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Abstract: We report novel results on the fabrication of near-infrared waveguides 
inside lithium niobate (LiNbO3) crystals with different three-dimensional beam-
splitting architectures, comparing the effects that each type of architecture has on the 
propagation losses and mode evolutions. Optimized waveguides are then studied in detail 
to obtain the refractive index profiles within the femtosecond-laser-written claddings 
with sub-micron resolution. This knowledge is currently impossible to obtain with 
experimental techniques and allows for the proper understanding of the laser-writing 
process, as well as to design novel waveguides and photonic circuits with optimized 
properties. 
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1. Introduction 

Three-dimensional direct laser writing (3DLW) of depressed cladding waveguides (CWs) [1] 
in crystalline optical materials has received tremendous attention in recent years (see [2] and 
references therein) due to the efficiency of the microfabrication process for generating 
embedded channel waveguides in materials which are known to be difficult to process at the 
micron and sub-micron scale, especially below surface within embedded volumes. There are 
at least four characteristics which make ultrashort pulse laser 3DLW CWs unique in 
comparison with other microfabrication techniques: (i) the CWs are easily engineered so as to 
guide at any given wavelength within the whole transparency window of these materials 
(typically from the UV up to the mid-infrared in crystals such as lithium niobate) [3], (ii) the 
easiness for achieving circular modes as well as single mode behaviour [1, 3, 4], (iii) the 
particularity that the guiding region is constituted by unmodified pristine material which 
maintains all the properties of the original optical crystal [3, 5], and (iv) the possibility for 
writing 3D waveguide architectures inside crystals. These four features undoubtedly enable a 
wide applications window, for example in the development of linear optical devices for light 
management, such as beam couplers or interferometers [6], to novel waveguide lasers with 
gain materials such as rare-earth doped laser crystals [1, 3–5, 7], and nonlinear applications 
such as parametric frequency conversion processes [8]. 

There is however an important bottleneck which impedes this development, which is the 
complete absence of a reliable method to design and fabricate this type of waveguides due to 
the fact that unknown index change processes take place depending on a wide range of 
parameters such as the crystals photo-modification sensitivity, the pulse characteristics, and 
the writing speeds and densities of fabricated volume structures. These characteristics involve 
complex nonlinear light-matter interaction processes such as nonlinear ionization processes, 
defect generation, micro-stress induced stress-optic index changes, and others [9]. Presently, a 
prediction of final material changes subsequent to all these processes is impossible, and 
therefore fabrication processes typically rely on trial and error multistep fabrication processes. 

Furthermore, the refractive index cross-section of these microstructured waveguides is 
remarkably complex, and it is in fact typically completely un-known due to the lack of index 
profiling techniques with both the required nanometric resolution and the range of 
wavelengths of interest (UV to mid-IR). Our goal is to obtain a method to retrieve local 
refractive index change values across the fabricated structures so as to reliably simulate the 
behaviour of CWs at different wavelength ranges of operation. 

We fabricate 3D CWs elements, such as splitters and combiners with different 3D 
architectures, and then having converged on a design which gives the best results, we process 
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Following the study of planar elements, 3D versions in which the input and output arms 
lay at different depths within the sample, were studied. Performing 3D waveguide 
architectures inside optical crystals is a unique capability of the 3DLW microfabrication 
technique [10], which allows bringing LiNbO3 waveguides close to surface electrodes for 
electrooptic modulation [11], and also allows to perform waveguide crossing at different 
depths with zero cross-talk [12]. In contrast to planar circuit designs, performing 3D circuit 
architectures opens up a wide range of possible design implementations where different 
waveguide 3D-path variations can be chosen depending on the specific device purpose and 
technical constraints. Here, we studied two different 3D-splitter designs to evaluate the 
impact of each on the splitting losses as well as on the modal output distribution (see Fig. 1). 
To perform a basic 3D-junction three types of waveguide transitions are required, propagation 
direction changes in the horizontal plane (XY), in the vertical plane (XZ), and waveguide 
splitting. We have studied the two possible approaches which maintain the splitting section 
within the horizontal plane: The first approach (3D-Y1) performs first the beam splitting in 
the horizontal plane (see red section in Fig. 1), then performs 3D angle changes on each y-
branch across both vertical and horizontal planes (red to green section in Fig. 1), and then 
performs vertical direction changes to redirect the output sections to the horizontal plane. The 
second approach (3D-Y2) performs first the depth change at the input channel branch (green 
section in Fig. 1), then performs a simultaneous direction change in the vertical plane and 
beam splitting within the horizontal plane (a 3D-splitting), and finally corrects the vertical 
slope of each branch with respective direction changes within the vertical plane. In both 
cases, a difference of 40 μm in the depth between the input and output arms was chosen, with 
a splitting angle of 0.5° in the XY plane, and direction changes with angles of ~1° in the 
vertical XZ plane. However, both designs feature fundamentally different waveguide 
transitions: the 3D-Y1 design decouples the splitting from vertical turns, in the sense that the 
y-junction is purely planar and the waveguide division phase doesn’t introduce vertical 
direction. On the contrary, the 3D-Y2 device performs both the beam splitting and the vertical 
direction changes at the same point (see Fig. 1, right), so that the transition architecture is 3D. 
Besides the y-junction transitions, each split branch also undergoes different types of bends 
on each design: in the case of 3D-Y1 each branch performs a direction change in both vertical 
and horizontal planes, while in the 3D-Y2 design each branch undergo only in-plane direction 
changes. Since single-mode 3DLW depressed cladding waveguides have been reported to be 
highly anisotropic [4] as it is also confirmed here, it can be anticipated that each different type 
of 3D-splitter could have different output properties due to the different designs of the 
waveguide transitions. We will evaluate the output spatial mode distributions, the splitting 
ratios, losses, and the field noise in the background space surrounding each output branch. 

