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Resumen 
 

Este estudio presenta un novedoso procedimiento que hibrida técnicas de Soft Computing, 
como son: Redes Neuronales Artificiales (RNA), sistemas de identificación y algoritmos 
genéticos. 

El objetivo es optimizar las condiciones de configuración de un centro de mecanizado. 
Más específicamente se trata de optimizar el proceso de fabricación de piezas de alta 
precisión, incluida la precisión de acabado, ahorrando tiempo y costes financieros y / o 
energéticos.  

La metodología aplicada hibrida técnicas de ML basándose en las siguientes fases: 

- En primer lugar, se aplican técnicas de reducción de dimensionalidad. Un 
modelo neuronal no supervisado extrae la estructura interna y las características 
relevantes del conjunto de datos original que representa el sistema. Las técnicas 
utilizadas son Análisis de Componentes Principales o Principal Component 
Analysis (PCA) y Cooperative Maximum-Likelihood Hebbian Learning (CMLHL). 

- En segundo lugar, utilizando las características relevantes del conjunto de datos 
obtenidas en el paso previo, se modela específicamente el rendimiento del 
sistema dinámico con las diferentes variables. Para ello se utiliza un modelo 
neuronal supervisado (Perceptron multicapa) y técnicas de identificación. En este 
paso se obtiene el modelo capaz de adaptarse al proceso de fabricación.  

- Finalmente, se utiliza un algoritmo genético para optimizar los parámetros de la 
máquina a partir de una función de adaptación o fitness no paramétrica. Se utiliza 
el modelo obtenido en el paso previo como función de fitness.  

Esta hibridación de técnicas se aplica a un caso de estudio real. En concreto, el novedoso 
enfoque propuesto se ha probado en un proceso real de fresado dental, utilizando un 
centro de mecanizado de alta precisión con cinco ejes, lo que requiere una alta precisión 
de acabado de medidas en micrómetros. Existen en dicho proceso una gran cantidad de 
factores del proceso a analizar. 

El objetivo buscado, con el caso real de estudio al que se aplica el método propuesto, es 
la reducción del tiempo necesario para la fabricación. En el momento de configuración 
de los parámetros de la máquina se tiene un tiempo estimado de fabricación, pero una 
vez finaliza la fabricación se observa habitualmente que el tiempo requerido es mayor 
del previsto. Lo que se pretende es optimizar los parámetros de la máquina, para reducir 
este tiempo real de fabricación y así reducir el error en su predicción. Optimizar el 
tiempo requerido para la fabricación de piezas dentales, permite, entre otras cosas, 
fabricar un mayor número de piezas al disponer de más tiempo. 

El conjunto de datos cuenta con 98 muestras con 8 variables de entrada y una de salida. 
Después de aplicar PCA y CMHL a los datos, se concluye que ambos métodos 
encuentran una estructura interna clara en el conjunto de datos al identificar varios 
grupos. Ambos identifican las revoluciones y el radio como variables relevantes. 
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CMLHL proporciona una representación más dispersa que PCA y por lo tanto las 
proyecciones de CMLHL proporcionan una información más relevante, dado que 
identifica adicionalmente como variables importantes la temperatura y el error de 
tiempo. Analizando los resultados obtenidos con CMLHL se concluye que este método 
identifica varios grupos ordenados por radio, revoluciones y temperatura y que dentro 
de cada grupo existen clasificaciones por “error de tiempo”. Por lo tanto, en la primera 
fase se concluye que el conjunto de datos tiene una estructura interna interesante basada 
en los grupos identificados. 

En el siguiente paso, se modelan las relaciones entre las entradas y los errores de tiempo 
de producción. Se inicia aplicando varios sistemas de modelado basados en RNA. Se 
utiliza un Perceptron multicapa (Multilayer Perceptron - MLP) para monitorizar la 
detección de errores de tiempo en la fabricación de piezas dentales. Esta RNA se entrena 
a partir de los algoritmos de entrenamiento más utilizados; como son el algoritmo de 
Lenvenberg-Marquardt, los métodos cuasi-Newton, el algoritmo de retropropagación 
resistente y el algoritmo de gradiente conjugado escalado, utilizando como criterios las 
técnicas de regularización bayesiana y parada temprana. El modelo final elegido por su 
reducido error es una red feedforward entrenada con el algoritmo de Lenvenberg-
Marquardt y con criterio regularizado bayesiano. Se puede concluir que la RNA 
seleccionada es capaz de simular y predecir correctamente el tiempo para la fabricación 
de piezas dentales (como consecuencia del proceso de producción). Esta RNA es capaz 
de modelar más del 86% de las medidas reales. 

Con el modelo obtenido, no sólo se puede predecir el error en los tiempos de fabricación, 
sino que se puede usar como función de fitness en el siguiente paso propuesto en este 
estudio, utilizándolo en un algoritmo genético. De este modo, se pueden determinar las 
mejores condiciones operativas del proceso de fresado. En el último paso, se utiliza el 
modelo obtenido previamente y se prueban distintos rangos de variables de entrada no 
normalizadas. Tras los experimentos ejecutados, se obtienen como resultado que el error 
de tiempo se puede optimizar para diferentes valores de radio, temperatura y RPM; es 
decir, es posible lograr un error en la predicción del tiempo cercano a cero. 

