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Abstract
Weanalyze the role of group-velocitymatching (GVM) in themacroscopic build up of the high-
harmonic signal generated in gas targets at high pressures. A definition of thewalk-off length,
associatedwithGVM, in the non-perturbative intensity regime of high-harmonic generation is given.
Semiclassical predictions based on this definition are in excellent agreementwith full quantum
simulations.We demonstrate that group velocitymatching is a relevant factor in high harmonic
generation and the isolation of attosecond pulses driven by longwavelength lasers and preferentially
selects contributions from the short quantum trajectories.

1. Introduction

High-order harmonic generation (HHG) is a unique source of coherent radiation extending from the extreme-
ultraviolet (EUV) to the soft x-ray regime [1–3]. HHG radiation is emitted in formof attosecond light pulses [4–
6] and, under specific conditions even aswaveforms on the zeptosecond time scale [7].Microscopically, HHG
can be understood by a semiclassical three-stepmodel [8, 9]: an electron tunnels from an atomormolecule by
interactingwith an intense laserfield, then it is accelerated, and finally driven back by the field to its parent ion,
releasing the excess energy in the formof radiation upon recombination into the initial state. In each half-cycle,
two electron trajectories, termed as short and long according to their excursion time, lead to recollisions of the
same kinetic energy, and hence give rise to the same harmonic.

Macroscopically, theHHG signal results from the coherent superposition of the fields emitted from each
atom in the target. Thus, the detected harmonic signal strongly depends on the phase acquired from the
fundamentalfield and from theHHGprocess itself [10, 11]. The difference in phase and group velocities of the
fundamental and harmonic fields as they propagate through the generatingmedium, leads to a phase and a
group-velocitymismatch, respectively. InHHGusing Ti:Sapphire driving lasers at 800 nm, the phase–velocity
mismatch dominates because high single-atom yield and high gas dispersion allow forHHGat relative low gas
pressures (<1 atmover extended distances). To generate bright coherent EUVHHGbeams, phase–velocity
mismatch due to dispersion fromneutral atoms and plasma, together with contributions resulting from the
intrinsic phase of theHHGprocess [12–14] and the geometry (e.g. waveguide orGouy phase), can be balanced.
This process is usually termed phasematching [15]. Good phasematching can also be achieved forHHGdriven
withmid-infrared (mid-IR)driver pulses [3, 16–18]. However, in order to achieve a largeHHGefficiency at
these longwavelengths, high gas pressuresmust be used to overcome the low single-atom yield. As a result,
group velocitymatching (GVM) between the fundamental andHHGfields is expected to play a role as well.
Simple analytic calculations for extreme nonlinearHHGdriven bymid-IR lasers suggest that theGVMbetween
the fundamental and the higher-order harmonics can be significant [16, 19].

Previously, theGVMeffect has only been considered in perturbative second harmonic generation (SHG) in
crystals. There, it has long been recognized that GVMbetween the fundamental and second harmonic fields has
an important effect on the conversion efficiency and pulse broadening of ultrashort laser pulses [20, 21].
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Accuratemodels to account forGVM in the perturbative interaction regime have thus been developed [22–24].
In this paper we implement 3Dquantum simulations ofmid–IR drivenHHG to compare themagnitude of the
phase slips due to group and phase velocitymismatch, as well as other geometric effects.Wefind that GVM
effects are large at long driver wavelengths and for short pulses,motivating a new definition of the group velocity
walk-off length that is valid for the extreme non-perturbative nonlinear optics ofHHG.

The paper is organized as follows. First, we identify the role of group velocitymatching in 3Dquantum
simulations including all phase-mismatch effects.We observe that theHHGefficiency at long-wavelength, short
driving pulses decreases due toGVM. Second, we consider the effect of GVM separately to study its role inHHG.
To this end, we introduce a semiclassical definition of thewalk-off length inHHG. Then, we validate our
definition by comparing ourmodel predictions with the results of quantum simulations at different driving
wavelengths.We further show thatGVM shows a preferential growth of harmonics generated by short
trajectories, and leads to the isolation of an attosecond burst near the peak of the driving laser pulse.We study the
scaling ofGVMwith drivingwavelengths and pulse duration, demonstrating that GVMeffects are largest for
longwavelength driving lasers, and short pulse durations. Finally, we show that GVMaffects the attosecond yield
independent of the value of the carrier-envelope-phase (CEP) of the driver pulse.

