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We propose a novel family of equations of state for symmetric nuclear matter based on the
induced surface tension concept for the hard-core repulsion. It is shown that having only four
adjustable parameters the suggested equations of state can, simultaneously, reproduce not only
the main properties of the nuclear matter ground state, but the proton flow constraint up its
maximal particle number densities. Varying the model parameters we carefully examine the range
of values of incompressibility constant of normal nuclear matter and its critical temperature which
are consistent with the proton flow constraint. This analysis allows us to show that the physically
most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility
constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.
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I. INTRODUCTION

The determination of basic characteristics of symmet-
ric nuclear matter and possible interrelations between
them is of fundamental importance [1–6] not only for
nuclear spectroscopy and for nuclear physics of interme-
diate energies, but also for nuclear astrophysics in view
of possible phase transformations in compact astrophysi-
cal objects (neutron stars, hypothetical hybrid and quark
stars). From the practical point of view such character-
istics of infinite nuclear matter as the normal density n0

at zero pressure and zero temperature, its binding energy
per nucleon W0 and its incompressibility factor K0 are
of great importance for various phenomenological mod-
els because just these characteristics are used to fix the
model parameters. Furthermore, such parameters of the
nuclear liquid-gas transition phase diagram as the criti-
cal temperature Tc, the critical particle number density
nc and critical pressure pc at the endpoint and the values
of critical exponents are important not only for the the-
ory of critical phenomena, but they are also important
for a verification of the novel theoretical approaches to
study the phase transitions in finite systems with strong
interaction [5, 7–11].

Although some of these parameters, namely n0 and
W0 are known well, the model independent experimental
determination of all other aforementioned characteristics
is extremely difficult, since these parameters correspond
to an infinite nuclear matter, while in the experiments
one can study only the nuclei of finite size. Therefore,
any relations or conditions which connect these charac-
teristics are very important both for nuclear theory and
for experiment. Recently, a comprehensive analysis of
relation between the critical temperature of hot nuclear

matter and incompressibility factor of its ground state,
i.e. at the particle number density n0 and vanishing tem-
perature, was performed in Refs.[12, 13] for relativistic
mean-field (RMF) models. One of the important con-
straints imposed on the RMF models discussed in [5, 12]
is the so-called proton flow constraint [14]. This con-
straint [14] requires that at vanishing temperature and
high baryonic charge densities the realistic equations of
state (EoS) are soft, i.e. it sets rather strong restrictions
on the particle number density dependence of pressure
from two to about five values of normal nuclear density.
As a result, even having about 10 or more adjustable pa-
rameters only 104 RMF models out of 263 analyzed in [5]
are able to obey this constraint. It is clear that so many
model parameters do not allow to perform a systematic
study of the flow constraint influence on the characteris-
tics of symmetric nuclear matter critical endpoint (CEP)
for the RMF models.

At the same time, two novel approaches to account
for the hard-core repulsion in relativistic quantum gases
were suggested recently [15, 16]. Their advantage is that
the novel EoSs allow one to go beyond the usual Van der
Waals approximation [15, 16]. However, the EoS devel-
oped in Ref. [15] employs the parameterizations of at-
tractive interaction which are typical for classical gases
and, as a result, even the minimal value obtained for the
incompressibility factor K0 is somewhat above its exper-
imental range of nuclear matter [5, 12, 13, 17], while the
values of nucleon hard-core radius are too large. Further-
more, in [16] it is shown that for same parameterization
of the mean-field attractive potential and temperatures
below 1 MeV the EoS which belong to the class sug-
gested in [16] are essentially softer than their analogs
developed in [15]. Therefore, in order to study the in-
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fluence of the proton flow constraint it is natural to use
a softer EoS from the class suggested in [16]. For this
purpose here we formulate a family of 4-parametric EoSs
with the phenomenological attraction similar to that in
Ref. [18] which are normalized to the properties of nu-
clear matter ground state and satisfy the proton flow con-
straint. Using this EoS family, we perform a systematic
investigation of restrictions on the critical temperature
Tc and incompressibility factor K0 generated by the flow
constraint [14]. This study allows us to show that the
critical compressibility factor Zc of nuclear matter can
be essentially lower than the typical values 0.28 − 0.31
obtained by the RMF models [13] and, hence, it can be
similar to the Zc values of ordinary non-organic liquids.
Based on these results, we believe that the present ap-
proach enables us to make a bridge between the nuclear
matter EoS and the ones for ordinary liquids.

