
FACULTAD DE CIENCIAS

GRADO EN MATEMÁTICAS
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Chapter 1. Introduction

The subject of this work are the Navier-Stokes equations which are used to model the
behaviour of fluids and are of immense importance in subjects as diverse as geophysics,
the modelling of climate and climate change, oceanography and the design of aircrafts
and cars.

The study of fluid mechanics can be traced back to antiquity with, among others, the
studies of Archimedes (287-212 B.C.). Of great importance to the future development of
fluid mechanics was the publication of Newton’s foundational work Philosophiæ Naturalis
Principia Mathematica (1687) which laid the groundwork for classical mechanics, from
which the Navier-Stokes equations would be derived. In the year 1755 Euler established
the equations

∂tu+ (u · ∇)u = −∇p
∇ · u = 0

where u and p are respectively the velocity and pressure of the fluid in question. These
equations are now known as the Euler equations. The first of these equations is derived
from the use of Newton’s second law, F = ma and his second equation corresponds to the
principle of conservation of mass and the requirement that the fluid be incompressible.

To derive these equations Euler assumed an ideal fluid, that is, one without friction
in addition to being incompressible. As a result of this, one may formally derive from
his equation that the kinetic energy of the fluid is conserved. Nonetheless as D’Alambert
(one of Euler’s compeers who had also been studying fluid mechanics) noticed, these
equations have relatively simple solutions which do not allow for many naturally occurring
phenomena such as the flight of birds.

D’Alambert was not able to resolve this issue, and it remained unsolved until the later
work of the French physicist Navier, who was one of Fourier’s students, and the Irish
mathematician Stokes, who is also known for, among many things, the Stokes Theorem.
These two thinkers introduced to Euler’s equations in the years 1820 and 1845 respectively
the so called viscosity term ν∆u, where ν > 0 is known as the kinematic viscosity, to
obtain the Navier-Stokes equations

∂tu+ (u · ∇)u = ν∆u−∇p
∇ · u = 0

which no longer verify a conservation of kinetic energy. These are the equations which we
will study in this work.

During the 19th century many thinkers attempted to obtain analytic and explicit
solutions without much success. However, in the 20th century many advances were made
thanks to, among others, the work of Leray [10] (1934), Ladyzhenskaya [9] (1963) and
Fujita-Kato [6] (1964).
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Despite decades of work the Navier-Stokes equations remains one of the most chal-
lenging and open problems in all of mathematics and physics. To sum up the current
understanding of these equations we mention the following: in the two dimensional case
the Navier-Stokes equations are well posed (i.e. they have a unique global solution that
obeys a stability condition) and global existence and uniqueness of weak solutions to the
Navier-Stokes equations has also been established. In the three dimensional case it is
known that weak solutions exist globally, however, it is not known whether these weak
solutions are unique. The existence of strong solutions in the three dimensional case is
also established, however only locally, that is, for a finite amount of time. Another un-
known is whether in a bounded domain solutions to the Navier-Stokes equations converge
to solutions to the Euler equations as ν converges to zero.

A large part of the complexity of tackling the Navier-Stokes equations is due to the
great difficulty in choosing a correct function space in which to situate the initial data.
While a solution to a typical ordinary differential equation takes for each value of time
a value in a finite dimensional vector space, in the case of a evolution partial differential
equation for each value of time said solution takes values in a space of functions, which
is infinite dimensional and determined by what space one supposes the initial data to
be in. The importance of choice of said space is reflected in the estimates that one may
obtain for solutions to the Navier-Stokes equations, which are the tools one uses in proving
(ideally global) existence, uniqueness and regularity of said solutions. In our case the main
estimate we will use will be the one established in Lemma 5.9, lemma which will be of
crucial importance in the use of the fixed point theorem (much as in the classical Cauchy
existence proof for solutions to ODE) to prove existence of “mild” solutions and many
further properties of said solutions.

Our study will follow the notes [16] of the Fields Medallist Terence Tao who worked for
many years at the forefront of the Navier-Stokes equations, see for example [15], taking
us through a brief overview of the heat equation and the Leray equations up to the theory
of well posedness for the Navier-Stokes equations.

Our work is structured as follows: the second chapter is dedicated to some preliminary
results. In the third chapter we study the heat equations, to which we shall prove exis-
tence and uniqueness of solutions for sufficiently regular initial data. The heat equations
are closely related to the Navier-Stokes equations and they will provide a key tool for our
future study of the Navier-Stokes equations. In the fourth chapter we study the Leray
equations and define the Leray projection, which will allow us to obtain an equivalent
formulation to the Navier-Stokes equations. This formulation will be developed in the
fifth and final chapter which is devoted to the study of the Navier-Stokes equations in any
dimension. In this last chapter we shall first prove the uniqueness of smooth solutions to
the Navier-Stokes equations. We will then define the concept of mild solutions (which are
also weak solutions) to the Navier-Stokes equations, prove that they obey a stability con-
dition, exist on some maximal time interval [0, T∗) and that if T∗ is finite then the Navier
Stokes equations “blow-up” at time T∗. We continue by proving that: mild solutions are
unique, are smooth if the initial data is smooth and are globally defined for small initial
data. Finally, we conclude our work by discussing some generalizations of the preceding
results. Such as showing how one may enlarge the class of mild functions given in [16]
while still obtaining the previously discussed results.



Chapter 2. Preliminaries

We commence our work with a physical derivation of the incompressible Euler and Navier-
Stokes equations. In our deduction we will suppose all functions to be smooth and will
consider spatial volumes with smooth boundary. Let us suppose that the fluid is located
in some region of space W ⊂ Rd. Let us denote the value of the velocity field of said
fluid at some time t and some point x by u(t, x), its pressure by p(t, x) and its density by
ρ(t, x). The first of these quantities being a vector in Rd and the other two being scalars.
Furthermore, let us suppose that the density of said fluid is constant, say ρ(t, x) = ρ, and
hence that the fluid is in particular incompressible. We now restrict ourselves to a volume
of fluid V ⊂ W . Since the density of the fluid is constant so is its mass

m(t) =
∫
V
ρ(t, x)dx = ρV.

Let us denote by ∂V the boundary of V and by n the unit normal which, by convention,
we take to be outward pointing. Then we have that the amount of mass entering V
through its surface per unit time at the instant t is

−ρ
∫
∂V
u(t, x)·ndx = −ρ

∫
V
∇·u(t, x)dx,

where the minus sign appears as the normal vector is outward pointing and the equality is
due to Gauss’s formula. Since the mas of fluid in V is constant we have that this quantity
is 0 and hence, since S ⊂ V was any, we deduce the so called continuity equation

∇·u = 0 (2.1)

To further proceed we will suppose that the fluid is an ideal fluid. That is, that the stress
force acting on the total volume of the fluid is due exclusively to the pressure p and is

−
∫
∂V
p(t, x)ndx = −

∫
V
∇p(t, x)dx,

where we have once again used a version of Gauss’s theorem. That is, the force acting
per unit volume on a point x is ∇p(t, x). By Newton’s second law we deduce that, if we
denote the acceleration filed of the fluid by a(t, x), the force per unit volume is also

ρa(t, x) = −∇p(t, x) (2.2)

We now wish to calculate the acceleration field in terms of the velocity field. To do so
consider a fluid particle b and denote its position at time t by xb(t). We then have that,
by the chain rule

a(t, xb(t)) = ∂t(u(t, xb(t))) = (∂tu)(t, xb(t)) + ∂txb(t)·∇u(t, xb(t)).

By now using that the term ∂txb(t) = u(t, xb(t)) is just the velocity of the particle at the
point xb(t) we have that a(t, xb(t)) = (∂tu + u·∇u)(t, xb(t). Finally since the particle b
was any we deduce that a = ∂tu+ u·∇u.
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By (2.2) we deduce that
∂tu+ u·∇u = −1

ρ
∇p (2.3)

This last equation together with equation (2.1) are the previously mentioned Euler equa-
tions. Note that (2.3) may also be rewritten as

ρ∂tui = −ρuk∂kui − ∂ip = −ρ∂k(ukui)− ∂ip = −∂k(ρukui + pδi,k) =: −∂k(Πi,k),

where throughout we use Einstein’s summation convention, in the second equality we used
the continuity equation and where Πi,k is known as the momentum flux density tensor.

We now drop the hypothesis that our fluid is ideal, supposing that it has some constant
viscosity ν ∈ R+ and therefore has interior frictional forces not due to the pressure. This
supposition leads us to hypothesize that the tensor Πi,k should be rewritten as something
of the form

Πi,k = ρukui + pδi,k − σi,k.

We will call σi,k the viscous stress tensor. By reasoning that viscous forces occur only
when there is a difference of velocity in different particles of the fluid, we hypothesize
that σi,k must depend only on the gradient of the velocity. We further suppose that σi,k
depends only of the first derivatives of the velocity and does so linearly. Additionally,
by observing that σi,k must vanish when the fluid is subject to a uniform rotation (as no
internal friction would occur), one may show that σi,k only contains symmetric terms of
the form ∂kui + ∂iuk. The most general tensor that verifies all these properties is of the
form

σi,k = η

(
∂kui + ∂iuk −

2
3
∂l
ul
σi,k

)
+ ξ∂lul

where η, ξ > 0 are called the coefficients of viscosity, see for example [11]. By further
supposing these coefficients to be constant (instead of functions of time and space) we
deduce from substituting said tensor back into (2.3) and using the continuity equation
that

∂tu+ u·∇u = −1
ρ
∇p+ ν∆u (2.4)

where ν := η/ρ is the “kinematic viscosity”. This equation, together with the continuity
equation (2.1), are the Navier-Stokes equations.

Notation

We now give a brief aside on notation: throughout the text we shall use Einstein summa-
tion convention that indices are summed over their range when repeated in an expression.
We will write Lp(Rd) and Lp(Rd → Rm) to denote the space of equivalence classes of p
integrable functions from Rd to R and Rm respectively.

Given a function defined on a factor space u : X×Y → Z we shall frequently write u(x)
to stand for the slightly more cumbersome u(x, ·) : Y → Z. Given α = (α1, ..., αd) ∈ Zd
we shall write as is standard

xα := xα1···xαd ; Dα := ∂α1
1 ···∂

αd
1



Chapter 2. Preliminaries 5

and whenever the expression Dα appears we will assume implicitly that α ∈ Zd. Given
x ∈ Rd we will write |x| to denote its norm and the Japanese bracket 〈x〉 will signify

〈x〉 := (1 + |x|2)1/2.

Finally we will employ the notation f . g to mean that there exists some constant
C such that f ≤ Cg. If the value of C depends on some other parameter such as the
dimension d we shall make this explicit by writing f .d g.

Throughout our work we will often be working with functions of the form:

u : I × Rd → Rm

with I a (possibly unbounded) interval in R. Due to the physical interpretation we will
denote the first variable by t and call it the time variable. The second variable we will
denote by x and call the space variable. We shall often call I ×Rd the space-time region.

Ordinary Differential Equations

In this section we give a brief discussion of the theory of ODE and touch on some of the
motivating ideas behind our study of the Navier-Stokes equations. The principal result
of ODE’s is Picard’s theorem which we now discuss. Consider the ODE Cauchy problem

u′ = F (u); u(0) = u0 (2.5)

with u0 ∈ Rd, and with F : Rd → Rd Lipschitz on compact sets. Then by defining for
continuous u

Φ(f)(t) := u0 +
∫ t

0
F (f)(t′)dt′

one has that for T (|u0|) (where T is an increasing function of |u0|, F being understood
to be fixed) small enough the restriction of Φ to C([−T (|u0|), T (|u0|)] → B(0, 2|u0|) is a
contractive endomorphism and thus has a fixed point u which solves (2.5) on [−ε, ε].

One may show without much difficulty that this solution is unique and, by translating
the ODE and iterating said argument, one further obtains that u may be extended to a
maximal interval (T−, T+) (in the sense that no larger time interval admits a solution to
(2.5)). Furthermore, the method of proof shows that the only way that T+ (respectively
T−) is finite is if u “blows-up” at T+ (respectively T−) by leaving every compact set of Rd.
We end this section with two results that will be used later in our work.
Lemma 2.1 (Gronwall’s inequality). Let u ∈ C1(I → R), A ∈ C(I → R) and x0 ∈ I.
Then

∂tu ≤ A(t)u(t) ∀t ∈ I =⇒ u(t) ≤ e
∫ t

0 A(s)ds ∀t ∈ I.

For a short proof based on the fundamental theorem of calculus see [16] page 4.
Lemma 2.2 (Duhamel’s formula). Let λ, T,∈ R, u0 ∈ Rd, F ∈ C([0, T ] → Rd), then
the linear ODE

u′(t) = λu(t) + F (t); u(0) = u0

has unique solution
u(t) = eλtu0 +

∫ t

0
eλ(t−t′)F (t′)dt′.

See for example [18] page 52.
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Some Useful Results on Integration

Here we state some results on integration which we shall use throughout our work. The
first two propositions will be (along with the dominated and monotone convergence the-
orem) our main tool to commute differentials with integrals.

Proposition 2.3. Let X be a measure space, T a first countable metric space and

f : T ×X → R

such that f(t) is integrable ∀t ∈ T and such that

|f(t)| ≤ g ∀t ∈ T

for some integrable function g : X → R. Then given t0 ∈ T we have that

lim
t→t0

∫
X
f(t, x) =

∫
X

lim
t→t0

f(t, x).

In consequence if f(x) is continuous so is
∫
X f(t, x)dx.

Proof. The proof is an application of the dominated convergence theorem to the sequence
of functions fn := f(tn) where {tn}∞n=1 is some sequence converging to t.

Proposition 2.4 (differentiation under the integral sign). Let X be a measure space
and U be an open interval of R and

f : U ×X → R

such that:
a) f(t) is measurable for every t ∈ U and integrable for some t0 ∈ U
b) For each x ∈ X f(x) is differentiable and there exists an integrable function g : X → R
such that

|∂tf(t, x)| ≤ g(x) ∀(t, x) ∈ U ×X

then
∂t

∫
X
f(t)dx =

∫
X
∂tf(t)dx.

For a proof see for example [3] page 108. As a consequence by a simple limiting
argument we derive a special case known as Leibnitz’s integration rule which will be
useful in our study of the heat equation.

Proposition 2.5. Let f : U × V → R be a continuous function where U, V are open
intervals of R containing a, t. Then if f verifies a) and b) of the previous proposition:

∂t

∫ t

a
f(t, x)dx = f(t, t) +

∫ t

a
∂tf(t, x)dx.

We have thus far studied the interchange of derivatives with integrals. We shall also
have occasion to interchange two integrals with themselves:
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Theorem 2.6 (Fubini-Tonelli). Let f : X × Y → Rd be a measurable function where
(X,µ), (Y, σ) are two sigma-finite measure spaces. Then if one of the iterated integrals∫

X

(∫
Y
|f(x, y)|dσ

)
dµ or

∫
Y

(∫
X
|f(x, y)|dµ

)
dσ (2.6)

is finite then f is integrable. On the other hand if f is integrable both iterated integrals in
(2.6) exist and are equal to ∫

X×Y
|f(x, y)|d(σ × µ)

where σ × µ is the product measure on X × Y .

For a proof for the euclidean case (which is all we will need) we refer the reader once
more to [3] pages 144-146.

It will also be useful to have access to the following result:

Lemma 2.7. Let s ∈ N then∫
Rd
〈x〉−sdx <∞ ⇐⇒ s > d ⇐⇒

∑
k∈Zd
〈k〉−s <∞ (2.7)

The equivalence of these two statements is a consequence of fact that 〈x〉−s is monotone
decreasing. To prove (2.7) for example it suffices to apply Fubini’s theorem and some basic
inequalities. The proof of our next theorem may be found in [13] page 22.

Theorem 2.8 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ verify

1
r

+ 1
p
− 1 = 1

q

and consider f ∈ Lp(Rn) , K : Rm × Rn → R such that for some constant C

‖K(x)‖Lr(Rn) ≤ C ‖K(y)‖Lr(Rm) ≤ C

for almost all x ∈ Rm and for almost all y ∈ Rn. Then if we set

Tf(x) :=
∫
Rn
K(x, y)f(x, y)dy

we have that Tf is in Lq(Rn) and verifies the bound

‖Tf‖Lq(Rn) ≤ C‖f‖Lp(Rn).

Finally, we will also have use of a more general form of integration known as Bochner
integration, whose theory deals with the integration of functions

f : (X,µ)→ Z

where (X,µ) is a measure space and where Z is now a Banach space. So as to give a brief
idea of this theory we mention that such a function f is said to be strongly measurable if
it may be written as the limit of step functions fn and in this case one defines its integral
as ∫

X
fdµ := lim

n→∞

∫
X
fndµ
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where the definition of the integrals of the step functions is analogous to the real case.
If one has that the integral of ‖f‖Z is finite it is said that f is strongly integrable. As
in the real case if f is strongly integrable it is also strongly measurable and one has the
inequality ∥∥∥∥∫

X
fdµ

∥∥∥∥
Z
≤
∫
X
‖f‖Zdµ

which, for the Banach space Z = Lp(Y ) (where (Y, σ) is another measure space), gives
Minkowski’s integral inequality

(∫
Y

∣∣∣∣∫
X
fdµ

∣∣∣∣pdσ) 1
p

≤
∫
X

(∫
Y
|f |pdσ

) 1
p

dµ (2.8)

For a more complete discussion than the one given see [20] pages 132-135. We will also
have use of the following proposition which may be found in [8] page 21.

Proposition 2.9. Let (X,µ) be a measure space, Z a Banach space and let us define
Lp(X,Z) to be the set of equivalence classes of functions f : X → Z such that

‖f‖Lp(X→Z) :=
(∫

X
‖f‖pZdµ

) 1
p

<∞

where 1 ≤ p < ∞. Then Lp(X,Z) is a Banach Space. Furthermore, given a sequence
of function {fn}∞n=1 ⊂ Lp(X,Z) converging to f in Lp(X,Z), there exists a subsequence
{fnk}∞k=1 with

lim
k→∞
‖f(x)− fnk(x)‖Z = 0 µ-almost everywhere.

For completeness we observe that this also holds for L∞(X,Z) whose definition is
analogous to the real case.

Fourier Transform and Fourier Series

Due to its important and pervasive use in this work in this section we study he Fourier
transform and Fourier series. For a full account see for example [17] pages 222-226.

We begin by introducing the Fourier transform.

Definition 2.10. Given f ∈ L1(Rd → Cm) the Fourier transform of f is the linear
operator defined by:

F1 : L1(Rd → Cm) −→ L∞(Rd → Cm); f 7→ f̂

where
f̂(ξ) :=

∫
Rd
f(x)e−2πiξ·xdx ∀ξ ∈ Rd.

