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Structured light in the short-wavelength regime opens exciting avenues for the study of ultrafast spin and electronic
dynamics. Here, we demonstrate theoretically and experimentally the generation of vector-vortex beams (VVB) in the
extreme ultraviolet through high-order harmonic generation (HHG). The up-conversion of VVB, which are spatially
tailored in their spin and orbital angular momentum, is ruled by the conservation of the topological Pancharatnam
charge in HHG. Despite the complex propagation of the driving beam, high-harmonic VVB are robustly generated
with smooth propagation properties. Remarkably, we find out that the conversion efficiency of high-harmonic VVB
increases with the driving topological charge. Our work opens the possibility to synthesize attosecond helical struc-
tures with spatially varying polarization, a unique tool to probe spatiotemporal dynamics in inhomogeneous media
or polarization-dependent systems. © 2022 Optical Society of America under the terms of the OSA Open Access Publishing
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1. INTRODUCTION

Advancing light engineering to structure the spatiotemporal
properties of light beams is paramount to provide precise tools
to explore fundamental material dynamics and to translate this
knowledge into novel applications. Among the different kinds
of structured beams [1], optical vortices and vector beams are
consolidated as paradigmatic examples. While a vortex beam is
spatially tailored in its phase, exhibiting a helical wavefront and
thus carrying orbital angular momentum (OAM) [2,3], a vector
beam is spatially tailored in its polarization state or spin angular
momentum (SAM) [4,5]. Among all vector beam possibilities,
radially and azimuthally polarized beams, exhibiting ordered
linearly polarized distributions, are the most relevant examples.
Harvesting the properties of vector and vortex beams has triggered
substantial progress in many interdisciplinary fields such as optical
communications [6–10], quantum information [11–13], topo-
logical systems [14,15], imaging [4,16–19], magnetism [20–23],
material processing [24–26], optical tweezers [27–31], or par-
ticle acceleration [32,33]. In addition, structured light provides
new scenarios of laser-matter interactions, like OAM transfer to
valence electrons [34,35] and photoelectrons [36], or the control
of electrical currents in a semiconductor [23,37].

Structured beams combining the spatial SAM distribution of
vector beams with the helical phase of vortex beams have been
generated in the infrared and visible spectral ranges [38–43]. These
beams—referred to as vector-vortex beams (VVB)—exhibit com-
plex dynamics during propagation, as they are not eigenmodes
of the propagation operator. Noticeably, full Poincaré beams—
containing all possible polarization states—can emerge upon
the propagation of VVB [40,44]. In VVB, the characterization
of OAM is nontrivial, as OAM arises both from the gradient of a
twisted phase [2] as well as from the curl of the field polarization
[45]. It is however possible to define a geometrical phase including
both contributions—the Pancharatnam phase [46]—and the
corresponding Pancharatnam topological charge, `P [38]. For
a linearly polarized VVB, the OAM charge coincides with the
topological Pancharatnam charge [38], but not in the general case
[41,47].

While VVB have been generated in the visible-infrared (IR)
regimes [38–43], their realization and characterization in the
extreme ultraviolet (XUV)/x-ray spectral domains has not been
addressed yet. The generation of such high-frequency coherent
structured beams is desirable to achieve higher spatial and tem-
poral resolutions, down to the nanometric and attosecond scales.
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Recently, it has been shown that the challenge of manipulating
XUV light to imprint SAM and OAM can be fulfilled via the
up-conversion of intense structured IR light into high-frequency
harmonics. The fundamental mechanism of high-order harmonic
generation (HHG) is well understood in terms of a semiclassical
three-step picture [48]: the IR driver triggers the tunnel ioniza-
tion of an electron, which is afterward accelerated by the field,
and finally recombines with the initial bound state, resulting in
the emission of XUV attosecond bursts [49,50]. Thanks to the
separate conservation of OAM and SAM in HHG, it has been
demonstrated that infrared vortices, as well as vector beams, can
be converted into the XUV [51–63]. Moreover, the synchronous
control on both the polarization and the OAM is also possible via
HHG, resulting in high harmonic beams carrying an averaged
fractional OAM using conically refracted drivers [64], circularly
polarized high-harmonic vortex beams [65–67], or time-ordered
polarization states [68].

In this paper, we demonstrate experimentally and theoreti-
cally the generation and characterization of coherent XUV
vector-vortex beams, merging their spatial phase and polariza-
tion distributions in a controllable fashion. Our results show the
robust up-conversion of VVB from the IR to the XUV via HHG,
with increasing efficiency for drivers with higher topological
charges. The coupled conservation laws of SAM and OAM allow
for the generation of radially or azimuthally polarized harmonic
beams carrying high OAM, with smooth propagation properties,
and emitted in the form of attosecond light-springs with radial
or azimuthal polarization. Remarkably, we find that the topo-
logical charge of the XUV VVB—defined by the Pancharatnam
phase—scales linearly with the harmonic order, in analogy with
the selection rule for OAM in a pure vortex beam [51]. Finally,
we also show that the intrinsic dipole phase introduced by the
quantum paths during HHG imprints its signature as a tilt of
the polarization direction in the harmonic VVB. The demon-
stration of VVB in the XUV opens new perspectives with the
translation of the applications of conventional VVB beams to

the short wavelength regime. In particular, the possibility of syn-
thesizing XUV attosecond helical structures with spatially varying
polarization constitutes a unique spatiotemporal feature that can
be instrumental to probe spatiotemporal dynamics in inhomo-
geneous media or polarization-dependent systems, like anisotropic
or chiral configurations.

