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Resumen 
 
 

El campo de la ́optica no lineal lleva activo y en continuo crecimiento desde hace 60 
añ os debido a los nuevos temas de investigación que surgen del estudio de la interacción 
l áser-materia y sus posibles aplicaciones. En concreto, el desarrollo de nuevas fuentes de 
luz coherentes y ultracortas es de gran relevancia para explorar procesos fundamentales 
en la ciencia. 

Actualmente los pulsos de poco ciclos de duraci ón se pueden generar con t écnicas de 
compresión basadas en efectos auto-inducidos por pulsos de luz intensos. La t écnica 
de post-compresión que mejores resultados ha obtenido, con relaci ón a la energ´ıa y a 
la duraci ón del pulso, es aquella basada en fibra hueca llena de un gas. Las distintas 
estrategias que se necesitan para aumentar m ás  la energ´ıa y conseguir pulsos cada vez 
m á s  cortos a longitudes de ondas diferentes de las convencionales, conllevan al continuo 
desarrollo e investigación de esta técnica. 

El objetivo de esta tesis es encontrar nuevas propuestas para optimizar esta t écnica de 
post-compresión. El hilo conductor de esta trabajo es el entendimiento de los efectos 
espacio-temporales no lineales que aparecen durante la propagación de distintos tipos 
de haces en la fibra hueca, intentando encontrar una solución al problema de escalado 
de la energ´ıa. 

En la introducción se presentará un breve resumen del desarrollo y los avances consegui- 
dos con esta y otras técnicas en la actualidad. Las bases teóricas sobre la propagación no 
lineal de pulsos l áser en fibra hueca se desarrollarán en el Cap´ıtulo 2. Se explicarán los 
distintos efectos espacio-temporales no lineales que aparecen en la propagación del pulso 
l áser en la fibra y la ecuación de ondas no lineal. Los modelos numéricos implementados 
se detallarán en el Cap´ıtulo 3, se han utilizado tres modelos distintos, (1+1)D, (2+1)D 
y (3+1)D, entre los cuales, el (1+1)D y el (3+1)D se han desarrollado en este trabajo. 

Comenzaremos con el estudio de los efectos espacio-temporales no lineales que apare- 
cen en la propagación del modo fundamental de una fibra hueca y la influencia del 
confinamiento espacial del sistema como posibles factores que limitan el proceso de 



 

 

post-compresión, todo ello desarrollado en el Cap´ıtulo 4. En este mismo cap´ıtulo, iden- 
tificaremos los l´ımites de energ´ıa para evitar efectos no lineales que desfavorecen el 
proceso de auto-compresi ón [Crego et al., 2019]. 

En los siguientes cap´ıtulos estudiaremos diferentes estrategias para conseguir pulsos 
ultracortos y energéticos. Primero, investigaremos la propagación no lineal de haces 
estructurados en fibra hueca. La ventaja de este tipo de haces es que se puede aumentar 
la energ´ıa de entrada del pulso ya que la intensidad est á distribuida en un área mayor 
dentro del núcleo de la fibra. En particular, en el Cap´ıtulo 5 estudiaremos la propagación 
de haces con polarización que var´ıa espacialmente, conocidos como haces vectoriales. 
La propagación no lineal de estos haces ha resultado complicada tanto teórica como 
experimentalmente. En el Cap´ıtulo 6, investigaremos la propagación no lineal de otro 
tipo de haz estructurado, los haces tipo ”necklace” con un número diferente de cuentas 
o lóbulos, los cuales pueden llevar m ás  energ´ıa que el modo fundamental de la fibra 
hueca. El resultado principal de este estudio ser á  la generación de haces ultracortos y 
energéticos en el visible con una alta eficiencia [Crego et al., 2021]. 

 
En Cap´ıtulo 7, estudiaremos la posibilidad de obtener pulsos ultracortos y energéticos a 
diferentes longitudes de onda mediante el proceso de generación de ondas dispersivas en 
la fibra hueca. En concreto, investigaremos la evolución de la energ´ıa y de la duración 
del pulso durante el proceso de generación de la onda dispersiva para poder obtener 
simultáneamente pulsos de pocos ciclos de duraci ón y alta energ´ıa. 

Finalmente, en el Cap´ıtulo 8 resumiremos los principales resultados obtenidos en este 
trabajo y hablaremos de las posibles perspectivas y l´ıneas de investigación. 
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Chapter 1 
 
 

Introduction 
 
 

The field of nonlinear optics is 60 years old, and it is still growing due to the new topics 
that continuously emerge from the study of light-matter interactions and possible appli- 
cations. In particular, the development of new coherent ultrabroadband light sources is 
of great importance to explore fundamental phenomena in science. 

