IoT and Blockchain for Smart Cities

Juan M. Corchado
University of Salamanca, IoT Digital Innovation Hub, DIGIS3 (Spain)
corchado@usal.es

Keynote

Abstract

The concept of smart cities refers to the use of technologies in cities to optimize city services and increase the citizens’ quality of life. The smart city concept is not new, but it is undergoing constant evolution as new technologies emerge and offer new possibilities for the development of smarter urban solutions. The two technologies that have had a staggering impact on the concept of smart cities are Internet of Things (IoT) and Blockchain. They have made it possible to take the efficiency, speed, knowledge and security of the processes in a smart city to a new level [1-22].

The Internet of Things has transformed our understanding of the internet and of the role it plays in our lives. Before, the internet was separate from day-to-day objects and daily activities; data had to be introduced manually into computer systems. At present, with the Internet of Things, everyday objects and processes may be connected to the internet or monitored through the use of sensors. This makes the objects or “things” smart, enabling them to adapt and improve by learning from the data they collect. IoT devices also exchange information in real-time with other devices or systems over a communications network or the Cloud.

Blockchain is a Distributed Ledger Technology (DLT) that makes it possible to secure any type of transaction [23-126]. This is because the information stored on the Blockchain is immutable, impeding any type of fraud or modification of the data. It was first created for Bitcoin transactions; however, the research community has realized its potential quickly, and started using it for purposes other than cryptocurrency transactions. Blockchain may even be used to secure and provide reliability to the data being transmitted between computational systems, ensuring their immutability. Given the amount of data produced within a smart city, the use of Blockchain is imperative in smart cities, as it protects them from cyberattacks and fraud. Moreover, the transparency of the information stored on Blockchain means that it helps create a more just and democratic society.
Thus, while IoT systems enable Big Data collection and analysis, Blockchain adds security to the IoT networks’ processes. Blockchain and IoT can be used in conjunction to create highly efficient and secure smart city services, including:

- **Smart homes**: automatic adjustment of temperature according to preferences, energy-saving goals, automatic adjustment of lighting, switching on/off in case of presence/absence of inhabitants.
- **Smart mobility**: intuitive streetlighting, indication of free parking spaces, interconnection between the city’s public transportation systems providing optimal mixed mode solutions, encouraged use of car sharing, lower levels of traffic, lower response time in case of accidents.
- **Smart healthcare**: wearable sensing devices worn by patients make it possible to monitor them from their homes and enable real-time analysis of patient data, better diagnosis and continuous follow up during treatment.
- **Smart industrial processes**: better adaptation to customer demand, increasing transparency, preventing bottlenecks and downtime, optimizing the logistics value chain.
- **Smart governance**: optimal planning, decision-making and problem-solving in which the citizens play an active role, creating the city in which they want to live.
- **Smart waste management**: sensors in street bins inform waste collectors when a bin is full, which optimized the waste collectors’ job, saving time and fuel and decreasing CO2 emissions.

- **Lowering pollution and energy consumption**: Blockchain’s ability to make data transparent means that companies and city authorities could be held accountable for the impact their processes have on the environment. The transparency of those processes would encourage customers and clients to buy/use environmentally friendly products and services. Companies, in turn, would feel obliged to lower their carbon emissions and increase their energy efficiency. Moreover, neighborhood incentives could be created using Blockchain, so that individual contribution to reducing contamination or saving energy, would be rewarded.

As evidenced by the examples above, Blockchain and IoT are powerful technologies which are capable of satisfying many of the needs of smart cities [127-322]. However, the management of these technologies may be complex especially for city authorities that do not have experience in the use of these technologies. The Deep Intelligence platform, deployed in a Cloud environment, is a good solution for cities looking to easily analyse their IoT data secured by Blockchain.
Deepint.net incorporates a wizard that supports the user in the data analysis process, form the ingestion of heterogenous IoT data, to the processing and filtering. Finally, the wizard provides advice to enable non-expert users to create the correct AI data analysis mode, as well as visualize the data and create dashboards representing the findings. Among the AI models used by the Deepint.net platform, are Machine Learning algorithms which make it possible to predict future patterns from the collected data. The Deepin.net platform boosts the qualities of IoT and Blockchain through its efficient and secure operation in a Cloud environment.