Después de aplicar la hibridación de las tres técnicas propuestas al conjunto de datos 
real, se ha evaluado la validez del método propuesto. En base a los resultados obtenidos, 
el método descrito en este estudio se puede utilizar para optimizar los parámetros de 
máquinas usadas en procesos industriales. Este método aumenta la eficiencia de las 
empresas y reduce sustancialmente el coste de preparar y configurar los procesos de la 
máquina. También ayuda en el proceso de producción utilizando nuevos materiales. El 
proceso de fresado dental presenta una importante tasa de error en el tiempo de 
fabricación de alrededor del 29%. Esto se debe a la diferencia entre el tiempo estimado 
de la propia máquina y el tiempo real de producción. El modelo obtenido es capaz de 
modelar más del 86% de las medidas reales en relación al error de tiempo (modelando 
más del 96,8% del trabajo en tiempo real). Esto ayuda a reducir el error y la tasa de 
variabilidad de los procesos de fabricación hasta un 4%, que es una tasa de error 
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aceptable en la planificación del trabajo de fresado dental, en comparación con el 29% 
inicial. 

Abstract 
This study presents a novel soft computing procedure based on the application of 
artificial neural networks, genetic algorithms and identification systems, which makes it 
possible to optimise the implementation conditions in the manufacturing process of high 
precision parts, including finishing precision, while saving both time and financial costs 
and/or energy. This novel intelligent procedure is based on the following phases. Firstly, 
a neural model extracts the internal structure and the relevant features of the data set 
representing the system. Secondly, the dynamic system performance of different 
variables is specifically modelled using a supervised neural model and identification 
techniques. This constitutes the model for the fitness function of the production process, 
using relevant features of the data set. Finally, a genetic algorithm is used to optimise 
the machine parameters from a non parametric fitness function. The novel proposed 
approach was tested under real dental milling processes using a high-precision 
machining centre with five axes, requiring high finishing precision of measures in 
micrometers with a large number of process factors to analyse. The results of the 
experiment, which validate the performance of the proposed approach, are presented in 
this study. 

 

1 Introduction 
It is becoming increasingly necessary to have intelligent software tools to optimise tasks 
associated with modelling industrial processes, especially those associated with high 
precision finishing, such as the dental milling process. 

The optimisation of machine parameters in the fabrication process could potentially 
improve the flexibility of the process, the adjustments of machine parameters, research 
in new materials, and its implementation in the fabrication process. It also improves 
some future designs. Presently, this is achieved with the help of experts (Research and 
development units in companies work to adjust parameters from the experimental 
design by carrying out a number of machine trials based on their own experiences). 
Machine parameter optimisation in the fabrication process includes the development of 
models to assess the behaviour of the variables in the process and to find the fitness 
function that can be optimised. The machine parameter optimisation should help the 
experts in better understanding the production process itself in order to produce 
products using new materials in a short period of time. 

The application of the optimisation process in the field of Medical Therapeutics (Odonto-
Stomatology), a booming industry, is both novel and economically advantageous [1, 2, 
3, 4, 5, 6]. Improved processing and optimisation of parameters such as processing time, 
accuracy, etc., for the development of pieces (such as dental-oral prostheses to perform 
partial crowns, inlays, onlays, etc. with application for rehabilitation and oral-dental 
restoration) are to the focus of rigorous studies today. The optimisation process of 
machine parameters, for example the time parameter, permits significant economic 
savings due to the high number of dental pieces produced daily by the same high-
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precision dental milling machine centre. This could significantly help to increase a 
company’s efficiency, and substantially contribute to cost reductions in the preparation 
and setting of the machines processes. Another example is the marginal adjustment of a 
dental prosthesis to the remaining tooth structure (dentine and enamel), thus avoiding 
tissue invasion and/or unprepared anatomical areas. This is the goal of any dental 
treatment, since the success now lies in the adjustment of approximately 15-25 
micrometers between the prosthesis and the remaining structures. This would enhance 
and prevent the filtering of germs and oral fluids that within the short or medium term 
will lead to treatment failure. 

For many years the traditional process of making and preparing dental structures has 
involved the use of wax, followed by a process called "Lost Wax" [7]. 

This is a valid methodology, but could interfere with the preparation of a series of 
variables that are not securely controlled. In fact, there have been cases in which the 
prosthesis has not fit the tooth structure correctly, resulting in short or medium term 
tooth decay and failure of the treatment. The optimal outcome would be the so-called 
passive adjustment, i.e. adjusted between 15-25 micrometers which would lead to 
success in dental restorative treatment. 

Because of these and other reasons it is currently of great interest to optimise processes 
[8, 9] related to the preparation of dental prostheses (dental structures of materials such 
as cobalt chromium, titanium, ceramics and/or resin) characterised by a high precision 
of adjustment in micrometers. 

Artificial Intelligence [10], in conjunction with optimisation and identification 
algorithms [11, 12], is a very appropriate technology for addressing the development of 
such intelligent tools. Nevertheless, the variable and parameter setting processes are a 
well-known problem that has not yet been fully resolved. Several different techniques 
have been proposed in literature. In [13] a Taguchi orthogonal array is used to optimise 
the effect of injection parameters; in [14] the influence of ultrasonic machining operating 
parameters is studied using Taguchi and the F-test method; [15] explores different ways 
of improving the quality of the KrF excimer laser micromachining of metal using the 
orthogonal array-based experimental design method. Conventional methods can be 
greatly improved through the application of soft computing techniques [16]. 