2. METHODS

A. Experimental Setup

In Fig. 1, we depict the experimental setup to generate an XUV
VVB from a linearly polarized Gaussian beam of central wave-
length 815 nm, pulse duration∼40 fs,∼15 mJ maximum energy,
and diameter of ∼24 mm at 1/e 2. The IR vector-vortex driver
with topological charge ` is obtained using a spiral phase plate
and a polarization converter. The polarization converter is com-
posed of eight half-waveplates where each octant has a different
optical axis orientation. Note that the resulting configuration can
be continuously tuned from radial to azimuthal by varying the
polarization of the fundamental IR beam from vertical to hori-
zontal. A 2-m focal length lens loosely focuses the resulting IR
vector-vortex driving beam into a 15 mm long argon-filled gas cell
to generate high harmonics. The distance between the polarization
converter and the lens is ∼10 cm. After filtering out the residual
IR driver with a 300 nm thick Al filter, the high-harmonic beam
is guided to a high-resolution XUV Hartmann wavefront sensor
(EUV-HASO, Imagine Optic) through a narrowband 45-degree
multilayer flat mirror [69]. The flat mirror acts simultaneously as
a spectral and a polarization filter, selecting the vertically polarized
component of the 25th harmonic, centered at λXUV = 32.6 nm;
the extinction of neighboring orders exceeds 90% [69], while
the experimentally determined polarization selectivity is ∼10:1.
Restricting the detection to a particular harmonic order allows
for an unambiguous interpretation of the XUV vector-vortex
wavefront. We use a spectral-phase control of the IR driver by an
acousto-optic modulator (Dazzler, FASTLITE) to spectrally tune

Fig. 1. Experimental setup for the generation of high-order harmonic VVB. A spiral phase plate (SPP) and a segmented polarization converter (pol. con-
verter) are inserted into the incoming vertically-polarized IR Gaussian beam. The resulting IR vector-vortex is focused by a 2 m focal length lens into an
argon gas cell. The remaining IR driver is removed using a 300 nm thick Al filter. The 25th harmonic of the driving beam centered at λXUV = 32.6 nm
is spectrally selected using a 45◦ multilayer plane mirror and guided to the XUV Hartmann wavefront sensor (EUV-HASO) located ∼1.98 m from the
source. The experimental setup is also equipped with an imaging system—comprising of a near-normal incidence concave mirror ( f = 500 mm) and plane
mirrors for beam steering—that allows for an intensity profile characterization of the HHG source and the attenuated IR beam at the focal plane. In the
insets, we show the theoretical intensity and polarization distribution of the IR driver with total topological charge `= 2 at (a) the polarization converter
and at (b) the gas target. We also depict the experimental vertical polarization component of the 25th harmonic beam (c) at the gas target and (d) at the far
field, and (e) the corresponding simulation results of the harmonic far-field profile.
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the high-harmonic beam. The experimental setup is also equipped
with a high-magnification (∼6) monochromatic imaging system
that allows for the intensity profile characterization of the beams
at the gas cell: the HHG source and the attenuated IR beam at the
focal plane.

Since VVB evolve during propagation, both the beam profile
and the polarization structure are gradually modified from the
polarization converter to the gas cell. As an example, the insets of
Fig. 1 show the transformation of a VVB driver with `= 2 and
its 25th harmonic beam. The azimuthally polarized IR driver
right after the polarization converter [Fig. 1(a)] evolves into a full-
Poincaré beam at the gas target [Fig. 1(b)]. High-order harmonics
are generated with a radial polarization at the gas target [Fig. 1(c)],
leading to nearly azimuthally polarized high-order harmonics in
the far field [Figs. 1(d) and 1(e)]. The intrinsic dipole phase of each
high-order harmonic causes a tilt of the polarization direction,
which will be further discussed in Section 3.D.

