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Abstract
We demonstrate that the standard picture of strong-field tunnel-ionization from molecules should
be reformulated. The extended nature of the molecular potential implies the separation of some of
the molecular sites from the edge of the ionization barrier. We show that the dependence of the
tunnel probability with the distance to the barrier is translated into the ionized wavepacket,
modifying substantially the high-order harmonic emission. The introduction of the dependence of
tunnel ionization with the molecular site significantly improves the theoretical description of
high-order harmonic generation in molecules, which is used as a cornerstone in high-harmonic
spectroscopy and attosecond imaging.

1. Introduction

High-order harmonic generation (HHG) is an extreme non-linear process induced by intense fields. In
atomic or molecular gases, it can be described as a three-step process [1, 2]: first, near the maxima of the
driving field’s amplitude, an electronic wavepacket is tunnel-ionized from the parent atom; in the second
step, the electronic wavepacket is accelerated and, after reversal of the sign of the electric field, it is
redirected to the parent ion; finally, upon recollision, the electron’s kinetic energy is emitted in the form of
high-frequency radiation. The harmonic spectra encode information of the target structure and dynamics,
that can be disentangled using high-harmonic spectroscopy (HHS) and time resolved attosecond
spectroscopy techniques [3]. These procedures have been successful in retrieving the information from the
HHG spectra about molecular structure [4–6], nuclear dynamics [7], molecular orbitals [8, 9], energy
dispersion in solids [10], dynamics in strongly correlated systems [11], tunneling times [12], and orbital
tomography [13–15].

The study of molecular systems interacting with strong laser fields has a main tool in computationally
solving the time-dependent Schrödinger equation (TDSE). The detailed physics, however, is frequently
hidden by the complexity of the processes involved. To this end, approximated models are needed to
describe the problem in terms of fundamental physical mechanisms. Among them, those based in the
strong-field approximation (SFA) [16–18] allow to establish a link between the harmonic spectral
signatures and the structural details of the radiating matter system. The SFA has successfully demonstrated
to reproduce the main characteristics of the harmonic spectra in atoms [19–21], and molecules [13,
22–26], and their electron and nuclear dynamics [7, 27–31].

A key ingredient in HHS is the mapping of the molecular orbital matrix elements into the harmonic
spectrum and phase, as predicted from the SFA. This relation allows for the reconstruction of the molecular
geometry, as well as the molecular orbital structure. The quality of the retrieval of the molecular features
relies, therefore, on the fairness of the SFA in describing the HHG process. The first step of HHG is the
tunnel ionization, which constitutes a fundamental process in strong-field interactions and has been
extensively studied in atoms [16, 32–34] and extended to molecules [35–39] in the SFA. Notably, the SFA
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neglects the shape of the molecular potential barrier at ionization, thus, describing the ionization from each
molecular site on equal foot. However, for the actual potential shapes, the elimination of the ion potential
barriers inside the molecule leads to extended molecular orbitals, where part of the electron wavefunction is
effectively separated from the edge of the tunnel ionization barrier. Recently, Liu and Liu have suggested
treating the ionization from each atomic site differently, though by considering different effective barrier
widths [39]. Finally, Labeye et al have studied the implications of the internal molecular barrier in the
semiclassical description of HHG from molecules [40].

In this work, we demonstrate that the standard tunnel ionization picture has to be revised in the
molecular case. As we will show, the tunnel ionization probability is affected by the separation of part of the
electronic wavefunction from the potential barrier, introducing a molecular-site specificity in the electron
ionization. As tunnel ionization is a key ingredient in HHG, the signature of its site-specificity is evidenced
in the details of the high-order harmonic and photoelectron spectra. The total ionization rates, as given by
the molecular Ammosov–Delone–Krainov theory [35] and the weak-field asymptotic theory [37], are little
affected. As a practical consequence, the orbital information encoded in the harmonic spectrum is
substantially distorted from the prediction of the standard SFA models. We, however, show that the proper
description of electron tunneling from molecular orbitals can be incorporated into these existing models
with the introduction of a modified molecular form factor. The consequences of this study are two-fold: on
the one side, it modifies the interpretation of the harmonic signal in HHS, since the retrieved orbital is not
a raw image of the actual molecular wavefunction; on the other side, it demonstrates that the HHG
spectrum shows well-resolved signatures of the tunnel-ionization site-specificity. Finally, our
considerations lead to a derivation of a molecular SFA HHG model with quantitative
accuracy.

The article is organized as follows. First, we describe our theoretical approach to the site-depending
tunneling ionization and its incorporation in the strong field approximation formalism. Second, we present
the results for HHG and photoelectrum spectra obtained from our model compared to those from the exact
TDSE calculations, and finally we conclude.

