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Chapter 1

Introduction

Everyone knows what a curve is,
until he has studied enough
mathematics to become
confused through the countless
number of possible exceptions.

Felix Klein

Intuition has always had a key place in the process of mathematical reasoning and, for
that matter, in all of science; it is, in fact, key to any process of research. However,
following a cartesian way of thinking, intuition can be polluted by the fact of experience.

One of the most famous results in classical mathematics which seems obvious to our intu-
ition is the so-called Jordan Curve Theorem (JCT), which states that any homeomorphic
transformation of the circle into the plane separates the plane into two connected regions,
one bounded and one unbounded. Despite seeming obvious, most mathematicians, even
professional ones, have never read a proof of it; this text began as an excuse to provide a
readable proof of the Jordan Curve Theorem that satisfied both the reader and the writer
of the document, simple in the sense of using non-elevated concepts of topology, trying
always to use the right tool for the right task.

Still, the sake of motivating the need for a proof of the JCT has turned this text into a path
that takes you from the notions of topology, complex analysis and measure theory that
are obtained via a degree in mathematics, to some mathematical “monsters”, pathological
cases of curves, such as nowhere-differentiable curves and space-filling curves, and from
there to a proof of the JCT.

More precisely, the content is structured as follows:

In chapter 2 we provide general notation, nomenclature and definitions that are followed
throughout the text. As it plays a role in more than section, we state and prove Baire’s
Category Theorem.

In chapter 3 three different nowhere differentiable curves are presented: the Weierstrass
curve, the Koch curve and the Lynch curve. Proper definitions of each one of those curves
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4 CHAPTER 1. INTRODUCTION

are given, as well as different properties that will help us prove that they are continuous
and nowhere differentiable.

In chapter 4 two space-filling and injective curves are studied in detail: the Osgood curve
and Knopp’s Osgood curve. We provide the locus, a parametrization and some results
about the conditions they need to fulfill in order to be space-filling.

In chapter 5 we present an overview on the relation between the family of space-filling
curves and the family of nowhere differentiable curves. As main results, it is shown that
the family of space-filling curves is a subset of the family of nowhere-differentiable curves,
that it is dense in the set of continuous curves C(I,C) and that the family of nowhere-
differentiable curves is of the second category in C(I,C).

Finally, chapter 6 contains, as main result, a proof of the JCT which relies on Brouwer’s
fixed point theorem for the disk, which we prove using the notion of degree of a continuous
map over the circle. We provide all the details and show that it is an invariant under
homotopy.

Where possible, the arguments provided have been supported with images that are in-
tended to help the reader to follow the train of thought. Most of those pictures represent
the locus of the different particular curves that we talk about, up to a reasonable degree
of precision, and that is because the curves that we deal with are of fractal nature. In
order to print them, the system of iterated functions of each one of those curves has been
implemented in Mathematica code. In the appendix the codes for all such curves are
presented. However, the reader will realize that not every picture in the document has
its code in the mentioned appendix. This is because some images have been produced,
totally or partially, using Geogebra.

A special effort has been put into stating all results in C and not in R2, as we consider it
the most natural way of thinking of the plane.

As a last comment, we find it convenient to recall that this text, although it presents the
structure of a printable book, contains many hyperlinks that connect different parts of
the document that make it ideal to be read in electronic format.



Chapter 2

Notation and previous results

As usual, we will denote the set of natural numbers by N, the set of integers by Z, the set
of real numbers will be denoted by R and the set of complex numbers by C. We under-
stand C as the normed space (C, |·|), where |·| is the modulus of a complex number and
R the normed space (R, |·|) with |·| the modulus of a real number. The interval [0, 1] ⊂ R
will be denoted by I. We will denote by D the unit disk in C, D := {z ∈ C / |z| ≤ 1}. In
that sense, S1 will denote the unit circle, S1 := {z ∈ C / |z| = 1}.

The cardinal of a set A will be denoted by #A. If A is a subset of a set X, we will denote
the complement of A by Ac or X −A indistinctly. If A,B are two topological spaces, we
will denote by C(A,B) the set of all continuous functions with domain in A and image
in B. In general, we will work with the set C([a, b],C), which is known to be a Banach
space under the norm

‖f‖∞ = max
t∈I
|f(t)|

which corresponds to uniform convergence. Every function γ : R −→ C is given by two
functions γ1, γ2 : R −→ R such that

γ(t) = γ1(t) + iγ2(t), γ1 = Re(γ), γ2 = Im(γ).

The derivative of a function γ : R −→ C at t ∈ R is the limit, if it exists,

γ′(t) = lim
s→t

γ(s)− γ(t)

s− t
= lim

δ→0

γ(t+ δ)− γ(t)

δ
∈ C

and the theory of real valued functions of multiple variables asserts that γ′(t) exists if
and only if γ′1(t), γ′2(t) exist, with γ′(t) = γ′1(t) + iγ′2(t). We will refer to the elements
of C([a, b],C) as curves, as well as to their images f([a, b]) for f ∈ C([a, b],C) and the
elements of C(R,R) as functions, maps or applications. Unless anything else is specified,
[a, b] = I. Hence, we will say that a curve γ is nowhere differentiable if there is no t in its
domain such that γ′(t) exists.
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6 CHAPTER 2. NOTATION AND PREVIOUS RESULTS

Given two curves α : [a, b] −→ C, β : [c, d] −→ C, we will say that they are concatenable
if α(b) = β(c). Without any loss of generality, if α, β ∈ C(I,C), the curve

(α ] β)(t)
def
=

{
α(2t) t ∈

[
0, 1

2

]
β(2t− 1) t ∈

[
1
2
, 1
]

is the concatenation of α and β.

In the literature it is common to see two different definitions of a plane Jordan curve:

Definition 2.0.1. A (plane) Jordan curve is a homeomorphic image of S1 in C.

Definition 2.0.2. A Jordan curve is the image of a continuous curve f : [0, 1] −→ C
such that f|[0,1) is injective and f(0) = f(1).

Proposition 2.0.1. Definition 2.0.1 and Definition 2.0.2 are equivalent.

Proof. We make use of the map φ : [0, 1] −→ S1 defined by φ(t) = e2πit which is clearly
continuous and surjective, with φ(0) = φ(1) = 1C, and φ|[0,1) : [0, 1) −→ S1 is continuous
and bijective. The only problem is that the inverse map φ−1 : S1 → [0, 1), given by the
winding number z = e2πit → t, is continuous except at z = 1C. Indeed φ−1(1C) = 0 but if
zn = φ(tn) with tn → 1− then zn → 1C but φ−1(zn)→ 1 6= φ−1(1C).

We also recall the basic result in Topology, that a continuous bijective map from a compact
space (like S1) to a Hausdorff space (here, the image curve K as a subspace of C) is
automatically a homeomorphism, that is, its inverse is continuous.

• Definition 2.0.1 implies Definition 2.0.2: let K be the homeomorphic image of S1

via an injective and continuous map h : S1 −→ C. By the remarks above, it is clear
that the composition f = h ◦ φ : [0, 1] −→ K is continuous and surjective, with
f(0) = f(1) = h(1C) and f|[0,1) : [0, 1) −→ K is continuous and bijective.

• Definition 2.0.2 implies Definition 2.0.1: let f : [0, 1] −→ C be continuous with image
K such that f|[0,1) is injective and f(0) = f(1). The composition h = f ◦φ−1 : S1 −→
[0, 1) −→ K is bijective and continuous except possibly at 1C where 1C represents
1 ∈ C. It remains to check it is also continuous at 1C. Suppose otherwise. Define
p = h(1C), which is the common value f(0) = f(1). Then there is a sequence
zn ∈ S1 with zn → 1C but h(zn) does not converge to p. Passing to a subsequence,
we may assume that there is an open neighborhood V 3 p such that h(zn) ∈ V c

for all n. In particular zn 6= 1C for all n, so tn = φ−1(zn) ∈ (0, 1). Since [0, 1] is
compact, passing to another subsequence, we may assume that tn → t ∈ [0, 1]. But
then 1C = lim zn = limφ(tn) = φ(t) by continuity of φ on [0, 1]. Hence t = 0 or
t = 1. In either case, by continuity of f on [0, 1] and the equality f(0) = f(1) = p,
we derive the contradiction h(zn) = f(tn)→ p.

If [a, b] ⊂ R, we say that an arc (or Jordan arc) is a homeomorphic image of [a, b].
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The Lebesgue measure in R2 will be denoted by µ. We will work with the Lebesgue
measure in C by identifying the complex plane with R2 via the morphism Id defined by
a+bi 7→ (a, b), and, therefore, Ω ⊂ C is measurable if Id(Ω) is measurable and its measure
is that of Id(Ω).

Throughout the text, we make use of the expression of a real number written in a certain
base. If b is a number between 0 and 1, its representation in base n will be denoted by

b ≡ (0.b1b2 . . .)n =
∑
j≥0

bj
nj
, bj ∈ {0, 1, . . . , n− 1}.

Also, upper bars are used to denote periods, as in (0.b1b̄2)n = (0.b1b2b2b2b2 . . .)n.

Let M be a subset of a metric space X. Then, we say that:

1. M is nowhere dense in X if its closure has no interior.

2. M is of the first category in X if M is the union of countably many sets each of
which is nowhere dense in X.

3. M is of the second category in X if M is not of the first category in X.

The letter Γ will denote the Cantor set and we will use the term Cantor-type set referring
to a set that is nowhere dense, compact and perfect (it is closed and has no isolated points).

A result that happens to be useful through various parts of the text is Baire’s Cathegory
Theorem:

Theorem 2.0.2 (Baire’s Category Theorem). Let X 6= ∅ be a complete metric space.
Then X is of the second category in itself.

Proof. The proof given here is from [9].

By contradiction, assume X 6= ∅ is of the first category in itself, i.e., X =
⋃
k≥1Mk where

Mk is nowhere dense in X. By assumption, M1 is nowhere dense in X and, therefore, M̄1

does not contain any nonempty open set. However, X is open, meaning that X 6= M̄1.
This gives us that M̄ c

1 = X − M̄1 is open and not empty. Then, let p1 ∈ M̄ c
1 and B1 be

the ball centered at p1 with radius ε1 ∈ (0, 1
2
) such that B1 ⊂ M̄ c

1 .

Now again, by assumption, M2 is nowhere dense in X, so that M̄2 does not contain a
nonempty open set. Hence, it does not contain the open ball B(p1,

1
2
ε1). It is then implied

that M̄ c
2 ∩B(p1,

1
2
ε1) is open and not empty, so we may choose

B2 = B(p2, ε2) ⊂ M̄ c
2 ∩B(p1,

1

2
ε1), ε2 <

1

2
ε1.

We obtain, by induction, a sequence of ballsBk = B(pk, εk), εk <
1
2k

satisfyingBk∩Mk = ∅
and Bk+1 ⊂ B(pk,

1
2
εk) ⊂ Bk, k ≥ 1. Since εk < 2−k, that means that the sequence of
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centers {pk}k≥1 is a Cauchy sequence and therefore converges to a certain p ∈ X, since
X is complete. Also, for every n > m we have Bn ⊂ B(pm,

1
2
εm) and that means

d(pm, p) ≤ d(pm, pn) + d(pn, p) <
1

2
εm + d(pn, p) −→

1

2
εm

as n → ∞. Therefore, p ∈ Bm, ∀m. Since Bm ⊂ M̄ c
m, we obtain that p 6∈Mm for every

m, but this is absurd since p ∈ X =
⋃
Mm, and so we conclude.



Chapter 3

Continuous Nowhere Differentiable
Curves

When a student is first introduced to differential calculus, it is usually done by following
Newton’s mechanical approach, understanding the slope of a continuous curve at a given
point as the velocity a particle would have at such a point if its position was given by
such a curve. Then, it is shown that continuity does not imply differentiability, and that
is done by showing examples like the function f(x) = |x|, that has no well-defined slope
at x = 0. It is at this precise moment in a mathematician’s education that intuition is
vitiated: it sticks on our mind that a continuous function must have a finite or perhaps at
most a countable number of points where the slope is not well-defined, because, otherwise,
how would I draw it without lifting my pen?

This false intuition of the well-behaved nature of continuous curves was also common
among mathematicians from the 18th and 19th centuries. In fact, Ampère tried to prove
this fact, basing his arguments in this well-behaved nature. It was not until Weierstrass
that the mathematical world was provided with the first ever known globally continuous
function that had no well-defined tangent at any point. This function was

f(x) =
∑
n≥1

an cos(bnπx), x ∈ R

with a ∈ (0, 1), b > 1 an odd integer and ab > 1 + 3π
2

.

In this chapter, we construct three different curves that are nowhere differentiable, each
of them with a different nature: the Weierstrass curve (of an analytic nature), the von
Koch curve (of a geometric nature) and the Lynch curve (of a topological nature).

3.1 The Weierstrass Function

As has been said before, until 1875 it was considered that every continuous function was
differentiable except at a “few” isolated points. Back then, this was known as Ampère’s

9



10 CHAPTER 3. CONTINUOUS NOWHERE DIFFERENTIABLE CURVES

Theorem. However, in 1875, Weierstrass published for the first time in [5] an example
of a continuous function that was nowhere differentiable. We shall now define it in its
classical form and provide a proof for both continuity and nowhere differentiability.

Theorem 3.1.1 (Weierstrass’s Function). The function

W (x) :=
∑
k≥0

ak cos(bkπx),

is continuous and nowhere differentiable in R, provided that 0 < a < 1, ab > 1 + 3π
2
, b >

1 such that b is an odd integer. We refer to W (x) as “the Weierstrass function” or
“Weierstrass’s function”.

Proof. First, let’s prove continuity.

Having a ∈ (0, 1) means that
∑

k≥0 a
k = 1

1−a <∞. It is also obvious that

sup
x∈R
|an cos(bnπx)| ≤ an.

Now, Weierstrass’ M-test assures us that the sequence of partial sums converges uniformly
to W (x), i.e.,

n∑
k=0

ak cos(bkπx) −→ W (x),

whence W is continuous in R.

Now, let’s prove it is nowhere differentiable. Let x0 ∈ R and m ∈ N and let αm ∈ Z such
that bmx0 − αm ∈ (−1

2
, 1

2
]. Define

• xm+1 := bmx0 − αm
• ym := αm−1

bm

• zm = αm+1
bm

which gives us

ym − x0 = −1 + xm+1

bm
< 0 <

1− xm+1

bm
= zm − x0 ⇒ ym < x0 < zm.

As m increases, both ym, zm −→ x0. Considere the left-hand difference quotient

W (ym)−W (x0)

ym − x0

=
∞∑
n=0

(
an

cos (bnπym)− cos (bnπx0)

ym − x0

)

=
m−1∑
n=0

(
(ab)n

cos (bnπym)− cos (bnπx0)

bn (ym − x0)

)
+
∞∑
n=0

(
am+n cos (bm+nπym)− cos (bm+nπx0)

ym − x0

)
= S1 + S2.
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We deal with S1 and S2 separately. Let’s start with S1. Noting that |sin(x)|
|x| ≤ 1 and using

the well know trigonometric identity

sin(x) sin(y) =
cos(x− y)− cos(x+ y)

2
,

S1 can be bounded as follows:

|S1| =

∣∣∣∣∣∣
m−1∑
n=0

(ab)n(−π) sin

(
bnπ (ym + x0)

2

) sin
(
bnπ(ym−x0)

2

)
bnπ ym−x0

2

∣∣∣∣∣∣
≤

m−1∑
n=0

π(ab)n =
π ((ab)m − 1)

ab− 1
≤ π(ab)m

ab− 1
.

Now, for S2, we proceed as follows: since b > 1 is an odd integer and αm ∈ Z,

cos
(
bm+nπym

)
= cos

(
bm+nπ

αm − 1

bm

)
= cos (bnπ (αm − 1))

=
[
(−1)b

n]αm−1
= −(−1)αm

and

cos
(
bm+nπx0

)
= cos

(
bm+nπ

αm + xm+1

bm

)
= cos (bnπαm) cos (bnπxm+1)− sin (bnπαm) sin (bnπxm+1)

=
[
(−1)b

n]αm
cos (bnπxm+1)− 0 = (−1)αm cos (bnπxm+1)

which can be used to write S2 as

S2 =
∞∑
n=0

am+n−(−1)αm − (−1)αm cos (bnπxm+1)

−1+xm+1

bm

= (ab)m(−1)αm
∞∑
n=0

an
1 + cos (bnπxm+1)

1 + xm+1

Oberserve that every term appearing in the series just obtained is non-negative and xm+1 ∈
(−1

2
, 1

2
], meaning that

∑
n≥0

an
1 + cos (bnπxm+1)

1 + xm+1

≥ 1 + cos (πxm+1)

1 + xm+1

≥ 1

1 + 1
2

=
2

3
(3.1)

allows us to find a lower bound.