The work is organized as follows. The main ingredi-
ents of a novel EoS are given in Section II. Section III is
devoted to a systematic analysis of the proton flow con-
straint influence on the nuclear matter EoS and its CEP
properties. Our conclusions are given in Section IV.

II. EQUATION OF STATE

Since we develop a phenomenological model of nuclear
matter, we are not bound by the Lagrangian choice and,
hence, we consider only the nucleons assuming that ef-
fect of the ∆ and heavier baryonic resonances which can
appear at high densities is absorbed in the mean-fields.
The hard-core repulsion in the present model is treated
within a framework of the induced surface tension Σ de-
veloped in Ref. [9]. The model pressure p and Σ are
a solution of the system (R is the hard-core radius on
nucleons)

p = pid(T, νp)− pint
(
nid(T, νp)

)
, (1)

Σ = Rpid(T, νΣ) , (2)

where pid(T, µ) is the grand canonical pressure of nonin-
teracting point-like fermions

pid(T, ν) = Tg

∫
d3p

(2π)3
ln

[
1 + exp

(
ν−
√
p2+m2

T

)]
, (3)

and the particle number density is defined as

nid(T, ν) =
∂pid
∂ ν

= g

∫
d3p

(2π)3

1

exp

(√
p2+m2−ν

T

)
+ 1

.(4)

Here the system temperature is T , m = 940 MeV is the
nucleon mass and the nucleon degeneracy factor is g = 4.

The term −pint in Eq. (1) represents the mean-field
contribution to the pressure caused by an attraction be-
tween the nucleons. Of course, the repulsive scattering
channels are also present in nuclear matter. However, at
densities below nmax ' 0.75 fm−3, which is the maximal
density of the flow constraint [14], they are suppressed

by the presence of attractive ones. Indeed, for such value
of particle number density the average nucleon separa-

tion is about rmin =
(

3
4πnmax

)1/3

' 0.7 fm. At such a

separation the microscopic nucleon-nucleon potential is
attractive [19–21], while the residual repulsive interac-
tion can be safely accounted for by the particle hard-core
repulsion.

The quantity Σ in Eq. (2) is the surface tension in-
duced by the hard-core repulsion between the nucleons
and, hence, in Ref. [9] it was called as the induced surface
tension (IST) in order to distinguish it from the eigensur-
face tension of ordinary nuclei. Appearance of the IST
is caused by the fact that virial expansion of the pres-
sure includes the terms which are proportional not only
to the eigenvolume V0 = 4π

3 R
3, but also to the eigensur-

face S0 = 4πR2 of a particle with the hard-core radius
R. The surface term contribution is accounted for by
the induced surface tension coefficient Σ. The meaning
of this quantity as the surface tension coefficient can be
easily seen from the effective chemical potentials which
are defined through the baryonic chemical potential µ as

νp = µ− pV0 − ΣS0 + U
(
nid(T, νp)

)
, (5)

νΣ = µ− pV0 − αΣS0 + U0 , (6)

where Σ, indeed, is conjugated to S0 and the attractive
mean-field potentials are U

(
nid(T, νp)

)
and U0 = const.

From these equations we conclude that the effects of
hard-core repulsion are only partly accounted for by the
eigenvolume of particles, while the rest comes through
their eigensurface and, consequently, through the IST co-
efficient (for a detailed discussion see [9]). It is also worth
to note that the presence of the ideal gas pressures pid in
Eqs. (1) - (2) is typical for EoSs which are formulated in
the Grand Canonical Ensemble formalism. For example,
the well known Van der Waals EoS without attraction
can be written as pV dW = pid(T, µ− 4pV0) [22].

