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In this letter the fractional fermion number of thick domain walls is computed. The analysis is achieved 
by developing the heat kernel expansion of the spectral eta function of the Dirac Hamiltonian governing 
the fermionic fluctuations around the domain wall. A formula is derived showing that a non null fermion 
number is always accompanied by a Hall conductivity induced on the wall. In the limit of thin and 
impenetrable walls the chiral bag boundary conditions arise, and the Hall conductivity is computed for 
this case as well.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The possibility of a fractional fermion number of solitons was 
first noted by Jackiw and Rebbi in 1976 [1]. The main results and 
ideas of the first decade of the development in this area were re-
ported in [2]. From the early days, condensed matter physics was 
among the main applications [3]. No wonder that the advances 
in Dirac materials caused a renewed interest to the charge frac-
tionization, see e.g. [4–6]. New applications required new technical 
tools. In particular, an efficient method for calculation of the frac-
tional charge based on a resummation of the heat kernel expansion 
was suggested recently in [7].

In the present work we consider domain walls in (3 +1) dimen-
sions that separate regions in the space characterized by asymptot-
ically constant values of a scalar and an axial scalar fields. There 
is magnetic flux through the wall. As we shall see, the resumma-
tion method of [7] works straightforwardly and relatively easy in 
this case and produces a nice formula for the fractional charge in 
terms of the total magnetic flux and of the chiral angle of scalar 
fields in the asymptotic regions.

The fermion number fractionization is connected with quantum 
anomalies and with the parity anomaly [8,9] in particular. It was 
believed for a long time that there cannot be a parity anomaly 
in (3 + 1) dimensions. However, recent calculations demonstrated 
[10,11] that on manifolds with boundaries the parity anomaly ex-
ists also in four dimensions and leads to an induced Chern-Simons 
interaction on the boundary. A computation of the Chern-Simons 
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term on a domain wall was done in [12]. One of the main physical 
motivations for these computations was to clarify if there is a Hall 
conductivity on the boundary of a Dirac material. Our results on 
the fermion number allow to fix the induced Chern-Simons action 
for domain walls. Since chiral bag boundary conditions may be ob-
tained as a strong coupling limit of domain walls, we are able to 
compute the Chern-Simons term on the boundaries as well.

2. Fermion number

In this article we consider quantized Dirac fermions in (3 + 1)

dimensions interacting with background scalar and axial scalar 
fields, ϕ1 and ϕ2, and an electromagnetic potential Aμ . The La-
grangian of this system reads

L = ψ̄ /Dψ, /D = iγ μDμ − ϕ1 − iγ 5ϕ2, (1)

Dμ = ∂μ − ie Aμ,

γ j = βα j , j = 1,2,3 , γ 0 = β , γ 5 = iγ 0γ 1γ 2γ 3.

Here e denotes the elementary charge, and α j , β are the standard 
Dirac matrices. Let εμνρσ be the Levi-Civita tensor. Then,

tr
(
γ 5γ μγ νγ ργ σ

) = −4iεμνρσ , ε0123 = 1.

If the background is static, the Dirac Hamiltonian reads

H = −iα j D j + βϕ1 + iβγ 5ϕ2 . (2)

Let λ denote the eigenvalues of H . Then the spectral η function 
is defined by a sum over the spectrum
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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η(s, H) =
∑
λ>0

λ−s −
∑
λ<0

(−λ)−s, (3)

which is convergent if �s is sufficiently large, and may be ex-
tended to the whole complex plane as a meromorphic function. 
The value of the η function at s = 0 defines the fermion number 
in the vacuum [2],

N = − 1
2η(0, H) (4)

To evaluate the spectral asymmetry of this Hamiltonian and thus 
the vacuum fermion number we use the methods elaborated in [7]. 
Let us take a smooth function ρ of compact support and define a 
localized η function,

η(s, H;ρ) = Tr
(
ρ · (H2)−s/2 H/|H|

)

= 1

�
( s+1

2

)
∞∫

0

dt t
s−1

2 Tr
(
ρHe−t H2

)
. (5)

With the help of the localized η function we can define a current 
j0, that gives the global fermion number N after the integration

η(0, H;ρ) = −1

2

∫
d3xj0(x)ρ(x),

∫
d3xj0(x) = N (6)

Note that locally j0(x) does not need to coincide with the charge 
density. The function η(s, H; ρ) may be expressed as