2. Role of group velocity in time-gated phase-matching

To visualize thewalk-off delay, associatedwith the group velocity, we show in figures 1(a1) and (b1) the driving
field (in a framemoving at the speed of light) at the entrance (grey) and at the exit (red) of a 2 mmgas cell where
the harmonics are generated, for a few-cycle (a) and amulti-cycle (b) driving laser. In the few-cycle case, the
walk-off time delay imprinted in the envelope due to the group velocity (indicated in green) can be clearly seen.
In contrast, in the case of amulti-cycle field, thefields at the entrance and exit are virtually indistinguishable, i.e.
thewalk-off delay is very small. As the harmonic phase is very sensitive to the electric field, it can be expected that
thewalk-off delaymay substantiallymodify themacroscopicHHG signal for a few-cycle pulse. Aswewill show
next, this is indeed the case for high harmonic and attosecond pulse generation atmid-IRwavelengths.

To this end, we have performed 3Dnumerical simulations, including all phase contributions: namely phase
and group velocity, intrinsic as well as geometric phase, and also absorption.WemodelHHG including 3D
propagation using the electromagnetic field propagator [25], and computing the single-atomdipole acceleration
using the SFA+ approach [26], which has been validated against TDSE simulations [7, 26]. Note thatwe account
for the time-dependent induced ionization population (computed via the instantaneous ADK rates [27, 28]),
thus including nonlinear phase shifts in the driving field. Nonlinear spatial effects are not taken into account.We
have considered a loose focusing geometry given by a Bessel beamof 60μm in radius propagating into a 2 mm
helium cell, selecting the harmonic radiation produced on-axis. Note that we have chosen heliumbecause it
allows us to extend the harmonic radiation to higher photon energies [3, 16, 17], but the results presented in this

Figure 1.Phase-matching results for (a) few-cycle and (b)multi-cycle pulses at 2μm.Left: driving field at the entrance (grey) and at the
exit (red) of the 2 mmgas cell, moving in the frame of the speed of light. Thewalk-off delay due to the group velocity is indicated in
green. Center: scaling of the attosecond pulse yields with gas pressure. Right: integrated yield of the central pulse of the trainwhen
considering all phasematching contributions (purple solid line) andwhen artificially removingGVM (red dashed line). Thewalk-off
delay imprinted in the electricfield due toGVM ismost relevant for the few-cycle pulse (a), resulting in a substantial reduction of yield
of the emitted attosecond pulses.
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work can be applied to other rare gases as well. The laser pulse ismodeled as ( ) ( )p t=E t E tsin 2 20
2

p

( )p l f+ctcos 2 CEO , with l = 2 μm, intensity FWHMpulse duration (a) tp = 1.4 cycles (9.3 fs) and (b)
tp = 5.8 cycles (38.7 fs), and carrier-envelope offset (a) f p= 0.25CEO and (b) f = 0CEO .

Figure 1 shows the scaling of theHHGyields from the 3Dnumerical simulations for (a) a few-cycle and (b) a
multi-cycle driver pulse at 2μmas a function of gas pressure. The peak intensities fulfill perfect phase-matching
conditions at the center of the pulse [16] ((a) ´4.96 1014 Wcm−2, and (b) ´4.47 1014 Wcm−2). As a
consequence, non-perfect phase–velocitymatching at thewings of the laser pulse leads to a reduction of the
number of attosecond bursts with increasing pressure (figures 1(a2) and (b2)). In contrast, the yield of the central
pulse initially increases with pressure due to perfect phase–velocitymatching, as it has been observed recently for
long driving pulses [18]. Note also that the duration of the central pulse within the train (650 as FWHM), does
not changewith pressure for amulti-cycle driver (panel (b2)). However, for a few-cycle laser driver, we observe a
reduction of the attosecond pulse yield at the highest pressures (panel (a2)), which appears independent of the
choice of the CEP (see also section 2.4). In addition, the pulse duration is also reducedwith increasing pressure.

