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Abstract
In the present paper, a general non-combined model of three-terminal refrig-
erator beyond specific heat transfer mechanisms is established based on the
low-dissipation assumption. The relation between the optimized cooling power
and the corresponding coefficient of performance (COP) is analytically derived,
according to which the COP at maximum cooling power (CMP) can be fur-
ther determined. At two dissipation asymmetry limits, upper and lower bounds
of CMP are obtained and found to be in good agreement with experimen-
tal and simulated results. Additionally, comparison of the obtained bounds
with previous combined model is presented. In particular it is found that the
upper bounds are the same, whereas the lower bounds are quite different.
This feature indicates that the claimed universal equivalence for the com-
bined and non-combined models under endoreversible assumption is invalid
within the frame of low-dissipation assumption. Then, the equivalence between
various finite-time thermodynamic models needs to be reevaluated regarding
multi-terminal systems. Moreover, the correlation between the combined and
non-combined models is further revealed by the derivation of the equivalent
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condition according to which the identical upper bounds and distinct lower
bounds are theoretically shown. Finally, the proposed non-combined model
is proved to be the appropriate model for describing various types of ther-
mally driven refrigerator. This work may provide some instructive informa-
tion for the further establishments and performance analyses of multi-terminal
low-dissipation models.

Keywords: finite-time cycle, low-dissipation model, three-terminal refrigerator,
performance bounds, comparative analyses

(Some figures may appear in colour only in the online journal)

1. Introduction

The primary task of thermodynamics is to analyze and optimize the performance of thermo-
dynamic devices. In the light of quasi-static assumption, Carnot efficiency and Carnot coeffi-
cients of performance (COPs), which are the universal upper bounds of efficiency and COPs
for heat engines, heat pumps, and refrigerators, have been derived. Nevertheless, quasi-static
assumption implies infinite cycle time and zero power output and cooling (heating) power.
As a consequence, these universal upper bounds are of great theoretical significance but the
practical implications are limited.

Concerning this issue, the more realistic thermodynamic cycles with finite power are
desired, which gave rise to the birth and development of a branch of thermodynamics,
i.e. finite-time thermodynamics. Inspired by the pioneering work of Curzon and Ahlborn [1],
endoreversible model provides a valuable approach to study the behaviors of practical thermo-
dynamic devices. Besides, linear and minimally nonlinear irreversible thermodynamics models
have been put forward and developed in the past decades [2–4]. Particularly, in 2010 Espos-
ito et al [5] proposed a unified model of Carnot heat engine beyond specific heat transfer
mechanisms by assuming the irreversible entropy generation of heat exchanging process is
inversely proportional to the time duration of the process with a dissipation coefficient (low-
dissipation assumption). The validity of low-dissipation model has been proven for a wide class
of thermodynamic devices and a wide range of heat transfer laws [5–16].

By means of the proposed various finite-time thermodynamic models, the performance
characteristics of two-terminal thermodynamic devices, mainly including heat engine [17–22],
chemical engine [10], refrigerator [6, 11–14, 23], have been intensively investigated. Specif-
ically, the performances of the abovementioned devices at maximum power [5, 7, 9, 17–19]
and several trade-off functions, e.g. arbitrary power [20, 21], efficient power [22], arbitrary
cooling power [23], Chi function [11, 14, 24], and Omega function [25–28], have been
discussed, respectively. Notably, the bounds of efficiency and COP at different figures of
merit fitting well with realistic devices have been derived based on low-dissipation models
[5, 6, 12, 14, 24]. More importantly, some consistent results have been derived with different
finite-time thermodynamicmodels [3, 5, 7, 10, 16, 29–32], which led to the thriving discussions
about the internal correlations and equivalence between the existing finite-time thermody-
namic models, e.g. minimally nonlinear irreversible models [3, 29], endoreversible models
[16, 30–32], and low-dissipation models.

In addition to two-terminal devices, multi-terminal systems play the increasingly impor-
tant roles in the utilization and control of low-grade thermal energy [33, 34] and the energy
resources at microscopic scale [35, 36]. However, in the previous studies, the applications of
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the low-dissipation assumption focused on two-terminal systems. The low-dissipation multi-
terminal models and the associated performance research have been still absent since the publi-
cation of reference [5]. In this regard, Guo et al established a combined low-dissipation model
of three-terminal refrigerator by coupling a low-dissipation heat engine and a low-dissipation
refrigerator and investigated its performance for the first time [37]. After that, Ye et al further
develop the combined low-dissipation three-terminal refrigerator model [38].