η(s, H;ρ) = − 1

2�
( s+1

2

)
∞∫

0

dt t
s−3

2
d

dε
|ε=0 Tr

(
e−t H2

ρ

)
(7)

where

Hρ = H + ερ (8)

Let L be a Laplace type operator. It can be represented in the 
canonical form

L = −(∇2 + E) (9)

with some matrix valued potential E and a covariant derivative 
∇ = ∂ + ω. We shall be interested in

L(ρ, M2) = H2
ρ − M2. (10)

Here M is an auxiliary mass parameter that is needed to organize 
a derivative expansion of the η function (see [7] for details). For 
this operator,

E = − ie
4 F jk[γ j, γ k] − iγ j∂ jϕ1 + γ jγ 5∂ jϕ2

+ (M2 − ϕ2
1 − ϕ2

2) − 2βερ(ϕ1 + iγ 5ϕ2)

ω j = −ie A j + iα jερ (11)

� jk ≡ [∇ j,∇k] = −ieF jk + αkε∂ jρ − α jε∂kρ

Any Laplace type operator admits an asymptotic expansion of the 
heat trace (the heat kernel expansion)

Tr
(

Q e−tL
)

�
∞∑

k=0

t
k−3

2 ak(L, Q ), t → +0 (12)

with any smooth matrix valued function of rapid decay. On mani-
folds without boundaries all coefficients with even k vanish. Here 
we shall need just a couple of basic facts [13] about the heat 
kernel coefficients ak: (i) they all are integrals of traces of local 
polynomials constructed from E , � and their covariant derivatives 
∇ with vector indices contracted in pairs, and (ii) the terms de-
pending on E only have the following simple form:

a2l(L, Q ) ∼ 1

(4π)
3
2 l!

∫
d3xtr

(
Q El

)
. (13)

In a2, there are no other contributions, so that (13) is exact for a2.
Let us return to our specific problem. Consider arbitrary small 

localized variations of the background fields, δA and δϕ1,2. Then, 
δH = −α jδA j + βδϕ1 + iβγ 5δϕ2. The resulting variation of η(0)

reads [14,15]

δη(0, H) = − 2√
π

a2(H2, δH) . (14)

By using (11) and (13) one easily computes δη(0, H) = 0. There-
fore, η(0, H) is a topological (or homotopy) invariant.

The fermion number N will be evaluated through the large 
mass/small derivatives expansion with respect to the parameter 
M2.

η(0, H;ρ) = − 1

2
√

π

∑
k

�

(
k

2
− 2

)
|M|4−k d

dε
|ε=0 ak

(
L(ρ, M2)

)
.

(15)

Let us consider the field configurations for that the only nonva-
nishing component of Fij is F12 that does not depend on x3. We 
assume that ϕ1 and ϕ2 do not depend on x1 and x2 and go ex-
ponentially fast to their asymptotic values at x3 → ±∞. We shall 
restrict ourselves to the first order of F12. As in [7], we need to 
keep in the heat kernel coefficients only the terms that contain at 
most one derivative w.r.t. x3 and no derivatives w.r.t. other coor-
dinates. Besides, such terms have to be linear in ερ . It is easy to 
see, that in a2p the right number of derivatives may be obtained 
in the combinations (∇E)2 E p−3, �i j�

i j E p−2 and E p (with a pos-
sibility to reorder the multiples). A more attentive analysis of the 
traces over γ -matrices shows that in fact only the Ek/2 invariants 
contribute. The corresponding heat kernel coefficients read:

a2(l+3) ∼ 1

(4π)
3
2 l!

∫
d3x tr

{
(M2 − ϕ2

1 − ϕ2
2)l(ieF12γ

1γ 2)

×
[
(−iγ 3∂3ϕ1)(−2iβεργ 5ϕ2)

+(γ 3γ 5∂3ϕ2)(−2βερϕ1)
]}

= 8eε

(4π)
3
2 l!

