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Abstract
In order to understand the behavior of the glaciers, their mass balance should be studied. The loss of water produced by

melting, known as glacier discharge, is one of the components of this mass balance. In this paper, a vine copula structure is

proposed to model the multivariate and nonlinear dependence among the glacier discharge and other related meteorological

variables such as temperature, humidity, solar radiation and precipitation. The multivariate distribution of these variables is

expressed as a mixture of four components according to the presence or not of positive discharge and/or positive pre-

cipitation. Then, each of the four subgroups is modelled with a vine copula. The conditional probability of zero discharge

for given meteorological conditions is obtained from the proposed joint distribution. Moreover, the structure of the vine

copula allows us to derive the conditional distribution of the glacier discharge for the given meteorological conditions.

Three different prediction methods for the values of the discharge are used and compared. The proposed methodology is

applied to a large database collected since 2002 by the GLACKMA association from a measurement station located in the

King George Island in the Antarctica. Seasonal effects are included by using different parameters for each season. We have

found that the proposed vine copula model outperforms a previous work where we only used the temperature to predict the

glacier discharge using a time-varying bivariate copula.

Keywords Glacier discharge � Vine copula � Prediction � Meteorological � Finite mixtures

1 Introduction

The study of the mass balance in glaciers is crucial for the

correct quantification of water resources (Hamlet and

Lettenmaier 1999; Marsh 1999). Mass balance is the dif-

ference between accumulation (mainly in form of fallen

snow) and ablation (produced by sublimation, calving and

melting). Glacier discharge is defined as the rate of flow of

meltwater through a vertical section perpendicular to the

direction of the flow (Cogley et al. 2011). It is produced by

surface runoff or by flowing inside the glacier and exiting

through the front or the base.

The Antarctic Peninsula as being affected by recent

rapid regional climate warming, which refers to those areas

where the regional changes have been more profound than

the worldwide mean, as noted by the Intergovernmental

Panel on Climate Change (IPCC) (Turner et al. 2005;

Vaughan et al. 2003). Ablation periods of the glaciers in

this area have been increasing over time (Domı́nguez and

Eraso 2007). As a consequence, glaciers have been

retreating and thinning, and surface melting has tended to

increase (Rückamp et al. 2011; Barrand et al. 2013).

The study of the relationship between glacier behavior

and climate is a fundamental issue in glaciology. These

relationships can be analyzed with the energy balance

equations which evaluate the most important energy fluxes

between the atmosphere and the glacier surface. These
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equations are computed from physically based calculations

(see e.g. Braun 2001; Sicart et al. 2008) and involve

complex equations and measurements. Alternatively, tem-

perature index models use only the air temperature to

empirically model the relationship between melt rate and

(positive) air temperature (degree-day model; Hock 2003).

A complete review of these methods can be found in Hock

(2003). There are some studies that incorporate more

variables into this model, such as the direct solar radiation

(Hock 1999) or the albedo and the shortwave radiation

(Pellicciotti et al. 2005). The main problem in this type of

model is that they implicitly assume a linear relationship

between temperature and discharge.

In this paper we propose the use of multivariate copulas

to model the non-linear relationships between the dis-

charge, temperature and several other meteorological

variables. Copulas are statistical tools within statistics that

allow us to model these relationships independently of the

marginal distributions choice (Genest and Favre 2007). In

climate science and hydrology, many research authors

model the relationship between pairs of variables using

bidimensional copulas (see e.g. De Michele and Salvadori

2003; Carnicero et al. 2013; Sarhadi et al. 2016). However,

the number of publications studying the relationships

among more than two variables is much smaller. Standard

multivariate copulas are available, such as the multivariate

Gaussian or the t-Student copulas. However, they have

shown to be rather inflexible as, for example, they assume

that the dependence is symmetric in both tails, which is not

realistic in this context. Alternatively, it is possible to

model multivariate distributions using vine copulas. These

are flexible dependence models that are built from recur-

sive conditioning of the underlying joint density functions

resulting in a product of conditional and unconditional

bivariate copula densities. Vine copulas have been suc-

cessfully used in a small number of papers in hydrology.

For example, Gyasi-Agyei and Melching (2012) model the

internal dependence structure between net storm event

depth, maximum wet periods depth, and the total wet

periods duration. Gyasi-Agyei (2013) models the depen-

dence between total depth, total duration of wet periods,

and the maximum proportional depth of a wet period in a

rainfall disaggregation model. Xiong et al. (2015) study the

dependence between annual maximum daily discharge,

annual maximum 3-day flood volume and annual maxi-

mum 15-day flood volume to understand the change-point

detection of multivariate hydrological series. Note that

these papers deal with three hydrological variables, while

in our work we study the relation between five variables

which, in addition, may take discrete values.

This work has two main goals. First, we wish to predict

the conditional probability of having no glacier discharge

given the observations of temperature, humidity, radiation

and precipitation. Also, we want to predict the values of the

discharge given the specific observations of the meteoro-

logical variables, with the conditional distribution of the

discharge obtained through the vine copula. This paper

extends our previous bivariate copula model (Gomez et al.

2017), based on a time-varying relationship between dis-

charge and temperature, by the inclusion of three new

meteorological variables which, as in the case of the pre-

cipitation, may take zero values. We consider vine copulas

to define the dependence structure between all variable of

our new model. We also propose a new way of dealing with

zero values, in the glacier discharge, compared to previous

work in Gomez et al. (2017). These were considered as

missing observations, while it is now assumed that the

glacier discharge may be equal to zero with positive

probability. Another difference is the way in which sea-

sonality has been taken into account. Due to the increase in

the number of variables, we have divided each hydrologic

year into four periods with different behavior in the dis-

charge regime instead of assuming a time-varying

seasonality.

The remainder of the paper is organized as follows.

Firstly, copulas, vine copulas and the estimation method of

inference function for margins are briefly introduced in

Sect. 2. Next, the study area and the considered database

are described in Sect. 3. This is followed by the proposal of

a multivariate model based on vine copulas and a

description of the estimation method in Sect. 4. The pro-

posed methodology is applied, in Sect. 5, to the

GLACKMA database. Finally, Sect. 6 includes an exten-

sive discussion about findings, limitations and possible

future extensions.

2 Background

Copulas are multivariate distributions defined on the unit

hypercube with uniform marginal distributions. Copulas

allow to define the dependence structure between random

variables independently of their marginal behavior. See

Nelsen (2006) for an extensive review. Sklar’s theorem

(Sklar 1959) proves that for any m-dimensional distribu-

tion, F, there exists a m-dimensional copula, C, such that

for all x1; . . .; xm;

F x1; . . .; xmð Þ ¼ C F1 x1ð Þ; . . .;Fm xmð Þð Þ; ð1Þ

where F1; . . .;Fm are the marginal distribution functions

corresponding to F. If the margins are continuous, then the

copula is unique and the joint density function is,

f ðx1; . . .; xmÞ ¼ cðF1ðx1Þ; . . .;FmðxmÞÞ
Ym

j¼1

fjðxjÞ; ð2Þ
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where c is the m-dimensional copula density and f1; . . .; fm
are the marginal density functions.

2.1 Vine copulas

Vine copulas or pair-copula construction is a dependence

model to model multivariate data using a product of

unconditional and conditional bivariate copulas, called

pair-copulas (Aas et al. 2009), and marginal densities. For

high dimensions, many different vine structures can be

used for the same multivariate density function. Bedford

and Cooke (2001) introduced a graphical structure, called

regular vine structure, to organize the pair-copula con-

struction as a sequence of nested trees with undirected

edges, which will be later illustrated. According to the

structure of the trees, we can distinguish two families of

regular vines: c-vines and d-vines. D-vines and C-vines

have a practical interpretation; D-vine: temporal/serial

ordering of variables and C-vine: ordering of the variables

by importance. In this paper, we will only consider c-vines

for simplicity and also because it seems reasonable to

consider the temperature as the main variable in the first

tree, as will be later explained. A c-vine can be constructed

as follows. Consider a multivariate density as a product of

conditional densities,

f x1; . . .; xmð Þ ¼ f1ðx1Þ
Ym

j¼2

fjj1:j�1 xj j x1; . . .; xj�1

� �
ð3Þ

where, using (2),

fjj1:j�1 xj j x1:j�1

� �
¼ cj�1;jj1:j�2 Fj�1j1:j�2ðxj�1jx1:j�2Þ;

�

Fjj1:j�2ðxjjx1:j�2ÞÞfjj1:j�2ðxjjx1:j�2Þ;
ð4Þ

where Fð�j�Þ and f ð�j�Þ denote conditional cdfs and densi-

ties, respectively, and x1:j�1 ¼ fx1; . . .; xj�1g. Then,

applying (4) recursively, the joint density (3) can be

expressed as:

f x1; . . .; xmð Þ ¼
Ym

j¼1

fjðxjÞ
Ym

j¼2

Yj�1

k¼1

cj�k;jj1:j�k�1 Fj�kj1:j�k�1

�

ðxj�kjx1:j�k�1Þ;Fjj1:j�k�1ðxjjx1:j�k�1ÞÞ;
ð5Þ

where the conditional distribution functions in (5) can be

obtained recursively using the following result obtained by

Joe (1996),

This derivative, which is usually called h function, has

been derived explicitly for many Archimedean and ellip-

tical copulas, see Aas et al. (2009).