2. Theoretical approach to site-dependent tunnel ionization in molecules

We consider as the subject of study the hydrogen molecular ion (H+
2 ) in a linearly polarized laser field, since

the exact TDSE calculations are affordable for this simple case [41]. The molecule is assumed to lie parallel
to the polarization direction, a feasible scenario after using laser alignment techniques [42]. We also neglect
nuclei dynamics, which is reasonable for time scales of few femtoseconds [43]. We consider an 800 nm
wavelength laser pulse described as E(t) = E0 sin2

(
πt/τ

)
sin (ω0t), ω0 being the laser carrier frequency,

τ = 10.67 fs, which leads to 3.88 fs full-width at half maximum (FWHM) in intensity, and a peak intensity
of 3.5 × 1014 W cm−2. The Hamiltonian governing the
interaction is

H (t, r) =
p2(t)

2m
+ VM(r), (1)

where m is the electron mass, and

VM (r) = − q2√
ρ2 + (z + R/2)2

− q2√
ρ2 + (z − R/2)2

(2)

is the Coulomb potential in cylindrical coordinates (q is the electron charge, and R is the internuclear
distance). p is the kinetic momentum operator, p = −i�∇− (q/c)A(t)ez, A(t) being the vector potential of
the laser field, polarized in the z direction. As shown in appendix A, the ground-state of H+

2 is a symmetric
orbital that can be described in terms of atomic orbitals centered at the molecular ion sites, as

φ0(r) = C

[
χ0

(
r − R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
, (3)

where χ0(r) is a localized wavepacket, described as a linear combination of Gaussian orbitals [44, 45],
and C is the normalization factor. The harmonic spectrum is calculated from the Fourier transform of the
mean dipole acceleration along the z axis, az(t) = 〈âz〉 = 〈−(1/m)∂VM/∂z〉. The TDSE is integrated using
the Crank–Nicholson algorithm in the finite differences scheme.
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Figure 1. Scheme of the influence of the molecular profile in the site-dependent tunnel picture. The purple line shows the
effective molecular potential (Coulombic potential deformed by the external field). The localized-atomic orbitals composing the
groundstate and ionized wavefunctions are depicted in blue and orange. The total molecular orbital is indicated by the dashed
green line.

Molecular HHG can be described using an extension of the atomic SFA models. We use the SFA +
approach, which provides a quantitative accurate reproduction of the harmonic spectra in atoms [21]. The
extension to molecules leads to the following expression for the dipole acceleration (see appendix A):

az(t) = − i

�

∫
P
α+(P)〈χ0|âz|P〉|Fs[p′(t)]|2 ×

∫ t

t0

ei 1
�

S(P,t,t1)e−i
ε0
�

(t1−t)VF(P, t1) × η(P, t1)dt1dP, (4)

where ε0 is the bound state energy, η(P, t1) is the transition matrix element (see equation (A15) in

appendix A) and Fs[p′(t)] = C
[

e
i
�

p′z(t) R
2 + e−

i
�

p′z(t) R
2

]
is the molecular form factor, arising from the

application of the translation operator to the different molecular ion sites [46]. P is the electron’s canonical
momentum, S(P, t, t1) is the ionized electron’s action, |P〉 are free-electron wavefunctions [47] and
VF(P, t) = −(q/mc)A(t) · P + (q2/2mc2)A2(t). We shall refer to equation (4) using the form factor Fs[p′(t)]
as the standard SFA (s-SFA). According to reference [4], p′ is interpreted as the kinetic momentum of the
recolliding electron, as seen from the bottom of the molecular potential well, i.e.
p′z(t) = sign {pz(t)}

√
p2

z (t) + 2mIP, pz(t) being the kinetic momentum of the recolliding electron outside
the molecular well, and IP being the bound-state ionization energy. This description has been validated by
exact calculations using Coulomb–Volkov wavefunctions [48]. Finally, the term α+(P) = (P2/2m − ε0)/Δs

in equation (4) is a prefactor necessary to describe the harmonic yield with quantitative accuracy [21],
being Δs the ground-level Stark shift at the instant of recollision. As it is well-known, the form factor
Fs[p′(t)] in equation (4) is responsible for the interference pattern in the harmonic spectrum, dubbed as
structural minimum [4].

2.1. Introduction of the site-depending tunneling
As pointed out above, a main assumption in SFA is to neglect the form of the Coulomb potential upon
ionization and, therefore, it oversimplifies the nature of the tunnel barrier [33]. In figure 1 the molecular
potential is depicted showing that the inner potential barrier is nonexistent. As a consequence, one of the
wavepackets χ0 in equation (3) is effectively separated from the outer tunneling barrier, reducing its
ionization probability. According to the derivation in appendix B, the SFA description of molecular
ionization should be modified to include this site-dependent tunnel probability. To incorporate it, we
reformulate the decomposition of the molecular orbital, equation (3), as

φ0(r) = C

[
T

(
R

2
,±R

2

)
χ0

(
r − R

2
ez

)
+ T

(
−R

2
,±R

2

)
χ0

(
r +

R

2
ez

)]
, (5)

where T(zc, zb) is the ratio between the tunnel amplitude probability of the wavepacket placed at the zc

molecular site, P(zc, zb)1/2, to the amplitude probability near the zb edge of the potential barrier, P(zb, zb)1/2.
The positive (negative) sign of zb corresponds to ionization through a barrier located at the right (left) side
of the molecule. According to appendix B,

T(zc, zb) =

[
P(zc, zb)

P(zb, zb)

]1/2

=
|χ0(zb)|
|χ0(zc)|

. (6)

T(zc, zb) in equation (5) modulates the SFA ionization, so that the wavepackets that are located further away
from the barrier have less probability to be ionized, as depicted schematically in figure 1.
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Thus, due to this different probability of tunneling, the wavepackets ionized from each molecular site
have a different amplitude. The site-specific tunnel probability, T(zc, zb), can be included in equation (4)
redefining the s-SFA form factor, Fs, as a new site-dependent tunneling (SDT) version. This new form
factor not only accounts for the application of the translation operator but also for the consequences of
site-dependent tunneling in the ionized wavepacket:

F±
SDT

[
p′z(t)

]
= C

[
T

(
−R

2
,±R

2

)
e

i
�

p′z(t) R
2 + T

(
R

2
,±R

2

)
e−

i
�

p′z(t) R
2

]
. (7)

Note, however, that the modulus of the F±
SDT form factor is the same regardless the position ±R/2 of the

barrier. We can, therefore, drop the superindices (±) when substituting Fs by FSDT in equation (4). After
this substitution, we shall refer to equation (4) as the site-dependent tunneling SFA (SDT-SFA).

