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a b s t r a c t 

Pareas snakes possess outstanding asymmetry in the mandibular tooth number, which has 

probably been caused by its evolution to improve the feeding on the predominant dex- 

tral snails. Gene mutation can generate chiral inversion on the snail body. A sinistral snail 

population can thrive in this ecological context. The interactions between dextral/sinistral 

snails and Pareas snakes are modeled in this paper by using a new generalized functional 

response of Holling type II. Distinct Pareas species show different bilateral asymmetry de- 

grees. This parameter plays an essential role in the model and determines the evolution of 

the populations. Stability of the solutions is analyzed for different regimes in the space of 

parameters. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Bilateral symmetry in external appearance is a common feature of free-living animals that is sometimes broken because

of the functional advantages that can be derived from the presence of asymmetry in some concrete external organs. A

fascinating example of this fact is given by Pareas snakes. Pareas is a genus of Asian snail-eating specialist snakes, see [1] and

references therein. Snail species have predominantly dextral (clockwise coiled) shells [2–4] , so most pareatid snakes have

evolved asymmetry in mandibular tooth number [1] . This physiological adaptation facilitates snail body extraction from

the shell [5] and leads to the specialization of these predators in feeding on dextral snails. The paradigm of mandibular

asymmetry corresponds to the Pareas iwasakii snakes, which have approximately 17 teeth on the left side and 25 teeth on

the right side [1,6] . This is the extreme case but almost all the 14 different pareatine species [1,7] involve distinct degrees

of mandibular tooth asymmetry, that in principle reflects dietary specialization on dextral snails. 

On the other hand, certain snail gene mutations can give rise to a sinistral (counterclockwise coiled) snail population.

Copulation between dextral and sinistral snails is usually strongly impeded by genital and behavioral mismatches [6,8,9] .

These circumstances lead to instant snail speciation, such that dextral/sinistral snails can be interpreted as different popu-

lations from a mathematical point of view. Usually the sinistral snail population remains small due to competence with the

dextral variant. However, in presence of dextral snail-eating specialist snakes the survival advantage of left-handed snails

allows this population to thrive. This mechanism opens the possibility that sinistral snail population replaces the dextral

snail population. Indeed, it is a fact that left-right reversal has evolved many times, especially in terrestrial snails [4,10] . 
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In the extreme case of the Pareas iwasakii snakes, Satsuma snails constitute its fundamental feeding. The interactions

between this snake species and the dextral/sinistral Satsuma variants have been thoroughly studied by Hoso and his col-

laborators in Refs. [6,11] . In the lab experiments carried out by these researchers none of the dextral snails survived snake

predation where as 87.5% of sinistral snails survived predation. Due to the right handedness of the striking direction in the

hunting process, the snake can rarely grasp a sinistral snail. The ratio between the hunting success rates on sinistral/dextral

snails is approximately equal to 0.12. On the other hand, it is also interesting to remark that the mandibular asymmetry is

not always accompanied by chirality specialization, as shown in diverse studies on the Pareas Carinatus species [12] . Pareas

Carinatus snakes exhibit a relatively week dental asymmetry in the genus but, in addition, they recognize prey handedness.

This ability allows this type of snakes to strike by tilting its head either leftward or rightward depending on the snail chi-

rality, as has recently been shown in [13] . As a consequence, these snakes prey both dextral and sinistral snails with similar

efficiency. 

Returning to the particular interactions between Pareas snakes and Satsuma snails, it is important to bring attention to

the geographical distribution of the habitats that are shared by these species. It has been well documented the existence of

South-East Asian islands where (1) only the dextral Satsuma snail variant inhabits, (2) only the dextral and sinistral Satsuma

snail populations coexist, (3) the snake and sinistral/dextral Satsuma snail populations are present and (4) only sinistral

Satsuma snails arise. For example, Satsuma snails cohabit with four different Pareas snake species in Taiwan Island, see

Fig. 5 in Ref. [6] . Obviously, the coexistence of Pareas snakes and dextral snails is the standard for other snail species and

Asian regions. Taking into account all the previous scheme, it seems to us that the construction of a mathematical model

which can be used to unveil the fate of the three involved populations is worthwhile. 

The goal of this paper is threefold. Firstly, a novel mathematical model is constructed to describe the interactions be-

tween one-predator and two-prey variant populations. In order to accomplish this task we shall use the same assump-

tions on the hunting habits of predators that are employed in Holling’s type II models [14–18] . In this sense our model

can be understood as a generalization of this type of models to the one-predator two-prey population context. It is clear

that the dextral/sinistral snail populations compete by the same resources and are described by the same ecological param-

eters. The biased relationship between the Pareas snakes and the two snail variants will be responsible of the asymmetry in

our model. Therefore, the ratio between the depredatory efficiencies on the dextral/sinistral snails (which depends on the

Pareas snake species) plays an essential role in our model. Secondly, the mathematical translation of the previous hypotheses

leads to a system of three ordinary differential equations. The stability of the stationary points of this system is discussed.

A qualitative analysis of the solutions depending of the model parameters is also considered. Thirdly, the previously men-

tioned analytical approach is used to classify the possible ecological scenarios. It will be shown that chirality reversal in the

snail population induced by the snake specialization is dictated by the population dynamics in many parameter ranges but

if the snake specialization is too strong there is also room for snake extinction with coexistence of dextral/sinistral snail

populations. However, the long-term validity of these conclusions must be carefully considered because it is not evident

that the time scales of the hypothesis will be compatible with the time range of the model. The evolutionary behavior of

the involved species can significantly alter the conditions on which the model is built. 

The structure of the paper is as follows: in Section 2 the mathematical model is constructed. Section 3 is devoted to

analyze several particular and limiting cases where the model reduces to simpler well-known systems. The description of

the model dynamics is presented in Section 4 . The local stability of the different stationary points and a qualitative analysis

of the solutions are also considered in this section. The possible final scenarios depending on the ecological parameters

are classified. A brief discussion and conclusions are presented in Section 5 . Finally, an Appendix with technical details and

proofs of mathematical results obtained in Section 4 has been added. 