∫
d3x (M2 − ϕ2

1 − ϕ2
2)l F12(ϕ2∂3ϕ1 − ϕ1∂3ϕ2)ρ

(16)

We substitute (16) in (15) and sum over l to obtain

N = − e

4π2 (arctg(ϕ2/ϕ1))|x3=+∞
x3=−∞

∫
d2xF12 . (17)

The sum is convergent as long as ϕ2
1 + ϕ2

2 
= 0.
This result admits an elegant interpretation in terms of the chi-

ral angle. Let

ϕ1 = ϕ cos θ, ϕ2 = ϕ sin θ, ϕ =
√

ϕ2
1 + ϕ2

2 ,

θ = arctg(ϕ2/ϕ1). (18)

Then, N is proportional to θ+ −θ− with θ± ≡ limx3→±∞ θ(x3). The 
Lagrangian (2) is invariant under the global chiral rotations
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θ(x) → θ(x) + δθ, ψ → exp
(
− i

2 δθγ 5
)

ψ. (19)

This symmetry is broken in quantum theory due to the anomaly. 
However, the fermion number N remains invariant under the 
global chiral rotations.

The fermion number (17) is a product of two terms. One is the 
magnetic flux through the (x1, x2) plane reminding us of the index 
of a two-dimensional Dirac operator. The other - is the fermion 
number in the Goldstone-Wilczek model [16] in (1 + 1) dimen-
sions. For compact manifolds, the factorization properties may be 
demonstrated on general grounds [14]. In the non-compact case, 
the situation is more complicated, though a similar factorization 
structure of the fermion number was demonstrated for the mag-
netic monopole [2,17].

If the fields ϕ1 and ϕ2 remind the profiles of solitons (i.e., if 
they go fast to their asymptotic values at x3 → ±∞), both θ+ and 
θ− are well defined. A problem may apparently appear if |ϕ| = 0
for x3 > X with some X (or in a similar situation in a vicinity of 
−∞). Then, for x3 > X also ∂3ϕ1 = ∂3ϕ2 = 0 so that by Eq. (16)
this region does not contribute to the fermion number. Thus, in 
(17) the upper limit has to be taken θ+ = limx3→Y θ(x3) where Y
is the upper bound of {x3} such that |ϕ(x3)| 
= 0.

3. Induced Chern-Simons term on an interface

In this section, we evaluate the Chern-Simons action induced 
at an interface by quantum effects. We have to consider non-static 
backgrounds and thus to work effective actions in 4D. Previously 
this problem was considered in [12].

Let us consider a domain wall background defined by the fields 
ϕ1,2 that depend on x3 only. Suppose that these fields change 
rapidly for x3 near zero and go exponentially fast to the asymptotic 
values away form x3 = 0. At the beginning, we do not impose any 
restrictions on the external electromagnetic field Aμ . The one-loop 
effective action for spinors restricted to the second order in Aμ

contains two contributions, the parity even and parity odd ones. 
Roughly speaking, the parity odd part contains the terms with 
an odd number of γ matrices. After taking the trace over spinor 
indices, this part becomes proportional to the Levi-Civita tensor 
εμνρσ . On symmetry grounds, we may write this part as

Sodd =
∫

d4x d4 y F (x, y)Aμ(x)∂ y
ν Aρ(y)εμνρ3, (20)

where F (x, y) is a nonlocal form factor depending on x3, y3 and 
zα = xα − yα , α = 0, 1, 2. After changing the integration variables, 
we write

Sodd =
∫

d3zαd3 yαdx3dy3 F (zα, x3, y3)Aμ(zα + yα, x3)∂
y
ν Aρ(yα, y3)εμνρ3.

(21)

When ϕ 
= 0, the theory has a mass gap. Therefore, the form 
factor F (x, y) vanishes for large separations |x − y|. Also, since the 
action (20) is induced by the presence of the domain wall, the 
form factor has to vanish far away from the wall (for large x3 or 
y3). In the long wavelength limit, when the localization length of 
F (x, y) is smaller than the characteristic scale of variation of Aμ , 
the integral in (21) factorizes as

Sodd = ke2

4π

∫
d3 yα Aμ(yα,0)∂ν Aρ(yα,0)εμνρ3 (22)

where

ke2

=
∫

d3zαdy3dx3 F (zα, x3, y3) (23)

4π
Thus, in the limit considered, the parity odd part of the effective 
action takes the form of the Chern-Simons action at the location of 
the domain wall. k is called the level of the Chern-Simons action.