2.2 Inference function for margins method

Consider a copula-based parametric model,

F x1; . . .; xm; m1; . . .; mm; hcð Þ ¼ C F1 x1; m1ð Þ; . . .;Fm xm; mmð Þ; hcð Þ;
ð7Þ

where m1; . . .; mmð Þ denote the marginal parameters and hc
are the copula parameters. Maximum likelihood estimation

of both marginal and copula parameters may become very

complicated, especially when the dimension m is high.

Note that given a data set, fðxi1; . . .; ximÞg, for i ¼ 1; . . .; n;
the log-likelihood can be written as, see (2),

Lðm1; . . .;mm;hcÞ ¼
Xn

i¼1

logc F1ðxi1;m1Þ; . . .;Fmðxim;mmÞ;hcð Þ

þ
Xn

i¼1

Xm

j¼1

log fj xij;mj
� �

;

Alternatively, Joe (1997) proposes the so-called Inference

Function for Margins (IFM) method. The IFM method is a

two-step estimation approach where, in the first step, the

marginal parameters are separately estimated as if the

variables were independent,

m̂j ¼ argmax
mj

Xn

i¼1

log fj xij; mj
� �

; for; j ¼ 1; . . .;m:

Then, in a second step, the copula parameters are estimated

by,

ĥc ¼ argmax
hc

Xn

i¼1

log c F̂1ðxi1; m̂1Þ; . . .; F̂mðxim; m̂mÞ; hc
� �

;

where m̂j; for j ¼ 1; . . .;m, are the estimated marginal

parameters from the first step and F̂i indicates that the para-

metric forms for marginal distributions are estimates them-

selves and not only the corresponding parameter estimates.

Note that the probability integral transformed values

based on the marginal estimates, F̂jðxi; m̂jÞ, are approxi-

mately standard uniformly distributed if the parametric fits

are sufficiently good, otherwise the copula parameter

estimates will be biased.

Fðxj�kjx1:j�k�1Þ ¼
oCj�k;j�k�1j1:j�k�2ðFj�kj1:j�k�2ðxj�kjx1:j�k�2Þ;Fj�k�1j1:j�k�2ðxj�k�1jx1:j�k�2ÞÞ

oFj�k�1j1:j�k�2ðxj�k�1jx1:j�k�2Þ
: ð6Þ
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As usually considered in vine copulas, we impose the

so-called simplifying assumption in (4) which assumes that

each pair-copula of conditional distributions are indepen-

dent of he variables on which they are conditioned.

Although, this assumption has been criticized (Acar et al.

2012 and Spanhel and Kurz 2015). Killiches et al. (2017)

propose the use of this assumption especially when the

number of parameters is large and this assumption simply

is common practice in vine copula modeling. Moreover,

Haff et al. (2010) came to the conclusion that vine copulas

built with this assumption are ‘‘a rather good solution, even

when the simplifying assumption is far from being fulfilled

by the actual model’’.

3 Study area and data

King George is the largest of the South Shetland Islands,

which is an archipelago located off the coast of the

Antarctic Peninsula in the Southern Ocean. See Braun

(2001) for a complete description of the island. The study

area is located in the southwestern part of King George

island, where GLACKMA has placed one of their eight

Pilot Experimental Catchment Areas, called CPE-KG-62�S
whose coordinates are Lat:S 62�11’035, Long:W

58�54’414, so as to study the discharge of the Collins

Glacier, see www.glackma.es. Specific glacier discharge

per unit area, measured in m3 � s�1 � km�2, is estimated as

an exponential function of the level of the river which

receives the melted water from the catchment area. Also,

we have selected a collection of meteorological variables

such as the air temperature (�C), the relative humidity (%),

the solar radiation (W=m2) and the precipitation (mm).

These meteorological data have been provided by the

Bellinghausen Russian base (via GLACKMA), sited near

of the catchment area. See Domı́nguez and Eraso (2007)

and Gomez et al. (2017) for a description of the catchment

area and further details about the variables.

The available data are from 10/01/2002 to 09/30/2012

and are composed by daily measurements of the mean daily

temperature, humidity, radiation and discharge and the

daily cumulative precipitation. A preliminary study of

these data shows that discharge and precipitation have a

large number of zero-values. In particular, the value of the

discharge was zero in 62% of the observed days and the

value of the precipitation was zero in 31% of the observed

days. This fact will have a definite impact in the design of

the vine copula model. Figure 1 shows the scatter plot of

each couple of variables and the histogram of each indi-

vidual variable for those days when the discharge was

larger than zero. Apparently, there are relationships

between the variables also these relations seem not to be

linear. We therefore suggest the use of copulas to model

these non-linear relationships. The Kendall rank correlation

coefficients of the variables help us to choose the order of

the variables in the vine structure.

4 Methodology

In this section, we introduce a method to predict values of

the specific glacier discharge per unit area given the

observed values of the meteorological variables. First, we

propose a vine copula model to describe the multivariate

joint density function of the five variables where two of

them have a large number of zero values. Then, we obtain

the conditional probability of having no discharge. Finally,

we derive the conditional distribution of the discharge

given the other meteorological variables.

4.1 Multivariate copula model

Let T, H, R, P and D be random variables, where the

temperature is T 2 R; the humidity is H 2 ð0; 1Þ; the

radiation is R 2 Rþ; the precipitation is P 2 Rþ [ f0g and

the discharge is D 2 Rþ [ f0g. As commented in the

previous section, in practice, it is observed that both, the

precipitation and the discharge, show a large number of

zero values. This fact has a quite important impact in the

construction of our proposed model. We define the joint

density function as a mixture of four different multivariate

densities, depending on the joint probability of observing

zero or positive values for the discharge and precipitation.

Thus, the joint density function of the multivariate variable

T;H;R;P;Dð Þ is decomposed as,

f ðt; h; r; p; dÞ ¼

f 00thrðt; h; rÞ; with p00 ¼ PrðD ¼ 0;P ¼ 0Þ; ð8aÞ
f 10thrdðt; h; r; dÞ; with p10 ¼ PrðD[ 0;P ¼ 0Þ; ð8bÞ
f 01thrpðt; h; r; pÞ; with p01 ¼ PrðD ¼ 0;P[ 0Þ; ð8cÞ

f 11thrpdðt; h; r; p; dÞ; with p11 ¼ PrðD[ 0;P[ 0Þ; ð8dÞ

8
>>>><

>>>>:
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where f 00thr , f
10
thrd, f

01
thrp and f 11thrpd denote each of the four dif-

ferent multivariate density functions, where the first and

second superscripts refer, respectively, to the presence (1)

or not (0) of positive discharge and precipitation. In prac-

tice, given a data set for the five variables T ;H;R;P;Dð Þ,
we will divide the data into four subsamples according to

having or not discharge and precipitation. The joint prob-

abilities of having or not discharge and precipitation, pjk,

for j ¼ 0; 1 and k ¼ 0; 1, will be obtained empirically.

Then, the four subsamples will be modeled independently

allowing for different marginal parameters and c-vine

copula models constructed from different pair-copula

families, as explained below.

Our proposed model builds upon the ideas by Erhardt

and Czado (2012) and Brechmann et al. (2014) who pro-

pose a zero-inflated copula-based model where marginal

variables may take zero or positive values. However, our

approach is different since they use, depending on each

subgroup, a multivariate margin of the joint density. By

doing so, in some way they assume the same probabilistic

law for all subgroups and therefore, all observations (in-

dependently of their membership to a specific subgroup)

contribute to the estimation of joint copula parameters.