Regarding the low-dissipation model of multi-terminal system, there are still several impor-
tant issues needed to be addressed: (i) Is there another approach to construct the low-dissipation
model of three-terminal refrigerator? (ii) Whether the low-dissipation three-terminal mod-
els with different arrangements are equivalent and lead to the same performance bounds?
(iii) Whether the proved equivalence between endoreversible and low-dissipation models for
two-terminal devices is still valid for three-terminal system? (iv) What kind of arrangement is
the most appropriate one that can be used to describe different thermally driven refrigerators?

We will address the above issues in this work. First, a non-combined low-dissipation model
of three-terminal refrigerator will be established. Secondly, the performance characteristics of
the low-dissipation three-terminal refrigerator will be investigated with special emphasis on
the performance bounds of COP at maximum cooling power (CMP). Thirdly, by comparing
the obtained exchanging heats, irreversible entropy generations, and performance bounds with
reference [37], the difference and correlation between the combined and non-combined models
will be revealed. Accordingly, the general equivalence between these two arrangements within
the frame of endoreversible assumption is shown to be no longer valid. Furthermore, the equiva-
lence condition for the combined and non-combined models under low-dissipation assumption
will be explicitly given. Finally, the appropriate arrangement which could be used to describe
thermally driven refrigerators of different nature is analyzed. Accordingly, the paper is struc-
tured as follow. Section 2 contains the proposed model for the non-combined model. Sections 3
and 4 show the optimum performance regimes and the influences of the main involved param-
eters, respectively. Upper and lower bounds of CMP are specifically analyzed in section 5.
A detailed and comparative study for the combined and non-combined low-dissipation mod-
els is presented in section 6. Finally, section 7 contains some valuable conclusions and future
prospects.

2. Model description

The model of a three-terminal Carnot refrigerator operating among high-temperature heat
reservoir, environment, and cooled space with temperatures TH, TO, and TC respectively, is
shown schematically in figure 1, where QH, QO, and QC are, respectively, the heats exchanged
between the refrigerator and three heat reservoirs during the three isothermal processes.
A class of heat-driven refrigerators, e.g. absorption, adsorption, and ejector refrigerators can
be described by using the above three-terminal model from the viewpoint of thermodynam-
ics [37]. At reversible limit, one has QHr = THΔSH, QCr = TCΔSC, and QOr = TOΔSO. ΔSH,
ΔSC, and ΔSO are the reversible entropy changes in the corresponding isothermal processes.
According to the second law of thermodynamics, the relation between the reversible entropy
changes can be obtained as

ΔSH +ΔSC = ΔSO. (1)

The COP at reversible limit are given by [39]
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Figure 1. Schematic diagram of a three-terminal refrigerator model working among
three heat sources with temperatures TH, TO, and TC.

Figure 2. T − S diagram of a reversible ejector refrigerator.

ψr =
TC(TH − TO)
TH(TO − TC)

, (2)

at which the corresponding cooling power is zero. The T − S diagram of a reversible ejector
refrigerator is shown in figure 2 as an example.

In order to obtain the COP of the three-terminal refrigerator at nonzero cooling power,
irreversibilities are introduced in the heat-transfer processes by adopting low-dissipation
assumption. Accordingly, the heats exchanged between the working fluid and the three
reservoirs are given by [5, 7, 14]

QH = QHr

(
1 − σH

tH

)
= THΔSH

(
1 − σH

tH

)
, (3)

QC = QCr

(
1 − σC

tC

)
= TCΔSC

(
1 − σC

tC

)
, (4)
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and

QO = QOr

(
1 +

σO

tO

)
= TOΔSO

(
1 +

σO

tO

)
, (5)

where tH, tO, and tC are the time durations of the three isothermal heat exchanging processes;
σH, σC, and σO are the corresponding dissipation parameters containing all the information of
irreversibilities. With the above expressions, the cooling power R and COP ψ of the system
can be further expressed as

R =
QC

τ
=

TCΔSC

(
1 − σC

tC

)
tH + tO + tC

(6)

and

ψ =
QC

QH
=

TCΔSC

(
1 − σC

tC

)

THΔSH

(
1 − σH

tH

) , (7)

where τ = tH + tO + tC is the whole cycle time of the three-terminal Carnot refrigerator by
ignoring the time durations of the three adiabatic processes. Notably, the assumption of neglect-
ing the time durations of adiabatic processes requires that the time durations of the adiabatic
processes are much less than those of the heat-transfer processes in the cycle. However, this
assumption cannot be valid for the quantum adiabatic process whose adiabatic time scale is
quite large due to the degenerate energy levels [40]. Consequently, it is worth indicating that
the adiabatic processes proposed in the present paper refer to the thermodynamic adiabatic
processes in which the working substance is required to be thermally isolated. In addition,
for quantum systems, the thermodynamic adiabatic processes should be considered as the
sudden change of the Hamiltonian [41]. The rapidly changing conditions prevent the work-
ing substance from adapting its density of state, as a result, the adiabatic time scale can be
ignored comparing to the heat-transfer processes. It can be realized from equations (3)–(7)
that reversible condition can be recovered when ti →∞ or σi → 0 (i = H, C, O), namely,
QH → QHr, QC → QCr, QO → QOr, R → 0, and ψ → ψr.