2. Construction of the model 

Prey population densities (population per unit area) of dextral and sinistral snails will be denoted by the functions X 1 ( t )

and X 2 ( t ) respectively, whereas Y ( t ) will be used to represent the predator population density of the Pareas snakes in a

closed homogeneous environment. The octant E = { (X 1 , X 2 , Y ) ∈ R 

3 : X 1 ≥ 0 , X 2 ≥ 0 , Y ≥ 0 } of the phase space R 

3 defines the

region of ecological interest. A two-prey one-predator population model with different functional responses �i ( X 1 , X 2 ) for

both types of prey follows the form: 

dX 1 

dt 
= f 1 (X 1 , X 2 ) − �1 (X 1 , X 2 ) Y, 

dX 2 

dt 
= f 2 (X 1 , X 2 ) − �2 (X 1 , X 2 ) Y, (1) 

dY 

dt 
= −sY + ( b 1 �1 (X 1 , X 2 ) + b 2 �2 (X 1 , X 2 ) ) Y, 

where the functions f i ( X 1 , X 2 ), i = 1 , 2 , describes the evolution of the prey populations without predators. In order to set

the undetermined functions in the system of differential equations (1) the following assumptions are considered: 

A. In the absence of predators, a logistic growth for the whole snail population is assumed. As previously mentioned, the

dextral/sinistral snails considered in this paper are variants of the same species, only differing in body chirality. Therefore,

the same intrinsic growth rate r is conjectured for the two snail populations X ( t ) and X ( t ). The linear dependence on
1 2 
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these variables in Eq. (1) must be uncoupled because of reproductivity incompatibility (as previously noticed) [1] . Moreover,

the same ecosystem is shared by these organisms, so a common carrying capacity K (per unit area) relative to the sum of

both populations must be introduced. All the individuals compete for the same food. The previous observations lead to the

expressions 

f 1 (X 1 , X 2 ) = rX 1 

(
1 − X 1 + X 2 

K 

)
− g 1 (X 1 , X 2 ) , (2)

f 2 (X 1 , X 2 ) = rX 2 

(
1 − X 1 + X 2 

K 

)
− g 2 (X 1 , X 2 ) , (3)

where g i ( X 1 , X 2 ) measure a residual interspecific competition between the two kind of snails. From our previous analysis, it

is assumed that these functions vanish, or at least, they can be neglected in a first approach, i.e., g i ( X 1 , X 2 ) ≈ 0 with i = 1 , 2 .

Nevertheless, this hypothesis may not be valid for long-term times. In Section 5 this point will be discussed in more detail.

B. The functional responses �1 ( X 1 , X 2 ) and �2 ( X 1 , X 2 ) measure the number of preys consumed by a predator per unit

time. The subscript i = 1 , 2 distinguishes, respectively, if the prey is a dextral or a sinistral snail. The intake of any type of

snail is equally beneficial for the Pareas snake population growth. This fact implies that the parameters b i (the efficiency

with which predators convert consumed preys into new snake offsprings) in (1) are equal, that is, b 1 = b 2 = b. Now, we will

construct the terms �i ( X 1 , X 2 ) by following the same ecological arguments employed in the deduction of the Holling’s type

II functional response for one-prey one-predator population models [14–16] . 

Let T denote the time devoted by a predator to the process of hunting and handling preys, which it is assumed to be

constant in the snake daily life. This amount of time T is the sum of two different time intervals, 

T = T S + T H , (4)

where T S is the time spent in searching, pursuing and hunting preys, whereas T H represents the time employed in “handling”

preys. T H can be understood as the time lag between the successful hunting of a prey and the disposition of the predator to

start again the process of capture. If A denotes the area supervised by the predator per unit time, A T S X i will be the number

of preys of type i detected by one predator in the time interval T S . If e i , i = 1 , 2 represent the efficiencies of the predator

when capturing a prey of type i (quotient between the number of successful and total attacks), then 

δX i = A T S X i e i , i = 1 , 2 (5)

totals the number of preys of type i captured by a predator in the searching time T S . From (5) the following relation 

T S = 

δX 1 

e 1 AX 1 

= 

δX 2 

e 2 AX 2 

can be directly obtained, which means that 

δX 1 

e 1 X 1 

= 

δX 2 

e 2 X 2 

. (6)

On the other hand, the handling time T H must be proportional to the number of hunted preys δX 1 + δX 2 , i.e. 

T H = t h (δX 1 + δX 2 ) , (7)

where the proportionality constant t h is the handling time per captured prey unit. This per capita handling time t h is obvi-

ously independent of the snail chirality. Plugging (6) and (7) into (4) , the number of preys of type i consumed by a predator

in the total time T is written as 

δX i = 

e i AT X i 

1 + t h A (e 1 X 1 + e 2 X 2 ) 
i = 1 , 2 (8)

in terms of the ecological features measured by the parameters A, e i , t h and T . Finally, the functional responses �1 ( X 1 , X 2 )

and �2 ( X 1 , X 2 ) are proportional to δX 1 and δX 2 respectively, 

�1 (X 1 , X 2 ) = a δX 1 �2 (X 1 , X 2 ) = a δX 2 , (9)

where a is the predator per capita prey consumption rate. Obviously the nutritional needs of the snake are independent of

the prey type, so the parameter a has been considered equal for the dextral/sinistral snail preys. Substituting (2), (3), (8) and

(9) into (1) leads to the system of differential equations 

dX 1 

dt 
= r X 1 

(
1 − X 1 + X 2 

K 

)
− a e 1 AT X 1 Y 

1 + t h A (e 1 X 1 + e 2 X 2 ) 
, 

dX 2 

dt 
= r X 2 

(
1 − X 1 + X 2 

K 

)
− a e 2 AT X 2 Y 

1 + t h A (e 1 X 1 + e 2 X 2 ) 
, (10)

dY 

dt 
= −sY + b a A T 

( e 1 X 1 + e 2 X 2 ) Y 

1 + t h A (e 1 X 1 + e 2 X 2 ) 
, 
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Table 1 

Description of the ecological parameters introduced in the system (10) . 

Parameter Description 

r Intrinsic snail growth rate. 

s Intrinsic Pareas snake mortality rate in absent of snails. 

K Snail carrying capacity (per unit area). 

a Pareas snake per capita snail consumption rate. 

T Total hunting and handling time employed by a Pareas snake. 

t h Handling time per captured snail employed by a snake. 

A Area supervised by a Pareas snake per unit time. 

b Pareas snake consumption efficiency. 

e 1 Pareas snake hunting success rate on dextral snails. 

e 2 Pareas snake hunting success rate on sinistral snails. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which determines our dextral/sinistral snail prey Pareas snake predator population model. In Table 1 the parameters

included in (10) are summarized. 