B. Theoretical Approach

To simulate the nonlinear up-conversion of VVB, we model the
HHG process both from the microscopic and macroscopic points
of view. On the one hand, we use a combined model that considers
a quantum description of HHG and takes into account propaga-
tion [70]. We compute the dipole acceleration of the target’s argon
atoms located at the focal plane using the quantum strong-field
approximation (SFA), i.e., without resorting to the semiclassical
saddle-point approximation. Note that for the parameters con-
sidered in this work, each atom perceives a locally homogeneous
driving field. Then, the emitted harmonic field is propagated
to the far-field detectors according to the electromagnetic field
propagator [70]. This joint approach has been already corrobo-
rated against different experiments of structured HHG (see for
example Refs. [62,63,66,71]). In this work, the spatial structure
of the vector-vortex driver at the polarization converter plane is
represented as a Laguerre-Gaussian mode

LG`,m(ρ, φ, z)ep = E0
W0

W(z)

(
ρ

W(z)

)|`|
L |`|m

[
2ρ2

W2(z)

]

× exp

(
−

ρ2

W2(z)

)
exp

(
−ik

ρ2

2R(z)
+ ig (z)− i`φ

)
ep,

(1)

with spatially varying polarization ep = cos(φ + ϕ0)ex +

sin(φ + ϕ0)e y . φ is the azimuthal coordinate, L |`|m the gener-
alized Laguerre polynomial, W0 the beam waist, zR = πW2

0 /λ

the Rayleigh length, W(z)=W0

√
1+ (z/zR)

2 the beam
width, R(z)= z(1+ (zR/z)2) the phase-front radius, g (z)=
(2m + |`| + 1)tan−1(z/zR) the Gouy phase, and k = 2π/λ the
wavenumber. The azimuthal index ` corresponds to the topologi-
cal charge, and m is the radial index, which in this work is chosen
to be m = 0. ϕ0 is the parameter that determines the overall ori-
entation of the polarization distribution. In particular, radial and
azimuthal polarization distributions correspond to ϕ0 = 0 and
ϕ0 = π/2, respectively.

To obtain the driving IR VVB distribution at the gas target, we
compute the Fraunhofer diffraction integral along the transverse
profile at the polarization converter, mimicking the experimental
procedure. In all the simulations, we model the laser pulse with a
central wavelength of λ= 800 nm and a sine-squared envelope

with full width at half maximum (FWHM) in intensity of 15.4 fs.
We chose a relatively shorter pulse duration (15.4 fs FWHM) com-
pared to the experiment (40 fs FWHM) to reduce computational
time, which, to the best of our knowledge, does not imply funda-
mental deviations in the results presented in this work. W0 and the
distance between the polarization converter and the gas target are
chosen to achieve a beam size comparable to the experiment (see
Fig. 2). This distance is just a scaling factor of the beam size without
influencing any other attributes of the driving beam. In this work,
we consider driving VVB with topological charges of `= 1 and
`= 2, for which the peak intensities at the gas target are 9.7× 1014

and 3.2× 1014 W/cm2, respectively.
On the other hand, we use the thin slab model (TSM) [52,56]

to analyze the role of the intrinsic dipole phase in the generation
of XUV VVB from HHG. The TSM is based on calculating the
Fraunhofer diffraction of the high-order harmonics generated at
the gas, which is approximated following strong-field assumptions.
In this work, we have adapted the TSM description (see Ref. [56])
to take into account the decrease of the harmonic yield with the
drivers’ ellipticity by considering a mask function of the ellipticity ε
(Ref. [72]). Thus, the harmonic field at the gas cell can be written as

A j
q (ρ, φ)=

(
1− ε2

1+ ε2

) q−1
2
(

C
τ j

)3/2

|U(ρ, φ)|3.4

× e iq8(ρ,φ)e iα j
q |U(ρ,φ)|

2
, (2)

where q is the harmonic order, j is the index of the quantum
path (short or long), α j

q is the coefficient describing the intrinsic
dipole phase of the quantum path, τ j is the excursion time [73],
|U(ρ, φ)| and 8(ρ, φ) are the driving amplitude and phase,
and C is a constant. The short-trajectory coefficient in the intrin-
sic phase is set to αs

q = 4.93× 10−14cm2/W. Long trajectories
(αl

q = 2.03× 10−13cm2/W) do not lead to efficient harmonic
phase matching in this case, and thus their contribution is negli-
gible. Finally, the harmonic field is projected on horizontal and
vertical polarizations and propagated to the detectors with the
Fraunhofer diffraction integral.

3. RESULTS

A. Driving IR Vector-Vortex Beam Characterization

The analysis of the driving field properties is paramount for inter-
preting the results from HHG and for deriving the conservation
laws governing the up-conversion process. A VVB built from a vor-
tex beam with OAM charge ` can be interpreted as a superposition
of two vortex beams with counterrotating circular polarization
(right circular RCP and left circular LCP), carrying topological
charges `RCP = `+ 1 and `LCP = `− 1, with a phase difference of
ϕ = (ϕLCP − ϕRCP)/2:

e−i`φ[cos(φ + ϕ)ex + sin(φ + ϕ)e y
]

=
[
e−i(`+1)φ(ex + i e y

)
+ e−i(`−1)φe i2ϕ(ex − i e y

)] e−iϕ

2
. (3)

The inspection of Eq. (3) points out that the orientation of the
polarization structure is governed by the phase shift 2ϕ between
the LCP and RCP components. We also note that the LCP and
RCP components are pure vortex beams with a different OAM
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Fig. 2. Theoretical and experimental characterization of the IR vector-vortex driver for two topological charges: `= 1 (top row) and `= 2 (bottom row).
The theory panel shows the intensity (colored background) and ellipticity (superimposed ellipses) profiles at (a), (b) the polarization converter plane and
(c), (d) upon propagation to the gas target. In the experimental panel, we show the (e), (f ) intensity profile of the total beam and (g), (h) its decomposition
on right and left circular polarization (RCP and LCP). Note that the clean input beam with linear azimuthal polarization transforms into a complex radial
structure at the gas target.