The interpretation of the site-depending tunneling is probabilistic, as given in appendix B, right after
equation (B6). Basically, equation (B5) is the compound probability of two independent events: (i) the
particle being located at the edge of the barrier and (ii) the tunnel ionization of a particle in contact with
the internal edge of the barrier. The final probability is the product of the probabilities these two events.
The compound event appears intrinsically in the TDSE calculations, but it is not well described within the
strong field approximation models, as they neglect the shape of the potential, and, therefore the
information of the location of the inner edge of the tunneling barrier.

3. Signatures of the site-dependent tunnel-ionization in H+
2

In this section, we show the comparison between the HHG spectra obtained from the TDSE, the standard
SFA and the site-dependent tunneling SFA using the form factor FSDT in equation (7). Second, we show the
comparison of the HHG spectra calculated from the s-SFA, the SDT-SFA and the TDSE, for different laser
parameters and different molecular internuclear distances, showing a much better agreement of SDT-SFA
with the TDSE. Next, we extract FSDT form factor directly from the TDSE calculation, and compare it with
equation (7), showing that the TDSE results are consistent with our interpretation. Afterwards, we present
results where macroscopic propagation in a molecular target is taken into account, demonstrating that the
spectral signature of the site-dependent tunneling is resilient to propagation. Finally, we show the suitability
of the SDT-SFA in the photoelectron spectrum emitted in H+

2 .

3.1. High harmonic spectra: single-molecule response
Figure 2(a) shows the quantitative comparison between the HHG spectrum obtained with the exact TDSE
(blue), the s-SFA (red), and the SDT-SFA (green) as raw data (no rescaling is done). The spectra show the
typical feature of non-perturbative harmonic generation: a plateau followed by a cut-off. The s-SFA shows a
qualitative recovery of the harmonics close to the cut-off (though, one order of magnitude quantitative
error), but a serious qualitative and quantitative departure (up to four orders of magnitude) in the plateau,
most evident for harmonic orders below the 45th. These trends are also present in calculations for different
laser parameters, as it will be shown below. In contrast, this clear departure is not found in HHG from
atoms. To illustrate this, we show in figure 2(b) the same comparison as figure 2(a) but for the helium
atom, with an ionization potential similar to H+

2 . The helium case corresponds to equation (4), replacing
Fs[p′(t)] by the atomic form factor, which is equal to one, and substituting the matrix elements and orbital
energies accordingly. Figure 2(b) shows that the agreement between atomic SFA and TDSE is excellent even
for harmonics well into the cutoff (in this case, for harmonic orders above the 30th). The departure of the
SFA description for the lowest frequencies (below 30th harmonic in this case) is a known artifact of the
strong field approximation. Thus, while the SFA offers an accurate description of HHG in atoms, it
substantially fails to describe HHG in H+

2 . Such departure reveals that some relevant information is missing
in the s-SFA formulation, equation (4).

The presence of the sharp minimum in the s-SFA spectra has been reported before [49, 50], and it
corresponds to the molecular structural minimum mentioned above. For H+

2 at equilibrium internuclear
distance, interacting with an 800 nm-wavelength laser pulse, the structural minimum is centered at the
22nd harmonic, extending up to the 49th harmonic (as found when imposing the condition λdB = 4R/3,
where λdB is the deBroglie wavelength of the recombining electron). However, in contrast to the s-SFA
results, the exact integration of the TDSE shown in figure 2(a) shows a weak trace of this interference. This
attenuation of the structural minimum in H+

2 at the equilibrium internuclear distance, parallel to the laser
polarization, has been also evidenced in previous works [4, 6, 50]. On the other hand, it is also known that

4
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Figure 2. (a) HHG spectra of the H+
2 molecule aligned along the polarization direction of the laser (800 nm, 3.88 fs FWHM,

I = 3.5 × 1014 W cm−2) for the equilibrium internuclear distance (1 Å). The SDT-SFA results (green) adjust to the exact TDSE
(blue), while the standard s-SFA (red) exhibits a deep geometrical minimum at q = 22. (b) HHG spectra of the atom of helium
for the same laser parameters. In the case of atoms, the SFA approach (red) gives an accurate quantitative reproduction of the
exact TDSE (blue) for harmonics above 30th. Both panels show raw data since no rescaling has been done.

the minimum shows up for tilted molecular orientations [6, 25], where the projection of the molecular axis
onto the field polarization results into an effective internuclear distance smaller than the equilibrium one.
We will later show results of the TDSE for such case, where the structural minimum is clearly
observed.

The comparisons of the results of SDT-SFA with s-SFA and the exact TDSE are shown in figure 2(a). In
agreement with the TDSE, the SDT-SFA spectrum shows a weaker signature of the structural minimum.
Remarkably, also the overall correspondence of SDT-SFA with the TDSE—both quantitative and
qualitative—is substantially improved in comparison with the s-SFA. It should be reminded that the
departure at the lowest part of the spectral plateau (harmonic orders <30th) is also found in the atomic
case (figure 2(b)). As discussed before, it reflects a fundamental inaccuracy of the SFA approach, not
connected to the atomic or molecular nature of the species.