It is worthy to indicate that the value of reversible entropy change is somewhat trivial
and has no influence on the efficiency and COP for the low-dissipation two-terminal devices
[5, 7, 13, 37]. Nevertheless, for the low-dissipation three-terminal refrigerator, the practical
meanings of ΔSH, ΔSC, and ΔSO should be emphasized, i.e. the measure of the different com-
ponent sizes inside the system [13, 24, 37]. Attending the above comments and equation (1),
the associated dimensionless cooling power can be further defined as

R̃ = R
σH + σO + σC

TOΔSO
(8)

by scaling according to the size of the system. Different from the low-dissipation two-terminal
devices, the performances of the three-terminal refrigerator are dependent of the values of
reversible entropy changes, as shown by equations (6)–(8).

In addition, by considering the practical meaning of reversible entropy change, the size
ratio of different components should be kept constant for a given three-terminal refrigerator.
Consequently, an important parameter accounting for the size ratio of different components
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inside the three-terminal refrigerator is introduced as

A =
ΔSH

ΔSO
=

ΔSO −ΔSC

ΔSO
=

TO

(
1 + σO

tO

)
− TC

(
1 − σC

tC

)

TH

(
1 − σH

tH

)
− TC

(
1 − σC

tC

) (9)

by using equations (1), (3)–(5), and the first law of thermodynamics. According to
equations (1) and (9), the value of A should be limited in the region of Ar < A < 1, where
Ar = (TO − TC)/(TH − TC) is the value of A at reversible limit (ti →∞ (i = H, C, O)).

3. Optimal relation between the cooling power and COP

From the above model, the optimal relations between the time durations of three heat-
transferring processes by maximizing R̃ for given value of size ratio A can be derived by using
equations (8) and (9), namely,

t̃H =
Aσ̃HT̃H +

√
Aσ̃Hσ̃OT̃H

(−1 + A) σ̃C
t̃C

T̃C +
(
−1 + T̃C − AT̃C + AT̃H

) (10)

and

t̃O =
σ̃O +

√
Aσ̃Hσ̃OT̃H

(−1 + A) σ̃C
t̃C

T̃C +
(
−1 + T̃C − AT̃C + AT̃H

) , (11)

respectively. In equations (10) and (11), T̃H = TH/TO, T̃C = TC/TO, t̃H = tH/(σH + σO + σC),
t̃C = tC/(σH + σO + σC), and t̃O = tO/(σH + σO + σC) are respectively the dimensionless
temperatures and time durations; σ̃H = σH/(σH + σO + σC), σ̃O = σO/(σH + σO + σC), and
σ̃C = σC/(σH + σO + σC) are dimensionless dissipation parameters which also stand for the
dissipation symmetry of the three-terminal refrigerator.

Substituting equations (10) and (11) into equations (7) and (8), the optimized cooling power
and the corresponding COP as the functions of t̃C and A can be derived as

ψ =
(−1 + A)

(
σ̃C − t̃C

)
T̃C

(
Aσ̃HT̃H +

√
Aσ̃Hσ̃OT̃H

)

AT̃H

[
σ̃H

(̃
tC + σ̃CT̃C − Aσ̃CT̃C − t̃CT̃C + ÃtCT̃C

)
+ t̃C

√
Aσ̃Hσ̃OT̃H

]

(12)

and

R̃ =
(−1 + A)

(
σ̃C − t̃C

)
T̃C

[
(−1 + A) σ̃CT̃C + t̃C

(
−1 + T̃C − AT̃C + AT̃H

)]
t̃2
C

[(
σ̃O − t̃C + t̃CT̃C − σ̃CT̃C

)
+ 2

√
Aσ̃Hσ̃OT̃H + A

(
σ̃CT̃C + t̃CT̃H − t̃CT̃C + σ̃HT̃H

)] ,

(13)

respectively. Equation (12) shows that the COP is the function of the temperature, dissipation
parameter, size ratio, and time duration. Besides, it can be deduced from equations (3)–(5)
that the absolute values of the associated irreversible entropy production for the three heat-
transfer processes can be expressed as ΔSiσi/ti (i = H, C, O), respectively. Consequently, for
the given values of temperature, dissipation parameter, and size ratio, the time duration, namely,
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the irreversible entropy production plays the important role in determining the value of COP.
More importantly, the optimal relation between R̃ and ψ for a three-terminal refrigerator with
the given value of A can be further obtained by eliminating t̃C in equations (12) and (13). After
a cumbersome algebra the obtained result can be read as

R̃ =
A5x3 + A6x2 + A7x

A8x + A9
, (14)

where x = (A3 + A4ψ) / (A1 + A2ψ) and the explicit expressions of Ai (i = 1–9) are given by
equations (A1)–(A9) in appendix A. Equation (14) shows that the size ratio has great influence
on the performance characteristics of the system, which will be discussed in detail in next
section.