Alternatively, we allow for different multivariate distribu-

tion models for each subgroup.

We can define each of the four joint density functions,

(8a) to (8d), in terms of c-vine copulas. For example, the

multivariate density for the group with highest dimension,

(8d), can be expressed as, see (3),

f 11thrpdðt; h; r; p; dÞ ¼ f 11thrpdðd j t; h; r; pÞ � f 11thrpðp j t; h; rÞ�
f 11thrðr j t; hÞ � f 11th ðh j tÞ � f 11t ðtÞ;

ð9Þ

where f 11thrpð:Þ is the four dimensional margin of f 11thrpd ,

f 11thrpð:j:Þ are the univariate conditional densities and so on.

We use this decomposition because conditioning is in the

order of the importance of variables and corresponds to the

main nodes in the C-vine tree levels.

By the Sklar theorem (2), we know that,

f 11th h j tð Þ ¼ c11th F11
t tð Þ;F11

h hð Þ
� �

� f 11h hð Þ; ð10Þ

and similarly, see (4),

f 11thr r j t; hð Þ ¼ c11hrjt F
11
th h j tð Þ;F11

tr r j tð Þ
� �

� f 11tr r j tð Þ

¼10ð Þ
c11hrjt F

11
th h j tð Þ;F11

tr r j tð Þ
� �

� c11tr F11
t tð Þ;F11

r rð Þ
� �

� f 11r rð Þ;

ð11Þ

and, see (4),

f 11thrp p j t;h; rð Þ ¼ c11rpjth F11
thr r j t;hð Þ;F11

thp p j t;hð Þ
� �

� f 11thp p j t;hð Þ ¼11ð Þ
c11rpjth F11

thr r j t;hð Þ;F11
thp p j t;hð Þ

� �

� c11hpjt F11
th h j tð Þ;F11

tp p j tð Þ
� �

� c11tp F11
t tð Þ;F11

p pð Þ
� �

� f 11p pð Þ;

ð12Þ

and, see (4),

f 11thrpd d j t; h; r; pð Þ ¼ c11pdjthr F11
thrp p j t; h; rð Þ;F11

thrd d j t; h; rð Þ
� �

� f 11thrd d j t; h; rð Þ ¼12ð Þ
c11pdjthr F11

thrp p j t; h; rð Þ;
�

F11
thrd d j t; h; rð Þ

�
� c11rdjth F11

thr r j t; hð Þ;
�

F11
thd d j t; hð ÞÞ � c11hdjt F11

th h j tð Þ;F11
td d j tð Þ

� �

� c11td F11
t tð Þ;F11

d dð Þ
� �

� f 11d dð Þ:

ð13Þ
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Fig. 1 Scatter plot, histograms and Kendall’s s of the five variables when the values of the discharge and precipitation are greater than zero. Sizes
of the s values are proportional to their absolute values
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Then, we can apply (10), (11), (12) and (13) in (9) to obtain

the multivariate density function as the product of bivariate

conditional and unconditional copula densities and mar-

ginal density functions,

f 11thrpdðt; h; r; p; dÞ ¼ f 11t ðtÞ � f 11h ðhÞ � f 11r ðrÞ � f 11p ðpÞ � f 11d ðdÞ
� c11th ðu11t ; u11h Þ � c11tr ðu11t ; u11r Þ � c11tp ðu11t ; u11p Þ
� c11td ðu11t ; u11d Þ � c11hrjtðu11hjt; u11rjtÞ � c11hpjtðu11hjt; u11pjtÞ
� c11hdjtðu11hjt; u11djtÞ � c11rpjthðu11rjth; u11pjthÞ
� c11rdjthðu11rjth; u11djthÞ � c11pdjthrðu11pjthr; u11djthrÞ;

ð14Þ

where, using (6), we have that,

u11x ¼ F11
x ðxÞ; for x ¼ t; h; r; p; d;

u11xjt ¼ F11
tx ðx j tÞ ¼

oC11
tx ðu11t ; u11x Þ
ou11t

; for x ¼ h; r; p; d;

u11xjth ¼ F11
thxðx j t; hÞ ¼

oC11
hxjtðu11hjt; u11xjtÞ
ou11

hjt
; for x ¼ r; p; d;

u11xjthr ¼ F11
thrxðx j t; h; rÞ ¼

oC11
rxjthðu11rjth; u11xjthÞ

ou11
rjth

; for x ¼ p; d:

Figure 2 shows the graphical structure of the 5-dimensional

c-vine of the density (14). Each line in (14) corresponds to

one of the four nested trees in the figure, except for the first

line which corresponds to the marginal densities. Each

edge connects two nodes whose relationship can be mod-

eled with a bivariate copula.

Similar expressions can be obtained for (8a), (8b) and

(8c), which are shown in Appendix 1.

4.2 Marginal distributions

Now, we wish to define the marginal distribution function

for each of the five variables, T ;H;R;P;Dð Þ, in each of the

four groups, (j, k), for j ¼ 0; 1 and k ¼ 0; 1, according to

the presence or not of discharge and precipitation. Thus,

each marginal distribution will be defined as a mixture of

four components. For example, the density function of the

temperature will be expressed as:

ftðtÞ ¼

f 00t ðtÞ;with p00;
f 10t ðtÞ;with p10;
f 01t ðtÞ;with p01;
f 11t ðtÞ;with p11:

8
>>><

>>>:

Note that, as commented before, in practice we will divide

the whole data set in four subsamples for the marginal

distribution according to having or not discharge and pre-

cipitation. Therefore, we will have four subsamples from

the marginal distribution of each variable. Thus, we will

allow a different marginal distribution with different

parameters for each of the four groups in each variable.

Further, we assume a parametric model based on finite

mixture models for the density in each of the four groups.

In particular, for the temperature, we consider a finite

mixture of Gaussian distributions, see e.g. Schär et al.

(2004),

f jkt ðtÞ ¼
XKjk

t

i¼1

xjk
ti �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p½rjkti �

2
q � exp � ½t � ljkti �

2

2½rjkti �
2

 !
;

where we allow for a different number of mixture com-

ponents, K
jk
t , in each group (j, k), for j ¼ 0; 1 and k ¼ 0; 1.

The mixture size, K
jk
t , will be selected using model selec-

tion criteria, as will be explained in Sect. 4.4. Given the

mixture size, the marginal model parameters are

xjk
ti ; l

jk
ti ; r

jk
ti

n o
, for i ¼ 1; . . .;Kjk

t ; for j ¼ 0; 1 and k ¼ 0; 1.

Similarly, for the variable defining the humidity, we

consider a finite mixture of Beta distributions, see e.g. Yao

(1974) and Yang et al. (2015), since these are defined

between 0 and 1,

Fig. 2 Structure of a c-vine copula with 5 variables, 4 trees and 10 edges, where T is the main variable for the first tree. Each edge may be

associated with a pair-copula
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f
jk
h ðhÞ ¼

XK
jk

h

i¼1

xjk
hi �

Cðajkhi þ bjkhiÞ
CðajkhiÞ � Cðb

jk
hiÞ

� ha
jk

hi
�1 � ð1� hÞb

jk

hi
�1;

where the marginal parameters are xjk
hi; a

jk
hi; b

jk
hi

n o
, for

i ¼ 1; . . .;Kjk
h ; for j ¼ 0; 1 and k ¼ 0; 1, and where the

mixture size, K
jk
h , will be obtained using model selection

criteria.