The novel method proposed in this research is a three-step procedure based on several 
soft computing techniques as artificial neural networks (ANN) [17, 18] and genetic 
algorithms (GA) [19, 20, 21]. Firstly, the dataset is analysed using statistical and 
projection methods such as Principal Component Analysis (PCA) [22, 23, 24] and 
Cooperative Maximum-Likelihood Hebbian Learning (CMLHL) [25] to extract the 
dataset structure and to perform feature selection to establish whether the data set is 
sufficiently informative. This means that if the initial collected data set, once analysed 
shows a certain degree of clustering, it can be seen as a sign of a representative data set 
(there are no problems related to any sensor when collecting the information, and the 
process is well defined by the data set).The subsequent steps of the process can then be 
applied, in which the most representative features are identified and used. A model is 
generated during the modelling stage to estimate, in this case, the production time errors 
by modelling techniques. As previously explained, this study is interested in decreasing 
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the production time. Finally, the ANN model obtained in the last step is used as a fitness 
function to be optimised in the genetic algorithm. 

This paper is organised as follows. Section 2 introduces the unsupervised neural models 
for analysing the datasets. Section 3 presents the system identification techniques used 
in the system modelling. Section 4 introduces the applied GA. Section 5 describes the 
case study: a real dental milling process. Section 6 presents the optimising of a dental 
milling process. The final section presents the different models that are used to solve the 
high precision dental milling optimisation case study. At the end, the conclusions are set 
out and some comments on future research lines are outlined. 

 

2 Data Structure Analysis using Connectionist Techniques 
Soft Computing [10, 26, 27, 28, 29, 30] is a set of several technologies whose aim is to 
solve inexact and complex problems [31, 32]. It investigates, simulates, and analyses very 
complex issues and phenomena in order to solve real-world problems [33, 34]. Soft 
Computing has been successfully applied in many different fields as, for example, 
feature selection [17, 18]. 

In this study, an extension of a neural PCA version [22, 23, 24] and other Exploratory 
Projection Pursuit [35, 36, 37, 38] extensions are used to select the most relevant input 
features in the data set and to study its internal structure. 

Feature Selection [39, 40, 41] and extraction [42, 43, 44, 45] entails feature construction, 
space dimensionality reduction, sparse representations and feature selection among 
others. They are all commonly used pre-processing tools in machine learning tasks, 
which include pattern recognition. Although researchers have grappled with such 
problems for many years, renewed interest has recently surfaced in feature extraction. 

The feature selection approach in this study is based on the issue of dimension reduction. 
Initially, some projection methods such as PCA [22, 23, 24], MLHL [36] and CMLHL [25, 
46, 47] are applied. Their first step is to analyse the internal structure of a representative 
data set from a case study. If after applying these models, a clear internal structure can 
be identified, this means that the data recorded is informative enough. Otherwise, 
further data must be properly collected [8, 9]. 

 
2.1 Principal Component Analysis 

Principal Component Analysis (PCA) originated in work by Pearson [22], and 
independently by Hotelling [23], is a statistical method describing multivariate data set 
variations in term of uncorrelated variables, each of which is a linear combination of the 
original variables. Its main goal is to derive new variables, in decreasing order of 
importance, which are linear combinations of the original variables and are uncorrelated 
with each other. 

From a geometrical point of view, PCA can be defined as a rotation of the axes of the 
original coordinate system to a new set of orthogonal axes that are ordered in terms of 
the amount of variation of the original data that they account for. PCA aims to find that 
orthogonal basis which maximises the data’s variance for a given dimensionality of basis. 
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Using PCA, it is possible to find a smaller group of underlying variables that describe 
the data. PCA has been the most frequently reported linear operation involving 
unsupervised learning for data compression and feature selection [24]. 

 
2.2 A Neural Implementation of Exploratory Projection Pursuit 

The standard statistical method of EPP [25, 37, 38], provides a linear projection of a data 
set, but it projects the data onto a set of basic vectors which best reveal the interesting 
structure in data. Interestingness is usually defined in terms of how far the distribution 
is from the Gaussian distribution [48]. 

One neural implementation of EPP is Maximum Likelihood Hebbian Learning (MLHL) 
[36]. It identifies interestingness by maximizing the probability of the residuals under 
specific probability density functions that are non-Gaussian. 

An extended version of this model is the Cooperative Maximum Likelihood Hebbian 
Learning (CMLHL) [25, 49] model. CMLHL is based on MLHL [36] adding lateral 
connections [25, 49], which have been derived from the Rectified Gaussian Distribution 
[48]. The resultant net can find the independent factors of a data set but does so in a way 
that captures some type of global ordering in the data set. 

Considering an N-dimensional input vector ( ), and an M-dimensional output vector ( ), 
with Wij being the weight (linking input j to output i), then CMLHL can be expressed 
[49] as: 

 

Feed-forward step:  

ixWy
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jiji ∀∑=
=

N
,
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Weight change:  
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 (4) 

 
Where: η  is the learning rate, [ ]+ is a rectification necessary to ensure that the y -values 
remain within the positive quadrant, τ  is the "strength" of the lateral connections, b  is 
the bias parameter, p  is a parameter related to the energy function [25, 36] and A  is 
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the symmetric matrix used to modify the response to the data [25]. The effect of this 
matrix is based on the relation between the distances separating the output neurons. 
 