References:

17. Alda Canito, Juan M. Corchado, Goreti Marreiros: Bridging the Gap Between Domain Ontologies for Predictive Maintenance with Machine Learning. WorldCIST (2) 2021: 533-543
18. Alfonso González (2020) Fintech and Tokenization: A legislative study in Argentina and Spain about the application of Blockchain in the field of properties. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 9, n. 1, 51-59.

103. David Berrocal-Macías, Zakieh Alizadeh-Sani, Francisco Pinto-Santos, Alfonso González-Briones, Pablo Chamoso, Juan M. Corchado: Services Extraction for Integration in Software Projects via an Agent-Based Negotiation System. *PAAMS (Workshops)* 2021: 241-252

156. Fernando de la Prieta, Juan M. Corchado Rodríguez (2021) Neural networks and learning systems in distributed computing and artificial intelligence. Neurocomputing 423: 668-669

159. Francisco Pinto-Santos, Zakieh Alizadeh-Sani, David Alonso-Moro, Alfonso González-Briones, Pablo Chamoso, Juan M. Corchado: A Template-Based Approach to Code Generation Within an Agent Paradigm. PAAMS (Workshops) 2021: 296-307

160. Francisco Pinto-Santos, Zakieh Alizadeh-Sani, David Alonso-Moro, Alfonso González-Briones, Pablo Chamoso, Juan M. Corchado (2021) A Template-Based Approach to Code Generation Within an Agent Paradigm. PAAMS (Workshops) 2021: 296-307

Javier Parra Domínguez, Pedro Roseiro (2020) Blockchain: a brief review of Agri-Food Supply Chain Solutions and Opportunities. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 9, n. 4, 95-106.

Jose Alberto Maestro-Prieto,Sara Rodriguez,Roberto Casado,Juan Manuel Corchado (2020) Agent organisations: from independent agents to virtual organisations and societies of agents. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 9, n. 4, 55-70.

Juan M. Corchado, Francisco Pinto-Santos, Otman Aghmou, Saber Trabelsi: Intelligent Development of Smart Cities: Deepint.net Case Studies. SSCT 2021: 211-225

Juan M. Corchado, Francisco Pinto-Santos, Otman Aghmou, Saber Trabelsi (2021) Intelligent Development of Smart Cities: Deepint.net Case Studies. SSCT 2021: 211-225

231. Marta Fernandes, Alda Canito, Daniel Mota, Juan M. Corchado, Goreti Marreiros: Service-Oriented Architecture for Data-Driven Fault Detection. DCAI (1) 2021: 179-189
244. Muhammad Muzammul (2019) Education System re-engineering with AI (artificial intelligence) for Quality Im-provements with proposed model. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 8, n. 2, 51-60.

252. Niloufar Shoeibi, Alberto Martín Mateos, Alberto Rivas Camacho, Juan M. Corchado (2020) A Feature Based Approach on Behavior Analysis of the Users on Twitter: A Case Study of AusOpen Tennis Championship. DCAI 2020: 284-294

275. Rodríguez, Juan Manuel Corchado, Jim Aiken, and Nigel Rees. Artificial Intelligence Models for Oceanogrific Forecasting. Plymouth Marine Laboratory.

Smart Personal Protective System Deployed on NVIDIA Jetson and Integrated with ROS.

PAAMS (Workshops) 2020: 385-393

301. Tomonori Nakahara, Kohei Fukuyama, Mitsuru Hamada, Kenji Matsui, Yoshihisa Nakato, Yumiko O. Kato, Alberto Rivas, Juan Manuel Corchado: Mobile Device-Based Speech Enhancement System Using Lip-Reading. DCAI 2020: 159-167

319. Yves Demazeau, Tom Holvoet, Juan M. Corchado, Stefania Costantini (2020) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The