Finally, finite mixtures of Gamma distributions are

assumed for the radiation, precipitation (Scholzel and

Friederichs 2008) and discharge (Favre et al. 2004 and

Gomez et al. 2017), since they are defined for positive

values. In particular, for the radiation,

f jkr ðrÞ ¼
XKjk

r

i¼1

xjk
ri �

½kjkri �
jjk
ri

CðjjkriÞ
� rj

jk
ri
�1 � expð�kjkxi � rÞ; ð15Þ

where the marginal parameters are xjk
ri ; j

jk
ri ; k

jk
ri

n o
, for

i ¼ 1; . . .;Kjk
r ; for j ¼ 0; 1; and k ¼ 0; 1. For the precipi-

tation, we only need to define continuous densities for two

groups since,

fpðpÞ ¼
dðpÞ; with p00 þ p10;

f 01p ðpÞ; with p01;

f 11p ðpÞ; with p11;

8
><

>:
ð16Þ

where dðpÞ denotes the Dirac delta function which is zero

everywhere except at p ¼ 0, where it is infinite. Thus, we

assume a different Gamma mixture for each f 01p ðpÞ and

f 11p ðpÞ, analogous to the one given in (15), with marginal

parameters xj1
pi; j

j1
pi; k

j1
pi

n o
, for i ¼ 1; . . .;Kj1

p ; for j ¼ 0; 1,

where Kj1
p is the number of terms in the mixture. Finally,

analogous to (16), the discharge is equal to zero with

probability p00 þ p01, and follows a different Gamma

mixture, as given in (15), for each f 10d ðdÞ and f 11d ðdÞ, with
probabilities p10 and p11, respectively, and marginal

parameters x1k
di ; j

1k
di ; k

1k
di

� �
, for i ¼ 1; . . .;K1k

p ; for k ¼ 0; 1,

where K1k
d is the number of terms in the mixture.

In practice, once we have an estimated mixture density,

f jkx , for each variable, x ¼ t; h; r; p; d, and group, j ¼ 1; 0

and k ¼ 0; 1, we may apply the corresponding distribution

function, Fjk
x , to the subsample of data in each group in

order to obtain the pseudo-u data, which will be approxi-

mately uniformly distributed for each group and for each

variable.

4.3 Conditional probability

Once we have defined the complete multivariate model (5)

in terms of copulas and marginal densities, we may obtain

many quantities of interest. For example, we may derive

the conditional probability of zero discharge for one par-

ticular day whose meteorological variables have been

observed. Assume first that zero precipitation has been

observed, then the conditional probability of zero discharge

given the values of the remaining meteorological variables

is,

PrðD ¼ 0 j T ¼ t;H ¼ h;R ¼ r;P ¼ 0Þ

¼ p00f 00thrðt; h; rÞ
p00f 00thrðt; h; rÞ þ p10f 10thrðt; h; rÞ

;
ð17Þ

where p00, p10 and f 00thrðt; h; rÞ are directly obtained from the

model (5) and

f 10thrðt; h; rÞ ¼ c10hrjt u10hjt; u
10
rjt

� �
� c10th u10t ; u10h

� �
� c10tr u10t ; u10r

� �
�

f 10t ðtÞ � f 10h ðhÞ � f 10r ðrÞ;

which is the marginal joint density of the triple

(t, h, r) from the joint density f 10thrdðt; h; r; dÞ, given by (27).

Figure 3 illustrates how to visualize the marginal density,

f 10thrðt; h; rÞ, from the joint density f 10thrdðt; h; r; dÞ by deleting

all the nodes related with the variable discharge. Note that

these can be viewed as nested c-vine copulas which allow

to derive the dependence structure of marginal distributions

given the c-vine structure of the joint distribution.

Now, consider the case where a positive precipitation,

p[ 0, has been observed. Then, the conditional probability

of zero discharge given this positive precipitation and the

values of the remaining meteorological variables is,

PrðD ¼ 0 j T ¼ t;H ¼ h;R ¼ r;P ¼ pÞ

¼
p01f 01thrpðt; h; r; pÞ

p01f 01thrpðt; h; r; pÞ þ p11f 11thrpðt; h; r; pÞ
;

ð18Þ

where p01, p11 and f 01thrpðt; h; r; pÞ are again directly obtained

from the model (5) and

f 11thrpðt; h; r; pÞ ¼ c11rpjth u11hrjt; u
11
hpjt

� �
� c11hrjt u11hjt; u

11
rjt

� �
�

c11hpjt u11hjt; u
11
pjt

� �
� c11th u11t ; u11h

� �
� c11tr u11t ; u11r

� �
�

c11tp u11t ; u11p

� �
� f 11t ðtÞ � f 11h ðhÞ � f 11r ðrÞ � f 11p ðpÞ;

which is the marginal joint density of the quadruple

(t, h, r, p) from the joint density f 11thrpdðt; h; r; p; dÞ, given by

(14). As before, we may visualize the marginal density

f 11thrpðt; h; r; pÞ from the joint density f 11thrpdðt; h; r; p; dÞ by

deleting the nodes related with the variable discharge in

Fig. 2.

Furthermore, given the complete model (5), we may also

obtain the whole conditional distribution function of the

discharge given observed values of the remaining meteo-

rological variables. As before, we may distinguish two
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cases according to having observed zero or positive pre-

cipitation. In the first case, the conditional distribution

function is given by,

where PrðD ¼ 0 j t; h; r;P ¼ 0Þ is given in (17) and

F10
thrdðd j t; h; rÞ is the conditional cdf of the discharge

obtained from the density, f 10thrdðt; h; r; dÞ, given in (27),

such that,

F10
thrdðd j t; h; rÞ ¼

oC10
rdjth u10rjth; u

10
djth

� �

ou10
rjth

which can be obtained directly from the bivariate copula in

the last tree of Fig. 3.

Finally, the whole conditional distribution function of

the discharge given a positive precipitation, p[ 0, and

observed values for the remaining meteorological variables

is given by,

where PrðD ¼ 0 j t; h; r;P ¼ pÞ is given in (18) and

F11
thrdpðd j t; h; r; pÞ is the conditional cdf of the discharge in

f 11thrdpðt; h; r; p; dÞ, whose density is given in (14), such that,

F11
thrdpðd j t; h; r; pÞ ¼

oC11
pdjthr u11pjthr; u

11
djthr

� �

ou11
pjthr

which can be obtained directly from the bivariate copula in

the last tree of Fig. 2.

4.4 Inference and prediction methods

Here, we provide a description of the methods that we

propose for the estimation of the model parameters, model

selection and prediction of discharge values. Assume that

we have a data set from the five variables

(T, H, R, P, D) and we want to estimate the parameters for

our proposed model (5). As commented before, we firstly

divide the sample in four subsamples according to the

presence or not of discharge and/or precipitation and

estimate the probabilities of each group, pjk, for j ¼ 0; 1

and k ¼ 0; 1, using empirical frequencies. Then, for each

subsample, we consider the IFM method, which is

reviewed in Sect. 2. Thus, we firstly estimate the parame-

ters of the marginal distributions for each variable in each

group based on mixture models, as described in Sect. 4.2,

using the MLE method. Note that the marginal parameters

can be different in each group, but the estimation procedure

is the same. In order to select the best number of compo-

nents in each mixture, we make use of the Bayesian

Information Criterion (BIC) which requires to estimate the

parameters by MLE for different number of mixture

components. We select the one with the minimum BIC

value for each variable in each group. Finally, we apply the

estimated marginal distribution functions, Fjk
x , for each

variable, x ¼ t; h; r; p; d, and for each group, j ¼ 0; 1; and

k ¼ 0; 1 to the observed data, such that an estimation of the

u-data values ujkx , are obtained for each variable and group.

The next step is to fit a c-vine copula for each u-data

subsample in each group. Firstly, it is required to set an

order for the variables. As described in Sect. 4.1, we have

chosen the same order for the variables in the four groups

so that the structure of the trees is the same. Figure 7 shows

this structure. We have set the variables with strongest

dependencies in the first nodes of the trees. In particular,

the temperature has been set as the main variable since it

shows the strongest Kendall’s tau dependence with the

discharge. Also, the discharge has been set as the last

variable for convenience in the computation of conditional

probabilities. Clearly, there are many other possible orders

and some of them will be analyzed and compared in the

application. Some discussion about the order issue is also

included in Sect. 6.

Given the structure of the c-vines, appropriate pair-

copula families are selected and estimated sequentially as

follows. Parameters are estimated by maximum likelihood

and the best copula family is selected using the BIC value.

Fðd j T ¼ t;H ¼ h;R ¼ r;P ¼ 0Þ ¼
0; with PrðD ¼ 0 j T ¼ t;H ¼ h;R ¼ r;P ¼ 0Þ
F10
thrdðd j t; h; rÞ; with 1� PrðD ¼ 0 j T ¼ t;H ¼ h;R ¼ r;P ¼ 0Þ

	
ð19Þ

Fðd j T ¼ t;H ¼ h;R ¼ r;P ¼ pÞ ¼
0; with PrðD ¼ 0 j T ¼ t;H ¼ h;R ¼ r;P ¼ pÞ
F11
thrdpðd j t; h; r; pÞ; with 1� PrðD ¼ 0 j T ¼ t;H ¼ h;R ¼ r;P ¼ pÞ

(
ð20Þ
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Consider the u-data values, ujkx , for each variable,

x ¼ t; h; r; p; d, and for each group, j ¼ 0; 1; and k ¼ 0; 1.