The time component of the current corresponding to the action 
(20) reads

J 0(x) = 1

e

δ

δA0(x)
Sodd = 2

e

∫
d4 y F (x, y)∂

y
ν Aρ(y)ε0νρ3 (24)

By integrating this current1 over spatial coordinates, one obtains 
the fermion number. In the long wave length approximation it may 
be written as

N =
∫

d3x J 0(x) = ek

2π

∫
F12d2x (25)

By comparing this formula with (17) we conclude

k = −θ+ − θ−

2π
. (26)

Earlier this expression for the level of induced Chern-Simons action 
was conjectured in [12] relying on analogies with lower dimen-
sional models.

With the same formulas we can also evaluate the Chern-Simons 
terms induced on a boundary. Let us consider the scalar fields with 
a step-function profile,

ϕ1,2(x) = ϕ−
1,2 for x3 < 0,

ϕ1,2(x) = ϕ+
1,2 for x3 > 0. (27)

(Later we shall take the limit |ϕ−| → ∞.) With a finite |ϕ−|, let us 
consider the eigenmodes of H , Hψ = Eψ , without electromagnetic 
field, Aμ = 0, and vanishing at x3 → −∞. At x3 < 0 such modes 
may be taken proportional to eκx3+ikaxa

, xa ∈ {x1, x2} and κ > 0. 
The parameters are restricted by the dispersion relation

E2 = −κ2 + k2 + |ϕ−|2. (28)

Let us now take |ϕ−| → ∞ while keeping E and ka finite. The 
dispersion relation (28) gives κ � |ϕ−|. The equation Hψ = Eψ

yields

(−iα3 + βeiθ−γ 5)
ψ = 0. (29)

This equation has to be satisfied for x3 < 0 and, by continuity, it 
becomes a boundary condition at x3 = 0 for the modes at the half 
space x3 > 0. More commonly, it is written as a chiral bag bound-
ary condition [18]

(
1 − iγ 3eiθ−γ 5)

ψ |x3=0 = 0. (30)

An interpretation of bag boundary conditions with θ− = 0 through 
a singular limit of the scalar field ϕ−

1 → ∞ was suggested in [19,
20]. The electromagnetic potential is smooth and thus does not 
influence the boundary condition (30).

Hence, (26) describes also the level of induced Chern-Simons 
action on a manifold with boundary, where θ− defines the chiral 
phase in boundary conditions.

The restriction (27) to constant values of ϕ1,2 at positive x3

is not essential and can be lifted. It is, however, useful to make 
a comparison to the computations [10,21] of Chern-Simons terms 

1 To the 2nd order in Aμ , the parity even part of the effective action may be 
written as Seven = ∫

d4xd4 yG(x, y)Fμν(x)F μν(y) with some nonlocal kernel G(x, y). 
The time component of the corresponding current is proportional to F 0μ . This com-
ponent of the field strength vanishes on the backgrounds that we consider here.
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on the boundary (all done for non-chiral bag condition with θ− =
0). The paper [10] dealt with the massless case |ϕ+| = 0, where 
our formulas cannot give a unique answer (cf. the comment at the 
end of Sec. 2). The work [21] computed the polarization tensor 
when both ϕ+

1 and ϕ+
2 are non-zero constants. The results seem to 

be consistent but after an additional Pauli-Villars (PV) subtraction. 
Note, that the PV subtraction and the sharp boundary limit do not 
commute.

4. Conclusions

In this work we have computed the fermion number of a do-
main wall between two regions with asymptotically constant ϕ1
and ϕ2. The fermion number appeared to be proportional to the 
difference of chiral phases in two asymptotic regions and to the 
magnetic flux passing through the wall. We used the method [7]
based on a resummation of the heat kernel expansion. We kept 
only those terms in the heat kernel coefficients that contain a 
small number of derivatives. However, since the result is topologi-
cal, it is valid on any background having the same asymptotics. In 
the bulk of the manifold the fields may vary arbitrarily fast.

The same computation allowed us to evaluate the induced 
Chern-Simons action on interfaces. The results are consistent with 
the previous calculations [12]2 that were done for a fixed profile 
of ϕ1 and a constant ϕ2. By taking a singular limit we were able 
to compute the induced Chern-Simons action on a boundary with 
chiral bag boundary conditions. In a particular case the result is 
consistent with the computations of [21]. We like to stress that the 
parity odd effective action (20) is not topological. There are deriva-
tive corrections to the long wavelength limit (22) which cannot be 
computed from the fermion number (17).
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