To further analyze this effect, we show the integrated yield of the central pulse of the train as a function of the
gas pressure in panels (a3) and (b3), when all phasematching contributions are considered (purple solid line),
andwhenGVM is artificially removed (red dashed line). The results in panel (a3) show that the strong reduction
of the harmonic yield for the few-cycle driver is unequivocally related toGVM. In contrast, the yield in panel
(b3) increases with gas pressure due to a favorable GVMat long pulse durations.We emphasize that it has been
experimentally demonstrated [3, 18] that bright soft x-ray harmonic generation and the isolation of high energy
attosecond pulses can be obtained at long driver wavelengths and in the regime of perfect phasematching. Our
simulations demonstrate the need of understanding the fundamental role of GVM in this important parameter
regime.

3.Group velocity walk-off inHHG

In the previous sectionwe have identified the relevance ofGVM inHHGdriven at longwavelengths and high
pressures in numerical simulation including all contributions to a phasemismatch inHHG. In order further
study the role of GVM in theHHGprocess, in this sectionwewill deliberately neglect all phasemismatch effects
except for GVM.Wewill proceed by providing first a definition of thewalk-off length in terms of the
semiclassical action at non-perturbative intensities and validate this definition by comparing its predictions with
the results of numerical calculations. This will provide uswith the opportunity to analyze the role of GVMas a
function of wavelength and pulse duration as well as its dependence on theCEP.

3.1.Definition of semiclassical walk-off length
Phasematching inHHG is described in terms of the coherence length, which is defined as p= DL kq

qcoh , where
Dkq, is the phasemismatch of the qth order harmonic. It corresponds to the distance between two atoms in the
target whose qth order harmonic emission interferes destructively.

In a loose focusing geometry or in awaveguide, the intrinsicHHGand geometric contributions to the phase
mismatch can be neglected. Perfect phase–velocitymatching conditions can be achieved via the compensation
of the contributions to the refractive index from the free electrons and neutrals over significant propagation
distances (i.e. longer than the absorption depth). In this case the phase of the fundamental field travels with the
speed of light and the coherence length approaches infinity [16, 18]. However, due to the time-dependent
ionization along the course of the pulse, perfect compensation can be achieved only during afinite temporal
window. This effect can be observed at the central part of the pulse infigures 1(a) and (b), where the electric field
propagates at the speed of light, c. Note that in the front part of the pulse phase-matching is governed by the
neutrals, whereas in the rear part by the free electrons, thus imprinting an asymmetry in the electric field.
Consequently, imperfect phase–velocitymatching leads to the suppression of the attosecond harmonic bursts at
thewings but not at the central cycle of the pulse.

Under these conditions, the group velocity, vg, which is the velocity at which the envelope of the pulse travels,
becomes an important factor. It is related to the phase velocity vph as

( ) ( ) ( ) ( )l l
l l

l
= -

¶
¶

- -v v
c

n
, 1g

1
ph

1 R

where nR is the refractive index of the generatingmedium.Hence, the group velocity depends not only on the gas
parameters (such as species and pressure) butmay also change over the course of the pulse due to ionization
induced by the pulse itself. In perturbative SHG in crystals, thewalk-off length associatedwithGVM is defined as
[22–24]
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∣ ( )∣
( )‐

t

l l
=

D -L
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, 2walk off
SHG p

g
1
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where tp is the (FWHM) pulse width, ( ) [ ( ) ( )]l l l lD = -- - -v v v,g
1

1 2 g
1

1 g
1

2 and l0 is the central wavelength of
the fundamental laser field. Accordingly, the temporal overlap between the pump and the second harmonic
waves decreases significantly for propagation distances exceeding thewalk-off length.

