AIoT for Achieving Sustainable Development Goals

Juan M. Corchado
University of Salamanca, IoT Digital Innovation Hub (Spain)
corchado@usal.es

Abstract

Artificial Intelligence of Things (AIoT) is a relatively new concept that involves the merging of Artificial Intelligence (AI) with the Internet of Things (IoT). It has emerged from the realization that Internet of Things networks could be further enhanced if they were also provided with Artificial Intelligence, enhancing the extraction of data and network operation. Prior to AIoT, the Internet of Things would consist of networks of sensors embedded in a physical environment, that collected data and sent them to a remote server. Upon reaching the server, a data analysis would be carried out which normally involved the application of a series of Artificial Intelligence techniques by experts. However, as Internet of Things networks expand in smart cities, this workflow makes optimal operation unfeasible. This is because the data that is captured by IoT is increasing in size continually. Sending such amounts of data to a remote server becomes costly, time-consuming and resource inefficient. Moreover, dependence on a central server means that a server failure, which would be imminent if overloaded with data, would lead to a halt in the operation of the smart service for which the IoT network had been deployed. Thus, decentralizing the operation becomes a crucial element of AIoT. This is done through the Edge Computing paradigm which takes the processing of data to the edge of the network. Artificial Intelligence is found at the edge of the network so that the data may be processed, filtered and analyzed there. It is even possible to equip the edge of the network with the ability to make decisions through the implementation of AI techniques such as Machine Learning. The speed of decision making at the edge of the network means that many social, environmental, industrial and administrative processes may be optimized, as crucial decisions may be taken faster.

Deep Intelligence is a tool that employs disruptive Artificial Intelligence techniques for data analysis i.e., classification, clustering, forecasting, optimization, visualization. Its strength lies in its ability to extract data from virtually any source type. This is a very important feature given the heterogeneity of the data being produced in the world today. Another very important characteristic is its intuitiveness and ability to operate almost autonomously. The user is guided through the process which means that anyone can use it without any knowledge of the technical, technological and mathematical aspects of the processes performed by the platform. This means that the Deepint.net platform integrates functionalities that would normally take years to implement in any sector individually and that would normally require a group of experts in data analysis and related technologies [1-322].

The Deep Intelligence platform can be used to easily operate Edge Computing architectures and IoT networks. The joint characteristics of a well-designed Edge Computing platform (that is, one which brings computing resources to the edge of the network) and of the advanced Deepint.net platform deployed in a cloud environment, mean that high speed, real-time response, effective troubleshooting and management, as well as precise forecasting can be achieved.

Moreover, the low cost of the solution, in combination with the availability of low-cost sensors, devices, Edge Computing hardware, means that deployment becomes a possibility for developing countries, where such solutions are needed most.

An AIoT implementation of Deepint.net has the potential to help achieve the 2030 Sustainable Goals for Development. There is growing concern over the fact that little progress has been made on some of the goals set out in the United Nations Agenda and others have gone backwards as a result of the Coronavirus pandemic. According to the information on the United Nations website “90 per cent of countries and territories are reporting one or more disruptions to essential health services” as a result of the pandemic. Thus, to successfully meet the 17 SDG, solving the problems caused by the pandemic is crucial. Moreover, AIoT Deepint.net could possibly make up for the lost progress if the society focused on implementing this technology for the 17 SDG, especially in the most affected, third world countries.

Source: Progress towards the Sustainable Development Goals - E/2021/58.
The role of Deepint.net would consist in data ingestion, management, analysis, visualization and exportation. Deepint.net can also create models for forecasting and decision-making support. Its modular design would make it possible to dedicate a separate module to each SDG; this would ensure that equal progress is made on all SDGs or that priority is given to the most urgent issues without overlooking other problems.

Below, possible use cases of Deepint.net for the achievement of some of the SDGs are described:

Goals 1&8: Deepint.net could help end poverty by helping governments keep track of their economy, of distribution of aids and investment, helping the economy grow which would lead to the creation of more jobs.

Goal 2: The tool could help end hunger by increasing crop and livestock production while enabling efficient use of scarce resources. This would be achieved through analyzing crop data, aiding in decision making regarding irrigation and animal healthcare, anticipating weather changes.

Goal 3: Deepint.net can be used in healthcare for countless purposes; it can improve healthcare services, curb Covid-19, enable rapid response to accidents and emergency situations, increase the accuracy of diagnosis and treatment.

Goals 4 & 5: In education and gender equality, the tool can help by analyzing different variables, such as political unrest, culture, economy, gender stereotypes, machismo, school distribution i.e., to explain reasons for low school attendance, drop-out rates and/or gender inequality. Learning in detail about the causes that hinder children and adults from receiving education in different geographical areas, will make it possible to counteract them.

