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Abstract: Satellite imagery is the foremost source of information to analyze and monitor land covers in several
time ranges, especially over large areas. However, it is not always either freely available or easily compatible for
the final users due to the different resolutions offered by sensors onboard the satellite platforms. Crop classifi-
cation is an important task to control and make decisions related to the agricultural practice and its regulation.
However, it is not trivial, especially for extensive areas. Thus, this paper proposes a new approach for crop
classification in large areas by a combined use of multi-temporal open-source remote sensing data from Sentinel-
2 (S2) and Landsat-8 (L8) satellite platforms. Having to deal with different spatial and temporal resolutions,
special spatial regions (called Tuplekeys) were created within a local nested grid to allow a proper integration
between the data of both sensors. Temporal variation of the Normalized Difference Vegetation Index (NDVI) was
the chosen input to classify crops. Moreover, due to the massive quantity of data collected, filters considering
some agronomic and edaphic criteria were applied with the dual goal of decreasing redundancies and increasing
the process efficiency. Out of three different machine learning classifiers analyzed, a plot-based approach was
considered for the algorithms calibration while a pixel-based approach was used for the final classification
process. The methodology was both tested and validated in the Duero river basin (Spain), 78,859 km2, for the
2017 spring and summer seasons. Finally, classification outputs were analyzed throughout their overall accuracy
(OA), not only for the whole basin but also for each of the Tuplekeys so that the OA spatial distribution was
evaluated as well. The Ensemble Bagged Trees (EBT) algorithm showed the maximum OA, 87% and 92%, when
classifying crops individually (15 classes) and grouped (7 classes), respectively, proving both the accuracy and
efficiency of the developed approach.

1. Introduction

The current increase in the demand for agricultural products due to
the rising worldwide population requires the proper management and
planning of the available resources. A well-grounded and detailed
knowledge of agricultural areas and crop types is essential to perform
economical, ecological and sustainable strategies (Cai et al., 2018;
Davis et al., 2016; Zaks and Kucharik, 2011). Given the dynamic
character of agriculture, crop monitoring turned out to be crucial to
control both its evolution and trend. Among other parameters, culti-
vated surface, crops production and distribution and their water

demand can be accurately estimated using alternative technologies
(Burke and Lobell, 2017; Cai et al., 2018; Durgun et al., 2016; Murmu
and Biswas, 2015).

Satellite remote sensing (RS) has been proven as a very valuable
technique to provide large scale multi-temporal data. Thus, both land
cover and natural resources maps are currently performed using this
technique (Hasmadi et al., 2017; Piedelobo et al., 2018; Shelestov et al.,
2017). However, for crop monitoring, proper spatial and temporal re-
solutions are required to assess crops at their different phenological
stages (Ballesteros et al., 2014).

Nowadays, several open-source satellite platforms improve Earth
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Observation (EO) capabilities for both agricultural management and
crop monitoring. Specifically, Copernicus Open Access Hub and Earth
Explorer are open data providers offering Sentinel-2 (S2) A and B and
Landsat-8 (L8) images, respectively (Colkesen and Kavzoglu, 2017).
Both satellite platforms have been successfully used in the agriculture
field (Azar et al., 2017; Hansen and Loveland, 2012; Immitzer et al.,
2016; Kussul et al., 2016, 2017; Piedelobo et al., 2018; Sexton et al.,
2013; Skakun et al., 2016; Townshend et al., 2012). However, its in-
dividual use may entail significant limitations: (i) lack of spatial, tem-
poral or spectral resolutions and (ii) clouds contaminating the images
(Cai et al., 2018; Kussul et al., 2017; Skakun et al., 2017). Overcoming
these limitations is conceivable using several platforms jointly, so that
denser temporal, spatial and spectral input data can be collected (Hao
et al., 2014; Roy et al., 2014).

Integrating RS data from several sources is not a trivial issue. Firstly,
a proper interoperability between the satellite-based data is required,
which entails efficient information management (Shelestov et al.,
2017). As this fact has been proven for the freely available L8 and S2
images (Mandanici and Bitelli, 2016), authors decided to use both re-
motely-sensed data jointly for crop classification.

Specifically, multi-temporal series of the Normalized Difference
Vegetation Index (NDVI), which has been the most widely used vege-
tation index for decades, were analyzed in this study. NDVI is highly
sensitive to vegetation cover variations (Rouse et al., 1973) and hence
can estimate crop productivity and monitor vegetation health and
growth (Immitzer et al., 2016; Inglada et al., 2015; Peña et al., 2014;
Piedelobo et al., 2018; Schultz et al., 2015; Sesnie et al., 2008; Wardlow
and Egbert, 2008). However, using jointly multi-temporal NDVI data
from both satellite platforms led to an extremely large amount of input
information. This requires a proper data management, especially for a
large agricultural area, which cannot be achieved by a single calibrated
classification model.

This paper proposes a new accurate and efficient classification ap-
proach for crop mapping. Its development has considered: (i) a well-
organized management of input data through special spatial regions,
(ii) image pre-processing and feature extraction using NDVI statistics
and considering special filters based on agronomic and edaphic criteria,
(iii) the selection of proper ground-truth samples, (iv) the use of the
most accurate classifiers and (v) accuracy assessment (Lu and Weng,
2007). A deep review has been made along several experiences re-
garding crop classification results worldwide, checking different algo-
rithms, sensors, number of crops classified, ground-truth samples and
study areas, among other parameters (Table 1).

As shown in Table 1, crop type mapping at very large scales and
with high resolution imagery does not exist in the literature. The main
challenge when performing a crop classification in large study areas
remain in the heterogeneous climates, landscapes and phenology.
Therefore, testing and validating the developed crop classification ap-
proach in the Spanish part of the Duero basin (78,859 km2) required
zoning the study area. Thanks to the creation of special spatial regions
(called Tuplekeys) and filters based on agronomic and edaphic criteria,
input data was efficiently organized and preprocessed to take the
classification process. All this management of the input data improved
the efficiency of the classification process without decreasing its accu-
racy.