In order to study the system of differential equations (10) it is convenient to introduce non-dimensional variables 

τ = rt x i = 

X i 

K 

y = 

ae 1 AT 

r 
Y, (11) 

together with non-dimensional coefficients 

εi = t h AK e i σ = 

s 

r 
β = 

abT 

rt h 
α = 

e 2 
e 1 

, 

in such a way that the system (10) reduces to 

dx 1 
dτ

= x 1 (1 − x 1 − x 2 ) − x 1 y 

1 + ε1 (x 1 + αx 2 ) 
, 

dx 2 
dτ

= x 2 (1 − x 1 − x 2 ) − α x 2 y 

1 + ε1 (x 1 + αx 2 ) 
, (12) 

dy 

dτ
= ( β − σ ) y − β y 

1 + ε1 (x 1 + αx 2 ) 
, 

that depends only on four non-negative non-dimensional parameters: α, β , σ and ε1 . Now, E = { (x 1 , x 2 , y ) ∈ R 

3 : x 1 ≥ 0 , x 2 ≥
0 , y ≥ 0 } . A first constraint in the non-dimensional parameters can be obtained by ecological arguments. From the third

equation in the system (12) a viable predator population must comply with the inequality 

β > σ. (13) 

Compliance with (13) requires that the physiological conditions of the Pareas snakes be favorable enough to survive in

the ecosystem. Hunting time T and consumption efficiency b must be large enough and the intrinsic mortality rate s and

handling time t h must be small enough so that the quotient ( st h )/( bT ) be less that the intrinsic snail growth rate. Otherwise

the snake population will become extinct. 

The physiological bilateral asymmetry of the Pareas snakes, manifested in the distinct hunting efficiencies on dex-

tral/sinistral snails, is hold in the non-dimensional parameter α. By convention, it is assumed that the predator is better

adapted to hunting the prey 1 than prey 2. In our context, Pareas snakes are more efficient in hunting dextral snails than

sinistral ones, i.e., e 1 ≥ e 2 . Therefore, the non-dimensional parameter α is confined to the range 

0 ≤ α ≤ 1 . (14) 

The conditions (14) and (13) will be assumed from now on. The value α = 1 corresponds to Pareas snake species which

exhibit bilateral symmetry and are equally competent to hunt dextral or sinistral snails whereas α = 0 indicates total inep-

titude to grasp sinistral snails. 

Lab experiments with Pareas iwasakii snakes and dextral/sinistral Satsuma snails carried out by Hoso et al. allow us to

obtain the value of α for this snake species [1] . Taking into account that none of the dextral snails survived snake predation

where as 87.5 % of sinistral snails survived predation the value of α is approximately equal to α = 0 . 12 . The asymmetry

index (defined as (R − L ) × 100 / (R + L ) where R and L are the tooth numbers on the right and left mandibles, respectively)

is approximately 17.5 in this case. Pareas atayal shows an asymmetry index at least so high than Pareas iwasakii , so α is

estimated to value in the range α ∈ [0.1, 0.2]. This value interval for the parameter α is also considered valid for Pareas

macularius . A slightly less asymmetry index is exhibited by Pareas formosensis and Pareas chinensis , such that the value of

α is assessed as α ∈ [0.2, 0.4]. On the other hand, Pareas carinatus although has an asymmetry index of 10.8 has learnt to

recognize prey handedness, which allows this type of snakes to adjust its attack to the snail chirality [13] . Lab experiments

for this type of snakes indicate that its hunting efficiencies on dextral and sinistral snails have similar values, thus, α ≈ 1 in

this case. Pareas boulengeri, Pareas hantoni, Pareas margaritophorus, Pareas nuchalis, Pareas stanleyi and Pareas komaii present
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asymmetry index in the interval [7.5,12.5], similar to the Pareas carinatus , although it is uncertain if this snake species are

endowed with chirality recognition ability. A cautious estimation of the parameter α for these cases is given by the value

range α ∈ [0.65, 0.95]. 

Although the rest of parameters are difficult to assess and surely depending on the particular environment where the

populations are settled, the analysis of the solutions of (12) can provide us with relevant information about the evolution of

the snail and snake population where a sinistral variant is introduced in the ecosystem. Clearly, the final scenarios of this

evolution depends on the parameter α, as will be shown later. 

3. Particular and limiting cases 

We begin the analysis of the system (12) by displaying a plethora of particular or limiting cases, for which the general

model reduces to diverse well known predator–prey models: 

1. If there is no second prey population, x 2 ( τ ) ≡ 0, Eq. (12) becomes 

dx 1 
dτ

= x 1 (1 − x 1 ) − x 1 y 

1 + ε1 x 1 
, 

dy 

dτ
= ( β − σ ) y − β y 

1 + ε1 x 1 
, (15)

which corresponds to a standard Holling’s type II one-prey one-predator model. This situation is replicated when the first

prey population vanishes, x 1 ( τ ) ≡ 0, ∀ τ ∈ R . This condition leads to the differential equations 

dx 2 
dτ

= x 2 (1 − x 2 ) − α x 2 y 

1 + ε1 αx 2 
, 

dy 

dτ
= ( β − σ ) y − β y 

1 + ε1 αx 2 
. (16)

The ecological coefficients which enter in the systems (15) and (16) are, however, different due to the fact that the interac-

tions between the predator and the two types of preys quantitatively differ. 

This kind of models has been widely analyzed, see for instances [19] and references therein. 

2. If the ecosystem lacks predators, y ( τ ) ≡ 0, (12) reduces to 

dx 1 
dτ

= x 1 (1 − x 1 − x 2 ) , 
dx 2 
dτ

= x 2 (1 − x 1 − x 2 ) , (17)

which can be understood as a population model for two species with identical characteristics in mutual competition, see

[17,18] . 

3. An interesting case emerges when the handling time t h is considered to be negligible with respect to the rest of

characteristic times of the problem. If the limit t h → 0 is introduced in the system (12) the following relations 

dx 1 
dτ

= x 1 (1 − x 1 − x 2 ) − x 1 y, 

dx 2 
dτ

= x 2 (1 − x 1 − x 2 ) − α x 2 y, (18)

dy 

dτ
= 

(
−σ + β̄(x 1 + αx 2 ) 

)
y, 

are found. In other words, a generalized Lotka–Volterra model for one predator and two preys is obtained from our model

(12) when predators has the ability of instantaneously digesting its preys. Indeed, this observation reveals a handicap of the

Lotka–Volterra type models. A redefinition of the non-dimensional parameters 

β̄ = ε1 β = be 1 AT K 

has been used in (18) in order to avoid the singularity that appears in the definition of β for this limiting case. This type of

models has been studied in [20,21] and references therein. 

4. If Pareas snakes exhibit bilateral symmetry, i.e., they lack chirality specialization, then α = 1 and (12) can be written

as 

dx 

dτ
= x (1 − x ) − x y 

1 + εx 
, 

dy 

dτ
= ( β − σ ) y − β y 

1 + εx 
, (19)

where x = x 1 + x 2 is the sum of the dextral and sinistral snails, which behave as an unique population in this particular

case. Eq. (19) determines a Holling type II one-prey one-predator population model, similar to case 1 although with different

parameter values. Pareas Carinatus can be described by this class of models. 