Both the upper and the lower bound that we have found helps us assure the existence of
an ε1 ∈ [−1, 1] and η1 > 1 satisfying
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W (ym)−W (x0)

ym − x0

= (−1)αm(ab)mη1

(
2

3
+ ε1

π

ab− 1

)
. (3.2)

Regarding the right-hand quotient

W (zm)−W (x0)

zm − x0

= S ′1 + S ′2

an analogous argument is followed and we can conclude that there exists an ε2 ∈ [−1, 1]
and η2 > 1 satisfying

W (zm)−W (x0)

zm − x0

= −(−1)αm(ab)mη2

(
2

3
+ ε2

π

ab− 1

)
(3.3)

Since we had assumed ab > 1 + 3π
2

, 3.2 and 3.3 have opposite signs. Also, (ab)m −→ ∞
as m → ∞ implies that W has no derivative at x0. We conclude that W is nowhere-
differentiable on R.

Weierstrass’ function was impossible to visualize until the appearance of computer graph-
ics. In Figure 3.1, an image generated by computer can be seen.

Figure 3.1: Graphic of the Weierstrass function (up to seven partial sums) over the interval
[−2, 2]. Values of a = 1

2
, b = 13.

In order to create a curve that preserves the behaviour of the Weierstrass function, it will
suffice us to do it the next way:

First, since W (x) = W (x+ 2), x ∈ R, pick any interval [x0, x0 + 2]. Now, the curve

WC :[x0, x0 + 2] −→ C
t 7−→ t+ iW (t)
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is a complex curve that has no derivative anywhere. Also, we can create a Jordan curve
just by considering gπ

2
the π

2
anticlockwise rotation around the origin and the curves

Wxi : [xi, xi + 2] −→ C defined by t 7−→ Axi(t− 2) + τxi , where xi = x0 + i, i = 0, 2, 4, 6
and

• Wx0 = WC |[x0,x1].

• Axi = gπ
2
◦Wxi−1

.

• τxi = Wxi−1
(xi)− Axi(xi−1).

The concatenation of this for curves gives us a jordan curve as shown in Figure 3.2, where
[x0, x1] = [0, 2] and the values of a, b are chosen as in Figure 3.1.

Figure 3.2: The Weierstrass closed curve.

3.2 The von Koch curve

In 1904, Koch published in [8] the curve we are about to study. His motivation to think of
that curve can be read in [6]: he found that, despite having served to correct the miscon-
ception of curves having tangent everywhere but for some particular points, the analytic
nature of the Weierstrass function hid the geometrical nature of the curve, not allowing
you to see why it has no tangent.
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The von Koch curve is created as follows: start with the line segment [0, 1] ⊂ C and
divide it in thirds. Create an equilateral triangle with base the middle third so that it
“points outwards” and remove its base. Repeat indefinitely for every segment and the
Koch curve is obtained at the limit. This provides a well-defined locus for the curve; we
aim to parametrize and prove that, despite being continuous, it is nowhere differentiable.

First of all, let K be the Koch curve and Kn be the n-th construction of K, where K0 is
just the line segment [0, 1]. In order to provide a parametrization of K, we will create a
parametrization of Kn, namely κn, so that it is continuous and injective. The limit of the
sequence {κn}n≥0 will be our parametrization.

3.2.1 Parametrizing Kn.

Observe that K1 has 4 different parts: a horizontal line segment, one side of the equilateral
triangle, the other side of the equilateral triangle and another horizontal line segment, all
having a common point two by two. Since K2 is created by copying K1 into the sides of
K1, it follows that K2 is formed by 42 line segments. In general, its obvious that Kn is
formed by 4n.

In order to parametrize Kn, we give a total order on its sides. For K1 we number them
as in Figure 3.3.

Figure 3.3: Numbering of K1.

Now, the elements on K2:

The segments produced by applying the procedure on L0 are as follows: L00 is the line
segment on K2 that has the vertex 0; L01 the one that shares a common point with it, L02

the one that shares a common point with L01 that is not L00 and L03 the one that shares
a common point with L02 that is not L01. The same goes on for the segments produced
by applying the procedure to L1, L2 and L3.

In general, the segments produced at (n+ 1)-th iteration are numbered as follows: if the
line segments have been produced by applying the procedure on Lb1b2...bn , then Lb1b2...bn0

is the one that shares a common point with the previous segment Lb1b2...bn−1 or that has
vertex 0 if bi = 0, i = 1, . . . , n; Lb1b2...bn1 is the one connected to Lb1b2...bn0 that lies on
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the same previous line segment, etc. The numbering for K2 is shown in Figure 3.4 to
exemplify this better.

Figure 3.4: Numbering of K2.

Now, since Kn has 4n different parts, our parametrization of Kn can be done in the next
way. Considering t ∈ I in its representation in base 4, t = (0.t1t2 . . .)4, the function

κn : I −→ Kn, n ≥ 0 (3.4)

that maps [(0.b1 . . . bn)4, (0.b1 . . . (bn+1))4] linearly into Lb1...bn parametrizes Kn. Actually,
κn is continuous and injective by construction, which means that it is a homeomorphism
onto Kn.

3.2.2 The sequence κn converges uniformly.

In order to show that κ := limn→∞ κn exists and is continuous, we will show that {κn}n≥1

is a Cauchy sequence.

Observe that

‖κ1 − κ0‖∞ =

√
3

6

. Since every step scales the previous step by a factor of 1
3
, we have that

‖κn+1 − κn‖∞ =

√
6

3n6
.

Thus, for fixed n and arbitrary j we have

‖κn+j − κn‖∞ ≤
j−1∑
i=0

‖κn+i+1 − κn+i‖∞ =

√
3

6

j−1∑
i=0

1

3n+i
<

√
3

3n6

j−1∑
i=0

1

3i
=

√
3

3n4
(3.5)

which vanishes as n increases. Therefore, {κn}n≥0 is a Cauchy sequence and, therefore,
there exists a function κ such that it is continuous and satisfies limn→∞ κn = κ. We must
now show that κ(I) = K.
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3.2.3 Proving κ(I) = K.

We have stated that κn −→ k uniformly, which implies that κ(I) ⊂ K. We must now
prove that K ⊂ κ(I). For that matter, let us give the next definition:

Definition 3.2.1. We will say that p ∈ Kn is a nodal point of Kn if p is vertex 0 or 1
or is common to two consecutive intervals La1...an and Lb1...bn. We will denote the set of
nodal points of Kn by N (Kn).

It is trivial to observe that the set of nodal points of Kn is

N (Kn) = {p ∈ Kn/p = κn(
m

4n
), m = 0, . . . , 4n}

in view of the definition of κn. Also, N (Kn) ( N (Kn+1).

Since K is the limit of the approximating polygons Kn, the set of nodal points of K can
be defined as

N (K) :=
⋃
n≥0

N (Kn).

Now, following the notation of [20], denote

πn := {t ∈ I / t =
m

4n
, m = 0, . . . , 4n}.

It is clear that κn(πn) = N (Kn). Now, it will come in handy to show the next result:

Theorem 3.2.1. The set

π :=
⋃
n≥0

πn

is dense in [0, 1].

Proof. Let t1, t2 ∈ πn such that t1 = m
4n
, t2 = m+1

4n
, m = 0, . . . , 4n − 1. It is obvious that

|t1 − t2| = 1
4n

. Let now a, b ∈ [0, 1] with a < b and n ≥ 0 satisfying |a − b| > 1
4n

. Then,
there is an r ∈ πn(⊂ π) such that a < r < b.

Since κn is a homeomorphism between [0, 1] and Kn,

Theorem 3.2.2. The set of nodal points of K is countable.

Proof. Having that N (Kn) is a countable set and N (K) is the countable union of count-
able sets, implies that N (K) is itself a countable set.

Theorem 3.2.3. K has the cardinality of the continuum.

Proof. First, note that κ(I) ⊂ K which means that #K ≥ c = #K. Since K ⊂ D, and
since D has the cardinal of the continuum, we conclude that #K = c.
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Observe that the relevance of Theorem 3.2.3 lies in the fact that, together with Theo-
rem 3.2.2, helps us conclude that not every point in K is a nodal point. We still need the
next proposition to fully be capable of showing that κ(I) = K.

Theorem 3.2.4. Not every point in K belongs to one of the approximating polygons Kn.

Proof. Considere the construction of K1 and observe that it is the middle third that
changes. The same goes for every side in Kn: it is the middle third that will change in
the creation of the next one. This means that the points of a side Lb1...bn of Kn that
belong to K is homeomorphic to the Cantor set, which is nowhere dense. Therefore, the
set of points of K that belong to Kn is a countable union of those nowhere dense sets. It
follows from the Baire Category theorem that there are points that do not belong to any
approximating polygon Kn.

Finally, we can now show that κ(I) = K.

Theorem 3.2.5. κ(I) = K

Proof. Let then p ∈ K be any point. We have two possibilities:

• The point p is a never changing point of K. If so, that means that p appeared for
the first time at iteration n0 ≥ 0. Hence, there exists tn0 ∈ I such that κn0(tn0) = p
and, therefore, it means that κn(tn0) = p, n ≥ n0. We conclude that κ(tn0) = p by
continuity.

• The point p does not belong to the never changing points of K. Since triangles are
always created “to the outside”, this means that the point p does not belong to Kn

for any n ≥ 0. In such case, without any loss of generality, say that p lies in the
triangle Tn whose two of its sides are Lb1...bn and Lb1...(bn+1). It is clear that there
exists a sequence {Tn}n≥0 of triangles satisfying that p ∈ Tn, ∀n ≥ 0 and Tn ⊃ Tn+1.

Because the length of Lb1...bn is 1
3n

and the length of the major side of Tn is
√

3
3n

, that
means that Tn shrinks into a point ⇒ Tn −→ p. Now, for every point pn ∈ Lb1...bn
there exists a tn / κn(tn) = pn. This means that pn −→ p. Thanks to compactness,
there exists a subsequence {tnk} ⊂ {tn} such that tnk −→ t satisfying

κnk(tnk) −→ p.

Also, since κnk(tnk) −→ κ(t), we conclude that p = κ(t).

We can summarize what we have done as:

Proposition 3.2.6. There exists a continuous surjective function κ ∈ C(I,C) whose
image is the Koch curve K.
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3.2.4 The function κ is injective.

Observe that Proposition Theorem 3.2.6 together with Theorem 3.2.1 shows that N (K)
is dense in K. Also, they show that π is countable (although it could have been proved
straight). For this reason, we will call the elements of π rational points.

In order to prove the injectivity of κ, observe that K1 is contained in the closed triangle of
vertices {0, 1

2
+
√

3
6
i, 1}. Denote such triangle by T1,1. Now, K2 is contained in the union

of the closed triangles T2,1, T2,2, T2,3, T2,4 as shown in Figure 3.5.

Figure 3.5: Triangles T2,1, T2,2, T2,3, T2,4 and K2.

Now, let r ∈ π and let nr = inf{n ∈ N / r ∈ πn}. Then, κn(r) = κnr(r) for ever n ≥ nr,
whence κ(r) = κnr(r) for every r ∈ π. If r1 6= r2 are rational points and n ≥ 0 is such
that r1, r2 ∈ πn, since κn is injective,

κ(r1) = κn(r1) 6= κn(r2) = κ(r2)

which gives us that κ|π is injective. Note that if ri, ri+1 are two neighbouring points of πn,
for every t ∈ [ri, ri+1], κn(t) ∈ Tn,i. Moreover, it is also true that κm(t) ∈ Tn,i for n ≥ n.
This means that once the image of t gets into some Tn,i it does not leave it anymore.
Therefore, κ(t) ∈ Tn,i, since these sets are closed. In fact, κ(t) is the unique point in the
intersection of all Tn,i that contain the image of t under κ.

Let 0 < t1 < t2 < 1. Given that π is dense in [0, 1], there exists an n ≥ 0 such that there
are r1, r2 ∈ πn satisfying t1 < r1 < r2 < t2. Let

ri := min{r ∈ πn / t1 < r}

rj := max{r ∈ πn / t2 > r2}.

Then, κn(t1) ∈ Tn,i−1 and κn(t2) ∈ Tn,j and therefore κ(t1) ∈ Tn,i−1, κ(t2) ∈ Tn,j. Since
Dn,i−1 and Dn,j are disjoint, κ(t1) 6= κ(t2) and we conclude that κ in injective.

Summing up, we can claim that we have found a function κ ∈ C(I,C) that is a homeo-
morphism onto its image K.
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3.2.5 The Koch curve has no well-defined tangent lines

The argument will be as follows: we will pick points of K and show that there are, at
least, two tangent lines to it.

Theorem 3.2.7. No point of K has a well-defined tangent line.

Proof. We will divide the proof in two parts.

Nodal points do not have a well-defined tangent line.

Let p ∈ N (K) be a nodal point. It is clear that there exists

n0 = min{n ∈ N / p ∈ N (Kn)}

and let p ∈ Lb1...bn0 . Denote by p′n0
the other nodal point of Lb1...bn0 . At the next iteration,

Lb1...bn0 generates for new segments, with one nodal point not lying in Lb1...bn0 ; denote
such point by p′′n0

. Now, p ∈ Lb1...bn0bn1 and denote by p′n1
the other nodal point lying in

Lb1...bn0bn1 . This way, we have generated two sequences {p′n}n≥n0 , {p′′n}n≥n0 such that

p′n, p
′′
n −→ p.

Figure 3.6: Representation of p′n0
, p′n1

, p′′n0
, p′′n1

for a particular p and n0.

Let t′n, t
′′
n ∈ I be such that

κ(t′n) = p′n, κ(t′′n) = p′′n

and t ∈ I satisfying κ(t) = p. For every n ≥ n0, we can define vectors

v′n :=
p′n − p
t′n − t

v′′n :=
p′′n − p
t′′n − t

such that v′n and v′n+1 are colinear and v′′n and v′′n+1 are colinear too. That means that
they define the same unit vector

v′ :=
v′n
|v′n|

, v′′ :=
v′′n
|v′′n|

,
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whence

v′n
|v′n|
−→ v′,

v′′n
|v′′n|
−→ v′′

If K had a well-defined tangent line at p, the vectors v′ and v′′ would be collinear, but,
by construction, ](v′, v′′) ≡ π

6
(mod π), which concludes this part of the proof.

The points of K −N (K) do not have a well-defined tangent line.

Let p ∈ K −N (K) and let t1, t2 ∈ πn, (with t1 = m1

4n
, t2 = m1+1

4n
, m = 0, . . . , 4n− 1) such

that t1 < κ−1(p) < t2 for some n ≥ 0. Since p 6∈N (K) =⇒ an := |p−κ(t1)| 6= |p−κ(t2)| =:
y′n. Let’s say an < y′n. At the next step, [κ(t1), κ(t2)] produces four new segments, one of
those being [κ(t1), bn] and y′′n the nodal point produced not lying on [κ(t1), κ(t2)]. Hence,
p lies in the interior of the triangle with vertices {κ(t1), bn, y

′′
n}, which implies that the

vectors

y′n − p, y′′n − p

form an angle between π
6

and π.

Now, let t′n, t
′′
n and t be such that

κ(t′n) = y′n, κ(t′′n) = y′′n, κ(t) = p.

It is obvious that y′n, y
′′
n −→ p which means that if K had a tangent line at p, the limits

lim
n→∞

y′n − p
t′n − t

, lim
n→∞

y′′n − p
t′′n − t

would have to exist and coincide. But, if they exist, they have to form an angle between
π
6

and π, contradicting the hypothesis. Therefore, there is no well-defined tangent line at
p ∈ K −N (K) either.

We can conclude this section by saying that:

Theorem 3.2.8. The function κ ∈ C(I,C), which is a homeomorphism onto its image
K, is continuous and nowhere-differentiable.

3.2.6 The Koch snowflake.

A Jordan curve that is nowhere differentiable can be then generated by the concatenation
of three von Koch curves. The result is known in literature as the “Koch snowflake”.
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Figure 3.7: The Koch snowflake.