Concerning the reference data, both field inspections made by the
fluvial guards of the river basin and farmers' statements to the Common
Agricultural Policy (n.d.) (CAP) were used, so enough samples cali-
brated the model and assessed its accuracy. 2017 crop classification in
Duero basin was performed using three machine learning classifiers: (i)
Decision Trees (DT), (ii) Ensemble Bagged Trees (EBT) and (iii)
Weighted Nearest Neighbor (WNN). These algorithms were selected
because of their proved accuracy and efficiency (Table 1).

Regarding the number of crop types classified, 15 individual classes
and 7 grouped classes were labeled and hence classification algorithms
were applied twice. Finally, both salt and pepper algorithm and masks

for filtering artificial raw elements and forest areas were applied.
Finally, overall accuracy (OA) was calculated for both the whole

basin and each of the Tuplekeys. Thereby, areas with worse classifica-
tion accuracy, either due to less availability of satellite data or ground-
truth data, were also evaluated. Among the three classifiers, EBT
showed the best OA, 87% and 92%, when classifying crops individually
and grouped, respectively. In addition, very competitive processing
times were obtained considering the huge amount of satellite-based
data for such a long time and large area analyzed. 16 h were enough for
analyzing the whole basin using a commercial computer.

To describe the developed crop classification approach, the paper is
organized as follows: after the Introduction, Section 2 describes input
data requirements, proposed methodology and the study area where it
has been tested and validated. Section 3 shows the results and ac-
curacies obtained for each of the classifiers; Section 4 discusses the
results and, finally, Section 5 summarizes all conclusions derived after
testing the proposed crop classification methodology in the Duero river
basin.

2. Materials and methods

2.1. Case study: the Duero river basin

The study area selected for testing, evaluating and validating the
developed classification approach was the Spanish part of the Duero
Hydrographic Basin (Fig. 1). This case study was chosen not only due to
its large area and significant agricultural activity, but also to its note-
worthy spatial and temporal hydroclimatic variability, which also de-
fines its wide diversity of crops, landscapes and phenologies (ITACyL
and AEMET, 2013; Fernández Pereira et al., 2015; Herrero Lizano,
2017). Thus, the crop classification approach could be entirely eval-
uated, including its efficiency, accuracy and required processing time
when applied to large areas.

The Spanish part of the Duero river basin is mainly located in the
Community of Castile-Leon, in the central-North area of the Iberian
Peninsula (Ministry of Environment, 2007), covers 78,859 km2 and has
a continental climate, mostly considered semi-humid-semi-arid.
Average annual rainfall is 612mm/year with a high spatial and sea-
sonal variability ranging from 350 to 2000mm/year (ITACyL and
AEMET, 2013; Ceballos et al., 2004; Fernández Pereira et al., 2015;
Herrero Lizano, 2017).

According to the last hydrological plan of the basin, 3.7 million
(Fernández Pereira et al., 2015) and 488,491 ha (2017 CAP statements)
corresponded to rain-fed and irrigated crops in 2017, respectively. Most
crops were wheat (21%), corn (19%) and barley (15%), with almost
200,000 declared plots. Other representative crops were sunflower
(7%), fallow (6%), alfalfa (6%), beet (4%) and potato (3%).

2.2. Materials

2.2.1. S2 and L8 multispectral imagery
The presented work used jointly Landsat-8 (L8) and Sentinel-2 (S2)

satellite data for the following reasons: (i) they are freely available, (ii)
the interoperability between both platforms has been proven
(Mandanici and Bitelli, 2016) and (iii) they are able to monitor large
surfaces with high spatial, temporal and radiometric resolutions. This
may explain their worldwide use as input data for land cover / land use
monitoring and decision-making applications (Azar et al., 2017; Cai
et al., 2018; Hansen and Loveland, 2012; Immitzer et al., 2016; Kussul
et al., 2017; Piedelobo et al., 2018; Schultz et al., 2015; Sexton et al.,
2013; Skakun et al., 2016; Townshend et al., 2012).

Specifically, multi-temporal variation of the well-known
Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973)
was used to perform the crop classification in the study area. NDVI
profiles have a specific shape depending on the crop type and describe
the three most important phenological stages: onset of greenness,
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flowering and onset of yellowing. To exploit this information, crop
features extracted from multi-temporal NDVI metrics have been ex-
tensively used for crop mapping, achieving up to 90% OA values
(Bontemps et al., 2015; Inglada et al., 2015; Lu and Weng, 2007;
Matton et al., 2015; Peña et al., 2014; Pittman et al., 2010; Schultz
et al., 2015; Valero et al., 2016; Wardlow and Egbert, 2008). However,
the study of a very large area implies high spatial and temporal
variability regarding climate and phenology, so crop characteristics
occur in different time periods. In such cases, both zoning the analysis
along the study area and gathering enough and representative ground-
truth samples are needed.

In this work, 20,836 scenes from L8 (Level-1T) and S2 (Level-1C)
were automatically downloaded and preprocessed (Section 2.3.1.) for
the period between March 1st and October 31st 2017 with the aim of
classifying the crops of the Duero river basin in 2017 attending multi-
temporal variation of NDVITOA values. To obtain the same spatial co-
herence between L8 and S2 NDVI values, input data was divided in 278
spatial regions (Tuplekeys) created within a local nested grid. 192 out
of the 278 Tuplekeys covered the river basin in the storage Level Of
Detail (LOD). As further explained in Section 2.3.2, this step was im-
plemented due to L8 and S2 different spatial, temporal and radiometric
resolutions (Table 2). Thus, completely integrating all input data in
Tuplekeys solved the issue of pixels misalignment. Furthermore, several
filtering criteria was applied so just the most representative NDVI
scenes (8,671 out of 20,836) were used to perform the final un-
calibrated pixel-based crop classification.

Also, as it is not the specific NDVI value in a pixel but the variation
of this value through time and its comparison with several crop patterns
in a study area what defines a crop classification, NDVI at the top of the
atmosphere (NDVITOA) was analyzed, instead of at the bottom of the
atmosphere (NDVIBOA), avoiding atmospheric corrections and

optimizing processing times (Eq. (1)).

= +NDVI (NIR R )/(NIR R )TOA TOA TOA TOA TOA (1)

Ranging NDVITOA from −1 to +1, with higher values being re-
presentative of healthier crops (Rouse et al., 1973), and NIRTOA and
RTOA the near-infrared and red reflectances at the top of the atmo-
sphere, respectively.