Note that the definition is correct as indeed∣∣∣f̂(ξ)
∣∣∣ ≤ ∫

Rd
|f(x)|dx = ‖f‖L1(Rd→Cm) ∀ξ ∈ Rd, (2.9)

the linearity of F1 also being clear by the linearity of the integral. We also define the
inverse Fourier transform for integrable functions:
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Definition 2.11. Given f ∈ L1(Rd → Cm) the inverse Fourier transform of f is the
linear operator defined by:

F∗1 : L1(Rd → Cm) −→ L∞(Rd → Cm); f 7→ f̌

where: f̌(ξ) := f̂(−ξ).

It is immediately possible to prove that f̂ and f̌ are not only bounded but also con-
tinuous.

Proposition 2.12. Let f ∈ L1(Rd → Cm). Then f̂ , f̌ are continuous.

Proof. The proof is an immediate application of Proposition 2.3.

We now state two basic properties of the Fourier transform:

Proposition 2.13. Given f ∈ L1(Rd → Cm):

a) If xαf(x) ∈ L1(Rd → Cm) then:

Dαf̂(ξ) = (−2πi)|α|x̂αf(ξ) ∀ξ ∈ Rd.

b) If f is absolutely continuous in xi for almost every x1, ...xi−1, xi+1, ..., xd then

∂̂xjf(ξ) = 2πiξj f̂(ξ) ∀ξ ∈ Rd.

The proof is a differentiation under the integral sign for a) and an integration by parts
for b). See for example [14] page 181. Analogous properties also hold for the inverse
Fourier transform where it is only necessary to introduce a factor of (−1)α in a) and a
change of the sign in b).

The importance of these two properties is that they give us information on the Fourier
transform of a function f based on its regularity and decay. They can be stated informally
as: decay gives regularity and regularity gives decay (as the Fourier transform of any
f ∈ L1(Rd → Rd) decays to 0 at infinity by the Riemann-Lebesgue lemma).

In general the Fourier transform of an integrable function is not itself integrable. That
is, L1(Rd → Cm) is not closed under the Fourier transform. We now introduce a space
that is closed under the Fourier transform; the Schwartz space, which can be thought of
as the space of infinitely regular functions with infinite decay:

Definition 2.14. The Schwartz space S(Rd → Cm) is:

S(Rd → Cm) := {f ∈ C∞(Rd → Cm) : xαDβf ∈ L∞(Rd → Cm) ∀α, β ∈ Zd}.

As is clear from properties a) and b) of Proposition 2.13 given f ∈ S(Rd → Cm)

ξαDβ f̂(ξ) = (−2πi)|β|ξαx̂βf = (−2πi)|β|
(2πi)|α| D̂

αxβf ∈ L∞(Rd → Cm) (2.10)
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ξαDβ f̌(ξ) = (2πi)|β|
(−2πi)|α| D̂

αxβf ∈ L∞(Rd → Cm) (2.11)

and hence the Fourier transform and the inverse Fourier transform restrict to endomor-
phisms of the Schwartz space which we will denote respectively by

FS ,F∗S : S(Rd → Cm)→ S(Rd → Cm).

The next item on the agenda is Plancherel’s theorem which is proven via the following
lemma, in which we shall use the notation

〈f, g〉L2(Rd→Cm) :=
∫
Rd
f(x)·g(x)dx

for the inner product on L2(Rd → Cm).

Lemma 2.15. Given f, g ∈ S(Rd → Cm)

(i) 〈FSf, g〉L2(Rd→Cm) = 〈f,F∗Sg〉L2(Rd→Cm); 〈F∗Sf, g〉L2(Rd→Cm) = 〈f,FSg〉L2(Rd→Cm)

(ii) F∗SFSf = FSF∗Sf = f

For a detailed proof see [17] pages 222-226. From (i) and (ii) we deduce immediately
that, given a Schwartz function f ,

‖f‖L2(Rd→Cm) = ‖FSf‖L2(Rd→Cm) = ‖F∗Sf‖L2(Rd→Cm) (2.12)

That is, the restrictions of F1 and F∗1

FS ,F∗S : S(Rd → Cm)→ S(Rd → Cm)

are linear unitary operators which are the inverse the one to the other. We obtain the
following result.

Proposition 2.16 (Plancherel’s theorem). FS and F∗S may be extended to unitary
operators:

F ,F∗ : L2(Rd → Cm)→ L2(Rd → Cm)
With FF∗ = F∗F = Id.

Proof. This is a immediate result of the density of S(Rd → Cm) in L2(Rd → Cm) and
the completeness of L2(Rd → Cm) together with (ii) and (2.12). As by a simple limit-
ing argument it is easy to see that continuous extensions of continuous linear operators
preserve the norm and the inverses of the operators in question.

Finally we note that given f in L1(Rd → Cm) ∩ L2(Rd → Cm) we have that, as one
would desire:

Ff(ξ) = F1f(ξ) =
∫
Rd
f(x)e−2πix·ξdx ∀ξ ∈ Rd.

This can be seen by taking a sequence of functions {fn}∞n=1 ∈ S(Rd → Cm) converging to
f in L1(Rd → Cm) and in L2(Rd → Cm). As then F1fn converges uniformly to F1f by
(2.9) and in L2 to Ff by Proposition 2.16, from where we deduce that F1f = Ff .
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We now extend our previous results to Zd periodic functions, though, for any period,
analogous results may be achieved. By identifying Zd periodic functions with functions
on the torus Td := Rd/Zd we will work with functions f : Td → Cm.

Definition 2.17. Given f ∈ L1(Td → Cm) we define the k-th Fourier coefficient of f as:

f̂(k) :=
∫
Td
f(x)e−2πik·xdx.

We thus obtain a function f̂ on Zd which we shall call the Fourier series of f and a
continuous linear function which we shall denote as in the euclidean case:

F1 : L1(Td → Cm)→ l∞(Zd → Cm)

where l∞(Zd → Cm) is the set of bounded sequences from Zd to Cm. As before we have
the following result:

Proposition 2.18. Given f ∈ L1(Td → Cm) if f is absolutely continuous in xi for almost
every x1, ...xi−1, xi+1, ..., xd then

∂̂xjf(k) = 2πikj f̂(k) ∀k ∈ Zd.

In particular if f ∈ C∞(Td → Cm) we have that:

D̂αf(k) = (2πik)αf̂(k) (2.13)

and hence we have that f̂ is of rapid decrease (i.e. f̂ decreases faster than the inverse of
any polynomial). We thus have, as before, an induced map:

FC∞ : C∞(Td → Cm)→ s(Zd → Cm)

f 7−→ f̂

where s(Zd → Cm) are the sequences from Zd to Cm that are of rapid decrease.

Similarly to the non-periodic case we now define

F∗C∞ : s(Zd → Cm)→ C∞(Td → Cm); a 7→ ǎ

with:
ǎ(x) :=

∑
k∈Zd

a(k)e2πik·x.

Which is indeed smooth as, by the rapid decay of a, we may by Proposition 2.4 commute
all derivatives with the above sum to obtain that

Dαǎ(x) =
∑
k∈Zd

(2πi)|α|kαa(k)e2πik·x ∀a ∈ s(Zd → Cm) (2.14)

It is now possible to prove as with the euclidean case that

FC∞F∗C∞ = F∗C∞FC∞ = Id

and that analogously given f smooth, a of rapid decrease

〈Fc∞f, a〉l2(Zd→Cm) = 〈f,F∗C∞a〉L2(Rd→Cm); 〈F∗C∞a, f〉L2(Rd→Cm) = 〈a,Ff〉l2(Zd→Cm)

see for example [17] pages 197-206. We conclude that FC∞ are unitary linear functions
and that hence:



12

Proposition 2.19 (Plancherel’s (periodic) theorem). FC∞ and F∗C∞ may be extended
to unitary operators:

F : L2(Rd → Cm)→ l2(Zd → Cm); F∗ : l2(Zd → Cm)→ L2(Rd → Cm)

with FF∗ = F∗F = Id.

We note that, as for the Euclidean case, given f ∈ L2(Td → Cm) ∩ L1(Td → Cm) by
an identical argument it holds that

Ff(k) = F1f(k) =
∫
Rd
f(x)e−2πik·x

and where now Plancherel’s theorem gives that:

f(x) =
∑
k∈Zd

f̂(k)e2πik·x. (2.15)

Distributions and Sobolev Spaces

Here we will quickly recall the concepts of tempered distributions and Sobolev spaces,
which are concepts of utmost importance in the field of PDEs and Fourier analysis. We
begin by introducing the space of tempered distributions. In general given a real vector
space X together with a countable family of semi-norms {pj}∞j=0 with the property that:
given x 6= 0, there exists j such that pj(x) 6= 0. Then

d(x, y) :=
∞∑
j=0

2−j pj(x− y)
1 + pj(x− y) ∀x, y ∈ X (2.16)

is a translation invariant metric on X. We shall denote the dual of X by

X ′ := {w : X → C : w continuous}.

Due to the metric we set on X it is simple to verify that w ∈ X ′ iff there exist C ∈ R,
N ∈ N such that

|w(u)| ≤ C
N∑
j=1

pj(u) ∀u ∈ X (2.17)

In the case of the Schwartz space S(Rd → R) we give it the topology induced by

pk(u) :=
∑
|α|≤k

sup
x∈Rd
〈x〉k|Dαu(x)| (2.18)

though, as is generally the case with Frechet spaces, other families of semi-norms the
reader may be familiar with such as

pk,α := sup
x∈Rd
|x|k|Dαu(x)|; or p′k,α := sup

x∈Rd
(1 + |x|)k|Dαu(x)|

induce equivalent topologies. We note that with this metric S(Rd → C) is a Fréchet space
(that is a complete Hausdorff topological vector space). For a quick proof based on the
fundamental theorem of calculus see for example [5] page 237.
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With this we move on to discuss space of tempered distributions which we define as
the dual of S(Rd → C) and write as S ′(Rd → C). One may verify that we have the
inclusion

Lp(Rd → C) ↪→ S ′(Rd → C); f 7→ Tf (2.19)

where given u ∈ S(Rd → C) we define

Tf (u) := 〈u, f〉 :=
∫
Rd
uf.

Given two Schwartz functions u, v a simple application of Fubini gives

TFv(u) = 〈u,Fv〉 = 〈Fu, v〉 = (F tTv)(u)

and integration by parts gives

TDαv(u) = 〈u,Dαv〉 = (−1)|α|〈Dαu, v〉 = Tv((−1)|α|Dαu) ∀α ∈ Nd.

This gives us a way of extending the Fourier transform and differentiation to the space
of tempered distributions. Given w ∈ S ′(Rd) and α ∈ Nd we define the (distributional)
Fourier transform of w by

Fw := F tw

where we have used the notation T t for the transpose of a linear function T (remember
that the Fourier transform is an endomorphism of the Schwartz space) and the (weak)
α’th derivative of w by

Dαw := w ◦ ((−1)|α|Dα).

Due to our previous discussion we have that, with this definition, given u ∈ S(Rd)

FTu = TFu; DαTu = TDαu (2.20)

as one would desire.

Two other operations that are permitted on S(Rd) are multiplication by functions of
polynomial growth and the application of the inverse Fourier transform which we shall,
as for L2 functions, denote by F∗. Both definitions once again being given by duality.

Before ending our discussion of (scalar) tempered distributions we comment on some
generalizations. We first note that the previous discussion works equivalently for vector
valued distributions, i.e. elements of the dual to S(Rd → Cm), which we shall denote by

S ′(Rd → Cm)

where the only change is that the inclusion (2.19) is now given by

Lp(Rd → Cm) ↪→ S ′(Rd → Cm); f 7→ Tf (2.21)

with Tf defined by
Tf (u) :=

∫
Rd
u·f̄ ∀u ∈ S(Rd → Cm).



14

In both cases we have that, by duality, due to the formulas derived in (2.10) given a
tempered distribution w and α ∈ Nd

DαFw = (−2πi)|α|Fxαw; FDαw = (2πi)|α|xαFw (2.22)

and of course, since Plancherel’s theorem holds for all Schwartz functions, we have that

F∗Fw = FF∗w (2.23)

The reader will observe that we have not as of yet placed a topology on the space of
tempered distributions. And though we shall have no need of it in this work we mention
here that the topology one usually considers is the weak∗-topology with which

wn
∗−→ w ⇐⇒ 〈u,wn〉 → 〈u,w〉 ∀u ∈ S(Rd → Cm).

This topology makes all the above operations (that is F ,F∗, Dα and multiplication by
function of polynomial growth) continuous as a quick verification will show.

Finally in addition to “changing the image” of our distributions we may also “change
the domain” by considering, for example, periodic tempered distributions. Where now,
as we saw in the section on the Fourier transform, C∞(Td → Cm) takes the place of
the Schwartz space and where we place on C∞(Td → Cm) the topology defined by the
countable family of semi-norms:

qk(u) :=
∑
|α|≤k

sup
x∈Td
|Dαu|

and denote its dual by S ′(Td → Cm). By defining as is natural the Fourier series of a
periodic distribution w by the sequence (which can be shown to be of polynomial growth)

ŵ(k) := 〈e−2πikx, w〉 k ∈ Zd (2.24)

and its α-th distributional derivative by

Dαw := w ◦ (−1)|α|Dα

we derive formulas analogous to the ones seen in the section on the Fourier transform for
“periodic” distributions as well. Namely:

w =
∑
k∈Zd

ŵ(k)e2πikx; D̂αw(k) = (2πik)αŵ(k) (2.25)

Essentially, due to the natural inclusion in (2.19) and the analogous inclusion in the
periodic case, the notion of Fourier transform and differentiation of tempered distributions
allows us to manipulate rough functions (periodic or non-periodic) as if they had Fourier
transforms and were smooth. As we shall see this will prove of great use when obtaining
“distributional solutions” to some PDE’s.
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Definition 2.20. Consider a mapping

P : C∞(Rd → Cm)→ C∞(Rd → Cn)

that extends to
P : S → S ′(Rd → Cn)

where S is some subset of S ′(Rd → Cm) containing C∞(Rd → Cm). Then we say that a
distributional solution to P is any tempered distribution w ∈ S verifying

P (w) = 0

where the above equality is a distributional sense, i.e. 〈φ, P (w)〉 = 0 for all φ ∈ S(Rd →
Cm).

In the above definition P typically defines a linear or non-linear differential equation.
Note that the above definition may be extended without any difficulty to the case of
(periodic) distributional solutions in the case where P : C∞(Td → Cm)→ C∞(Td → Rn).

This said we now move on to discuss Sobolev spaces:

Definition 2.21. Given k ∈ N+ we define the Sobolev space Hk(Rd → Cm) as:

Hk(Rd → Cm) :=
{f ∈ L2(Rd → Cm) : Dαf ∈ L2(Rd → Cm) ↪→ S ′(Rd → Cm) ∀ |α| ≤ k}

where, due to (2.21), we consider L2(Rd → Cm) as a subspace of S ′(Rd → Cm).

We may interpret the Sobolev space Hk(Rd → Cm) as the space of k times differen-
tiable functions in L2(Rd → Cm) and we give it the norm:

‖f‖Hk(Rd→Cm) :=
∑
|α|≤k
‖Dαf‖L2(Rd→Cm) f ∈ Hk(Rd → Cm).

Now, due to the fact that, as we saw in (2.23), the Fourier transform is an automor-
phism of S ′(Rd → Cm), by using property (2.22) we deduce that

Dαf ∈ L2(Rd → Cm) ⇐⇒ F(Dαf) = (2π)|α||ξα|f̂(ξ) ∈ L2(Rd → Cm)

from which we deduce that

f ∈ Hk(Rd → Cm) ⇐⇒
∑
|α|≤k

(2πi)|α||ξα|f̂(ξ) ∼k 〈ξ〉kf̂ ∈ L2(Rd → Cm) (2.26)

In fact, since the Fourier transform is a unitary transformation on L2(Rd → Cm), the
same reasoning gives

‖f‖Hk(Rd→Cm) ∼k
∥∥∥〈ξ〉kf̂(ξ)

∥∥∥
L2(Rd→Cm)

(2.27)

From (2.26) and (2.27) we deduce that if we define for a given real number s the s-th
order Sobolev space as

Hs(Rd → Cm) := {f ∈ L2(Rd → Cm) : 〈ξ〉sf̂(ξ) ∈ L2(Rd → Cm)}
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and give it the norm
‖f‖Hk(Rd→Cm) :=

∥∥∥〈ξ〉sf̂(ξ)
∥∥∥
L2(Rd→Cm)

then our new definition is equivalent to the the previous one in (2.21) when s is a positive
integer. We have thus found how to generalize the concept of Sobolev space to all real
orders and obtained a useful way of characterizing them and giving a neat expression for
their norm. Nonetheless, it will always be useful to retain the first definition based on
derivatives, as it carries with it the motivation behind the definition of Sobolev spaces.

As was the case with tempered distributions we are able to extend the concept of
Sobolev space to periodic domains by defining given an integer k the Sobolev space
Hk(Td → Cm) as the space of square integrable Zd periodic functions with distributional
derivatives themselves square integrable. Explicitly we define:

Hk(Td → Cm) :=
{f ∈ L2(Td → Cm) : Dαf ∈ L2(Td → Cm) ↪→ S ′(Td → Cm) ∀ |α| ≤ k} (2.28)

Using the same method as before, this time by Proposition 2.19 and equation (2.25), we
deduce that

Dαf ∈ Hk(Td → Cm) ⇐⇒ D̂αf(k) = |kα|f̂(k) ∈ l2(Zd → Cm)

which leads us as in the previous case to defining for s ∈ R the more general Sobolev
space

Hs(Td → Cm) := {f ∈ L2(Rd → Cm) : 〈k〉sf̂(k) ∈ l2(Zd → Cm)}
and to giving it the norm

‖f‖Hs(Td→Cm) :=
∑
k∈Zd
〈k〉2s

∣∣∣f̂(k)
∣∣∣2
 1

2

(2.29)

where of course the definitions in (2.28) and (2.29) coincide for s ∈ N. Note that, by the
previous discussion, we have that both in the euclidean and periodic case

f ∈ Hs(Rd → Cm) =⇒ Dαf ∈ Hs−|α|(Rd → Cm) ∀|α| ≤ s (2.30)

f ∈ Hs(Td → Cm) =⇒ Dαf ∈ Hs−|α|(Td → Cm) ∀|α| ≤ s (2.31)
In the future we shall have use of the following lemma which will allow us to justify the
existence of certain integrals and also allow us to interchange derivatives.