1. Fit bivariate copulas for u
jk
t and ujkx , for x ¼ h; r; p; d,

for all the edges in the first tree.

2. Generate the series u
jk

xjt ¼
oC

jk
txðu

jk
t ;u

jk
x Þ

ou
jk
t

, for x ¼ h; r; p; d,

using the fitted copula from the previous step.

3. Fit bivariate copulas for u
jk
hjt and u

jk
xjt, for x ¼ r; p; d for

all the edges in the second tree.

4. Using the same procedure, generate series from the

edges and fit copulas between the nodes for the

remaining trees.

In the application, we have chosen among elliptical copulas

(Gaussian, t-copula), one-parameter Archimedean copulas

(Gumbel, Frank, Joe, Clayton) and their rotated versions.

Before selecting a copula, the Kendall’s tau independence

test is performed for each pair of variables using a 0.05

significance level. All these estimations have been made

using the functions available in the R package VineCopula

(Schepsmeier et al. 2017; R Core Team 2018).

We consider and compare three different estimators to

obtain predictions for values of the discharge given

observed values of the remaining meteorological variables.

The first estimator is the median of the conditional distri-

bution of the discharge. This can be calculated as the value,

d̂, such that,

0:5 ¼ PrðD ¼ 0 j t; h; r; pÞ þ ð1� PrðD ¼ 0 j t; h; r; pÞÞ
� Fdðd̂ j t; h; r; pÞ;

where Fd is the conditional distribution function given in

(19), for the case that the observed precipitation is zero,

p ¼ 0, or Fd is given by (20), for the case that the observed

precipitation is positive, p[ 0. As a second estimator, we

consider the expected value of the conditional distribution

of the discharge. This can be approximated using a Monte

Carlo simulation by taking the sample mean of a set of

simulated values from (19) or (20), respectively, depending

if zero or positive precipitation has been observed. This

procedure is detailed in Appendix 1. Finally, we propose a

third prediction method based on a decision rule where we

first obtain the conditional probability of zero discharge,

(17) or (18), according to the observed precipitation. If this

probability is larger than 0.5, our prediction for the dis-

charge in that day is zero. Otherwise, we estimate the

expected value of the conditional distribution for the dis-

charge using a Monte Carlo simulation as before.

In order to examine the performance of our predictions,

we first consider the Brier Score (Brier 1950) to evaluate

the accuracy of the estimated probability of zero discharge.

The Brier score measures the distance between the esti-

mated probability and the true observed value of an event,

BS ¼ 1

n

Xn

i¼1

ðpi � oiÞ2; ð21Þ

where n the prediction horizon, pi is the probability that the

event will happen and oi takes value 1 if the event happens

and 0 otherwise. We also examine the performance of the

predicted amount of discharge with the three different

prediction methods using the Mean Squared Error (MSE)

and the Mean Absolute Error (MAE),

MSE ¼ 1

n

Xn

i¼1

ðd̂i � diÞ2; ð22Þ

MAE ¼ 1

n

Xn

i¼1

j d̂i � di j; ð23Þ

where d̂i is the estimated value and di is the true observed

value.

5 Application

In this section, our proposed vine copula model is applied

to the data provided by GLACKMA from their catchment

area in glacier Collins within King George Island. First, the

database is divided in groups according to four different

hydrological periods to capture seasonality. Second, the

model parameters, both the marginal distribution parame-

ters and vine copula parameters, are estimated. Third, the

conditional probability of having no discharge and the

Fig. 3 Structure of a c-vine

copula with 3 nodes inherited

from a c-vine copula with 4

nodes
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Table 1 Definition of discharge periods in King George Island

Period Dates Description

1 26th November–30th December Discharge start period. Since the last weeks of spring to early summer.

The glacier discharge can be positive or zero

2 31st December–7th April Main discharge period. Most of the summer.

The glacier discharge is positive almost every day

3 8th April–15th June Discharge end period. Since the end of summer and most of autumn.

The glacier discharge can be zero or positive

4 16th June–25th November Zero discharge period. Late autumn, all the austral winter and early spring.

The glacier discharge is always zero

Fig. 4 Boxplots of the glacier discharge in each week from 2002 to 2012. Different periods are separated by vertical lines and different color

shadows
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Fig. 5 Histograms of the observed data compared with the estimated

mixture densities for each marginal variable, obtained for the second

period and for the group with positive discharge and positive

precipitation (top) and the group with positive discharge and zero

precipitation (bottom). The number of mixture components is shown

at the bottom of each plot
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Table 2 Mixture parameter estimation

Per Gr. N Temperature

DP x1 l1 r1 l2 r2

1 00 40 �0.809 (0.191) 1.206 (0.135)

01 94 �0.163 (0.111) 1.074 (0.078)

10 68 0.220 (0.247) �0.862 (1.513) 1.133 (0.651) 0.904 (0.170) 0.651 (0.129)

11 83 0.915 (0.142) 1.295 (0.101)

2 00 21 0.621 (0.106) �2.370 (0.234) 0.829 (0.176) 0.665 (0.164) 0.460 (0.115)

01 16 �1.298 (0.486) 1.944 (0.344)

10 283 0.145 (0.056) �1.954 (0.790) 1.460 (0.430) 1.444 (0.101) 0.937 (0.073)

11 541 0.177 (0.070) �0.693 (0.814) 2.189 (0.266) 1.941 (0.082) 1.071 (0.077)

3 00 102 �5.375 (0.378) 3.817 (0.267)

01 225 0.665 (0.067) �6.636 (0.499) 3.523 (0.262) �0.992 (0.271) 1.230 (0.205)

10 69 �2.363 (0.288) 2.392 (0.204)

11 234 0.517 (0.053) �3.633 (0.377) 2.759 (0.208) 0.359 (0.107) 0.833 (0.086)

Per Gr. N Humidity

DP w1 a1 b1 a2 b2

1 00 40 23.527 (5.314) 4.582 (0.99)

01 94 31.247 (4.716) 2.421 (0.332)

10 68 15.254 (2.648) 3.472 (0.570)

11 83 24.086 (3.847) 2.589 (0.379)

2 00 21 40.476

(12.524)

10.439

(3.173)

01 16 16.284 (5.840) 3.326 (1.123)

10 283 0.029

(0.019)

6.016 (6.587) 0.240 (0.129) 19.277 (2.065) 3.957

(0.442)

11 541 0.967

(0.012)

24.565 (1.859) 2.504 (0.192) 305.374

(195.601)

1.829

(0.723)

3 00 102 19.921 (2.829) 3.662 (0.492)

01 225 22.324 (2.15) 3.027 (0.271)

10 69 14.021 (2.431) 2.783 (0.449)

11 234 18.336 (1.761) 2.022 (0.174)

Per Gr. N Radiation

DP q1 a1 b1 a2 b2

1 00 40 0.455 (0.09) 69.832

(33.129)

0.605 (0.279) 86.14

(34.047)

1.146

(0.466)

01 94 12.000

(1.726)

0.184 (0.027)

10 68 13.508

(2.287)

0.148 (0.026)

11 83 6.229 (0.942) 0.104 (0.016)

2 00 21 6.980 (2.104) 0.236 (0.074)

01 16 2.543 (0.846) 0.103 (0.038)

10 283 2.913 (0.232) 0.053 (0.005)

11 541 2.721 (0.156) 0.081 (0.005)
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complete predictive discharge distribution is obtained

using the estimated vine copula model. Finally, the

obtained results are compared with those obtained with the

bivariate copula model of our previous work (Gomez et al.

2017).

5.1 Parameter estimation

Recall that the GLACKMA database consists of five time

series of data collected during eleven years. Here, the first

ten years are used for parameter identification and data

from 01/10/2011 to 30/09/2012 are used for model

verification.