3 System Identification and Modelling 
System identification (SI) [11, 26] aims to obtain mathematical models to estimate the 
behaviours of a physical process whose dynamic equations are unknown. The 
identification criterion consists in evaluating the group of candidate models that best 
describes the dataset gathered for the experiment; that is, given a certain model )( *θM , 
its prediction error may be defined as in Eq. (5), where )(ty  is the real output and 

)|(ˆ *θty  is the prediction of this. The goal is to obtain a model that meets the following 
premise [11]: a good model is one that makes good predictions and which produces 
small errors when the observed data is applied. 
Classic SI refers to the parametrical literature, which has its origin in linear system 
analysis [12]. Nevertheless, increased computational capability and the availability of 
soft computing techniques have widened research into SI. ANNs are one of the most 
interesting soft computing paradigms used in SI. When using ANN, the purpose of an 
identification process is to determine the weight matrix based on the observations tZ , so 
as to obtain the relationships between the network nodes. The supervised learning 
algorithm is then applied to find the estimator θ, so as to obtain the identification 
criterion. In this case, the minimization of the mean square error criterion as defined in 
Eq. (6) and Eq. (7) is used. The iterative minimization scheme is defined in Eq. (8), where 
θ(t) is the estimated parametrical vector, )(tf  represents the search direction and )(tµ  
the step size. 
The SI procedure comprises several steps: the selection of the models and their structure, 
the learning methods, the identification and optimisation criteria and the validation 
method [11, 12, 50, 51, 52]. Validation ensures that the selected model meets the 
necessary conditions for estimation and prediction. Typically, validation is carried out 

using three different methods: the residual analysis ))(ˆ,( tt θε  (by means of a correlation 
test between inputs, their residuals and their combinations); the mean squared error 
(MSE) and the generalization error value (normalised sum of squared errors (NSSE), and 
finally a graphical comparison between the desired outputs and the model outcomes 
through simulation [8, 9, 12]. 
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4 Genetic Algorithms for System Optimisation 
Metaheuristic algorithms [53, 54] are considered a computational method that optimises 
a problem by iteratively trying to improve a candidate solution with regards to a given 
measure of quality. Metaheuristics are powerful strategies that can efficiently detect 
high-quality (near optimal) solutions to complex optimization problems within 
reasonable running time. 
Metaheuristics make few or no assumptions about the problem being optimised and can 
search very large spaces of candidate solutions. Among these algorithms, there are two 
well-known types: the genetic algorithms [55, 56, 57], and the simulated annealing 
algorithm [58, 59]; other methods can be: Tabu search [60, 61] and ant colony 
optimisation [62]. 
GA [19, 20, 21, 63, 64] are a type heuristic search that mimics the process of natural 
evolution (Darwin's theory about evolution). This heuristic is routinely used to generate 
useful solutions to optimisation and search problems. It solves both constrained and 
unconstrained optimisation problems. 
Genetic algorithms find (xi, ... , xn) such that f(xi, ... , xn) will be maximum or minimum. 
The functions are shown from Eq. (9) to Eq. (11), where f(x) is the fitness function, c(x) 
represents inequality constraints, ceq(x) represents the equality constraints, m is the 
number of nonlinear inequality constraints and mt is the total number of nonlinear 
constraints: 
 

)(xfMaxorMin  
(9) 

miaxc ii ,...,1;)( =≤  
(10) 

mtmibxceq ii ,...,1;)( +==  
(11) 

 

5 A Real Case Study: Optimising a Dental Milling Process 
The acronym CAD/CAM (Computer Aided Design / Computer Aided Manufacturing) 
refers to a production technique that combines computer skills, which are then applied 
in both the design and manufacturing of pieces. Originally applied in the field of 
engineering, its use is now widespread, extending to many other areas. 
In the field of dentistry, CAD/CAM systems are used primarily to manufacture fixed 
prosthetic restorations such as inlays, veneers and crowns. During the last decade, the 
technological evolution of these systems has provided restoration alternatives to 
rehabilitate teeth deficiencies, using different materials such as porcelain, composite and 
metal blocks, which previously could not be processed due to technical limitations [65]. 
There is currently an increased interest in manufacturing pillars and in making the 
structure of the prosthesis implant using CAD/CAM technology [1]. There are several 
reasons for this increase. First, the structure of the prosthetic implant is constructed from 
a solid block of material. With this specific production technique, the material is more 
homogeneous and contains high mechanical properties. Second, the inaccuracies are 
reduced since the processes of waxing, coating and casting no longer exist [66]. The 
prosthetic implants drawn up by CAD/CAM technology present more passive 
adjustment than the cast structures [2, 3, 4]. 
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Since 1971 a marginal fit of less than 120 micrometers in tooth-supported restorations 
[67] has been regarded as clinically acceptable. In the prosthetic implant, the tolerable 
discrepancy between the implant abutment and the prosthetic supra-structure can be 
variable. A mismatch that does not exceed 30 micrometers can be tolerated [68], although 
Branemark et al. declare that the discrepancy must never exceed 10 micrometers [69]. 
However there is a consensus that the lack of passive adjustment acts as a causal factor 
in many technical complications such as loosening and/or fractures in the metal 
structure, retaining screws, abutments and ceramic or acrylic [70]. 
To perform any one of the many treatments allowed by this systematic approach, the 
CAD/CAM systems consist of the following stages of processing: 
1. Digitization of the substrate that will make the restoration. It can be taken directly, 
optically in the patient's mouth, or extra-orally, after making a conventional impression, 
and emptied in a plaster cast. 
2. Computer aided design. This is done by the specific software for each system, 
designing the prosthetic cap structure or the final restoration. This step is not done in 
those cases where the digitization is from the scanning of the structure to be obtained. 
3. Once the design of the structure is finished, the next step is to manufacture the 
structure, which is achieved by applying the third stage of processing, the machining or 
CAM phase [5]. 
The operating system is accomplished through computer numerical control (CNC). The 
data obtained using the CAD-software are converted into "commands" which are “read” 
by the milling machine and then translated into drilling steps. 
This multidisciplinary study uses a 5-axis milling (latest generation) device. In addition 
to controlling movement between the tool and the piece in three axes, this 5-axis machine 
can also control both the rotation of the piece in two axes, one perpendicular to the axis 
of the tool and the other parallel to it, and the rotation of the piece on a horizontal axis 
with the inclination of the tool around an axis perpendicular to the former. The 
advantages of 5-axis machines are numerous: it allows complete multilateral machining 
in a single cycle, which implies a reduction of non-productive time and eliminates the 
lack of precision arising from the multiple ties of the piece. It also allows better access to 
restricted areas difficult to reach. The angle adjustment can be freely defined. Another 
advantage is that it is possible to use shorter and more rigid tools, which results in 
improved surface finish. 
This multidisciplinary research describes the way in which a soft computing system can 
be applied to optimise the data gathered by means of a Machining Milling Center of 
HERMLE type-C 20 U (iTNC 530), with swivelling rotary (280 mm), with a control 
system using high precision drills and bits (Fig. 4 to Fig. 6), by optimising the time error 
detection for manufacturing dental metal. Fig. 1 to Fig. 3 show the metal pieces 
manufacturing process using a dynamic high-precision machining centre with five axes. 
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Fig. 1 Metal milled cobalt-chromium consists of a 
bridge with two lower molars 