3.3 The Lynch Function

Through this text, and through most texts involving continuous nowhere differentiable
functions, usually two notions are key: the uniform limit of a sequence of functions (when
dealing with then in an analytical manner) and the Baire Category theorem (when a more
topological approach is made). These, despite being standard knowledge for a mathemati-
cian, are still pretty sophisticated concepts that can give the impression that continuous
nowhere differentiable functions are rare monsters. In that sense, Lynch provided in [10]
an example of a continuous nowhere differentiable function needing only basic concepts
of topology. It is for that reason that we show it here. Also, it will be helpful in section 5.2.

Let T : C −→ R be such that T (z) = Re(z). For any x ∈ R and Ω ⊂ C, let Ω[x] := {y ∈
R / x+ iy ∈ Ω}. We will define a sequence {Cn} with the next properties:

1. Cn is compact for n ∈ N.

2. Cn+1 ⊂ Cn ⊂ C.

3. T (Cn) = [0, 1], ∀n ∈ N.

4. diam(Cn) < 1
n
, for every x ∈ I and n ∈ N.

5. For every x1 ∈ I, ∃x2 ∈ I with 0 < |x− y| < 1 1
n

such that y1 ∈ Cn[x1], y2 ∈ Cn[x2]
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implies that
|y1 − y2|
|x1 − x2|

> n.

The sets Cn will be chosen as the closure of band neighbourhoods of the graph of polygonal
arcs defined on I. Property 3 holds trivially and property 4 can be obtained by choosing
the thickness of the bands appropriately to compensate for the steepness of each segment.
However, before actually constructing them, we will prove that property 5 holds for closed
band neighbourhoods of straight line segments.

Proposition 3.3.1. Property 5 holds for closed band neighbourhoods of straight line seg-
ments.

Proof. Let n ∈ N and m is such that m 6= n. Now, let f(x) = mx+ b and δ > 0, x1 ∈ I.
If m > n, choose x2 = x1 +δ and take a band neighbourhood Nε(f) of the graph of f . For

y1 ∈ Nε(f)[x] and y2 ∈ Nε(f)[x2] we have that |y1−y2||x1−x2| is the absolute value of the slope of
the line between points x1 + y1i, x2 + y2i. The minimum of this slope is obtained when

y1 = mx1 + b+ ε, y2 = mx2 + b− ε.

Figure 3.8: Line segment f for Lynch’s function with band neighbourhood Nε(f).

We can then choose ε > 0 sufficiently small so that

|y1 − y2|
|x1 − x2|

= |m− 2ε

δ
| > n.

If m < n we would only have to repeat the argument, mutatis mutandis. Therefore, the
proof is finished.
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Now, say Cn has been constructed. We construct Cn+1 in the next way. Let P be
a polygonal arc lying in the interior of Cn where each segment Pn has a slope whose
absolute value exceeds n. For each i ∈ {0, . . . , k} let δi satisfying

0 < δ < min{|T (Pi)|
2

,
1

n
}.

Proposition Theorem 3.3.1 assures us that there is an εi-neighbourhood for each Pi. Ob-
serve that, since δi <

|T (Pi)|
2

, we can always pick an y ∈ T (Pi) for every x ∈ T (Pi).

Define ε := min{εi, i = 1, . . . , k}. Then, Nε(P ) is a closed neighbourhood of P satis-
fying property 5. Observe that you can always pick a sufficiently small ε > 0 such that
Nε(P ) ⊂ Cn and properties 3, 4, and 5 are satisfied. Define Cn+1 = Nε(P ).

Figure 3.9: Scheme of C1 and C2 as above described.

We have created a sequence of bands with greater slope and narrower for each element in
the sequence. We can now define the Lynch function.

Let C =
⋂
Cn. It is obvious that diam(C[x]) = 0 ∀x ∈ I so that C is the graph of a

function L : I −→ R. Since C is compact, L is necessarily continuous.

Theorem 3.3.2. The function L : I −→ R as above described is nowhere differentiable
on I.

Proof. Let x1 ∈ I, δ > 0 and let n ∈ N such that δ > 1
n
. Property 5 implies the existence

of an x2 ∈ I with 0 < |x1 − x2| < 1
n

such that y1 ∈ Cn[x1], y2 ∈ Cn[x2] implies that

| y1 − y2

x1 − x2

| > n.
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Since L(x1) ∈ Cn[x1] and L(x2) ∈ Cn[x2], ther is no bound for the difference quotient

|L(x1)− L(x2)

x1 − x2

|

as δ =⇒ 0. We conclude that L is not differentiable at x1.

Of course, the Lynch function does not present a curve per se. The Lynch curve is,
therefore, defined in the following way: if L : I −→ R is the Lynch function, then

LC :I −→ C
t 7−→ t+ L(t)i

is the Lynch (complex) curve. Since L is nowhere differentiable, so is LC. We have, then,
showed our last example.



Chapter 4

Space-Filling Curves

Another one of the greatest mathematical monsters is that of space-filling curves. It
was the year 1878 when Cantor proved that any two given smooth manifolds of finite
dimensions (without needing them to have equal dimension) had the same cardinality [4],
which, a priori, means that you could find a bijective map between a line segment and a
square. Just a year later, Netto proved that in order to map the interval [0, 1] into the
square [0, 1]2 bijectively, such a mapping had to be discontinuous [14]. Peano constructed
the very first continuous curve that passes through every point of a two-dimensional
region with positive Lebesgue measure [16]. Such curve is constructed iteratively and is
continuous and surjective from I to Q = {z ∈ C / 0 ≤ Re(z), Im(z) ≤ 1} and nowhere
differentiable. For a proof of this, see [18], chapter 3. Although Peano never provided
drawings of the construction of his curve, the first three iterations are shown below.

(a) First iteration. (b) Second iteration. (c) Third iteration.

Figure 4.1: Three first iterations of the Peano curve.

However, this is not the only curve of its kind: Hilbert provided in a paper in 1891 the
start to the visual satisfaction of surface-filling curves. The curve he provided there is,
as Peano’s, constructed iteratively, continuous and surjective from I to Q and nowhere
differentiable. Below, the three first iterations of it.

25
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(a) First iteration. (b) Second iteration. (c) Third iteration.

Figure 4.2: Three first iterations of the Hilbert curve.

In [3] it is shown that if p, q ∈ Ω (where Ω ⊂ C is a homeomorphic image of D), then
there does always exists a continuous surjective map φ : [a, b] ⊂ R −→ Ω satisfying
φ(a) = p, φ(b) = q. Hilbert’s and Peano’s are particular cases of this phenomena. De-
spite being this the most famous cases of the so called space-filling curves (term that we
will define later) they will not conform the corpus of this chapter. It is in the next step
of this field of research that this chapter works on: continuous injective maps from [0, 1]
into C with positive Lebesgue measure.

We are going to give construction, properties and proofs of two of the curves that satisfy
this condition: Osgood’s curve (section 4.1) and Knopp’s curve (section 4.2). For that
matter, we will need the next definition:

Definition 4.0.1. Let γ : I −→ C be continuous. We will say that γ is a space-fillig
curve if µ(γ(I)) > 0.

4.1 Osgood’s Curve

In 1903, Osgood published the very first construction of a Jordan arc with positive
Lebesgue measure, although he used the word area. He does actually construct a whole
family of such curves, and as is said in [18], such curves are strongly inspired by the
geometric generation of the Peano curve [16]. We provide an up-to-date and rigorous ap-
proach to the construction of his curve, since it does not usually appear in the literature
except for mentioning its existence and, in fact, it is only treated in some detail in [18] and
Osgood’s original paper [15] and some references that only treat it in a more informal way.

First, a geometric construction of the locus of the curve will be given, following an itera-
tive procedure, which will immediately lead us to find that such locus has positive outer
Lebesgue measure. Second, we will construct a Cantor-type set and provide a total order
on the points of the locus so that the identification with the elements of the Cantor-type
set and its complementary set is natural, allowing us to interpret the locus as the trace of
our parameterized curve and finally, after such a parametrization is done, continuity and
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injectivity will follow.

4.1.1 Construction of the locus for Osgood’s Curve

Let P ⊂ C be a square of side length 1 with vertices {0, 1, 1+i, i}. Our will is to construct
a curve satisfying that has Lebesgue measure λ ∈ (0, 1); such thing will be accomplished
by subtracting some rectangular areas (smaller in each iteration), so that the sum of the
rectangular areas adds up to 1 − λ at the limit. Within every iteration, the removed
rectangular shapes leave, by construction, new squares, all identical to each other. In the
image below, the first iteration is shown. This very same process is repeated in every one
of the sub-squares obtained at the previous iteration. In figures Figure 4.3a, Figure 4.3b,
Figure 4.3c, the blue shaded squares are what is left after the first, second and third
iteration respectively for a given width of the rectangles.

(a) Firs iteration. (b) Second iteration. (c) Third iteration.

Figure 4.3: Three first iterations of the Osgood mesh.

Definition 4.1.1. We will say that the width of a removed rectangle at the n + 1-th
iteration is wn, for n ≥ 0.

Definition 4.1.2. We will say that a square created at the n-th iteration has side length
ln, for n ≥ 1.

Our goal now is to obtain the side length of a working square in a particular iteration
and the distance among two subsquares of the same partition. Since in every iteration
we create two vertical rectangular shapes and two horizontal rectangular shapes in every
subsquare created at the previous iteration, 9n more sub-squares are created at iteration
n. In each one of those squares, the removed area at iteration n, denoted by Sn, follows
the next rule:

Sn = 4w2
n + 12wnln+1 (4.1)

which comes from the fact that you are subtracting the 12 green bars and the 4 black
squares as shown in Figure 4.4. Also, notice that the side of the previous square is three
times the side of a subsquare plus two times width of a rectangle created at the last
iteration, i.e.:

ln = 3ln+1 + 2wn, n ≥ 0. (4.2)
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Figure 4.4: Scheme representing wn, ln and ln+1 at the n+1 iteration in a given subsquare
of the last iteration.

Therefore, we want to find sequences {ln}n≥0, {wn}n≥0 ⊂ R satisfying the following
relationship:

1− λ =
∑
n≥0

9nSn, λ ∈ (0, 1) (4.3)

In [18], the author claims that

”This may be accomplished as follows: At the first step, we choose the width
of the bars to be (1−

√
λ)/4. At the next step, (1−

√
λ)/24, and at the next

step, (1−
√
λ)/144, etc...”

However, he does not provide a proof of this nor a motivation to choose such values.
Instead of proving this, we will prove that, for every c > 3, there exist two different
values for w0 so that relationship (4.3) is satisfied, provided that wn+1

wn
= 1

c
, which does

not appear anywhere in the literature.

Theorem 4.1.1. Let c > 3 and λ ∈ (0, 1), and let {wn}n≥0 be a sequence satisfying
wn = w0

cn
. Then, there exist two different values of w0 such that the series

∑
n≥0 9nSn

converges to 1− λ. Those two values are the solutions to the next quadratic equation:

cw2
0 + (3− c)w0 +

(1− λ)(c− 3)2

4c
= 0 (4.4)

Proof. We must realize that l0 = 1, since we start with only one square and since ln =
3ln+1 + 2wn, n ≥ 0, proceeding by recursion, we obtain:
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ln+1 =
1

3
ln −

2

3
wn

=
1

3
(
1

3
ln−1 −

2

3
wn−1)− 2

3
wn =

1

32
ln−1 −

2

3
(wn +

1

3
wn−1)

=
1

3n+1
l0 −

2

3

n∑
i=0

1

3i
wn−i =

1

3n+1
− 2

3
w0

n∑
i=0

1

3i
1

cn−i

=
1

3n+1
− 2

3cn
w0

n∑
i=0

( c
3

)i
=

1

3n+1
+

2w0 (3n+1 − cn+1)

3n+1cn(c− 3)

which vanishes as n tends to infinity. This leads us the expression

Sn = 4w2
n + 12ln+1wn =

4w2
0

c2n
+

12w0

cn

(
1

3n+1
+

2w0(3n+1 − cn+1)

3n+1cn(c− 3)

)
=

4w2
0

c2n
+

4w0

3ncn
+

8w2
0(3n+1 − cn+1)

3nc2n(c− 3)
.

This tells us that our series is not defined for c = 3. Now,

9nSn = 9n
(

4w2
0

c2n
+

4w0

3ncn
+

8w2
0(3n+1 − cn+1)

3nc2n(c− 3)

)
=

4w2
032n

c2n
+

4w03n

cn
+

8w2
03n(3n+1 − cn+1)

c2n(c− 3)

Which tells us that the series A =
∑

n≥0 9nSn will be convergent if and only if se-

ries A1 =
∑

n≥0
32n

c2n
, A2 =

∑
n≥0

3n

cn
and A3 =

∑
n≥0

3n(3n+1−cn+1)
c2n

are convergent, since

A = 4w2
0A1 + 4w0A2 +

8w2
0

c−3
A3. By d’Alembert’s criteria, we can assure convergence for

A1, A2 and A3 for c > 3 and divergence for c < 3. Since we were excluding c = 3 so that
Sn is defined, we can claim that A is convergent if and only if c > 3.

Now, finding the values of A1, A2 and A3 for any c > 3 is easy: those values are:

1. A1 =
c2

c2 − 9

2. A2 =
c

c− 3

3. A3 =
c3

9− c2

Therefore, after some manipulations, we obtain:∑
n≥0

9nSn =
4w2

0c
2

c2 − 9
+

4w0c

c− 3
+

8w0c
3

(c− 3)(9− c2)
=
−4cw0(3 + c(w0 − 1))

(c− 3)2
(4.5)
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and as we wish (4.3) to be satisfied, we impose

1− λ =
−4cw0(3 + c(w0 − 1))

(c− 3)2
(4.6)

which leads to equation cw2
0 + (3− c)w0 +

(1− λ)(c− 3)2

4c
= 0 and as its discriminant is

equal to (c− 3)2(1− λ) (which is always positive), it does always have two real solutions,

which are w0 =
(c− 3)(1±

√
λ)

2c
.

In order to construct a curve as the one we want, we need to connect the squares in
a particular manner. In Figure 4.5 the joins between squares of the first partition are
represented. In general, at the n-th iteration, joins are created as follows:

Figure 4.5: The black segments represent the joins between squares at the first iteration.

Let’s say that we want to join the subsquares within a square created at a given iteration.
Then, either two of the vertices of that square serve as mooring points for the two joins
such square has (namely a and b) or it has one join and one of its vertex is 0 or 1 + i.
Either way, the procedure is the same. We want first to join squares that are in the
same colmun, second the column that is in the middle and finally the column that is left,
considering that those columns must be joined. For that matter, start at a (or at vertex 0
or 1 + i if applicable), move through two consecutive sides of that subsquare so that you
arrive at the vertex of the subsquare that is in the same diagonal as your starting point.
Join this point with the nearest vertex of the subsquare that is in its same column. Now,
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move through two consecutive sides of that subsquare so that you arrive to the vertex of
the subsquare that is in the same diagonal as your starting point. Join such point with
the nearest vertex of the subsquare that is in its same column. As you have now gone
through the three rows of such column, we need to join it to the middle column. Join
that vertex to the nearest vertex of the subsquare from the middle column. By repeating
the process, we arrive at b. Observe that, once created, joins do not change.

Figure 4.6: Joins of the first and second iteration.

4.1.2 Calculating the Lebesgue measure for Osgood’s Curve.

Denote by Cn(λ) the union of all the squares and joins left after the n-th iteration. This
set has Lebesgue measure

1−
n∑
k=0

9kSk

and therefore the set C =
⋂
n≥1 Cn(λ) has Lebesgue measure

lim
n→∞

1−
n∑
k=0

9kSk = 1− lim
n→∞

n∑
k=0

9kSk = 1− (1− λ) = λ .

We want the set C to be the trace of our curve, which I shall now construct.

Observe that in the first iteration of the construction of C we have 17 different parts: 9
squares and 8 joins. Within every iteration, 9 more subsquares and 8 more joins are cre-
ated inside every square created at the previous iterations and the previous joins remain
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unchanged. This suggests that we should create a domain of definition that captures this
behavior. Such thing shall be done as follows:

4.1.3 Parametrization of the locus and its continuity.

First, we provide an order on the elements of C. For C1(λ) we obtain 17 different parts (9
squares and 8 joins) and we number them as in the picture below.

Figure 4.7: Ordering of the elements of the first partition.

