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Abstract: Organic wastes applied as composted amendments may improve the quality of degraded
soils and modify the fate of pesticides. This work has set out to study the dissipation kinetics of the
herbicides chlorotoluron and flufenacet during their second-year application in field experimental
plots with a sandy-loam agricultural soil without amendment (S) and amended with spent mushroom
substrate (S + SMS) or green compost (S + GC). The SMS and GC were applied to the soil during the
previous winter’s wheat crop campaign (1 year before the second herbicide application) at rates of
140 and 85 t ha−1 (dry weight basis), respectively. The experiment involved randomized complete
blocks with plots of 81 m2, including three replicates per soil treatment. Surface soils were sampled
after herbicide application for 225 days, and herbicide residues in the soil samples were determined
by HPLC-MS. The dissipation curves of both herbicides for the three soil treatments were better
fitted to the first order multi-compartment (FOMC) kinetic model. The dissipation rates of the most
hydrophobic herbicide, flufenacet, were slower than those for chlorotoluron in both unamended and
amended soils. The half-life (DT50) values ranged between 20.7 to 41.1 days for chlorotoluron, and
42.9 to 75.6 days for flufenacet, and they followed the order S > S + SMS > S + GC. The DT50 values of
chlorotoluron were close for S + SMS and S + GC, and the DT50 of flufenacet for S was similar to that
for S + SMS. These DT50 values decreased up to four times with respect to those calculated after the
first application indicating an accelerated dissipation of the herbicides after the second application
especially in amended soil in comparison with unamended soil. The persistence of chlorotoluron
and flufenacet in an agricultural soil was modified by the effect of the organic amendments, weather
conditions, and possibly the repeated application of the compounds under real field conditions.

Keywords: chlorotoluron; flufenacet; commercial formulation; repeated application; soil; spent
mushroom substrate; green compost; accelerated dissipation; field plot

1. Introduction

The composted organic residues applied to soils as amendments to increase the or-
ganic matter (OM) in soils with content <1% is a common agricultural management practice
which improves soil fertility and quality, as well as crop yields [1]. The organic residues
applied to soil as amendments have a high content of organic carbon (OC) and dissolved
organic carbon (DOC), which may modify the dynamics (adsorption, mobility, and degra-
dation) of pesticides applied simultaneously to combat pests and diseases [2–4]. The OC
content has been positively correlated with the adsorption of hydrophobic compounds with
high affinity by organic soil components and amendments [5,6], although functional groups
of OC from amendments are also important factors controlling the adsorption-desorption
of pesticides by amended soils [6]. On the one hand, DOC is a diverse mixture of complex
compounds with different chemical structures and molecular weights that might enhance
the formation of multiple interactions with organic pesticides, controlling their distribution
in the soil. This is why DOC may increase the adsorption of organic pesticides through
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the formation of complexes that are adsorbed by soils, although on the other hand, it may
increase the amount of compound in solution through the formation of complexes leached
throughout the soil [7–9]. Moreover, organic residues improve soil microbial activity, which
has influence on the degradation of pesticides applied in amended soils [10].

The soil dissipation of pesticides depends on several processes, with the most sig-
nificant ones being degradation, adsorption, and mobility, which control pesticide be-
havior [11]. The dissipation rate of pesticides after the repeated application of the same
pesticide, or another with a similar chemical structure, during several crop cycles may be
accelerated by faster pesticide biodegradation due to microorganism adaptation, which
affects their persistence and reduces their efficacy against weeds [12–15]. Furthermore,
pesticide dissipation under field conditions in the same soil may be influenced by differ-
ent weather conditions (temperature, precipitation, and solar irradiation) recorded over
time [16]. Accelerated pesticide degradation depends on soil properties, such as soil OC
content, clay content, pH, moisture content, pesticide structure, microbial activity, degrader
growth, plant exudates, environmental factors, and soil management practices [13,14,17].
This phenomenon is well known and has been reported for pesticides under laboratory
conditions [4,18,19]. At field scale, accelerated herbicide dissipation has been reported in
unamended and amended soils for atrazine [20], butachlor [16,17], metribuzin [21], and
sulfosulfuron [15].