Fig. 2 Occlusal view of milled cobalt-chromium 
consists of a bridge with two lower molars 

  

Fig. 3 Finished metal-porcelain bridgework Fig. 4 Milling of cobalt-chromium specimens 

  

Fig. 5 Machining/ Milling Center of HERMLE type-C 
20 U (iTNC 530), with swivelling rotary (280 mm), 
with a control system using drills and bits of high 

precision 

Fig. 6 Metal pieces manufactured by a dynamic 
high-precision machining centre with five axes 

The case study is described by an initial data set of 98 samples obtained by the dental 
scanner in the manufacturing of dental pieces with different tool types (plane, toric, 
spherical and drill) and characterized by 8 input variables (Tool, Radius, Revolutions, 
Feed rate X, Y and Z, Thickness, Initial Temperature) and 1 output variable (Time Error 
for manufacturing) as shown in Table 1. Time error for manufacturing is the difference 
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between the estimated time by the machine itself and real production time (negative 
values indicate that real time exceeds estimated time). 

 
Variable (Units) Range of values 

Type of tool Plane, toric, spherical and drill 

Radius (mm.) 0.25 to 1.5 

Revolutions per minute (RPM) 7,500 to 38,000 

Feed rate X (mm. by minute) 0 to 3,000 

Feed rate Y (mm. by minute) 0 to 3,000 

Feed rate Z (mm. by minute) 50 to 2,000 

Thickness (mm.) 10 to 18 

Temperature (ºC) 24.1 to 31 

Real time of work (s) 6 to 1,794 

Time errors for manufacturing (s) -28 to -255 

Table 1 Values of each variable used in the process 

 

6 A Novel Soft Computing Procedure to Optimise a Dental Milling 
Process 
The manufacturing of dental pieces process optimisation in terms of time errors, based 
on the optimisation of the system behaviour, is carried out within the framework of this 
study by means of an ANN estimated model. The time error parameter is chosen as an 
important factor in this process (in terms of economical benefits for the company) as an 
example to show the potential of this novel soft computing proposal. 
 
6.1 Identification of the Relevant Features 
Firstly, the dental manufacturing process is parameterised and its dynamic performance 
in normal operation is obtained by the real process of manufacturing dental pieces. Then, 
the gathered data is processed using projection models based on the analysis of 
parameters as the variance [22, 23, 24] or the kurtosis as CMLHL [25, 46, 47, 49]. This is 
done to identify internal data set structures in order to analyse whether the data set is 
sufficiently representative and to identify the most relevant features in the second step. 
 
6.2 Modelling and optimisation of a normal dental milling operation  
Once the relevant variables and their transformations have been extracted from the 
production data, then a model capable of fitting the normal manufacturing operation 
must be obtained. This is done to identify bias in the estimated production time. The 
different model learning methods used in this study were implemented in Matlab© [71]. 
The model structures were analysed in order to obtain the models that best suited the 
dataset. Since the number of examples was somewhat small; a 10-fold cross-validation 
schema was selected. The number of samples is low as they were obtained during the 
real process, delaying the company timing. The final model is obtained using the entire 
data set. 
Moreover, several different indexes were used to validate the models [8, 9] such as the 
percentage representation of the estimated model; the graphical representation for the 
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prediction ( m)|(ty1ˆ ) versus the measured output ( (t)y1 ); the loss function or error 
function (V) and the generalization error value. 
The percentage representation of the estimated model is calculated as the normalised 
mean error for the prediction (FIT1, FIT) using the validation data set and the complete 
data set, respectively. The loss function or error function (V) is the numeric value of the 
mean square error (MSE) that is computed using the estimation data set; the 
generalisation error value is the numeric value of the normalised sum of square errors 
(NSSE) that is computed using the validation data set. Finally, is calculated the variance 
of the mean square errors () [34, 72]. 
Once the model for the time error in the manufacturing of dental pieces is selected, this 
model is used as a fitness function in GA's in order to obtain the best optimisation of the 
time errors. This optimisation process begins with a set of solutions called population 
(chromosomes). Each individual in the population is then evaluated by the fitness 
function obtained in the last step (ANN model of the manufacturing system). GA and 
the different types of genetic operators (selection, crossover and mutation) used in this 
study were implemented in Matlab© [73]. The complete novel soft computing procedure 
is showed in Fig. 7. 