charge. However, the topology of a VVB is characterized by the
Pancharatnam phase [38], which establishes a relation between the
phases of two distinct polarization states [46]. The Pancharatnam
phase is defined as the argument of the inner product of two
polarized waves. Since we can write the total field as |E 〉 =
AR e−i(`+1)φ

|RCP〉 + AL e−i(`−1)φe i2ϕ
|LCP〉, the Pancharatnam

phase is
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= `φ + tan−1
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2

|AR |
2
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2 tan(φ)

)
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where |E (φ = 0)〉 is the reference field. The first term is equal to
the azimuthal phase of a scalar vortex, whereas the second term is
nonvanishing in nonlinear polarization patterns [41]. By apply-
ing the definition of the topological Pancharatnam charge, `P ,
(Ref. [38]), we obtain

`P ≡
1

2π

∮
C
ϕP = `=

`RCP + `LCP

2
, (5)

where the second term of the Pancharatnam phase cancels along
the closed path C encircling the central singularity. Thus, the
topological Pancharatnam charge `P of the VVB equals the OAM
charge ` of the vortex beam used to build the VVB (i.e., before
arriving at the polarization converter in Fig. 1), which coincides
with the average of the topological charge of the RCP and LCP
modes.

We remark that a VVB is not an eigenmode of the propagation
operator and thus, the polarization state along propagation
depends on the change of the relative phase and divergence
properties of each RCP and LCP vortex beam. Assuming these
vortex beams as Laguerre-Gaussian modes, their phase difference
acquired during propagation is due to the Gouy phase

1g (z)= (|`LCP| − |`RCP|) tan−1(z/zR). (6)

Hence, the orientation of the polarization structure changes along
the propagation axis according toϕ(z)= ϕ0 +1g (z)/2, whereϕ0

is the orientation parameter of the polarization pattern at the waist.
The rotation of the polarization plane upon propagation can be
levorotatory (|`LCP|> |`RCP|) or dextrorotatory (|`RCP|> |`LCP|).
This intrinsic property of VVB can be interpreted as an axially-
dependent optical activity [39,42,43], in analogy with the circular
birefringence present in chiral media. In particular, the polariza-
tion of a radial (azimuthal) VVB at the waist rotates to azimuthal
(radial) in the far field, since the accumulated phase shift between
LCP and RCP modes is±π . Note that in the case of a pure vector
beam (`= 0) or a pure vortex beam (`RCP = `LCP) there is no phase
shift, and consequently, no polarization rotation.

On the other hand, the divergence of a Laguerre-Gaussian
mode depends on the topological charge through |`| [see Eq. (1)].
Therefore, the structure of a VVB—exhibiting `P = ` 6= 0—is
not preserved upon propagation, due to the different divergences
of the LCP and RCP modes. The different divergences of the two
modes lead to an axially dependent distribution of the total beam,
covering exotic polarization structures like a full-Poincaré beam
[40,44]. In our HHG setup, while the driving VVB polarization
states occupy the equator of the Poincaré sphere at the polarization
converter plane, the polarization distribution evolves to span the
entire Poincaré sphere at the gas target.

In Fig. 2, we show the results of the theoretical and experimental
characterization of the IR driving intensity and ellipticity for a
VVB with topological charge `= 1 (top row) and `= 2 (bottom
row). The left panel [Figs. 2(a)–(d)] displays the intensity profile
together with the local polarization ellipses at (a), (b) the polari-
zation converter plane and (c), (d) upon propagation to the gas
target. Though the IR beam presents a clean structure with linear
polarization right after the polarization converter, the complex
distribution of a full-Poincaré beam arises at the target, as shown
in (c), (d) theory and (e), (f ) as retrieved from the experiments. By
filtering the RCP or LCP components (g), (h), we can distinguish
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experimentally the two vortex beams with distinct topological
charges and opposite polarization helicity (`RCP = 2 and `LCP = 0
for `= 1, and `RCP = 3 and `LCP = 1 for `= 2) that compose the
total beam. The RCP and LCP components are separated using a
combination of a quarter-waveplate and a linear polarizer placed
in between the polarization converter and the focusing lens, hence
allowing us to identify the handedness of each circularly polarized
component. The radii of maximum intensity of the separated
beams are in agreement with the expected OAM charges, `RCP and
`LCP, for each component [74]. The spatial region where the two
modes overlap with the same intensity conforms to a ring of linear
polarization (null ellipticity, green straight lines), whereas smaller
(bigger) radius correspond to (c), (d) left-handed (right-handed)
ellipticities represented with black (white) ellipses. Moreover, we
note that the polarization distribution of the driving beam evolves
from azimuthal at the converter plane to radial at the gas target, due
to the Gouy phase shift.