Studies on the dissipation and persistence of pesticides in soils amended with organic
residues under field conditions are less frequent, and, in general, they only evaluate dissi-
pation after a single application. However, the repeated application of pesticides during
successive cycles of the same crop is a common agricultural practice, especially in conven-
tional agriculture, with the consequent risk of soil and/or water contamination [16,22].

The herbicides chlorotoluron and flufenacet are applied at the pre-emergence stage of
cereal crops such as winter wheat. Chlorotoluron belongs to the phenylurea family, and
records moderate water solubility (74 mg L−1, 20 ◦C), low hydrophobicity (log Kow 2.5),
and high leaching potential (GUS index 3.02). Flufenacet is an oxyacetamide with moderate
water solubility (56 mg L−1, 20 ◦C), high hydrophobicity (log Kow 3.2), and intermediate
capacity for leaching (GUS index 2.23) [23,24].

There are only a few results on the dissipation and persistence of chlorotoluron and
flufenacet in unamended and amended soils at field scale [11,25–28], being influenced
by soil properties, herbicide characteristics, and environmental conditions. However, the
dissipation of chlorotoluron after repeated application in field studies has been assessed
solely in unamended soils [29]. To the best of our knowledge, there are no studies on
the dissipation of these herbicides after repeated application in field soils amended with
organic residues.

This study therefore pursued the following objectives: (i) study the field dissipation
kinetics of the herbicides chlorotoluron and flufenacet after their repeated application at
the pre-emergence stage of winter wheat in an agricultural soil unamended and amended
with two organic residues, (ii) compare their persistence with that observed the previous
year after a first application in the same field experiment, and (iii) assess the influence of
soil property evolution and weather conditions on the long-term dissipation and persis-
tence of these herbicides. This study is part of a research project carried out under field
conditions involving the dissipation and mobility of chlorotoluron and flufenacet over a
2 year experimental period following an initial, single application of the organic residues
to the soil [11,30].

2. Materials and Methods
2.1. Field Dissipation Study

The organic wastes used as soil amendments originated from Agaricus bisporus and
Pleurotus ostreatus (2:1) cultivation (SMS), and from the pruning of plants and trees in
parks and gardens (GC). They were composted following an aerobic process, and were
supplied by Sustratos de la Rioja S.L. (Pradejon, Spain) and Viveros El Arca S.L. (Salamanca,
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Spain), respectively. The soil was an Eutric-Chromic Cambisol (IUSS Working Group WRB,
2015) with a sandy-loam texture (80.4% sand, 4.7% silt, and 14.9% clay). The main physic-
ochemical characteristics of both organic residues and unamended and amended soils
were determined in air-dried and sieved (<2 mm) samples (Table 1) by standard analytical
methods, as reported by Carpio et al. [30]. Briefly, the DOC content was determined in
organic residues extracts 1/100 w/v or soil extracts 1/2 w/v ratio in deionized water after
soil shaking 24 h at 20 ◦C, centrifugation 20 min at 10,000 rpm, and filtering (Minisart
NY 25 filter 0.45 µm, Sartorius Stedim Biotech, Germany). DOC, OC and N content was
determined on a LECO CN628 (Saint Joseph, MI, USA) elemental analyzer.

Table 1. Characteristics of organic residues spent mushroom substrate (SMS) and green compost (GC), unamended soil (S)
and soil amended with SMS (S + SMS) or GC (S + GC). Soil OC and DOC include the range of values determined between
29 and 225 days after the second herbicides’ application.

Soil pH OC (%) a DOC (mg g−1) b N (%) C/N CEC (cmolc
kg−1) c

SMS 7.9 35.0 11.9 2.3 15.2 35.1
GC 7.2 26.7 7.18 1.1 24.3 41.4

S 6.3 0.76–0.80 0.37–0.18 0.05 15.2–16.0 8.5
S + SMS 7.1 2.22–2.43 0.75–0.45 0.24 9.25–10.1 10.9
S + GC 7.0 1.65–1.72 0.66–0.33 0.14 11.8–12.3 11.0

a Organic carbon; b dissolved organic carbon; c cation exchange capacity.