Few-cycle pulses can be generated nowadays with pulse compression techniques based 
on self-action effects of intense light pulses. The most successful post-compression tech- 
nique able to reach the high-energy few-cycle regime is the hollow capillary fiber (HCF) 
compressor. The different strategies to scale up the output energy and to obtain ul- 
trashort pulses at different wavelengths than the conventional infrared lead to further 
investigation of this technique. 

The aim of this thesis is to find new approaches to optimize this post-compression tech- 
nique. The conducting line followed in this study is the understanding of the nonlinear 
spatio-temporal effects that appear during the propagation of different types of beams 
in the HCF, attempting to find a solution to the energetic up-scaling problem. 

A brief overview of the developments and the state-of-the-art of post-compression tech- 
niques is given in the present chapter. The theoretical foundations of the nonlinear 
propagation of laser pulses in HCFs are explained along Chapter 2. We will explain the 
different nonlinear effects that appear during the propagation in the HCF and the non- 
linear wave equation. We have developed different numerical models, (1+1)D, (2+1)D 
and (3+1)D, and their implementation is explained in Chapter 3. In particular, the 
(1+1)D and (3+1)D models have been developed in the frame of this thesis. 

The starting point of this thesis is the study of the spatio-temporal nonlinear effects that 
appear during the propagation of the fundamental mode of a HCF and the influence of 
the spatial confinement and of the system as possible limiting factors for an efficient 
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post-compression process, explained here in Chapter 4. In that chapter we will identify 
the energy limits to avoid detrimental effects in propagation that worsen the output 
pulse [Crego et al., 2019]. 

In the following chapters we will study different strategies to obtain ultrashort and 
energetic pulses. First, we will investigate the nonlinear propagation of structured beams 
in the HCF. The advantages of this type of beams are that the input energy can be 
higher since the intensity is distributed in a larger area within the core of the HCF. In 
particular, in Chapter 5 we will study the propagation of beams with spatially varying 
polarization, or vector beams. The nonlinear propagation of this type of beams has 
proven to be complicated both theoretically and experimentally. In Chapter 6, we will 
explore the nonlinear propagation of another type of structured beams, necklace beams 
with different number of beads, which were thought to be able to carry more energy 
than the fundamental mode. The main result will be the generation of ultrashort visible 
energetic pulses with a high efficiency [Crego et al., 2021]. 

 
In Chapter 7 we will explore the possibility of obtaining ultrashort and energetic pulses 
at different wavelengths by means of the dispersive wave generation process in HCF. 
In particular, we will study the evolution of the energy and the pulse duration during 
the generation process of the dispersive wave in order to obtain a high-energy few-cycle 
pulse. 

Finally, we will summarize the main results obtained in this work and we will give an 
outlook of possible future research lines on the subject in Chapter 8. 

 
 
1.1 A Brief History of Nonlinear Propagation of Ultra- 

short Laser Pulses 

 
The demonstration of the laser by Ted Maiman paved the way to new research topics and 
several applications in a wide variety of scientific fields over the last 60 years [Maiman, 
1960]. One of them was the study of the nonlinear response of materials to light, only 
possible due to the high power and coherent laser light available from that moment on. 
From the invention of the laser to the present day, the field of nonlinear optics has grown 
rapidly. 

One year after the invention of the laser, the first laser-based experiments in nonlinear 
optics were performed. The first demonstration of this nonlinear response was made 
by Franken et al. in 1961 with the experimental generation of the second harmonic 
using a ruby laser (632 nm) [Franken et al., 1961]. However, the nonlinear effects in 
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these experiments were very weak and the phase-matching was missing, but with the 
significantly more intense pulsed laser beams, obtained by Q-switching [Hellwarth, 1961, 
McClung and Hellwarth, 1962] or mode-locking techniques [Hargrove et al., 1964], these 
nonlinear effects set an upper limit on the laser beam power to prevent material damage. 
Together with these studies many more were carried out, reporting the first self-trapping 
of dielectric waveguide modes due to the optical Kerr effect in 1964 by Chiao et al. when 
trying to explain the experimental observation of damage tracks in glass [Chiao et al., 
1964]. They contemplated the propagation without spreading of a high-intensity beam in 
a dielectric material to explain the effect observed. This optical Kerr effect was already 
defined as a third order nonlinear effect that induces an intensity-dependent variation 
in the refractive index of the medium in the form, n = nL + nNLI, where nNL is the 
nonlinear refractive index and I the pulse intensity [Boyd, 2020]. 