5. In the opposite case, where the snakes are only capable of hunting dextral snails, the hunting success rate e 2 vanishes

and thus α = 0 . In this hypothetical situation the system (12) becomes 

dx 1 
dτ

= x 1 (1 − x 1 − x 2 ) − x 1 y 

1 + ε1 x 1 
, 

dx 2 
dτ

= x 2 (1 − x 1 − x 2 ) , (20)

dy 

dτ
= ( β − σ ) y − β y 

1 + ε1 x 1 
, 
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Fig. 1. Distribution of stationary points in the octant E for the regime I (left) and for the regime II (right). For this last regime the line of degenerate 

stationary points R 12 is partitioned in two parts on the basis of stability criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that represents a one-predator one-prey population model with the presence of a competitor for the prey, see [22] and

references therein. 

4. Description of the model dynamics 

In this section we shall analyze the stationary points of Eq. (12) and their local stability properties. Afterward, global

features of the population dynamics determined by (12) are investigated. 

It is not difficult to check that all the stationary points of the system (12) are necessarily located on Coordinate planes,

that is, there are no steady states of (12) where the three populations coexist. Therefore, the stationary points of the model

always involve the lack of at least one of the species. The absence of population determines the trivial stationary point

P 0 ≡ (0, 0, 0), which lacks ecological interest. On the x 1 − y coordinate plane, 

P 1 ≡
(

σ

ε1 (β − σ ) 
, 0 , 

β

β − σ

(
1 − σ

ε1 (β − σ ) 

))
(21) 

corresponds to an analytical steady solution of (12) where the sinistral snail population is absent. The main goal in this

paper is to study the effect of introducing a mutant population (sinistral snails) in a mature ecosystem inhabited by a prey

population (dextral snails) and a predator population ( Pareas snakes). This ecological assumption implies that the non-null

components in (21) must be positive, which leads to the following inequality 

ε1 > 

σ

β − σ
. (22) 

The restriction (22) on the model parameters guarantees the possible presence of a coexisting dextral snail and Pareas

snake populations at the initial time for the general model. From now on the compliance of (22) will be assumed for our

mathematical model. 

On the x 1 − x 2 coordinate plane, the one-parametric family of steady states 

R 

(μ) 
12 

≡ (μ, 1 − μ, 0) with μ ∈ [0 , 1] (23) 

emerges, see Fig. 1 . The stationary points R 
(μ) 
12 

given by (23) correspond to the situation where the total snail population

reaches the carrying capacity whereas the predator population is absent. The value of the parameter μ in (23) determines

the percentage of dextral/sinistral snail populations in the constant solution R 
(μ) 
12 

. 

Finally, the steady state arising on the x 2 − y plane 

P 2 ≡
(

0 , 
σ

αε1 (β − σ ) 
, 
β[ βαε1 − (1 + αε1 ) σ ] 

α2 ε1 (β − σ ) 2 

)
(24) 

completes the stationary point catalogue of the system (12) . Assuming the condition (22) two different ecological situations

are distinguished by the sign of the second component in (24) : 

1. Regime I: The existence of a positive steady mutant population in (24) demands the following condition between the

ecological parameters 

β

σ
> 1 + 

1 

αε1 

or equivalently ε1 > 

σ

α(β − σ ) 
. (25) 
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Now, the constant solution (24) describes a scenario where the non-mutant prey species is absent in favor of a mutant

prey population, which shares the habitat with the predator species. By comparing the components in (21) and (24) we

conclude that the steady mutant prey population associated with the stationary point P 2 is always greater than the non-

mutant prey population for the stationary point P 1 in this first regime. Analogously the predator population is less for

the steady state P 2 than for the constant solution P 1 . 

2. Regime II: For the parameter range 

1 + 

1 

ε1 

< 

β

σ
< 1 + 

1 

αε1 

equivalently 
σ

β − σ
< ε1 < 

σ

α(β − σ ) 
, (26)

the stationary point P 2 (a constant solution of (12) ) loses its ecological meaning because it moves to the region y < 0,

where the snake population is negative. 

In sum, the stationary point set S of (12) is given by S I = { P 0 , P 1 , P 2 , R 12 } for the Regime I and by S II = { P 0 , P 1 , R 12 } for the

Regime II, where R 12 = { R (μ) 
12 

: 0 ≤ μ ≤ 1 } . In Fig. 1 the arrangement of the stationary points in the region E is illustrated for

the two previously introduced regimes. Notice that the point P 2 does not arise in the Regime II. 

Proposition 1. The local stability of the stationary point set S ⊂ E of the system (12) is described as follows: 

(A) For the regime I: 

1. The point P 0 and the set R 12 are unstable. 

2. P 1 is unstable with respect to x 2 -fluctuations. If ε1 < 

σ+ β
β−σ

then P 1 is stable with respect to x 1 − y fluctuations but if ε1 > 

σ+ β
β−σ

then P 1 becomes unstable and an unique limit cycle arises lying in the x 1 − y plane. 

3. P 2 is stable with respect to x 1 -fluctuations. If ε1 < 

σ+ β
α(β−σ ) 

then P 2 is stable with respect to x 2 − y fluctuations but if ε1 >

σ+ β
α(β−σ ) 

then P 2 becomes unstable and an unique limit cycle arises lying in the x 2 − y plane. 

(B) For the regime II: 

1. P 0 is unstable. 

2. The points R 
(μ) 
12 

are stable with respect to the y-fluctuations if μ> μ0 and unstable if μ< μ0 where 

μ0 = 

α

1 − α

[ 
σ

αε1 (β − σ ) 
− 1 

] 
. (27)

3. P 1 is unstable with respect to x 2 -fluctuations. P 1 is stable with respect to x 1 − y fluctuations if ε1 < 

σ+ β
β−σ

but if ε1 > 

σ+ β
β−σ

then

P 1 becomes unstable and an unique limit cycle arises lying in the x 1 − y plane. 

Proof. See Appendix A . �

Proposition 1 has proved that the non-mutant prey and predator population described by the steady state P 1 is locally

unstable in our model when a mutant population is introduced. It will be checked that this is not only a local behavior

restricted to the stationary point P 1 but it is a global pattern for any non-mutant prey and predator population. In order to

justify this assertion the model dynamics will be expressed in the system of cylindrical coordinates 

x 1 = ρ cos θ, x 2 = ρ sin θ, y ≡ y. (28)

The radial coordinate ρ is proportional to the root mean square of the global prey population while the angular coordinate

θ measures the ratio between the mutant and non-mutant populations. Now, the region with ecological relevance is defined

by the cylindrical coordinate range 

E = { (ρ, θ, y ) ∈ R 

3 : ρ ≥ 0 , θ ∈ [0 , π/ 2] , z ≥ 0 } . 