 

 
 

Fig. 7 A novel soft computing procedure to optimise a Dental Milling Process 

 

7 Results 
This case study initially analysed the data set in order to obtain the 
variables/characteristics that are most closely related to manufacturing time errors. 
In the first step, several unsupervised models were applied for the sake of comparison. 
In this case a neural version of PCA and CMLHL were applied as powerful techniques 
for identifying internal dataset structures. The axes forming the projections (Fig. 8.a and 
Fig. 8.b) represent combinations of the variables contained in the original datasets. In the 
case of PCA, the model is looking for those directions with the biggest variance, while 
CMLHL is looking for the kurtosis (directions which are as little Gaussian as possible) 
[25, 36]. 
As may be seen in Fig. 8, PCA (Fig. 8.a) and CMLHL (Fig. 8.b), both methods found a 
clear internal structure in the dataset by identifying several clusters (see Table 2 and 

Obtaining Data from Dental Scanner in real 
process of manufacturing dental pieces 

Data processing using projection models 
(PCA & CMLHL) 

1. Identify internal data set structures 

2. Identify the most relevant features 
Use Relevant Variables in next step 

Obtain Model capable of fitting the 
manufacturing operation of dental pieces 

Model as Fitness function in GA 

Best optimization of time errors in 
production using Genetic Algorithms 
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Table 3). Both also identified revolutions and radius as relevant variables. It is clear that 
CMLHL provides a more sparse representation than the PCA, and that CMLHL 
projections provide more clear information identifying parameters such as temperature 
and time error as other important variables. 
An analysis of the results obtained with the CMLHL model (Fig. 8.b) leads to the 
conclusion that this method has identified several different clusters ordered by radius, 
revolutions and temperature. Inside each cluster, there are further classifications by 'time 
error' and the dataset can be said to have an interesting internal structure based on the 
clusters identified. 

 

 
Fig. 8.a Projection of PCA 

 
Fig. 8.b CMLHL projection after 100,000 iterations using a learning rate of 0.01, p=0.5 and τ=0.05 

 

Fig. 8 PCA projection (Fig. 8.a) and CMLHL projection (Fig. 8.b) 
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Cluster Samples RPM Radius 

- 2 7,500 1.25 

C1 9, 17, 37, 45, 53, 55, 62, 70, 74, 83, 91 9,600 1.05 

C2 3, 10, 18, 23, 29, 38, 46, 56, 63, 71, 75, 92 10,600 1.5 

- 28 13,500 0.75 

C3 

C3.1 1, 8, 16, 20, 30, 32, 36, 40, 44, 48, 52, 54, 58, 61, 
65, 69, 73, 77, 82, 85, 90, 94 

17,000 

1  34 17,000 

C3.2 5, 12 18,000 

C3.3 4, 11, 19, 24, 31, 39, 47, 57, 64, 72, 84, 93 17,800 

C4 
7, 15, 22, 26, 27, 33, 41, 43, 49, 51, 60, 66, 68, 86, 
89, 95, 98 22,000 

0.75 

1 1 

C5 6, 13, 21, 42, 50, 59, 67, 79, 87, 96 24,000 0.75 

- 25 30,000 0.5 

C6 14, 80, 88, 97 38,000 0.25 

 
Table 2 Samples description and clusters obtained by using PCA method 

 

Cluster Samples RPM Radius 
Temperatur
e 

C1 80, 14, 97 38,000 0.25 24.1 to 25.3 

- 88 38,000 0.25 28.4 

- 25 30,000 0.5 25.7 

C2 79, 13, 21, 6, 96 24,000 0.75 24.1 to 25.3 

C3 87, 59, 42, 67, 50 24,000 0.75 28.4 to 31 

C4 78, 81, 15, 22, 7, 95, 98, 26 22,000 0.75 24.1 to 25.7 

C5 86, 89, 60, 41, 43, 27, 33, 35, 66, 68, 49, 51 22,000 0.75, 1 28.4 to 31 

C6 73, 77, 76, 8, 11, 12, 16, 20, 19, 90, 94, 1, 4, 93, 5 

17,000
, 
17,800
, 
18,000 

1 24.1 to 25.3 

- 24 17,800 1 25.7 

C7 82, 85, 84, 54, 58, 57, 52, 36, 40, 39 
17,000
, 
17,800 

1 28.4 to 29.3 

C8 30, 32, 61, 65, 31, 64, 44, 48, 69, 47, 72 
17,000
, 
17,800 

1 30.4 , 31 

- 28 13,500 0.75 30.4 
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C9 74, 75, 9, 10, 17, 18, 91, 3, 92 
9,600, 
10,600 

1.05 , 
1.5 

24.1 to 25.3 

- 23 10,600 1.5 25.7 

C10 83, 55, 56, 53, 37, 38, 62, 29, 63, 45, 70, 46, 71 
9,600, 
10,600 

1.05 , 
1.5 

28.4 to 31 

- 2 7,500 1.25  

 
Table 3 Samples description and clusters obtained by using CMLHL method 

 
When the dataset is considered sufficiently informative, as in this case, the next step is 
to model the relations between inputs and production time errors in the process, which 
is begun by applying several artificial neural network modelling systems. 
 