Herbicides were initially applied during the 2016–2017 winter wheat crop campaign
in a field experiment set up at the Muñovela experimental farm belonging to the Institute
of Natural Resources and Agrobiology of Salamanca, Spain (40◦54′15′′ N latitude and
5◦46′26′′ W longitude) [30]. The experiment involved randomized complete blocks with
plots of 81 m2 corresponding to the following three treatments, each in three replicates:
unamended control soil (S), soil amended with spent mushroom substrate (S + SMS), and
soil amended with green compost (S + GC). The SMS and GC were applied to the soil once
in the previous winter wheat crop campaign (November 2016) at rates of 140 and 85 t ha−1

(dry weight basis), respectively, and incorporated into the top 20 cm. The commercial
formulations, Erturon® (chlorotoluron 50% w/v, Cheminova Agro S.A., Madrid, Spain)
and Herold® (flufenacet 40% w/v, Bayer Crop Science S.L., Valencia, Spain), were sprayed
at the pre-emergence stage at 15 and 5 kg a.i. ha−1, respectively, the first time in November
2016 and 346 days after their first application (in November 2017) at similar concentrations
by second time. Herbicide dissipation was evaluated after repeated application.

Weather data (precipitation, maximum, minimum, and average air temperature) were
recorded at the Spanish State Agency of Meteorology (AEMET) weather station on the
Muñovela farm itself. During the 2017–2018 campaign corresponding to field dissipation
experiment after second application of herbicides, the average air temperature was 8.0 ◦C,
with average maximum and minimum temperatures of 13.6 ◦C and 2.5 ◦C, respectively. The
total precipitation recorded was 411.0 mm during the 225-day-long experiment, starting
10 days after herbicide application. Precipitation >10 mm was recorded 52, 105, 106, 108,
110, 116, 120, 147, 152, 208, and 219 days after herbicide application, so less precipitation
was recorded up to 104 days (79.6 mm). The maximum precipitation was 20.0 mm at
208 days after herbicide application (Figure 1).
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Figure 1. (a) Rainfall, maximum and minimum air temperatures; (b) cumulative rainfall and aver-
age temperature recorded in the Muñovela farm during the field dissipation experiment (225 
days). 

2.2. Herbicide Extraction and Analysis 
Surface soils (0–10 cm) were sampled eighteen different times for 225 days after herb-

icide application. On each occasion, five soil subsamples were randomly collected in each 
plot, and representative average samples were obtained for each plot by mixing the five 
subsamples. The composite samples were homogenized, sieved (<2 mm), and stored at 4 
°C until their analysis. 

The analytical standards of chlorotoluron and flufenacet (>99.5% purity), and of their 
major metabolites, desmethyl chlorotoluron, flufenacet ESA sodium salt, and flufenacet 
OA (>99.3% purity), were supplied by Sigma Aldrich Química S.A. (Madrid, Spain). Both 
the herbicides and their major metabolites were extracted and analyzed according to [31]. 
Briefly, triplicate subsamples of moist soil (6 g) from each composite sample of una-
mended or amended soils taken at each sampling time were extracted with acetonitrile 
(12 mL). They then underwent an ultrasonic bath (1 h, 20 °C), shaken (24 h, 20 °C), centri-
fuged (5045 g, 15 min), and filtrated (<0.45 μm). Extracts (8 mL) were evaporated until 
dryness at 25 °C under a nitrogen stream using an EVA-EC2-L evaporator (VLM GmbH, 
Bielefeld, Germany). The residue was dissolved in 0.75 mL of acetonitrile and transferred 

Figure 1. (a) Rainfall, maximum and minimum air temperatures; (b) cumulative rainfall and average temperature recorded
in the Muñovela farm during the field dissipation experiment (225 days).

2.2. Herbicide Extraction and Analysis

Surface soils (0–10 cm) were sampled eighteen different times for 225 days after
herbicide application. On each occasion, five soil subsamples were randomly collected in
each plot, and representative average samples were obtained for each plot by mixing the
five subsamples. The composite samples were homogenized, sieved (<2 mm), and stored
at 4 ◦C until their analysis.