The system (1)-(6) is a concrete realization of the
quantum model suggested in [16], where the self-
consistency condition

pint(n) = nU(n)−
∫ n

0

dn′ U(n′) , (7)

was thoroughly discussed for the EoS of the same class
as the one defined by Eq. (1)-(6). Eq. (7) relates the
interaction pressure pint

(
nid(T, νp)

)
and the correspond-

ing mean-field potential U
(
nid(T, νp)

)
and it guarantees

the fulfillment of all thermodynamic identities [16].
Note that by substituting the constant potential

U0

(
nid(T, νΣ)

)
= const into the consistency condition (7)

one automatically obtains that the corresponding mean-
field pressure should be zero, i.e. p̃int

(
nid(T, νΣ)

)
= 0.

Different density dependence of the attractive mean-field
potentials U

(
nid) and U0 reflects the different origins

of their forces, namely U
(
nid) is generated by the bulk

part of interaction, while U0 is attributed to the surface
part. The meaning of U0 potential can be understood
after the non-relativistic expansion of the particle energy
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√
m2 + k2 ' m+ k2

2m in the momentum distribution func-
tion in Eq. (4): U0 decreases the nucleon mass to the
value m− U0 which resembles the RMF approach.

Finding the partial µ derivatives of Eqs. (1) and (2),
one can get the particle number density from the usual
thermodynamic identity

n =
∂p

∂µ
=

nid(T, νp)

1 + V0 nid(T, νp) + 3V0 nid(T,νΣ)
1+3(α−1)V0 nid(T,νΣ)

. (8)

In principle, Eq. (2) for the IST coefficient could con-
tain the interaction pressure p̃int(nid(T, νΣ) [16]. How-
ever, since the pioneering work [22], in which the Van der
Waals-like hard-core repulsion, i.e. the term −pV0 in Eq.
(5), was introduced into the RMF model of nuclear mat-
ter, it is well known that such a repulsion is very weak at
the vicinity of the nuclear matter ground state because
in this region p ' 0 and, hence, an additional repulsion
is absolutely necessary. In Ref. [22] the additional re-
pulsion was provided by a vector meson field interacting
with nucleons, while here such a repulsion is exclusively
provided by the IST coefficient Σ. Hence, its interaction
pressure p̃int(nid(T, νΣ)) could not contain any attrac-
tion in contrast to the term pint(nid(T, νp)) in Eq. (1).
As it was shown in [23–25] exactly the form of Eq. (2),
i.e. with p̃int(nid(T, νΣ)) ≡ 0, allows one to correctly
account for the hard-core repulsion in case of the Boltz-
mann statistics up to the packing fractions η ≡ V0n ' 0.2
(here n is the particle number density), if the parameter
α is chosen as α = 1.245. An additional reason for such
a simple parameterization of Eq. (2) is to keep the num-
ber of parameters as small as possible. Due to the same
reason for the present model we fix α = 1.245.

The role of the parameter α = 1.245 can be seen from
the expression for the particle number density (8). In-
deed, from Eq. (8) one can see that at low pressures,
when the excluded volume effects are weak and the sys-
tem is close to the non-relativistic ideal gas, i.e. for νp �
m, νΣ � m and the temperatures |νp − νΣ| � T � m,
then the densities nid(T, νp) and nid(T, νΣ) are simply
equal to each other, i.e. nid(T, νp) ' nid(T, νΣ), and,

hence, the particle number density n ' nid(T,νp)
1+4V0 nid(T,νp) ac-

quires the typical one component excluded volume (EV)
form [26]. The last equality was obtained from Eq. (8)
under an evident approximation that at low pressures
and densities the term V0 nid(T, νΣ)� 1 is small and can
be neglected. Thus, at low pressures the system (1)-(6)
recovers the usual excluded volume results by construc-
tion.