At the second iteration, square P(2b1) is divided into 17 new different parts (9 squares and
8 joins), which we enumerate as P(2b1)bj , j = 0, . . . , 16, in the following way: P(2b1)0 is the
subsquare that is joined to the (previous) square P2(b1−1) if b1 ≥ 1 or the one that has the
vertex 0 of E in case that b1 = 0. P(2b1)2 is the one connected to P(2b1)0, P(2b1)4 is the one
connected to P(2b1)2 that is not P(2b1)0... and P(2b1)16 the one that connects to the next
set of subsquares by P2b1+1. Similarly, P(2b1)(2bj+1) is the join connecting squares P(2b1)(2bj)

and P(2b1)(2bj+2). The same process is repeated ad infinitum. This provides an order in C
in base 17. In fact, squares only have even figures and joins have n even figures, one odd
figure and infinite zeros, as joins, once created, do not change any more.

We can now define Γ8 as

Γ8 = {x ∈ [0, 1] / x = (0.(2b1)(2b2) . . .)17, bi = 0, . . . , 8}

so that we want to map Γ8
c into the joins and Γ8 into the rest of the points of C. Let’s

start by doing that last thing and then extend it to Γ8
c.

Since
P2b1 ⊃ P(2b1)(2b2) ⊃ P(2b1)(2b2)(2b3) · · · (4.7)
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is a nested sequence of closed squares that shrinks into points,

P(2b1)

⋂
P(2b1)(2b2)

⋂
P(2b1)(2b2)(2b3) · · · (4.8)

defines a point which, by construction, lies on C (and not in any join). Then, we define

f ( (0.(2b1)(2b2)(2b3) . . .)17) ) := P(2b1)

⋂
P(2b1)(2b2)

⋂
P(2b1)(2b2)(2b3) · · · (4.9)

which is a function on Γ8 and we extend it to I. Such thing is done by linear interpolation
in the next sense: if (an, bn) is an interval removed from I at a certain iteration of the
construction of Γ8, we define

F (t) =
f(an)(bn − t) + f(bn)(t− an)

bn − an
, t ∈ (an, bn).

Hence, the extension is the map γ : I −→ C defined by

γ(t) :=


f(t) if t ∈ Γ8

F (t) if t ∈ Γ8
c

(4.10)

is both continuous and injective. In order to proof this, we need a couple of previous
lemma.

Lemma 4.1.2. Consider Γ8
1 defined as

Γ8
1 := I −

8⋃
k=1

(
2k − 1

17
,
2k

17

)
and with that, define

Γ8
j := Γ8

j−1−
17j−1

2⋃
k=1

(
2k − 1

17j
,

2k

17j

)
, j ≥ 1.

Then, the set Γ8 is the intersection of all Γ8
j, i.e.,

Γ8 =
⋂
j≥1

Γ8
j .

Proof. First, consider t ∈ Γ8, that is, t = (0.(2b1)(2b2) . . .)17, bi = 0, . . . , 8. Let tj =
(0.(2b1)(2b2) . . . (2bj))17 be the truncation of t after j digits. It is clear that lim

j→∞
tj = t.

Actually,

tj ≤ t ≤ tj +
1

17j
, j ≥ 1.

Observe that the numbers in I that have j decimal (non-zero) digits and whose digits
are even are exactly the left endpoints of the intervals that conform Γ8

j, meaning that[
tj, tj + 1

17j

]
⊂ Γ8

j ⇒ t ∈ Γ8
j, ∀j ≥ 1 and, therefore, t ∈

⋂
j≥1 Γ8

j.
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Conversely, suppose t ∈
⋂
j≥1 Γ8

j, which, obviously, means that t ∈ Γ8
j, j ≥ 1. Now,

again, observe that the elements of Γ8
j are the numbers in I such that their j-th truncation

uses only even figures in base 17 (see Figure 4.8). Thus, every truncation of t uses only
even figures in base 17 and as t is the limit of the sequence {tj}j≥1 (with tj the truncation
of t after j decimal digits), it implies that t has only even figures in base 17. Hence, t ∈ Γ8

and this concludes the proof.

Figure 4.8: The segments represent each of the intervals contained in Γ8
1. Below the

segments, the value the boundary points of some intervals; above, their expression in
base 17 (finite expression if the numerator of its corresponding fraction is even, infinite
expression otherwise).

Lemma 4.1.3. The set Γ8 is a Cantor-type set.

Proof. Let t ∈ Γ8 ⇒ t ∈ Γ8
j, j ≥ 1. Let now j0 ≥ 1. If t ∈ Γ8

j0 , that means that it
belongs to one and only one of its contained subintervals. Denote such interval by J0 and
define tj0 ∈ J0 in the next way: if t is not the left extreme of J0, then tj0 is the left extreme

of J0; otherwise, tj0 is the right extreme of J0. As |J0| =
1

17j0
⇒ |t − tj0| ≤

1

17j0
. Now

again, as t is in Γ8 and it belongs to J0 ⊂ Γ8
j0 , it will belong to Γ8

j0+1 and, in particular,
to one of the subintervals in which J0 is divided, namely J1, and we can then define tj1
analogously to how it was done with tj0 . Proceeding by iteration, we end up constructing
a sequence tji , i ≥ 0 so that it converges to t (since by construction |t − tji | ≤ 1

17ji
→ 0

as i → ∞). Therefore, t is an accumulation point, give the fact that the extremes of
the intervals always remain in Γ8. Since t was chosen arbitrarily, every point in Γ8 is an
accumulation point.

Now, Γ8 is closed because we have shown in Lemma Theorem 4.1.2 that it is a countable
intersection of closed sets; the fact that we have just shown that it has no isolated points
makes it a perfect set. Also, being closed, together with the fact that it is a subset of I
makes it bounded, and by Heine-Borel’s theorem it is compact.

Now, observe that Γ8 contains no subinterval of I: since Γ8 can be constructed be subtrac-
tion of open subintervals of length 1

17n
, that means that any fixed but arbitrary subinterval

[a, b] ⊂ I contains, at least, one of those open subintervals of length 1
17m

< |b − a| or is,
at least, partially contained into one of those, and we can conclude that Γ8 contains no
subintervals.



4.1. OSGOOD’S CURVE 35

Finally, the closure of Γ8 is itself since it is closed and, as it contains no intervals, it has
empty interior, whence nowhere dense.

We are now capable of proving that our function γ is continuous and injective.

Theorem 4.1.4. The function γ defined in 4.10 is continuous and injective.

Proof. Let’s first prove injectivity: any point on C lies on a join or it does not. If so, it
is clear by construction that there is one and only one preimage in one of the elements
of Γc8. If not, it must lie on Pb1 and on Pb1b2 and on Pb1b2b3 and so on and so forth. The
point satisfies that it cannot lie in two squares that belong to the same partition. Hence,
the point can be defined as a sequence of nested closed squares (which is unique) that
collapses into a point, which, in turn, correspond to a unique sequence of closed intervals
that shrink to a point and defines a unique element in Γ8, as had been stated in the
definition of f .

Now, let’s prove continuity. This will be done in various steps: first, we provide the
approximating polygons, then, the functions that have those approximating polygons as
image. With that, we show that those functions converge uniformly, therefore its limit is
continuous and we show that, in fact, such limit is γ.

Figure 4.9: Q1 and C1(λ). Figure 4.10: Q3 and C3(λ).

Constructing the polygons.

Considere Cn(λ) as before. Every square in Cn(λ) has two joins but P0...0 and P(16)...(16)

that have only one. For squares P0...0 and P(16)...(16) draw the diagonal that vertex 0 and
the vertex that has the join have in common and the diagonal that vertex 1 + i and the
vertex that has the join have in common respectively. For any other square, draw the
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diagonal that connects the vertices that have joins. The resulting shape of combining
the diagonals and the joins is the approximating polygon of order n, namely, Qn. See
Figure 4.9 and Figure 4.10 for an image of Q1 and Q3 in context with C1(λ) and C3(λ).
As long as Qn is defined after the construction of Cn(λ), the sequence {Qn}n∈N converges
to the locus of the Osgood curve. See Figure 4.9 and Figure 4.10 for a scheme of this.

Parametrizing the polygons.

In order to parametrize Qn, consider Γ8
n and (Γ8

n)c and let γn be such that:

• it maps each interval contained in Γ8
n to the diagonal segments of Qn as follows:

[0, 1
17n

] is mapped into the diagonal of P0...0, [ 2
17n
, 3

17n
] is mapped into the diagonal

of P0...02, etc.

• it maps each interval contained in (Γ8
n)c to the vertical and horizontal segments

of Qn (the joins of Cn(λ)) as follows:
(

1
17n
, 2

17n

)
is mapped into P0...01,

(
3

17n
, 4

17n

)
is

mapped into P0...03,etc.

Since it is picewise linear, γn ∈ C(I, E). We have then parametrized it continuously.

The limit of the sequence {γn}n≥1.

We will now prove that the sequence {γn}ngeq1 ⊂ C(I, E) is a Cauchy sequence. Observe
that γn and γn+1 coincide at the joins of Cn(λ). Thus, they can only differ over the
squares of Cn(λ), which means that ‖γn+1 − γn‖∞ <

√
2ln. Hence, for a fixed n ∈ N and

an arbitrary j ∈ N,

‖γn+j − γn‖∞ = ‖(γn+j − γn+j−1) + (γn+j−1 − γn+j−2) + · · ·+ (γn+1 − γn)‖∞

<
√

2

n+j−1∑
i=n

li
n→∞−→ 0

which follows from the fact that the series
∑

n≥0 ln is convergent. This proofs that {γn}n∈N
is a Cauchy sequence. Therefore, it has a limit and such limit is a continuous function
from I to E, namely lim

n→∞
γn = γ̃ ∈ C(I, E).

The limit is our function γ.

So far, the reasoning we have followed has lead us to the fact that the image of I via γ̃ is
contained in the Osgood curve. Let’s show that it is indeed the Osgood curve and, with
that, that γ = γ̃.

For that matter, consider p ∈ C. That means that there is a t ∈ I such that γ(t) = p.

Let first p lie in a join, which means that t ∈ Γ8
c. As joins, once created, do not change

any more, that means that p = γn(t) is constant for every n ≥ 1 and it is therefore in the



4.2. KNOPP’S OSGOOD CURVE 37

image of γn for every n ≥ 1 and in the image of γ.

Now, if p does not lie in a join, that means that t ∈ Γ8 such that p = γ(t). We have two
possible scenarios:

• The point p lies in the diagonal of a given square of its defining sequence of squares as
in 4.8 (and, therefore, in the diagonal of every following subsquare), namely Pb1...bn .
Then, there exists a sequence {tk}∞k=n such that γk(tk) = p and it is, as before, both
in the image of γn and γ.

• The point p does not lie in any diagonal. In such case, observe that if p =⋂
n≥1 Pb1...bn as in 4.8 and {pn}n≥1 is a sequence satisfying pn ∈ Pb1...bn , then p =

limn→∞ pn. This is actually true, in particular, for pn lying in the correspond-
ing diagonal of Pb1...bn . Then, for every n ≥ 1 there is a tn ∈ Γ8

n such that
γn(tn) = pn ⇒ limn→∞ γn(tn) = p = γ(t). Since I is compact, there is a subse-
quence {tnk} such that tnk −→ t which implies that γnk(tnk) −→ γ(t) = p. This
concludes that γ̃ and γ are the same function.

It shall be remarked that Jordan arcs with positive n-dimensional Lebesgue measure are
typically referred to as Osgood curves.

4.2 Knopp’s Osgood Curve

Despite being the first proposal of a Jordan arc with positive two-dimensional Lebesgue
measure, Osgood’s construction was criticized because of the need for “joins”. Sierpiński
was the first one to provide an example of an Osgood curve that had no need for joins,
although it had kind of a difficult construction. Knopp criticized both Osgood’s and
Sierpiński’s construction in [7]. Let’s construct Knopp’s Osgood curve. As we did with
Osgood’s curve, we will first provide the locus for it and, latter, it will be parametrized.

Let T = 4ABC be a triangle. Remove from it a triangle -with one vertex at B and the
opposite side to such vertex lying in AC, namely A1C1, that has area r1µ(T ), r1 ∈ (0, 1)
so that you are left with two triangles T 0 = 4ABC1, T 1 = 4A1BC, as in Figure 4.11,
satisfying

µ(T ) = µ(T 0) + µ(T 1) + r1µ(T )⇒ µ(T 0) + µ(T 1) = (1− r1)µ(T ).
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Figure 4.11

Now, remove from T 0 a triangle with area r2µ(T 0) with a vertex in C1 and its opposite
side lying in AB, namely B2,1A2. From T 1 remove a triangle with area r2µ(T 1) with a
vertex in A1 and its opposite side lying in BC, namely B2,2C2. We are left with triangles
T 00 = 4AB2,1C1, T 01 = 4C1A2B, T 10 = 4BC2A1, T 11 = 4A1B2,2C (as in Figure 4.12,
which satisfies that

µ(T ) = r1µ(T ) + r2(µ(T 0) + µ(T 1)) +
1∑

i,j=0

µ(T ij)

implying that
1∑

i,j=0

µ(T ij) = µ(T )(1− r1)(1− r2).

Figure 4.12

In general, following this procedure, we obtain that

1∑
b1,...,bn=0

µ(T b1...bn) = µ(T )
n∏
i=1

(1− ri)
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which means that, in the limit, the set

C =
(
T 0

⋃
T 1

)⋂(
T 00

⋃
T 01

⋃
T 10

⋃
T 11

)⋂
. . .

has two-dimensional Lebesgue measure

µ(C) = µ(T )
∏
j≥1

(1− rj)

which converges to a number greater than 0 if and only if
∑

j≥1 rj <∞ (see [1] for a proof).

If, for example, T is choosen to be a right isosceles triangle with a base of length 2 (which
yields µ(T ) = 1) and rj = r2

j2
, r ∈ (0, 1), it is obtained that

µ(C) =
∏
j≥1

(
1− r2

j2

)
and, from Weierstrass factorization theorem (see [1]),

µ(C) =
∏
j≥1

(
1− r2

j2

)
=

sin(πr)

πr
.

It is easily checked that the function

f : (0, 1) −→ (0, 1)

x 7−→ sin(πx)

πx

is both continuous and bijective, hence, equation sin(πr)
πr

= λ has exactly one solution for
r ∈ (0, 1) for any given λ ∈ (0, 1). This means that it suffices to choose r appropriately in
order for C to have two-dimensional Lebesgue measure λ ∈ (0, 1) for any λ ∈ (0, 1) that
we wish.

We have discussed the construction and properties of the locus of our desired curve. We
now aim to parametrize it: observe that the subindex at triangle T b1...bn expresses an
order in binary, which tells us that we can identify every element of C with every point
in I by expressing such point in its infinite binary form. We then define the function

f : [0, 1] −→ C

t = (0.b1b2 . . .)2 7−→
⋂
n≥1

T b1...bn

which is well defined since T b1...bn ⊃ T b1...bnbn+1 , implying that T b1 ⊃ T b1b2 ⊃ T b1b2b3 . . . is
a nested sequence of closed triangles that collapse into points, and, therefore, the inter-
section

⋂
n≥1 T b1...bn defines a unique point in C. Let’s prove its continuity and injectivity.
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• continuity : Let t1, t2 ∈ I so that |t1 − t2| < 1
2n

. In such case, f(t1) and f(t2) lie
either at the same triangle or in two adjacent triangles. As the length of the sides
of the triangles vanishes at the limit, we obtain continuity.

• injectivity Let t1 = (0.a1a2a3 . . .)2, t2 = (0.b1b2b3 . . .)2 ∈ I be such that f(t1) =⋂
n≥1 T c1...cn = f(t2). By definition of f , we have that ai = ci = bi, i ≥ 1 and,

therefore t1 = t2, which concludes that our function is injective.

4.3 Closed Osgood Curves

As it is the reason to be of this chapter to provide more pathological cases of Jordan
curves that motivate the need of a proof for the JCT, we will, as was done in the previous
chapter, construct a Jordan curve out of the Jordan arcs that we have constructed insgood
this chapter.

4.3.1 Osgood’s closed curve

In order to construct a Jordan curve that derives from Osgood’s curve, it suffices us to
concatenate for of them. For example, consider the Osgood curve created at section 4.1
and consider the square of side length L > 2, Ē = {z ∈ C / 0 ≤ |Re(z)|, |Im(z)| ≤ L}. In
such case, we can place four squares of side length 1 inside it, as shown in Figure 4.13a,
so that they share no common points.

(a) Square of side length L > 2 with the
four squares of side 1.