While such a definition is useful in the case of a perturbative low-order process such as SHG, it is not
applicable for the non-perturbative and highly nonlinear process ofHHG, since the phases of the high-order
harmonics are sensitive to the actual electricfield (phase and amplitude).We therefore propose a new definition
of thewalk-off length inHHGas

∣ ( ) ( )∣
( )‐

‐
l l-

p

- -L
t

v v
, 3

q
walk off
HHG walk off

g
1

0 g
1

where ( )lv qg is the group velocity of the qth harmonic. In the present workwe have further approximated
( ) lv cqg , i.e. the group velocity of the harmonics equals the speed of light, which is a reasonable assumption

for the higher-order harmonics in the EUV and soft x-ray regime considered in our analysis below. ‐
ptwalk off is the

envelopewalk-off time needed to imprint a shift ofπ in the intrinsic phase of the harmonic field. Thewalk-off
time itself is defined as the time delay experienced by the pulse envelope propagating with vg over a distance z as
compared to a propagationwith the speed of light, i.e. ( )‐ l= -t z v z cwalk off g 0 . Analogous to the coherence

length, one can interpret thewalk-off length ‐Lwalk off
HHG as the distance between two atomswhose harmonic

emission interferes destructively due toGVM.
In order to determine thewalk-off time needed to imprint a phase-shift ofπ in the harmonics, we use the

semiclassical analysis ofHHGby Lewenstein et al [29]. The phase of the harmonic field can bewritten as
( ) f = S t t, 1 , where ( )S t t, 1 is the semiclassical action of a free electron interacting with an electromagnetic

field, E(t), along the classical path ionized at t1 with zero initial velocity, and leading to a rescattering at time t.
This semiclassical formulation enables us to determine the phase difference ( )‐fD twalk off of the harmonic field
generated by two (identical) laser pulses whose envelopes are delayed to each other by awalk-off time ‐twalk off .

To validate our definition and analyze the effects of GVM, inmodel calculationswe deliberately neglect all
phasemismatch sources, i.e., = ¥L q

coh . Infigure 2(a)we show the phase difference fD as a function of the
rescattering time and thewalk-off time. The rescattering times are scaledwith respect to the center of the laser
pulse.Within each half-cycle different harmonics are emitted at different rescattering times depending on the
kinetic energy upon recollision. The dashed pink line infigure 2(a) indicates the phase difference f pD = ,
corresponding to ‐

ptwalk off . Assuming a 100 Torr helium cell and accounting for the time-dependent induced
ionization population (computed via the instantaneous ADK rates [27, 28]), we show infigure 2(b) the

Figure 2. (a)Harmonic phase difference fD as function of rescattering time (horizontal axis) andwalk-off times (vertical axis). The
dashed pink line corresponds to ‐

ptwalk off . (b)Comparison of non-perturbative (pink) and perturbative (blue, divided by a factor of 10)
predictions for thewalk-off length, assuming propagation in a 100TorrHe gas. Driving field:λ=2 μm, t = 2.9p cycles, and

= ´E 5.1 100
2 14 W cm−2.
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associatedwalk-off length ‐Lwalk off
HHG (pink line, see equation (3)). Note that ‐Lwalk off

HHG is significantly shorter than
the perturbativewalk-off length ‐Lwalk off

SHG (blue line, divided by a factor of 10 for comparison).
Two novel features concerningGVM inHHGcan be seen from the results infigure 2. First, thewalk-off

length ‐Lwalk off
HHG is longest at the center of the driving laser pulse, where the time-derivative of the pulse envelope

is lowest, in contradiction to the perturbative predictions, which steadily decrease fromone half-cycle to the
next. Furthermore, within each half-cycle ‐Lwalk off

HHG varies and decreases, thus the so-called short trajectory
contributions will exhibit a better GVM than the long ones. This effect is a direct consequence of theHHGphase,
whose intensity dependence is larger for long trajectory contributions [29]. In contrast, in the perturbative
model, thewalk-off length remains constant within each cycle and short and long trajectories would be equally
affected byGVM.