We validate the SDT-SFA model for different laser parameters and internuclear distances. First, in
figure 3 we present the HHG spectra considering different laser peak intensities and wavelengths. As a
general conclusion, the SDT-SFA (green lines) reproduces very satisfactorily the exact TDSE results (blue
lines).

On the other hand, tilted molecules present an effective internuclear distance smaller than the
equilibrium one: Reff = Req cos θ. Under such configurations the ratio of the tunnel probability of a distant
wavepacket (equation (6)) increases, and the structural minimum shows up. Thus, we have chosen a smaller
internuclear distance in order to study the capability of the SDT-SFA to reproduce the well-known
structural minimum [4] in a configuration where it is evidenced. In figure 4 we present the HHG spectra
and its corresponding time–frequency analysis for a different internuclear distance, R = 0.6Å, which would
correspond to a rotation of θ = 53◦. The minimum appears in the TDSE spectrum at the harmonic order
q = 61, approximately. While the standard SFA fails in predicting the minimum’s depth, the SDT-SFA
provides a better approach. Note that the time–frequency description of the SDT-SFA has also a better
coincidence with the TDSE results. As pointed out before, the departures for harmonic orders below 30th
are a consequence of the SFA, also present in the atomic case (figure 2(b)).

3.2. Extraction of the form factor from the harmonic spectra
A strong evidence of site-specificity in molecular tunnel ionization can be found directly from the exact
TDSE using high-harmonic spectroscopy techniques to retrieve the form factor from the TDSE and
compare it with our SDT proposal, equation (7). For that purpose, we follow the same philosophy used in
tomographic studies and we compare the HHG molecular emission to that from an atom with similar

5
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Figure 3. HHG spectra from the H+
2 molecule at the internuclear distance of equilibrium, obtained through the exact TDSE

(blue), s-SFA (red) and the SDT-SFA (green) for different laser peak intensities (3.88 fs FWHM, 800 nm): (a)
I = 2.19 × 1014 W cm−2, (b) I = 4.92 × 1014 W cm−2, and different laser wavelengths (3.88 fs FWHM, I = 3.42 × 1014 W cm−2):
(c) 1220 nm, (d) 560 nm.

Figure 4. (a) HHG spectra from the H+
2 molecule for a smaller internuclear distance (R = 0.6 Å, 800 nm, 3.88 fs FWHM,

I = 1.11 × 1015 W cm−2) for the exact TDSE (blue), the s-SFA (red) and the SDT-SFA (green). The time–frequency analysis of
these spectra are shown at (b), (c) and (d), respectively. In this case the structural minimum (located at q = 61, as pointed out by
the gray arrows) emerges in the TDSE but its depth is again in better agreement with the one of the SDT-SFA.
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Figure 5. Time–frequency analysis of the HHG emission from the H+
2 molecule (a) and the helium atom (b) for the same

parameters as in figure 2(c) The form factor extracted from the TDSE calculations, FTDSE, following equation (8) (blue) for the
selected region within the white dashed lines in panels (a) and (b), is compared to the form factors from s-SFA, Fs, (red) and
SDT-SFA, FSDT, (green).

ionization potential. Figures 5(a) and (b) show the time–frequency analysis corresponding to the TDSE
harmonic spectra of figures 2(a) and (b), for H+

2 and He respectively. These maps reveal that each harmonic
in the plateau is emitted in a discrete series of bursts, corresponding to the rescattering of the different
electron trajectories, the well-known short and long trajectories [19, 51]. We have selected the harmonic
emission corresponding to a single rescattering event emitted from the short trajectories during a half-cycle
of the driving field (as indicated with white dashed circles in figures 5(a) and (b)) and calculated the
associated spectral amplitudes for both species: az,He(ω) and az,H+

2
(ω). Then, the form factor can be

retrieved as
|FTDSE(ω)|2 � az,H+

2
(ω)/az,He(ω). (8)

This assumption follows from the SFA saddle point method, which applied to the integrals in equation (4)
leads to a simple identification of the harmonic spectral amplitudes and the quasiclassical electron
trajectories [19]. After the saddle-point analysis, the Fourier transform of equation (4) can be cast into a
simple expression [52]:

az(ω) ∝
∑

st

|FTDSE(p′st)|2 ξ(Pst , tst , t1,st)η(Pst), (9)

where η includes the terms containing the electronic wavefunctions, χ0, and ξ includes the remaining
terms, except the form factor FTDSE, which is to be determined from the TDSE. The summation in
equation (9) extends over all saddle points, st, each representing a recolliding electron trajectory responsible
of the harmonic emission at frequency ω = p′2st /2m�. Each rescattering corresponds to a term in the
summation in equation (9), therefore, in selecting a single rescattering event from the TDSE
time–frequency maps, we are isolating a single term in the summation. Thus, in this case, equation (8)
follows directly from equation (9).

Figure 5(c) shows the comparison of the form factor extracted from the TDSE, FTDSE, using
equation (8), against the s-SFA form factor, Fs, and the modified SDT-SFA version, FSDT. The excellent
agreement between FSDT and FTDSE strongly supports equation (7) and, therefore, our interpretation of
distant tunneling as well as molecular site-dependent ionization. We note that evidences of the
site-dependent ionization due to the distant tunneling may also be found implicity in photoionization
studies where electron localization leads to an asymmetric molecular dissociation [53–55].