 
The invention and continuous development of the laser also motivated the search for new 
applications. The most important one was the development of optical fibers with low 
attenuation by Kao and Hockham in 1966, becoming a suitable tool for communications 
[Kao and Hockham, 1966]. One of the main advantages of these devices is that they 
facilitated the propagation of high-intensity pulses over long interaction lengths, which 
enhanced the nonlinear response using low input peak powers. In subsequent years, 
the studies on different nonlinear effects in optical fibers continued. Stolen et al. first 
observed in 1972 the stimulated Raman and Brillouin emissions in glass-fiber optical 
waveguides [Stolen et al., 1972]. In 1973 Hasegawa and Tappert proposed the theoreti- 
cal transmission of a temporal soliton in a dielectric fiber [Hasegawa and Tappert, 1973]. 
They mentioned the possibility of compensating the pulse stretching, associated to the 
spectral broadening induced by the nonlinear intensity dependence of the refractive in- 
dex, with the temporal pulse compression induced by the anomalous dispersion response, 
which is the base of post-compression setups to reduce the pulse duration. This theoret- 
ical proposal was confirmed experimentally in 1985 using a single mode silica fiber and 
a mode-locked laser of 7 ps pulse duration, with which they reported the compression of 
a laser pulse down to 6 ps when they increased the input pulse power [Mollenauer et al., 
1980]. The first femtosecond laser pulses using a combination of saturable gain in a dye 
laser medium and a saturable dye absorber were obtained by Shank and Ippen in 1974 
[Shank and Ippen, 1974]. 

 
Besides short laser pulses, the interest in intense broad-band continuum light sources for 
spectroscopy applications was also a matter of great interest. First continuum generation 
by different nonlinear effects in an optical fiber was reported by Lin and Stolen in 1976, 
obtaining a much more intense and wider bandwidth source for spectroscopy than the 
available laser sources at that moment [Lin and Stolen, 1976]. In this case, the dominant 
nonlinear effects which contribute to the spectrum broadening were stimulated Raman 
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scattering and self-phase modulation, so that the continuum generation was produced 
on the red side of the central wavelength. Some years later, they also observed the first 
spectrum broadening by self-phase modulation alone in optical fibers, using a single mode 
silica fiber and mode-locked argon laser pulses [Stolen and Lin, 1978]. Since the spectrum 
broadening generated was due to the self-phase modulation effect alone, the continuum 
was generated both above and below the central wavelength. With this technique, in 
the early 1980s, post-compressed laser pulses were observed in different experiments 
after broadening the spectrum in an optical fiber through self-phase modulation effect 
[Fujimoto et al., 1984, Halbout and Grischkowsky, 1984, Shank et al., 1982, Tomlinson 
et al., 1984], generating the shortest pulses of 6 fs of duration in less than a decade 
[Fork et al., 1987]. These results were a revolution for ultrafast science due to the 
temporal pulse duration achieved but obtaining compressed pulses from optical fibers 
with energies above the nanojoule level was challenging. Despite the good efficiency and 
the good beam quality obtained with the optical fibers, some parts of the system struggle 
with power levels above a few hundred watts. Besides, they have limitations on the core 
diameter in the single-mode regime and the material choice. These limitations, together 
with the new nonlinear phenomena available with the generation of more intense and 
shorter laser pulses thanks to the Chirped Pulse Amplification technique proposed by 
Strickland and Mourou in 1985 [Strickland and Mourou, 1985], motivated the research 
of new fiber designs. 