B. Generation and Characterization of Harmonic VVB

Despite the complex structure of the driving field at the target,
high-order harmonics with robust vector-vortex conformations
are observed in the harmonic far field. Figure 3 shows the vertical
polarization intensity projection (top) and the wavefront (bottom)
of the 25th harmonic in the far field for the vector-vortex drivers
presented in Fig. 2, with topological charges `= 1 (left) and `= 2
(right). The 25th harmonic exhibits a wavefront that twists with
`25 = 25 [Fig. 3(b)] for the `= 1 driver and with `25 = 50 for
the `= 2 driver [Fig. 3(d)]. The resulting Pancharatnam topo-
logical charge of the q-th harmonic order VVB scales linearly
with the Pancharatnam topological charge of the driving VVB,
i.e., `Pq = q`P , in analogy to the scaling law found for a vortex
beam with a homogeneous polarization [51]. We anticipate that
this is not a trivial result, as the linear conservation law applies to
the VVB Pancharatnam topological charge, and not to the OAM
contributions of the modes that compose the VVB, as we will
discuss later. In addition, the vertical polarization component of
the far-field harmonic [Figs. 3(a) and 3(c)] presents the typical
structure of an azimuthal vector beam but shifted by a certain angle
due to the intrinsic dipole phase, whose origin will be also discussed
later. We attribute the slight differences between the theoretical
and experimental harmonic intensity profiles to the differences in

their driving beam profiles (Fig. 2), and to small deviations in the
estimation of the driving peak intensities.

The propagation behavior of VVB, together with the nature
of HHG, imply that the properties of the driving IR VVB are not
always directly mapped into the high-order harmonics. In par-
ticular, the inhomogeneous ellipticity distribution of the VVB at
the gas target restricts HHG to specific spatial regions, since only
low ellipticities lead to efficient high-order harmonic emission
[72,75,76]. Such constraint implies that the HHG process cir-
cumvents the complex full-Poincaré beam at the target, selecting
regions with nearly linear polarization. As a consequence, high-
order harmonics result in a cleaner polarization structure at the gas
target [see Fig. 1(c)].

The harmonic build-up must be interpreted from the point
of view of the simultaneous conservation of OAM and SAM.
In the photon picture, one should consider the combination of
photons of the driving LCP and RCP modes, a situation sim-
ilar to HHG driven by conical refraction beams [64]. Energy
conservation establishes that for the q-th harmonic order,
q = nRCP + nLCP (being nRCP and nLCP the number of RCP
and LCP absorbed photons, respectively). Since the symmetry
of the driving field and the atomic element restricts q to an odd
integer, there are two equally probable channels satisfying SAM
conservation, i.e., nRCP − nLCP =±1 [77]. Thus, SAM and
energy conservation dictate that (nRCP =

q+1
2 , nLCP =

q−1
2 )

is the RCP channel, and (nRCP =
q−1

2 , nLCP =
q+1

2 ) is the
LCP channel. Therefore, OAM conservation of each separate
channel `q ,RCP or LCP = nRCP(`+ 1)+ nLCP(`− 1) results in
(`q ,RCP = q`+ 1, `q ,LCP = q`− 1), which allows for the genera-
tion of radially or azimuthally polarized harmonic beams carrying
OAM. This simultaneous conservation law can be observed in
Fig. 4, where we present the calculated topological charge spec-
tra for several far-field harmonic orders, decomposed in RCP
and LCP for a vector-vortex driver with `= 2 bearing azimuthal
polarization right after the polarization converter. We calculate the
topological charge by computing the Fourier transform of a certain
polarization component along the azimuthal coordinate. The qth-
order harmonic results from the superposition of `q ,RCP = q`+ 1
and `q ,LCP = q`− 1 modes, leading to a VVB with Pancharatnam
topological charge `Pq = q`P . In the inset of Fig. 4, we zoom out
the 25th harmonic to highlight the topological charge of each

Fig. 3. Characterization of the 25th harmonic in the far field for the vector-vortex drivers with topological charge (a), (b) `= 1 and (c), (d) `= 2 shown
in Fig. 2. We compare the experimental measurements and numerical results of the vertical polarization intensity projection and the wavefront.
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Fig. 4. Conservation law of SAM and OAM in HHG driven by a
vector-vortex beam with topological charge `= 2 and generated with
azimuthal polarization at the polarization converter. Each harmonic
order, q , is a superposition of two circularly polarized modes (RCP and
LCP) with `q ,RCP = q`+ 1 and a `q ,LCP = q`− 1, which results in a net
topological charge `q = q`. In the inset, we zoom out the 25th harmonic
to emphasize the topological charge of each polarization component.

polarization component. For the case presented, the topological
charge of the azimuthal polarization is `25 = 50, in agreement with
the experimental wavefront measurement in Fig. 3(d). Since the
harmonic beam exhibits an azimuthal polarization distribution in
the far field, by computing the topological charge of this polariza-
tion we obtain the topological charge of the harmonic VVB, which
coincides with the topological Pancharatnam charge.