(b) An approximation of the resulting
curve.

Figure 4.13

The sides of Ē that do not belong to any of the four squares will act as joins. Now,
the top left square is so that we can create there the curve in section 4.1. The top right
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square is the reflection of the top left square via the straight line that divides Ē in half
vertically. The bottom right square is the reflection of the bottom right square via the
straight line that divides Ē in half horizontally and the bottom left square is the reflection
of the top left square via the straight line that divides Ē in half horizontally, as shown in
Figure 4.13b.

It will, of course, have positive outer 2-dimensional Lebesgue measure: if the top left
square has outer Lebesgue measure λ ∈ (0, 1), then this closed version has outer measure
4λ. In order to parametrize it, divide the interval [0, 8] in eight intervals of length 1. The
interval [0, 1] will correspond to the top left square; (1, 2) to the join between the top left
and top right squares; [2, 3] to the top right square... and the construction of the curve
within each one of the different squares is like in section 4.1, mutatis mutandis. That way,
we have created and Osgood curve that is also a closed curve: if the main big square has
side length L = 2 + x, x > 0, the image of t = 0 and t = 8 are both the bottom left
vertex of the top left square, i.e., (1 + x)i.

4.3.2 Knopp’s closed curve

Knopp’s triangle provides us with a Jordan curve too if we place three copies of the same
triangle so that their longest sides form a triangle as in Figure 4.14.

Parametrizing this curve is done, essentially, in the same way it was done in the previous
one: we will go over it clockwise, starting at the point that the top right triangle and the
left triangle share. Now, divide the interval [0, 3] in three intervals of side length 1. Then,
[0, 1) will correspond to the right triangle, [1, 2) to the bottom triangle and [2, 3] to the
triangle that is left.

Figure 4.14
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Chapter 5

Space-filling and nowhere
differentiable curves.

So far, we have shown that there are uncountably many pathological curves that break our
intuition of what a curve is. However, this non-numerability does not really show “how
large” the family of nowhere differentiable curves nor the family of space-filling curves is.
Throughout this chapter, we will deal with the topological size of these two families.

For this purpose, let us give the next definitions.

Definition 5.0.1. We will denote the set of space-filling curves by SF and the set of
nowhere differentiable curves by ND.

5.1 The family of space-filling curves.

The space-filling curves that have been shown in chapter 4 share a common property with
those shown in chapter 3: they are of fractal nature. Also, by the graphic representation
of both of them, one can ask about the differentiability of space-filling curves. It can be
shown by a direct proof that neither Osgood’s Curve nor Knopp’s Osgood Curve are dif-
ferentiable; as a matter of fact, Osgood’s Curve is not differentiable on Γ8 but everywhere
differentiable on Γ8

c and Knopp’s Curve is not differentiable. However, Morayne gave in
[13] the next theorem.

Theorem 5.1.1 (Morayne’s Theorem). Let F = (f1, f2) : R −→ R2 be such that f1 is
Lebesgue-measurable and either f ′1(t) or f ′2(t) exists for every t ∈ R. If F (R) is Lebesgue-
measurable, then µ(F (R)) = 0.

Proof. See [13].

Theorem 5.1.1 provides a fast way of proving a beautiful and remarkable result for us,
which can be found in [18], p. 79.

Theorem 5.1.2. No space-filling curve is differentiable.
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Proof. By absurdum reductio, let F ∈ SF and suppose without loss of generality that F
is differentiable on (0, 1) and let

d : R −→ (0, 1)

be a diffeomorphism. Then µ(F ((0, 1)) > 0 and F ◦ d : R −→ R2 satisfies Theorem 5.1.1.
Therefore,

µ(F ◦ d) = µ(F ((0, 1)) = µ(F (I)) = 0

which contradicts our hypothesis. We conclude that there is no differentiable space-filling
curve

Theorem 5.1.2 gives us, precisely, what was said at the beginning of the section: the
Osgood curve is not differentiable at Γ8 and differentiable at Γ8

c; Knopp’s Osgood curve
is not differentiable.

In [3], the authors did a magnificent work proving some algebraic and topological proper-
ties of space-filling curves, with lots of emphasis put on the size in both topological and
algebraic senses. In this section we treat some of the topological properties that they
provide.

Proposition 5.1.3. The set SF ⊂ C(I,C) is non-closed.

Proof. Let f ∈ SF and let fn := 1
n
f . Clearly, fn ∈ SF, n ≥ 0 but {fn}n≥0 converges to

0 6∈ SF ,

Proposition 5.1.4. SF is dense in C(I,C).

Proof. Let f ∈ C(I,C) be uniformly continuos and let B(f, ε) be a ball. The uniform
continuity of f on I implies that there is δ > 0 satisfying

‖f(t1)− f(t2)‖∞ <
ε

2
if |t1 − t2| < δ.

Let {0 = t0 < t1 < · · · < tN = 1} be such that |tj − tj−1| < δ, j = 1, . . . , N . Hence,

‖f(tj)− f(tj−1)‖∞ <
ε

2
.

Let R = {z ∈ C /Re(z) ∈ [a, b], Im(z) ∈ [c, d]} be a closed non-degenerate rectangle
such that

max{b− a, d− c} < ε

2

and {f(t0), f(t1)} ⊂ R. Let φ be a continuous and surjective map from [t0, t1] to R such
that φ(t1) = f(t1), which we know that exists from what was said in the third paragraph
of chapter 4. Let g be a map satisfying that g|[t0,t1] = φ and that it is affine-linear in each
segment [tj, tj+1] and such that g(tj) = f(tj). On the one hand, we have that g ∈ SF as
µ(g(I)) = µ(φ(I)) = (b− a)(d− c) > 0 and, on the other hand, to prove that g ∈ B(f, ε)
can be done as follows:
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• If t ∈ [t0, t1] we reason in the next fashion: having |t0 − t1| < δ implies that
‖f(t0)− f(t)‖∞ < ε

2
for any t ∈ [t0, t1]. For t ∈ [t0, t1] we have that g(t) ∈ R which

implies that ‖g(t)− f(t0)‖∞ < ε
2

and, therefore,

‖g(t)− f(t)‖∞ ≤ ‖g(t)− f(t0)‖∞ + ‖f(t0)− f(t)‖∞ <
ε

2
+
ε

2
= ε.

• If t ∈ [tj, tj+1] with j = 1, . . . , n− 1, we have that

‖g(t)− f(t)‖∞ ≤ ‖g(t)− g(tj)‖∞ + ‖g(tj)− f(t)‖∞ <
ε

2
+
ε

2
= ε

Then,we have that g ∈ SF ∩B(f, ε), whence SF is dense.

Observe that this result shows that ND is dense in C(I,C).

5.2 The family of continuous nowhere differentiable

curves.

It was the year 1929 when Steinhaus asked about the category of ND[a, b] in the space of
all continuous functions in [a, b]. Both Banach and Mazurkiewicz provided a proof that
ND[a, b] is of second category in [2] and [12] respectively. We refer to that as Banach-
Manzurkiewicz Theorem. To provide a proof of it, the following lemma is needed.

Lemma 5.2.1. Let P([a, b]) denote the set of piecewise linear continuous curves defined
over [a, b]. Hence, P([a, b]) is dense in C([a, b],C).

Proof. Without any loss of generality, let [a, b] = I. Let g ∈ C(I,C) and considere the
partition of I

Pn := {0 = t0 < t1 < · · · < tN = 1}.

Considere hn the piecewise linear curve

hn(t) := g(tj)
tj+1 − t
tj+1 − tj

+ g(tj+1)
t− tj
tj+1 − tj

, t ∈ [tj, tj+1].

We have that hn ∈ P([a, b]) for each Pn. Now, let ε > 0. The fact that g is cotinuous in
I means that

∀ε ≥ 0∃δ > 0 / |x− y| < δ ⇒ ‖Sn(x)− Sn(y)‖∞ <
ε

4
.

Also, we can choose n ≥ 0 so that |tj+1 − tj| < δ, j = 0, . . . , n − 1 for any given δ > 0.
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Therefore, for x ∈ [tj, tj+1] we have

|g(t)− hn(t)| =| g(t)− 1

tj+1 − tj
[tj+1g (tj)− tjg (tj+1) + t (g (tj+1)− g (tj))]

=

∣∣∣∣g(t)− tj+1g (tj)− tjg (tj+1)

tj+1 − tj
− tg (tj+1)− g (tj)

tj+1 − tj

∣∣∣∣
=

∣∣∣∣g(t)− g (tj+1)− tj+1 − t
tj+1 − tj

(g (tj)− g (tj+1))

∣∣∣∣
≤ |g(t)− g (tj+1)|+

∣∣∣∣ tj+1 − t
tj+1 − tj

∣∣∣∣ |g (tj+1)− g (tj)|

≤ ε

4
+
ε

4
=
ε

2
.

Finally,

‖g − hn‖∞ ≤ max
j=0,...,n−1

{
sup

t∈[tj ,tj+1]

|g(t)− hn(t)|

}
≤ ε

2
< ε

and we conclude the proof.

Theorem 5.2.2 (Banach-Mazurkiewicz). ND[a, b] is of the second category in C([a, b],C).

Proof. Assume [a, b] = I. Denote by

En := {f ∈ C(I,C) / ∃x ∈ [0, 1− 1

n
] / ∀h ∈ (0, 1− x)⇒ |f(x+ h)− f(x)| ≤ nh}.

Let’s proof that the sets En are closed for all n ∈ N.

Let f ∈ En and {fk}k≥0 ⊂ En such that fk → f uniformly on I. Since fk ∈ En, there
exists tk ∈

[
0, 1− 1

n

]
for every k ∈ N by the definition of En. The sequence {tk} is clearly

bounded, therefore there exists a subsequence {tkl} such that

tkl −→ x

for some t ∈
[
0, 1− 1

n

]
. Let {fkl} be the corresponding subsequence of {fk}. By the

construction, |fkl(tkl + h) − fkl(tkl)| ≤ nh for every 0 < h < 1 − tkl . Since tkl → t and
0 < h < 1− t we can always choose some l0 ∈ N sufficiently large so that 0 < h < 1− tkl
for l > l0. Hence,

|f(t+ h)− f(t)| ≤|f(t+ h)− f (tkl + h)|+ |f (tkl + h)− fkl (tkl + h)|
+ |fkl (tkl + h)− fkl (tkl)|+ |fkl (tkl)− f (tkl)|
+ |f (tkl)− f(t)|
≤|f(t+ h)− f (tkl + h)|+ ‖f − fkl‖∞ + nh+ ‖fkl − f‖∞

+ |f (tkl)− f(t)|.



5.2. THE FAMILY OF CONTINUOUS NOWHERE DIFFERENTIABLE CURVES. 47

Letting l→∞, the continuity of f at both x and x+h, together with the convergence of
fkk gives the inequality ‖f(x+ h)− f(x)‖∞ ≤ nh, ∀0 < h < 1− x implying that f ∈ En.
Therefore, En is closed.

Also, En is nowhere dense; we have shown in Theorem 5.2.1 that P(I) is dense in C(I),
so to prove that En is nowhere dense, it will suffice us to prove that

∀g ∈ P(I) and ε > 0 ∃ h ∈ C(I,C)− En / ‖g − h‖∞ < ε.

Recall that the graph of g is made out of linear segments; if Li is one of those linear
segments, denote by mi its slope. Now, define

M := max{mi}.

Now, pick m ∈ N satisfying mε > n+M and let

φ(t) := inf
k∈Z
|t− k|, Φ(t) := t+ φ(t)i

be the “saw-tooth” function and curve respectively. We define now the curve

h(t) := g(t) + εΦ(mt)

which clearly satisfies h ∈ C(I,C). Then, for all t ∈ [0, 1), the right-hand side derivative
of h, h′+(t), satisfies that

|h′+(t)| = |g′+(t) + εmΦ′+(mt)| > n

since mε > n+M , whence h ∈ C(I)− En. We have too that

‖g − h‖∞ = sup
t∈I
|g(t)− (g(t) + εΦ(mt))| = ε sup

t∈I
|Φ(mt)| = ε

2
< ε

which shows that En is nowhere dense in C(I,C).

Due to the fact that En is nowhere dense, the set E :=
⋃
n≥1En needs to be of the first

category in C(I,C). This is the set of all elements in C(I,C) with bounded right hand
difference quotients at some point t ∈ [0, 1). Similarly, it is proven that the set of all
functions that have bounded left hand difference quotients at some t ∈ (0, 1] is of the
first category. Indeed, the union of this two sets includes all functions in C(I,C) that
have a finite one-sided derivative somewhere in I. Having that C(I,C) is complete, and
by Baire’s theorem is of the second category, we conclude that ND(I) is of the second
category.
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Chapter 6

The Jordan Curve Theorem

In this chapter a quick overview of a rather simple proof of the Jordan Curve Theorem
is provided. As Tverberg said, “Although the JCT is one of the best known topological
theorems, there are many, even among professional mathematicians, who have never read
a proof of it.”[19] and it is in that context that a proof is intended to be provided in this
chapter. As many of the topics covered all the way throughout this text, the statement
of this theorem was popularized among mathematicians during the nineteenth century
and, ever since, new proofs with different approaches have been published. Although
proofs based on algebraic topology are the most popular as an illustration of the power
of the theory, here we follow the ideas of Maehara in [11] (filling the gaps that have been
spotted), which is based on a basic knowledge of topology.

We recall a couple facts that will be useful.

1. If F is a closed set of C, then any component of C−F is opened and arcwise
connected. We call this components the complementary domains of F .

2. If K is compact in C, then C−K has exactly one unbounded component and shall
refer to it as the exterior component of K.

The cornerstone of the proof we provide to the JCT is Brouwer’s Fixed Point Theorem.
However, in order to prove it, we need the degree of a continuous map over the circle,
which we are define and give its main properties.

6.1 Degree of a continuous map over the circle.

Denote by E the function
E : R −→ S1, E(t) = e2πit.

Recall that E(t + N) = E(t), for any given N ∈ Z, and that, actually, E(t1) = E(t2) ⇔
t1 − t2 ∈ Z. In that sense, we have next the definition and results.

Definition 6.1.1 (Lift). Let X be a topological space and f : X −→ S1 a continuous
map. We will say that f̃ : X −→ R is a lift of f if it is continuous and E ◦f̃ = f .

49
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Lemma 6.1.1 (Existence of a lift of a continuous map). Every continuous map

g : I −→ S1

admits a lift.

Proof. Having E ◦g̃ = g, t ∈ I, is equivalent to having

2πig̃(t) = {log(g(t))} ⇔ g̃(t) =
1

2πi
{log(g(t))}.

Now, g(t) is a continuous map that avoids the origin, and therefore, by construction
of a continuous determination of a logarithm (equivalent to constructing a continuous
argument) as studied in many courses in complex analysis, there exists a continuous
function l : I −→ C such that g(t) = el(t). Now, g̃(t) = 1

2πi
l(t) is a lift of g:

e2πig̃(t) = e
2πi
2πi

l(t) = el(t) = g(t), t ∈ I.

Proposition 6.1.2 (Properties of a lift). Let g : I −→ S1 be a continuous map. The next
properties hold:

1. If g̃ : I −→ R is a lift of g, so is g̃ +N, N ∈ Z.

2. Any two lifts of g differ on an integer constant.

Proof. 1. Let g̃ be a lift of g and define

ĝ(t) := g̃(t) +N, N ∈ Z .

Now, E(ĝ(t)) = E(g̃(t) +N) = E(tildeg(t)) = g(t) and we have this part shown.

2. Assume g̃1, g̃2 are lifts of g. That means that e2πig̃1(t) = g(t) = e2πig̃2(t). Hence,

1 = e2πi(g̃2(t)−g̃1(t)), t ∈ I

which means that ∆(t) := g̃2(t) − g̃1(t) ∈ Z for every t ∈ I. Actually, ∆ : I −→ Z
is continuous, therefore its image is connected whence ∆ is constant:

g̃2(t)− g̃1(t) = ∆(t) = ∆ ∈ Z .

Corollary 6.1.2.1. If two lifts of a continuous map g : I −→ S1 coincide at 0 ∈ I, then
they coincide everywhere in I.