At higher pressures the situation is defined by the
value of parameter α. If α < 1, then at some value
of nid(T, νΣ) = 1

3(1−α)V0
> 0 the particle number den-

sity vanishes and further increase of pressure makes it
negative. Hence, we conclude that the case α < 1 is un-
physical. If α > 1, then at high pressures both densities
nid(T, νp) and nid(T, νΣ) diverge and the particle num-
ber density becomes equal to the inverse value of nucleon
eigenvolume n → 1/V0. This feature of the present EoS

is caused by an accurate parameterization of the hard-
core repulsion effects for α > 1. Therefore, by fixing
α = 1.245 we keep the connection to the results obtained
for the Boltzmann statistics at high temperatures [23–
25].

If, however, in a special case α = 1, then at high
pressures the behavior of particle number density n =

nid(T,νp)
1+V0 nid(T,νp)+3V0 nid(T,νΣ) strongly depends on the de-

tails of the model interaction. Thus, for µ → ∞ one
finds that νp − νΣ = U(nid(T, νp)) − U0. If the func-
tion U(nid(T, νp)) corresponds to an attraction and it is
a growing function of its argument nid(T, νp), then in
this limit one finds nid(T, νp) � nid(T, νΣ) and, there-
fore, n → 1/V0. Apparently, the speed of approaching
the limiting value depends on the strength of mean-field
potentials U(n) and U0. Now it is clear that for the case
of repulsion, i.e. for U(nid(T, νp)) < 0, the particle num-

ber density n → nid(T,νp)
3V0 nid(T,νΣ) � 1/V0. It can be even

lower than for the classical excluded volume approxima-
tion. This is, actually, one of the reasons of why the re-
pulsion of the present model is exclusively described by
the hard-core repulsion which allows one to avoid such
problems for α > 1.

III. NUCLEAR MATTER PROPERTIES

In this work we use the power parameterization of the
mean-field potential motivated by Ref. [18]. i.e.

U(n) = C2
dn

κ ⇒ pint(n) =
κ

κ+ 1
C2
dn

κ+1 , (9)

where the mean-field contribution to the pressure pint(n)
is obtained from the consistency condition (7). Note that
this is one of the simplest choices of the mean-field po-
tential which includes two parameters only, i.e. C2

d and
κ. Since the parameter α is fixed the other two param-
eters of the IST model are the hard-core radius R and
the constant potential U0. Also it is important that in
a general way one can show that in contrast to other
phenomenological EoS the present one obeys the Third
Law of thermodynamics [16]. Furthermore, recently EoS
of this type was successfully applied for modelling the
neutron star interiors [27]. We consider this as another
argument in favour of simple parametrization given by
Eq. (9).

The IST EoS with four adjustable parameters allows
one to simultaneously reproduce the ground state prop-
erties of symmetric nuclear matter, i.e. it has a vanishing
pressure p = 0 at zero temperature and the normal nu-
clear particle number density n0 = 0.16 fm−3 and the
value of its binding energy per nucleon W0 = ε

n −m =
−16 MeV (here ε denotes the energy density) and, hence,
the corresponding chemical potential is µ = 923 MeV.
The present EoS with the attraction term (9) was normal-
ized to these properties of nuclear matter ground state
and, simultaneously, it was fitted to obey the proton flow
constraint. It is necessary to stress that effects of the
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FIG. 1: Density dependence of the system pressure is shown
for several set of parameters which are specified in the legend
of each panel. See Table I for more details. The dashed area
corresponds to the proton flow constraint of Ref. [14]

symmetry energy were systematically studied and found
to be insignificant for description of the proton flow data
[14]. Furthermore, in Ref. [28] the same conclusion was
drawn based on the thorough analysis of a rich collection
of the nuclear matter EoSs which are able to reproduce
the maximal value of mass of observed neutrons stars.
Thus, the flow constraint is sensitive only to the isospin
independent part of the nuclear matter EoS and, con-
sequently, it can be safely studied with the symmetric
nuclear matter EoS. In our analysis we considered sev-
eral values of parameter κ = 0.1, 0.15, 0.2, 0.25 and
0.3. For a fixed value of parameter κ the two curves in
the n − p plane were found in such a way that the up-
per curve is located not above the upper branch of the
flow constraint, while the lower one is located not below
the lower branch of this constraint. The details are clear
from Figs. 1 and 2. This is highly nontrivial results for
an EoS with only four adjustable parameters, since to pa-
rameterize the proton flow constraint alone one needs at
least 8 independent points! One can readily check that
all parameterizations of the IST EoS shown in Figs. 1
and 2 also obey the kaon production constraint obtained