 
An important progress in energy scaling was made possible by the invention of mi- 
crostructured fibers or photonic crystal fibers [Knight et al., 1996]. The design of their 
internal microstructured geometry gives an exceptional control in the dispersion and 
makes possible to obtain a single mode propagation in the full optical range. Certain 
types of photonic crystal fibers present a hollow core, thus the wave-guiding is not 
achieved by total internal reflection between a high-index core and a low-index cladding 
as in optical fibers. Instead, it is based in the photonic bandgap effect due to the periodic 
refractive index structure of the cladding. Since the core of photonic crystal fibers can 
be solid but also filled with air or liquid, they also present a higher damage threshold 
compared to the standard optical fibers. They can be fabricated with an extremely 
small core (with a section of a few µm2) so light is confined in this small region, which 
enhances the nonlinearity even more than in standard optical fibers. The first demon- 
stration of the enhanced nonlinearity in solid-core photonic crystal fibers was reported 
in 2000, with the supercontinuum spectrum broadening from the visible (400 nm) to 
the mid-infrared (1600 nm) [Ranka et al., 2000], confirmed also by others experiments 
in tapered standard optical fibers [Birks et al., 2000]. In 2002, the first broad-band 
photonic crystal fiber with hollow core was demonstrated by Benabid et al. with low 
loss for almost two-octave bandwidth [Benabid et al., 2002]. Recently a seven-octave 
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high-brightness light source using an anti-resonant-reflection photonic crystal fiber has 
been reported, demonstrating the feasibility of photonic crystal fibers as a technology 
capable of generating sub-3-fs, energetic and tunable laser sources [Ugaitz et al., 2021]. 
Although photonic crystal fibers present interesting properties compared to standard 
optical fibers, the propagation losses are generally larger than in standard optical fibers. 

With the Chirped Pulse Amplification technique, it was possible to obtain pulses of a 
few tens of femtoseconds of duration. However, the interest in even more energetic few- 
cycle laser pulses for different applications, such as harmonic generation, motivated the 
investigation of new techniques to obtain these ultrashort and energetic pulses. Although 
photonic crystal fibers were an important step forward and hollow-core photonic crystal 
fibers enabled a higher pulse energy, it is necessary to follow a different strategy in order 
to obtain pulses in the millijoule level. 

 
 

1.1.1 Post-Compression Techniques 
 

A compressor is a device used to reduce the duration of an ultrashort laser pulse by linear 
or/and nonlinear techniques. In standard post-compression schemes, the spectrum of 
the pulse is first broadened by the nonlinear interaction between the laser pulse and the 
nonlinear medium, while the temporal pulse shape barely changes. In this nonlinear 
process, the pulse spectrum broadens while the spectral phase changes simultaneously, 
resulting in a pulse much longer than the corresponding transform limited duration. To 
flatten the spectral phase, post-compression schemes are usually followed by a phase 
compensation setup with a prism pair, a grating pair [Treacy, 1969, 1968] or the most 
commonly used chirped mirrors [Szipöcs and K öh áz i -Kis, 1997, Szipöcs et al., 1994]. 

 
There have been several reports on the compression of laser pulses in the last years 
and some of the methods developed are filamentation, post-compression in bulk media, 
post-compression in optical fibers and HCFs, multiple-plate compression and soliton 
self-compression, among others. In the case of filamentation, the interplay between Kerr 
effect, ionization and linear effects leads to a plasma filament in solids, liquids or gases 
[Couairon and Mysyrowicz, 2007]. With this technique it is possible to obtain short 
pulses and a supercontinuum spectrum during the pulse propagation. However, related 
to the energy scaling, only filamentation in gases is possible [Hauri et al., 2004], where 
pulses up to 200 µJ [Goulielmakis et al., 2008] and shorter than 4 fs [Steingrube et al., 
2012] have been achieved at 800 nm. In the mid-infrared, the generation of subterawatt 
few-cycle pulses through filamentation has also been reported [Mitrofanov et al., 2016]. 
Although pulse compression through filamentation has obtained successful results, the 
complex spatio-temporal coupling leads to a non-uniform temporal compression and 



CHAPTER 1. INTRODUCTION 

8 

 

 

 
only the central part of the beam, with a small fraction of the total energy, can be 
used as a short pulse source. Post-compression in bulk media was first reported in 1988 
by Rolland and Corkum obtaining pulses of tens of femtoseconds on the microjoule 
level [Rolland and Corkum, 1988]. They propagated a laser beam through a quartz 
plate shorter enough to avoid self-focusing and then they compressed it with a grating 
pair. Although it is possible to obtain more energetic pulses in the subpetawatt level 
at present, it is difficult to obtain few-cycle duration [Mironov et al., 2020]. Another 
strategy is the multiple-plate compression technique which consists in a series of plates 
where the spacing and the thickness of the plates can be modified depending on the 
pulse energy to obtain a high compression ratio [Lu et al., 2014, 2019]. The pulse peak 
power is above the critical power in the plate, so the beam starts to self-focus inducing an 
important spectral broadening. The thickness of the plate is small enough to avoid beam 
collapse, thus the beam focuses behind the plate in air and then it basically diverges 
due to diffraction. The next plate is placed at the distance where the beam is large 
enough to repeat the process. The disadvantage of this technique is the energy scaling 
(sub-millijoule regime). 