2.2.2. Ground-truth reference samples
To ensure an accurate crop classification using remotely-sensed (RS)

satellite data, a proper amount of reference samples must be provided
for calibrating the algorithms and assessing their accuracy (Congalton,
1991). The quality and representativeness of ground-truth data can
significantly influence the performance of the algorithms used and,
consequently, the classification results (Chen et al., 2002). Field sur-
veys, farmer's statements, aerial photographs, satellite images or land
cover / land use (LCLU) maps are widely-used suppliers of ground-truth
samples (Azar et al., 2017; Immitzer et al., 2016; Inglada et al., 2015;
Lu and Weng, 2007; Ok et al., 2017; Peña et al., 2014; Schultz et al.,
2015; Tatsumi et al., 2015; Ustuner et al., 2017).

The two main uses of the reference samples are: (i) calibrating the
classifiers and (ii) evaluating the classification accuracy. Therefore, the
calibration dataset supports the RS data and the classification algo-
rithms to perform the final crop map (Delincé, 2017).

In this study, both summer field visits provided by fluvial guards of
the river basin (from June to September 2017) and farmers' statements
to the Common Agricultural Policy (n.d.) (CAP) of such year were used
as reference data. 249 field visits determined the crop type, phenolo-
gical stage and irrigation system established in the visit date. CAP in-
formation represented only irrigated plots and provided all farmers'
declarations regarding crop type, surface and plot delimitation.

Fig. 1. The Duero Hydrographic Basin located in Spain.
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352,403 irrigated plots had been declared to the CAP in 2017 but, after
a spatial analysis, those with an area of< 1 ha were deleted to avoid
the border effect in small plots. Lastly, considering the labeled classified
crop types, 36,843 CAP statements were used (Table 3).

As a novelty, the accuracy of the final crop classification was eval-
uated per each of the algorithms not only for the whole basin but also
per each of the Tuplekeys. Thus, the spatial distribution of the overall
accuracy (OA) along the basin was analyzed. Therefore, all available
ground-truth data was exploited by using different reference samples
for either calibration or validation. All field visits were used for de-
termining the classification OA at the level of the whole basin due to
their higher accuracy stating the type and stage of the crops in the visit
date. On the other hand, 70% of the CAP statements were used for
calibrating the algorithms while the other 30% were used for assessing
OA per Tuplekey, compensating the low number of field surveys.

Regarding the crop types classified, 15 individual and 7 grouped
classes were labeled, applying the classification algorithms twice.
Table 3 shows the number of agricultural plots visited and the CAP
statements for the selected individual and gathered crop classes.

2.3. Classification methodology

Obtaining a proper crop classification through the proposed meth-
odology requires to follow 4 main consecutive steps to use jointly multi-
temporal RS data from S2 and L8, as outlined in Fig. 2.

2.3.1. Data collection and pre-processing
This step involves the execution of two different processes: (i)

downloading and pre-processing RS satellite data and (ii) gathering
ground-truth data from the fluvial guards of the river basin and the
farmers' statements to the CAP. After downloading L8 and S2 data,
NDVITOA images were generated for both RS sensors. Both United States

Geological Survey (USGS) and European Space Agency (ESA) provide
services for querying and downloading L8 Level 1T and S2 Level 1C
products. These services could be used through Application
Programming Interfaces (API). Thus, the developed approach made use
of these interfaces, automatically querying the available products
(NIRTOA and RTOA images) for the study area and time range of interest
(March 1st – October 31st 2017), downloading and keeping them in a
system catalogue and calculating NDVITOA images using Eq. (1)
(Piedelobo et al., 2018).

2.3.2. Satellite data integration
Once NDVITOA images were generated from both satellite sensors, a

proper data integration was required to perform a precise crop classi-
fication. Therefore, special spatial regions were automatically created
for the study area. These spatial regions, called Tuplekeys, had a grid
structure compatible with both L8 and S2 data (ANZLIC, 2012; Purss
et al., 2015; Stumpf et al., 2018; Villa et al., 2016). The goal was
processing multiple NDVITOA layers from both satellite platforms opti-
mizing the spatial coherence between them. Thus, the following issues
regarding Earth Observation (EO) multi-temporality and multi-resolu-
tion are solved:

• Pixel misalignment between L8 and S2 images since pixel sizes of
both imagery sets are not multiples. This leads to the impossibility of
directly comparing radiometric values from different dates.
• Pixel non-alignment in the upper Level of Detail (LOD) of the re-
solution pyramid. This issue is due to the different spatial resolution
of L8 (30m) and S2 (10m) images. The size of a given image was N
by N where N=3n, giving the image pyramid a hierarchical struc-
ture composed of n levels of the same image of different resolutions.
The bottom of the pyramid corresponded to the full resolution of the
given image. Each set of 3× 3 neighbor pixels was replaced by their
average as the pixel value of the image at the next level. This pro-
cess, that divided the image size by 3 on each dimension, was re-
peated n times until finally an image of only 1 pixel (average of the
entire image) was generated as the top of the pyramid with a di-
mension of 10× 10m (finest spatial resolution of S2). Thus, ap-
propriate alignment of the pixels in all LODs was mandatory to
perform multi-resolution analysis.

The unique local nested grid solves the storing, processing and
comparison between the raster input data from both satellite platforms.
This methodology was applied to generate the Tuplekey regions, or-
ganizing different footprints, pixel sizes and pixel positions at all pyr-
amid levels (ANZLIC, 2012; Purss et al., 2015; Stumpf et al., 2018; Villa
et al., 2016).

To obtain a local nested grid for the Duero river basin, the first step
was the creation of a nested grid that covered all the Iberian Peninsula
and had the coarsest spatial resolution. The method consisted of placing
a fine grid inside the coarse grid. Thus, the coarse grid covered the
entire Iberian Peninsula while the fine grid preserved the detailed
features of the plots of the study area. The following parameters defined
the Tuplekey generation process:

Table 2
Main characteristics of satellites and bands used. Adapted from Landsat Science Portal (n.d.) and The European Space Agency portal (n.d.).