FIG. 2: Same as in Fig. 1, but for κ = 0.2, 0.25 and 0.3.

in Ref. [29] for the symmetric nuclear matter pressure
in the following range 1.2n0 < n < 2.2n0 of the particle
number density n.

The larger values of parameter κ were not considered,
since the good description of the proton flow constraint
cannot be achieved for κ ≥ 0.33. The reason is apparent
from the lower panel of Fig. 2. The values of parameter
κ below 0.1 were not considered as well because they
correspond to very large values of the incompressibility
constant K0 ≡ 9 ∂p∂n

∣∣
T=0, n=n0

. As one can see from Table
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I for κ = 0.1 the minimal value of the incompressibility
constant K0 is about 306 MeV, while for κ < 0.1 it gets
even larger.

FIG. 3: Values of incompressibility constant K0 and criti-
cal temperature TC which obey the proton flow constraint
are located between the lines ABC and FED. The lines ABC
and FED are, respectively, generated by the lower and upper
branches of the proton flow constraint. The vertical lines AF,
BE and CD correspond to K0 values 200 MeV, 250 MeV and
315 MeV, respectively.

Of course, we employed the other parameterizations of
the attractive mean-field potential U(n) as well, namely
the Van der Waals one U(n) = 2an − 4V0an

2, the
constant one U(n) = c and the Clausius one U(n) =
a
c

(
1− 1

(1+c n)2

)
with the constant values of parameters

a and c, but none of them gave as good results, as
we found for the parameterization (9) with α = 1.245.
Therefore, we believe that the IST EoS with the attrac-
tion (9) catches the correct physics from the normal nu-
clear density up to the maximal particle number density
nmax ' 0.75 fm−3 of the proton flow constraint.

Similarly to all models with the mean-field attraction
the IST EoS has the liquid-gas phase transition, which
line ends at the CEP. The latter is defined as an inflection
point in the n−p plane. In other words, at CEP one finds

∂p

∂n
= 0,

∂2p

∂n2
= 0 . (10)

The IST EoS supplemented by these conditions alows us
to define critical temperature Tc, chemical potential µc,
density nc and pressure pc of the present model. The
obtained results are summarized in Fig. 3 and in Table
I. In Fig. 3 we divided the range of K0 values into two
regions, namely the lower one K0 = [200, 250] MeV and
the upper one K0 = [250, 315] MeV. The lower region
of K0 values corresponds to the traditional experimental
estimates (see a discussion in [5]), while the upper one
corresponds to the more recent estimates given in [17].
The proton flow constraint defines the allowed region of

K0 and critical temperature Tc values which are located
between the lines ABC and FED in Fig. 3. From Fig.
3 one can see that the lower region of K0 values deter-
mines the rectangle ABEF for the corresponding Tc val-
ues, while the upper one determines the rectangle BCDE.
The obtained range of values is very similar to the results
of RMF models and the non-relativistic mean-field ones
discussed in [12].