Table 2 (continued)

Per Gr. N Radiation

DP q1 a1 b1 a2 b2

3 00 102 0.591

(0.071)

6.542 (1.492) 2.707 (0.729) 4.308 (1.864) 0.381

(0.142)

01 225 0.536

(0.150)

4.347 (1.553) 1.945 (0.879) 1.858 (0.456) 0.284

(0.052)

10 69 1.608 (0.251) 0.184 (0.034)

11 234 1.838 (0.157) 0.339 (0.033)

Per Gr. N Precipitation

DP q1 a1 b1 a2 b2

1 01 40 0.607

(0.188)

2.06 (0.597) 1.753 (0.896) 1.381

(0.513)

0.277

(0.093)

11 94 1.242

(0.173)

0.583 (0.099)

2 01 21 0.731

(0.221)

0.213 (0.090)

11 16 0.235

(0.057)

3.487

(0.960)

5.825 (2.337) 1.482

(0.192)

0.326

(0.032)

3 01 102 0.219

(0.051)

7.817

(2.848)

17.953

(7.749)

1.490

(0.186)

0.548

(0.067)

11 225 0.245

(0.079)

3.503

(1.205)

5.018 (2.611) 1.406

(0.196)

0.354

(0.045)

Per Gr. N Discharge

DP q1 a1 b1 a2 b2

1 10 40 1.788

(0.283)

11.055 (2.015)

11 94 1.640

(0.233)

8.372 (1.390)

2 10 21 2.247

(0.177)

18.094 (1.593)

11 16 1.871

(0.105)

8.525 (0.549)

3 10 102 0.936

(0.035)

4.029

(0.787)

127.662

(28.612)

18.01

(16.619)

139.819

(121.816)

11 225 0.355

(0.054)

0.986

(0.143)

9.555 (1.899) 6.744 (1.214) 221.226 (43.461)

The first column indicates the period, the second refers to the group (j, k), where j ¼ 0; 1, respectively, for zero or positive discharge and

k ¼ 0; 1, respectively, for zero or positive precipitation. Third column shows the number of observed values in each group. Standard errors are

shown in parentheses
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First of all, we want to capture the seasonal behavior of

the discharge. In our previous work (Gomez et al. 2017),

we try to capture it using partial sums of Fourier terms, but

this procedure increases rapidly the number of parameters

when we add more meteorological variables. On the other

side, Braun (2001) has found three major ablation phases

plus a non-ablation phase for each year in glacier behavior.

This suggests us to divide the data in four different periods

in order to capture the changes in the relationship between

the variables. Table 1 shows the different periods selected

for this study. As a justification of this division, Fig. 4

shows the boxplots of the average daily glacier, grouped by

weeks, in the different periods. Apparently, there are dif-

ferent behaviors in the discharge regime. Remember that

the fourth period has zero discharge in the observed values.

Thus, the model will always predict zero discharge in this

period, that is, equations (17) and (18) will always be one

independently of the values of the other variables because

the estimated probabilities of positive discharge, p10 and

p11, which are based on empirical frequencies, will be both

equal to zero during this period.

Firstly, we determine the number of components and the

mixture parameters of the marginal models for the first three

periods in each of the four groups according to the presence

or not of discharge and precipitation. As an example, Fig. 5

shows the adjustment of the mixtures to the observations of

the five variables in the second period for the two groupswith

positive discharge. The number of selected mixture com-

ponents is shown at the bottom of each plot. An apparently

good adjustment between the mixture models and the

empirical distributions is observed for all variables in both

groups. The mixture marginal distribution parameter values

are listed inTable 2. Thefirst column indicates the period, the

second refers to the group (j, k), where j ¼ 0; 1, respectively,

for zero or positive discharge and k ¼ 0; 1, respectively, for

zero or positive precipitation, and the third shows the number

of observations available and used to fit the mixtures.

Finally, using the marginal parameter estimates, we apply

themixture cdf to the subsample of data for each variable and

group to obtain the pseudo-u data, which should be

approximately uniformly distributed. Figure 6 (diagonal)

shows the histograms of the obtained pseudo-u data for the

second period and for the group with positive discharge and

positive precipitation. We may observe that these are

approximately uniformly distributed. Similar results are

obtained for other groups and periods. Figure 6 (upper

diagonal) also shows the scatter plots for each pair of u-data

which offer an idea about the underlying dependence struc-

ture. For example, wemay observe that there exists lower tail

dependence between temperature and humidity for this

group and period. Figure 6 (lower diagonal) also shows the

contour plots of the fitted bivariate copulas obtained for each

case using the following analysis.

The next step is to select the copula family and estimate

its parameters for each edge in the vine copula structures.

Figure 7 shows the structure of the c-vine copulas with the

value of the parameter for every edge; each row in each

edge corresponds to one of the first three periods. As you

can see, that some edges have the independence copula,

denoted by the letter I, this means that no significant

dependence is found between the variables associated to

this edge. BIC has been considered to compare different

variable orders in the c-vine structure. Very close values

were found. Also, we have used the Vuong test (Vuong

1989) to look for differences between different orders, but

no significative difference has been found. Table 3 shows

some of the results obtained for the c-vine copula for days

with positive discharge and precipitation (5 nodes) in the

Temperature

0.20 0.082 0.12 0.49

Humidity

−0.11 0.24 0.20

Radiation

−0.21 0.12

Precipitation

0.18

Discharge

Fig. 6 Histograms of the pseudo-u data obtained with the estimated

mixture cdf for each marginal variable, scatter plots for each pair of

u-data and contour plots of the fitted bivariate copula densities

obtained for the second period and for the group with positive

discharge and positive precipitation
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first period. The results for other groups and periods are

similar. We have selected the temperature as the main node

since it shows the strongest dependence with the discharge

(as considered in e.g. Pham et al. 2016) and the discharge

in the last place since this is the more convenient choice to

facilitate the evaluation of the probability of discharge and

the predicted discharge. Also, a goodness-of-fit test has

been performed for each of the twelve c-vine copulas

obtained with the proposed order. This test is based on the

information matrix equality of White, as detailed in

Schepsmeier (2016). Table 4 shows the White statistic and

the corresponding p value for each c-vine copula. Both the

model and the parameters seem to be appropriate.

Further, in order to examine the goodness of fit of the

estimated bivariate copulas in each c-vine structure, we

make use of the k�function (Genest and Rivest 1993). The

Fig. 7 Estimation of c-vine

copula parameters for all

periods and groupsEach row in

each edge corresponds to one of

the first three periods. Selected

copulas are I , Independent, N

Gaussian, C Clayton, G

Gumbel, F Frank, J Joe,

RC3 = Clayton rotated 270�,
RG1 = Gumbel rotated 90�,
RG2 = Gumbel rotated 180�,
RJ2 = Joe rotated 180�.
Standard errors are shown in

parentheses
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k-function is characteristic for each copula family and is

defined as:

k v; hð Þ ¼ v� K v; hð Þ; ð24Þ

where K v; hð Þ ¼ P C u1;u2jh
� �

� v
� �

is the Kendall’s dis-

tribution function for the copula C with parameter h, v 2

½0; 1� and u1; u2ð Þ is distributed according to C. Comparing

empirical to theoretical k-functions gives a method to

examine if the selected copula might be appropriate to

describe the observed dependence. As an illustration,

Fig. 8 shows the comparison between the empirical and

theoretical k�function for each of the ten edges of the

selected c-vine copula for the second period and for the

group of data with positive values of discharge and pre-

cipitation. Apparently, there is a good fit between the

selected and the empirical copula in all edges. Similar

results have been obtained for all the other selected vine

structures, which are not shown for the sake of brevity.

5.2 Conditional probability of zero discharge

Once we have obtained all the model parameters, we are

interested in estimating the probability of having zero dis-

charge conditioned on the observed values of temperature,

humidity, radiation and precipitation on the corresponding

day. As described in Sect. 4.4, we will predict positive dis-

charge for a particular day if the estimated conditional prob-

ability of zero discharge, see (17) and (18), is smaller than 0.5.