Lemma 2.22. Given f ∈ Hs(Td → Cm) with s > d/2. Then the Fourier series of f is
absolutely convergent and f ∈ C(Td → Cm) with the bound

‖f‖L∞(Td→Cm) .d,s ‖f‖Hs(Td→Cm)

Proof. The proof is an application of the Cauchy-Schwartz inequality and (2.7). We have
that

∑
k∈Zd

∣∣∣f̂(k)
∣∣∣ =

∑
k∈Zd
〈k〉−s〈k〉s

∣∣∣f̂(k)
∣∣∣ ≤

∑
k∈Zd

〈k〉−2s

2

 1
2
∑
k∈Zd

〈k〉2s

2
∣∣∣f̂(k)

∣∣∣2
 1

2

.d,s ‖f‖Hs(Td→Cm) <∞.
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In consequence, the sum ∑
k∈Zd

f̂(k)e2πik·x (2.32)

converges absolutely. Since by Plancherel’s Theorem the above sum also converges in
L2(Td → Cm) to f we deduce that (2.32) converges almost everywhere to f (for example by
taking a subsequence of the above sum that converges almost everywhere to f). Therefore

‖f‖L∞(Td→Cm) =

∥∥∥∥∥∥
∑
k∈Zd

f̂(k)e2πik·x

∥∥∥∥∥∥
L∞(Td→Cm)

which is
≤
∑
k∈Zd

∥∥∥f̂(k)e2πik·x
∥∥∥
L∞(Td→Cm)

=
∑
k∈Zd

∣∣∣f̂(k)
∣∣∣ .d,s ‖f‖Hs(Td→Cm).

The continuity of f follows from the point-wise equality

f(x) =
∑
k∈Zd

f̂(k)e2πik·x =
∫
Zd
f̂(k)e2πik·xdk (2.33)

together with Proposition 2.3 applied to Zd with the counting measure dk.

As a corollary of this we have the following two results

Proposition 2.23 (Sobolev embedding). Let f ∈ Hs(Td → Cm) where s > d
2 + k.

Then f ∈ Ck(Td → Cm).

Proof. By (2.31), we may apply the previous proposition to deduce that Dαf is continuous
for all |α| ≤ k. Therefore it suffices to show that for |α| ≤ k the distributional derivatives
Dαf are also the classical derivatives of f which we denote by fα.

By the hypothesis placed on f we have that the series∑
k∈Zd

(2πik)αf̂(k)e2πik·x

is absolutely convergent (by Lemma 2.22), and hence, we may commute the derivatives
of f with the the sum in its Fourier series to deduce the point-wise equality

fα(x) =
∑
k∈Zd

(2πik)αf̂(k)e2πik·x.

Now, note that by using (2.25) for the Fourier coefficients of distributions we also have
that the equality

Dαf(x) =
∑
k∈Zd

(2πik)αf̂(k)e2πik·x

holds in L2(Td → Cm). From these last two equalities we deduce that fα = Dαf almost
everywhere which concludes our proof.

As before the previous results also have an euclidean analogue whose proof is identical
on replacing all of the above sums over Zd with integrals over Rd. In fact the proofs are
if anything simpler as we no longer have to deal with the convergence of infinite sums.
We now conclude our preliminaries by proving one final lemma which we shall use on
occasion.



18

Lemma 2.24. Let f : R× Rd → Cm be a Schwartz function. Then

∂t

∫
Rd
f(t)dx =

∫
Rd
∂tf(t)dx

Proof. Let s > d
2 . By the definition of the Schwartz Space we have that

|〈x〉s∂tf(t, x)| ≤ ‖〈x〉s∂tf(t, x)‖L∞(R×Rd→Cm) <∞ ∀(t, x) ∈ R× Rd

which implies that

|∂tf(t, x)| ≤ 〈x〉−s‖〈x〉s∂tf(t, x)‖L∞(R×Rd→Cm) ∀(t, x) ∈ R× Rd.

Since 〈x〉−s is integrable this implies that f verifies properties a) and b) of Proposition
2.4 which proves our lemma.



Chapter 3. The heat equation

Here we begin our study of the (generalized multicomponent) heat equation. Which is
given by the equation:

∂tu = ν∆u+ F (3.1)
u(0, x) = u0(x)

where ν is a positive constant, the solution u is to be defined on the space-time region
[0, T ] × Rd with values in Rm and where u0 : Rd → Rm and F : [0, T ] × Rd → Rm are
both known functions. Depending on whether F = 0 or F 6= 0 we will call the equation
resulting from (3.1) the homogeneous or inhomogeneous heat equation respectively.

We begin our study of the heat equation by observing that, as noted by Tychonoff
in [19], the solutions to (3.1) are in general not unique for any dimension d ∈ N even if
u0 = 0 and u is required to be smooth. In general we must set (in addition to some degree
of regularity) a hypothesis of decay at infinity of u to obtain uniqueness of solutions to
(3.1). Our next theorem proves exactly this for the case of smooth solutions:
Proposition 3.1. If u1, u2 are solutions to (3.1) which are C1 in time (i.e, ∂1

t u is in
C0([0, T ]× Rd → Rm)) obeying the bounds:

‖ui‖L∞t L2
x([0,T ]×Rd→Rm) := sup

t∈[0,T ]
‖ui(t)‖L2(Rd→Rm) <∞ i = 1, 2 (3.2)

then u1 = u2 (recall that ui(t) denotes the function ui(t, ·)).

Proof. Let us set the difference of the two solutions as u := u1−u2. Then we observe the
three following facts: by the linearity of ∆, u solves the homogeneous heat equation with
initial condition u0 = 0, u is C1 in time and u obeys the energy bound of (3.2). Therefore
our goal becomes proving that any function verifying these three properties is identically
zero. We observe that by working component by component we may suppose that m = 1.
Let us set the “local energy” as:

E(t, R) :=
∫
Rd
u(t, x)2φ(x/R) dx,

where φ ∈ C∞c (Rd) is a smooth non-negative bump function compactly supported in say:
B(0, 2) such that φ

∣∣∣
B(0,1)

= 1 . The reason for introducing such a bump function is to be
able to exchange a derivative with the integral sign and to be able to integrate by parts
in subsequent expressions, as we shall soon see.

Since (by the decay condition) for each t ∈ R u(t) ∈ L2(Rd) , we may apply the
dominated convergence theorem to obtain:

lim
R→∞

E(t, R) = ‖u(t)‖2
L2(Rd) ∀t ∈ R (3.3)

Thus to prove our Proposition it is sufficient to see that the above limit is zero. We have
that for each R ∈ Rd:

∂t(u(t, x)2φ(x/R)) = 2u(t, x)∂tu(t, x)φ(x/R)
≤ 2‖φ‖∞‖u∂tu‖L∞([0,T ]×B(0,2R)χB(0,2R)(x) =: gR(x) (3.4)

19
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Due to the time regularity of ui we have that, for each R, gR(x) is well defined and
gR ∈ L2(Rd). Hence we can differentiate under the integral sign to obtain:

∂tE(t, R) =
∫
Rd

2u(t, x)∂tu(t, x)φ(x/R)dx =
∫
Rd

2u(t, x)ν∆u(t, x)φ(x/R)dx (3.5)

By now integrating by parts various times (which we may do as the derivatives of φ are
all of course compactly supported) we obtain:

∂tE(t, R) ≤ −ν
∫
Rd

2u(t, x)∂iu(t, x)∂i(φ(x/R))dx = −ν
∫
Rd
∂i(u(t, x)2)∂i(φ(x/R))dx

= ν
∫
Rd
u(t, x)2∆(φ(x/R))dx = νR−2

∫
Rd
u(t, x)2(∆φ)(x/R)dx.

∆φ is of compact support and continuous, hence it is bounded and we thus obtain the
bound:

|∂tE(t, R)| .φ,ν R
−2‖u‖2

L∞t L
2
x([0,T ]×Rd).

We now use that, as can be seen by (3.5), E(0, R) = 0 and E(t, R) is C1 in time, to
conclude from the mean value theorem that:

|E(t, R)| .φ,ν,T R
−2‖u‖2

L∞t L
2
x([0,T ]×Rd)

and thus the limit in (3.3) vanishes, concluding our proof.

While we used in the preceding proof that the interval [0, T ] is compact we note that
if we impose the stronger decay condition

‖ui‖L∞t L2
x([0,∞)×Rd→Rm) <∞

we obtain via the previous theorem uniqueness of solutions to (3.1) on each compact
interval [0, T ] and hence, uniqueness of solutions on [0,∞)× Rd.

This said we now turn to the existence of solutions to the heat equation. We reason as
follows: suppose we are given a very well behaved solution u to the heat equation (3.1),
say for example u ∈ S([0, T ]×Rd → Rm) . Then we have that, taking the spatial Fourier
transform

û(t, ξ) :=
∫
Rd
u(t, x)e−2πiξ·xdx

(this is by definition just û(t)(ξ)) and differentiating with respect to time

∂tû(t, ξ) (i)=
∫
Rd
∂tu(t, x)e−2πiξ·xdx =

∫
Rd

(ν∆u(t, x) + F (t, x))e−2πiξ·xdx

(ii)= −4π2ν|ξ|2û(t, ξ) + F̂ (t, ξ)

where the derivation under the integral sign in (i) is justified by lemma 2.24, as u is a
Schwartz function, and in (ii) we used 2.13 (note that all Schwartz functions are inte-
grable). In addition to this we have that the initial condition u(0, x) = u0(x) gives an
initial condition for û:

û(0, ξ) =
∫
Rd
u0(x)e−2πiξ·xdx = û0(ξ).
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We have thus obtained a non homogeneous ODE (dependent on the parameter ξ) for û.
For each ξ ∈ Rd this has the unique solution given by Lemma 2.2 (Duhamel’s formula)

û(t, ξ) = e−4π2ν|ξ|2tû0(ξ) +
∫ t

0
e−4π2ν|ξ|2(t−t′)F̂ (t′, ξ)dt′ (3.6)

Applying the Fourier inversion formula (and Fubini’s theorem) we finally obtain that:

u(t, x) =
∫
Rd
e−4π2ν|ξ|2tû0(ξ)e2πiξ·xdξ +

∫ t

0

(∫
Rd
e−4π2ν|ξ|2(t−t′)F̂ (t′, ξ)e2πiξ·xdξ

)
dt′ (3.7)

We shall write this in a slightly more succinct fashion as:

u(t, x) = eνt∆u0(x) +
∫ t

0
eν(t−t′)∆F (t′, x)dt′ (3.8)

where, given t ∈ [0, T ], eνt∆ is the operator defined on functions f ∈ S(Rd → Rm) by:

eνt∆f(x) :=
∫
Rd
e−4π2ν|ξ|2tf̂(ξ)e2πiξ·xdξ ∀x ∈ Rd

and where for each t′

eν(t−t′)∆F (t′, x) := (eν(t−t′)∆F (t′))(x).

We have thus obtained via (3.8) (or equivalently (3.7)) a guess at what our solutions to
the heat equation should look like. It is simple to see that if u0 and F are Schwartz
then, for u defined as in (3.7) , u is smooth in time and space and one may integrate
under the integral sign and apply Leibniz’s Integration Rule to obtain that u verifies the
heat equation (3.1) as desired. In addition to this, by using (3.6), and the fact that the
Fourier transform is a unitary tranformation on L2(Rd → Rm) it is clear that u verifies
the estimate

‖u‖L∞t L2
x([0,T ]×Rd→Rm) ≤ ‖u0‖L2(Rd→Rm) + T‖F‖L∞t L2

x([0,T ]×Rd→Rm) <∞ ∀T ∈ R+

which, due to Proposition 3.1, implies that, for all T ∈ R+, u is the unique solution to
(3.1) in L∞t L

2
x([0, T ]× Rd → Rm).

We now proceed to extend these results to less regular functions. Given a Schwartz
function f we have that given s ≥ 0

∥∥∥eνt∆f∥∥∥
Hs(Rd→Rm)

=
∥∥∥∥〈ξ〉sêνt∆f(ξ)

∥∥∥∥
L2(Rd→Rm)

=
∥∥∥〈ξ〉se−4π2ν|ξ|2tf̂(ξ)

∥∥∥
L2(Rd→Rm)

≤ ‖f‖Hs(Rd→Rm)

and therefore eνt∆ may be extended by density to a non-expansive operator1

eνt∆ : Hs(Rd → Rm)→ Hs(Rd → Rm).
1Given two metric spaces (X, ‖‖X), (Y, ‖‖Y ) a non-expansive operator is a function f : X → Y such

that for some constant C ∈ R : ‖f(x)‖Y ≤ C‖x‖X ∀x ∈ X.
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The Periodic heat equation

Our discussion of the heat equation goes through more more or less identically in the
periodic case. That is, when we assume that the functions u0, F are periodic (of period
for example Zd). In terms of regularity we begin our discussion by supposing that F and
u0 are smooth and we will search for a smooth periodic solution u. Since we will now be
dealing with the periodic Fourier transform, the analogous formula to the one we derived
in (3.7) is :

u(t, x) =
∑
k∈Zd

e−4π2ν|k|2tû0(k)e2πik·x +
∫ t

0

∑
k∈Zd

e−4π2ν|k|2(t−t′)F̂ (t′, k)e2πik·x

 dt′ (3.9)

which by abuse of notation we will once again write as

u(t, x) = eνt∆u0(x) +
∫ t

0
eν(t−t′)∆F (t′, x)dt′ (3.10)

where for each t ∈ [0, T ] the operator eνt∆ is defined on smooth periodic functions by

êνt∆f(k) := e−4π2ν|k|2tf̂(k) ∀f ∈ C∞(Td → Rm) (3.11)

Using the expression in (3.11) we may, just as in the non-periodic case, extend eνt∆f to
a non expansive operator by defining

êνt∆f(k) := e−4π2ν|k|2tf̂(k) ∀f ∈ Hs(Td → Rm) (3.12)

We shall find use for this later when we prove the existence of (“mild”) solutions to the
Navier-Stokes equations. For now though, we deal with the case of the smooth periodic
functions u0 and F . We have that, for each x ∈ Td, the series of absolute values of the
derivatives with respect to t of the terms in the sums in (3.9) verify∑

k∈Zd
4π2ν|k|2e−4π2ν|k|2t|û0(k)| .

∑
k∈Zd
|k|2|û0(k)| (3.13)

∑
k∈Zd

4π2ν|k|2e−4π2ν|k|2(t−t′)
∣∣∣F̂ (t′, k)

∣∣∣ . ∑
k∈Zd
|k|2

∣∣∣F̂ (t′, k)
∣∣∣ (3.14)

and, since û0 and F̂ (t′) are of rapid decrease for each t′ ∈ [0, T ], these two series converge
and hence, by Proposition 2.4 applied to the counting measure on Zd, we may commute
the derivative with respect to t with the sums in (3.9). We also observe that taking s > d

2
and applying the Cauchy-Schwartz inequality together with Lemma 2.7 gives

∑
k∈Zd
|k|2

∣∣∣F̂ (t′, k)
∣∣∣ .d,s

∑
k∈Zd

|k|4〈k〉2s

2
∣∣∣F̂ (t′, k)

∣∣∣2 ≤ ∥∥∥∆s+2F (t′)
∥∥∥2

L2(Td→Rd)
(3.15)

where the function of t′ in (3.15) is integrable on [0, T ] by the smoothness of F . Hence
we may apply Proposition 2.5 (Leibnitz’s integral rule) to obtain that

∂tu(t, x) =
∑
k∈Zd
−4π2ν|k|2e−4π2ν|k|2tû0(k)e2πik·x

+
∫ t

0

∑
k∈Zd
−4π2ν|k|2e−4π2ν|k|2(t−t′)F̂ (t′, k)e2πik·x

 dt′ + ∑
k∈Zd

F̂ (t, k)e2πik·x (3.16)
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The reasoning just carried out is identical to the one necessary to justify the interchange
of ∆ with the sums and integrals in (3.9) (as the sums in (3.13) and (3.14) don’t change
when we consider ∆ instead of the differential with t). Hence we obtain from (3.16) and
Plancherel’s theorem that

∂tu(t, x) = ∆u(t, x) + F (t, x)

as desired. Furthermore an identical reasoning shows us that we may commute the deriva-
tives ∂mt and Dα for arbitrary m ∈ N, α ∈ Zd. Therefore the solution to the heat equation
in (3.9) is smooth. We end the our study of the heat equation with the periodic analogue
for Proposition 3.1 which, in particular, proves that the solution in (3.9) is unique. The
proof is if anything simpler as we now work on the compact set [0, T ]× Td.

Proposition 3.2. Let u1 u2 be two solutions to the periodic heat equation that are C1 in
time or C2 in space and such that u1(0) = u2(0). Then u1 = u2.

Proof. Once again it is sufficient to prove our proposition in the case where m = 1. As
before we consider the difference u := u1 − u2 and it’s energy, which we now define as

E(t) :=
∫
Td
u(t, x)2dx = ‖u(t)‖2

L2(Td→Rd)

we observe that u satisfies the heat equation with “forcing term” F = 0 and therefore

∂tu(t, x)2 = 2u(t, x)∂tu(t, x) = 2u(t, x)∆u(t, x)

which is continuous by hypothesis and hence, bounded by some constant M (which will
of course be integrable on Td ). Therefore, by Proposition 2.4 (differentiation under the
integral sign), we may commute the derivative with respect to t with the integral that
defines E(t). Obtaining on integrating by parts that

∂tE(t) = 2
∫
Td
u(t, x)∆u(t, x) = −2

∫
Td
∂iu(t, x)∂iu(t, x) ≤ 0 (3.17)

and in consequence, since E(0) = 0, we deduce that E = 0 which of course implies that
u = 0, concluding our proof.

Finally we end this section by noting that, due to the effect of the negative exponential
e−4π|k|2t in the Fourier transform of u, it is not difficult to show the following smoothing
effect for t > 0, (see [12] page 240 for instance).

Proposition 3.3 (Instantaneous smoothing for the heat equation). Let u0 be a
function in L2(Td → Rd). Then eνt∆u0 is smooth on (0, T ]× Td and verifies

∂te
νt∆u0(x) = ν∆eνt∆u0(x) ∀(t, x) ∈ (0, T ]× Td.

An analogous statement also holds in the non-periodic case where one only need change
the torus Td to Rd. As we shall see later on, this instantaneous smoothing effect will be
reproduced by solutions to the Navier-Stokes equations.





Chapter 4. The Leray Equations

Here we study the system given by the equations:

v =F −∇p (4.1)
∇·v = 0

where v : Rd → Rd , p : Rd → R are to be determined and F : Rd → Rd is given.

We will call the system of equations given by (4.1) the Leray equations and we will
begin by studying the existence of solutions to these equations in the periodic setting. As
with the heat equation, we will commence by imposing a high degree of regularity on our
functions, supposing F, v, p to be smooth (and periodic) so as to be able to appropriately
manipulate their Fourier series

F (x) =
∑
k∈Zd

F̂ (k)e2πik·x; v(x) =
∑
k∈Zd

v̂(k)e2πik·x; p(x) =
∑
k∈Zd

p̂(k)e2πik·x.