These conservation laws imply that high-order harmon-
ics are emitted with large OAM, and a constant topological
charge difference between the counter-rotating polarizations,
i.e., `q ,RCP − `q ,LCP = 2. This has bifold implications: (1) the
phase shift introduced by the Gouy phase is the same for the fun-
damental driver and the high-order harmonics and thus, there is a
synchronous polarization rotation from radial to azimuthal along
the propagation axis; and (2) each high-harmonic beam integrates
two high OAM modes with comparable divergence, and thus the
propagation of the harmonic VVB is robust.

C. Scaling of the High-Harmonic Efficiency

We experimentally observed that a larger number of laser-shots
were needed to obtain XUV Hartmanngrams with a high signal-
to-noise ratio for the IR VVB of lower topological charge (100
shots for `= 1 and 30 shots for `= 2). This suggests a nontrivial
relation between the IR VVB topological charge and the HHG
efficiency. To understand this aspect, we have computed the yield
of different harmonic orders as a function of the driving topologi-
cal charge, `. Our numerical results, [see Fig. 5(a)], show that the
harmonic yield increases substantially with `, until saturation.
To understand it, we show the driving beam intensity profile
(black solid line) and ellipticity (blue solid line) at the gas target
for three cases: `= 2 [Fig. 5(b)], `= 6 [Fig. 5(c)], and `= 10
[Fig. 5(d)]. To perform a fair comparison, we have kept constant
the beam radius at the polarization converter, and a peak intensity
of 2× 1014 W/cm2 at the gas target. These figures show that the
radius of linear polarization (null ellipticity, orange dashed line),
where HHG is mainly produced, approaches the radius of peak
intensity (black dashed line) for drivers with higher `. In addition,
the slope of the ellipticity flattens for drivers with a higher VVB
topological charge. Consequently, the enhancement for high `
drivers is both due to the coincidence of the beam radii of low

Fig. 5. (a) The efficiency of HHG increases for vector-vortex drivers
with higher topological charge, until saturation. At the bottom row of the
figure, we show the driving intensity profile (black solid line) and ellip-
ticity (blue solid line) at the gas target for different topological charges:
(b) `= 2, (c) `= 6 and (d) `= 10, while keeping constant the radius
at the polarization converter and a peak intensity of 2× 1014 W/cm2 at
the gas target. Drivers with higher topological charge produce a better
overlap of the right and left circular components, leading to a larger region
of nearly null ellipticity (linear polarization, orange dashed line) that
approaches the radius of peak intensity (black dashed line).

ellipticities with that of higher intensities, and the progressively
thicker region with low ellipticities in the focal plane. The reason
for this is that the RCP and LCP modes of the driving beam exhibit
a better overlap for high ` values. The propagation of high OAM
modes is much more alike and thus, a saturation regime of good
overlap is justified.

D. Effect of the Intrinsic Dipole Phase and Attosecond
Spatiotemporal Structure

We show in Fig. 6(a) the simulation results of the far-field verti-
cal polarization component of the 25th harmonic driven by an
azimuthal VVB with topological charge `= 2 in different theo-
retical models: TSM neglecting the intrinsic phase (left), TSM
with the intrinsic phase of short trajectories (center) and the total
quantum SFA calculation including propagation (right). Note that
the noisy pattern present in the latter case [and also in Figs. 2(a) and
2(c)] is a numerical artifact that would disappear if a sufficiently
large amount of single-atom SFA calculations were computed.
Apart from the polarization rotation due to the Gouy phase, an
additional polarization shift emerges only when the intrinsic phase
is included in the calculations. In other words, a measurement of
the polarization tilt of the harmonic VVB contains information
about the intrinsic phase of short trajectory contributions, in
this case. As a consequence, the intrinsic phase of HHG could
be retrieved through ellipsometry measurements in the gener-
ation of harmonic VVB, similarly to the recent demonstration
in noncollinear HHG [71]. The tilt of the polarization orienta-
tion is directly related to the dephasing between RCP and LCP
modes according to Eq. (3). Since the accumulated phase on the
electron quantum path strongly depends on the intensity, the radial
intensity distribution at the target [see Figs. 2(c)–2(f )] is mapped
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Fig. 6. (a) Far-field vertical polarization intensity of the 25th harmonic
driven by an azimuthal vector-vortex of `= 2 in the different theoretical
models: TSM neglecting the intrinsic phase (left), TSM with the intrinsic
phase of short trajectories (center), and the full quantum SFA calculation
(right). A spatial polarization shift emerges only when the intrinsic phase
is included. (b) Helical spatiotemporal structure with azimuthal polariza-
tion resulting from the SFA calculation.

on the radial distribution of the intrinsic phase. Hence, the RCP
mode occupying the outermost radius discerns higher values of
the intrinsic phase than the LCP mode occupying the inner radius.
Upon propagation to the far field, this dephasing results in a tilt of
the polarization structure. This effect is relatively more significant
for VVB drivers with low topological charge (comparing `= 1 and
`= 2 in Fig. 3) because they exhibit a greater intensity gradient
at the gas target [see Figs. 5(b)–5(d)]. We note that the compari-
son between theory and experiment in Fig. 3 does not allow to
precisely extract this additional polarization tilt from the experi-
mental results, and we attribute it to slight differences between the
theoretical and experimental driving beam intensities.