3.2. Validation against quantum simulations
Wenowproceed to validate the definition of walk-off length against our full 3Dnumerical quantum simulations
including propagation.We consider propagation in one dimension andmodel perfect phase-matching
conditions by deliberately neglecting allmismatching effects, except GVM, aswell as absorption in the
electromagnetic field propagator [25]. Infigure 3(a)wepresent the numerical results for the attosecond pulse
trains generated in 1mm (light pink), 10 mm (pink) and 20 mm (black) thick helium target at a pressure of 100
Torr. In the simulationswe used the same 2μmdriving laser pulse as for the semiclassical calculations shown in
figure 2. In the case of perfect GVM the attosecond pulse yield is expected to increase with the square of the target
length L. In order to demonstrate themismatch effects, we therefore present yields/L2 infigure 3(a). Figures 3(b)
and (c) represent the time–frequency analysis of the radiation generated in 1 and 10 mmheliumgas targets,
respectively.

First, in the time–frequency analysis we observe the expected attosecond chirp [30, 31] of the short trajectory
(positive slope) and long trajectory (negative slope) contributions. By comparing the two time–frequency plots
one can observe that the results of the numerical quantum simulations agreewith the general features predicted
by the semiclassicalmodel forGVM inHHG.While the yields in the central attosecond pulse are barely affected,

Figure 3. (a)Numerical results for attosecond pulse trains generated in a 1 mm (light pink), 10 mm (pink) and 20 mm (black) thick
He target of 100 Torr. The yield is normalized by the inverse of the target length L squared. The inset shows the yield/L2 as a function
of L for the integrated pulse train (blue), the integrated central pulse emitted between 0 and 0.5 cycles (yellow) and the peak of that
pulse (pink). The time–frequency analysis for the propagation in 1 mm (b) and 10 mm (c) targets show that short quantumpaths
(positive slope) and the central pulse are least affected byGVM.
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the other pulses are strongly suppressed for propagation in the longer target. This agrees with themodel
predictions that thewalk-off length inHHG is longest at the center of the pulse. Furthermore, within each half-
cycle of thefield the contributions from the short trajectories (positive slope) are less affected byGVM than the
long trajectories (negative slope), which agrees with the semiclassicalmodel predictions that thewalk-off length
decreases within each half-cycle.

Next, we compare the numerical quantum results for thewalk-off lengthwith the semiclassical predictions,
based on equation (3).We determine thewalk-off length in the quantum results as the interaction length at
which the peak pulse yield/L2 drops by e1 (see green star in the inset offigure 3(a)). The comparison between
the semiclassical (pink) and the numerical (green) results is shown infigure 4 for (a) 0.8μm, (b) 1.3μm, and (c)
2.0μmdriving fields. The driving pulse duration is t = 2.9p cycles, and the peak intensities ( )E0

2 are
´7.9 1014 Wcm−2, ´6.2 1014 Wcm−2, and ´5.1 1014 Wcm−2 respectively. The excellent agreement

between the numerical and semiclassical results further confirms the validity of the semiclassical definition of
thewalk-off length for a broadwavelength regime.

3.3. Scalingwithwavelength andpulse duration
Wenote that thewalk-off length depends on the drivingwavelength (see figure 4), therefore we present in
figure 5(a) themodel predictions for the corresponding scaling. For perfect phasematching intensities the group
velocity difference ∣ ∣D -vg

1 does not varymuchwithwavelength.However, ‐
ptwalk off and the correspondingHHG

walk-off length decreases, as can be seen infigure 5(a), since the harmonic phase inHHG is proportional to the
excursion time of the electronicwave packet times the ponderomotive potential [29]. Thus, for a given (walk-
off) time delay, GVMeffects becomemore prominent for longer drivingwavelengths. In contrast, at short
wavelengths, absorption of the harmonics in the generatingmedium ismore restrictive thanGVM. For example,
for the 100 eV harmonics generated inHe (100Torr) at 0.8μm, the absorption length (Labs, mediumdistance at
which the transmitted intensity drops by e1 [32]) is 3.6 mm [33], whereas thewalk-off length extracted from
figure 4(a) is ‐ L 30 mmwalk off

HHG . However, the 500 eVharmonics generated at 2μmhave =L 410 mmabs , and

Figure 4.Comparison of semiclassicalmodel predictions given by equation (1) (pink) and numerical quantum results (green) for the
walk-off length for driving pulses of t = 2.9p cycles and (a) 0.8μm, ´7.9 1014 W/cm2, and (b) 1.3μm, ´6.2 1014 W cm−2, and (c)