The analytical standards of chlorotoluron and flufenacet (>99.5% purity), and of their
major metabolites, desmethyl chlorotoluron, flufenacet ESA sodium salt, and flufenacet
OA (>99.3% purity), were supplied by Sigma Aldrich Química S.A. (Madrid, Spain). Both
the herbicides and their major metabolites were extracted and analyzed according to [31].
Briefly, triplicate subsamples of moist soil (6 g) from each composite sample of unamended
or amended soils taken at each sampling time were extracted with acetonitrile (12 mL).
They then underwent an ultrasonic bath (1 h, 20 ◦C), shaken (24 h, 20 ◦C), centrifuged
(5045 g, 15 min), and filtrated (<0.45 µm). Extracts (8 mL) were evaporated until dryness at
25 ◦C under a nitrogen stream using an EVA-EC2-L evaporator (VLM GmbH, Bielefeld,
Germany). The residue was dissolved in 0.75 mL of acetonitrile and transferred to a glass
vial for analysis. The herbicides and their metabolites were determined by HPLC-DAD-MS
using a Waters chromatograph (Waters Assoc., Milford, MA, USA).
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2.3. Data Analysis

FOCUS work group guidelines were followed to select the best kinetic model for each
herbicide and soil treatment [32]. According to these guidelines, herbicide dissipation
kinetics were fitted to single first-order (SFO) and first-order multi-compartment (FOMC)
kinetic models. The coefficient of determination and the chi-squared test were calculated as
indicators of the goodness of fit. The herbicide concentrations, which were measured 1 day
after the application in the three soil treatments, were considered as 100% of the amounts
applied. The DT50 and DT90 values were used to characterize the decay curves and compare
the variations in dissipation rates. The kinetic model parameters were estimated using the
Excel Solver Add-in Package [32].

3. Results
3.1. Dissipation of Chlorotoluron and Flufenacet during the Second-Year Application

The dissipation curves of the herbicides for the three soil treatments were fitted to the
SFO and FOMC kinetic models. Although the fitting of the observed data to both kinetic
models was acceptable, the goodness of fit of both herbicides in all soil treatments was
better for the FOMC model than for the SFO one (Figure 2, Table 2). The chi-squared (χ2)
test was ≤14.7 and the coefficient of determination (R2 value) was ≥0.95 when herbicide
dissipation curves were fitted to the FOMC model (Table 2). In a previous work, the
dissipation of chlorotoluron in unamended and amended soils under field conditions was
better described by the double first-order in parallel (DFOP) model [33]. The dissipation
of flufenacet in unamended soils in field trials was more accurately described by the SFO
model [25].
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 Chlorotoluron 
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Figure 2. Dissipation curves of chlorotoluron and flufenacet in the unamended soil (S) and soil amended with SMS (S +
SMS) or GC (S + GC). Dissipation data were fitted to the FOMC kinetic model (FOCUS, 2006).

Table 2. Dissipation parameters (DT50 and DT90) for chlorotoluron and flufenacet in unamended (S) and SMS- and GC-
amended (S + SMS and S + GC) soils. Goodness of fit parameters (χ2 and R2) obtained from the fitting of dissipation curves
to a first-order multi-compartment (FOMC) kinetic model [32].

Soil M0 (%) α β DT50 (Days) DT90 (Days) χ2 R2

Chlorotoluron

S 99.21 1.14×exp4 6.75×exp5 41.1 136.5 9.3 0.982
S + SMS 97.54 6.23×exp4 1.96×exp6 21.8 72.3 8.1 0.983
S + GC 107.79 5.39×exp5 1.61×exp7 20.7 68.8 14.7 0.975

Flufenacet

S 92.41 64.496 6995.6 75.6 254.3 5.8 0.972
S + SMS 97.98 0.35 11.7 73.6 8515.6 6.4 0.951
S + GC 105.16 0.511 14.9 42.9 1333.5 5.3 0.969
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A total of 64 days after its application, the dissipation of chlorotoluron was >60% in
S, and >93% in S + SMS and S + GC, indicating rapid dissipation during the first phase
of the kinetic curve. This behavior would be related with this compound’s characteristics
(high solubility in water and low hydrophobicity). For flufenacet, the percentages of
dissipation were >47% in S, >43% in S + SMS, and >60% in S + GC at 64 days after its
application in the field plots. These results indicate that the flufenacet dissipation rate was
slower than for chlorotoluron in both unamended and amended soils. This may be due
to flufenacet’s lower solubility in water and higher hydrophobicity [23]. However, both
herbicides dissipated faster after the second application in field conditions than after their
first application previously evaluated in the same unamended and amended soils [11].