Proof. Let g̃1, g̃2 be two lifts of g. By the previous proposition, we know that g̃2 =
g̃1 +N, N ∈ Z. Assume that g̃1(0) = g̃2(0). Then, we have

g̃2(0) = g̃1(0) +N = g̃1(0),

therefore N = 0 and we conclude.
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We have then the next lemmas as an immediate corollary of this results:

Lemma 6.1.3 (Path-Lifting Lemma). Let g : I −→ S1 be a continuous map and let x ∈ R
be such that E(x) = g(0). Then, there is a unique lift g̃ : I −→ R of g satisfying

1. E(g̃(t)) = g(t), t ∈ I.

2. g̃(0) = x.

Lemma 6.1.4 (Homotopy-Lifting Lemma). Let F : I × I −→ S1 be a continuous map
and let x ∈ R such that E(x) = F (0, 0). Then, there is a unique continuous map F̃ :
I × I −→ R such that

1. E(F̃ (t, s)) = F (t, s), t, s ∈ I.

2. F̃ (0, 0) = x.

We are now ready to construct the degree of a circle map. For that matter, let φ : S1 −→ S1

be a continuous map. The composite map

g = φ ◦ E : I −→ S1

is obviously a continuous map and it satisfies g(0) = g(1) because E(0) = E(1) = 1. Then,
Lemma 6.1.3 says that g has a lift g̃ : I −→ R, i.e., E ◦g̃ = g. All of this gives us that

E(g̃(0)) = E(g̃(1))⇒ g̃(1)− g̃(0) ∈ Z .

We can now define the degree.

Definition 6.1.2 (Degree of a circle map). Following the notation used above, if f :
S1 −→ S1 is a continuous map, we define its degree as

deg(f) = g̃(1)− g̃(0).

Proposition 6.1.5. Let f : S1 −→ S1 me a continuous map. Then, deg(f) does not
depend on the choice of a particular lift of g = f ◦ E, i.e., deg(f) is well-defined.

Proof. Let g̃ be a lift of g = f ◦ E. Then, deg(f) = g̃(1) − g̃(0). Now, let ĝ be other lift
of g. We have shown previously that

ĝ = g̃ +N, N ∈ Z .

Therefore,

ĝ(1)− ĝ(0) = (g̃(1) +N)− (g̃(0) +N) = g̃(1)− g̃(0) = deg(f)

and the proof is finished.

Remark. It is important to observe that deg(ϕ) = ind(ϕ ◦ E : I −→ S1, 0), that is, the
degree of a circle map ϕ is the index of 0 with respect to ϕ ◦ E : I −→ S1.
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Definition 6.1.3 (Homotopy). Let X, Y be two topological spaces and f, g : X −→ Y
continuous maps. A homotopy between f and g is a continuous map H : X × I −→ Y
satisfying H(x, 0) = f(x), H(x, 1) = g(x), ∀x ∈ X. If such H exists, we say that f and
g are homotopic.

It is easy to show that being homotopic is an equivalence relation on C(X, Y ).

Theorem 6.1.6 (Invariance of the degree under homotopies). Let f, g : S1 −→ S1 be two
continuous maps. If f, g are homotopic, then def(f) = deg(g).

Proof. Let H : S1×I −→ S1 be a homotopy from f to g. That means

H(z, 0) = f(z), H(z, 1) = g(z), z ∈ S1 .

Let F : I × I −→ S1 be such that

F = H ◦ (E×Id)|I×I .

Lemma Theorem 6.1.4 says that F lifts to a map F̃ : I × I −→ R satisfying F = E ◦F̃ .
It is natural to see that the map t 7−→ F̃ (t, 0) is a lift of f and t 7−→ F̃ (t, 1) is a lift of g.
Then, we have:

deg(f) = F̃ (1, 0)− F̃ (0, 0)

deg(g) = F̃ (1, 1)− F̃ (0, 1)

Consider the map ∆ : I −→ Z defined by ∆(t) = F̃ (1, t)− F̃ (0, t). Such map is naturally
continuous and having that I is connected and Z is discrete implies that ∆ is a constant
function. Whence,

deg(f) = ∆(0) = ∆(1) = deg(g)

and we conclude.

Proposition 6.1.7 (Degree of a constant map over the circle). Let z∗ ∈ S1 and f(z) = z∗

for any z ∈ S1. Then, deg(f) = 0.

Proof. Let z∗ ∈ S1 be fixed but arbitrary and let f : S1 −→ S1 be such that f(z) = z∗

for any z ∈ S1. If z∗ ∈ S1 then there is a value t∗ ∈ I satisfying E(t∗) = z∗. This
means that the map g̃(t) = t∗ is a lift of g = f ◦ E: on the one hand, we have
g(t) = f(E(t)) = f(e2πit) = z∗ and, on the other hand, that E(g̃(t)) = E(t∗) = z∗,
giving us that g̃ is a lift of g.

The fact that g̃ is a lift of g means that deg(f) = g̃(1) − g̃(0) = t∗ − t∗ = 0 and we
conclude.
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6.2 Brouwer’s Fixed Point Theorem and the JCT

Theorem 6.2.1 (Brouwer’s Fixed Point Theorem). Let f : D −→ D be a continuous
map. Thus, there exists at least one z ∈ D satisfying f(z) = z.

Proof. We will follow by reductio ad absurdum. Suppose f has no fixed point, that is,
f(z) 6= z, ∀z ∈ D . Now, the map ∆(z) = f(z)− z 6= 0 for all z ∈ D. We have then that,
for every z ∈ S1,

|∆(z) + z| = |f(z)| ≤ 1 = |z| < |∆(z)|+ |z|

and this is equivalent to having |∆(z)
z

+ 1| < |∆(z)
z
|+ 1, z ∈ S1. Now, the map

q(z) =
∆(z)

z
, z ∈ S1

maps S1 into C∗−(0,∞) because, otherwise, that would mean that Im(f(z)
z

) = 0 and

since f(z)
z
∈ S1 that implies that f(z)

z
= ±1; f(z) = −z gives no trouble but f(z) = z

is a contradiction with our hypothesis. However, C∗−(0,∞) is simply connected, and
therefore deg(q) = ind(q(S1), 0) = 0. But, H(t, z) = f(tz) − tz ∈ C∗ is a homotopy
betweeen H(1, z) = ∆(z) and H(0, z) = f(0) ∈ C∗. Therefore, deg(∆) = deg(f(0)) = 0.
Since deg(q) = deg(∆) − 1 = 0 ⇒ deg(∆) = 1, which is a contradiction. Whence, there
must be z ∈ S1 / f(z) = z.

Definition 6.2.1 (Retraction). Let X be a metric space, A ⊂ X a subspace and

r : X −→ A

a continuous map. We say that r is a retraction if r|A = IdA.

The next theorem will be proven using Brouwer’s Fixed Point Theorem, but it is seen in
literature that they are actually equivalent.

Theorem 6.2.2 (No-Retraction Theorem). There exists no retraction of D into S1.

Proof. Let r : D −→ S1 be a continuous map satisfying r(z) = z, ∀z ∈ S1. Now, let s be
a map from S1 into itself such that s(z) = −z. It is then clear that s ◦ r is continuos and
has no fixed points, which is a contradiction with the previous theorem.

Definition 6.2.2. Let E = {z ∈ C / |Re(z)|, |Im(z)| ≤ 1}. We say that a path γ in E
is a continuous function γ : [−1, 1] −→ E.

Notice that if K is a convex and non-empty compact set of C with non-empty interior,
then it is homeomorphic to D. Let me show you this in a very intuitive way. It is obvious
that it suffices to consider that 0 ∈ K and that K ⊂ D: otherwise, we only need a trans-
lation and/or a homothety to be in the considered case (and such transformations are
bijective and linear in a finite dimension space, hence homeomorphisms). The argument
is as follows: as K is compact it contains its own boundary and every point in ∂K is
conected to 0 via a line segment and every point in K − {0} belongs to one and only one
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of this line segments. In that sense, if q ∈ K − {0}, denote pq ∈ ∂K such that q ∈ [0, pq]

and then the function K −→ D that maps K 3 q 7→ p =
q

|pq|
is well-defined and it is a

homeomorphism between K and D, as it maps any point in K −{0} to one and only one
in D−{0} and it maps 0 ∈ K to itself.

Figure 6.1: An inlustration of the map defined previously.

This result shows us that Brouwer’s theorem is valid for every K ⊂ C considered as above.
Let us announce it properly:

Corollary 6.2.2.1. Brouwer’s fixed point theorem holds for every non-empty compact
and convex set of C with non-empty interior.

Proof. Let K ⊂ C be a non-empty compact and convex set of C with non-empty interior.
We have shown before that it must be homeomorphic to D. Let ϕ : D −→ K be an
homeomorphism and g : K −→ K be a continuous map. Then, the composite

h = ϕ−1 ◦ g ◦ ϕ : D −→ D

is continuous and by Brouwer’s fixed point theorem has a fixed point, i.e.,

∃z ∈ D / h(z) = z.

As ϕ is bijective, that means that there exists a unique point p ∈ K such that p = ϕ(z).
Now, let q = g(p). It is clear that ϕ−1(q) = z because ϕ−1(q) = ϕ(g(p)) = ϕ(g(ϕ(p))) = z.
Because ϕ is bijective and p, q have the same image via ϕ−1, we have that p = q = g(p)
and, therefore p is a fixed point of g : K −→ K, and so we conclude.

Remark. What has been shown in the previous corollary is actually stronger than what
was claimed. Observe that convexity has not been used in the proof and that what we have
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actually required of the set K is to be homeomorphic to D. Hence, Brouwer’s fixed point
theorem is valid for every homeomorphic transformation of D, but to our case of study it
is enough to consider non-empty compact and convex sets with non-empty interior.

Then, the next Lemma can be proven with ease.

Lemma 6.2.3. Considere two paths γ1, γ2 such that

γ1(−1) = −1 + b−1i, γ1(1) = 1 + b1i, b1, b−1 ∈ [−1, 1]

γ2(−1) = a−1 − i, γ2(1) = a1 + i, a1, a−1 ∈ [−1, 1]

Then, there exists (s, t) ∈ [−1, 1]2 such that γ1(s) = γ2(t).

Proof. Let’s say that γ1(s) = x1(s) + y1(s)i, γ2(s) = x2(s) + y2(s)i such that

x1(−1) = −1, x1(1) = 1, y2(−1) = −1, y2(1) = 1

and assume that γ1(s) 6= γ2(t) for every (s, t) ∈ [−1, 1]2.

Figure 6.2: A particular case of the described phenomena in Lemma Theorem 6.2.3

It is then clear that

N(s+ ti) := max (|x1(s)− x2(t)|, |y1(s)− y2(t)|) > 0, ∀s+ ti ∈ E

and, therefor, the function f : E −→ Γ ⊂ E (where Γ = ∂E) given by

f(s+ ti) =
1

N(s+ ti)
((x2(t)− x1(s)) + (y1(s)− y2(t)i)

can be shown to have no fixed points. Let’s see it:
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If f(s + ti) does have a fixed point, that means that there exists a point s + ti ∈ E
satisfying

s+ ti =
1

N(s+ ti)
((x2(t)− x1(s)) + (y1(s)− y2(t)i)

which is equivalent to having

s =
1

N(s+ ti)
(x2(t)− x1(s))

t =
1

N(s+ ti)
(y1(s)− y2(t)) .

For that matter, assume N(s + ti) = |x1(s)− x2(t)|. Hence, we have two different cases:
s = 1 or s = −1.

1. s = 1 ⇒ x2(t) = 1 + |x2(t) − 1|. Since −1 ≤ x2(t) ≤ 1, the only possibility por
x2(t) would be x2(t) = 1 but then N(s+ ti) = 0, which is a contradiction with our
hypothesis.

2. s = −1 ⇒ x2(t) = −1− |x2(t) + 1|. Since −1 ≤ x2(t) ≤ 1, the only possibility por
x2(t) would be x2(t) = −1 but then N(s + ti) = 0, which is a contradiction with
our hypothesis.

Following a perfectly analogous argument the case N(s+ ti) = |y1(s)− y2(t)| is proven.

We have found a continuous map that has no fixed points, which contradicts Brouwer’s
theorem, therefore we have reached a conrtadiction ⇒ ∃(s, t) ∈ [−1, 1]2 / γ1(s) = γ2(t).

Notice that the technique followed in this proof is very similar to the one we followed at
the No-Retraction Theorem: we have built a function that sends every point of the set to
its boundary and have shown that it has no fixed points.

The next notion is need for a propper formulation of the Jordan Curve Theorem.

Definition 6.2.3. A closed set F ⊂ C is said to separate (or that it separates) C if
C−F has at least two components.

Lemma 6.2.4. No arc α separates the plane

Proof. Let’s say that there exists an arc α that does separate the plane. Then, C−α has
exactly one unbounded component and at least one bounded component, namely U and
W respectively. This fact implies that ∂U, ∂W ⊂ α. Considere x0 ∈ W and D = B̄(x0, R)
such that Do ⊃ W ∪ α. Applying the Tietze Extension Theorem (see Introducción a la
Topoloǵıa, 5.3.8, Outerelo y Margalef), we can extened Idα continuosly to a retraction
r : D −→ α. Now, define q : D → D such that

q(x) =


x if x ∈ W c ∩D

r(x) if x ∈ W̄
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which is continuous. Then, considering p(x) =
q(x)− x0

|q(x)− x0|
R, x ∈ D − x0, the map

p ◦ q : D → ∂D is a retraction of D into its frontiere, which is a contradiction with the
No-Retraction Theorem.

We are finally ready to enounce and proof the main resault of this chapter.

Theorem 6.2.5 (Jordan Curve Theorem). Let J be any Jordan curve. Then, C−J has
exactly two components: one conected and unbounded (which we shall call exterior) and
one conected and bounded (which we shall call interior) and both have J as its boundary.

Proof. Since J is compact in C, assertion 2 (from the ones made at the begginig of this
chapter) tells us that J has only one unbounded complement. Hence, it suffices us to
prove that J has one and only one bounded complement and that J is the boundary of
them both.

Let’s first see that J separates the plane. Being J compact implies the existence of two
points a, b ∈ J such that |a− b| = maxx,y∈J (|x− y|). Without any loss of generality, we
may assume that a = −i, b = i ∈ C.

Let E = {z ∈ C /|Re(z)| ≤ 2, |Im(z)| ≤ 1} be a rectangle and let Γ be its frontier. We
have that a, b ∈ Γ ∩ J . Let E = −2,W = 2 ∈ E and [E,W ] the line segment that joins
E,W . Since J joins the horizontal sides of E and [E,W ] joins the vertical sides of E ,
Lemma 6.2.3 tells us that [E,W ] ∩ J 6= ∅. Now, let l ∈ [E,W ] ∩ J satisfying

|E − l| = min
x∈[E,W ]∩J

(|E − x|) .

As a, b define two different paths in J , we denote JE the one path that contains l and JW
to the other path. Let now m ∈ [E,W ] ∩ JE such that

|E −m| = max
x∈[E,W ]∩JE

(|E − x|) .

The segment [m,W ] meets JW at least once, otherwise, [E, l] + α(l,m) + [m,W ] would
not meet JW , contradicting Lemma 6.2.3. Let p ∈ JW ∩ [m,W ] such that

|p−W | = max
x∈JW∩[m,W ]

(|W − x|)

and q ∈ JW ∩ [m,W ] satisfying

|q −W | = min
x∈JW∩[m,W ]

(|W − x|)

Finally, let z = m+p
2

and U the component of C−J that contains z. We are going to
prove that U is bounded.
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Figure 6.3: The black line is JE and the red line is JW for a particular Jordan curve. The
dotted line in gold color represents [E,W ].

Let’s suppose U is not bounded. Then, as U is arc-conected, there exists a path γ that
joins z to a point ρ in C−E . Because γ is continuous, γ has at least one point in common
with Γ and at least one of this points, namely w, satisfies that α(z, w) ⊂ E , where α(z, w)
is the subarc on γ that joins z and w.

Figure 6.4: Representation of ρ, γ as stated, w and α(z, w).

Assume Im(ρ) > 1 and observe that, as γ(−1) = z, γ(1) = ρ, the set of common
points between γ and Γ is the set {γ(t) / Im(γ(t)) = 1}. Since t ∈ [−1, 1], the set
T = {t ∈ [−1, 1] / Im(γ(t)) = 1} has both upper and lower bound. Let then t0 be the
lower bound of T . So, we choose w = γ(t0).
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Observe that w 6= b because w ∈ U ⊂ C−J and b ∈ J . If Re(w) > 0, we can find a path
between w and W so that nor a or b belongs to the path: it suffices to considere the path
defined by w and W over Γ that does not contain a, namely α(w,W ). Considere now the
path [E, l] +α(l,m) + [m, z] +α(z, w) +α(w,W ), meaning the concatenation of all those
paths. Such path does not meet JS, which contradicts Lemma 6.2.3. Therefore, U is
bounded. Similarly it is proven for Re(w) < 0 and the two analogous cases if Im(ρ) < −1.
We have then proved that J separates the plane. See Figure 6.4 for a detailed scheme of
the previous argument.