´5.1 1014 W cm−2. Note that the peak intensities are chosen to fulfill perfect phase-matching conditions at the center of the pulse
[16].
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‐ L 20 mmwalk off
HHG . As a consequence, the yield of soft x-ray harmonics generated by longwavelength laser

pulses ismore restricted byGVM than absorption.
On the other hand, infigure 5(b)we analyze the scaling of thewalk-off length inHHGwith driving pulse

duration tp. The semiclassical predictions for thewalk-off length for a 2 μmdriving laser pulse decrease for a
decreasing pulse duration, again in agreement with the results of the full simulations (figure 1). This can be
understood by the fact that a givenwalk-off delay in the envelope does have a stronger effect on the shape of the
electric field in a short pulse than in a long pulse, as depicted in figures 1(a) and (b). This leads to the
counterintuitive effect that at long driver wavelengths the generation of isolated attosecond pulses ismore
efficient in long driver pulses.

Finally, we noted that the pulse duration of the attosecond pulse generated by a few-cycle driver in
figure 1(a2) is reducedwith increasing pressure, in contrast to themulti-cycle driver (figure 1(b2)).We attribute
this behavior toGVM.As stated in sections 3.1 and 3.2, thewalk-off length decreases with the rescattering time
of theHHGprocess. As a consequence, first the long trajectories and then the highest frequency components of
the short trajectory contributions are suppressed, thus reducing the pulse duration, but also its frequency
content.

3.4. CEPdependence
The results presented infigure 5(b) show that thewalk-off length is particularly relevant for few-cycle laser
pulses. It is therefore appropriate to study how theGVMeffects depend on theCEPof the driving field. As in
previous simulations in this section, to concentrate on the effect of GVM,we consider 1Dquantum simulations
neglecting allmismatching effects except GVM. Infigure 6we present the simulation results for a 2 μm, few-
cycle (tp=1.4 cycles) laser pulse withCEP (fCEO) of: (a) 0, (b)π/4, (c)π/2, and (c) 3π/4. In thefirst rowwe
present the attosecond pulses generated in 0.1 mm (light blue), and 5 mm (dark blue) thick helium target at a
pressure of 100 Torr. In order to identify themismatch effects, we represent the time–frequency analysis of the
radiation generated in 0.1 mm (second row) and 5 mm (third row) helium gas targets, respectively. It can be
clearly observed that, nomatter the driving-CEP value, only the harmonic radiation emitted between t=0 and
t=0.5 cycles is group-velocitymatched. Therefore, group velocitymatching affects the attosecond yield for
every value of the driving-CEP.

4. Conclusions

Based on results of numerical simulations including all phasematching effects, we have shown that group
velocitymatching plays a relevant role for high harmonic generationwith driver pulses at longmid-IR
wavelengths and short durations. The effect of group velocitymatching has been analyzed by providing a
definition of thewalk-off length associatedwithGVM inHHG.Model predictions corresponding to this
definition are shown to be in excellent agreementwith results of quantum simulations. It is further shown that
GVMcontributes to the isolation of attosecond pulses and the suppression of the contributions from long
quantumpaths. Our theoretical results also indicate that group velocitymatching contributes to a restriction of

Figure 5. Scaling of thewalk-off lengthwith (a)wavelength and (b) driving pulse duration. The peak intensities are chosen to fulfill
perfect phase-matching conditions [16]. Laser parameters for results in panel (a): 0.8μm, ´7.9 1014 W cm−2 (purple), 1.3μm,

´6.2 1014 W cm−2 (blue), 2.0μm, ´5.1 1014 W cm−2 (pink) and 4.0μm, ´3.9 1014 W cm−2 (red) aswell as t = 2.9p cycles. For
results in (b): 2.0μmand t =p 1.4, 2.9, 4.3, 5.8, 7.2, and 8.6 cycles with ´6.4 1014, ´5.1 1014, ´4.7 1014, ´4.5 1014, and

´4.3 1014 W cm−2, respectively.
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the efficiency of the generation of isolated attosecond pulses with short pulses in the long driver wavelength
regime.
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