2.2 Optical waveguide characterization 

Output near-field modal profiles and waveguide losses were measured with an end-fire 
coupling setup with injected light at 633 nm (He-Ne laser) and 850 nm (laser diode). The 
input beam was focused at the input face of the crystal with a 10X (0.25 NA) microscope 
objective and the output near-field modal profiles were recorded by imaging the waveguides 
with a 20X (0.40 NA) microscope objective onto a CMOS camera (IDS uEye SE), measuring 
the horizontal and vertical mode field diameters (MFDs). The input light polarization was 
controlled with a linear polarizer and a half-wave plate. To analyze propagation losses (PLs) 
for either linear horizontal (TE) or vertical (TM) polarizations, an analyzer (polarizer) was 
placed also after the second microscope objective. PLs of straight waveguides were measured 
by the scattered-light method [13]. The light (633/850 nm) was injected on each waveguide 
and the scattered light was imaged by a f = 2 cm lens onto another CMOS camera (IDS uEye 
SE). From the images, the decay of the transmitted power along the waveguide could be 
extracted. 
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2.3 Design and numerical modelling 

The modelling of the fabricated cladding waveguides was performed by means of finite 
element computational method (FEM hereafter) using the commercial COMSOL software. 
Our LiNbO3 cladding waveguide model [4] takes into account the anisotropic micro-stress 
distribution induced by the laser-written tracks [14] using available data for the piezo-optical 
coefficients of LiNbO3, and also considers the complex index of refraction inside tracks, 
which is fine adjusted in the model using experimental data values of the propagation losses. 
To obtain the stress distribution surrounding the cross-section of the waveguides, the local 
volume changes surrounding a longitudinal and straight laser-written track are numerically 
calculated with a 2D thermal expansion model, supposing that the amorphized volume inside 
the tracks expands and elastically distorts the surrounding unmodified crystal. As reported in 
[4], the model performs a thermal expansion of the tracks to induce an elastic distortion of the 
longitudinal track surrounding crystalline volume as shown in the equation below, which 
relates the strain (ε) and stress (σ) tensors and the temperature difference for the linear 
thermal expansion process: 

 ( )0 0: .ij ijkl kl klCσ σ ε ε α θ= + − −  (1) 

where Cijkl is the 4th order elasticity tensor, “:” stands for the double-dot tensor product, σ0 
and ε0 are the initial stress and strain, θ is the temperature change parameter controlling the 
expansion, and αkl is the 2nd order linear thermal expansion tensor (see [4] for further details). 

Therefore, in our model we need to input the following numerical parameters to vary the 
waveguide mode properties: the complex index of refraction inside the tracks Δn* = Δn + 
iΔκ, where Δn is the change in the real part of the index of refraction and Δκ is the change in 
the extinction coefficient, and the thermal expansion θ temperature change parameter. While 
Δn is a value that can be intuitively understood as the change in index of refraction due to 
defect creation and lattice amorphization, Δκ can be understood as an increase in absorption 
of the modified material due to the presence of defects, either absorbing color centers or 
scattering point defects or both simultaneously. These values are used only inside the laser-
written tracks where the femtosecond laser pulses have been tightly focused. Surrounding the 
tracks, the lattice is assumed to be completely transparent in the un-modified high-quality 
crystals, and only stress-optic index changes are computed. This approach yields anisotropic 
index change profiles which agree well with reported experimental characterizations of the 
anisotropic lattice changes around laser-written tracks [15]. Once a full cladding waveguide 
refractive index profile is obtained, a detailed mode analysis is performed with an 
electromagnetic-wave frequency-domain model. All simulations here were calculated for a 
free space wavelength of 850 nm. The numerical mode calculation gives the near-field 
distributions of the guided leaky modes, and their corresponding effective indices, which are 
used to obtain the theoretical mode field diameters (MFDs) and propagation losses (PLs), 
respectively. Iterative calculations of mode profiles while varying the model input parameters 
(complex index of refraction inside the tracks and magnitude of the thermal expansion of 
tracks) are performed until the MFDs and PLs match the experimental values. 