As we saw in the preliminaries (Proposition 2.18), the smoothness of said functions im-
plies that we may differentiate them term by term to obtain the new and equivalent
“diagonalised” system where only Fourier coefficients of the same frequency interact:

v̂(k) = F̂ (k)− 2πikp̂(k); 2πik·v̂(k) = 0 (4.2)

where k ranges through Zd. We can use the second set of equations in (4.2) to “eliminate”
v from the first equation by taking the inner product with k. Thus obtaining:

F̂ (k)·k = 2πikp̂(k)·k = 2πi|k|2p̂(k).

from which we deduce that, for k 6= 0:

p̂(k) = F̂ (k)·k
2πi|k|2

,

and where we recover v from (4.2) as:

v̂(k) = F̂ (k)− F̂ (k)·k
|k|2

k k 6= 0.

and where necessarily (again by (4.2)), we have that v̂(0) = F̂ (0). Finally p̂(0) may be
an arbitrary real number C and hence we obtain that the smooth solutions to (4.1) must
be given by:

v(x) = F̂ (0) +
∑

k∈Zd\{0}

(
F̂ (k)− F̂ (k)·k

|k|2
k

)
e2πik·x; p(x) = C +

∑
k∈Zd\{0}

F̂ (k)·k
2πi|k|2

e2πik·x

(4.3)

We will write this succinctly as:

v = P(F ); p = C + ∆−1∇·F (4.4)

where we define:

24
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Definition 4.1. Given f : Td → R, a smooth periodic function of mean 0 (i.e. such that
f̂(0) = 0), the inverse laplacian of f is

∆̂−1f(k) := − f̂(k)
4π2|k|2

k 6= 0; ∆̂−1f(0) := 0 (4.5)

Definition 4.2. Given a smooth periodic function F : Td → Rd, the Leray projection of
F is

P(F ) := F −∇∆−1∇·F
or equivalently in terms of Fourier coefficients

P̂(F )(k) := F̂ (k)− F̂ (k)·k
|k|2

k k 6= 0; P̂(F )(0) := F̂ (0) (4.6)

Notice that since f is smooth ∆̂−1f(k) is in l2(Zd → R) (in fact it is in s(Zd → R)) and
hence, by Plancherel’s theorem, (4.5) implicitly defines ∆−1f . The analogous statement
also being true for P(F ).

By a direct calculation of Fourier coefficients by means of (2.13) it is simple to see that
the functions given by (4.3) solve the Leray equations (4.1). We now extend these results
to Sobolev functions. By the expression in (4.6) we have that, given a smooth function F

‖P(F )‖2
Hs(Td→Rd) ≤ ‖F‖

2
Hs(Td→Rd) +

∑
k∈Zd\{0}

〈k〉2s
∣∣∣∣∣ F̂ (k)·k
|k|2

k

∣∣∣∣∣
2

≤ ‖F‖2
Hs(Td→Rd) +

∑
k∈Zd\{0}

〈k〉2s
∣∣∣F̂ (k)

∣∣∣2 . ‖F‖2
Hs(Td→Rd) (4.7)

and:
∥∥∥∆−1∇·F

∥∥∥2

Hs+1(Td→Rd)
=

∑
k∈Zd\{0}

〈k〉2(s+1)
∣∣∣∣∣ F̂ (k)·k
2π|k|2

∣∣∣∣∣
2

≤
∑

k∈Zd\{0}
〈k〉2s1 + |k|2

4π2|k|2
∣∣∣F̂ (k)

∣∣∣2
≤ 2

4π2

∑
k∈Zd\{0}

〈k〉2s
∣∣∣F̂ (k)

∣∣∣2 ≤ ‖F‖2
Hs(Td→Rd) (4.8)

Thus we may also extend P and ∆−1∇· to the Sobolev spacesHs(Td → Rd) for all s ∈ R
as non-expansive operators with image respectively in Hs(Td → Rd) and Hs+1(Td → Rd).
We now state some further properties of the Leray Projection which will serve us later on
among other things to eliminate the pressure term from the Navier-Stokes equations.
Lemma 4.3. The following statements hold:
a) Let p ∈ H1(Rd → R) then P(∇p) = 0.
b) Let v ∈ H1(Rd → Rd) be divergence free, then P(v) = v and ∇·P(v) = 0.

Proof. Both properties may be proved by a direct calculation of Fourier coefficients by
means of the formula for derivatives of distributions in (2.25). In the case of a) we have
that

P̂(∇p)(k) = ∇̂p(k)− ∇̂p(k)·k
|k|2

k = p̂(k)k − p̂(k)k = 0, k 6= 0

P̂(∇p)(0) = ∇̂p(0) = p̂(0)0 = 0,
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and for b) we have that

P̂(v)(k) = v̂(k)− v̂(k)·k
|k|2

k = v̂(k)− ∇̂·v(k)
|k|2

k = v̂(k), k 6= 0

P̂(v)(0) = v̂(0),

∇̂·P(v)(k) = v̂(k)·k − v̂(k)·k
|k|2

k·k = v̂(k)·k − v̂(k)·k = 0, k 6= 0

∇̂·P(v)(0) = P̂(v)·0 = 0

which allows us to conclude by Plancherel’s theorem.

All the previous arguments may be extended for the non-periodic setting if we assume
that d > 1 so that |x|−1 be locally integrable. Given F in the Schwartz space S(Rd → Rd)
we define

̂∆−1∇·F (ξ) := −iξ·F̂ (ξ)
2π|ξ|2

(4.9)

The function defined on the right side of (4.9) is in L1(Rd → R) as∥∥∥∥∥−iξ·F̂ (ξ)
2π|ξ|2

∥∥∥∥∥
L1(Rd→R)

≤ ‖F‖L1(Rd→Rd)

∫
B(0,1)

dξ

|ξ|
+
∫
B(0,1)c

∣∣∣F̂ (ξ)
∣∣∣dξ <∞

where we used that d > 1 and the fact that F̂ is Schwartz and hence of rapid decrease. In
consequence the function on the right hand side of (4.9) defines a tempered distribution
and by Fourier inversion for tempered distributions (4.9) implicitly defines the tempered
distribution ∆−1∇·F . Defining as before

P(F ) := F −∇∆−1∇·F

or equivalently

P̂(F )(ξ) := F̂ (ξ)− ξ· ˆF (ξ
|ξ|2

ξ (4.10)

we have by the formulas derived in (2.25) that the tempered distributions

v = P(F ); p = ∆−1∇·F

solve (4.1) in the distributional sense, i.e.

〈u, v〉 = 〈u, F −∇p〉 ∀u ∈ S(Rd → Rd).

Note that since, by hypothesis, F̂ (ξ) is rapidly decreasing then by (4.10) and the euclidean
analogue of Proposition 2.23 we have that P(F ) and ∇∆−1∇·F are in fact smooth and
hence (v, p) are not only a distributional solution but also a classical solution to (4.1).
Additionally, the equation (4.10) for the Fourier coefficients of P(F ) show that, as in
the periodic case, P may be extended to a non-expansive operator on the Sobolev space
Hs(Rd → Rd).





Chapter 5. The Navier-Stokes Equations

In the physical derivation of the preliminaries we deduced the Navier-Stokes equations for
an incompressible fluid. For simplicity, we will normalize the fluid density ρ to be one in
these equations. That is, we will take the Navier-Stokes equations (N.S. for short) to be:

∂tu+ u·∇u = ν∆u−∇p (5.1)
∇·u = 0

where ν ∈ R+ is a strictly positive real constant called the kinematic viscosity and :

u : I × Rd → Rd; p : I × Rd → R

with I = [0, T ] ⊂ R are both unknown. We shall call u the velocity and p the pressure.

5.1 Uniqueness of solutions to the Navier-Stokes Equa-
tions

We begin our study of the Navier-Stokes equations by discussing the uniqueness of solu-
tions to said equations. In the case where d = 1 we have that ∇·u = ∂xu = ∇u and
∆u = ∂xxu and hence the Navier-Stokes equations are reduced to

∂tu = −∂xp; ∂xu = 0 (5.2)

The second equation of (5.2) implies that u is constant in space and, therefore, its solutions
are given by taking u to be any differentiable function of time constant in space and

p(t, x) = −∂tu(t)x+ f(t) (5.3)

where f is any differentiable function that is constant in the space variable. Hence, for
d = 1 we have very little uniqueness to the Navier-Stokes equations. On the other hand,
if we impose that the pressure p be bounded in space, then, from (5.3) we deduce that
∂tu = 0 and therefore, u is constant and p is just a function of time.

We now go on to study the case when d > 1 and where u is supposed to be space
periodic of period Zd. In terms of regularity we will require that u be C1 in time and C2

in space (which will of course mean by (5.1) that p will be C1 in space and continuous in
time). We abbreviate this in this section by saying u and p are smooth. This said, from
the first equation in N.S., we easily deduce that ∇p is also space periodic, from where we
deduce that there exists a smooth family of functions only of time {ak}k∈Zd such that

p(t, x+ k)− p(t, x) = ak(t).

By now applying induction on |k| := k1 + ...+kd we deduce that there exists a continuous
function of time a(t) such that

p(t, x+ k)− p(t, x) = k·a(t) (5.4)
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expression from which we deduce that p1(t, x) := p(t, x)− x·a(t) is Zd periodic as:
p1(t, x+ k)− p1(t, x) = k·a(t)− ((x+ k)·a(t)− x·a(t)) = 0 ∀k ∈ Zd.

By subtracting off the mean of p1; r(t) :=
∫
Td
p1(t, x)dx and defining

p0(t, x) = p1(t, x)− r(t) = p(t, x)− x·a(t)− r(t) (5.5)
p0 remains (Zd) periodic and we may write:

p(t, x) = p0(t, x) + x·a(t) + r(t) (5.6)
where p0 is a smooth periodic function of mean 0. Observe that this way of writing p is
unique as if we have:

p(t, x) = p′0(t, x) + x·a′(t) + r′(t) (5.7)
with p′0 periodic and of mean 0 then we deduce from (5.6) and (5.7) that

x·(a′(t)− a(t)) = p0(t, x)− p′0(t, x) + r(t)− r′(t) (5.8)
which implies that x·(a′(t) − a(t)) is periodic and in consequence that a′(t) − a(t) = 0 .
Now taking the mean on both sides of (5.8) we obtain

0 =
∫
Td
r(t)− r′(t) = r(t)− r′(t).

We have thus obtained a(t) = a′(t); r(t) = r′(t) and therefore the functions in (5.6) are
unique as desired. From the uniqueness of (5.6) we obtain that

p is periodic and of mean 0 ⇐⇒ a(t) = r(t) = 0 (5.9)
In this case we will say that the pressure p is normalised.

We now prove the following lemma that will show non-uniqueness of (u) periodic
solutions to N.S. by using the expression derived for p0 in (5.5) to create other solutions
to N.S. To do this we will apply something resembling a Galilean transformation of the
spatial coordinate to cancel out the affine term −x·a(t)− r(t).
Lemma 5.1. Let p0 be as in (5.5) where a is continuous and (u, p) is a smooth u-periodic
solution to N.S. Then by setting

v(t) :=
∫ t

0
a(s)ds; X(t) :=

∫ t

0
v(s)ds

and u2(t, x) := u(t, x−X(t)) + v(t); p2(t, x) := p0(t, x−X(t)) we have that u2, p2 is a
smooth periodic solution to N.S. with u2(0, x) = u(0, x).

Proof. We have that by the chain rule and the fundamental theorem of calculus
∂tu2(t, x) = ∂t(t, x−X(t)) · (∂tu(t, x−X(t)),∇u(t, x−X(t))) + a(t)

= ∂tu(t, x−X(t))− v(t)·∇u(t, x−X(t)) + a(t)

(u2·∇u2)(t, x) = (u·∇u)(t, x−X(t)) + v(t)·∇u(t, x−X(t))

ν∆u2(t, x) = ν∆u(t, x−X(t))

−∇p2(t, x) = −∇p(t, x−X(t)) + a(t).
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Since (u, p) is a solution to N.S. we therefore have that, by using our previous calculations,
so is (u2, p2) as:

∂tu2(t, x) + (u2·∇u2)(t, x) = ∂tu(t, x−X(t)) + a(t) + (u·∇u)(t, x−X(t))
= ν∆u(t, x−X(t))−∇·p(t, x−X(t)) + a(t) = ν∆u2(t, x)−∇p2(t, x)

as desired as, by definition of u2, we have that u2(0, x) = u(0, x).

As an immediate consequence of our lemma we have the following proposition

Proposition 5.2. The u-periodic Navier-Stokes equations do not have an unique solution.

By varying a(t) and r(t) in (5.5) (and by applying a suitable transformation) we were
able to obtain many solutions to the Navier-Stokes equations (once we have one). We
now consider the case in which the pressure is normalised, and hence, a(t) and r(t) are
fixed as zero. As we shall see in the following theorem, in this case, the uniqueness of
solutions to the periodic N.S. is guaranteed.

Theorem 5.3. There exists at most one smooth solution (u, p) to the Navier-Stokes equa-
tions subject to the following constraints:

a) u is periodic with initial data u(0, x) = u0(x).
b) p is periodic of mean zero.

Proof. As in the heat equation, to prove uniqueness we will use the energy method.
Proving that two such solutions (u1, p1), (u2, p2) must be the same. Let us set w := u1−u2.
Since (u1, p1) and (u2, p2) are both solutions to N.S. we have that:

∂tw = −u1·∇u1 + u2·∇u2 + ν∆w −∇(p1 − p2)

and since
u1·∇u1 − u2·∇u2 = u1·∇w + w·∇u2

we thus have that w is a smooth solution to

∂tw = −u1·∇w − w·∇u2 + ν∆w −∇(p1 − p2); ∇·w = 0 (5.10)

We now set the energy to
E(t) :=

∫
Td
|w(t, x)|2dx

and observe that, as w is C1 in time, the derivative with respect to t of the integrand is
bounded on Td. Hence, we may differentiate under the integral sign, obtaining:

∂tE(t) =
∫
Td
∂t|w(t, x)|2dx = 2

∫
Td
∂t(wi(t, x)wi(t, x))dx = 2

∫
Td
∂tw(t, x)·w(t, x)dx.

Now using (5.10) gives

∂tE(t) = λ1(t) + λ2(t) + λ3(t) + λ4(t) (5.11)
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where (omitting t and x to simplify the notation in the remaining expressions), λi are
defined by

λ1 := −2
∫
Td

(u1·∇w)·w; λ2 := −2
∫
Td

(w·∇u2)·w

λ3 := 2
∫
Td
ν∆w·w; λ4 := −2

∫
Td
∇(p1 − p2)·w.

To prove our theorem we wish to see that E(t) vanishes. To accomplish this we will prove
that the sum in (5.11) is smaller or equal to CE(t) for some constant C . If we achieve
this it follows by Lemma 2.1 (Gronwall’s inequality) that E(t) ≤ eCtE(0) = 0 and since,
by definition, the energy E(t) is positive this will imply that E(t) = 0 and hence u1 = u2.
By (5.1) this implies that ∇p1 = ∇p2 and therefore, since p1 and p2 have the same mean,
p1 = p2 concluding our proof. We now set our plan in action. Observe that

2(u1·∇w)·w = 2(u1,j∂jw)iwi = 2(u1,j∂jwi)wi = u1,j(2(∂jwi)wi) = u1,j(∂j(wiwi))

and thus, by integration by parts, as u1 and w are Zd periodic and u1 is divergence free

λ1 = −
∫
Td
∂j(u1,jwiwi) +

∫
Td
∂j(u1,j)|w|2 = 0 +

∫
Td

(∇·u1)|w|2 = 0 (5.12)

Using the periodicity of p1 and p2 and the fact that w = u1−u2 is divergence free we may
again integrate by parts to obtain that

λ4 = −2
∫
Td

(∂i(p1 − p2))wi = 2
∫
Td

(p1 − p2)∂iwi = 2
∫

(p1 − p2)∇·w = 0 (5.13)

Integrating by parts for λ3 in turn gives

λ3(t) = 2ν
∫
Td
∂i∂iwjwj = −2ν

∫
Td
∂iwj∂iwj ≤ 0 (5.14)

and finally since,
∇u2 : [0, T ]× Rd →Md,d(R)

is a continuous (as u2 is C2 and in particular C1 in space) function to the spaceMd,d(R)
of d× d matrices with real coefficients, its norm as a bilinear function defined by

∇u2(t, x)(y1, y2) := y2,jy1,i∂iu2,j(t, x) y1, y2 ∈ Rd

is bounded by some constant C, i.e.

|∇u2(t, x)(y1, y2)| ≤ C|y1||y2|, ∀y1, y2 ∈ Rd ∀(t, x) ∈ [0, T ]× Td.

Which gives

λ2 = −2
∫
Td
∇u2(w,w) ≤ −2C

∫
Td
|w|2 = −2CE (5.15)

We now have all the necessary ingredients for our proof as (5.12-5.15) now give

∂tE ≤ λ2 ≤ −2CE

from which we conclude due to Gronwall’s inequality, as in our initial discussion.
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5.2 An equivalent pressure free integral equation

We now study the existence of solutions to N.S. We will suppose once more that u is
periodic and that p is normalised and we will search for smooth solutions u. Where
this time by smooth we mean smooth in the classical C∞ sense. We begin our study by
showing that, by using the Leray Projection and with some help from the heat equation,
we may eliminate the pressure term from N.S., leaving the pressure as a function of the
velocity. It is for this reason that in our previous theorem (and in all subsequent ones) as
initial data we will give an initial velocity u0 without specifying an initial pressure.

We first rewrite the term u·∇u (also known as the transport term), we have that, since
u is divergence free,

u·∇u = ui∂iu = ∂i(uiu)− (∂iui)u = ∇·(u⊗ u)− (∇·u)u = ∇·(u⊗ u)

where (u ⊗ u) is the rank two contravariant tensor defined by: (u ⊗ u)i,j := uiuj and
∇·(u⊗ u) is the divergence of (u⊗ u) defined by (∇·(u⊗ u))i,j := ∂j(u⊗ u)j,i.

Now, due to our smoothness hypothesis we have that all the terms in N.S. are smooth,
and hence, we may apply the Leray Projection to them. By applying Lemma 4.3 we
deduce that u solves

∂tu+ P(∇·(u⊗ u)) = ν∆u; u(0) = u0 (5.16)

where P(∇·(u⊗ u)(t, x) := (P(∇·(u⊗ u)(t))(x) The equations (5.16) (where u0 is diver-
gence free) are the equations we wish to reduce our study to. To do so we must show
that from a smooth periodic solution to (5.16) we may construct a smooth and periodic
solution (u, p) to N.S where p is normalized. We now show exactly this. Let u be a smooth
periodic solution to (5.16) then, on taking divergence in (5.16), we obtain by Lemma 4.3,

∂t(∇·u) = ν∆(∇·u); (∇·u)(0, x) = 0 (5.17)

and in consequence ∇·u is solution to the heat equation (5.17). In Proposition 3.2 we
proved the uniqueness of smooth solutions to the periodic heat equation from which we
deduce thay, since the identically null function is trivially a solution to (5.17)

∇·u = 0.