Satellite platform Landsat-8 Sentinel-2 (A & B)

Sensor Operational Land Imager (OLI) Multispectral Instrument (MSI)
Area covered by each scene 170×185 km 100×100 km
Spatial resolution of the bands used 30m 10m
Temporal resolution 16 days 5 days
Radiometric resolution 12 bits 12 bits
Bands used Band 4 (Red: 630–680 nm) Band 4 (Red: 645–683 nm)

Band 5 (Near Infrared: 845–885 nm) Band 8 (Near Infrared: 762–907 nm)

Table 3
Number of reference samples used for the 2017 crop classification in the Duero
river basin, both from field surveys made by the fluvial guards and from the
farmer's statements to the Common Agricultural Policy (CAP).

Aggregated crop
class

Individual crop
class

Number of CAP
statements

Number of
plots visited

Spring crops Wheat 8,141 3
Barley 6,109 8
Rye 275 –
Rapeseed 791 2
Green peas 802 1
Oat 1,008 –

Summer crops Sugar beet 2,055 54
Potato 1,142 60
Corn 7,567 57

Alfalfa and ray-
grass

Alfalfa 2,821 38
Ray-grass 279 –

Sunflower Sunflower 2,730 22
Fallow Fallow 2,780 1
Vineyard Vineyard 249 3
Pastures Pasture 94 –
Total 36,843 249
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• The coordinate reference system (CRS). In this case, UTM 30
WGS84.
• The coordinates of the upper left corner of the grid: Initial NW
(North West) Origin longitude (DEG) and Initial NW (North West)
Origin latitude (DEG). Coordinates of the grid cells at all pyramid
levels remained as whole integer numbers, not decimal numbers.
• Region of Interest (ROI): the area of interest that covered the entire
Iberian Peninsula was equal to 1,500,000.0m in width.
• Ground Sample Distance (GSD) for the maximum LOD. It was de-
fined as 10m, which corresponded to the spatial resolution of S2.
• Interval of LODs. LOD 0 corresponded to the coarsest spatial re-
solution, which was defined as 7,290m while LOD 6 corresponded
to the finest spatial resolution, defined as 10m. LOD 4 was chosen as
the storage level to keep appropriate sized files.
• Recursive ratio factor in tiles. It was defined as 3 because L8 spatial
resolution was 30m and S2 was 10m, so there was a direct pro-
portion equal to 3 between them. Consequently, the nested grid in
each higher resolution level must be divisible in 3× 3 sequentially.
• The maximum raster file size. It corresponded to a L8 scene of
183,000.0 m of width.
• The final ROG (Region Of Grid). It was obtained by resizing the
initial ROI, defined to cover the maximum initial distance entered
(1,500,000.0m), considering the inclusion of a scene of maximum
size corresponding to a L8 scene (183,000.0 m).

Fig. 3 shows the developed local nested grid and Tuplekeys from
LOD 0 (coarsest nested grid), which covered the entire Iberian Pe-
ninsula to LOD 4 (storage level), displaying just the 192 Tuplekeys that
covered the river basin.

2.3.3. Preparation of training data
A plot-based approach was used to train the classification algo-

rithms using NDVITOA metrics (Azar et al., 2017; Immitzer et al., 2016;
Inglada et al., 2015; Ok et al., 2017; Peña et al., 2014; Schultz et al.,
2015; Tatsumi et al., 2015; Ustuner et al., 2017). Thus, both NDVITOA
average and standard deviation were calculated at the level of each plot
of the reference samples. 25,790 CAP statements (70%) were used for

this purpose. Since the approach generated a massive volume of in-
formation, several filters were applied to use just the most re-
presentative training data. This step ensured both a precise and efficient
classification model.

1. Extraction of plot-based NDVITOA statistics.
Using both CAP data (plots geographic delimitation) and NDVITOA
images organized in the Tuplekey regions, the mean and standard
deviation of NDVITOA at a plot-based level was calculated.
Considering the border effect when using RS data at this level, a
30m buffer was applied inwardly before performing the metrics.
Results were kept in two different files, one for L8 and one for S2
with the following information: identification of each plot, crop type
and NDVITOA statistics.

2. Agronomic and edaphic filters.
The training dataset was filtered by agronomic and edaphic criteria
so that only the most useful and representative data trained the
classification algorithms. Therefore, when multiple images were
available for the same region and week, just the maximum NDVITOA
value remained per plot since no significant change in the pheno-
logical stage of a crop occurs in less than a week. This filter's goal is
decreasing the high volume of input data in the process. Moreover,
picking the maximum NDVITOA value ensured a less presence of
clouds in the image since clouds have very low NDVITOA values.
In addition, to ensure both the agro-climatic and edaphic coherence
of the training data, just 200 plots of each crop were selected for
taking part in the calibration process. Selected plots were the closest
to the centroid of each Tuplekey. Nevertheless, if there was a crop
class represented by<200 plots, the total amount would be con-
sidered. In this way, both the quantity and representativeness of the
training data were assured throughout the basin.

2.3.4. Classification process
During this step, the training data prepared was used to calibrate

the classification algorithms by a plot-based approach and per
Tuplekey. The fact of both filtering the training dataset and calibrating
the model per Tuplekey instead of for the entire basin made it possible

Fig. 2. Flowchart of the proposed methodology for crop classification.
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to differentiate the unique edaphic and agro-climate conditions of each
region.

The classifiers chosen to be evaluated were Decision Trees (DT),
Ensemble Bagged Trees (EBT) and Weighted Nearest Neighbor (WNN)
since they show major guarantees in terms of speed and accuracy ac-
cording to literature (Table 1). Table 4 describes the main character-
istics of each method. The ClassificationLearner application of Matbal®
was used with the aim of calibrating and validating the different al-
gorithms.

The classification methodology goes through the following steps:

1 Selection of NDVITOA scenes

To simplify the final classification process, S2 over L8 NDVITOA
scenes were selected when both were available for the same Tuplekey
and date due to its better resolution.

2 Cloud cover filter

As clouds show very low NDVITOA, only scenes with an average
value> 0.20 were used.