3. Results and discussion 

In Fig. 2 we show optical microscope images of the fabricated circular cladding waveguides 
with different radii (upper row). 

As it can be seen, laser damage tracks are well defined under white light, and show similar 
features at the different depths of the structure. Although these tracks appear to have widths 
of around 1 µm in the optical image, from previous studies under our fabrication conditions 
[16], we can approximate the real size of the tracks to be of 340 nm in the horizontal cross-
section, and 3.4 µm along the vertical direction. This track cross-section is the same one used 
for numerical modelling of the waveguides. 
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the depth changes, are done separately. As it is shown in Fig. 4(b), a slight unbalance of the 
split outputs is observed, but the modal profiles still appear to be within the spatial 
distribution of the FM. 

Moreover, the losses of the splitter (evaluated with the same procedure as in previous 
structures) do not appreciably increase in comparison with the equivalent planar Y-junction. 
Featuring an increase of + 0.1 dB at 850nm due to the insertion of the vertical offset 
transitions (green sections in Fig. 4(a)). The other design where the splitting junction perform 
both splitting and z-direction changes (3D-Y2), could therefore be expected to feature 
increased transition losses. Indeed, as it shown in Fig. 4(c) this design exhibits an important 
energy loss to higher order modes, and a consequent substantial increase in the overall losses 
( + 4.2 dB at 850 nm), as shown in Table 3. 

Table 3. Additional losses for 3D and y-junctions (dB) 

WAVEGUIDE TE 633 nm TE 850 nm 

3D-Y1 4.5 0.4 

3D-Y2 4.4 4.5 

4. Numerical modelling 

To understand the origin of the highly anisotropic behavior of the fabricated waveguides, and 
gain a deeper knowledge on the detailed index cross-section of these waveguides for future 
implementation of design improvements, a detailed numerical simulation of the FM at 850 
nm wavelength of WG1-R9 was performed. 

Initial parameters for calculating waveguide modes were set as Δn* = −2x10−3 + i·7x10−4, 
which are realistic starting values for 3DLW tracks in crystals following our previous studies 
[4], and a medium temperature change value θ = 100 K so as to induce stress fields and 
associated stress-optic change distributions across the cladding. Once an index profile is 
obtained the fundamental mode is calculated, its theoretical PL is evaluated against the 
experimental value, the Δκ at tracks is modified so as to better match it, and finally when 
calculated and measured PLs do match, the vertical and horizontal MFDs are measured at 
both intensity full width half maximum (FWHM) and at 1/e2 values, and are then compared 
with the experimental ones. 

For this work we first measured the simulated horizontal FWHM and 1/e2 MFDs for 
different values of the index change Δno at tracks, spanning low values from −2x10−3 to 
extreme values of −0.5. The horizontal cross-section is chosen as a fast output parameter 
which has a direct relationship with the index contrast at tracks, which for the case of the 
horizontal cross-section of the waveguide is particularly critical due to the fact that for this 
direction the cladding thickness is as thin as the tracks themselves, and therefore index 
contrast has a high influence on mode diameter. The resulting horizontal MFDs were then 
confronted with the experimentally measured ones, and Fig. 5 shows the resulting values. As 
it can be seen, a gradual mode compression is exerted as the negative index change is 
increased inside the tracks, increasing the light confinement capability of the depressed index 
microstructured cladding. The Δno at tracks which match the real measured MFDs are 
however dissimilar for diameters measured at FWHM and 1/e2 intensity values of the mode. 
This can be expected since matching the full profile of the leaky mode is certainly not feasible 
in a simple approach. 

To refine the simulation, an intermediate value for the index change Δn = −0.0075 at 
tracks was adopted which best matches both FWHM and 1/e2 horizontal MFDs, and then the 
role of the stress-fields was studied as a second effect to control the FM spatial distribution 
and cross-section. To obtain realistic values for the level of stress within the cladding, the 
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with very good performance. The numerical model developed in this work allows the precise 
reconstruction of the refractive index profile produced with the femtosecond laser in the 
crystal, that is essential for the optimization of the structures and for the accurate simulation 
of other complex photonic elements. 
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