However, the IST EoS allows one to obtain an essen-
tially narrower range of K0 and Tc values. Indeed, if
one requires that this EoS should be applicable at the
maximal value of particle number density nmax ' 0.75
fm−3 of the proton flow constraint, then such a condition
acquires the form

4

3
πR3nmax ≤ ηmax , (11)

where the range of the model applicability is given by the
maximal packing fraction ηmax of the model. Assuming
that the maximal packing fraction of the present model
is ηmax = 0.2, i.e. it is similar to the Boltzmann version
of the IST EoS [23–25], one finds the following restric-
tion on the nucleon hard-core radius R ≤ 0.4 fm. This
border line is shown in Fig. 3 by the short dashed line
BG. It is necessary to stress that the value 0.4 fm is only
10% larger than the hard-core radius of baryons recently
determined within the IST formulation of the hadron res-
onance gas model from fitting the hadronic multiplicities
measured in central nuclear collisions at the AGS, SPS,
RHIC and LHC energies [23–25].

If, however, the present model has a wider range of
applicability, i.e. ηmax = 0.3, then the inequality for
the nucleon hard-core radius becomes R ≤ 0.45 fm. It is
shown in Fig. 3 by the long dashed line JH. Since there is
no reason to expect that the quantum version of the IST
EoS is applicable at the packing fractions exceeding the
value ηmax = 0.3 we consider it as an upper limit of the
model applicability. Alternatively, this means that the
value 0.45 fm is an upper limit for the hard-core radius
of nucleons.

The weak radius constraint R ≤ 0.45 fm immediately
reduces the range of K0 and Tc values to the triangle
JCH in Fig. 3. The strong radius constraint R ≤ 0.4 fm
defines even smaller triangle BCG of the allowed K0 and
Tc values in Fig.3. Note that for the constraint R ≤ 0.45
fm the lower range of K0 values gets narrower, i.e. K0 ∈
[230; 250] MeV and, hence, Tc ∈ [13.2; 14.3] MeV, while
for the inequality R ≤ 0.4 fm there are no allowed values
of K0 from the lower range of values as one can see from
Fig. 3. In other words, the constraint R ≤ 0.4 fm rules
out the values of the incompressibility K0 < 250 MeV,
while it is consistent with the results of Ref. [17].

The determined range of K0 and Tc values allows us
to reveal the mutual consistency of experimental results.
Thus, the recent experimental estimates of the nuclear
matter critical temperature belong to the following range
15.5 MeV . Tc . 21 Me [2, 30–32]. From Fig. 3 one can
see that the values Tc > 18 MeV are inconsistent with
the upper range of K0 values, i.e. the critical tempera-
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κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.25 κ = 0.3
R [fm] 0.28 0.42 0.35 0.48 0.41 0.50 0.47 0.52 0.53 0.54

C2
d [MeV · fm3κ] 284.98 325.06 206.05 229.57 168.15 179.67 146.97 152.00 133.79 134.60
U0 [MeV ] 567.32 501.65 343.93 312.83 231.42 217.76 162.03 157.41 114.32 113.84
K0 [MeV ] 306.09 465.13 272.55 405.97 242.56 322.80 217.16 256.44 192.35 199.27
µc [MeV ] 890.94 881.01 900.08 895.08 906.44 904.49 911.11 910.53 914.74 914.70
Tc [MeV ] 17.62 20.60 15.60 17.97 13.93 15.36 12.49 13.20 11.16 11.30
nc [fm−3] 0.009 0.010 0.013 0.014 0.016 0.017 0.018 0.020 0.022 0.022

pc [MeV · fm−3] 0.0186 0.028 0.031 0.045 0.043 0.055 0.053 0.061 0.060 0.062
Zc 0.1173 0.1359 0.1529 0.1789 0.1929 0.2106 0.2357 0.2311 0.2444 0.2494

TABLE I: Different sets of parameters which simultaneously reproduce the properties of normal nuclear matter (p = 0 and
n = n0 = 0.16 fm−3 at µ = 923 MeV , see text for details) and obey the proton flow constraint on the nuclear matter EoS
along with incompressibility factor K0 and parameters of CEP. R,C2

d , U0 and κ are the adjustable parameters of EoS, while
the baryonic chemical potential µc, Tc, particle number density nc, pressure pc and compressibility constant Zc ≡ pc

Tc nc
at CEP

are found for each set of model parameters.

ture values above 18 MeV require K0 values above 315
MeV. On the other hand the region 15.5 MeV . Tc . 18
MeV is consistent with the following range of values of
incompressibility constant K0 ∈ [270; 315] MeV. It is in-
teresting that these ranges of Tc and K0 values are consis-
tent with the inequality on the nucleon hard-core radius
R ≤ 0.35 fm. The latter is just about 17% above the
value r ' 0.3 fm used in the realistic nucleon-nucleon in-
teraction potential to reproduce the low energy nucleon-
nucleon scattering data [33, 34].