We are now going to prove that J is the boundary of any of its complements. Let U be
a complement of J and x ∈ U . Obviously, ∂U ⊂ J . If ∂U ⊂ J , there exists and arc α
which contains entirely ∂U as it is, at most, J . Since J separates the plane, there is a
point y ∈ C−J such that x and y are separated by ∂U , which contradicts Lemma 6.2.4.
We then have ∂U = J . It is only left to prove that there are no more bounded components.

Let V 6= U be another bounded component of C−J . It would have to satisfy V ⊂ E . Let
β be the path [N, l] + α(l,m) + [m, p] + α(p, q) + [q, S], being α(p, q) the subarc of JW
going from p to q. That means β ∩ V = ∅, because that lie inside a bounded component
of C−J are the points of [m, p], which is a subset of U and we had stated that V 6= U .
Since a, b 6∈ β there are circular neighbourhoods Va, Vb of a and b respectively such that
Va, Vb ∩ β = ∅. As ∂V = J , there are a1 ∈ V ∩ Va, b1 ∈ V ∩ Vb and let α(a1, b1) be a
path in V from a1 to b1. Then, the path [a, a1] +α(a1, b1) + [b, b1] does not meet β, which
contradicts Lemma 6.2.3.
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Mathematica source code
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Appendix A

Mathematica source code for figures
in chapter 3

A.1 Figure 3.1

a = 0.5; b = 13.;

W[x_] := Sum[a^k*Cos[b^k*x*Pi], {k, 0, 7}]

Plot[W[x], {x, -2, 2}]

A.2 Figure 3.2

a = 0.5; b = 13.;

W[x_] := Sum[a^k*Cos[b^k*x*Pi], {k, 0, 7}]

W1 = Table [{x, W[x]}, {x, 0., 2., 0.001}];

W2 = RotationTransform [1.5* Pi][W1];

W2 = TranslationTransform[W1 [[1]] - Last[W2]][W2];

W3 = RotationTransform [1.5* Pi][W2];

W3 = TranslationTransform[W2 [[1]] - Last[W3]][W3];

W4 = RotationTransform [1.5* Pi][W3];

W4 = TranslationTransform[W3 [[1]] - Last[W4]][W4];

Show[Graphics [{Cyan , Line[W1], Line[W2], Line[W3], Line[W4]}],

Axes -> True , AxesStyle -> Black]
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A.3 Figure 3.3, Figure 3.4 and Figure 3.6 respec-

tively

The numbering of the sides in Figure 3.3, Figure 3.4 and the points and lines in Figure 3.6
were introduced later with Geogebra.

(* First step of the generation of the Koch curve*)

Graphics[KochCurve [1]]

(* Second step of the generation of the Koch curve*)

Graphics[KochCurve [2]]

(* Fourth step of the generation of the Koch curve*)

Graphics[KochCurve [4]]
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A.4 Figure 3.5

a = Triangle [{{0.‘, 0.‘}, {0.16666666666666666 ‘ ,

0.09622504486493763 ‘} , {0.3333333333333333 ‘ , 0. ‘}}];

b = Triangle [{{0.3333333333333333 ‘ , 0.‘}, {0.3333333333333333 ‘ ,

0.1924500897298753 ‘} , {0.5‘, 0.2886751345948129 ‘}}];

c = ReflectionTransform [{-1, 0}][b];

c = TranslationTransform [3 {1/3 + (0.5 ‘ -1./3.) , 0}][c];

d = ReflectionTransform [{-1, 0}][a];

d = TranslationTransform [3 {1/3 + (0.5 ‘ -1./3.) , 0}][d];

Graphics [{{Cyan , {a, b, c, d}}, KochCurve [2]}]

A.5 Figure 3.7

A = KochCurve [6];

B = ReflectionTransform [{Cos[Pi/6], Sin[Pi /6]}][

RotationTransform [5 Pi/3][A]];

R = ReflectionTransform [{Cos[Pi/6], -Sin[Pi/6]}, {1, 0}][

RotationTransform[Pi/3, {1, 0}][A]];

Graphics [{A, B, R}]
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Appendix B

Mathematica source code for figures
in chapter 4

B.1 Figure 4.1

(*First iteration *)

Graphics[PeanoCurve [1]]

(* Second iteration *)

Graphics[PeanoCurve [2]]

(*Third iteration *)

Graphics[PeanoCurve [3]]

67
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B.2 Figure 4.2

(* First iteration *)

Graphics[HilbertCurve [1]]

(* Second iteration *)

Graphics[HilbertCurve [2]]

(* Third iteration *)

Graphics[HilbertCurve [3]]

B.3 Figure 4.3

(* We define a function that generates the mesh of order n given the order. *)

OSGOOD[n_] :=

Block[{square , p0 , p2 , p4 , p6, p8, p10 , p12 , p14 , p16 , W, L},

W = 0.11306936062370848 ‘;

L = 0.2579537595841943 ‘;

square = {{{0., 0.}, {0., 1.}, {1., 1.}, {1., 0.}}};

Do[

p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0, L + W}][p0];

p4 = TranslationTransform [{0, 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];

p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16}], n];

Graphics [{Cyan , Polygon[square]}, Frame -> False]

]

(* First iteration *)

OSGOOD [1]

(* Second iteration *)

OSGOOD [2]

(* Third iteration *)

OSGOOD [3]
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B.4 Figure 4.5 and Figure 4.6

We define a function that requires the iteration that you wish to print (n), how much area
you want it to cover (λ), the proportion between the width of the bars of two consecutive
iterations (c) and whether you want the positive or negative root that Theorem 4.1.1
provides (sign).

OsgoodCurve[n_, \[ Lambda]_, c_,

sign_](*n\[ GreaterEqual ]1 is the iteration , \[ Lambda] the area \

covered at infinity (0<\[ Lambda]<1), c the ratio between W_i and \

W_{i+1} (which needs to be c>3) and sign=+-1 in order to choose the \

positive or the negative root*):=

Block [{square , p0, p2, p4, p6, p8, p10 , p12 , p14 , p16 , , j0, j2, j4,

j6 , j8 , j10 , j12 , j14 , j16 , join1 , join2 , join3 , join4 , join5 ,

join6 , join7 , join8 , joins , listjoins , Listjoins , W, L},

(* Initializing constants *)

L = 1./3. - 2*W/3.;

W = (c - 3.) (1. + sign*Sqrt [\[ Lambda ]])/(2 c);

(* initializing square and joins , p for squares , j for joins*)

square = {{{0., 0.}, {0., 1.}, {1., 1.}, {1., 0.}}};

p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0., L + W}][p0];

p4 = TranslationTransform [{0., 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];

p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16 }];

join6 = {{2 L + W, 0.}, {2 L + 2 W, 0}};

join7 = {{1., L}, {1., L + W}};

join8 = {{2 L + 2 W, 2 L + W}, {2 L + 2 W, 2 L + 2 W}};

join2 = {{0., 2 L + W}, {0., 2 L + 2 W}};

join1 = {{L, L}, {L, L + W}};

join3 = {{L, 1.}, {L + W, 1.}};

join4 = {{2 L + W, 2 L + 2 W}, {2 L + W, 2 L + W}};

join5 = {{L + W, L}, {L + W, L + W}};

joins = {join1 , join2 , join3 , join4 , join5 , join6 , join7 , join8 };

listjoins = {joins };

Listjoins = Table[Line[listjoins [[i]]], {i, Length[listjoins ]}];

If[n == 1,

Graphics [{{Cyan , Polygon[square]}, {Thick , Black ,

Listjoins }}], (*the first iteration of the curve is done \

outside the loop*)

Do[

j0 = ScalingTransform [{L, L}][ joins];

j2 = ReflectionTransform [{1., 0.}][j0];
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j2 = TranslationTransform [{L, L + W}][j2];

j4 = TranslationTransform [{0, 2 L + 2 W}][j0];

j6 = TranslationTransform [(L + W) {1., 1.}][j2];

j8 = TranslationTransform [(L + W) {1., 1.}][j0];

j10 = TranslationTransform [(L + W) {1., -1.}][j2];

j12 = TranslationTransform [2 (L + W) {1., 0.}][j0];

j14 = TranslationTransform [2 (L + W) {1., 0.}][j2];

j16 = TranslationTransform [2 (L + W) {1., 0.}][j4];

joins = Catenate [{j0, j2, j4, j6, j8, j10 , j12 , j14 , j16}];

AppendTo[listjoins , joins ];

p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0., L + W}][p0];

p4 = TranslationTransform [{0, 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];

p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16}],

n - 1];

Listjoins = Table[Line[listjoins [[i]]], {i, Length[listjoins ]}];

Graphics [{{Cyan , Polygon[square]}, {Thin , Black , Listjoins }}]

]

]

(* Joins and squares of the first iteration *)

OsgoodCurve [1, 0.5, 6, -1]

(* Joins and squares of the second iteration *)

OsgoodCurve [2, 0.5, 6, -1]

B.5 Figure 4.8

\[ CapitalGamma ]8[n_] := Block[{r, r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8},

r = Table [{{2.*k, 0.}, {2. k + 1., 0.}}, {k, 0., 8.}];

If[n == 1, Graphics[Line[r]],

Do[

r0 = ScalingTransform [{1./17. , 0.}][r];

r1 = TranslationTransform [{2., 0}][r0];

r2 = TranslationTransform [{2., 0}][r1];

r3 = TranslationTransform [{2., 0}][r2];

r4 = TranslationTransform [{2., 0}][r3];

r5 = TranslationTransform [{2., 0}][r4];

r6 = TranslationTransform [{2., 0}][r5];

r7 = TranslationTransform [{2., 0}][r6];



B.6. ?? AND ?? 71

r8 = TranslationTransform [{2., 0}][r7];

r = Catenate [{r1 , r2 , r3 , r4 , r5 , r6, r7, r8}], n]];

Graphics[Line[r]]

]

B.6 Figure 4.9 and Figure 4.10

OsgoodPolygon[n_ , \[ Lambda]_, c_,

sign_](*n\[ GreaterEqual ]1 is the iteration , \[ Lambda] the area \

covered at infinity (0<\[ Lambda]<1), c the ratio between W_i and \

W_{i+1} (which needs to be c>3) and sign=+-1 in order to choose the \

positive or the negative root*):=

Block [{square , d0, d2, d4, d6, d8, d10 , d12 , d14 , d16 , p0, p2, p4,

p6 , p8 , p10 , p12 , p14 , p16 , , j0, j2, j4, j6, j8, j10 , j12 , j14 ,

j16 , join1 , join2 , join3 , join4 , join5 , join6 , join7 , join8 , diag1 ,

diag2 , diag3 , diag4 , diag5 , diag6 , diag7 , diag8 , diag9 , diags ,

listdiags , Listdiags , joins , listjoins , Listjoins , W, L},

(* Initializing constants *)

L = 1./3. - 2*W/3.;

W = (c - 3.) (1. + sign*Sqrt [\[ Lambda ]])/(2 c);

(* initializing square and joins , p for squares , j for joins*)

square = {{{0., 0.}, {0., 1.}, {1., 1.}, {1., 0.}}};

p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0., L + W}][p0];

p4 = TranslationTransform [{0., 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];

p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16 }];

join6 = {{2 L + W, 0.}, {2 L + 2 W, 0}};

join7 = {{1., L}, {1., L + W}};

join8 = {{2 L + 2 W, 2 L + W}, {2 L + 2 W, 2 L + 2 W}};

join2 = {{0., 2 L + W}, {0., 2 L + 2 W}};

join1 = {{L, L}, {L, L + W}};

join3 = {{L, 1.}, {L + W, 1.}};

join4 = {{2 L + W, 2 L + 2 W}, {2 L + W, 2 L + W}};

join5 = {{L + W, L}, {L + W, L + W}};

joins = {join1 , join2 , join3 , join4 , join5 , join6 , join7 , join8 };

diag1 = {{0., 0}, {L, L}};

diag2 = {{L, L + W}, {0., 2 L + W}};

diag3 = {{0., 2 L + 2 W}, {L, 1.}};

diag4 = {{L + W, 1}, {2 L + W, 2 (L + W)}};

diag5 = {{2 L + W, 2 L + W}, {L + W, L + W}};
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diag6 = {{L + W, L}, {2 L + W, 0}};

diag7 = {{2 L + 2 W, 0}, {1, L}};

diag8 = {{1, L + W}, {2 L + 2 W, 2 L + W}};

diag9 = {{2 L + 2 W, 2 L + 2 W}, {1, 1}};

diags = {diag1 , diag2 , diag3 , diag4 , diag5 , diag6 , diag7 , diag8 ,

diag9};

listjoins = {joins };

Listjoins = Table[Line[listjoins [[i]]], {i, Length[listjoins ]}];

listdiags = {diags };

Listdiags = Table[Line[listdiags [[i]]], {i, Length[listdiags ]}];

If[n == 1,

Graphics [{{Cyan , Polygon[square]}, {Thin , Black , Listjoins}, {Thin ,

Black , Listdiags }}], (*the first iteration of the curve is \

done outside the loop*)

Do[

j0 = ScalingTransform [{L, L}][ joins];

j2 = ReflectionTransform [{1., 0.}][j0];

j2 = TranslationTransform [{L, L + W}][j2];

j4 = TranslationTransform [{0, 2 L + 2 W}][j0];

j6 = TranslationTransform [(L + W) {1., 1.}][j2];

j8 = TranslationTransform [(L + W) {1., 1.}][j0];

j10 = TranslationTransform [(L + W) {1., -1.}][j2];

j12 = TranslationTransform [2 (L + W) {1., 0.}][j0];

j14 = TranslationTransform [2 (L + W) {1., 0.}][j2];

j16 = TranslationTransform [2 (L + W) {1., 0.}][j4];

joins = Catenate [{j0, j2, j4, j6, j8, j10 , j12 , j14 , j16}];

AppendTo[listjoins , joins ];

p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0., L + W}][p0];

p4 = TranslationTransform [{0, 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];

p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

d0 = ScalingTransform [{L, L}][ diags];

d2 = ReflectionTransform [{1., 0.}][d0];

d2 = TranslationTransform [{L, L + W}][d2];

d4 = TranslationTransform [{0, 2 L + 2 W}][d0];

d6 = TranslationTransform [(L + W) {1., 1.}][d2];

d8 = TranslationTransform [(L + W) {1., 1.}][d0];

d10 = TranslationTransform [(L + W) {1., -1.}][d2];

d12 = TranslationTransform [2 (L + W) {1., 0.}][d0];

d14 = TranslationTransform [2 (L + W) {1., 0.}][d2];

d16 = TranslationTransform [2 (L + W) {1., 0.}][d4];

diags = Catenate [{d0, d2, d4, d6, d8, d10 , d12 , d14 , d16}];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16}],
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n - 1];

Listjoins = Table[Line[listjoins [[i]]], {i, Length[listjoins ]}];

Graphics [{{Cyan , Polygon[square]}, {Thin , Black , Listjoins}, {Thin ,

Black , Line[diags ]}}]

]

]

(* First iteration *)

OsgoodPolygon [1, 0.3, 9., -1]

(* Second iteration *)

OsgoodPolygon [3, 0.3, 9., -1]

B.7 Figure 4.11 and Figure 4.12

Modified from [17]. Ordering added with Geogebra.

dist[{x0_ , y0_}, {x1_ , y1_}] := Sqrt[(x0 - x1)^2 + (y0 - y1)^2]

triangleSplit [\[ ScriptCapitalT ][p1_ , p2_ , p3_ , level_], r_, rconst_] :=

Module [{c = dist[p1 , p2], a = dist[p2 , p3],

b = dist[p3 , p1], \[Alpha], \[Gamma], \[Theta], originalArea ,

targetArea , b1 , b2 , p1a , p3a},

\[ Alpha] = ArcCos [(b^2 + c^2 - a^2)/(2 b c)];

\[ Gamma] = ArcCos [(a^2 + b^2 - c^2)/(2 a b)];

\[Theta] = ArcTan [(p3 [[1]] - p1[[1]]) , (p3 [[2]] - p1 [[2]])];

originalArea = Sqrt[(a^2 + b^2 + c^2)^2 - 2 (a^4 + b^4 + c^4)]/4;