4. Performance optimum analyses

In this section the performance optimum results are analyzed in terms of the size ratio and the
dissipation parameters.

4.1. The influence of size ratio A

According to equation (14), the parametric plots of the optimized cooling power and cor-
responding COP for the given values of A and at different dissipation limits are generated
in figure 3. It can be seen from figure 3(a) that the variation of R̃ with ψ is parabolic for a
given value of A. There exist a minimum and a maximum COP, i.e. ψmin,A and ψmax,A at which
R̃ = 0. Besides, the maximum cooling power R̃max,A can be achieved when ψ = ψRm,A. ψRm,A

indicates not only the corresponding COP at maximum cooling power, but also the lower
bound of the optimal operating region. Specifically, the low-dissipation three-terminal refrig-
erator with a given value of size ratio should be restricted to operate in the region of
ψRm,A < ψ < ψmax,A due to the fact that one can always find the corresponding point with
the same value of R̃ but higher value of ψ in the region of ψRm,A < ψ < ψmax,A comparing to
the points outside. Accordingly, the associated time durations can be further deduced in the
light of equations (10)–(12). In addition, the influence of dissipation symmetry on the optimal
relation between R̃ and ψ can be realized from figure 3(b). The influence will be discussed in
detail in subsection 4.2.

Figure 3(a) also shows that ψmin,A, ψmax,A, and ψRm,A all decrease as A grows monotonically.
Nevertheless, R̃max,A is not a monotonic function of A. The curves of ψRm,A − A, R̃max,A − A,
and R̃max,A − ψRm,A can be further plotted by using equation (14) and the numerical calculation,
which are shown in figures 4 and 5. It can be found out from figure 4 that there exists an optimal
value of size ratio ARm which makes R̃max,A attain its maximum R̃max. The corresponding CMP
ψRm can be also determined from figures 4 and 5. Besides, figure 4 shows that the reversible
regime, namely ψRm,A → ψr and R̃max,A → 0, can be approached at the limit of A → Ar.
In contrast, at the limit of A → 1, one has ψRm,A → 0 and R̃max,A → 0. This is a reasonable
result since A → 1 implies the size of the component contacting with cooled space is zero
and the system is disabled. Attending the aforementioned characteristics, the size ratio of the
three-terminal refrigerator should be designed in the region of Ar < A < ARm, within which
the performance trade-off between cooling power and COP needs to be made. Notably, it can
be also noticed that the optimal relation between the cooling power and COP for the low-
dissipation three-terminal refrigerator, shown by figure 5, is similar to that of endoreversible
three-terminal refrigerator [42–44], namely, both parabolic.
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Figure 3. Behaviors of the optimized cooling power varying with the corresponding
COP (a) for different values of A and (b) at different dissipation limits, where T̃H = 1.2,
T̃C = 0.8, (Ar = 0.5, ψr = 0.667), (a) σ̃H = σ̃C = 0.3, σ̃O = 0.4, and (b) A = 0.6.

4.2. The influence of dissipative parameter σ

The curves of R̃max,A − ψRm,A in figure 5 also indicate that the value of ψRm closely depends
on the three dissipation parameters for given values of temperatures. The explicit behavior of
ψRm varying with σ̃H and σ̃C is given in figure 6 by means of equation (14) and the numerical
calculation.

More importantly, it can be seen from figure 6 that the maximum and minimum values
of ψRm can be attained at two extreme dissipation asymmetry conditions, namely, σ̃H →
1, σ̃C → 0, σ̃O → 0, and σ̃H → 0, σ̃C → 1, σ̃O → 0, respectively. In other words, when all
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Figure 4. Variations of ψRm,A (black solid line) and R̃max,A (blue dot-dashed line) with
A; σ̃H = σ̃C = 0.3, σ̃O = 0.4, T̃H = 1.2, T̃C = 0.8 (Ar = 0.5, ψr = 0.667).

Figure 5. Behaviors of R̃max,A versus the associated COP ψRm,A for different values of
σ̃i (i = H, C, O); T̃H = 1.2, T̃C = 0.8, and σ̃O = 1 − σ̃H − σ̃C.

the dissipation is generated from high-temperature terminal, ψRm achieves its maximum.
This characteristic is accordant with the combined low-dissipation three-terminal refrigerator
model [37]. On the contrary, ψRm reaches its minimum when the dissipation concentrates in
low-temperature terminal, which is different from the result obtained in reference [37]. The
insightful analyses for the difference between the combined model adopted in reference [37]
and the model proposed in the present paper will be given in section 6.
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Figure 6. The three-dimensional projection of the CMP ψRm varying with σ̃H and σ̃C,
where T̃H = 1.2, T̃C = 0.8, and σ̃O = 1 − σ̃H − σ̃C.