3 Classifiers calibration

The selected classifiers must learn from the prepared training data
(70% of CAP plots). The plot-based calibration process was performed

Fig. 3. Local nested grid in several LODs. (a) Local nested grid in LOD 2: each tile of the previous grid in LOD 1 was divided in 3×3. (b) Local nested grid in LOD 1:
coarsest grid in LOD 0 with tiles divided in 3× 3. (c) The coarsest nested grid that had LOD 0 and covered the entire Iberian Peninsula (in grey), the ROI (in green)
and LOD 4 (little tiles in grey). (d) Zoom to the Duero basin to show the Tuplekeys in LOD 4 that cover the study area.

Table 4
Algorithms evaluated for crop classification.

Method Main characteristics

Decision Trees (DT) Different number of leaves and maximum number of splits, up to 100
Ensemble Bagged Trees (EBT) Random forest ensemble method with decision trees
Weighted Nearest Neighbor (WNN) Distance weight. The number of neighbors was set to 10

L. Piedelobo et al. Agricultural Systems 171 (2019) 36–50

42



per Tuplekey and classification algorithms learnt from the NDVITOA
signatures of the training data, considering all the plot-based statistics
extracted during the previous step (Section 2.3.3).

4 Crops classified

Regarding the number of crops classified, 15 individual classes
(alfalfa, corn, sugar beet, potato, sunflower, barley, wheat, fallow, ra-
peseed, green peas, vineyard, ray-grass, rye, oats and pastures) and 7
grouped classes (spring crop, summer crop, alfalfa and ray-grass, sun-
flower, fallow, vineyard and pastures) were labeled. Gathered classes
were grouped attending the seasonality of the individual crops and
their growing stages as their NDVI signatures are quite similar.
Therefore, classification algorithms were applied two times: one con-
sidering all individual crop classes and the second one considering just
the gathered classes.

5 Optimization of results

Finally, both the salt and pepper denoising approach and masks
filtering artificial raw elements and forest areas were applied.
Regarding the filtering masks, SIGPAC (Geographic Information System
for Agricultural Plots, n.d.) land uses per cadastral parcel were the
source of information. Finally, the salt and pepper denoising was ap-
plied to avoid the mixed-crop classification of plots (Basukala et al.,
2017; Belgiu and Csillik, 2018).

2.3.5. Final crop classification: accuracy assessment
In this case study, classification accuracy was determined per clas-

sifier: (i) globally for the whole basin and (ii) per Tuplekey, so a spatial
analysis of the OA could also be performed. Thus, an evaluation on how
the number of images used per Tuplekey affects the final pixel-based
classification was also carried out. Moreover, OA was determined
considering: (i) individualized crop classes and (ii) gathered crop
classes.

The confusion matrix allowed the comparison between reference
data and final crop classes. Field surveys performed by the Duero fluvial
guards in 2017 summer period were considered for assessing the OA for
the whole basin. However, due to the lack of field samples, 30% of CAP
statements were considered for assessing the classification accuracy per
Tuplekey.

Overall, user's and producer's accuracies (OA, UA and PA) were
calculated to assess the accuracy per classifier. In addition, per-class
accuracy was evaluated regarding misclassified crops, both for in-
dividual and gathered crop classes, calculating omission and commis-
sion errors (OE and CE) (Congalton, 1991).

3. Results

3.1. Classification map for individual crop classes

This classification map offered a high overall accuracy (OA) when
considering the 15 individual crop classes (alfalfa, corn, sugar beet,
potato, sunflower, barley, wheat, fallow, rapeseed, green peas, vine-
yard, ray-grass, rye, oats and pastures) for all three classifiers and
considering the whole basin. Ensemble Bagged Trees (EBT) classifier
provided the best result with and OA of 87%, being Decision Trees (DT)
and Weighted Nearest Neighbor (WNN) classifiers very close with OAs
of 81% and 80%, respectively. Fig. 4 shows the final pixel-based crop
classification map in the Duero river basin for individual crop classes
using EBT and Table 5 its confusion matrix, as this classifier obtained
the highest accuracy.

The following significant misclassified cases were obtained with
WNN: (i) potato as corn 6 times and as sunflower 4 times, (ii) alfalfa as
sugar beet 4 times and (iii) sugar beet as corn 4 times. On the other
hand, with DT: (i) corn was confused with potato 4 times, (ii) sugar beet

with alfalfa 3 times, (iii) alfalfa with pasture 3 times and (iv) sunflower
with corn 4 times. However, other 25 misclassified crops were obtained
when using DT, even not exceeding 2 times. As for EBT, only one sig-
nificant misclassification occurred, potato confused with corn 4 times,
among other 20 confusion cases, but not exceeding 2 times. Thus, EBT
got less significantly confused crops than WNN and DT, which explains
its better OA. These confusion cases are explained by the high similarity
between their growing cycles. As Table 6 shows, potato and corn were
the majorly confused classes due to their likeliness initial and late
growing stages.

As for OAs per Tuplekey, WNN ranged 54–58% to 74–78% while
global OA was 80% and DT presented the lowest values, ranging
42–46% to 62–66%, while global OA was 81%. The highest OAs per
Tuplekey were again obtained when using EBT classifier, ranging
mainly 70–74% and 74–78%, but still not reaching its global OA of
87%. Lower OAs were obtained per Tuplekey than for the whole basin
due to using different validation data in each case. 30% of CAP state-
ments were considered for estimating OA per Tuplekey instead of the
field surveys due to the lack of these ones.

In addition, similar OAs were observed between adjacent Tuplekeys,
remaining three spatial regions in the center of the basin as the lowest
OA for all three classifiers (Fig. 5). The total number of NDVITOA images
used for the final crop classification was also calculated per Tuplekey,
finding out that the lower number of images used, the lower OA was
obtained.

Regarding the execution time needed for the classification process,
EBT had the longest processing time, lasting 16 h and 8min. On the
other hand, DT classifier, slightly more accurate than WNN, needed
only 2 h and a half, while WNN lasted almost twice that time, 5 h and
22min. The developed approach was performed in a commercial
computer with an Intel®CoreTM i9 7900× CPU (3.30 GHz), 64 bits and
64Mb of RAM.

3.1.1. Per-class accuracy
Table 7 shows commission and omission errors (CE and OE) per

class and classifier considering individual crop classes. Ray-grass, rye,
oat and pasture showed both a CE and OE equal to 100% due to the lack
of field surveys representing these crop classes. Moreover, other crops,
i.e. alfalfa and barley, were misclassified as ray-grass and rye. Apart
from them, the worst classified crop class was wheat, with a CE of 67%
and OE ranging 75–86% for all three classifiers.