The intrinsic phase is different for each harmonic order and
therefore, each harmonic beam presents a slightly different tilt.
Even so, by filtering harmonics beyond the 11th order, it is pos-
sible to obtain an attosecond light-spring with radial or azimuthal
polarization. We show in Fig. 6(b) the spatiotemporal intensity
and polarization tilt distribution of the attosecond pulses resulting
from our full quantum calculations including propagation for an
azimuthal vector-vortex driver with topological charge `= 2. In
HHG, the linear scaling of both the frequency and the OAM with
the harmonic order leads to helical dispositions—known as light-
springs—in the spatiotemporal domain [51,78]. Remarkably,
results in Fig. 6(b) demonstrate that we can also tailor the light-
springs with an inhomogeneous polarization, providing a new
degree of freedom in attosecond beams.

4. DISCUSSION

We demonstrate the up-conversion of VVB from the IR to the
XUV on the grounds of high harmonic generation. The experi-
mental and numerical characterization evidence that both the IR
and XUV VVB combine the twisted phase of vortex beams with
the inhomogeneous polarization structure of vector beams. By
defining the topological charge of VVB through the geometrical
Pancharatnam phase, we find out that this topological charge
scales linearly with the harmonic order in HHG. Interestingly,
we obtain an increase of the HHG efficiency for drivers with a

higher topological charge, so this scheme allows for an efficient
generation of high-charge VVB. By filtering the high-harmonic
orders, we harness a helical attosecond structure with a spatially
varying polarization that can conform to radial or azimuthal con-
figurations. These XUV structured beams combining phase and
polarization singularities can reveal new insights into light-matter
interactions in semiconductors, magnetic or topological materials,
and enable substantial advances in high-resolution imaging [79] or
high-capacity optical communications, among other fields.

Additionally, we discern that the intricate behavior of non-
pure driving modes of propagation is not directly mapped into
the harmonic beam due to intrinsic features of HHG, such as the
severe ellipticity dependence of HHG efficiency or the symmetries
imposed by the conservation laws. In the up-conversion of VVB,
HHG favors simpler spatially varying polarization distributions of
the harmonic beam and smooth propagation effects towards the
far field, without losing the essential characteristics of the driving
beam. The harmonic VVB retains the levorotatory or dextroro-
tatory polarization along propagation, which can be a useful tool
to probe chirality-sensitive processes or optical activity with high
temporal and spatial resolution. Furthermore, we identify a tilt
on the polarization direction of the harmonic beam as a signature
of the nonperturbative phase of HHG, suggesting an indirect
method to retrieve the intrinsic dipole phase accumulated along
the electron quantum paths.
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M. Manfredda, M. Meyer, A. Mihelič, N. Mirian, O. Plekan, B. Ressel, B.
Rösner, A. Simoncig, S. Spampinati, M. Stupar, M. Žitnik, M. Zangrando,
C. Callegari, and J. Berakdar, “Photoelectric effect with a twist,” Nat.
Photonics 14, 554–558 (2020).

37. S. Sederberg, F. Kong, F. Hufnagel, C. Zhang, E. Karimi, and P. B.
Corkum, “Vectorized optoelectronic control and metrology in a
semiconductor,” Nat. Photonics 14, 680–685 (2020).

38. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the
Pancharatnam phase in vectorial vortices,” Opt. Express 14, 4208–4220
(2006).

39. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez,
“Propagation dynamics of optical vortices due to Gouy phase,” Opt.
Express 17, 9818–9827 (2009).

40. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,”
Opt. Express 18, 10777–10785 (2010).

41. C. H. Yang, Y. Di Chen, S. T. Wu, and A. Y. G. Fuh, “Independent manipu-
lation of topological charges and polarization patterns of optical
vortices,” Sci. Rep. 6, 31546 (2016).

42. Y. Zhang, X. Guo, L. Han, P. Li, S. Liu, H. Cheng, and J. Zhao, “Gouy
phase induced polarization transition of focused vector vortex beams,”
Opt. Express 25, 25725–25733 (2017).

43. M. M. Sánchez-López, J. A. Davis, I. Moreno, A. Cofré, and D. M.
Cottrell, “Gouy phase effects on propagation of pure and hybrid vector
beams,” Opt. Express 27, 2374–2386 (2019).

44. H. Wang, G. Rui, and Q. Zhan, “Dynamic propagation of optical vor-
tices embedded in full Poincaré beams with rotationally polarization
symmetry,” Opt. Commun. 351, 15–25 (2015).

45. X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical
orbital angular momentum from the curl of polarization,” Phys. Rev. Lett.
105, 253602 (2010).

46. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polar-
ized light,” J. Mod. Opt. 34, 1401–1407 (1987).