The use of (28) turns (12) into the following differential equations 

dρ

dτ
= ρ [ 1 − ρ( cos θ + sin θ ) ] − y ρ [1 − (1 − α) sin 

2 θ ] 

1 + ρ ε1 ( cos θ + α sin θ ) 
, 

dθ

dτ
= 

(1 − α) sin θ cos θ ρ y 

1 + ρ ε1 ( cos θ + α sin θ ) 
, (29)

dy 

dτ
= (β − σ ) y − β y 

1 + ρ ε1 ( cos θ + α sin θ ) 
. 

The second relation in (29) gives the temporal derivative of the coordinate θ in terms of the ecological variables. It can be

checked that this magnitude is always positive in the octant E : 

dθ

dτ
> 0 ∀ θ ∈ 

(
0 , 

π

2 

)
, α ∈ (0 , 1) . 
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Table 2 

Limit sets for the different parameter values ε1 in the case α > 

σ
σ+ β . 

α > 

σ
σ+ β Regime II Regime I 

ε1 

(
σ

β−σ
, σ

α(β−σ ) 

) (
σ

α(β−σ ) 
, 

σ+ β
β−σ

) (
σ+ β
β−σ

, 
σ+ β

α(β−σ ) 

) (
σ+ β

α(β−σ ) 
, ∞ 

)
α limit set Stationary point P 1 Stationary point P 1 x 1 − y limit cycle x 1 − y limit cycle 

ω limit set Point in R stable 
12 Stationary point P 2 Stationary point P 2 x 2 − y limit cycle 

See Fig. 3 (a) See Fig. 2 (a) See Fig. 2 (b) See Fig. 2 (c) 

Table 3 

Limit sets for different parameter values ε1 in the case α < 

σ
σ+ β . 

α < 

σ
σ+ β Regime II Regime I 

ε1 

(
σ

β−σ
, 

σ+ β
β−σ

) (
σ+ β
β−σ

, σ
α(β−σ ) 

) (
σ

α(β−σ ) 
, 

σ+ β
α(β−σ ) 

) (
σ+ β

α(β−σ ) 
, ∞ 

)
α limit set Stationary point P 1 x 1 − y limit cycle x 1 − y limit cycle x 1 − y limit cycle 

ω limit set Point in R stable 
12 Point in R stable 

12 Stationary point P 2 x 2 − y limit cycle 

Fig. 2. Orbits in the octant E for Regime I with α > 

σ
σ+ β for: (a) ε1 ∈ ( σ

α(β−σ ) 
, 

σ+ β
β−σ

) , (b) ε1 ∈ ( σ+ β
β−σ

, 
σ+ β

α(β−σ ) 
) and (c) ε1 ∈ ( σ+ β

α(β−σ ) 
, ∞ ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This means that the dynamics favors the mutant prey population settlement. In our context the dextral snails are

gradually replaced by the sinistral variant. Indeed, by inspecting this equation in more detail the factors which improve

this behavior can be identified. For example, if the asymmetry index is large (which involve a small value for α) then the

non-mutant to mutant population transition is speeded up. This process is intensified for large populations and when the

number of non-mutant and mutant preys is similar although slows down when the population distribution is near to a

coordinate plane. 

Now, the nature of the limit sets associated to the system (12) will be employed to establish a classification of distinct

scenarios involved in our model. This scheme splits up the parameter space into two regions delimitated by the condition

α = 

σ
σ+ β . The identity of the limit sets for each of these two regions α > 

σ
σ+ β and α < 

σ
σ+ β is respectively established in

Tables 2 and 3 . Notice that the ecological condition (13) involves that the results displayed in Table 3 only arise for cases

where the snake specialization is strong, α < 

1 
2 . 

The local stability study, stated in Proposition 1 , together with the global rule dθ
dτ

> 0 for θ ∈ (0 , π2 ) allow us to ac-

complish a complete qualitative analysis of the solutions for our mathematical model. This description also illustrates the

information included in Tables 2 and 3 . At this point, it is worth to notice that the model dynamics in absence of the preda-

tor population is restricted to the x 1 − x 2 plane. For this particular case, characterized by the differential equations (17) , the

solutions describe straight line orbits which asymptotically collapse in the line R 12 . In Regime I, all the stationary points

which comprise this set are unstable. A qualitative description of the solutions in the Regime I complying with the initial

conditions assumed in this paper (where the mutant prey population is small) is provided in the following paragraphs. 

1. For α > 

σ
σ+ β , the orbits in the phase space can be classified as follows: 

(a) If ε1 ∈ ( σ
α(β−σ ) 

, 
σ+ β
β−σ

) then the orbits initially approach to the stationary point P 1 for very small mutant prey popu-

lations, move away from the x 1 − y plane and finally tends to the stationary point P 2 in the x 2 − y plane, which is

stable for this parameter range (see Fig. 2 (a)). 

(b) If ε1 ∈ ( σ+ β
β−σ

, 
σ+ β

α(β−σ ) 
) then the orbits begin near the x 1 − y plane asymptotically describing a limit cycle confined

to this plane although the increasing non-mutant prey population obliges the orbit to gradually approach to the

stationary point P (see Fig. 2 (b)). 
2 
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Fig. 3. Orbits in the phase plane in Regime II with α < 

σ
σ+ β for (a) ε1 ∈ ( σ

β−σ
, 

σ+ β
β−σ

) and (b) ε1 ∈ ( σ+ β
β−σ

, σ
α(β−σ ) 

) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) If ε1 ∈ ( σ+ β
α(β−σ ) 

, ∞ ) then orbits evolve asymptotically from a limit cycle in the x 1 − y plane to a limit cycle in the

x 2 − y plane. In our ecological context the snail and snake populations never stop oscillating while the sinistral variant

is replacing the dextral one (see Fig. 2 (c)). 

2. For α < 

σ
σ+ β , the solution orbits exhibit a similar behavior than those described in the previous point although now the

case 1(a) does not arise. In other words, the initial non-mutant prey and predator populations are initially attracted by

the limit cycle living in the x 1 − y plane but the final tendency of the orbits depends on the parameter ε1 : 

(a) If ε1 ∈ ( σ
α(β−σ ) 

, 
σ+ β

α(β−σ ) 
) then the orbits asymptotically approach to the stationary point P 2 as the mutant prey popu-

lation is settling the ecosystem (see Fig. 2 (b)). 