On the other hand, green pea was the only individual crop class with
both a CE and OE equal to 0% for the three classifiers. Fallow also
showed a CE of 0% for all the classifiers, but OE was just 0% when using
DT while significantly high, 50 and 67% when using EBT and WNN,
respectively.

EBT showed the lowest CE and OE among all three classifiers for
alfalfa, corn, sugar beet and potato. Regarding DT, sunflower presented
the lowest CE and OE when compared to the other classifiers. On the
other hand, WNN showed higher CE and OE per crop class than the
other algorithms. Therefore, it could be concluded that EBT performed
a better classification for alfalfa, corn, sugar beet and potato and DT for
fallow and sunflower while green pea is well classified using either of
the classifiers.

3.2. Classification map for grouped crop classes

This classification map also offered high OAs when considering 7
grouped crop classes (spring crop, summer crop, alfalfa and ray-grass,
sunflower, fallow, vineyard and pastures) for all three classifiers. EBT
provided again the highest OA for the whole basin, 92%, followed in
this case by WNN and DT, with OAs of 89% and 88%, respectively.
Thus, an improvement of the OAs could be noticed for all three clas-
sifiers when considering gathered instead of individual crop classes
(92% instead of 87% for EBT, 89% instead of 80% for WNN and 88%
instead of 81% for DT). This fact was due to gather some individual
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crop classes with similar growing cycles in the same class, decreasing
the amount of misclassification cases. Final pixel-based crop classifi-
cation in the Duero river basin and confusion matrix when using EBT
and considering grouped crop classes are shown in Fig. 6 and Table 8,
as the most accurate results.

WNN confusion matrix showed the following misclassified crops: (i)
alfalfa and ray-grass classified as summer crop 6 times and as spring
crop 3 times, (ii) summer crop confused with spring crop 4 times and
with sunflower 3 times and (iii) sunflower misclassified as summer crop
3 times. Regarding DT classifier, the most significant confusion classes
were: (i) sunflower classified as vineyard 8 times and as summer crop 4
times, (ii) summer crop classified as alfalfa and ray-grass 6 times and
(iii) alfalfa and ray-grass confused with spring crop 3 times. Finally, the
most noteworthy misclassification classes obtained with EBT were: (i)
sunflower classified as summer crop 4 times and (ii) summer crop
confused with spring crop 3 times and with alfalfa and ray-grass other 3
times. The growing stages showed again a high likeliness between the
confused grouped classes (Table 9). Nevertheless, the most important
remark was the decreased number of misclassified crops when classi-
fying grouped instead of individual crop classes.

When getting OA per Tuplekey and hence its spatial distribution
along the basin, higher and more homogeneous OA values could be
noticed when crops were gathered instead of individualized. However,
the three Tuplekeys with the lowest OA remained in the middle of the
basin whether considering grouped or separated crop classes and it was
directly related with the number of NDVITOA images used. Spatial dis-
tribution of OAs per Tuplekey showed a significance likeliness between
EBT and WNN classifiers, ranging mainly 86–90% to 90–94%, like their
global OAs of 92 and 89% when assessing the accuracy for the whole
basin. DT showed again the lowest values, ranging 42–46% to 62–66%,
while its global OA was 88% (Fig. 7).

As for processing times when considering gathered crop classes,
EBT, the most accurate classifier, showed again the longest processing
time, lasting 16 h. On the other hand, DT needed only 2 h and a half,
while WNN lasted 5 h. Therefore, executing processes were slightly
quicker when crop classes were grouped instead of separated, but quite
similar.

3.2.1. Per-class accuracy
Table 10 shows commission and omission errors (CE and OE) per

class and classifier considering grouped crop classes. Pasture was the
only class showing both a CE and OE equal to 100% due to the lack of
field surveys representing it. As for the other crop classes, errors varied
significantly, reaching 73%.

Comparing CE per classifier, fallow was the best classified crop,
with a CE of 0% using either of the algorithms. EBT showed better
results classifying summer crop and alfalfa and ray-grass (4 and 11%)
and DT for vineyard (0%). As for OE, EBT generally presented the
lowest values, especially for both fallow and vineyard, with an OE of
0%.

Therefore, for grouped crop classification, EBT showed the best
results for classifying sunflower, summer crop and alfalfa and ray-grass;
both EBT and DT classified perfectly fallow; while WNN showed the
worst results.

3.3. Mixed pixel-based classification in the same plot

Mixed pixels' issue consisted in pixels that, even belonged to the
same plot, were classified as different crop types. This problem took
place even after applying the salt and pepper denoising approach and
for either of the three classifiers. However, it significance depended on
the classification algorithm used.

Fig. 4. 2017 final per-pixel crop classification performed with EBT classifier in the Duero river basin considering individual crop classes.
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DT showed the quickest execution time but also the most note-
worthy appearance of mixed pixels, followed by WNN. On the other
hand, EBT, which presented the highest OA for both individual and
grouped crop classes and for the whole basin or per Tuplekey, showed
the lowest rate of mixed pixels at a plot level.

Fig. 8 shows the mixed pixels' issue per classifier for the 210th plot
of the field visits performed by the Duero basin fluvial guards. Ac-
cording to the field survey, the crop was a sugar beet. However, it was
labeled as sugar beet and potato, both as majoritarian classes, using
WNN, and as sugar beet, potato, wheat and pasture using DT classifier.
Thus, DT did not only classify two extra classes but also obtained
scattered pixels, which made it difficult to distinguish the majoritarian
crop class in the plot.

On the other hand, EBT classifier labeled the plot as sugar beet and
alfalfa, but it was easier to distinct the majoritarian crop class.

Therefore, a plot-based estimation of the majoritarian crop class must
be done to solve this issue.

4. Discussion

The developed pixel-based classification approach was tested for
performing the 2017 crop classification at the large area occupied by
the Duero river basin in Spain, 78,859 km2. Crop mapping at this kind
of scale and using high resolution imagery does not exist in the litera-
ture, finding 17,000 km2 as the largest area studied in previous research
experiences (Inglada et al., 2015). The main challenge when per-
forming a crop classification in large study areas remain in the highly
heterogeneous climates, landscapes and phenology, so just one cali-
brated classification model was not enough (Eggen et al., 2016).