7
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Figure 6. HHG spectra from macroscopic propagation calculated using the SDT-SFA (a) and s-SFA (b) for the same parameters
as those of figure 2 qualitatively compared to the single-molecule case. The distinction between the two models survives upon
propagation. For both cases, the relative yield between the spectra of the single-molecule and the macroscopic propagation is
arbitrary.

Figure 7. Photoelectron spectra from the H+
2 molecule obtained using the TDSE (a), the standard SFA (b) and the SDT-SFA (c)

models. The laser parameters and molecular configuration are the same as those of figure 2. The gray arrows in panel (b) indicate
the presence of structural minima, which are not evidenced in the TDSE and SDT-SFA calculations. We have added a sign to the
kinetic energy axis, according to the direction left (minus) or right (plus) of the ionized wavepacket.

3.3. Signature of the site-dependent tunnel-ionization in the propagated high-harmonic signal
We introduce the macroscopic picture in order to gain insight about the survival of the features of the
single-molecule spectrum in an experimental situation. It is known that macrosocopic phase-matching can
strongly influence the HHG spectrum measured in an experiment [56, 57]. In previous works, the
experimental HHG spectrum has been used to retrieve the molecular orbital using tomographic techniques
[13]. Therefore, it is important to know if the SDT features of the single-molecule HHG spectrum are also
found in the macroscopic picture.

The macroscopic simulation of HHG in H+
2 is based on the electromagnetic field propagator [58], in

which we discretize the target (molecular gas jet) into elementary radiators. The dipole acceleration of each
elementary source is computed using the SFA models described by equations (A21) and (B10). We assume
that the harmonic radiation propagates with the vacuum phase velocity, which is a reasonable assumption
for high-order harmonics. The low-density molecular gas jet, flowing along the perpendicular direction to
the beam propagation is modelled as a Gaussian distribution of 200 μm at full width half maximum, and
with a peak pressure of 5 torr. The driver field has a Gaussian profile with a beam waist at the focus
position of 120 μm. All molecules are assumed to be oriented parallel to the polarization
direction.

In figure 6, we show a qualitative comparison between the single-molecule and macroscopic HHG
spectra for the SDT-SFA and the s-SFA models. The main features of the single-molecule spectrum
calculated using both models are conserved in the macroscopic case and, although the shape of SDT-SFA
spectra suffers modifications upon macroscopic propagation, it remains clearly distinct from the s-SFA
results. Our results show that the main properties of the single-molecule HHG spectrum shown in figure 2
survive after macroscopic propagation.

3.4. Signatures of the site-dependent tunnel-ionization in the photoelectron spectra
In this section, we calculate the photoelectron spectra from the H+

2 molecule along the z coordinate,
|δΨ(Pz)|2, after the interaction with the pulse. In figure 7, we present the photoelectron spectra calculated
from the TDSE (a), standard SFA (b) and SDT-SFA (c) models. We show that, while the SDT-SFA spectrum

8
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exhibits a better agreement with the TDSE spectrum, the standard SFA spectrum presents two deep minima
[59]. The origin of those minima is the interference of the ionization from each atomic orbital. The
SDT-SFA, on the other hand, includes the side-dependency of the ionization, which sharply decreases the
structural interference.

Note that, in order to obtain the photoelectron spectrum from the TDSE, we have filtered the
fundamental state from the final wavefunction. As a result, an artificial minimum at the lowest kinetic
energies appears in the spectrum.

4. Conclusions

In conclusion, we have demonstrated that the standard picture of tunnel ionization needs to be modified
for the non-atomic case. Our exact computations of the TDSE in H+

2 reveal that wavepacket portions
located at the ion sites separated from the barrier ionize with lower probability. We propose a corrected
molecular form factor to implement into the existing strong-field models. The new form factor agrees
extremely well with the one extracted from the exact TDSE solution, and it improves both the HHG and
photoelectron spectra. In addition, the signatures of the site-dependent tunneling are present in the HHG
spectra for different laser parameters and molecular internuclear distances. We show that those spectral
signatures are also present when the macroscopic phase-matching is taken into account. We believe that the
implementation of the site-dependent corrections in the retrieval algorithms will improve substantially the
accuracy of high-harmonic spectroscopy measurements, as well as tomographic orbital image
reconstruction.
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Appendix A. Standard SFA description of molecular HHG

In this appendix, we present the standard (s-SFA) description of molecular high-order harmonic generation
(HHG) within the strong-field approximation (SFA).

The interaction of a one-electron system with electromagnetic radiation, in the dipole approximation, is
governed by the Hamiltonian

H(t) =
p2

2m
+ VC(r) + VF(P, t), (A1)

where VC(r) is the Coulombic potential and VF(P, t) = −(q/mc)A(t) · P + (q2/2mc2)A2(t), being A(t) the
vector potential of the laser field, P the canonical momentum and m and q the mass and the charge of the
electron, respectively.