Although the values of Tc and K0 are very well con-
sistent with the ones found for the RMF models[12, 13],
the other characteristics of CEP, namely the pressure pc,
the particle number density nc and the compressibility
constant Zc = pc

Tc nc
, are essentially lower than the ones

found by the RMF as one can see from Table I. Sur-
prisingly, the found Zc ∈ [0.117; 0.249] values demon-
strate a rich diversity, but all of them are in the range
of values known for real liquids, namely Zc ' 0.117 cor-
responds to the hydrogen fluoride, whereas Zc ' 0.249
corresponds to the hydrogen chloride [35]. Among other
real liquids which fall into the found range of Zc val-
ues we would mark the deuterium oxide (Zc ' 0.228),
ammonia (Zc ' 0.244), water (Zc ' 0.229), acetic
acid (Zc ' 0.201), acetone (Zc ' 0.232), acetonitrile
(Zc ' 0.185), metanol (Zc ' 0.223) [35] etc. At the
same time the range of the critical compressibility con-
stant of the RMF models is ZRMF

c ∈ [0.284; 0.331] [13],
i.e. it is close or slightly above the critical compressibil-
ity constants of the following substances [35] Ar, Kr, Xe,
CH4, N2, O2, and CO, but there is no reason to believe
that there is a close similarity between the properties of
particularly these atomic/molecular gases and the gas of
nucleons. Therefore, a priori for the realistic EoS one
would expect an essentially wider spectrum of Zc values,
like the RMF models show for Tc, nc and pc values.

Of course, one may be surprised by the low values of
the critical density found within the IST EoS, but we
would like to remind the reader that all ‘experimental’
estimates of nc and pc are the model dependent ones.
Furthermore, one should remember that our estimates
for nc and pc correspond to a nuclear matter, while in

the experiments one cannot ignore the Coulomb inter-
action. Since there is no exact way to account for the
Coulomb interaction, then an extraction of the nuclear
matter critical properties is inevitably model dependent
procedure. Moreover, it is clear that, if in addition we
include into a model EoS with a fixed value of κ a re-
pulsive Coulomb-like (i.e. weak) interaction of large, but
finite range, this would increase the attraction strength
C2
d to compensate the shift of binding energy. This is

apparent, since the long range repulsion will affect the
low density characteristics, namely it will increase the
pressure and binding energy per nucleon. The increase
of C2

d will, in turn, increase the critical density and crit-
ical pressure (see the columns of same κ values in Table
I). Such a modification, however, will make the whole
treatment too complicated and will destroy the main at-
tractive feature of this model, namely its simplicity.

Besides, the typical values of nRMF
c obtained in the

RMF models analyzed in [13] are as follows nRMF
c ∈

[0.295n0; 0.343n0]. Suppose that these are, indeed, the
true values of nuclear matter critical density. Then, if
one included into these EoS a repulsive Coulomb-like in-
teraction of large, but finite range, it immediately would
increase the critical density further, i.e. one would expect
that the critical density in the real systems studied in ex-
periments should be larger than nRMF

c . In this case, how-
ever, one faces a severe problem to explain how it comes
that the experimental data on size (charge) distribution
of nuclear fragments demonstrate a power law which is
typical for the CEP [2, 37, 38] and, moreover, how it
comes that the statistical multifragmentation model [36]
which up to now is the most successful one in explaining
the data obtained in the multifragmentation reactions
is able to reproduce the mentioned power law with the
break-up density nbr ' 1