That is, u verifies the divergence free condition in N.S. We now construct the pressure p
that will make (u, p) a solution to N.S. Expanding (5.16) we obtain that

∂tu+∇·(u⊗ u) = ν∆u+∇(∆−1∇·∇·(u⊗ u))

from which we deduce that if we set

p = −∆−1∇·∇·(u⊗ u) (5.18)

then (u, p) solve the Navier Stokes equations.
Proposition 5.4. Let p : [0, T ]×Td be defined as in (5.18) where u is a smooth periodic
solution to (5.16). Then (u, p) is a smooth periodic solution to the Navier-Stokes equation
with p normalized. That is, solving the Navier-Stokes equations for smooth (u, p) with p
normalized is equivalent to obtaining a smooth solution to the pressure free equation

∂tu+ P(∇·(u⊗ u)) = ν∆u; u(0) = u0
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Proof. Due to our previous discussion it only remains to show that p is smooth and
normalized. We begin by proving that p is smooth. Since∇·(u⊗u) is smooth we have that
so is ∇·∇·(u⊗u). In consequence it is sufficient to show that if f ∈ C∞([0, T ]×Td → R)
is of mean zero then ∆−1f is also smooth of mean zero. Consider m ∈ N. Since f is
smooth on the compact set [0, T ]× Td its derivative ∂mt f takes a maximum M (which is
integrable of course) and hence we deduce from Proposition 2.4 that we may integrate
under the integral sign to obtain

∂mt f̂(t, k) =
∫
Td
∂mt f(t, k)e2πik·xdx = ∂̂mt f(t, k) ∀(t, k) ∈ [0, T ]× Zd.

Therefore we also have that

∂mt ∆̂−1f(t, k) = − (̂∂mt f)(t, k)
4π2|k|2

= ∆−1∂mt f
∧

(t, k), k 6= 0

which, by Plancherel’s Theorem (Theorem 2.19) shows that ∆−1p is smooth in time with

∂mt ∆−1f(t, x) = −
∑

k∈Zd/{0}

∂̂mt f(t, k)
4π2|k|2

e2πik·x.

The smoothness in space is quickly deduced as, by the smoothness of f , the sequence

f̂(t, k)
4π2|k|2

k 6= 0

is rapidly decreasing for each t and hence, by the theory already seen in the Fourier series
preliminaries in equation (2.14), (∆−1f)(t) and in consequence ∆−1f is smooth in space.
With which we conclude the smoothness of p. Finally p is normalized practically by
defintion of ∆−1 as, given f as before,∫

Td
∆−1f(t, x)dx = −

∫
Td

∑
k∈Zd/{0}

f̂(t, k)
4π2k2 e

2πik·xdx = −
∑

k∈Zd/{0}

f̂(t, k)
4π2k2

∫
Td
e2πik·xdx = 0

where the exchange of the sum and the integral is justified due to the absolute convergence
of the series being integrated for each t ∈ [0, T ]. With which we conclude as desired that
solving N.S. for smooth periodic velocity and normalized pressure is equivalent to solving
the pressure free expression (5.16).

It is interesting to note that we have just proved that p is not actually an additional
unknown function, as its value may be determined solely from u via equation (5.18).
Now, we have that equation (5.16) is in the form of a (generalized multicomponent)
non-homogeneous periodic heat equation

∂tu = ν∆u+ F ; u(0) = u0

where in our case F = −P(∇·(u⊗ u)). As we deduced in Chapter 3 when we studied the
heat equation, the unique smooth solution to this equation is given by

u(t, x) = eνt∆u0(x) +
∫ t

0
eν(t−t′)∆F (t′, x)dt′

where we had defined the operator eνt∆ on the space of Sobolev functions by

êνt∆f(k) := e−4π2ν|k|2tf̂(k) ∀f ∈ Hs(Td → Rm).

From this we may derive the following:
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Proposition 5.5. Solving the Navier-Stokes equations for smooth (u, p) with p normalized
is equivalent to obtaining a smooth solution to the pressure free integral equation

u(t, x) = eνt∆u0(x)−
∫ t

0
eν(t−t′)∆P(∇·(u⊗ u))(t′, x)dt′ (5.19)

Proof. Due to our preceding argument it only remains to show that if u is a smooth
function verifying the integral equation (5.19) then u also solves (5.16). To do so note
that since u is smooth so is P(∇·(u⊗ u)) and hence we may, in the same way as justified
in our argument in Chapter 3 on the heat equation, commute the derivative with respect
to t with the sums defined by the Fourier series of the operator eνt∆ and use Leibnitz’s
rule to deduce that u will be a smooth solution to (5.16) with initial velocity u0.

Having reduced our problem thus far, from this moment on our study will center on
the integral equation in (5.19). Our strategy will be to, in subsequent sections, study
this equation when u0 is not necessarily smooth, finding solutions to said equation and
showing that these solutions are smooth if the initial data u0 is smooth as well.

5.3 Mild solutions and their maximal Cauchy develop-
ment

To prove the existence of smooth periodic solutions with normalised pressure to N.S. we
will take inspiration in the proof of the Picard uniqueness theorem for ODE’S. Concretely,
we will begin by supposing that u0 has only a finite amount of regularity and then apply
a fixed point method in a suitable Banach space consisting of finitely regular functions.
In this way we will obtain a (non-smooth) solution u which we shall then prove to be
smooth in the case that u0 be smooth. The Banach space we shall be working with will
be

Xs
T := C0

tH
s
x([0, T ]× Td → Rd) ∩ L2

tH
s+1
x ([0, T ]× Td → Rd) (5.20)

where T > 0 and where

C0
tH

s
x([0, T ]× Td → Rd) := C0([0, T ]→ Hs(Td → Rd))

is the space of continuous functions from [0,T] to the Sobolev space Hs(Td → Rd) and

L2
tH

s
x([0, T ] × Td → Rd) := {u : [0, T ] → Hs(Td → Rd) :

∫ T

0
‖u(t)‖2

Hs(Td→Rd) < ∞}

is the space of “square integrable functions” from [0, T ] to Hs(Td → Rd), where the
integral considered is the Bochner integral. We endow Xs

T with the norm

‖u‖Xs
T

:= ‖u‖C0
tH

s
x([0,T ]×Td→Rd) + ν1/2‖∇u‖L2

tH
s
x([0,T ]×Td→Rd2 )

The first order of business is of course proving that the space in (5.20) is in fact a
Banach space. The only non-trivial matter being the completeness of said space. We
prove this now

Proposition 5.6. Xs
T is a complete and hence a Banach space.
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Proof. We begin by noting that C0
tH

s
x([0, T ] × Td → Rd) is a Banach space as [0, T ] is

compact and Hs(Td → Rd) is complete. Likewise, due to Proposition 2.9,
L2
tH

s
x([0, T ] × Td → Rd) is also complete. In consequence, given a Cauchy sequence

{un}∞n=1 ⊂ Xs
T , by definition of the norm on Xs

T , {un}∞n=1 and {∇un}∞n=1 are Cauchy
sequences in each of these spaces respectively and hence, converge to functions u, f
respectively. It only remains to see that f = ∇u almost everywhere as then we will have
that

‖un − u‖Xs
T

= ‖un − u‖C0
tH

s
x([0,T ]×Td→Rd) + ν1/2‖∇un − f‖L2

tH
s
x([0,T ]×Td→Rd)

n→∞−−−→ 0.

As stated in Proposition 2.9 we may extract a subsequence {∇unk}∞k=1 that converges for
almost all t to f . Therefore, given a Schwartz function φ ∈ S(Td → Rd), we have that,
using our distributional notation of the preliminaries,

〈φ, fj(t)〉 = lim
k→∞
〈φ, ∂junk(t)〉 = lim

k→∞
−〈∂jφ, unk〉 = −〈∂jφ, u(t)〉 for almost all t ∈ [0, T ].

That is, for almost all t, ∇u = f with which we conclude our proof.

This proved, we now formally introduce the concept of mild solutions to the Navier-
Stokes equations.

Definition 5.7. Let T > 0, s ≥ 0 and u0 ∈ Hs(Td → Rd) be divergence free. An Hs mild
solution on [0, T ] to the Navier-Stokes equations with initial data u0 is a function

u ∈ Xs
T

such that for each t ∈ [0, T ] u is a distributional solution to (5.19). Additionally if u is
an Hs mild solution on [0, T ] with initial data u0 for all 0 < T < T ∗ we shall say that u
is an Hs mild solution on [0, T ∗) with initial data u0.

If the value of s and the initial velocity u0 are understood to be fixed we shall sometimes
call such solutions mild solutions on [0, T ], [0, T ∗) respectively. If, furthermore, the value
of T (respectively T∗) is also fixed, we shall call said solutions mild solutions for short.

Note that given T < T ′ we have that Xs
T ∩Xs

T ′ = ∅ and hence there is no intersection
between mild solutions on [0, T ] and mild solutions on [0, T ′]. Nonetheless given u ∈ Xs

T ′

it is clear that the restricted function u
∣∣∣
[0,T ]×Td

∈ Xs
T and hence we will, by abuse of

notation, also consider u as an element of Xs
T and say that u is a mild solution on [0, T ]

as well as on [0.T ′]. This said, we now wish to prove the existence of Hs mild solutions
to the Navier-Stokes equations. To do so we will employ the following results:

Lemma 5.8 (Product estimate). Let u, v be functions in Hs(Td → R)∩L∞(Td → R).
Then uv ∈ Hs(Td → R) with

‖uv‖Hs(Td→R) .d,s ‖u‖Hs(Td→R)‖v‖L∞(Td→R) + ‖u‖L∞(Td→R)‖v‖Hs(Td→R) (5.21)

Proof sketch. It is sufficient to prove this for smooth u and v as then we have that taking
un, vn to be smooth sequences converging to u , v in both Hs(Td → R) and L∞(Td → R)
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(the existence of such a sequence is established via convolutions with an approximation
of unity whenever one wishes to show that C∞(Td → R) is dense in L2(Td → R)

‖uv‖Hs(Td→R) = lim
n→∞

‖unvn‖Hs(Td→R) .d,s lim
n→∞

‖un‖Hs(Td→R)‖vn‖L∞(Td→R)

+ lim
n→∞

‖un‖L∞(Td→R)‖vn‖Hs(Td→R)

= ‖u‖Hs(Td→R)‖v‖L∞(Td→R) + ‖u‖L∞(Td→R)‖v‖Hs(Td→R).

A proof of the inequality for u, v smooth may be proved by utilizing Littlewood-Paley
theory, see for example [16], pages 42-43.

We mention that the euclidean (non-periodic) analogue to the above Lemma also holds.
As a quick corollary of the previous result and Lemma 2.22 we have that if u, v are in
Hs(Td → R) for s > d

2 then

‖uv‖Hs(Td→R) . ‖u‖Hs(Td→R)‖v‖Hs(Td→R) (5.22)

and therefore Hs(Td → R) is a Banach algebra1 for s > d
2 . To prove the existence of mild

solutions we shall need the following proposition, which will be our go to inequality in
many propositions and theorems to come.

Lemma 5.9 (Main estimate). Let T > 0, s ≥ 0, u0 ∈ Hs(Td → Rd),
F ∈ L1

tH
s
x([0, T ]× Td → Rd) and G ∈ L2

tH
s
x([0, T ]× Td → Rd2) and set

u(t, x) := eνt∆u0(x) +
∫ t

0
eν(t−t′)∆(F +∇·G)(t′, x)dt′ (5.23)

we have that u ∈ C0
tH

s
x([0, T ]× Td → Rd), ∇u ∈ L2

tH
s
x([0, T ]× Td → Rd2) and u verifies

the inequality

‖u‖C0
tH

s
x([0,T ]×Td→Rd) + ν1/2‖∇u‖L2

tH
s
x([0,T ]×Td→Rd2 ) .d,s ‖u0‖Hs(Td→Rd)

+ ‖F‖L1
tH

s
x([0,T ]×Td→Rd) + ν−1/2‖G‖L2

tH
s
x([0,T ]×Rd→Rd2 ) (5.24)

Proof. We begin by noting that the integral in (5.23) is meant in the sense the Bochner
integral of the function [0, T ] → Hs(Td → Rd); t 7→ eν(t−t′)∆(F + ∇·G)(t′). We now
estimate the terms on the left hand side of (5.24) one by one. To simplify notation we set

h(t, x) :=
∫ t

0
eν(t−t′)∆F (t′, x)dt′; g(t, x) :=

∫ t

0
eν(t−t′)∆∇·G(t′, x)dt′.

We already now from the heat equation that for each t eνt∆ is a non expansive operator
on Hs(Td → Rd). In particular for each t ∈ [0, T ]∥∥∥eνt∆u0

∥∥∥
Hs([0,T ]×Td→Rd)

≤ ‖u0‖Hs([0,T ]×Td→Rd) (5.25)

which of course gives ∥∥∥eνt∆u0

∥∥∥
C0
tH

s
x([0,T ]×Td→Rd)

≤ ‖u0‖Hs(Td→Rd).

1A Banach algebra is a Banach space (X, ‖‖X) with a product that verifies that for all f, g ∈ X
‖fg‖X ≤ ‖f‖X‖g‖X . See for instance [2].
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Once more by the non-expansiveness of eνt∆, and using the fact that the norm of the
integral is smaller or equal to the integral of the norm, we obtain that

‖h(t)‖Hs(Td→Rd) ≤
∫ t

0

∥∥∥eν(t−t′)∆F (t′)
∥∥∥
Hs(Td→Rd)

dt′ ≤
∫ T

0
‖F (t′)‖Hs(Td→Rd)dt

′

= ‖F‖L1
tH

s
x([0,T ]×Td→Rd)

and hence also
‖h‖C0

tH
s
x([0,T ]×Td→Rd) ≤ ‖h‖L1

tH
s
x(Td→Rd) (5.26)

By using Fubini’s theorem (which we may do as ‖G(t′)‖Hs
x(Td→Rd) is square integrable and

hence integrable on the compact interval [0, t]) and (2.25) for the Fourier transform of the
derivatives of tempered distributions, we obtain that for each k ∈ Z

ĝ(t, k) =
∫
Td
g(t, x)e−2πik·xdx =

∫
Td

(∫ t

0
eν(t−t′)∆∇·G(t′, x)dt′

)
e−2πik·xdx

=
∫ t

0

(∫
Td
eν(t−t′)∆∇·G(t′, x)e−2πik·xdx

)
dt′ =

∫ t

0
eν(t−t′)∆∇·G
∧

(t′, k)dt′

=
∫ t

0
e−4π2ν|k|2(t−t′)2πik·Ĝ(t′, k)dt′ (5.27)

from where we deduce that

‖g(t)‖2
Hs(Td→Rd) =

∑
k∈Zd
〈k〉2s

∣∣∣∣∫ t

0
e−4π2ν|k|2(t−t′)2πik·Ĝ(t′, k)dt′

∣∣∣∣2

≤
∑
k∈Zd

4π2|k|2〈k〉2s
(∫ t

0
e−4π2ν|k|2(t−t′)

∣∣∣Ĝ(t′, k)
∣∣∣dt′)2

(5.28)

Now, by applying Cauchy-Schwartz’s inequality we obtain that

‖g(t)‖2
Hs(Td→Rd) ≤

∑
k∈Zd

4π2|k|2〈k〉2s
∫ t

0
e−8π2ν|k|2(t−t′)dt′

∫ t

0

∣∣∣Ĝ(t′, k)
∣∣∣2dt′.

The first integral in the above is, by a variable change, lower or equal to (8π2ν|k|2)−1 and
in consequence, by an application of the monotone convergence theorem, we have that

‖g(t)‖2
Hs(Td→Rd) . ν−1 ∑

k∈Zd
〈k〉2s

∫ t

0

∣∣∣Ĝ(t′, k)
∣∣∣2dt′ = ν−1‖G‖2

L2
tH

s
x([0,t]×Td→Rd)

which gives the type of estimate we are aiming for in

‖g‖C0
tH

s
x(Td→Rd) . ν−1/2‖G‖L2

tH
s
x([0,T ]×Td→Rd).

By applying the monotone convergence theorem and once again the Cauchy-Schwartz
inequality we deduce in turn that

∥∥∥∇eνt∆u0

∥∥∥2

L2
tH

s
x([0,T ]×Td→Rd2 )

∼
∫ T

0

∑
k∈Zd
〈k〉2s|k|2e−4π2ν|k|2t|û0(k)|2dt

.
∑
k∈Zd
〈k〉2s|k|2|k|−2

∫ T

0
|û0(k)|2dt = ‖u0‖2

L2
tH

s
x([0,T ]×Td→Rd) (5.29)
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which gives us the inequality we’re looking for in∥∥∥∇eνt∆u0

∥∥∥
L2
tH

s
x([0,T ]×Td→Rd2 )

. ‖u0‖L2
tH

s
x([0,T ]×Td→Rd).

To estimate the term ‖∇g(t)‖2
L2
tH

s
x([0,T ]×Td→Rd2 ) we employ Theorem 2.8 (Young’s inequal-

ity). Let us set in accordance with (5.27)

Ik :=
∫ T

0

∣∣∣∣∫ t

0
e−4π2ν|k|2(t−t′)Ĝ(t′, k)dt′

∣∣∣∣2dt =
∫
R

∣∣∣∣∫
R
K(t, t′)Ĝ(t′, k)dt′

∣∣∣∣2dt
where K is defined by

K(t, t′) :=

e−4π2ν|k|2(t−t′) (t, t′) ∈ [0, T ]× [0, t]
0 (t, t′) /∈ [0, T ]× [0, t]

.

We have that ∫
R
K(t, t′)dt =

∫ T

t′
e−4π2ν|k|2(t−t′)dt ≤ 1

4π2ν|k|2∫
R
K(t, t′)dt′ =

∫ t

0
e−4π2ν|k|2(t−t′)dt′ ≤ 1

4π2ν|k|2

and since Ĝ(t′, k) ∈ L2([0, T ]→ Rd2) so does Ĝ(t′, k)χ[0,T ](t′) and we may apply Young’s
inequality with p = q = 2, r = 1 to obtain that

Ik =
∥∥∥∥∫

R
K(t, t′)(Ĝ(t′, k)χ[0,T ](t′))dt′

∥∥∥∥2

L2(R→Rd)
.

1
ν2|k|4

∫ T

0

∣∣∣Ĝ(t′, k)
∣∣∣2dt′.

This last inequality gives us the desired bound as we have that by (2.25) and by (5.27)
to do so we begin by obtaining a bound for the term

‖∇g‖2
L2
tH

s
x([0,T ]×Td→Rd2 ) ∼

∑
k∈Zd
〈k〉2s|k|4Ik .