A multilayer perceptron network (feedforward network) was used to monitor time error 
detection in the manufacturing of dental pieces. Data set is pre-processed from the input 
and output normalization step (normalizing the minimum and maximum values to [-1 
1] ), the reduction of the input vectors dimension (the data set gathered in the previous 
step). ANN is trained from the most widely used training algorithms such as the 
Lenvenberg-Marquardt algorithm [74], quasi-Newton methods [75], the resilient back-
propagation algorithm [76] and the escalated conjugate gradient algorithm [77], using 
criteria from early stopping and Bayesian regularization techniques [78]. 
The graphic representations of the prediction ( m)|(ty1ˆ ) of time error detection in the 
manufacturing of dental pieces versus the real time measured ( (t)y1 ) for the model 
chosen are shown in Fig. 9. These figures were used to validate the models. In Fig. 9.a 
and Fig. 9.b the X-axis shows the total number of samples. In Fig. 9.a and Fig. 9.b the Y-
axis represents the normalized output and unnormalised output variable range, 
respectively, which refers to the time errors for manufacturing. 
Table 4 shows the features for the best ANN proposed: the characteristics and qualities 
for estimation and prediction, and its indexes (indicator values). The final model chosen 
is a Feedforward Network. The ANN structure has 30 hyperbolic tangent units (layer 1), 
20 hidden hyperbolic tangent units (layer 2), 5 hidden hyperbolic tangent units (layer 3) 
and 1 linear output unit. The network is estimated by using the Lenvenberg-Marquardt 
algorithm with Bayesian regularized criterion. This model does not only present a lower 
loss function (V) and error values (NSSE), but also a higher system representation index 
value FIT1. Also a good FIT value and a small variance of the mean square errors (). 
From Fig. 9, it may be concluded that the ANN selected is able to simulate and predict 
the behaviour of time errors for the manufacturing of dental pieces (as a consequence of 
the production process). They are capable of modelling more than 86% of the actual 
measurements. 
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Model Indexes 

The feedforward network has 30 hyperbolic tangent units (layer 1), 20 hidden 
hyperbolic tangent units (layer 2), 5 hidden hyperbolic tangent units (layer 3) 
and 1 linear output unit [30 20 5 1]. The network is estimated using the 
resilient back-propagation algorithm with early stopping criterion. 

FIT1: 71.03%;V: 0.024;  
NSSE: 0.033;  
: 0.00023; FIT: 85.19% 

The feedforward network has 30 hyperbolic tangent units (layer 1), 25 hidden 
hyperbolic tangent units (layer 2), 25 hidden hyperbolic tangent units (layer 
3), 4 hidden hyperbolic tangent units (layer 4) and 1 linear output unit [30 25 
25 4 1]. The network is estimated using the resilient backpropagation 
algorithm with early stopping criterion. 

FIT1: 73.00%;V: 0.017;  
NSSE: 0.038;  
: 0.00007; FIT: 87.43% 

The feedforward network has a structure [3 30 3 1]. The network is estimated 
using the Lenvenberg-Marquardt algorithm with Bayesian regularized 
criterion. 

FIT1: 74.36%;V: 0.018;  
NSSE: 0.019;  
: 0.00042; FIT: 86.45% 

The feedforward network has a structure [30 20 5 1]. The network is estimated 
using the Lenvenberg-Marquardt algorithm with Bayesian regularized 
criterion. 

FIT1: 78.57%;V: 0.0097;  
NSSE: 0.015;  
: 0.000059; FIT: 86.87% 

The feedforward network has a structure [30 25 25 4 1]. The network is 
estimated using the Lenvenberg-Marquardt algorithm with Bayesian 
regularized criterion. 

FIT1: 75.31%;V: 0.015;  
NSSE: 0.0168;  
: 0.00012; FIT: 85.03% 

The feedforward network has a structure [30 20 5 1]. The network is estimated 
using the quasi-Newton algorithm with early stopping criterion. 

FIT1: 71.17%;V: 0.023;  
NSSE: 0.028;  
: 0.000054; FIT: 88.49% 

The feedforward network has a structure [30 20 5 1]. The network is estimated 
using the escalated conjugate gradient algorithm with early stopping 
criterion. 

FIT1: 71.37%;V: 0.018;  
NSSE: 0.042;  
: 0.00012; FIT: 85.76% 

The feedforward network has a structure [30 20 5 1]. The network is estimated 
using the Lenvenberg-Marquardt algorithm with early stopping criterion. 

FIT1: 70.17%;V: 0.035;  
NSSE: 0.045;  
: 0.0037; FIT: 89.39% 

The feedforward network has a structure [30 25 25 4 1]. The network is 
estimated using the Lenvenberg-Marquardt algorithm with early stopping 
criterion. 