(b) If ε1 ∈ ( σ+ β
α(β−σ ) 

, ∞ ) then orbits asymptotically evolve to the limit cycle placed in the x 2 − y plane, where the mutant

prey and predator populations oscillate (see Fig. 2 (c)). 

It can be observed from our previous results that the situation in which there exist orbits asymptotically coming from

the stationary point P 1 and evolving to a limit cycle in the x 2 − y plane is forbidden. 

In Regime II a new pattern in the behavior of the solution orbits is found. In this case, the stationary point P 2 , which

describes the coexistence of steady mutant prey and predator populations, leaves the ecological region E . Despite of this

fact, there exists a dense orbit set confined to the x 2 − y plane by the dynamics ruled by Eq. (16) , which tends to the steady

state (0,1,0). This point is the intersection between the line R 12 and the previously mentioned plane. Therefore, any other

orbit described in the interior of the octant E cannot cross this plane. All these facts allow us to conclude that the orbits

beginning near the x 1 − y plane must asymptotically approach to a stable stationary point in the segment 

R 

stable 
12 = { (μ, 1 − μ, 0) : μ ∈ (0 , μ0 ) } 

where μ0 is given by (A.5) . In this case only the non-mutant and mutant prey populations coexist. In this scenario the

predator species becomes extinct. The exact limit point of this type of orbits depends on the initial conditions. Taking into

account the previous results, the classification of the orbits in the Regime II for our mathematical model can be described

as follows: 

1. For α > 

σ
σ+ β then ε1 ∈ ( σ

β−σ
, σ

α(β−σ ) 
) must be necessarily verified in the regime II. Here the orbits tend to approach to

the stationary point P 1 when the mutant prey population is initially introduced. The orbits move away from the x 1 − y

plane as the predator population decreases until extinction. In our ecological context the orbits asymptotically tend to a

coexistence population between sinistral and dextral snails. This behavior resembles the orbit displayed in Fig. 3 (a). 

2. For α < 

σ
σ+ β two different situations must be distinguish: 

(a) If ε1 ∈ ( σ
β−σ

, 
σ+ β
β−σ

) then the orbits behave in a similar way than those described in the previous point (see Fig. 3 (a)).

(b) If ε1 ∈ ( σ+ β
β−σ

, σ
α(β−σ ) 

) then orbits tend to initially follow a limit cycle when the mutant species is minority and as be-

fore the predator species asymptotically extinguishes giving rise to coexistence between the mutant and non-mutant

prey populations (see Fig. 3 (b)). 

5. Conclusions 

The interactions between a dextral snail-eating specialist Pareas snake population, a settled dextral snail population and

a (mutant) sinistral snail population have been analyzed by constructing a mathematical model, which is described by the
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system of ordinary differential equations (10) . This model assumes a logistic growth for the total snail population. Obviously,

the two snail variants are characterized by the same ecological parameters. The construction of the expressions (8) and (9) ,

which describe the hunting habits followed by Pareas snakes, supposes that the predator spends a constant time period a

day searching, hunting and handling preys (following the same hypotheses employed in the deduction of Holling type II

functional responses, see [14–18] ). The mandibular asymmetry presented by Pareas snakes (an evolutionary adaptation to

the feeding on dextral snails) implies that hunting efficiencies on dextral/sinistral snails are different and offers survival

advantage to the sinistral snail variant. This, in turn, introduces an asymmetry in Eq. (10) , which is measured by the pa-

rameter α. This parameter can be assessed for different Pareas snake species ranging from the extreme value α = 0 . 12 for

Pareas Iwasakii to α = 1 for snakes with symmetrical dentation. Pareas Carinatus is an astonishing case where a weak dental

asymmetry is offset by its skill to recognize snail handedness before striking the prey [13] . As a consequence, the parameter

α is approximately 1 for this species. 

The distinct scenarios of evolution of the three populations are described in this paper. Evolutionary ecology researches

indicate the conviction that in the previously described context the sinistral snail population will replace the dextral variant.

This mechanism can be used to explain left-right reversal in snails that have happened several times on Earth [1,6,11] . The

analysis of the solutions for our model mostly supports this proposal but it also opens new possibilities for extreme cases

such as the Pareas Iwasakii snakes. From the qualitative analysis of (10) the extinction of Pareas snakes is also a possible

picture when snake species exhibit high specialization. Here, Pareas Carinatus teaches us the need to adapt to changes. 

It is interesting to remark that although the model predicts the impossibility of long-term coexistence of the three pop-

ulations, this conclusion would only be valid for very large time scales of applicability, which in principle cannot be guar-

anteed. In fact, and taking into account that on evolutionary time scales natural selection and mutations would alter the

characteristics of these species, the hypotheses considered in the construction of the model would no longer be valid. With

this respect, it is appropriate to comment the following conjectures: 

• The “privileged” interaction of sinistral snails with its natural predator could lead to an important differentiation, or

speciation as it is pointed out in [2,6,11] , from dextral snails in such a way that several parameters of model (10) could

no longer be considered identical for both types of snails. Moreover, it would not be possible to assume that the residual

interspecific competition between the two types of snails g i ( x 1 , x 2 ) is null. 

This modification, even for terms as simple as g i (x 1 , x 2 ) = c i x 1 x 2 , leads to the existence of stationary states of coexistence

for the three species, which may be stable or unstable depending on the different ranges of parameters. 

However, it should be specified that this scenario is not realistic from the actual situation where the two kinds of snails

are in fact almost identical, with the only exception of chirality. 
• Another interesting evolutionary possibility is given by the snakes. The predicted progressive abundance of sinistral snails

constitutes a disadvantage for specialized snakes, which could lead to an evolutionary inversion of the mandibular asym-

metry. In this context, the α parameter should be considered as a function of time. This possibility, compatible with the

above comments about the snails, would lead to more complicated models. 

In any case, starting from a realistic situation with a majority of dextral snails the model guarantees the coexistence

of the three species for the short/medium term. It is much more delicate to predict for the long term, as we have com-

mented, and probably a scenario of inversion between the dominant species will be accompanied with an exchange in the

specialization of snakes that could generate a cyclical situation. 