∑
k∈Zd
〈k〉2sν−2

∫ T

0

∣∣∣Ĝ(t′, k)
∣∣∣2dt′ (5.30)

which, by commuting the sum with the integral (which is justified by the monotone
convergence theorem) and taking square roots on both sides gives

‖∇g‖L2
tH

s
x([0,T ]×Td→Rd2 ) . ν−1‖G‖L2

tH
s
x([0,T ]×Td→Rd)

as desired. We now must bound the term

‖∇h‖L2
tH

s
x([0,T ]×Td→Rd2 ) =

∥∥∥∥∇ ∫ t

0
eν(t−t′)∆F (t′, k)dt′

∥∥∥∥
L2
tH

s
x([0,T ]×Td→Rd2 )

∼

∑
k∈Zd
〈k〉2s|k|2

∫ T

0

∣∣∣∣∫ t

0
e−4π2ν|k|2(t−t′)F̂ (t′, k)dt′

∣∣∣∣2dt
 1

2

(5.31)

where the last line may be obtained by applying Fubini just as in (5.27). To do so we
begin by obtaining a bound for the terms

∫ T

0

∣∣∣∣∫ t

0
e−4π2ν|k|2(t−t′)F̂ (t′, k)dt′

∣∣∣∣2dt (5.32)
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To achieve this we will again use the function K and apply Young’s inequality, where, we
will now set p = 1, q = r = 2. We have that

‖K(t)‖L2(R→R) . |k|
−1; ‖K(t′)‖L2(R→R) . |k|

−1

and hence Young’s inequality gives

∫ T

0

∣∣∣∣∫ t

0
e−4π2ν|k|2(t−t′)F̂ (t′, k)dt′

∣∣∣∣2dt . |k|−2
(∫ T

0

∣∣∣F̂ (t′, k)
∣∣∣dt′)2

.

By substituting this back into (5.31) and now applying Minkowski’s integral inequality
(2.8) we obtain that

‖∇h‖L2
tH

s
x([0,T ]×Td→Rd2 ) .

∑
k∈Zd
〈k〉2s|k|2|k|−2

(∫ T

0

∣∣∣F̂ (t′, k)
∣∣∣dt′)2

 1
2

=
∑
k∈Zd

(∫ T

0
〈k〉s

∣∣∣F̂ (t′, k)
∣∣∣dt′)2

 1
2

≤
∫ T

0

∑
k∈Zd
〈k〉2s

∣∣∣F̂ (t′, k)
∣∣∣2dt′

 1
2

= ‖F‖L1
tH

s
x([0,T ]×Td→Rd) (5.33)

as desired. Having obtained all our desired bounds it only remains to justify the continuity
in t of the terms eνt∆u0, h(t) and g(t). This is done without much difficulty thanks to the
the smoothing properties of the negative exponentials e−4π2ν|k|2t.

In the smooth case (i.e. u0, F smooth) we all ready proved that the function u defined
in (3.10) solves the inhomogeneous heat equation (3.1) our next proposition generalizes
this for the case when u0, F are now only supposed to be square integrable.

Proposition 5.10 (Distributional solution to the heat equation). Let u0 be in
L2(Td → Rd), F ∈ L2([0, T ]× Td → Rd), then the function

u(t, x) = eνt∆u0(x) +
∫ t

0
eν(t−t′)∆F (t′, x)dt′

is a distributional solution to the inhomogeneous heat equation

∂tu = ν∆u+ F ; u(0) = u0.

Proof. As we observed in Proposition 3.3 (the instantaneous smoothing effect for the heat
equation), we have that eνt∆u0 solves the inhomogeneous heat equation for almost all t
and hence, it is a distributional solution to the inhomogeneous heat equation. That is, by
writing P := ∂t−ν∆ and using our distributional notation introduced in the preliminaries

〈φ, P (eνt∆u0)〉 :=
∫

[0,T ]×Td
φP (eνt∆u0)dtdx = 0 ∀φ ∈ C∞([0, T ]× Td → Rd).

It therefore only remains to show that

∂t

∫ t

0
eν(t−t′)∆F (t′, x)dt′; ∆

∫ t

0
eν(t−t′)∆F (t′, x)dt′
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exist as tempered distributions and that the distributional equality

P
(∫ t

0
eν(t−t′)∆F (t′, x)dt′

)
= F

holds, as we would then have that P (u) = F as desired. Let us define given
f ∈ L2([0, T ]× Td → Rd) the operators S, L by

(S(f))(t, x) :=
∫ t

0
eν(t−t′)∆f(t′, x)dt′

(L(f))(t, x) :=
∑
k∈Zd

(∫ t

0
−4π|k|2e−4π2|k|2(t−t′)f̂(t′, k)dt′

)
e2πik·x

We will first show that the functions on the right hand side are indeed well defined as
functions in a suitable space by using the bounds of our main estimate lemma. Note that

L2([0, T ]× Td → Rd) = L2
tL

2
x([0, T ]× Td → Rd) = L2

tH
0
x([0, T ]× Td → Rd).

Now, we have that, by using basic inequalities that employ the sup, the inequality in
(5.26) (where now s = 0) and the Cauchy-Schwartz inequality that

‖S(f)‖L2([0,T ]×Td→Rd) ≤ T
1
2‖S(f)‖C0

t L
2
x([0,T ]×Td→Rd) ≤ T

1
2‖f‖L1

tL
2
x([0,T ]×Td→Rd)

≤ T‖f‖L2
tL

2
x([0,T ]×Td→Rd) (5.34)

which justifies that indeed S(f) is in L2([0, T ]×Td → Rd) and is in particular a distribu-
tion. For the second term we have that

‖L(f)‖L2([0,T ]×Td→Rd) =
∫ T

0

∑
k∈Zd

∣∣∣∣∫ t

0
−4π|k|2e−4π2|k|2(t−t′)f̂(t′, k)dt′

∣∣∣∣2
 1

2

∼

∑
k∈Zd
|k|4

∫ T

0

∣∣∣∣∫ t

0
e−4π2|k|2(t−t′)f̂(t′, k)dt′

∣∣∣∣2
 1

2

. ν−1‖f‖L2
tL

2
x([0,T ]×Td→Rd) (5.35)

where in the above we employed the monotone convergence theorem and an identical
justification as to the one in (5.30). Now, by our study of the heat equation, we know
that if f were smooth then we would have that

∆S(f) = L(f); ∂tS(f) = νL(f) + f (5.36)

that is, S(f) would be a classical, and hence distributional solution, to the inhomogeneous
heat equation with initial condition 0 and “forcing term” f . This said, let us now consider
a smooth sequence {Fn}∞n=1 converging to F in L2([0, T ] × Td → Rd). By applying the
bounds obtained in (5.34) and (5.35) to F −Fn we deduce that S(Fn) and L(Fn) converge
respectively to S(F ) and L(F ) in L2([0, T ] × Td → Rd), and hence, by the Cauchy-
Schwartz inequality, also as distributions . Since the Fn are smooth this allows us to
conclude by (5.36) that for any smooth function φ,

〈φ, L(Fn)〉 = 〈∆φ, S(Fn)〉 n→∞−−−→ 〈∆φ, S(F )〉 (5.37)
〈φ, νL(Fn) + Fn)〉 = −〈∂tφ, S(Fn)〉 n→∞−−−→ −〈∂tφ, S(F )〉.
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By again using the distributional convergence of S(Fn), L(Fn) (in addition to that of Fn)
we also deduce that

〈φ, L(Fn)〉 n→∞−−−→ 〈φ, L(F )〉; 〈φ, νL(Fn) + Fn〉
n→∞−−−→ 〈φ, νL(F ) + F 〉

which combined with (5.37) gives the distributional equality

∆S(F ) = L(F ); ∂tS(F ) = νL(F ) + F

with which we conclude as desired that

P (u) = P (eνt∆u0 + S(F )) = 0 + (νL(F ) + F )− νL(F ) = F

which concludes our proof as ,by definition of u, u(0) = u0.

Our next theorem proves the existence of mild solutions to the Navier-Stokes equations.
As in the heat equation the presence of the viscosity term ν > 0 provides a dampening
effect and will allow us to ensure a greater time existence of mild solutions the greater it
is. On the other hand the larger the initial data is, the more localized these solutions will
be.

Theorem 5.11 (Existence of mild solutions). Let s > d
2 and let u0 ∈ Hs(Td → Rd)

be divergence free. Then there exists

T0 &d,s
ν

‖u0‖2
Hs(Td→Rd)

and an Hs mild solution on [0, T0]. Additionally if u1, u2 are two Hs mild solutions on
[0, T ] for some T ∈ R+ then u1 = u2.

Proof. As anticipated we shall use a fixed point method. Given u ∈ Xs
T we define

Φ(u)(t, x) := eνt∆u0(x)−
∫ t

0
eν(t−t′)P(∇·(u⊗ u))(t′, x)dt′ ∀t ∈ [0, T ] (5.38)

where, as previously observed, we are using the notation

P(∇·(u⊗ u))(t′, x) := (P(∇·(u⊗ u)(t′))(x)

and where the above integral is (as previously observed in Lemma 5.9) a Bochner integral.
We wish to show that Φ defines a contraction

Φ : Xs
T → Xs

T .

To do so we begin by showing that indeed Φ(u) ∈ Xs
T .

I) Φ(u) ∈ XT
s : due to the inequality derived in (5.22) we deduce on taking components

that (u⊗ u)(t) ∈ Hs(Td → Rd) for each t ∈ [0, T ] with

‖(u⊗ u)(t)‖Hs(Td→Rd2 ) .d,s ‖u(t)‖2
Hs(Td→Rd) (5.39)

from where we may deduce that (u ⊗ u) ∈ C0
tH

s
x([0, T ] × Td → Rd2). To do so fix any

time t′ and set
vt(t̃) := u(t̃+ t− t′) ∀ t̃ ∈ [t′ − t, T + t′ − t]
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by using (5.22) and the fact that u ∈ Xs
T we have that

lim
t→t′
‖(u⊗ u)(t)− (u⊗ u)(t′)‖Hs(Td→Rd2 ) = lim

t→t′
‖(vt ⊗ vt)(t′)− (u⊗ u)(t′)‖Hs(Td→Rd2 )

= 1
2 lim
t→t′
‖((vt − u)⊗ (vt + u))(t′) + ((vt + u)⊗ (vt − u))(t′)‖Hs(Td→Rd2 )

. lim
t→t′
‖(vt − u)(t′)‖Hs(Td→Rd)‖(vt + u)(t′)‖Hs(Td→Rd) = 0 (5.40)

Now, as we saw in (4.7), P is a non-expansive map on Hs(Td → Rd2) which implies that
also

P(u⊗ u) ∈ C0
tH

s
x([0, T ]× Td → Rd2),

where we define P((u⊗ u)) by P((u⊗ u))i := P(uiu). Observe additionally that

C0
tH

s
x([0, T ]× Td → Rd) ⊂ L2

tH
s
x([0, T ]× Td → Rd)

with

‖u‖L2
tH

s
x[0,T ]×Rd→Rd) ≤

(
T‖u‖2

C0
tH

s
x([0,T ]×Td→Rd)

)1/2
= T 1/2‖u‖C0

tH
s
x([0,T ]×Td→Rd) (5.41)

In particular
P((u⊗ u)) ∈ L2

tH
s
x([0, T ]× Td → Rd2) (5.42)

By a quick verification of Fourier coefficients we have that P commutes with ∇· and hence
we may apply Lemma 5.9 with F = 0, G = P(u ⊗ u)(t), which is justified by (5.42) and
the fact that by hypothesis u0 ∈ Hs(Td → Rd), to deduce that Φ(u) ∈ Xs

T and

‖Φ(u)‖Xs
T
.d,s ‖u0‖Hs(Td→Rd) + ν−1/2‖P(u⊗ u)(t)‖L2

tH
s
x([0,T ]×Td→Rd2 ) (5.43)

II) Φ (when appropriately restricted) is a contraction: from (5.43), the non-expansiveness
of P and (5.39) we deduce that

‖Φ(u)‖XT
s
.d,s ‖u0‖Hs(Td→Rd) + ν−1/2T 1/2‖u‖2

C0
tH

s
x([0,T ]×Rd)

≤ ‖u0‖Hs(Td→Rd) + ν−1/2T 1/2‖u‖2
Xs
T

(5.44)

i.e. there exists some positive constant λd,s depending only on d and s such that

‖Φ(u)‖Xs
T
≤ λd,s

(
‖u0‖Hs(Td→Rd) + ν−1/2T 1/2‖u‖2

Xs
T

)
(5.45)

If we now set

R0 = 2λd,s‖u0‖Hs(Td→Rd); T0 ≤ (2λd,s)−4ν‖u0‖−2
Hs(Td→Rd) (5.46)

we deduce from (5.45) that if u ∈ B̄(0, R0) ⊂ Xs
T0 then

‖Φ(u)‖Xs
T0
≤ 2λd,s‖u0‖Hs(Td→Rd) = R0

and hence that the restriction Φ : B̄(0, R0) → B̄(0, R0) is an endomorphism. A further
estimate gives that, by a similar reasoning as the one used to deduce equation (5.45),

‖Φ(u)− Φ(v)‖Xs
T
.d,s T

1/2ν−1/2‖(u⊗ u)− (v ⊗ v)‖C0
tH

s
x([0,T ]×Td→Rd2 )

.d,s T
1/2ν−1/2‖u+ v‖C0

tH
s
x([0,T ]×Td→Rd)‖u− v‖C0

tH
s
x([0,T ]×Td→Rd)

≤ 2T 1/2ν−1/2R0‖u− v‖Xs
T

(5.47)
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and hence for T0 < 16−1 min{λ−4
d,s, λ

−2
d,s}ν‖u0‖−2

Hs(Td→Rd)

Φ : B̄(0, R0)→ B̄(0, R0) ⊂ Xs
T0 (5.48)

will be a contraction and will therefore have a unique fixed point u ∈ B̄(0, R) ⊂ Xs
T0 .

Before moving on to the next point observe that, the constant ν being fixed, in our previous
discussion the value of T0 such that (5.48) is a contraction may be chosen dependent only
on R0, d, s. The value of R0 in turn being chosen dependent only on ‖u0‖Hs(Td→Rd), d, s.
In the future we will use the notation

R0 = R
(
‖u0‖Hs(Td→Rd), d, s

)
; T0 = T (R0, d, s)

to denote the previously calculated radius and time for which Φ as in (5.48) is a contrac-
tion.

III) Uniqueness of mild solutions: since we have only proved that the restriction of Φ is
a contraction on B̄(0, R) we have not yet proved the uniqueness of Hs mild solutions. As
we have not yet ruled out the existence of another Hs mild solution on B(0, R′) for some
R′ > R. Let us consider two Hs mild solutions u1, u2 on some interval [0, T ]. To prove
uniqueness we will use our previous observation and carry out an argument similar to the
one used in ODE’S to prove Cauchy’s existence and uniqueness theorem. Let

r := max{‖u1‖Xs
T
, ‖u2‖Xs

T
}

and
R′0 := max{r, R(r, d, s)}

then as we just saw in the previous point, we may choose T0 ≤ T depending only on
d, s, R′0 such that (5.48) is a contraction. By hypothesis, u1 and u2 are fixed points of the
function Φ in (5.48) and therefore, are equal on the time interval [0, T0) ⊂ [0, T ). We now
repeat this argument using the translated functions

vi(t, x) := ui(t+ T0, x), i = 1, 2

which are now in Xs
T−T0 . We note that the integral equation in (5.19) is translation

invariant as, the fact that ui solve (5.19) implies that

eνt∆vi(0, x)−
∫ t

0
eν(t−t′)∆P(∇·(vi ⊗ vi))(t′, x)dt′

= eν∆tui(T0, x)−
∫ t

0
eν(t−t′)∆P(∇·(ui ⊗ ui))(t′ + T0, x)dt′

= eνt∆
(
eνT0∆u0(x)−

∫ T0

0
eν(T0−t′)∆P(∇·(ui ⊗ ui))(t′, x)dt′

)

−
∫ t+T0

T0
eν(t+T0−t′)∆P(∇·(ui ⊗ ui))(t′, x)dt′

= eν(t+T0)∆u0(x)−
∫ t+T0

0
eν(t+T0−t′)∆P(∇·(ui ⊗ ui))(t′, x)dt′

= ui(t+ T0, x) = vi(t, x)
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where we used the fact that the Leray projection and the derivatives are taken in the
spatial coordinate and hence not affected by the time translation, the variable change
t′ → t′ − T0 and the equality

eνt∆eνT0∆f = eν(t+T0)∆f ∀f ∈ Hs(Td → Rd)

which may be quickly checked by verifying that the Fourier coefficients on both sides are
equal. Thus, we have that vi are fixed points of the “modified” endomorphism

Φ̃ : Xs
T−T0 → Xs

T−T0

Φ̃(u)(t, x) := eνt∆u(T0, x) +
∫ t

0
eν(t−t′)∆P(∇·(u⊗ u))(t′, x)dt′ ∀t ∈ [0, T − T0]

Suppose that T0 < T − T0. Then note that since, for all u, v ∈ Xs
T0∥∥∥Φ̃(u)− Φ̃(v)

∥∥∥
Xs
T0

= ‖Φ(u)− Φ(v)‖Xs
T0

and since
Φ : B̄(0, R′0)→ B̄(0, R′0) ⊂ Xs

T0

is a contraction we will also have that

Φ̃ : B̄(0, R′0) ⊂ Xs
T0 → Xs

T0

will be a contraction (note that we don’t actually know that Φ̃ maps B̄(0, R′0) to itself).
Clearly we have that, since T0 ≤ T ,

‖vi‖Xs
T0
≤ ‖ui‖Xs

T

and therefore vi ∈ B̄(0, R′0) ⊂ Xs
T0 , subset on which Φ̃ is a contraction. Since, due to the

translation invariance of (5.19), vi are fixed points of Φ̃ which implies that v1 = v2 on
[0, T0]. Where it was used that, though a contractive mapping need does not necessarily
have a fixed point, if it has one said fixed point is unique. We deduce by the definition of
vi and by the fact that the ui already coincided on [0, T0), that u1 = u2 on [0, 2T0). If on
the other hand T0 ≥ T − T0 then we have that∥∥∥Φ̃(u)− Φ̃(v)

∥∥∥
Xs
T−T0

= ‖Φ(u)− Φ(v)‖Xs
T−T0

≤ ‖Φ(u)− Φ(v)‖Xs
T0

and hence, we obtain directly by the previous reasoning that v1 = v2 on [0, T − T0] and
in consequence u1 = u2. Iterating this process until T0 ≥ T − nT0 we obtain that u1 = u2
on the whole interval [0, T ], concluding our proof.

In our next proposition we will prove that the mild solution to N.S. that we constructed
in our previous theorem depends continuously on the initial data. We will use the notation

Hs(Td → Rd)∇,0

to denote the subset of functions of Hs(Td → Rd) that are of divergence zero.
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Proposition 5.12. Let s > d
2 , u0 ∈ Hs(Td → Rd)∇,0 and u be the Hs mild solution on

[0, T0] to the Navier-Stokes equations with initial data u0 constructed in Theorem 5.11.
Then, given T < T0, there exists a neighbourhood U of u0 in Hs(Td → Rd)∇,0 and a
Lipschitz continuous mapping

F : U → Xs
T ; v0 7→ v

that maps v0 to an Hs mild solution v on [0, T ].