FIT1: 77.67%;V: 0.0098;  
NSSE: 0.035;  
: 0.000045; FIT: 89.39% 

Table 4 Indicator values for several proposed models of time error for manufacturing under the Dental Milling 
process 

  
Fig. 9.a Normalized output response of the model Fig. 9.b Unnormalized output response of the model 

Fig. 9 Output response of the model: The feedforward network [30 20 5 1] is estimated using the Lenvenberg-
Marquardt algorithm with Bayesian regularized criterion. The current output (solid line) is graphically 

presented with prediction (dash-dot line) 

The model of the time error obtained may be used not only to predict time errors for the 
manufacture of dental pieces, but as a fitness function in the next step to determine the 
best operating conditions of dental milling processes. GA starts with a randomly 
generated initial population of size 100 individuals. Tournament selection is used to 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
-300

-250

-200

-150

-100

-50

0



Universidad de Salamanca Raquel Redondo Guevara 
 

Hybridization of Machine Learning for Advanced Manufacturing 56 
 

determine the parents for the next generation. Individuals from the current population 
are selected proportionally to their fitness, thus forming the basis for the next generation. 
Two-point crossover combines two parents to form a new individual for the next 
generation. And adaptive feasible mutation makes small changes in the individuals in 
the population. The population obtained by these genetic modifications is evaluated 
against the fitness function and enters a new search process in the next generation. The 
algorithm stops after it reaches a fixed number of generations and the best individual is 
returned as a solution to the given problem. Fig. 10 shows the output response of the 
time error for different unnormalised input variable ranges. In Fig. 10.a the X-axis shows 
the revolutions per minute (RPM), from 10,000 to 35,000 RPM. The Y-axis shows the 
temperature from 24ºC to 31ºC, and the Z-axis represents the unnormalised output 
variable range from -200 s to 200 s (seconds). The time error is also shown on the bar. In 
Fig. 10.b the X-axis shows the temperature from 24ºC to 31ºC, and the Y-axis represents 
the unnormalised output variable range, from -100 s to 60 s for a constant value of 20,000 
RPM. In both figures the radius is fixed to a constant value of 0.75 mm. In Fig. 10.c the 
X-axis shows the radius, from 0.25 mm. to 1.5 mm. The Y-axis shows the temperature 
from 24ºC to 31 ºC and the Z-axis represents the unnormalised output variable range 
from -80 s to 20 s. The time error is shown on the bar, too. In Fig. 10.d the X-axis shows 
the temperature from 24ºC to 31ºC, and the Y-axis represents the unnormalised output 
variable range, from -30 s to 5 s for a constant radius value of 1 mm. In both figures the 
number of revolutions is fixed per minute to a constant value of 30,000 RPM. 

Some results obtained in order to obtain the best optimisation of the time errors for 
different conditions of operation fixed are shown following. For example, the time error 
can be optimised for different values of radius, temperature and RPM; i.e., it is possible 
to achieve a time error close to zero for a radius of 1.45 mm, 22,834 RPM and a 
temperature of 27.69ºC. Furthermore, if the temperature is fixed to 26ºC and the time 
error is close to zero, the revolutions and the radius to optimise those variables are 37,592 
RPM and 1 mm., respectively. 

  
Fig. 10.a 3D graph, the X-axis represents the RPM, the 
Y-axis the temperature and the Z-axis the output (time 

error). The other variable radius is fixed to 0.75 mm 

Fig. 10.b 2D graph, the X-axis represents the 
temperature and the Y-axis the output (time error). 
The others variables, RPM and radius are fixed to 

20,000 RPM and 0,75 mm, respectively 
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Fig. 10.c 3D graph, the X-axis represents de radius, de 
Y-axis the temperature and the Z-axis the output (time 
error). The other variable, RPM is fixed to 30,000 RPM 

Fig. 10.d 2D graph, the X-axis represents the 
temperature and the Y-axis the output (time 

error).The others variables, radius and RPM are fixed 
to 1 mm and 30,000 RPM, respectively 

Fig. 10 Output response of the time error for different unnormalised input variable ranges 

 

8 Conclusions and future work 
The novel soft computing optimisation process described in this study can be used to 
optimise machine parameters for industrial processes, based on the obtained results. 
This method increases the companies’ efficiency and substantially reduces the cost of 
preparing and setting machine processes. It also helps in the production process using 
new materials. We have used this method for optimisation and adjustments during the 
manufacturing process of dental pieces such as implants according to medical 
specifications for precise mouldings. 

The method proposed is based on the selection of the most important features in an 
initial step. ANN are then used for modelling the features. Finally, a GA tries to achieve 
the best conditions for manufacturing from the model. The ANN model is used as fitness 
function in the GA. 

The dental milling process presents an important manufacturing time error rate of about 
29%. This is due to the difference between the estimated time of the machine itself and 
the real production time. The obtained model is capable of modelling more than 86% of 
the actual measurements in relation to time error (modelling more than 96.8% of real 
time work). This helps to reduce the error and the variability rate of manufacturing 
processes down to 4%, compared to the initial 29%, which is an acceptable error rate in 
planning work for dental milling. 

Future lines of research include modelling the temperature difference and the erosion 
difference (difference between diameters of the tool before and after the manufacturing), 
which helps to measure the accuracy of the dental milling process. Additionally, it will 
investigate the selection of the most suitable features using a wrapper feature selection 
method, in which genetic algorithms and neural networks are hybridized. Finally, an 
algorithm will be developed to automatically identify the best operating conditions: 
minor time errors for the manufacturing of dental pieces and minor erosion. The 
resulting model would moreover be applied to different metals used in prosthetic 
dentistry and in other industrial processes, such as the automotive sector. 
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