tarea de detección de objetos en tiempo
real.

Contribuciones

Las contribuciones específicas introducidas en este trabajo son las siguientes:

1. Un algoritmo para preprocesar imágenes y extraer características destacadas
mientras se mantiene una distribución de datos normalizada que se adapta
a los dispositivos con cámaras integradas.

2. Un marco de red neuronal para diseñar arquitecturas que requieren recur-
sos computacionales mínimos para realizar reconocimiento de imágenes en
entornos de baja energía.
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3. Un algoritmo para compartir mapas de activación de la red base de un clasifi-
cador con el fin de extender la tarea de clasificación a una tarea de detección
de objetos.

4. Un algoritmo para combinar los resultados de la inferencia sobre imágenes
extensas para encontrar objetos íntegros.

5. Una metodología de inferencia basada en algoritmos conjuntos para propor-
cionar información de contexto y aumentar la robustez de las detecciones.

6. Una descripción de cómo implementar de manera más eficiente la red neu-
ronal propuesta al enfocar mejor los recursos de hardware disponibles en
dispositivos móviles y embebidos.

Organización

En este trabajo se profundiza en el desarrollo de un sistema de visión artificial
basado en redes neuronales, con especial énfasis en su implementación en disposi-
tivos de baja potencia.

En el Capítulo 2, se da una breve revisión de las redes neuronales y su aplicación
a la visión artificial a través de redes neuronales convolucionales. Se describen los
tipos de capas que se utilizan comúnmente para este tipo de red y se establece la
conexión entre las CNN y los sistemas de visión por computadora de inspiración
biológica.

El tema principal de esta tesis aparece en el Capítulo 3, donde se describe la arqui-
tectura de propuesta de red neuronal, junto con los algoritmos correspondientes
para llevar a cabo la tarea de detección de objetos en entornos de baja potencia.
El capítulo comienza explicando el procesamiento de imágenes en los dispositivos
móviles y describe cómo adaptar el algoritmo de normalización de contraste. A
continuación, se proporciona la arquitectura básica de la red neuronal de clasifi-
cación, con una explicación sobre ciertos elementos de diseño que la hacen más
aplicable a los dispositivos móviles. Luego, este capítulo explica cómo esta red
troncal puede extenderse para manejar el problema de la localización adaptando
la arquitectura de la red usando mapas convolucionales compartidos. Finalmente,
se proporciona un algoritmo para analizar y colapsar múltiples resultados veci-
nos de detección en un mapa compartido, que es una mejor alternativa para los
sistemas móviles.
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A continuación, el Capítulo 4 ofrece una descripción general de las características
del hardware y el entorno de los dispositivos móviles y embebidos. Se revisa la
información sobre las unidades de cómputo que se encuentran en dicho hardware,
junto con una discusión sobre cómo las rutas de acceso a la memoria pueden afectar
la implementación de estos sistemas. A esto le sigue una explicación detallada de
los diferentes métodos de optimización que se pueden utilizar para implementar el
software que ejecuta el sistema propuesto.

El capítulo 5 proporciona la metodología de experimentación y da los resultados
obtenidos. Se describe una aplicación de referencia de muestra y su modelo de
red neuronal correspondiente. Esta aplicación se utiliza luego como base para
realizar varios experimentos, que ayudan a establecer la exactitud de los métodos
propuestos. El Capítulo 6 tiene un objetivo similar pero en un caso de aplicación
más detallado. Este capítulo detalla el desarrollo de una aplicación de detección de
orejas, explicando cómo el método propuesto permite la implementación de dicho
sistema en un dispositivo de hardware portátil compacto.

El trabajo finaliza con el Capítulo 7 que aporta las conclusiones de este trabajo y
plantea algunos puntos de discusión y futuras líneas de investigación.

Conclusiones

En este trabajo se presentó un sistema eficiente de detección de objetos basado
en redes neuronales convolucionales profundas. Todas las decisiones de diseño in-
volucradas en el desarrollo de este sistema fueron descritas en gran detalle, aunque
hubo algunas sutilezas en los conceptos de implementación y programación que
por brevedad no se mencionaron aquí.

Se describió un método para preprocesar datos de imágenes, que prepara la imagen
a través del espacio de color YUV tal como la proporcionan los ISP en los sistemas
móviles. El algoritmo aprovecha elementos de diseño como la compresión de la
información de color y la disponibilidad de una operación convolucional optima
que puede ejecutarse eficientemente en hardware. Se proporcionó la descripción
de una arquitectura base de red neuronal, que utiliza una cantidad mínima de
conexiones y neuronas para producir resultados de clasificación. Esta red se adaptó
y amplió con un método llamado mapas compartidos para transformar la capacidad
de clasificación a una capacidad de localización, lo cual es esencial para la detección
de objetos. El último elemento de la arquitectura propuesta fue un algoritmo de
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inferencia discreta que utiliza la minimización de energía como método para reducir
las detecciones activas y encontrar la ubicación final de un objeto.

También se proporcionó una descripción de cómo implementar de manera eficiente
este sistema de red neuronal, dadas las unidades de cómputo de hardware común-
mente disponibles en los dispositivos embebidos. Se repasaron las características
de hardware y de diferentes elementos de cómputo, y una descripción de cómo se
pueden programar con software teniendo en mente la optimización específica para
sistemas de redes neuronales.

Esta tesis ha demostrado que es posible desarrollar un sistema de detección de
objetos basado en CNN altamente eficiente que sea capaz de funcionar en entornos
restringidos. En comparación con los sistemas de detección de estado del arte, esta
arquitectura proporciona una precisión limitada, pero con un tiempo de ejecución
mucho más rápido, una medida que se traduce a la cantidad de energía gastada en
dispositivos de computación embebidos.

El trabajo que aquí se presenta abre muchas posibilidades interesantes con respecto
a los tipos de sistemas de visión artificial que se pueden implementar en estos dis-
positivos. Si bien esta arquitectura puede no ser lo suficientemente poderosa para
impulsar sistemas críticos de toma de decisiones, puede proporcionar una solución
para la detección masiva en implementaciones de dispositivos a gran escala. Tam-
bién proporciona un marco sobre el cual seguir construyendo y seguir desarrollando
sistemas cada vez más capaces.

A medida que la tecnología continúa avanzando y los dispositivos embebidos con-
tinúan volviéndose más económicos, es natural el continuar ampliando el tamaño
y la complejidad de los sistemas que se pueden implementar en ellos. Sin embargo,
muchas de las consideraciones de optimización establecidas en este trabajo con-
tinuarán teniendo un impacto en las generaciones futuras de de visión artificial
móvil.

Como futuras líneas de investigación sería de gran interés estudiar la implementación
eficiente de otro tipo de sistemas de redes neuronales, por ejemplo, redes neuronales
recurrentes capaces de analizar secuencias de imágenes para tareas como la predic-
ción de comportamiento y acciones.

Para concluir, este ha demostrado ser un proyecto de investigación muy interesante,
pero esto es solo el comienzo de lo que seguramente será un campo fructífero en el
cual seguir trabajando.
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