Proof. We begin by showing that the mapping F indeed exists. Let us define

T̂0 < 16−1 min{λ−4
d,s, λ

−2
d,s}ν(‖u0‖Hs(Td→Rd) + ε)−2 (5.49)

where ε is taken small enough that T̂0 = T (which is possible by the definition of T0 given
in the previous theorem). Now let us set U := B(u0, ε) ⊂ Hs(Td → Rd)∇,0 and let us
consider v0 ∈ U . We define given f ∈ Xs

T0

Φ̃(f)(t, x) := eνt∆v0(x)−
∫ t

0
eν(t−t′)P(∇·(f ⊗ f))(t′, x)dt′ ∀t ∈ [0, T0] (5.50)

As we saw in Theorem 5.11 we have that for

R̃0 = 2λd,s‖v0‖Hs(Td→Rd); T̃0 < 16−1 min{λ−4
d,s, λ

−2
d,s}ν‖v0‖−2

Hs(Td→Rd), (5.51)

where λd,s are as in the previous theorem, we obtain a contraction

Φ̃ : B(0, R̃0) ⊂ Xs
T̃0
→ B(0, R̃0) ⊂ Xs

T̃0
.

Since T̂0 < T̃0 we also have that

Φ̃ : B(0, R̃0) ⊂ Xs
T̂0
→ B(0, R̃0) ⊂ Xs

T̂0
. (5.52)

is a contraction and thus has a unique fixed point v, which, by definition of Φ̃ is an Hs

mild solution with initial data v0 to N.S. on [0, T̂0]. We have thus obtained an image v
for v0 under the mapping F . Proving that F exists.

It only remains to see that F is Lipschitz-continuous. Given w0 ∈ U let us denote its
image by F by w := F (w0). Now, by the same reasoning used to obtain the inequality in
(5.47), we obtain that

‖w − v‖Xs
T̂0
≤ λd,s

(
‖w0 − v0‖Hs

x(Td→Rd) + T̂
1/2
0 ν−1/2‖w + v‖Xs

T̂0
‖w − v‖Xs

T̂0

)
(5.53)

Now using that, by (5.52), ‖v‖Xs
T̂0
≤ 2λd,s‖v0‖Hs(Td→Rd) and that, by an analogous rea-

soning, ‖w‖Xs
T̂0
≤ 2λd,s‖w0‖Hs(Td→Rd), gives that (5.53) is lower or equal to

λd,s

{
‖w0 − v0‖Hs

x(Td→Rd) + 2λd,sT̂0
1/2
ν−1/2

(
‖w0‖Hs

x(Td→Rd) + ‖v0‖Hs
x(Td→Rd)

)
‖w − v‖Xs

T̂0

}
(5.54)

Now note that, by (5.49), there exists 0 < γ < 1 (independent of ε, u0 and v0) such that

T̂0
1/2 = (1− γ)4−1λd,sν

1/2‖u0‖−2
Hs(Td→Rd).
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From where we deduce that

2λd,sT̂0
1/2
ν−1/2

(
‖w0‖Hs

x(Td→Rd) + ‖v0‖Hs
x(Td→Rd)

)
= (1− γ)

‖w0‖Hs
x(Td→Rd) + ‖v0‖Hs

x(Td→Rd)

2‖u0‖Hs
x(Td→Rd)

≤ (1− γ)
2‖u0‖Hs

x(Td→Rd) + 2ε
2‖u0‖Hs

x(Td→Rd)
(5.55)

which may be made smaller than 1 by taking ε as small as necessary. The previous three
equations now give that

‖w − v‖Xs
T̂0
≤ λd,s‖w0 − v0‖Hs

x(Td→Rd) +K‖w − v‖Xs
T̄0

where K is a constant (which may depend on d, s) smaller than 1. From this last
expression it is immediate that

‖F (w0)− F (v0)‖Xs
T̄0

= ‖w − v‖Xs
T̄0
≤ λd,s

1−K ‖w0 − v0‖Hs
x(Td→Rd).

Since 1−K > 0 we deduce the Lipschitz continuity of F , as desired.

In the future we will see that Hs mild solutions are unique on the interval where they
are defined and hence, the previous proposition will give a stability condition not just for
the Hs mild solutions that we previously constructed, but for all of them (as the one that
we constructed is the only one on its time interval for a given initial data) on the time
interval [0, T0]. Before proving uniqueness of mild solutions we now prove the Hs mild
analogue of the maximal Cauchy development theorem for ODE’s.
Theorem 5.13. Given s > d/2 and a divergence free function u0 ∈ Hs(Td → Rd) there
exists T∗ ∈ R+ and an Hs mild solution u on [0, T∗) such that if T∗ <∞ then

lim
t→T−∗

‖u(t)‖Hs(Td→Zd) =∞.

Furthermore T∗ and u are unique.

Proof. Let I ⊂ R+ be the union of all intervals [0, T ] on which mild Hs solutions exist.
Clearly I is connected and hence an interval. By the uniqueness of Hs mild solutions,
which was proved in the previous theorem, we may “glue together” solutions to obtain an
Hs mild solution u on all of I. That is, given t ∈ I we define

u(t, x) := ut(t, x)
where ut is an Hs mild solution on some interval containing t (which exists by construction
of I). The uniqueness of the preceding theorem being what guarantees that u is indeed
well defined and independent of the ut chosen.

Additionally I is open on the right as if t0 ∈ I then, by considering the time translated
problem as in the proof of the previous theorem, we deduce that for

T0 = T
(
‖u(t0)‖Hs(Rd→Rd), d, s

)
we have that [t0, t0 +T0] is also in I. We may thus write I = [0, T∗) where T∗ is potentially
infinite. From here we already see that the only thing preventing us from proving that
T∗ =∞ by gluing together a sequence of solutions is the fact that the norm ‖u(t0)‖Hs(Rd→Rd)
may go to infinity as t0 becomes larger and larger. This will be the idea we use in the
remaining part of our proof.
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It remains to see that if T∗ is finite then there can be no sequence {tn}∞n=1 ⊂ [0, T∗)
converging to T∗ such that ‖u(tn)‖Hs(Td→Rd) is bounded. We reason by contradiction.
Suppose that such a sequence exists and let

M := sup
n∈N
‖u(tn)‖Hs(Td→Rd).

We now consider the radius and time

R0 := R(M,d, s); T0 := T (R0, d, s)

and we take some time tn0 with T∗ < T0 + tn0 , which is of course possible as tn → T∗.
We now aim to show that we may construct an Hs mild solution on [0, tn0 + T0]. This
would contradict the definition of I as, by construction of I, we would necessarily have
that [0, tn0 + T0] ⊂ [0, T∗) which is absurd as T∗ < tn0 + T0.

Now, the existence of such a solution is a direct consequence of what we have seen in
Theorem 5.11 as we have that by construction of T0 and R0 the function

Φ̃(u)(t, x) := eνt∆u(tn0 , x)−
∫ t

0
eν(t−t′)∆P(∇·(u⊗ u))(t′, x)dt′ ∀t ∈ [0, T0]

defines a contraction
Φ̃ : B̄(0, R0)→ B̄(0, R0) ⊂ Xs

T0

and therefore there it has a fixed point v. We now “glue” the translation of v to u defining

f(t) :=

u(t) t ∈ [0, tn0 ]
v(t− tn0) t ∈ [tn0 , tn0 + T0].

We have that f is well defined as, by construction of v,

v(0, x) = Φ̃(v)(0, x) = u(tn0 , x) ∀x ∈ Td

and hence f is also in Xs
tn0+T0 . It remains to see that f is a fixed point of Φ as in (5.38)

where now T = tn0 + T0. Let t ∈ [tn0 , tn0 + T0] then, by a similar procedure as to when
we showed the translation invariance of Φ, we have that

Φ(f)(t, x) = eνt∆u0(x)−
∫ t

0
eν(t−t′)P(∇·(f ⊗ f))(t′, x)dt′

= eνt∆u0(x)−
∫ tn0

0
eν(t−t′)P(∇·(u⊗ u))(t′, x)dt′

−
∫ t

tn0

eν(t−t′)P(∇·(v ⊗ v))(t′ − tn0 , x)dt′

= eνt∆u(tn0 , x)−
∫ t−tn0

0
eν(t−tn0−t

′)P(∇·(v ⊗ v))(t′, x)dt′

= Φ̃(v)(t− tn0 , x) = v(t− tn0 , x) = f(t, x),

where it was used that u and v are fixed points of Φ and Φ̃ respectively. By a simple
reasoning it is in turn clear that

Φ(f)(t, x) = Φ(u)(t, x) = u(t, x) ∀t ∈ [0, tn0 ]

and hence f is a fixed point of Φ and therefore an Hs mild solution on [0, tn0 +T0], which
is a contradiction as previously discussed, and with which we conclude our proof as the
uniqueness of (u, T∗) is trivial.
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5.4 Blow-up time and regularity of solutions

In the preliminaries on ODEs we already discussed how given an ODE its maximal solution
is locally defined in time if and only if said solution blows up in finite time. As we have seen
in our preceding theorem an analogous statement also holds in the case of mild solutions
to the Navier-Stokes equations. We will for this reason use the following terminology

Definition 5.14. Let s, d, u0, u, T∗ be as in the maximal Cauchy development of Theorem
5.13. Then we will say that T∗ is the blow-up time of the Navier-Stokes equations with
initial data u0.

Note that in Theorem 5.13 the value of s was fixed and hence it would be conceivable
that the maximal time existence T∗ for Hs mild solutions would depend on s. A require-
ment of higher regularity hypothetically implying a smaller time existence for the unique
Hs mild solution. But, on the contrary, this is not the case. As we shall see in our next
theorem the blow-up time is independent of s (and indeed so are the Hs mild solutions
themselves). To prove this we begin by proving an intermediary proposition.

Proposition 5.15. Let u, u0, s, d, T∗ be as in Theorem 5.13. Then if T∗ < ∞ we have
that

‖u‖L∞([0,T∗)×Td→Rd) =∞ (5.56)
In consequence (whether T∗ is finite or not)

T∗ = sup{T ∈ R : ‖u‖L∞([0,T ]×Td→Rd) <∞} (5.57)

Proof. We begin by proving the part of our proposition corresponding to (5.56). Suppose
to the contrary that T∗ <∞ and

‖u‖L∞([0,T∗)×Td→Rd) = M <∞

and consider 0 < t1 < t2 < T∗. We define in a similar fashion as to before

‖u‖Xs
[t1,t2]

:= ‖u‖C0
tH

s
x([t1,t2]×Td→Rd) + ‖∇u‖L2

tH
s
x([t1,t2]×Td→Rd2 )

which is finite as u is an Hs mild solution on [0, T∗).

We will aim to obtain an inequality similar to the one obtained in equation (5.44) of
Theorem 5.11. To do so, as we have often done before, we consider the translation of u by
t1. By the translation invariance of (5.19) we may apply Lemma 5.9 to said translation.
This gives

‖u‖Xs
[t1,t2]

.d,s ‖u(t1)‖Hs(Td→Rd) + ν−1/2‖P(u⊗ u)‖L2
tH

s
x([t1,t2]×Td→Rd2 ).

Now, using the non-expansiveness of P together with a version of the inequality (5.41)
(which is deduced in the same way) gives

‖u‖Xs
[t1,t2]

.d,s ‖u(t1)‖Hs(Td→Rd) + ν−1/2(t2 − t1)1/2‖(u⊗ u)‖C0
tH

s
x([t1,t2]×Td→Rd2 )

and finally, applying the product estimate (5.21) gives

‖u‖Xs
[t1,t2]

.d,s ‖u(t1)‖Hs(Td→Rd) + ν−1/2(t2 − t1)1/2M‖u‖C0
tH

s
x([t1,t2]×Td→Rd2 ).
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≤ ‖u(t1)‖Hs(Td→Rd) + ν−1/2(T∗ − t1)1/2M‖u‖Xs
[t1,t2]

(5.58)

By now making T∗− t1 sufficiently small we deduce by subtracting the second part on the
right hand side of (5.58) from the left hand side that for all t2 ∈ (t1, T∗)

‖u‖Xs
[t1,t2]

.d,s ‖u(t1)‖Hs(Td→Rd)

and hence
lim
t2→T∗

‖u‖Xs
[t1,t2]

<∞

which contradicts Theorem 5.13 as, from the fact that (by definition of the norm on
Xs

[t1,t2])
‖u(t2)‖Hs(Rd→Rd) ≤ ‖u(t)‖Xs

[t1,t2]
,

we derive by taking limits and applying theorem 5.13 that

∞ = lim
t2→T∗

‖u(t2)‖Hs(Rd→Rd) ≤ lim
t2→T∗

‖u(t)‖Xs
[t1,t2]

<∞

which is impossible. Therefore, necessarily, (5.56) holds. We now use Lemma 2.22 to
deduce that

‖u‖L∞([0,T ]×Td→Rd) ≤ ‖u‖C0
tH

s
x([0,T ]×Td→Rd) ∀T ∈ [0, T∗) (5.59)

and in consequence we obtain the expression

T∗ = sup{T ∈ R : ‖u‖L∞([0,T ]×Td→Rd) <∞}

as desired, as in the case where T∗ is infinite this also holds by (5.59).

This proved we have the sufficient tools to prove the regularity independence of the
blow-up time and the mild solutions to N.S.

Theorem 5.16 (Maximal Cauchy development is independent of regularity).
Let s′ > s > d

2 , u0 ∈ Hs′(Td → Rd) be divergence free and (u, T s∗ ),(v, T s′∗ ) be the unique
Hs, Hs′ mild solutions and blow-up times to the Navier-Stokes equations with initial data
u0. Then

(u, T s∗ ) = (v, T s′∗ ).

Proof. First note that our theorem makes sense as we have that

u0 ∈ Hs′(Td → Rd) ⊂ Hs(Td → Rd).

where the inequality
‖‖Hs(Td→Rd) ≤ ‖‖Hs′ (Td→Rd) (5.60)

holds. Now, the inequality in (5.60) implies that v is also an Hs mild solution on [0, T s′∗ )
which implies that by the definition of T s∗

T s
′

∗ ≤ T s∗ .

Additionally, by the uniqueness part of Theorem 5.11, we deduce that u = v on [0, T s′∗ ).
I.e.

u(t) = v(t) ∀t ∈ [0, T s′∗ ) (5.61)
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To conclude our proof it therefore only remains to see that T s∗ ≤ T s
′
∗ and hence that

T s∗ = T s
′
∗ . If T s′∗ =∞ this is of course clear. If not we observe that

‖u‖L∞([0,T s′∗ )×Td→Rd) = lim
T→T s′−∗

‖v‖L∞([0,T ]×Td→Rd) =∞

where in the first equality we used (5.61) and in the second we used Theorem 5.13. From
here we deduce that

sup{T ∈ R : ‖u‖L∞([0,T ]×Td→Rd) <∞} ≤ T s
′

∗ .

Since by Proposition 5.15 we have the equality

T s∗ = sup{T ∈ R : ‖u‖L∞([0,T ]×Td→Rd) <∞}

we deduce that
T s∗ ≤ T s

′

∗

as desired and with which we conclude our proof.

We now proceed to show that if u0 is smooth then our mild solution on [0, T∗) is in
fact smooth. In consequence the Clay Millennium Navier-Stokes problem (see [4] for a
clear statement of said problem) is equivalent to showing that T∗ is infinite.

Theorem 5.17 (Existence of smooth solutions). If u0 : Td → Rd is smooth and
divergence free then there exists T∗ > 0 and a unique smooth solution (u, p) to the periodic
Navier-Stokes equations on [0, T∗). Furthermore, if T∗ <∞ then ‖u‖L∞([0,T∗)×Td)→Rd =∞.

Proof. As we have discussed previously obtaining a smooth solution to the Navier-Stokes
equations is equivalent to obtaining a smooth solution to (5.19). What we have proved
so far via Theorem 5.13 and Theorem 5.16 is that there exists T∗ and a unique Hs mild
solution u on [0, T∗) for all s > d

2 . We have also proved that the blow-up criterion
‖u‖L∞([0,T∗)×Td) =∞ holds if T∗ is finite. In consequence it suffices to show that in fact u
is a smooth solution to (5.19).

To prove that u is smooth we use the fact that. since u is a distributional solution to
(5.19), it is also, by Proposition 5.10, a distributional solution to the equation

∂tu = ∆u+∇·P(u⊗ u) (5.62)

We deduce from the general property of the Sobolev norms

‖∇u(t)‖Hs(Td→Rd) ≤ ‖u(t)‖Hs+1(Td→Rd)

and from the linearity of the operators ∇,∆ that given t0 ∈ [0, T∗), s ≥ 0

‖∆u(t0) +∇·P(u⊗ u)(t0)−∆u(t) +∇·P(u⊗ u)(t)‖Hs(Td→Rd)

≤ ‖∆(u(t0)− u(t))‖Hs(Td→Rd) + ‖∇·(P(u⊗ u)(t)− P(u⊗ u)(t0))‖Hs(Td→Rd)

≤ ‖u(t)− u(t0)‖Hs+2(Td→Rd) + ‖P(u⊗ u)(t)− P(u⊗ u)(t0)‖Hs+1(Td→Rd) (5.63)

By hypothesis
u ∈ C0

tH
s+2
x ([0, T ]× Td → Rd) ∀T < T∗
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and in consequence
‖u(t)− u(t0)‖Hs+2(Td→Rd)

t→t0−−−→ 0.

Additionally, as we deduced in the proof point I) of Theorem 5.11, since

u ∈ C0
tH

s+1
x ([0, T ]× Td → Rd) ∀T < T∗,

we also have that

P(u⊗ u) ∈ C0
tH

s+1
x ([0, T ]× Td → Rd) ∀T < T∗

and hence we also have that the second term in (5.63) verifies that

‖P(u⊗ u)(t)− P(u⊗ u)(t0)‖Hs+1(Td→Rd)
t→t0−−−→ 0.

Therefore, the right-hand side of (5.62) is in C0
tH

s
x([0, T ]× Td → Rd) for every

s ≥ 0, T < T∗. In consequence so is the left hand side from which we deduce that
u ∈ C1

tH
s
x([0, T ]× Td → Rd) for all s ≥ 0. Iterating this argument we deduce that

u ∈ Ck
t H

s
x([0, T∗)× Td → Rd) ∀s, k ≥ 0

where the above space is just the space of functions u such that their m-th distributional
derivatives with respect to time verify: ∂mt u ∈ C0

tH
s+1
x ([0, T ]×Td → Rd) ∀m ≤ k . Hence

by the Sobolev embedding (Proposition 2.23) we have that u defines a smooth function

u : [0, T ]→ C∞(Td → Rd)

and is therefore smooth in time and space, with which we conclude our proof.