The standard SFA approach is based in the assumption that, once ionized, the electron dynamics is
governed by the field interaction, neglecting the effect of the ion Coulombic potential. The SFA propagator
is written as [18]

GSFA(t, t0) = G0(t, t0) +
1

�

∫ t

t0

GF(t, t1)VF(t1)G0(t1, t0)dt1, (A2)

where G0 is the propagator of the non-interacting Hamiltonian, H0 =
p2

2m + VC(r), and GF is the propagator

of the free electron in the electromagnetic field, described by HF(t) = p2

2m + VF(t). Within SFA, the
electron’s wavefunction is given by |ψ(t)〉 = iGSFA(t, t0)|φ0〉, with |φ0〉 an initial bound-state of the system.
We can split the wavefunction into two terms, |ψ(t)〉 = |φ0(t)〉+ |δψ(t)〉, with |φ0(t)〉 = iG0(t, t0)|φ0〉 the
bound electron evolving in the absence of the field, and

|δψ(t)〉 = i

�

∫ t

t0

GF(t, t1)VF(t1)G0(t1, t0)|φ0〉dt1 (A3)

9



New J. Phys. 22 (2020) 043012 L Rego et al

the electron in the continum. Defining ε0 as the bound-state energy, we have G0(t1, t0)|φ0〉 =
−ie−iε0(t1−t0)/�|φ0〉. For the electron in the continuum, we resort to the Volkov basis [47]:

|P(t)〉 = ei 1
�

S(P,t,t0)|P〉, with S(P, t, t0) is the action defined as S(P, t, t0) = − 1
2m

∫ t
t0

p2(τ)dτ , with
p(t) = P − (q/c)A(t), the kinetic momentum. Accordingly, the free electron propagator can be expressed in

the Volkov basis as GF(t, t1) = −i
∫

ei 1
�

S(P,t,t1)|P〉〈P|dP. Using these definitions in (A3) the ionized electron
wavefunction in momentum space reads as

δψ(P, t) = 〈P|δψ(t)〉 = − i

�

∫ t

t0

ei 1
�

S(P,t,t1)e−iε0(t1−t0)/�VF(P, t1)η(P)dt1, (A4)

where η(P) is the transition matrix element

η(P) = 〈P|CF

rn
|φ0〉, (A5)

where the factor CF/rn is a Coulomb correction [33] that improves the quantitative accuracy of the SFA
description [21, 60], with CF = [4|ε0|/(|q|E0)]2 and n =

(
Zq2/�

)√
m/2|ε0|, Z being the charge of the

atomic or ionic core (Z = 1 for the hydrogen atom and Z = 2 for H+
2 ).

The coherent radiation spectrum is proportional to the Fourier transform of the mean acceleration.
Since we are interested only in high-harmonics, we compute the complex acceleration amplitude as [21]

〈a(t)〉 =
∫

p2/2m − ε0

Δs
a(P, t)dP, (A6)

with
a(P, t) = (1/m)〈φ0(t)|(−∇VC)|P〉δψ(P, t) (A7)

being the contribution of each Volkov wave to the total acceleration. The prefactor of the integrand in (A6)
accounts for the boundstate dressing at the instant of recollision, necessary to describe the harmonic yield
with quantitative accuracy, ε0 being the energy of the bound orbital and Δs the Stark shift at the instant of
recollision [21, 61]. This formulation has been previously applied to atoms successfully, and an example is
shown in figure 2(b).

Let us now introduce the extension of this SFA description to molecules, named as standard SFA
(s-SFA) in this paper. We describe the molecular hydrogen ion ground state as a linear combination of
atomic orbitals (LCAO), with two centers at ±R/2, R = 2 a.u being the internuclear distance. The LCAO
are described with a 6-311G Pople basis, and determined from a variational calculation. For the case of H+

2

we have three basis in each molecular site, Ri defined as

Φ1s(r) = 0.025 4938 gs(33.865 0000, r) + 0.190 3730 gs(5.094 7900, r) + 0.852 1610 gs(1.158 7900, r)

Φ2s(r) = 1.000 0000 gs(0.325 8400, r)

Φ3s(r) = 1.000 0000 gs(0.102 7410, r) (A8)

being gs(α, r) = (2α/π)3/4e−αr2
. By using Hartree–Fock, the molecular orbital for the ground state is found

to be:

φ0(r, t = 0) = C

[
χ0

(
r − R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
, (A9)

where C is the normalization factor and

χ0 (r) = 0.1937 Φ1s(r) + 0.3990 Φ2s(r) + 0.0484 Φ3s(r). (A10)

Thus, the time-dependent molecular orbital can be expressed as

φ0(r, t) = Ce−iε0(t−t0)/�

[
χ0

(
r − R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
→ |φ0(t)〉 = C

(
e−

i
�

p̂′z(t) R
2 + e

i
�

p̂′z(t) R
2

)
|χ0(t)〉,

(A11)
where |χ0(t)〉 = e−iε0(t−t0)/�|χ0〉 and the binding energy is calculated to be ε0 = −29.65 eV (−1.09 a.u.).
Consequently, the ionized wavefunction can be written as

|δΨ(t)〉 = C

(
e−

i
�

p̂′z(t) R
2 + e

i
�

p̂′z(t) R
2

)
|δψ (t)〉, (A12)

10
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Figure 8. Scheme of the dipole energy shift of the potential barrier’s maximum due to the molecular configuration. An atomic
potential (blue) is displaced R/2 from the origin (purple) under the presence of an external field (red). As a consequence, the
height of the potential barrier (green) seen by the electronic wavepacket (whose ionization potential is depicted in black)
decreases in an amount of E(t1)R/2.