Table 5 compares the predicted with the observed number of

Table 3 BIC value of different order combinations for the 5-cvine

copula in the first period

Order BIC Vuong statistic p value

THRPD �20.331 0 1

TDPRH �20.172 0.05 0.96

HTRPD �16.079 1.121 0.262

HDRPT �16.085 0.829 0.407

RPDTH �16.641 0.797 0.426

RTDPH �21.057 �0.19 0.849

PTRHD �15.842 0.904 0.366

PDTRH �15.427 1.008 0.314

DPRHT �14.579 0.999 0.318

DTHRP �16.275 0.746 0.456

Vuong test of comparison with the selected order (THRPD) and the

corresponding p value

Table 4 White statistic and p value to test the goodness-of-fit over the

twelve c-vine copulas for the selected order

Group Period 1 Period 2 Period 3

White p value White p value White p value

00 02.13 0.18 09.25 0.32 08.51 0.60

01 21.54 0.17 19.09 0.58 17.80 0.37

10 19.20 0.82 16.00 0.33 21.76 0.45

11 60.83 0.88 72.91 0.81 73.62 0.06
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Fig. 8 Empirical k-function for the ten edges of the c-vine for the second period and for the group with positive discharge and precipitation. The

blue and grey lines correspond, respectively, to the empirical and theoretical functions

Table 5 Comparison of predicted with observed number of days with

zero and positive discharge. On the left, for the in-sample data

(2002–2011) used to estimate the model. On the right, for the out-of-

sample data (2011–2012) used to validate the model

Predicted

2002–2011 2011–2012

D ¼ 0 D[ 0 Total D ¼ 0 D[ 0 Total

Observed D ¼ 0 1886 146 2032 204 23 227

D[ 0 150 1145 1295 13 126 139
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days with zero and positive discharge. For the in-sample data

(2002–2011), we obtain that 92:8% of days with observed

zero discharge are correctly predicted with the c-vine model,

whereas 88:4% of days with observed positive discharge are

correctly predicted. The performance of the copula model is

even better for the out-of-sample data from the last hydro-

logical year, used to validate the model. Our model has a

89:8% and 90:6% of correctly predicted days for days with

observed zero and positive discharge respectively. We have

compared these probabilities with the ones obtained with a

logistic regression, which has been developed under the same

conditions as the vine model, that is, using a different speci-

fication for each group and period. Table 6 shows the Brier

scores (21) for both models. We can see that the vine copula

model outperforms the logistic regression, globally (except

for the first period for the out-of-sample data) and for each

period, and for the in-sample and the out-of-sample data. The

smaller the Brier Score, the better the predictions.

Additionally, we are also interested in studying the

behavior of the conditional probability of zero discharge in

terms of the meteorological variables. As an illustration,

Fig. 9 shows the estimated probability of zero discharge as

a function of the temperature for different values of the

humidity, in the presence or absence of precipitation and a

fixed value for the radiation. Note that the positive pre-

cipitation increases the probability of zero discharge,

especially when the temperatures are below zero. In both

plots we can also see that higher temperatures cause a

decay in the probability of having zero discharge and that

an increase of the percentage of humidity increases the

probability of having zero discharge. Similar plots can be

done to compare how the same meteorological conditions

in different periods modify the probability of zero dis-

charge. This kind of plots provide an interesting tool for

analysing the influence of meteorological conditions in

glacier discharge under different meteorological scenarios.

5.3 Predicted discharge

Finally, as described in Sect. 4.3, a predicted value of the

discharge can be obtained for all days using the predictive

discharge distribution, see (19) and (20). We use the three

prediction methods explained in Sect. 4.4 based on the pre-

dictive mean, median and a decision rule. These predictions

have been compared with those obtained with our previous

bivariate copula model (Gomez et al. 2017). Table 7 shows

the MSE, see (22), and the MAE, see (23), obtained for both

models. We may observe that in all cases the mean errors

obtained for the c-vine copula model are smaller than those

obtained with the bivariate copula model. Then, clearly, the

c-vine copula model gives more accurate predictions of the

discharge. Finally, the proposed model is validated with the

observed values of the last year (2011–12). The two last col-

umns of Table 7 show the MSE and MAE for the out-of-

Table 6 Comparison of the

Brier scores obtained with a

logistic regression and with the

proposed vine copula model

2002–2011 2011–2012

Logistic model Vine model Logistic model Vine model

Global 0.0643 0.0605 0.0815 0.0772

Period 1 0.1401 0.1309 0.2474 0.2984

Period 2 0.0359 0.0317 0.0254 0.0235

Period 3 0.1999 0.1901 0.1861 0.1476

On the left, for the in-sample data (2002–2011) used to estimate the model. On the right, for the out-of-

sample data (2011–2012) used to validate the model
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Fig. 9 Estimated probability of zero discharge as a function of the temperature for different values of the humidity, in the presence or absence of

precipitation and a fixed value for the radiation, obtained for the first period
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sample period. Again, we can observe that the mean errors of

the proposed model are smaller than those produced by the

bivariate copulamodel. Therefore, it can be concluded that the

use of more meteorological variables in the proposed vine

copula model provides more accurate predictions then using

only the temperature as in our previous model.

As an example, Fig. 10 (left panel) shows the observed

values of the discharge for the year 2005–06 compared with

the predictive discharge obtained with the proposed c-vine

copula model, together with the corresponding 95% confi-

dence intervals, and the predictions obtained with the

bivariate copula model. Also, it is illustrated the conditional

probability of zero discharge from red, for probability one,

to green, for probability zero. Figure 10 (right panel) shows

the scatter plot for the predicted and the observed values of

the discharge for that year. We can conclude that the c-vine

copula model provides a good fit to the observations.

6 Discussion

In this section, we interpret and discuss the present findings,

limitations and possible future extensions. In this work, we

have constructed a multivariate model based on c-vine

copulas to describe the relationship between the specific

glacier discharge per unit area and other meteorological

variables such as temperature, humidity, radiation and pre-

cipitation. We have observed that this model outperforms

considerably the time-varying bivariate copula model pro-

posed in a previous study that only considered temperature

and glacier discharge (Gomez et al. 2017), where it was

only considered the temperature and specific glacier dis-

charge per unit area. Another important difference with our

previous work is that here we have considered a zero-in-

flated model, following Erhardt and Czado (2012) and

Brechmann et al. (2014), to describe the observed zero

values for the discharge and precipitation. The present

proposed method also allows for the estimation of the

conditional probability of zero discharge given observed

meteorological variables. We have found that these esti-

mations are better than those obtained with a simple logistic

regression using the same covariates. Finally, our approach

also provides an estimation for the predictive discharge

distribution conditional on the observed meteorological

variables. Three different point estimations for the discharge

have been used, based on the conditional predictive distri-

bution, which have shown a good prediction performance

for out-of-sample observations.

Table 7 Mean squared and absolute errors for the predicted value for the discharge obtained for the proposed vine copula model and the bivariate

copula from a previous work, for the in-sample (first two columns) and out-of-sample (last two columns) data

2002–2011 2011–2012

Model Method MSE MAE MSE MAE

Vine copula model Median 0.00620 0.02800 0.01214 0.04685

Mean 0.00606 0.03179 0.01074 0.04858

Decision rule 0.00607 0.03019 0.01078 0.04574

Bivariate copula model 0.00718 0.03317 0.03753 0.05362

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ch
ar

ge
 m

3
se

c·
K

m
2

O
ct

05

O
ct

05

O
ct

05

N
ov

05

N
ov

05

D
ec

05

D
ec

05

Ja
n0

6

Ja
n0

6

F
eb

06

M
ar

06

M
ar

06

A
pr

06

A
pr

06

M
ay

06

M
ay

06

Ju
n0

6

Ju
n0

6

Ju
l0

6

Ju
l0

6

A
ug

06

A
ug

06

A
ug

06

S
ep

06

O
ct

06

Observed
Predicted
Predicted (95% Interval)
Bivariate copula model

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted values

O
bs

er
ve

d 
va

lu
es

Fig. 10 Left panel shows the time series of the observed and predicted

values for the discharge with the bivariate and vine copula models for

the year 2005–06. Also shown are 95% predictive intervals for the

vine copula model. At bottom of the plot, the conditional probability

of zero discharge for each day in a scale from red (probability one) to

green (probability zero). Right panel contains the comparison

between predicted and observed values for the proposed vine copula

model
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However, the proposed model presents some limitations

that could be addressed in future extensions. One important

issue is the temporal autocorrelation of the data. In addition

to the seasonal effect, which we have already addressed,

there exists a clear temporal autocorrelation of environ-

mental daily observations such as humidity, temperature,

radiation or precipitation. One possible solution would be

to consider an autoregressive structure in each marginal

variable and model the dependence of the residuals through

vine copulas. This approach is considered in e.g. Cong and

Brady (2012) where the relationship between temperature

and precipitation is studied using the residuals obtained

after fitting an AR(1) model in each marginal series and

also a temporal trend. More generally, a possible better

approach would be to follow the procedure by Pereira and

Veiga (2017)) where vine copulas are used to model the

temporal dependence in the univariate marginal series such

that lags that are greater than one can be also incorporated.