In conclusion, all progress is based on increasing our ability to extract valuable knowledge from data and use it to find new solutions. Deepint.net is a comprehensive tool which in combination with IoT and Edge Computing under the AIoT concept, can provide remarkably fast and optimal response to the problems our society is experiencing.

References:

17. Alda Canito, Juan M. Corchado, Gerei Marreiros: Bridging the Gap Between Domain Ontologies for Predictive Maintenance with Machine Learning. WorldCIST (2) 2021: 533-543

Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 8, n. 4, 5-18.
34. Arya Tanmay Gupta, Himani Gupta, Muskan Sharma, Priyanka Khanna (2020) A secure home automation prototype built on raspberry-pi. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 9, n. 2

103. David Berrocal-Macías, Zakieh Alizadeh-Sani, Francisco Pinto-Santos, Alfonso González-Briones, Pablo Chamoso, Juan M. Corchado: Services Extraction for Integration in Software Projects via an Agent-Based Negotiation System. *PAAMS (Workshops)* 2021: 241-252

119. Diogo Martinho, João Carneiro, José Neves, Paulo Novais, Juan M. Corchado, Goreti Marreiros: A Reinforcement Learning Approach to Improve User Achievement of Health-Related Goals. EPIA 2021: 266-277

120. Diogo Martinho, João Carneiro, José Neves, Paulo Novais, Juan M. Corchado, Goreti Marreiros (2021) A Reinforcement Learning Approach to Improve User Achievement of Health-Related Goals. EPIA 2021: 266-277

159. Francisco Pinto-Santos, Zakieh Alizadeh-Sani, David Alonso-Moro, Alfonso González-Briones, Pablo Chamoso, Juan M. Corchado: A Template-Based Approach to Code Generation Within an Agent Paradigm. PAAMS (Workshops) 2021: 296-307

160. Francisco Pinto-Santos, Zakieh Alizadeh-Sani, David Alonso-Moro, Alfonso González-Briones, Pablo Chamoso, Juan M. Corchado (2021) A Template-Based Approach to Code Generation Within an Agent Paradigm. PAAMS (Workshops) 2021: 296-307

191. Israel Campero-Jurado, Sergio Márquez Sánchez, Juan Quintanar Gomez, Sara Rodríguez, Juan M. Corchado (2020) Smart Helmet 5.0 for Industrial Internet of Things Using Artificial Intelligence. Sensors 20(21): 6241

196. José A. Maestro, Sara Rodríguez, R. Casado, Javier Prieto, Juan M. Corchado (2020) Comparison of Efficient Planning and Optimization Methods of Last Mile Delivery Resources. BROADNETS 2020: 163-173

197. Jose Alberto Maestro-Prieto, Sara Rodríguez, Roberto Casado, Juan Manuel Corchado (2020) Agent organisations: from independent agents to virtual organisations and societies of agents. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 9, n. 4, 55-70.

198. Juan M. Corchado, Francisco Pinto-Santos, Otman Aghmou, Saber Trabelsi: Intelligent Development of Smart Cities: Deepint.net Case Studies. SSCT 2021: 211-225

226. Malika Amari, Faouzi Didi, Benyoucef Khalili, Foudil Benzerfa, Mohammed Salim Hadjadi (2021) Comparative analysis of the management of the results of the modeling and the simulation of the evaluation of the thermal energy of the greenhouse by a fuzzy logic controller between a wet region and an arid region. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 10, n. 1, 77-97.

231. Marta Fernandes, Alda Canito, Daniel Mota, Juan M. Corchado, Goreti Marreiros: Service-Oriented Architecture for Data-Driven Fault Detection. DCAI (1) 2021: 179-189

244. Muhammad Muzammul (2019) Education System re-engineering with AI (artificial intelligence) for Quality Im-provements with proposed model. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 8, n. 2, 51-60.

252. Niloufar Shoeibi, Alberto Martín Mateos, Alberto Rivas Camacho, Juan M. Corchado (2020) A Feature Based Approach on Behavior Analysis of the Users on Twitter: A Case Study of AusOpen Tennis Championship. DCAI 2020: 284-294

275. Rodríguez, Juan Manuel Corchado, Jim Aiken, and Nigel Rees. Artificial Intelligence Models for Oceanographic Forecasting. Plymouth Marine Laboratory.

283. Sergio Márquez Sánchez, Francisco Lecumberri, Vishwani Satì, Ashish Arora, Niloufar Shoeibi, Sara Rodríguez, Juan M. Corchado Rodríguez (2020) Edge Computing Driven Smart Personal Protective System Deployed on NVIDIA Jetson and Integrated with ROS. PAAMS (Workshops) 2020: 385-393

301. Tomonori Nakahara, Kohei Fukuyama, Mitsuru Hamada, Kenji Matsui, Yoshihisa Nakatoh, Yumiko O. Kato, Alberto Rivas, Juan Manuel Corchado: Mobile Device-Based Speech Enhancement System Using Lip-Reading. DCAI 2020: 159-167