where p̂′z(t) is the projection of the kinetic momentum operator, as seen from the molecular well (see
below). The expression for |δψ(t)〉 in equation (A4) should be corrected to take into account the dipole
energy shift of the barrier’s maximum, as the molecule is an extended object. For a symmetric aligned
molecule of length R, the change in the barrier height affects the ionization probability by a fraction
WADK[ε(R/2, t1)]/WADK(ε0), where ε(R/2, t1) = ε0 − q|E(t1)|R/2 is the ionization potential as seen from
the top of the barrier at the ionization time t1 (see figure 8). WADK is the Ammosov–Delone–Krainov the
ionization rate [34]

W ADK(ε) =

(
2e

n∗

)2n∗ 1

2πn∗
(2�+ 1)(�+ |m|)!
2|m||m|!(�− |m|)! |ε|

[
3E0

π(2|ε|)3/2

]1/2

×
[

2

E0
(2|ε|)3/2

]2n∗−|m|−1

e
−
(

2(2|ε|)3/2

3E0

)
,

(A13)
where e is the Euler number, m and � are the quantum numbers of the atomic orbital, E0 is the amplitude of
the electric field and

n∗(ε) =
Zq2

�

√
m

2|ε| . (A14)

We implement this correction including the probability ratio into the bound-to-continuum amplitude
probability, thus, redefining η in equation (A4) as

η(P, t1) =

[
WADK[ε(R/2, t1)]

WADK(ε0)

]1/2

〈P|CF

rn
|χ0〉, (A15)

where R is the equilibrium internuclear distance (R = 1.055 Å = 2 a.u.).
Equations (A7), (A11) and (A12), lead to the following expression for the dipole acceleration for the H+

2

molecule,

a(P, t) =
C2

m
〈χ0(t)|

(
e

i
�

p̂′z(t) R
2 + e−

i
�

p̂′z(t) R
2

)
(−∇VM)|P〉〈P|

(
e−

i
�

p̂′z(t) R
2 + e

i
�

p̂′z(t) R
2

)
|δψ(t)〉, (A16)

VM where is the Coulomb molecular potential. For H+
2 , VM can be written as a superposition of the

hydrogen potential at the ionic sites, VM(r) = VC

(
r − R

2 ez

)
+ VC

(
r + R

2 ez

)
. The dipole acceleration a(P, t),

therefore, results from the added contributions of eight different physical paths (see figure 9). Naming
{α,β, γ} the sign of the displacements (+1 for right and −1 for left) of the recombination wavefunction
χ0(r − αR/2), the rescattering potential VC

(
r − βR/2

)
, and the ionizing wavefunction χ0(r − γR/2),

respectively, we rewrite (A16) as the sum over the different paths a(P, t) =
∑

α,β,γaα,β,γ(P, t), where

aαβγ(P, t) =
C2

m
〈χ0(t)|

{
e

i
�

p̂′zα
R
2

[
−∇VC

(
r − β

R

2
ez

)]
|P〉〈P|e− i

�
p̂′zγ

R
2

}
|δψ(t)〉. (A17)
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Figure 9. Scheme of the main different paths followed by the electronic wavepacket contributing to the HHG spectrum. The
atomic orbitals are depicted in blue and the scattering with the Coulombic potential is depicted in purple. The γ index refers to
the atomic orbital from which the electronic wavepacket is ionized, the β index refers to the atomic potential responsible of the
rescattering and the α index refers to the atomic orbital where the wavepacket recombines. The four main paths (a), (b), (c) and
(d), are represented by the red arrows.

Our calculations show that the main contributions come from terms with α = β, meaning that the
scattering on a potential site is most probably followed by a recombination to the same site’s bound
wavefunction. Thus, using

−∇VC

(
r − β

R

2
ez

)
= e−

i
�

p̂′zβ
R
2 (−∇VC (r)) e

i
�

p̂′zβ
R
2 (A18)

we can approximate equation (A17) to

aβγ(P, t) � C2

m
〈χ0(t)| [−∇VC (r)] |P〉e i

�
p′z(β−γ) R

2 〈P|δψ(t)〉. (A19)

For a free electron p′(t) = p(t) = P − (q/c)A(t), with A(t) the electromagnetic vector potential. In
molecules, however, p′(t) describes the kinetic momentum of the free electron at the instant of
recombination, t, as seen from the molecular sites, so it includes the acceleration by the potential well, i.e.
(1/2m)p′2(t) = (1/2m)p2(t) + IP , IP being the molecular ionization potential. Therefore
p′z(t) = sign{pz(t)}

√
p2(t) + 2mIP [48]. This correction to the free electron’s kinetic momentum is found

necessary to recover the correct position of the molecular structural minimum in the harmonic spectrum
[4]. Summing over all the relevant paths, the acceleration a(P,t) can be written as

a(P, t) =
1

m
|Fs

[
p′z(t)

]
|2〈χ0(t)|(−∇VC)|P〉δψ(P, t), (A20)

where Fs

[
p′z(t)

]
= C(e

i
�

p′z(t) R
2 + e−

i
�

p′z(t) R
2 ) is the molecular form-factor. Substituting in equation (A6), we

finally obtain the total acceleration

〈a(t)〉 =
∫

p2/2m − ε0

Δs

1

m
〈χ0(t)|(−∇VC)|P〉|Fs

[
p′z(t)

]
|2

×
{
− i

�

∫ t

t0

ei 1
�

S(P,t,t1)e−i
ε0
�

(t1−t0)VF(P, t1)η(P, t1)dt1

}
dP. (A21)