5. Upper and lower bounds

The above analyses lead to the significant achievement of the present paper. Namely, the three-
dimensional upper and lower bounds of ψRm varying with T̃H and T̃C can be numerically
obtained by using the similar approaches and setting σ̃H → 1, σ̃C → 0, σ̃O → 0, and σ̃H → 0,
σ̃C → 1, σ̃O → 0, respectively, which is shown in figure 7.

Besides, a series of experimental and simulated results reported in previous researches are
collected to validate the proposed model and the obtained bounds. These reported results are
listed in table 1 and denoted by the solid dots in figure 7. Notably, the bounded region is in
accordance with most of the experimental and simulated results, which can be easily realized
from table 1 and figure 7.

It is also noted that some of the reported COPs go out of the bounded region, which is
due to the following reasons: (1) Carnot cycle is not usually adopted by the actual thermally
driven refrigerators [34, 48, 52–54] because it needs a large volume ratio; (2) the thermally
driven refrigerators may not be operated at the regime of maximum cooling power [53, 54]
since the COP at maximum cooling power for a given value of size ratio is just the lower bound
of the optimal operating region (ψRm,A < ψ < ψmax,A) and, in consequence, the maximum COP
and average COP are more concerned by the researchers from the engineering perspective;
(3) the internal dissipation and external heat leakage losses are not taken into account in the
present work, but they are inevitable in practice [48, 54]. In addition, it should be pointed out
that the comparison between the experimental and simulated results and the obtained bounds is
not a strict validation due to the abovementioned reasons. The comparison is aimed at showing
the obtained bounds are of practical significance to some extent.

6. Comparative analyses with the combined low-dissipation model

One of the combined model of three-terminal refrigerator consisting of a Carnot refrigerator
driven by a Carnot engine is shown by figure 8. It has been proved that the models shown
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Figure 7. The three-dimensional graph of ψRm varying with T̃H and T̃C and the reported
COPs collected in table 1.

by figures 1 and 8 are equivalent within the framework of endoreversible assumption when
Newton’s law is adopted [42, 43, 55]. Comparing to the model proposed in the present paper,
the time duration of the heat-transfer process contacting with intermediate-temperature termi-
nal is divided into two parts in the combined model of the three-terminal refrigerator, namely
tO = t′OH + t′OC. By adopting endoreversible assumption and Newton’s law, the exchanged
heats QO, Q′

OH, and Q′
OC in figures 1 and 8 can be expressed as

QO = αtO(To − TO), (15)

Q′
OH = αt′OH(To − TO), (16)

and

Q′
OC = αt′OC(To − TO), (17)

respectively, where α is the heat transfer coefficients between the working fluid and the
intermediate-temperature reservoir, To is the associated temperature of the working fluid. It
can be deduced from equations (15)–(17) that QO = Q′

OH + Q′
OC. In addition, it can be further

realized that the irreversible entropy productions of the related heat transfer processes for these
two models are also the same by noticing

QO

TO
− QO

To
=

Q′
OH + Q′

OC

TO
− Q′

OH + Q′
OC

To
. (18)
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Table 1. Reported COPs of various thermally driven refrigerators and the correspond-
ing bounds of ψRm for the low-dissipation three-terminal refrigerator model at given
temperatures.

Bounds of ψRm from the present paper

T̃C T̃H ψr Reported COP Upper Lower Inside the region (Y/N)

0.934 1.30 3.27 0.433 [33] 1.13 0.359 Y
0.830 1.24 0.945 0.230 [34] 0.416 0.211 Y
0.830 1.24 0.945 0.427 [34] 0.416 0.211 N
0.970 1.18 4.93 0.650 [45] 1.47 0.330 Y
0.850 1.40 1.62 0.450 [46] 0.673 0.309 Y
0.943 1.18 2.52 0.460 [47] 0.906 0.290 Y
0.853 1.18 0.885 0.0750 [48] 0.391 0.191 N
0.811 1.28 0.939 0.0770 [48] 0.419 0.219 N
0.967 1.20 4.88 0.430 [49] 1.49 0.340 Y
0.888 1.58 2.91 1.07 [50] 1.11 0.421 Y
0.918 1.17 1.63 0.320 [51] 0.638 0.245 Y
0.912 1.16 1.43 0.0400 [52] 0.573 0.228 N
0.912 1.16 1.43 0.260 [52] 0.573 0.228 Y
0.904 1.51 3.18 0.320 [53] 1.15 0.422 N
0.908 1.17 1.43 0.225 [54] 0.580 0.236 N

Consequently, the above discussions lead to the conclusion that the two models shown
by figures 1 and 8, respectively, are generally equivalent under endoreversible assumption
[42, 43, 55].