The DT50 values for chlorotoluron were two times lower in amended soils than in
the unamended soil (Table 2). The DT50 value for flufenacet was 1.76 times lower in S +
GC than in the unamended one. The DT50 values of both herbicides followed the order
S > S + SMS > S + GC, although the DT50 values of chlorotoluron were close for S + SMS
and S + GC, while the DT50 value of flufenacet for S was similar to that for S + SMS
(Figure 2, Table 2). The DT50 and DT90 values calculated for chlorotoluron were in the
same range or lower than those reported in unamended soils under field conditions [23,25].
However, the DT50 and DT90 values for flufenacet were always higher than those reported
for unamended soils [23,26].

The higher DOC content in amended soils (Figure 3) than in unamended one may
explain the lower persistence of chlorotoluron, as DOC could increase the amount of
chlorotoluron in solution, facilitating its dissipation through different pathways, such
as biodegradation by microorganisms or its mobility to lower soil layers, as reported in
previous research [30]. Flufenacet recorded a high dissipation rate in amended soils (lower
DT50 values for S + SMS and S + GC than for S) during the first kinetic phase, probably
due to its higher availability in solution enhanced by the DOC content, as shown for
chlorotoluron. However, the dissipation rate decreased in S + SMS and S + GC (higher
DT90 values than for S) during the second kinetic phase (Figure 2, Table 2). The higher OC
content of amended soils together with their decreased DOC content over time (Figure 3)
could facilitate the formation of bound residues from residual flufenacet, making this
herbicide less prone to dissipation over time than chlorotoluron. It has been reported
that the formation of non-extractable bound residues for flufenacet at ~100 days after its
application varied between 16.3% and 56.2% [26]. Carpio et al. [30] have reported the
adsorption and persistence of flufenacet in the soil surface by the OC content as the main
parameter influencing its behavior in the soil.
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Figure 3. Dissolved organic carbon (DOC) and organic carbon (OC) for unamended soil (S) and soil
amended with SMS (S + SMS) or GC (S + GC) at 30 and 128 days after the second application of
herbicides.

Over the field experimental period, the metabolite desmethyl chlorotoluron was
detected in all three soil treatments assayed (Figure 4). Desmethyl chlorotoluron is the
major degradation product of chlorotoluron formed in soil [23], as reported in previous
laboratory and field studies [11,25,31]. Its concentrations increased up to 84, 29, and 17 days
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in S, S + GC and S + SMS, respectively, and then the metabolite concentrations decreased
through to 225 days (Figure 4). The total amounts of metabolite formed in soils over the
experimental period (225 days) followed the order: S + SMS (4.9%) < S + GC (7.1%) < S
(9.0%) (Figure 4). These results are consistent with the adsorption of chlorotoluron by these
soils [11]. The herbicide is therefore less bioavailable for degradation in S + SMS due to
it higher adsorption. The metabolite desmethyl chlorotoluron has a higher adsorption
constant than chlorotoluron [23], so it could have been adsorbed by S + SMS, forming bound
residues as previously reported [11]. The flufenacet–OA metabolite was detected in the soil
for all three treatments at different sampling times, but always at lower concentrations than
its limit of quantification, indicating that other processes were involved in its dissipation.
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Figure 4. Formation of desmethyl chlorotoluron in unamended soil (S) and soil amended with SMS
(S + SMS) or GC (S + GC).

3.2. Comparison of the Dissipation Kinetics of Chlorotoluron and Flufenacet after
Repeated Application

The dissipation pattern of chlorotoluron and flufenacet after the second herbicide
application was different to the first one, where the herbicide dissipation curves were
best described by the SFO and FOMC models after the first and second application, re-
spectively. For comparison purposes, Figure 5 shows these dissipation curves of chloro-
toluron and flufenacet during both field experiments in unamended soil and SMS- and
GC-amended soils.