Finally, the model can also be applied to other ecosystems where two prey variants coexist with a predator that exhibits

a preference for feeding on one of the prey variants. In this paper, the snail chirality is the characteristic that determines

this bias but other features, such as skin color, camouflage skills, etc., can play similar roles. The evolution study of invasive

species populations that show similar characteristics than native species also constitutes a particularly interesting application

of this model. 
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Appendix A 

In this Appendix the proof of Proposition 1 is included. It involves standard and well established techniques, see [19,23–

28] and references therein, which are applied to our context. The local stability of the stationary points for the differential

equations (12) in the ecological region E is analyzed in the following points: (1) For the trivial solution P 0 ≡ (0, 0, 0) the

linear stability matrix is written as follows 

L [ P 0 ] = 

( 

1 0 0 

0 1 0 

0 0 −σ

) 

, 

https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100008431
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which implies that P 0 corresponds to a saddle point. Therefore, P 0 is an unstable stationary point because σ > 0. (2)

The linear stability of the point P 1 (describing steady coexistence between non-mutant prey and predator species) is

governed by the eigenvalues of the matrix 

L [ P 1 ] = 

⎛ 

⎝ 

− σ (β+ σ+ ε1 (σ−β)) 
βε1 (β−σ ) 

σ
β

[ α − β+ ασ
(β−σ ) ε1 

] − σ
βε1 

0 (1 − α)[1 − σ
(β−σ ) ε1 

] 0 

(β − σ ) ε1 − σ α[(β − σ ) ε1 − σ ] 0 

⎞ 

⎠ . 

The characteristic polynomial of L [ P 1 ] reads 

p c (λ) = 

(
λ2 + 

σ [ β+ σ+ ε1 (σ−β)] 
βε1 (β−σ ) 

λ − σ (σ+ ε1 σ−βε1 ) 
βε1 

)(
λ − ( 1 − α)[1 − σ

(β−σ ) ε1 
] 

)
. 

The first factor of this polynomial rules the evolution of the fluctuations induced in the non-mutant and predator popula-

tions. As previously mentioned a Holling type II prey–predator model emerges when the dynamics is confined to this x 1 − y

coordinate plane. We can now use the known results in this framework [19,23–28] . The value ε1 = 

σ+ β
σ−β

characterizes the

occurrence of a Hopf bifurcation. For ε1 < 

σ+ β
σ−β

the point P 1 is stable with respect to fluctuations in the x 1 − y plane and

becomes unstable if the condition ε1 > 

σ+ β
σ−β

is verified. In this last case, the presence of an unique limit cycle is guaranteed.

From an ecological point of view the previous results are summarized as follows: 

a. If σ
β−σ

< ε1 < 

σ+ β
β−σ

then the stationary point P 1 is stable, and the predator and prey populations tend to this steady

solution if the mutant species is absent. 

b. If ε1 > 

σ+ β
β−σ

and there is no mutant individuals then the non-mutant prey–predator population asymptotics is dominated

by a cycle limit embedded in the x 1 − y plane. 

Finally, the eigenvalue 

λ3 = 

(α − 1)(σ + ε1 (σ − β)) 

ε1 (β − σ ) 
, 

extracted from the last factor of p c ( λ), establishes the stability of the steady point P 1 when mutant prey variations are

applied. Under our ecological assumptions (14), (13) and (22) , the value of λ3 is always positive. Therefore, the steady state

P 1 is unstable when these type of perturbations are introduced. (3) The stability of the steady point P 2 (which has ecological

sense only in the Regime I) is analyzed in this point. The linear stability matrix reads 

L [ P 2 ] = 

⎛ 

⎝ 

(1 −α)[ σ+ α(σ−β) ε1 ] 

α2 ε1 (β−σ ) 
0 0 

− σ [ αβ+ σ+ α(σ−β) ε1 ] 

α2 βε1 (β−σ ) 
− σ [ β+ σ+ αε1 (σ−β)] 

αβε1 (β−σ ) 
− σ

βε1 −σ+ α(β−σ ) ε1 

α2 − σ
α + (β − σ ) ε1 0 

⎞ 

⎠ , 

which provides us with the characteristic polynomial 

p c (λ) = 

(
λ2 + 

σ [ β+ σ+ αε1 (σ−β)] 
αβε1 (β−σ ) 

λ − σ (σ+ αε1 σ−αβε1 ) 
αβε1 

)(
λ − (1 −α)[ σ+ α(σ−β) ε1 ] 

α2 ε1 (β−σ ) 

)
. 

The same arguments used in the stability study of the point P 1 can be applied in this case. It can be concluded that if the

condition 

ε1 < 

σ + β

α(σ − β) 

holds, the point P 2 is stable with respect to mutant prey and predator population fluctuations. On the other hand, a unique

limit cycle lies in the x 2 − y plane for the parameter range determined by the inequality 

ε1 > 

σ + β

α(σ − β) 
. 

For the sake of ecological interpretation we distinguish the following two cases: 

a. If σ
α(β−σ ) 

< ε1 < 

σ+ β
α(β−σ ) 

then the stationary point P 2 is stable when fluctuations embedded in the x 2 − y plane are in-

troduced. In the absence of the non-mutant population, the predator and mutant prey populations tend to this steady

solution. 

b. For the parameter range ε1 > 

σ+ β
α(β−σ ) 

, the predator-mutant prey populations shall evolve following a cycle limit confined

to the x 2 − y plane. 

Finally, the stability of the stationary point P 2 against non-mutant prey population fluctuations is discussed. The third eigen-

value of the matrix L ( P 2 ), 

λ3 = 

(α − 1)(σ + ε2 (σ − β)) 

αε2 (β − σ ) 
, 
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which determines the temporal evolution of this type of perturbations, is negative for the parameter values allowed

in the regime I. This means that the point P 2 is stable when non-mutant population variations are applied. (4) Now, we

shall deal with the local stability study for the set of stationary points R 
(μ) 
12 

≡ (μ, 1 − μ, 0) , μ∈ [0, 1]. These steady states

describe the coexistence between the prey variants without the presence of the predator species. The linear stability matrix

is given by 

L [ R 

(μ) 
12 

] = 

⎛ 

⎝ 

−μ −μ − μ
1+ ε1 μ+ ε2 (1 −μ) 

−(1 − μ) −(1 − μ) − α(1 −μ) 
1+ ε1 μ+ ε2 (1 −μ) 

0 0 β − σ − β
1+ ε1 μ+ ε2 (1 −μ) 

⎞ 

⎠ , 

whose eigenvalues are expressed as 

λ1 = 0 , λ2 = −1 , λ3 = β − σ − β

1 + ε1 μ + ε2 (1 − μ) 
. 