The presented methodology achieved almost perfect classification

Table 5
Confusion matrix obtained with EBT classifier for the 2017 crop classification in the Duero river basin considering individual crop classes and field surveys performed
by fluvial guards in 2017 summer period. Both UA and PA are shown in %.

Aa Cb SBc POd Se Bf Wg Fh RAi GPj Vk RGl Rm On Po Total UAq

Aa 35 0 1 0 0 0 0 0 0 0 0 0 0 0 0 36 97
Cb 0 53 2 4 2 0 0 0 0 0 0 0 0 0 0 61 87
SBc 0 0 48 2 0 0 0 0 0 0 0 0 0 0 0 50 96
POd 0 2 2 53 1 1 0 0 0 0 0 0 0 0 0 59 90
Se 1 2 0 0 18 0 1 0 0 0 0 0 0 0 0 22 82
Bf 0 0 1 1 0 5 1 0 0 0 0 0 0 0 0 8 63
Wg 1 0 0 0 0 2 1 0 1 0 0 0 0 0 0 5 20
Fh 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 50
RAi 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 2 50
GPj 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 100
Vk 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 100
RGl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Po 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Total 38 57 54 60 22 8 3 1 2 1 3 0 0 0 0 249
PAp 92 93 89 88 82 63 33 100 50 100 67 0 0 0 0

Bold indicates (1) the main diagonal, (2) total number of parcels identified with the same crop type as for each line and column, (3) individual crop classes in the first
column and in the first line.

a Alfalfa.
b Corn.
c Sugar beet.
d Potato.
e Sunflower.
f Barley.
g Wheat.
h Fallow.
i Rapeseed.
j Green peas.
k Vineyard.
l Ray-grass.
m Rye.
n Oat.
o Pasture.
p Producer's accuracy.
q User's accuracy.

Table 6
Misclassified individual crop classes with similar phenological cycles. Numbers 1–12 mean the month of the year, light green
“Initial and development stage” and darker green “Mid and late stage”. Growing stages of the different crop classes were
adapted from FAO (Food and Agriculture Organization of the United Nations). Alfalfa and pasture are not shown as they have
pluriannual cycles.
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results by the effective integration of remotely-sensed data from two
different open-source satellite platforms, Landsat-8 (L8) and Sentinel-2
(S2) A and B. These satellites offered two datasets with different spatial
and temporal resolutions (30 and 10m and 16 and 5 days, respectively)
and hence its combined use increased both the amount and quality of
the input data.

20,836 images from L8 (Level-1T) and S2 (Level-1C) were auto-
matically downloaded and preprocessed in the period of March 1st –
October 31st 2017 with the aim of obtaining a set of multi-temporal
NDVITOA images. The developed approach was based on integrating S2
and L8 NDVITOA raster layers in special spatial regions (Tuplekeys)
within a local nested grid that covered the whole basin. This novelty

allowed to feed the classification process with a completely coherent
and consistent database, organizing image footprints, pixel sizes and
pixel positions at all pyramid levels (ANZLIC, 2012; Purss et al., 2015;
Stumpf et al., 2018; Villa et al., 2016). Therefore, input data was di-
vided in 278 Tuplekeys and 192 covered the river basin in the storage
Level Of Detail (LOD).

However, the main goal was creating not only an accurate but ef-
ficient approach for crop classification of large areas. Thus, several
filters based on agronomic and edaphic criteria were applied so just the
most representative NDVITOA images (8,671 out of 20,836) were used
to perform the final calibrated pixel-based crop classification.

The three most accurate and efficient machine learning classifiers
according to the literature (Table 1) were both tested and evaluated.
According to the results, Ensemble Bagged Trees (EBT) showed the best
performance, both when considering individual and gathered crop
classes, reaching overall accuracies (OAs) of 87% and 92%, respec-
tively, which reaffirm previous experiences. However, it also showed
the longest executing time, 16 h.

Decision Trees (DT) was slightly more accurate than Weighted
Nearest Neighbor (WNN), 81% and 80%, classifying individual crop
classes, but less, 88% and 89%, considering aggregated crop classes.
Nevertheless, DT has been widely used for crop classification, even not
being the most accurate classifier since it is easily trainable and hence
provides the quickest processing (Choodarathnakara et al., 2012).

OA was also assessed per Tuplekey using 30% of 2017 farmers'
statements to the CAP, as well as the total number of NDVITOA images
used, finding out that low OA values were directly related with the
quantity of worth classifying images filtered per Tuplekey. Generally,
OA rates per Tuplekey were lower than the generic OA calculated for
the whole basin for either of the classifiers due to the quantity of re-
ference data, CAP declarations instead of field surveys.

Regarding per-class commission and omission errors (CE and OE),
high rates were mainly associated with a lack of reference data from the
field surveys. Thus, ray-grass, rye, oat and pasture for individual crop
classification and just pasture for aggregated crop classification

Fig. 5. Overall accuracy (OA) per each of the Tuplekeys when classifying individual crop classes and considering 30% of 2017 farmers' statements to the CAP as
validation data. (a) Using Decision Trees (DT). (b) Using Weighted Nearest Neighbor (WNN). (c) Using Ensemble Bagged Trees (EBT).

Table 7
Commission and omission errors per class and classifier for the 2017 crop
classification in the Duero river basin considering individual crop classes.
Results are organized from the lowest to the highest CE obtained by EBT as the
most accurate classifier. Both CE and OE are shown in % for each of the clas-
sifiers.

Individual crop classes Commission error Omission error

DT WNN EBT DT WNN EBT

Green peas 0 0 0 0 0 0
Fallow 0 0 0 0 67 50
Corn 16 9 7 11 20 13
Alfalfa 18 18 8 11 6 3
Sugar beet 19 20 11 8 14 4
Potato 14 20 12 32 11 10
Sunflower 15 18 18 12 31 18
Vineyard 0 67 33 25 0 0
Barley 63 63 38 50 25 38
Rapeseed 50 50 50 0 67 50
Wheat 67 67 67 75 86 80
Ray-grass 100 100 100 100 100 100
Rye 100 100 100 100 100 100
Oat 100 100 100 100 100 100
Pasture 100 100 100 100 100 100
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Fig. 6. 2017 final per-pixel crop classification performed with EBT classifier in the Duero river basin considering grouped crop classes.