6n0 − 1
3n0 [2, 36]? On the other

hand, the low values of critical density obtained within
the IST EoS do not face such a problem. Therefore, it
seems that the typical values of nRMF

c reported in [13]
may evidence about some internal inconsistency of these
models.
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IV. CONCLUSIONS

In this work we developed a novel family of EoS for
symmetric nuclear matter based on the IST concept for
the hard-core repulsion. It seems that the quantum ver-
sion of the IST EoS employed here catches the right
physics, since having only four adjustable parameters
each formulation of this EoS is able to reproduce not only
the main properties of the nuclear matter ground state
(3 conditions), but, simultaneously, it is able to obey the
proton flow constraint [14] up to particle number density
0.75 fm−3 (at least 8 conditions). Moreover, one can eas-
ily check that all versions of the IST EoS presented here
automatically obey the kaon production constraint [29].

A detailed analysis of the proton flow constraint allows
us to obtain the band of values for the incompressibil-
ity constant of normal nuclear matter K0 and the criti-
cal temperatures Tc which are consisted with the proton
flow constraint. Assuming that the quantum IST EoS
is valid up to the maximal packing fraction ηmax = 0.2
and requiring that it holds for maximal particle num-
ber density of the proton flow constraint 0.75 fm−3, we
obtained the condition R ≤ 0.4 fm for the hard-core ra-
dius of nucleons. This condition rules out the K0 values
below 250 MeV. Furthermore, analyzing the recent data
on the critical temperature value Tc ' 15.5 − 21 MeV
which, apparently, are not very accurate, we conclude
that only the range Tc ' 15.5 − 18 MeV is consistent
with the values K0 ' 270 − 315 MeV, while the larger
values of Tc require K0 values above 315 MeV, which
are not supported by the recent findings [17]. It is inter-
esting that the mutually consistent values of K0 and Tc
are also consistent with the inequality R ≤ 0.35 fm for
the hard-core radius of nucleons. This is a remarkable
finding since the value 0.35 fm is just 17% above the ra-
dius of nucleon-nucleon interaction potential and at the
same time this is just the hard-core radius of baryons
found recently by the IST formulation of the hadron res-
onance gas model from fitting the experimental hadron
multiplicities measured in central nuclear collisions in the
whole range of collision energies from

√
sNN = 2.7 GeV

to
√
sNN = 2.76 TeV [23–25]. Therefore, we conclude

that the physically most justified range of these quanti-
ties is as follows: K0 ' 270−315 MeV and Tc ' 15.5−18
MeV. Based on these results, we hope that our system-
atic analysis of the correlations between the K0 and Tc
values will help to establish the mutual consistency of
their values found with higher accuracy.

The obtained hard-core radii of nucleons are essentially
smaller than the ones found recently within the novel ap-

proach of Ref. [15]. It seems that R ≥ 0.53 fm claimed in
[15] are highly unrealistic, since in the IST EoS they cor-
respond to very low values of Tc ' 11.16−11.3 MeV and
K0 ' 192 − 199 MeV (see the column κ = 0.3 in Table
I). It seems that such values are generated by the pa-
rameterization of internuclear attraction which is typical
for ordinary liquids used in [15]. This conclusion is sup-
ported by a success of the mean-field parameterization
(9) employed here. We would like to point out that the
interaction pressure (9), as it was first found in [18], can-
not be expanded into a Taylor series at n = 0 and, hence,
the traditional virial expansion cannot be established for
this family of IST EoS. We hope that further studies of
the EoS of dense quantum liquids with strong interaction
will clarify the question whether the non-analytic density
dependence of pressure (9) is an inherent property of nu-
clear Fermi liquid or it is common for other Fermi liquids.

In contrast to the RMF models, the developed
family of EoS demonstrates a wide diversity of values
of the critical compressibility constant Zc, namely
Zc ' 0.117 − 0.249, which, however, are well known
for the ordinary liquids. Therefore, we hope it can be
straightforwardly applied to the quantum and classical
liquids, to which the RMF models discussed here,
apparently, cannot be applied.
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