However, in the regime of low-dissipation assumption, the differences between these two
models are prominent. Specifically, comparing the bounds of ψRm shown in figure 7 and the
bounds obtained based on the combined model [37], one can find out that the upper bounds
are literally the same, whereas the lower bounds are completely different, which are shown
in figures 9(a) and (b). The abovementioned difference indicates that the low-dissipation
non-combined model proposed in the present paper and the low-dissipation combined model
adopted in reference [37] are not equivalent anymore, which can be explained as follows.

According to low-dissipation assumption, the exchanged heats QO, Q′
OH, and Q′

OC in the
non-combined and combined models shown by figures 1 and 8 are given by equation (5),

Q′
OH = TOΔS′

OH

(
1 +

σ′
OH

t′OH

)
, (19)

and

Q′
OC = TOΔS′

OC

(
1 +

σ′
OC

t′OC

)
, (20)

respectively. In equations (19) and (20), ΔS′
OH and ΔS′

OC are the entropy changes of two heat
transfer processes at reversible limit, σ′

OH and σ′
OC are the corresponding dissipation param-

eters. The associated irreversible entropy productions of the above processes can be further
obtained from equations (5), (19), and (20) as

ΔS′
OH,ir =

Q′
OH

TO
−ΔS′

OH =
ΔS′

OHσ
′
OH

t′OH

, (21)
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Figure 8. Combined model of the three-terminal refrigerator.

ΔS′
OC,ir =

Q′
OC

TO
−ΔS′

OC =
ΔS′

OCσ
′
OC

t′OC

, (22)

and

ΔSO,ir =
QO

TO
−ΔSO =

ΔSOσO

tO
. (23)

It is necessary to impose the constraint σO = σ′
OH + σ′

OC in order to make the two dif-
ferent models have the same dissipation symmetry. Accordingly, it can be proved by using
equations (5), (19), and (20) that QO = Q′

OH + Q′
OC and ΔSO,ir = ΔS′

OH,ir +ΔS′
OC,ir only if

the condition

σ′
OH

t′OH

=
σ′

OC

t′OC

=
σO

tO
(24)

is satisfied.
It can be realized from the above analyses that equation (24) is just the equivalent con-

dition for the two low-dissipation models. In other cases, the two models are not equiva-
lent any more. That is to say, the universal equivalence for the two different models under
endoreversible assumption is invalid within the frame of low-dissipation assumption. In other
words, the endoreversible assumption and the low-dissipation assumption lead to different
conclusions in this scenario. This is another important achievement of the present paper,
which means the equivalence between various finite-time thermodynamic models needs to be
reevaluated in regard of multi-terminal systems.

Based on equations (15)–(24) and the above discussions, it can be further deduced that
the equivalence between endoreversible combined and non-combined models is due to the

13
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Figure 9. Three-dimensional graph of the upper (a) and lower bounds (b) of ψRm for
two different models of the three-terminal refrigerator.

linear relationship between the transferred heat and the heat transfer time duration. This linear
relationship is no longer valid for the low-dissipation model. Consequently, the division of the
time duration of the heat transfer process contacting with intermediate-temperature terminal
results in different outcomes.
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Moreover, the identical upper bounds and the striking distinctions for the lower bounds
can be further explained based on the above analyses. When all the dissipation is generated
from high-temperature terminal (i.e. σ̃H → 1, σ̃C → 0, and σ̃O → 0), the condition shown by
equation (24) can be satisfied. Hence, the identical upper bound of ψRm can be obtained.
By contrast, the minimum value of ψRm for the combined model is attained when all the dissi-
pation concentrates in the intermediate-temperature terminal [37] instead of low-temperature
terminal (figure 6). In addition, due to the distinction of the irreversibility in the heat transfer
processes contacting with the intermediate-temperature terminal, a new lower bound of ψRm

beneath the lower bound ofψRm in figure 7 can be obtained as shown in figure 9(b). The detailed
proofs are presented in appendix B.

It should be further pointed out that the low-dissipation non-combined model proposed in
the present paper is more reasonable to be used to describe the various types of thermally
driven refrigerators, mainly including absorption refrigeration, adsorption refrigeration, and
ejector refrigeration. Because in the abovementioned thermally driven refrigerators, the
involved working substance contacts with three heat reservoirs simultaneously rather than
alternatingly. As a consequence, the more confined region limited by the obtained upper and
lower bounds of CMP in the present paper is more reasonable as well. In contrast, the low-
dissipation combined model depicted by figure 8 can be only used for the devices in which the
working substance exchanges heat with three heat reservoirs by four heat transfer processes
alternatingly.