(* if we’re removing r_j of the area ,

each resulting triangle wants half the remaining area *)

targetArea = (originalArea /2)*If[rconst , (1 - r), (1 - (r/level )^2)];

(* we know area , one side , one angle , so get other side *)

b1 = (2 targetArea )/(c Sin [\[ Alpha ]]);

b2 = (2 targetArea )/(a Sin [\[ Gamma ]]);

(* finally , get the coordinates of the third vertex *)

p1a = p1 + b1*{Cos [\[ Theta]], Sin [\[ Theta ]]};

p3a = p3 - b2*{Cos [\[ Theta]], Sin [\[ Theta ]]};

(* return the two resulting triangle objects *)

{\[ ScriptCapitalT ][p1 , p1a , p2 ,

If[rconst , level + 1, 1]], \[ ScriptCapitalT ][p2 , p3a , p3 ,

If[rconst , level + 1, 1]]}]

triGraphic[p1_ , p2_ , p3_ , _] := Polygon [{p1, p2, p3}]

r = 0.333333333333;

rconst = "r";
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(* First iteration *)

lvl=1;

Graphics[

{EdgeForm[Thin], Cyan ,

Nest[Flatten[

Map[Function[x,

triangleSplit[x, r,

rconst == "r"]], #]] &, {\[ ScriptCapitalT ][{-1, 0}, {0,

Tan [30 Degree]}, {1, 0}, 1]}, lvl] /. \[ ScriptCapitalT] ->

triGraphic }]

(* Second iteration *)

lvl =2;

Graphics[

{EdgeForm[Thin], Cyan ,

Nest[Flatten[

Map[Function[x,

triangleSplit[x, r,

rconst == "r"]], #]] &, {\[ ScriptCapitalT ][{-1, 0}, {0,

Tan [30 Degree]}, {1, 0}, 1]}, lvl] /. \[ ScriptCapitalT] ->

triGraphic }]

B.8 Figure 4.13a

L = 1./3. - 2*W/3.;

W = (c - 3.) (1. + sign*Sqrt [\[ Lambda ]])/(2 c);

J1 = {{1., 0.}, {1. + separation , 0}};

J2 = {{1., 2. + separation}, {1. + separation , 2. + separation }};

J3 = {{0., 1.}, {0., 1. + separation }};

J4 = {{2. + separation , 1.}, {2. + separation , 1. + separation }};

primordialjoins = {J1, J2, J3, J4};

listprimordialjoins = {primordialjoins };

c = 6; sign = -1; \[ Lambda] = 0.3; separation = 0.3;

square = {{{0., 0.}, {0., 1.}, {1., 1.}, {1., 0.}}};

p0 = square;

p2 = TranslationTransform [{0., 1 + separation }][p0];

p4 = TranslationTransform [{1 + separation , 0.}][p0];

p6 = TranslationTransform [(1 + separation) {1., 1.}][p0];

square = Catenate [{p0 , p2 , p4 , p6}]; Graphics [{Line[

primordialjoins], {Cyan , Polygon[square ]}}]
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B.9 Figure 4.13b

ClosedOsgoodCurve[separation_ , n_, \[ Lambda]_, c_, sign_] :=

(*n\[ GreaterEqual ]1 is the iteration , \[ Lambda] the area covered at \

infinity (0<\[ Lambda]<1), c the ratio between W_i and W_{i+1} (which \

needs to be c>3) and sign=+-1 in order to choose the positive or the \

negative root*)

Block [{square , square1 , square2 , square3 , p0, p2, p4, p6, p8, p10 ,

p12 , p14 , p16 , , j0 , j2 , j4 , j6 , j8 , j10 , j12 , j14 , j16 , join1 ,

join2 , join3 , join4 , join5 , join6 , join7 , join8 , joins , listjoins ,

Listjoins , p, J1 , J2 , J3 , J4 , listprimordialjoins , primordialjoins ,

PrimordialJoins , joins1 , joins2 , joins3 , listjoins1 , listjoins2 ,

listjoins3 , Listjoins1 , Listjoins2 , Listjoins3 , W, L},

(* Initializing constants *)

L = 1./3. - 2*W/3.;

W = (c - 3.) (1. + sign*Sqrt [\[ Lambda ]])/(2 c);

J1 = {{1., 0.}, {1. + separation , 0}};

J2 = {{1., 2. + separation}, {1. + separation , 2. + separation }};

J3 = {{0., 1.}, {0., 1. + separation }};

J4 = {{2. + separation , 1.}, {2. + separation , 1. + separation }};

primordialjoins = {J1, J2, J3, J4};

listprimordialjoins = {primordialjoins };

PrimordialJoins =

Table[Line[listprimordialjoins [[i]]], {i,

Length[listprimordialjoins ]}];

(* initializing square and joins , p for squares , j for joins*)

join1 = {{0., L}, {0., L + W}};

join2 = {{L, 0.}, {L + W, 0.}};

join3 = {{2 L + W, L}, {2 L + W, L + W}};

join4 = {{2 L + 2 W, L}, {2 L + 2 W, L + W}};

join5 = {{1., 2 L + W}, {1., 2 (L + W)}};

join6 = {{L, 2 L + W}, {L, 2 L + 2 W}};

join7 = {{L + W, 2 L + W}, {L + W, 2 L + 2 W}};

join8 = {{2 L + W, 1.}, {2 (L + W), 1.}};

joins = {join1 , join2 , join3 , join4 , join5 , join6 , join7 , join8 };

listjoins = {joins };

Listjoins = Table[Line[listjoins [[i]]], {i, Length[listjoins ]}];

square = {{{0., 0.}, {0., 1.}, {1., 1.}, {1., 0.}}};

p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0., L + W}][p0];

p4 = TranslationTransform [{0., 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];
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p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16 }];

square1 = TranslationTransform [(1. + separation) {1., 1.}][ square ];

square2 = ReflectionTransform [{1., 0.}][ square ];

square2 = TranslationTransform [{1., 1. + separation }][ square2 ];

square3 = TranslationTransform [(1. + separation) {1, -1}][ square2 ];

joins1 = TranslationTransform [(1. + separation) {1., 1.}][ joins];

joins2 = ReflectionTransform [{1., 0.}][ joins];

joins2 = TranslationTransform [{1., 1. + separation }][ joins2 ];

joins3 = TranslationTransform [(1. + separation) {1, -1}][ joins2 ];

listjoins1 = {joins1 };

listjoins2 = {joins2 };

listjoins3 = {joins3 };

Listjoins1 = Table[Line[listjoins1 [[i]]], {i, Length[listjoins1 ]}];

Listjoins2 = Table[Line[listjoins2 [[i]]], {i, Length[listjoins1 ]}];

Listjoins3 = Table[Line[listjoins3 [[i]]], {i, Length[listjoins1 ]}];

If[n == 1,

Graphics [{{Cyan , Polygon[square]}, {Cyan , Polygon[square1]}, {Cyan ,

Polygon[square2]}, {Cyan , Polygon[square3]}, {Thick , Black ,

Listjoins}, {Thick , Black , Listjoins1}, {Thick , Black ,

Listjoins2}, {Thick , Black , Listjoins3}, {Thick , Black ,

PrimordialJoins }}], (*the first iteration of the curve is done \

outside the loop*)

Do[

j0 = ScalingTransform [{L, L}][ joins];

j2 = ReflectionTransform [{1., 0.}][j0];

j2 = TranslationTransform [{L, L + W}][j2];

j4 = TranslationTransform [{0, 2 L + 2 W}][j0];

j6 = TranslationTransform [(L + W) {1., 1.}][j2];

j8 = TranslationTransform [(L + W) {1., 1.}][j0];

j10 = TranslationTransform [(L + W) {1., -1.}][j2];

j12 = TranslationTransform [2 (L + W) {1., 0.}][j0];

j14 = TranslationTransform [2 (L + W) {1., 0.}][j2];

j16 = TranslationTransform [2 (L + W) {1., 0.}][j4];

joins = Catenate [{j0, j2, j4, j6, j8, j10 , j12 , j14 , j16}];

joins1 = TranslationTransform [(1. + separation) {1., 1.}][ joins];

joins2 = ReflectionTransform [{1., 0.}][ joins];

joins2 = TranslationTransform [{1., 1. + separation }][ joins2 ];

joins3 = TranslationTransform [(1. + separation) {1, -1}][ joins2 ];

AppendTo[listjoins , joins ];

AppendTo[listjoins1 , joins1 ];

AppendTo[listjoins2 , joins2 ];

AppendTo[listjoins3 , joins3 ];
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p0 = ScalingTransform [{L, L}][ square ];

p2 = TranslationTransform [{0., L + W}][p0];

p4 = TranslationTransform [{0, 2 L + 2 W}][p0];

p6 = TranslationTransform [(L + W) {1., 1.}][p2];

p8 = TranslationTransform [(L + W) {1., 1.}][p0];

p10 = TranslationTransform [(L + W) {1., -1.}][p2];

p12 = TranslationTransform [2 (L + W) {1., 0.}][p0];

p14 = TranslationTransform [2 (L + W) {1., 0.}][p2];

p16 = TranslationTransform [2 (L + W) {1., 0.}][p4];

square = Catenate [{p0 , p2 , p4 , p6 , p8 , p10 , p12 , p14 , p16}],

n - 1];

(*In the loop I have created the bottom left square.

Now I create the three other squares by transforming that one*)

square1 = TranslationTransform [(1. + separation) {1., 1.}][ square ];

square2 = ReflectionTransform [{1., 0.}][ square ];

square2 = TranslationTransform [{1., 1. + separation }][ square2 ];

square3 = TranslationTransform [(1. + separation) {1, -1}][ square2 ];

Listjoins = Table[Line[listjoins [[i]]], {i, Length[listjoins ]}];

Listjoins1 = Table[Line[listjoins1 [[i]]], {i, Length[listjoins1 ]}];

Listjoins2 = Table[Line[listjoins2 [[i]]], {i, Length[listjoins1 ]}];

Listjoins3 = Table[Line[listjoins3 [[i]]], {i, Length[listjoins1 ]}];

Graphics [{{Cyan , Polygon[square]}, {Cyan , Polygon[square1]}, {Cyan ,

Polygon[square2]}, {Cyan , Polygon[square3]}, {Thick , Black ,

Listjoins}, {Thick , Black , Listjoins1}, {Thick , Black ,

Listjoins2}, {Thick , Black , Listjoins3}, {Thick , Black ,

PrimordialJoins }}]

]

]

ClosedOsgoodCurve [0.3, 4, 0.3, 6, -1]

B.10 Figure 4.14

Modified from [17].

dist[{x0_ , y0_}, {x1_ , y1_}] := Sqrt[(x0 - x1)^2 + (y0 - y1)^2]

triangleSplit [\[ ScriptCapitalT ][p1_ , p2_ , p3_ , level_], r_, rconst_] :=

Module [{c = dist[p1 , p2], a = dist[p2 , p3],

b = dist[p3 , p1], \[Alpha], \[Gamma], \[Theta], originalArea ,

targetArea , b1 , b2 , p1a , p3a},

\[ Alpha] = ArcCos [(b^2 + c^2 - a^2)/(2 b c)];

\[ Gamma] = ArcCos [(a^2 + b^2 - c^2)/(2 a b)];

\[Theta] = ArcTan [(p3 [[1]] - p1[[1]]) , (p3 [[2]] - p1 [[2]])];

originalArea = Sqrt[(a^2 + b^2 + c^2)^2 - 2 (a^4 + b^4 + c^4)]/4;
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(* if we’re removing r_j of the area ,

each resulting triangle wants half the remaining area *)

targetArea = (originalArea /2)*If[rconst , (1 - r), (1 - (r/level )^2)];

(* we know area , one side , one angle , so get other side *)

b1 = (2 targetArea )/(c Sin [\[ Alpha ]]);

b2 = (2 targetArea )/(a Sin [\[ Gamma ]]);

(* finally , get the coordinates of the third vertex *)

p1a = p1 + b1*{Cos[\[ Theta]], Sin[\[ Theta ]]};

p3a = p3 - b2*{Cos[\[ Theta]], Sin[\[ Theta ]]};

(* return the two resulting triangle objects *)

{\[ ScriptCapitalT ][p1 , p1a , p2 ,

If[rconst , level + 1, 1]], \[ ScriptCapitalT ][p2 , p3a , p3 ,

If[rconst , level + 1, 1]]}]

triGraphic[p1_ , p2_ , p3_ , _] := Polygon [{p1, p2, p3}]

r = 1./3.;

lvl = 6;

rconst = "r";

Graphics [{

{EdgeForm[Thin], Cyan ,

Nest[Flatten[

Map[Function[x,

triangleSplit[x, r,

rconst == "r"]], #]] &, {\[ ScriptCapitalT ][{-1,

0}, {-1 + Sqrt [2]* Cos [105 Degree],

Sqrt [2]* Sin [105 Degree]}, {0, Tan[Pi/3]}, 1]},

lvl] /. \[ ScriptCapitalT] -> triGraphic},

{EdgeForm[Thin], Cyan ,

Nest[Flatten[

Map[Function[x,

triangleSplit[x, r,

rconst == "r"]], #]] &, {\[ ScriptCapitalT ][{0,

Tan[Pi/3]}, {1 + Sqrt [2]* Cos[75 Degree],

Sqrt [2]* Sin [75 Degree]}, {1, 0}, 1]},

lvl] /. \[ ScriptCapitalT] -> triGraphic},

{EdgeForm[Thin], Cyan ,

Nest[Flatten[

Map[Function[x,

triangleSplit[x, r,

rconst == "r"]], #]] &, {\[ ScriptCapitalT ][{-1,

0}, {0, -1}, {1, 0}, 1]}, lvl] /. \[ ScriptCapitalT] ->

triGraphic }},

ImageSize -> {400, 400}, PlotRange -> {{-2, 2}, {-2, 2}}]



Appendix C

Mathematica source code for figures
in chapter 6

C.1 Figure 6.2

square = {Cyan , Rectangle []};

g1 = Table [{t, RandomReal [{0.4, 0.6}]} , {t, 0, 1, 0.05}];

g2 = Table [{ RandomReal [{0.4, 0.6}], t}, {t, 0, 1, 0.05}];

Graphics [{square , {Thick , Line[g1]}, {Green , Thick , Line[g2]}}]

79



80 APPENDIX C. MATHEMATICA SOURCE CODE FOR FIGURES IN ??



Bibliography

[1] Tom M Apostol, Mathematical analysis; 2nd ed., Addison-Wesley series in mathematics, Addison-
Wesley, Reading, MA, 1974.
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[3] L. Bernal-González, M.C. Calderón-Moreno, and J.A. Prado-Bassas, The set of space-filling curves:
Topological and algebraic structure, Linear Algebra and its Applications 467 (2015), 57–74.

[4] G. Cantor, Ein beitrag zur mannigfaltigkeitslehre, Journal für die reine und angewandte Mathematik
(Crelles Journal) 1878 (1878), no. 84, 242–258.

[5] Paul du Bois-Reymond, Versuch einer classification der willkürlichen functionen reeller argumente
nach ihren aenderungen in den kleinsten intervallen., Journal für die reine und angewandte Mathe-
matik (Crelles Journal) 1875 (1875), no. 79, 21–37.

[6] G.A. Edgar, Classics on fractals, Addison-Wesley studies in nonlinearity, Basic Books, 1993.

[7] Konrad Knopp, Einheitliche erzeugung und darstellung der kurven von peano, osgood und von koch,
Archiv der Mathematik und Physik 26 (1917), 103–115.

[8] H. V. KOCH, Sur une courbe continue sans tangente, obtenue par une construction geometrique
elementaire, Arkiv for Matematik, Astronomi och Fysik 1 (1904), 681–704.

[9] Erwin Kreyszig, Introductory functional analysis with applications, wiley New York, 1989.

[10] Mark Lynch, A continuous, nowhere differentiable function, The American Mathematical Monthly
99 (1992), no. 1, 8–9, available at https://doi.org/10.1080/00029890.1992.11995798.

[11] Ryuji Maehara, The jordan curve theorem via the brouwer fixed point theorem, The American Math-
ematical Monthly 91 (1984), no. 10, 641–643.

[12] S. Mazurkiewicz, Sur les fonctions non dérivables, Studia Mathematica 3 (1931), 92–94.
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