Appendix B. Tunnel of a distant wavepacket

In this appendix, we compute the tunnel probability of a wavepacket located at a finite distance from the
barrier’s edge. In a description using localized atomic orbitals (LAO), the molecular orbital is decomposed
into a basis of wavepackets, each centered at a different ion site. In molecules at equilibrium nuclear
distances, these localized wavefunctions are generally not separated by internal potential barriers, therefore

12
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Figure 10. Scheme of the tunneling of a distant wavepacket. The wavefunction χ(z, t) (red) is centered at zc and its energy is ε0,
while the blue triangle is the potential barrier V(z) whose edges are placed at zb and zf.

dwelling in a multi-ion Coulomb potential well. The presence of a strong field modulates the molecular
potential, forming an external potential barrier, that separates the bound orbitals from the continuum. The
extended nature of the molecular well, therefore, results in some of the LAO positioned at finite, non zero,
distances from the edge of the barrier (see figure 1 in the main text).

Let us consider a stationary wavepacket with energy ε0 centered at the coordinate zc, at the left of a
potential barrier V(z). The barrier’s edges zb and zf are defined so that V(z) = 0 if z < zb, and V(z) > ε0 if
zb < z < zf (see figure 10).

We express the wavepacket as a planewave decomposition, χ(z, t) = e−iε0t/�χ0(z), with

χ0(z) =

∫ ∞

−∞
g̃(p)eiS(p,z)/�eip(z−zc)/�dp �

∫ ∞

−∞
g̃(p)eiSWKB(z)/�e−ipzc/�dp, (B1)

where we have defined SWKB(z) =
∫ z
−∞

√
2m [ε− V(z′)]dz′ as the semiclassical approximation (�→ 0) to

the planewave phase S(p, z) + pz, according to the 0th-order WKB approximation [62]. Note that it is
crucial to preserve the localized nature of the wavepacket, therefore the 0th order WKB approximation is
used at the level of the individual planewaves composing it, rather that to the total wavefunction. We can
rewrite equation (B1) as

χ(z, t) = e−iε0t/�eiSWKB(z)/�

∫ ∞

−∞
g̃(p)e−ipzc/�dp. (B2)

Defining S WKB(zb) as the semiclassical approximation to S(p, zb) + pzb, equation (B2) can be approximated
by

χ0(z) � ei[SWKB(z)−SWKB(zb)]/�
∫ ∞

−∞
g̃(p)eiS(p,zb)eip(zb−zc)/�dp (B3)

= ei[SWKB(z)−SWKB(zb)]/�χ0(zb). (B4)

The tunnel transmission probability of the particle located at the wavepacket’s mean position zc, is therefore
given by

P(zc, zb) =
|χ0(zf )|2
|χ0(zc)|2

= W WKB
|χ0(zb)|2
|χ0(zc)|2

, (B5)

where WWKB corresponds to the WKB probability of tunneling of a particle located at the left edge of the
barrier [62],

WWKB = e−
2
�

∫ zf
zb

√
2m[V(z′)−ε0]dz′ . (B6)

Therefore, equation (B5) can be interpreted as the probability of tunneling times the probability of the
particle being near the edge of the barrier. The quotient in equation (B5) shows that the tunnel probability
is reduced when the wavepacket’s center is at a distance zb − zc from the edge of the barrier. We define the
ratio of the tunnel amplitude probability of a distant wavepacket to the amplitude probability of the particle
being at the barrier’s edge is given by

T(zc, zb) =

[
P(zc, zb)

P(zb, zb)

]1/2

=
|χ0(zb)|
|χ0(zc)|

. (B7)

In the case of the H+
2 molecule, the wavepackets χ0 are atomic orbitals localized at the molecular ion

sites, zc = ±R/2, where R is the internuclear distance. The coordinate of the barrier’s edge, zb, corresponds
approximately to −R/2 (R/2) for a positive (negative) field amplitude. To introduce the site-dependent
probabilities in the SFA formalism it is sufficient to redefine the molecular form factor, Fs

[
p′z(t)

]
, in the
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s-SFA formula (A21) as

F±
SDT

[
p′z(t)

]
= T

(
−R

2
,±R

2

)
e

i
�

p′z(t) R
2 + T

(
R

2
,±R

2

)
e−

i
�

p′z(t) R
2 , (B8)

where the positive (negative) index corresponds to ionization through a barrier at the right (left) side of the
molecule. Note however that the modulus of the form factor is the same, regardless the right/left position of
the barrier, and therefore we can drop the superindex,

|FSDT

[
p′z(t)

]
|2 = |F+

SDT

[
p′z(t)

]
|2 = |F−

SDT

[
p′z(t)

]
|2. (B9)

Therefore equation (A21) finally becomes

〈a(t)〉 =
∫

p′/2m − ε0

Δs

1

m
〈χ0|(−∇VC)|P〉|FSDT

[
p′z(t)

]
|2 ei

ε0
�

(t−t0)

×
{
− i

�

∫ t

t0

ei 1
�

S(P,t,t1)e−i
ε0
�

(t1−t0)VF(P, t1)〈P|CF

rn
|χ0〉dt1

}
dP. (B10)

The new form factor, FSDT, defines the difference between the standard SFA (s-SFA) and the
site-dependent-tunneling SFA (SDT-SFA) proposed in this work.
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