It is worthy to mention that the proposed low-dissipation non-combined models and
approaches can be further adopted to investigate the performance characteristics of other
three-terminal devices, such as three-terminal heat pump, chemical pump, chemical potential
transformer, etc.

7. Conclusions and prospects

In the present paper, a non-combined model of three-terminal refrigerator with fewer heat
exchanging processes and the corresponding dissipation parameters has been proposed based
on the low-dissipation assumptions. Most significant conclusions are underlined below:

(a) The performancecharacteristics of the low-dissipation three-terminal refrigerator has been
investigated. Specially, the optimal relation between the COP and cooling power has been
analytically derived, as shown by equation (14). The influences of size ratio and dissipation
symmetry have been discussed. Besides, the optimal operating regionψRm,A < ψ < ψmax,A

and size ratio Ar < A < ARm have been determined.
(b) According to the performance analyses, the three-dimensional upper and lower bounds

of ψRm varying with T̃H and T̃C have been obtained by setting σ̃H → 1, σ̃C → 0, σ̃O → 0,
and σ̃H → 0, σ̃C → 1, σ̃O → 0 respectively, as shown by figure 7. In addition, the obtained
bounds have been validated by comparing with the experimental and simulated results.

(c) The identical upper bounds and distinct lower bounds for the low-dissipation combined
and non-combined models have been specially stressed by comparing the bounds of
ψRm obtained in the present paper and the results shown in reference [37]. Then, the
claimed universal equivalence for the combined and non-combined models under endore-
versible assumption [42, 43, 55] has been found to be invalid within the frame of low-
dissipation assumption and the equivalence between various finite-time thermodynamic
models needs to be reevaluated regarding multi-terminal systems.

(d) Attending the above distinction, the connection between the low-dissipation combi-
ned and non-combined models have been further revealed. The significant result is the
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equivalent condition given by equation (24), according to which the identical upper bounds
and distinct lower bounds of ψRm have been theoretically demonstrated (as shown in
appendix B).

(e) The low-dissipation non-combined model and the associated bounded region, shown in
figures 1 and 7, respectively, are identified as the appropriate model and corrected bounded
region for various types of thermally driven refrigerator by considering the differences
between the combined and non-combined models and the operating mode of thermally
driven refrigerators.

Finally, the proposed low-dissipation non-combined three-terminal model can be further
used to investigate the performances of other three-terminal devices, such as three-terminal
heat pump, chemical pump, chemical potential transformer, etc by using different trade-off
figures of merit (e.g. Chi, Omega, and ecological functions). This could provide more compre-
hensive optimization criteria. Accordingly, the possible discussions for the stability [19, 28, 56]
of various three-terminal devices may be further implemented by using the proposed model. In
addition, the internal dissipation [18] and external leakage losses [57] can be further introduced
to make the model more practical. Importantly, the conclusions of the present manuscript,
namely, the inequivalence between combined and non-combined low-dissipation models and
the appropriate model for describing the thermally driven refrigerator, may contribute to the
further investigations on the equivalence between endoreversible and low-dissipation models
for multi-terminal thermodynamic devices.
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Appendix A. The expressions of Ai (i = 1–9) in equation (14)

Specific expressions of the parameters Ai appearing in equation (14),

A1 = (A − 1) J1

(
AJ2 +

√
AJ3

)
, (A1)

A2 = (A − 1) AJ1J2, (A2)

A3 = (A − 1) (J4 + 1)
(

AJ2 +
√

AJ3

)
, (A3)

A4 = (J4 + 1) J2A2 − AJ2J4 + A
√

A (J4 + J5 + 1) J3, (A4)
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A5 = (−1 + A)2J2
1, (A5)

A6 = (A − 1) J1 [(1 − A) (J4 + 1) + J4 + AJ5] , (A6)

A7 = (1 − A) (J4 + 1) (J4 + AJ5), (A7)

A8 = AJ1 + AJ2 + 2
√

AJ3 + J6, (A8)

and

A9 = AJ5 + J4. (A9)

In equations (A1)–(A9), J1 = σ̃CT̃C, J2 = σ̃HT̃H, J3 =
√
σ̃Hσ̃OT̃H, J4 =

(
−1 + T̃C

)
, J5 =(

T̃H − T̃C
)
, and J6 = σ̃O − σ̃CT̃C.

Appendix B. Demonstrations for identical upper bounds and distinct lower
bounds

Here the theoretical analysis of the upper and lower bounds is addressed.