In the two dimensional case it is well known that the Navier-Stokes equations have a
unique smooth solution for smooth initial data. We are now in a position to prove this
by using the following lemma:

Lemma 5.18. Let u0 ∈ C∞(T2 → R2) and let u be the unique smooth solution on [0, T∗)
to the Navier-Stokes equations. Then

‖u(t)‖L∞(T2→R2) ≤ Kexp(KeKt) ∀t ∈ [0, T∗)

where K is a constant that depends only on ‖u0‖L∞(T2→R2) and ‖rotu0‖L∞(T2→R2) where
rotu0 := ∂1u0,2 + ∂2u0,1 is the curl (rotational) of u0

Proof sketch. The proof is based on the fact that the vorticity defined as w := rotu is a
scalar obeying the “maximum principle” ‖w(t)‖L∞(T2→R2) ≤ ‖rotu0‖L∞(T2→R2) and on a
generalized version of Gronwall’s inequality. For all the details see [7].

Corollary 5.19. The two dimensional Navier-Stokes equations with smooth initial data
have a unique globally defined smooth solution.

Proof. By Theorem 5.17 we know that there exists a unique smooth solution u on [0, T∗).
By now applying Proposition 5.15 in conjunction with the bound in Lemma 5.18 we
deduce that T∗ =∞, concluding our proof.



Chapter 5. The Navier-Stokes Equations 51

We now return to the general dimensional case. Just as in the heat equation (Propo-
sition 3.3) one may also obtain an instantaneous smoothing effect for the solutions to
the Navier-Stokes equations. That is, we will now see that Hs mild solutions to the
Navier-Stokes equations are in fact smooth past the initial time t = 0. Concretely:
Proposition 5.20. Let Let u, u0, s, d, T∗ be as in the maximal Cauchy development of
Theorem 5.13. Then u is smooth on (0, T∗).

Proof. Let 0 < ε < T∗ be arbitrary. Note that by definition of Hs mild solutions we have
that u ∈ L2

tH
s+1
x ([0, T∗)× Td → Rd) and in consequence

u(t) ∈ Hs+1(Td → Rd)

for almost all t ∈ [0, T∗). Therefore there exists some 0 ≤ ε1 < ε such that

u(ε1) ∈ Hs+1(Td → Rd) (5.64)

As we have already seen in the proof of point (III) of Theorem 5.11 the integral equation
(5.19) is translation invariant and hence the time translated function

uε1(t, x) := u(t+ ε1, x)

will also be an Hs mild solution on [0, T∗− ε1), now with initial condition u(ε1). By (5.64)
and Theorem 5.13 we deduce the existence of an Hs+1 mild solution v that solves the
Navier-Stokes with initial data u(ε1) on some interval [0, T ′∗). By Theorem 5.16 we have
that in fact T ′∗ = T∗ − ε1 and uε1 = v and hence we deduce that uε1 is an Hs+1 mild
solution on [0, T∗ − ε1).

Iterating this argument we obtain a sequence {εn}∞n=1 ⊂ [0, ε) such that for each n the
translated function

uεn(t, x) := u(t+ εn, x)
is an Hs+n mild solution on [0, T∗− ε) ⊂ [0, T∗− εn). From here it is immediate that (due
to the C0

tH
s+n
x part of the definition of Hs+n mild solutions)

u(ε) ∈ Hs+n(Td → Rd) ∀n ∈ N

which by the Sobolev embedding seen in Proposition 2.31 implies that u(ε) is smooth in
space. By now using Theorem 5.17 for the existence of smooth solutions (and again the
translation invariance of (5.19)) we deduce that uε is smooth on [0, T∗− ε) and hence u is
smooth on (ε, T∗) with which we conclude our proof as ε was arbitrary.

Our next lemma is a generalization of Lemma 5.9 for the boundary case s = d
2 , where

one longer has the bound on the L∞ norm given by Lemma 2.22.

Lemma 5.21. Let u0 ∈ H
d
2−1(Td → Rd) and F ∈ L1

tH
d
2−1
x ([0,∞)× Td → Rd). Then the

function u : [0,+∞)× Td → R defined by

u(t) = eνt∆u0 +
∫ t

0
eν(t−t′)∆F (t′) dt′

verifies the bound

‖u‖
C0
tH

d
2−1
x ([0,∞)×Td→Rd)

+ ν1/2‖∇u‖
L2
tH

d
2−1
x ([0,∞)×Td→Rd2 )

+ ν
1
2‖u‖L2

tL
∞
x ([0,∞)×Td→Rd)

.d ‖u0‖
H
d
2−1(Td→Rd)

+ ν−1/2‖F‖
L1
tH

d
2−1
x ([0,∞)×Rd→Rd)

(5.65)
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Proof. Note that we may use the main estimate of Lemma 5.9 to bound the first two
terms on the left hand side of (5.65). Now, by considering

ũ(t, x) := u(ν−1t, x); F̃ (t, x) := ν−1F (ν−1t, x)

we may reduce our proof to the case where ν = 1. We begin by obtaining the bound∥∥∥et∆u0

∥∥∥
L2
tL
∞
x ([0,∞)×Td→Rd)

.d ‖u0‖
H
d
2−1(Td→Rd).

Consider t > 0, we have that

et∆u0(x) =
∑

k∈Zd\{0}
e−4π2|k|2tû0(k)e2πik·x

and since the sequence e−4π2|k|2tû0(t, k) is of rapid decrease it not only converges in
L2(Rd → Rd) to et∆u0 but also almost everywhere allowing us to deduce that∥∥∥et∆u0

∥∥∥
L∞(Rd→Rd)

≤
∑

k∈Zd\{0}
e−4π2|k|2t|û0(k)| ∀t ∈ (0,∞).

Now we choose d− 2 < α < d and expand

e−4π2|k|2tû0(k) = e−2π2|k|2t|k|−
α
2 e−2π2|k|2t|k|

α
2 |û0(k)|

and apply the Cauchy-Schwartz inequality to deduce that

∥∥∥et∆u0

∥∥∥
L∞(Rd→Rd)

≤

 ∑
k∈Zd\{0}

e−4π2|k|2t|k|−α
 1

2
 ∑
k∈Zd\{0}

e−4π2|k|2t|k|α|û0(k)|2
 1

2

∀t > 0.

By applying the integral test of convergence of series to the first sum in the above in-
equality and using generalised spherical coordinates (whose variable change has Jacobian
smaller than ρd−1) we deduce that∑

k∈Zd\{0}
e−4π2|k|2t|k|−α ≤

∫
Rd
e−4π2|x|2t|x|−α .d

∫ ∞
0

e−4π2ρ2tρd−1−αdρ

which by the variable change ρ→ (4π2t)− 1
2ρ

1
2 is

∼ t
−d+α

2

∫ ∞
0

e−ρρ
d−α

2 −1 = Γ
(
d− α

2

)
t−d+α+1 .d t

−d+α
2 .

where Γ is the gamma function. Substituting this back in, taking the L2 norm and
applying the monotone convergence theorem gives

∥∥∥et∆u0

∥∥∥
L2
tL
∞
x ([0,∞)×Td→Rd)

.d

 ∑
k∈Zd\{0}

|k|α|û0(k)|2
∫ ∞

0
t
−d+α

2 e−4π2|k|2tdt

 1
2

which, by once again using a change of variable and the gamma function (note that we
had set α > d− 2), gives

∥∥∥et∆u0

∥∥∥
L2
tL
∞
x ([0,∞)×Td→Rd)

.d

 ∑
k∈Zd\{0}

|k|d−2|û0(k)|2
 1

2

∼d ‖u0‖
H
d
2−1(Td→Rd)
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as desired. To obtain the remaining bound we apply Minkowski’s integral inequality to
obtain that for each x ∈ Td(∫ ∞

0

∣∣∣∣∫ t

0
e(t−t′)∆F (t′, x)dt′

∣∣∣∣2dt
) 1

2

≤
∫ ∞

0

(∫ ∞
0

∣∣∣e(t−t′)∆F (t′, x)χ[0,t](t′)dt
∣∣∣2dt′) 1

2

=
∫ ∞

0

(∫ ∞
−t′

∣∣∣et∆F (t′, x)χ[0,t](t′)dt
∣∣∣2dt′) 1

2

=
∫ ∞

0

(∫ ∞
0

∣∣∣et∆F (t′, x)χ[0,t](t′)dt
∣∣∣2dt′) 1

2

≤
∫ ∞

0

∥∥∥et∆F (t′, x)
∥∥∥
L2
tL
∞
x ([0,∞)×Td→Rd)

dt′ (5.66)

which by now applying the previous bound for u0 to F (t′) gives that
(∫ ∞

0

∣∣∣∣∫ t

0
e(t−t′)∆F (t′, x)dt′

∣∣∣∣2dt
) 1

2

.d

∫ ∞
0
‖F (t′)‖

H
d
2−1(Td→Rd)

dt′ = ‖F‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd)

with which, as x ∈ Td was any, allows us to conclude∥∥∥∥∫ t

0
e(t−t′)∆F (t′)

∥∥∥∥
L2
tL
∞
x ([0,∞)×Td→Rd)

.d ‖F‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd)

as desired.

As we observed in Theorem 5.11 the smaller the size of the initial data u0 the larger
we can guarantee the time interval of existence of mild solutions to be. Our next theorem
proves that, in fact, if u0 is small enough then these mild solutions are global. Not only
this, if u0 is smooth then we obtain that the mild solution is itself smooth. Which means
that the Clay Millennium problem has a positive answer when u0 is small.

To prove all this we will now change from the Banach space Xs
T to the Banach space

X, where

X := C0
tH

d
2−1
x ([0,∞)× Td → Rd) ∩ L2

tH
d
2
x ([0,∞)×Td → Rd) ∩ L2

tL
∞
x ([0,∞)×Td → Rd)

and give it, based on our previous bound, the norm

‖u‖X := ‖u‖
C0
tH

d
2−1
x ([0,∞)×Td→Rd)

+ν1/2‖∇u‖
L2
tH

d
2−1
x ([0,∞)×Td→Rd2 )

+ν 1
2‖u‖L2

tL
∞
x ([0,∞)×Td→Rd).

We also define the space

XT := C0
tH

d
2−1
x ([0, T ]× Td → Rd) ∩ L2

tH
d
2
x ([0, T ]×Td → Rd) ∩ L2

tL
∞
x ([0, T ]×Td → Rd)

with the obvious modifications for its norm ‖‖XT .

Theorem 5.22 (Global existence for small data). Given a divergence free func-
tion u0 ∈ H

d
2−1(Rd → Rd) there exists a constant εd depending only on d such that if

‖u0‖
H
d
2−1(Td→Rd)

≤ νεd then there exists an H
d
2−1 mild solution on [0,∞) to the Navier-

Stokes equations with initial data u0. Furthermore if u0 is smooth then so is u.
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Proof. We begin by observing that we may once again simplify to the case ν = 1 by
considering ũ(t, x) = ν−1u(ν−1t, x). As in many of our previous theorems our proof will
rely on a version of the inequalities derived in Theorem 5.11. By considering Φ as in (5.38)
and utilizing the bounds of the previous proposition together with the non-expansiveness
of P, the product inequality of (5.21) and the Cauchy-Schwartz inequality we have that
given f ∈ X

‖Φ(f)‖X .d ‖u0‖
H
d
2−1(Td→Rd)

+ ‖P(∇·(f ⊗ f))‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd)

.d εd + ‖∇·(f ⊗ f)‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd2 )

∼ εd + ‖(∇·f)f‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd)

.d εd + ‖∇·f‖
L2
tH

d
2−1
x ([0,∞)×Td→Rd)

‖f‖L2
tL
∞
x ([0,∞)×Td→Rd) ≤ εd + ‖f‖2

X

a similar reasoning gives that for all f, g ∈ X

‖Φ(f)− Φ(g)‖X .d ‖∇·(f ⊗ f)−∇·(g ⊗ g)‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd2 )

∼ ‖∇·((f + g)⊗ (f − g))‖
L1
tH

d
2−1
x ([0,∞)×Td→Rd2 )

.d ‖∇·(f + g)‖
L2
tH

d
2−1
x ([0,∞)×Td→Rd)

‖f − g‖L2
tL
∞
x ([0,∞)×Td→Rd)

≤ (‖f‖X + ‖g‖X)‖f − g‖X

i.e. there exist constants λd, γd such that

‖Φ(f)‖X ≤ λd(εd + ‖f‖2
X); ‖Φ(f)− Φ(g)‖X ≤ γd(‖f‖X + ‖g‖X)‖f − g‖X (5.67)

where we may of course suppose that 1 < γd < λd. We deduce that, if we set for example

εd = 1
8λ2

d

; R = 1
2λd

,

then
Φ : B̄(0, R) ⊂ X → B̄(0, R) ⊂ X

will be a contraction and hence have a unique fixed point u which will be an H
d
2−1 mild

solution on [0,∞).
It only remains to prove that if u0 is smooth so is u. Let v, T∗ be the maximal

Cauchy development which as we know from Theorem 5.17 is smooth on [0, T∗). The
same reasoning as the one carried out to obtain (5.67) gives that for T < T∗

‖v‖XT ≤ λd(εd + ‖v‖2
XT

) (5.68)

From here we will aim to show that ‖v‖XT ≤ R for all T ∈ [0, T∗). Suppose to the contrary
that this is false and note that ‖v‖XT is a function only of T, d and (by the dominated
convergence theorem) is continuous in T . From the continuity in T and the fact that

‖v‖X0
= ‖u0‖

H
d
2−1 ≤ εd
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we deduce that, as T varies in [0, T∗), ‖v‖XT takes all the values in [εd, R] and therefore, we
deduce that there exists T ′ such that ‖v‖XT ′ = R. This allows us to reach a contradiction
as, since (5.68) holds for all T (and in particular for T ′), we have that

1
2λd
≤ λd

(
1

8λ2
d

+ 1
4λ2

d

)
= 1

8λd
+ 1

4λd
= 3

8λd

which is impossible. Therefore necessarily ‖v‖XT ≤ R for all T ∈ [0, T∗). It now only
remains to show that T∗ =∞ as, if this is true, then we will have that v ∈ B̄(0, R) ⊂ X
will be a fixed point of Φ and hence, by uniqueness of said fixed point, we will have that
v = u concluding our proof. To obtain that T∗ = ∞ we apply in a similar fashion as
to before the Cauchy-Schwartz inequality, now in the inequality of Lemma 5.9, to obtain
that, for s > d

2 , we have that

‖u‖Xs
T
.d ‖u0‖Hs(Td→Rd) + ‖u‖Xs

T
‖u‖XT .

Since, as we have already proved, ‖u‖XT is bounded by R for all T ∈ [0, T∗) we
deduce that ‖u‖Xs

T
and in consequence ‖u‖L∞([0,T∗)×Td→Rd) are bounded. This allows us

to conclude by Proposition 5.15 that T∗ is infinite as desired, concluding our proof.

5.5 Non-periodic Extension and some Generalizations

We now outline how one may extend the previous results to the non-periodic setting. As
in the non-periodic case, by the chain rule, the Navier-Stokes equations are equivalent to

∂tu+∇·(u⊗ u) = ν∆u−∇p; ∇·u = 0 (5.69)

where now we have u : [0, T ]× Rd → Rd, p : [0, T ]× Rd → R.

In order to obtain a good well-posedness theory it is now necessary to impose some growth
condition so that we may, as in the periodic case, work with Sobolev spaces. We will say
that (u, p) is a classical solution to the non-periodic Navier-Stokes equations if u, p are
smooth and if for all s ≥ 0 u ∈ C0

tH
s
x(Rd → Rd), p ∈ C0

tH
s
x(Rd → R).

To develop an analogous theory to the periodic case we wish to reduce our study to the
equation (5.16) and to normalized pressure which we define as

p0 = −∆−1∇·∇·(u⊗ u) (5.70)

where u is the velocity of a classical solution to the Navier-Stokes equations.

By the same reasoning as in the periodic case we have that: if u is smooth and
u ∈ C0

tH
s
x(Rd → Rd)∀s ≥ 0 is a solution to (5.16), then (u, p0) solves (5.69). Therefore it

only remains to see that (u, p0) is a classical solution. By the non-expansiveness of

∆−1∇·∇ : Hs(Rd → Rd2)→ Hs(Rd → Rd),

and the non-periodic analogue to Lemma 5.8 we have that p0 ∈ C0
tH

s
x(Rd → R) and also

that the term
∇·(u⊗ u)− ν∆u+∇p0 ∈ C0

tH
s
x(Rd → Rd) ∀s ≥ 0



56 5.5. Non-periodic Extension and some Generalizations

and hence, by (5.69), u ∈ C1
tH

s
x(Rd → Rd). This implies the analogous statement for

p and by recurrence we obtain that p is in Cm
t H

s
x(Rd → Rd) for all m and s and is in

particular smooth. Proving that indeed (u, p0) is a classical solution to (5.69) and hence
concluding our reduction. In fact we may prove more. We have that if (u, p) is a classical
solution to the non-periodic Navier-Stokes equations then by the mean value property for
harmonic functions it is simple to prove that p = p0 + C for some constant C ∈ R.

Having completed our desired reduction we now show how one may obtain an analogous
theory to that of the periodic case. An identical proof to that of Theorem 5.3 shows
that there exists a unique classical solution to the Navier-Stokes equations with periodic
pressure (with the caveat that we only need obtain that the velocity is unique as the
uniqueness of the velocity follows by definition of the normalised pressure).

Our study of the non-periodic heat equation also allows us to generalize without issue
the bound of Lemma 5.9. This allows us to obtain the euclidean analogues to all results
we proved from Theorem 5.11 to the global existence for small data of Theorem 5.22. No
modifications of the proofs or definitions being required save for replacing all instances of
Td with Rd and, in the cases where we require u0 to be smooth, additionally setting the
growth condition Dαu ∈ L2(Rd → Rd) ∀α ∈ Zd on the derivatives of u.

Finally, we may obtain a generalization of various of our previous results by replacing(
Xs
T , ‖‖Xs

T

)
with the larger Banach space

(
C0
tH

s
x([0, T ]× Td → Rd), ‖‖C0

tH
s
x([0,T ]×Td→Rd)

)
.

To do so, we note that if u is as in Lemma 5.9 we have that, by this same proposition,

‖u‖C0
tH

s
x([0,T ]×Td→Rd) .d,s ‖u0‖Hs(Td→Rd) +‖F‖L1

tH
s
x([0,T ]×Td→Rd) +ν−1/2‖G‖L2

tH
s
x([0,T ]×Rd→Rd).

This allows us to reason identically to Theorem 5.11 to obtain the key bound given by the
first line of equation (5.44), which allows us to reprove Theorem 5.11, where one only need
alter the definition of Hs mild solutions, asking them to be in C0

tH
s
x([0, T ] × Td → Rd)

instead of Xs
T .

With this modification the proofs of the results from Theorem 5.11 up to the existence
of smooth solutions to the Navier-Stokes equations (for a smooth initial condition) of
Theorem 5.17 go through identically. Finally, an equivalent discussion may be made in the
euclidean case by considering Hs mild solutions in C0

tH
s
x([0, T ]×Rd → Rd), allowing us to

prove the non-periodic analogues to the results in our previous generalization. Argument
which concludes this final section and with it our work.
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