The kinetic parameters indicate that chlorotoluron and flufenacet dissipated more
quickly after the second application than after the first one. The DT50 values of both
herbicides were lower by between 1.6 and 4.0 times (chlorotoluron) and by between 1.6
and 3.4 times (flufenacet) than those calculated after the first application [11]. A higher
dissipation was observed after the repeated application of both herbicides in the same
field plots. Previous studies have detected a similar effect (higher dissipation rate) for
chlorotoluron [29] and other herbicides [15,16,20,22] applied repeatedly in field dissipation
studies. Other studies have also reported an increase in dissipation rates of 1.35 times
for sulfosulfuron [15], 2.0 for atrazine [34], 5.81 for chlorotoluron [29], and up to 8.0 for
simazine [35] following repeated herbicide application in unamended soils.
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Figure 5. Dissipation kinetics of chlorotoluron and flufenacet in unamended soil and soil amended
with SMS (S + SMS) or GC (S + GC) after the first application (0–339 days) and after the second
application (346–572 days) of herbicides to field plots.

In this paper changes in some variables such as soil properties (pH, OC, and DOC
contents), and the presence of a crop (winter wheat) and amendments (SMS and GC)
during both application years may also be responsible for changes in soil microorganisms
which could help to explain chlorotoluron and flufenacet dissipation in the soil, as ob-
served in previous studies [15,22,36,37]. It is expected that different dissipation processes,
including biodegradation/mineralization and/or mobility in the soil profile, could explain
the behavior of chlorotoluron and flufenacet, especially in amended soils after the repeated
application, although this was not compared with control plots with a single herbicide
application during the second year.

3.3. Relationship between Dissipation Parameters and Weather Conditions

Variations in precipitation and temperature over the different seasons will have an
effect on the leaching, degradation, and persistence of herbicides and on their efficacy for
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weed control [35,36]. High accumulated precipitation (68.4 mm) at 64 days (Figure 1b)
after the second application of the herbicides could have decreased the persistence of
these compounds in the topsoil and accelerated their dissipation. Cumulative precipitation
at 64 days after the second herbicide application was 2.5 times higher than at 60 days
(27.2 mm) after the first herbicides application [11]. The DOC content and the higher
cumulative precipitation during the second application of herbicides may facilitate the
availability of chlorotoluron for biodegradation, and possibly the greater mobility of
flufenacet through the soil profile [30]. Janaki et al. [17] have reported the increased
dissipation of butachlor due to higher initial precipitation which might have diluted or
entrained the herbicide residues during the rice growing period. Similarly, Liu et al. [36]
have reported lower residues of fungicide tricyclazole in rice fields from April to June due
to the more frequent precipitation, which could accelerate the dissipation of pesticides by
increasing their mobility through the soil profile.

The average temperature at 64 days after the second herbicide application (4.49 ◦C)
was slightly higher than after the first application (3.86 ◦C) [11]. In a previous laboratory
study, Marín-Benito et al. [31] have reported that chlorotoluron and flufenacet degradation
rates increase with higher temperature due to higher microbial biomass and/or activity.
Rouchaud et al. [27,28] have reported that the field dissipation of flufenacet accelerated with
the higher temperatures in spring and summer due to increased soil microbial activities.
Similarly, Johnstone et al. [38] have found a relationship between the persistence of the
herbicide trifluralin and weather conditions (total precipitation and maximum average
temperatures) at 60 days after its repeated application in experimental plots.

4. Conclusions

The dissipation kinetics of chlorotoluron and flufenacet after their repeated applica-
tion in unamended and amended soils under field conditions followed different patterns
from those observed after their initial application. Both herbicides dissipated likely faster
in all the soils after the second application and in the presence of SMS and GC residues.
Both soil factors (OC and DOC contents) and environmental ones (high cumulative pre-
cipitation after herbicide application) are key to explaining the higher dissipation. The
possible increased availability of chlorotoluron enhanced by the DOC could increase its
dissipation supported by the degradation products specified. However, the DOC content
for the more hydrophobic herbicide flufenacet could initially increase its mobility in the
soil profile, while the OC content would enhance the retention of residual fractions over
time, explaining the high DT90 values obtained. This study demonstrates that dissipation
rate of herbicides repeatedly applied in amended soils was also affected by weather condi-
tions and soil characteristics. The accelerated dissipation of chlorotoluron and flufenacet
facilitates their lower persistence in soils and at the same time a sustainable agricultural
management of soils. Further research should focus on: (1) the determination of possible
loss of weed control by these herbicides in organically-amended soils; (2) studies on mi-
crobial degradation and isolation of herbicides degraders after repeated application; and
(3) studies on the effects of different amounts of organic residues on herbicide dissipation
after their repeated application.
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