B.1. The demonstration for the identical upper bounds of the combined and non-combined
models

For the combined low-dissipation model of three-terminal refrigerator proposed in refer-
ence [37] (figure 8), the upper bound of CMP are obtained by setting β → 1, σ̃′

C → 1,
and σ̃′

H → 1, where β = (σ′
H + σ′

OH)/(σ′
H + σ′

OH + σ′
OC + σ′

C), σ̃′
H = σ′

H/(σ′
H + σ′

OH), and
σ̃′

C = σ′
C/(σ′

OC + σ′
C) denoting the dissipation symmetry between two subsystems and the

dissipation symmetry inside two subsystems respectively.
The optimal relations between the total time duration of Carnot heat engine subsystem τ̃ ′he

(τ̃ ′he = t̃′H + t̃′OH) and the partial time durations t̃′H are given by [37]

t̃′H =
σ̃′

Hτ̃
′
he −

√
σ̃′

Hτ̃
′
he[τ̃ ′he − (2σ̃′

H − 1)](1 − σ̃′
H)

2σ̃′
H − 1

, (B1)

where τ̃ ′he = τ ′he/(σ′
H + σ′

OH), t̃′H = t′H/(σ′
H + σ′

OH), and t̃′OH = t′OH/(σ′
H + σ′

OH).
Similarly, the optimal relations between the total time duration of Carnot refrigerator

subsystem τ̃ ′re (τ̃ ′re = t̃′C + t̃′OC) and the partial time durations t̃′C are expressed as [37]

t̃′C =
σ̃′

Cτ̃
′
re −

√
σ̃′

Cτ̃
′
re[τ̃ ′re − (2σ̃′

C − 1)](1 − σ̃′
C)

2σ̃′
C − 1

, (B2)

where τ̃ ′re = τ ′re/(σ′
C + σ′

OC), t̃′C = t′C/(σ′
C + σ′

OC), and t̃′OC = t′OC/(σ′
C + σ′

OC).
Accordingly, at the condition β → 1, σ̃′

C → 1, and σ̃′
H → 1, one has
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σ′
OH

σ′
OC

=
σ̃′

OH

σ̃′
OC

β

1 − β
=

1 − σ̃′
H

1 − σ̃′
C

β

1 − β
→∞ (B3)

and

t′OH

t′OC

=
τ̃ ′he − t̃′H
τ̃ ′re − t̃′C

β

1 − β

=
τ̃ ′he −

σ̃′Hτ̃
′
he−

√
σ̃′Hτ̃

′
he[τ̃ ′he−(2σ̃′H−1)](1−σ̃′H)

2σ̃′H−1

τ̃ ′re −
σ̃′C τ̃

′
re−

√
σ̃′C τ̃

′
re[τ̃ ′re−(2σ̃′C−1)](1−σ̃′C)

2σ̃′C−1

β

1 − β
→ τ̃ ′he − τ̃ ′he

τ̃ ′re − τ̃ ′re

β

1 − β
→∞,

(B4)

where σ̃′
OH = σ′

OH/(σ′
H + σ′

OH), σ̃′
OC = σ′

OC/(σ′
OC + σ′

C). Combining equations (B3) and (B4)
leads to the conclusion σ′

OH/σ
′
OC = t′OH/t′OC, which indicates equation (24) is satisfied at the

condition achieving the upper bound of CMP. In other words, the combined and non-combined
model are equivalent at the condition of β → 1, σ̃′

C → 1, and σ̃′
H → 1. Consequently, the

identical upper bounds, as shown in figure 9(a), can be obtained.

B.2. The demonstration for the distinct lower bounds of the combined and non-combined
models

Using the similar approach, at the condition attaining the lower bound of CMP for the combined
model, i.e. β → 0, σ̃′

C → 0, and σ̃′
H → 0, one can deduce

σ′
OH

σ′
OC

=
σ̃′

OH

σ̃′
OC

β

1 − β
=

1 − σ̃′
H

1 − σ̃′
C

β

1 − β
→ 0 (B5)

and

t′OH

t′OC

=
τ̃ ′he − t̃′H
τ̃ ′re − t̃′C

β

1 − β

=
τ̃ ′he −

σ̃′Hτ̃
′
he−

√
σ̃′Hτ̃

′
he[τ̃ ′he−(2σ̃′H−1)](1−σ̃′H)

2σ̃′H−1

τ̃ ′re −
σ̃′C τ̃

′
re−

√
σ̃′C τ̃

′
re[τ̃ ′re−(2σ̃′C−1)](1−σ̃′C)

2σ̃′C−1

β

1 − β
→ τ̃ ′he

τ̃ ′re

β

1 − β
=

τ ′he

τ ′re
→∞

(B6)

by considering the Carnot heat engine subsystem is operating close to reversible limit at β → 0.
According to equations (B5) and (B6), σ′

OH/σ
′
OC �= t′OH/t′OC. As a consequence, the equivalent

condition, namely equation (24), is not satisfied at this condition and the distinct lower bounds
are generated.
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