The presence of a vanishing eigenvalue indicates the influence of non-linear terms in the local stability analysis. The follow-

ing change of coordinates 

x 1 − μ = −x 1 + 

μ

1 − μ
x 2 + 

[ 
− (1 − α)(1 − μ) μ

−σ + ε1 (β − σ )[ μ + α(1 − μ)] 
+ 

+ 

μ(αμ − α − μ) 

1 − σ − ε1 [ α(−1 + μ) − μ](1 + β − σ ) 

] 
y , 

x 2 − (1 − μ) = x 1 + x 2 + 

[ 
(1 − α)(1 − μ) μ

−σ + ε1 (β − σ )[ μ + α(1 − μ)] 
− (A.1) 

− (−1 + μ)[ α(−1 + μ) − μ] 

1 − σ − ε1 [ α(−1 + μ) − μ](1 + β − σ ) 

] 
y , 

y = y , 

places the stationary point R 
(μ) 
12 

at the origin and orients the coordinate axes along the principal directions of the stability

matrix L [ R 
(μ) 
12 

] . The use of these new variables turns (12) into the equations 

d x 1 
dt 

= − 1 

1 − μ
x 1 x 2 + A 1 x 1 y + A 2 x 2 y + o 3 ( x 1 , x 2 , y ) , 

d x 2 
dt 

= −x 2 + o 2 ( x 1 , x 2 , y ) , (A.2) 

d y 

dt 
= 

(
β − σ − β

1 + ε1 (α + μ − αμ) 

)
y + o 2 ( x 1 , x 2 , y ) . 

The expressions on the right hand side of the system (A.2) have been written up to dominant order in the new variables

x 1 , x 2 and y . Moreover, the notations 

A 1 = 

−αβ + (1 − α) 2 (−1 + μ) μσ

β(−α − μ + αμ)(−1 + ε1 (−α − μ + αμ)) 

+ 

(β − σ )(1 − α) 2 (−1 + μ) μσ

β(−α − μ + αμ)(−σ + ε1 (−β + σ )[ α(−1 + μ) − μ]) 
(A.3) 

+ 

α + μ − αμ

1 − σ − ε1 (1 + β − σ )[ α(−1 + μ) − μ] 
, 

A 2 = 

(−1 + α) μσ

β[ −1 + ε1 (α(−1 + μ) − μ)] 
+ 

(−1 + α) μ(β + βσ − σ 2 ) 

β[ −σ + (α(−1 + μ) − μ) ε1 (−β + σ )] 

have been introduced in (A .2) . From (A .2) it can be concluded that the points R 
(μ) 
12 

are stable with respect to x 2 -fluctuations.

At first order, this type of fluctuations follows the form 

x 2 = x 2 (0) · e −t , 

where x 2 (0) denotes the initial perturbation. The linear approximation introduced in the third equation of (A.2) rules the

local stability of the points R 
(μ) 
12 

with respect to predator population fluctuations. At first order, the expression 

y = y (0) · e 
[ β−σ− β

1+ ε1 (α+ μ−αμ) 
] t = y (0) e λ3 t (A.4) 

determines the evolution of these fluctuations. As before, y (0) denotes the initial predator population variation. The sign

of the eigenvalue λ3 introduced in (A.4) distinguishes two different pieces of the line R 12 = { R (μ) 
12 

: 0 ≤ μ ≤ 1 } where the
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stability behavior changes. The threshold value 

μ0 = 

α

1 − α

[ 
σ

αε1 (β − σ ) 
− 1 

] 
(A.5)

of the parameter μ delimitates the previously mentioned segments. In more detail, the set R stable 
12 

= { R (μ) 
12 

: μ ∈ (0 , μ0 ) }
(located on R 12 ) comprises stable stationary points whereas the set R unstable 

12 
= { R (μ) 

12 
: μ ∈ (μ0 , 1) } corresponds to unstable

stationary points against predator population fluctuations. From an ecological point of view, the previous situation (with

presence of stable and unstable stationary points in the set R 12 ) occurs only in the regime II (described in Section 4 ). The

bisection of R 12 at a point in the region E demands that μ0 ∈ (0, 1). The condition μ0 > 0 leads to the constraint σ
α(β−σ ) 

> ε1

whereas μ0 < 1 involves that σ
β−σ

< ε1 . This parameter range defines the regime II, see formula (26) . On the other hand, all

the steady states belonging to R 12 are unstable with respect to predator population fluctuations in Regime I. 

Now, the first differential equation in (A.2) 

d x 1 
dt 

= 

[ 
A 1 y (0) e λ3 t − x 2 (0) e −t 

1 − μ

] 
x 1 + A 2 x 2 ( 0) y ( 0) e (λ3 −1) t 

rules the temporal evolution of the x 1 -fluctuations at the dominant order. If the initial predator population is zero the steady

states R 12 are stable with respect to prey population perturbations. 

For the sake of completeness, the extreme points of the line R 12 are analyzed separately: (4a) For the stationary point

R 
(μ=1) 
12 

≡ (1 , 0 , 0) , the change of coordinates (A.1) reduces to the form 

x 1 − 1 = −x 1 + x 2 + 

y 

ε1 (−β + σ − 1) + σ − 1 

, x 2 = x 1 , y = y , 

and (A.2) becomes 

d x 1 
dt 

= −x 1 x 2 −
[ 

α

1 + ε1 

+ 

1 

−1 + σ + ε1 (−1 − β + σ ) 

] 
x 1 y + o 3 ( x 1 , x 2 , y ) , 

d x 2 
dt 

= −x 2 + o 2 ( x 1 , x 2 , y ) , 

d y 

dt 
= 

(
− σ + 

βε1 

1 + ε1 

)
y + o 2 ( x 1 , x 2 , y ) . 

In this case, the stability condition with respect to predator fluctuations −σ + 

βε1 
1+ ε1 

< 0 implies that ε1 < 

σ
β−σ

. This require-

ment is never verified because of the ecological parameter restriction (22) . Therefore, the stationary point R 
(μ=1) 
12 

is unstable

even in the regime II. (4b) For the particular stationary point R 
(μ=0) 
12 

≡ (0 , 1 , 0) , the changes of coordinates (A.1) reads 

x 1 = −x 1 , x 2 − 1 = x 1 + x 2 + 

α

αε1 (−β + σ − 1) + σ − 1 

y , y = y , 

which turns (A.2) into 

d x 1 
dt 

= −x 1 x 2 −
[ 

1 

1 + αε1 

+ 

α

−1 + σ + αε1 (−1 − β + σ ) 

] 
x 1 y + o 3 ( x 1 , x 2 , y ) 

d x 2 
dt 

= −x 2 + o 2 ( x 1 , x 2 , y ) , 

d y 

dt 
= 

(
β − σ − β

1 + αε1 

)
y + o 2 ( x 1 , x 2 , y ) . 

Stability condition against the predator fluctuations β − σ − β
1+ αε1 

< 0 involves that ε1 < 

σ
α(β−σ ) 

. Therefore, the stationary

point R 
(μ=0) 
12 

is always stable in Regime II. 
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