Table 8
Confusion matrix obtained with EBT classifier for the 2017 crop classification in the Duero river basin considering grouped crop classes and field surveys performed
by fluvial guards in 2017 summer period. Both UA and PA are shown in %.

Spring crop Summer crop Alfalfa and ray-grass Sunflower Fallow Vineyard Pastures Total UAb

Spring crop 12 3 2 1 0 0 0 18 67
Summer crop 2 164 2 4 0 0 0 172 95
Alfalfa and ray-grass 0 3 34 0 0 0 0 37 92
Sunflower 0 1 0 17 0 2 0 20 85
Fallow 0 0 0 0 1 0 0 1 100
Vineyard 0 0 0 0 0 1 0 1 100
Pasture 0 0 0 0 0 0 0 0 0
Total 14 171 38 22 1 3 0 249
PAa 86 96 89 77 100 33 0

Bold indicates (1) the main diagonal, (2) total number of parcels identified with the same crop type as for each line and column, (3) gathered crop classes in the first
column and first line.

a Producer's accuracy.
b User's accuracy.

Table 9
Misclassified grouped crop classes with similar phenological cycles. Numbers 1–12 mean the month of the year, light green
“Initial and development stage” and darker green “Mid and late stage”. Growing stages of the different crop classes were
adapted from FAO (Food and Agriculture Organization of the United Nations).
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obtained both CE and OE of 100%, followed by wheat and vineyard,
respectively. Therefore, using a larger and representative ground-truth
dataset would allow to improve the crop classification (Lu and Weng,
2007). Defining several monitoring plots that represent the most

significant crop types in the basin, as well as developing a methodology
for assessing the crop type and stage, could be the solution to this issue.

The presence of mixed pixels was also recognized as an issue that
affected the discrimination of the majoritarian crop class in a plot and
hence OA per classifier. This problem was most significant using DT
classifier, which also showed lower OAs, but the fastest processing.
Mixed pixels are a very common issue when performing crop mapping,
regardless the sensor resolution and the processing time needed
(Basukala et al., 2017; Belgiu and Csillik, 2018; Choodarathnakara
et al., 2012; Hsieh et al., 2012). Different approaches have been de-
veloped in this matter, i.e. using higher spatial resolution images to
enhance the input datasets (Lu and Weng, 2007), but depending on
non-freely available data. Another solution could be using soft classi-
fication methods based on fuzzy logic, so each pixel would belong to
more than one crop class, having membership grades for each class
(Choodarathnakara et al., 2012; Murmu and Biswas, 2015).

5. Conclusions

The main purposes of the presented study were: (i) to assess the

Fig. 7. Overall accuracy (OA) per each of the Tuplekeys when classifying grouped crop classes and considering 30% of 2017 farmers' statements to the CAP as
validation data. (a) Using Decision Trees (DT). (b) Using Weighted Nearest Neighbor (WNN). (c) Using Ensemble Bagged Trees (EBT).

Table 10
Commission and omission errors per class and classifier for the 2017 crop
classification in the Duero river basin considering grouped crop classes. Results
are organized from the lowest to the highest CE obtained by EBT as the most
accurate classifier. Both CE and OE are shown in % for each of the classifiers.

Grouped crop classes Commission error Omission error

DT WNN EBT DT WNN EBT

Fallow 0 0 0 0 50 0
Summer crop 6 5 4 4 6 5
Alfalfa and ray-grass 16 24 11 16 6 8
Spring crop 14 14 14 29 43 33
Sunflower 55 23 23 17 23 15
Vineyard 0 67 67 73 0 0
Pasture 100 100 100 100 100 100

Fig. 8. Pixel-based crop classification for the 210th plot of the field visits performed by the Duero basin fluvial guards in 2017 summer period from the quickest to the
slowest classifier. (a) Using Decision Trees (DT). (b) Using Weighted Nearest Neighbor (WNN). (c) Using Ensemble Bagged Trees (EBT).
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accuracy when performing a cropland map in the Duero river basin
using the three most accurate supervised classification algorithms ac-
cording to the literature, (ii) to evaluate the integrate use of freely
available multi-temporal remote sensing data from S2 and L8 satellite
platforms since they have different spatial and temporal resolutions and
(iii) to evaluate the approach outputs and efficiency considering both a
long period of time and a large study area, and hence a huge quantity of
information to be processed. Therefore, the developed classification
methodology was capable to:

• Filter the available NDVI dataset attending both agronomic and
edaphic criteria, improving the efficiency and therefore computa-
tion timing of the classification process since it did not consider
redundant input data.
• Integrate the use of L8 and S2 NDVI data in a large study area by
automatically creating special spatial regions called Tuplekeys that
permitted its jointly used on a coherent way, organizing footprints
and pixel sizes and positions at all levels of detail (LOD), increasing
the available spatial and temporal resolution of the input data per
Tuplekey.
• Test and evaluate the three most accurate supervised classification
algorithms: Ensemble Bagged Trees (EBT), Decision Trees (DT) and
Weighted Nearest Neighbor (WNN) both for individual and gathered
crop classes.
• Obtain not only a generic OA value for the whole basin, but also its
spatial distribution along the basin, calculating the accuracy per
Tuplekey. Field surveys taken by the fluvial guards of the river basin
during the summer of 2017 were used when calculating the classi-
fication accuracy for the whole basin. On the other hand, 30% of
2017 CAP statements were used when performing OA per Tuplekey
due to the lack of field visits.
• Conclude that EBT classifier provided the best classification results
both when considering individual and grouped crop classes,
achieving the highest OA both globally and spatially distributed
along the basin.
• Obtain 2017 crop classification in the Duero basin, covering almost
80,000 ha, with an OA of 87% and 92% with EBT classifier for in-
dividual and grouped crop classes, respectively, in just 16 h of
computing time with a commercial computer, which proved the
high efficiency and accuracy of the proposed methodology.
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