47. D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Identifying orbital
angular momentum of vectorial vortices with Pancharatnam phase and
Stokes parameters,” Sci. Rep. 5, 11983 (2015).

48. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above thresh-
old ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70,
1599–1602 (1993).

49. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81,
163–234 (2009).

50. T. Popmintchev, M. C. Chen, P. Arpin, M. M. Murnane, and H. C.
Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray
generation,” Nat. Photonics 4, 822–832 (2010).

51. C. Hernández-García, A. Picón, J. San Román, and L. Plaja,
“Attosecond extreme ultraviolet vortices from high-order harmonic
generation,” Phys. Rev. Lett. 111, 083602 (2013).

52. C. Hernández-García, J. S. Román, L. Plaja, and A. Picón, “Quantum-
path signatures in attosecond helical beams driven by optical vortices,”
New J. Phys. 17, 093029 (2015).

53. F. Kong, C. Zhang, H. Larocque, Z. Li, F. Bouchard, D. H. Ko, G. G.
Brown, A. Korobenko, T. J. Hammond, R. W. Boyd, E. Karimi, and P. B.
Corkum, “Vectorizing the spatial structure of high-harmonic radiation
from gas,” Nat. Commun. 10, 2020 (2019).

54. J. Wätzel and J. Berakdar, “Topological light fields for highly non-linear
charge quantum dynamics and high harmonic generation,” Opt. Express
28, 19469–19481 (2020).

https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1364/AOP.7.000066
https://doi.org/10.1364/OL.40.001980
https://doi.org/10.1038/srep27674
https://doi.org/10.1038/35085529
https://doi.org/10.1103/PhysRevLett.92.167903
https://doi.org/10.1103/PhysRevLett.92.167903
https://doi.org/10.1126/science.1227193
https://doi.org/10.1126/science.aaj1699
https://doi.org/10.1038/s41567-021-01165-8
https://doi.org/10.1103/PhysRevLett.91.233901
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1038/srep02050
https://doi.org/10.1038/nmeth.4593
https://doi.org/10.1021/acsphotonics.6b00329
https://doi.org/10.1021/acsphotonics.6b00329
https://doi.org/10.1038/s41598-018-33651-0
https://doi.org/10.1038/s41567-019-0487-7
https://doi.org/10.1021/acsphotonics.8b01312
https://doi.org/10.1021/acsphotonics.8b01312
https://doi.org/10.1088/0022-3727/32/13/304
https://doi.org/10.1007/s00339-006-3784-9
https://doi.org/10.1364/OE.21.025333
https://doi.org/10.1103/PhysRevLett.78.4713
https://doi.org/10.1038/nature01935
https://doi.org/10.1038/nphoton.2011.81
https://doi.org/10.1364/OE.21.026335
https://doi.org/10.1117/1.AP.3.3.034001
https://doi.org/10.1103/PhysRevLett.100.155004
https://doi.org/10.1103/PhysRevLett.111.224801
https://doi.org/10.1088/1367-2630/12/8/083053
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1038/s41566-020-0669-y
https://doi.org/10.1038/s41566-020-0669-y
https://doi.org/10.1038/s41566-020-0690-1
https://doi.org/10.1364/OE.14.004208
https://doi.org/10.1364/OE.17.009818
https://doi.org/10.1364/OE.17.009818
https://doi.org/10.1364/OE.18.010777
https://doi.org/10.1038/srep31546
https://doi.org/10.1364/OE.25.025725
https://doi.org/10.1364/OE.27.002374
https://doi.org/10.1016/j.optcom.2015.04.040
https://doi.org/10.1103/PhysRevLett.105.253602
https://doi.org/10.1080/09500348714551321
https://doi.org/10.1038/srep11983
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1038/nphoton.2010.256
https://doi.org/10.1103/PhysRevLett.111.083602
https://doi.org/10.1088/1367-2630/17/9/093029
https://doi.org/10.1038/s41467-019-10014-5
https://doi.org/10.1364/OE.395590


Research Article Vol. 9, No. 1 / January 2022 / Optica 79

55. J. Wätzel and J. Berakdar, “Multipolar, polarization-shaped high-order
harmonic generation by intense vector beams,” Phys. Rev. A 101,
043409 (2020).

56. L. Rego, J. S. Román, A. Picón, L. Plaja, and C. Hernández-García,
“Nonperturbative twist in the generation of extreme-ultraviolet vortex
beams,” Phys. Rev. Lett. 117, 163202 (2016).

57. R. Géneaux, A. Camper, T. Auguste, O. Gobert, J. Caillat, R. Taïeb, and T.
Ruchon, “Synthesis and characterization of attosecond light vortices in
the extreme ultraviolet,” Nat. Commun. 7, 12583 (2016).

58. G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd,
and P. B. Corkum, “Creating high-harmonic beams with controlled
orbital angular momentum,” Phys. Rev. Lett. 113, 153901 (2014).

59. F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J.
Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum,
“Controlling the orbital angular momentum of high harmonic vortices,”
Nat. Commun. 8, 14970 (2017).
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