Note that using this approach we could also capture non-

linear dependencies with past observations. Finally, we

could also consider other dependence structures, like spa-

tial dependence, using data from other pilot experimental

watersheds installed by GLACKMA at different latitudes.

This could be addressed using spatial vine copulas as

described in Musafer and Thomson (2017).

Regarding the proposed vine copula model, various

extensions are also possible. It would be interesting to com-

pare the obtained results with those using other regular vine

copulas, such as, for example, d-vine copulas. Also, we could

allow for a different order in each c-vine for each group and

period. Thus, we could have used for example a sequential

procedure such as the so-called Dißmann algorithm, see

Dißmann et al. (2013), where an automated selection method

is developed based on empirical Kendalls tau values. Finally,

the imposed ‘‘simplifying assumption’’ (Haff et al. 2010)

could be relaxed to study if there are important changes in the

conditional probability of zero discharge and predictive dis-

charge distribution. The RGamCopula package could help us

with these calculations (Vatter and Chavez-Demoulin 2015,

Vatter and Nagler 2016).

Finally, there is also a notable issue regarding the

sample size. Note that since we have divided the data set

into various subsamples according to the seasonal period

and also according to the presence or not of precipitation

and discharge, there are some group-period combinations

where the number of observations is very small, which

leads to large standard errors in the parameter estimation in

those subgroups. Therefore, we are currently working on a

more general hierarchical Bayesian model where it is

possible to introduce dependencies among the different

groups including additional layers in the model structure.

Using this approach, it is possible to model for example the

relationship between the parameters that define the

dependence between temperature and humidity in different

groups and periods.

7 Conclusion

In this paper, we have proposed a vine copula model for

modelling the relationship between the glacier discharge and

other meteorological variables, such as, temperature, humidity,

solar radiation and precipitation. The probability of zero dis-

charge for each day is estimated given the observed values of

the meteorological variables. Also, the predictive value of the

discharge is obtained from its conditional distribution given the

observations of the meteorological variables. The proposed

approach has been applied to the data collected byGLACKMA

from the glacier Collins between 2002 and 2012. The database

has been divided into four periods according to the different

hydrological seasons and the parameters have been adjusted to

obtain the joint distribution of the five variables in each one of

these periods. The monitor station in King George island have

been registering data which have not been already collected by

the GLACKMA association. Our intention is to validate our

proposed model with these new data whenever they are

available.
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A Appendix A: Density functions in terms
of vine copulas

The joint density functions in (8a), (8b) and (8d) can be

expressed respectively in terms of a vine copulas as,

f 00thrðt; h; rÞ ¼ f 00t ðtÞ � f 00h ðhÞ � f 00r ðrÞ � c00th ðu00t ; u00h Þ
� c00tr ðu00t ; u00r Þ � c00hrjtðu00hjt; u00rjtÞ;

ð25Þ

f 01thrpðt; h; r; pÞ ¼ f 01t ðtÞ � f 01h ðhÞ � f 01r ðrÞ � f 01p ðpÞ � c01th ðu01t ; u01h Þ
� c01tr ðu01t ; u01r Þ � c01tp ðu01t ; u01p Þ
� c01hrjtðu01hjt; u01rjtÞ � c01hpjtðu01hjt; u01pjtÞ � c01rpjthðu01rjth; u01pjthÞ;

ð26Þ

and,
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f 10thrdðt; h; r; dÞ ¼ f 10t ðtÞ � f 10h ðhÞ � f 10r ðrÞ � f 10d ðdÞ � cthðu10t ; u10h Þ
� c10tr ðu10t ; u10r Þ � c10td ðu10t ; u10d Þ
� c10hrjtðu10hjt; u10rjtÞ � c10hdjtðu10hjt; u10djtÞ � c10rdjthðu10rjth; u10djthÞ;

ð27Þ

where

ujkx ¼ Fjk
x ðxÞ; for x ¼ t; h; r; p; d;

u
jk
xjt ¼ Fjk

txðx j tÞ ¼
oC

jk
txðujkt ; ujkx Þ
ou

jk
t

; for x ¼ h; r; p; d;

u
jk

xjth ¼ F
jk
thxðx j t; hÞ ¼

oC
jk

hxjtðu
jk

hjt; u
jk

xjtÞ
ou

jk
hjt

; for x ¼ r; p; d;

u
jk

xjthr ¼ F
jk
thrxðx j t; h; rÞ ¼

oC
jk

rxjthðu
jk

rjth; u
jk

xjthÞ
ou

jk

rjth
; for x ¼ p; d:

for j ¼ 0; 1; and k ¼ 0; 1.
Figure 7 shows the different structures of the c-vine

copulas used in this paper.

B Appendix B: Discharge prediction
algorithms

In this appendix, we explain the algorithm to obtain the

predictive values of the discharge with the conditional

probability given in (19) and (20). Algorithm 1 details the

estimation procedure to obtain the predictive mean of the

specific glacier discharge per unit area given the temper-

ature, humidity, radiation and precipitation.

Algorithm 1 Predictive discharge (using the mean)
Require: t, h, r, p, θ, F 1k

t , F 1k
h , F 1k

r , F 1k
p , F 1k

d , (k = 0, 1)

1: procedure

2: if p=0 then

3: Compute u10
t = F 10

t (t), u10
h = F 10

h (h) and u10
r = F 10

r (r)

4: Compute u10
h|t = C10

th (u
10
h | u10

t ; θ10th) and u10
r|t = C10

tr (u
10
r | u10

t ; θ10tr )

5: Compute u10
r|th = C10

hr|t(u
10
r|t | u10

h|t; θ
10
thr)

6: Simulate u10
d|thr ∼ U(0, 1)

7: Obtain the value u10
d|th that verify u10

d|thr = C10
rd|th(u

10
d|th | u10

r|th; θ
10
thrd)

8: Obtain the value u10
d|t that verify u10

d|th = C10
hd|t(u

10
d|t | u10

h|t; θ
10
thd)

9: Obtain the value u10
d that verify u10

d|t = C10
td (u

10
d | u10

t ; θ10td )

10: Obtain ̂d = (F 10
d )−1(u10

d )

11: else

12: Compute u11
t = F 11

t (t), u11
h = F 11

h (h), u11
r = F 11

r (r) and u11
p = F 11

p (p)

13: Compute u11
h|t = Cth(u11

h | u11
t ; θ11th), u11

r|t = Ctr(u11
r | u11

t ; θ11tr ) and u11
p|t = C11

tp (u
11
p | u11

t ; θ11tp )

14: Compute u11
r|th = C11

hr|t(u
11
r|t | u11

h|t; θ
11
thr) and u11

p|th = C11
hp|t(u

11
p|t | u11

h|t; θ
11
thp)

15: Compute u11
p|thr = C11

rp|th(u
11
p|th | u11

r|th; θ
11
thp)

16: Simulate u11
d|thrp ∼ U(0, 1)

17: Obtain the value u11
d|thr that verify u11

d|thrp = C11
pd|thr(u

11
d|thr | u11

p|thr; θ
11
thrpd)

18: Obtain the value u11
d|th that verify u11

d|thr = C11
rd|th(u

11
d|th | u11

r|th; θ
11
thrd)

19: Obtain the value u11
d|t that verify u11

d|th = C11
hd|t(u

11
d|t | u11

h|t; θ
11
thd)

20: Obtain the value u11
d that verify u11

d|t = C11
td (u

11
d | u11

t ; θ11td )

21: Obtain ̂d = (F 11
d )−1(u11

d )

22: end if

23: end procedure
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For the case that we want to estimate the predictive

median of the discharge, we may replace in Algorithm 1

instructions (6) and (16) by ‘‘Compute uthrpd ¼ 1�
0:5

PrðD¼0jt;h;r;pÞ’’ and ‘‘Compute uthrd ¼ 1� 0:5
PrðD¼0jt;h;rÞ’’

respectively.

Finally, for the third prediction method, the conditional

probability, PrðD ¼ 0 j t; h; r; pÞ is firstly estimated and

then, it is predicted that bd ¼ 0 if the estimated probability

of zero discharge is greater than 0.5 or obtained with

Algorithm 1 if it is smaller.
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