 
The most widely used method to generate these ultrashort and energetic pulses that we 
are going to study in this work, is through gas-filled hollow capillary fibers (HCFs). The 
interaction of laser pulses with gas media is of great importance since they present a 
higher damage threshold than other nonlinear media, and even when the gas is ionized 
due to the pulse interaction, it does not become permanently damaged like bulk ma- 
terials. For these reasons, HCFs and hollow-core photonic crystal fibers, made from a 
single hollow core in a solid cladding and filled with gas or liquid, have been a successful 
tool in experiments in the last decades. Another main advantage of these devices is that 
the nonlinearity and the dispersion of the system can be easily tuned without additional 
fabrication steps just changing the gas pressure. Although there are hollow-core pho- 
tonic crystal fibers that use this technology and they have a low attenuation and a low 
bend loss compared with standard HCFs [Azhar et al., 2013, Cregan et al., 1999], the 
latter are useful when propagating intense (millijoule-scale) laser pulses over lengths of 
a few meters in large core HCF (rF >100 µm), which is the research topic of this work. 

 
 
1.1.2 Pulse Post-Compression in Hollow Capillary Fibers 

 

The main difference between hollow capillary fibers (HCFs) and photonic crystal fibers 
is that HCF do not present a microstructured cladding, which makes them a weakly 
guiding multimode system because the core presents a smaller refractive index than 
the cladding. In this case, the guiding relies on grazing-incidence reflection, and it is 
very sensitive to bending. Another difference is the core size, HCFs present a larger 
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core than photonic crystal fibers, which enables the up-scaling of the pulse energy but 
at the same time enhances the multimode propagation regime. There is a schematic 
comparison of HCFs and photonic crystal fibers in Fig. 1.1. While HCFs were already 
used in experiments back in the 1970s [Ippen, 1970, Miles et al., 1977], they went on to 
form the basis of intense few-cycle laser pulse compressors in ultrafast science. 

 

 
 

Figure 1.1: Schematic representation of different photonic crystal fibers with solid 
and hollow core (a,b,c) and a standard hollow capillary fiber (HCF) (d). 

 
 

A relevant contribution in ultrafast laser science occurred in 1996 when Nisoli et al. 
reported the generation of 10 fs pulses with 240 µJ energy using for the first time a 
HCF [Nisoli et al., 1996]. The energy of the generated few-cycle pulses were more than 
three orders of magnitude higher than the post-compressed pulses obtained in former 
experiments. This was possible due to the low nonlinearity of the gas medium inside the 
HCF and the increment of the core diameter up to 140 µm. They later improved this 
result compressing a 20-fs laser pulse down to 4.5 fs [Nisoli et al., 1997]. Although HCFs 
present a limit in the input pulse energy to avoid detrimental nonlinear effects, like self- 
focusing and plasma [Conejero Jarque et al., 2018], the output pulses are essential for 
generating isolated attosecond pulses via high-order harmonic processes in noble gases 
[Corkum, 1993]. 

Over the last decades, several advances have been achieved related to the pulse du- 
ration and energy scaling in HCF compressors. The main requirements to obtain a 
shorter pulse duration are the possibility of expanding the spectral broadening keeping 
the single-mode operation and the development of ultrabroadband dispersive delay lines 
for dispersion compensation. By using short input pulses of around 20 fs and keeping 
the nonlinearities low, it is possible to obtain sub-2-cycle pulses with 1 mJ [Schwein- 
berger et al., 2012]. Further energy scaling up to 1.9 mJ [Anderson et al., 2011] can be 
achieved using circularly polarized light since the nonlinearity decreases by a factor of 
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Figure 1.2: Hollow capillary compressor setup. 
 
 
2/3 [Ghimire et al., 2005]. The implementation of a novel spectral broadening technique 
consisting of a two-stage HCF arrangement allowed the achievement of ultrashort and 
high-power laser pulses [Nisoli et al., 2002]. With this technique Schenkel at al. reported 
a 3.8 fs pulse of 0.35 mJ from a Ti:sapphire laser [Schenkel et al., 2003], but also, related 
to the energy scaling, Hädrich et al. reported an infrared 6-fs pulse at an unprecedented 
average power of 216 W [Hädrich et al., 2016]. 

Related to the energy scaling, it is necessary to avoid gas ionization at high intensities 
since it can lead to undesirable nonlinear effects. Therefore, ionization sets an upper 
limit on the input peak intensity of the pulse which restricts the HCF core size. Once 
the core size is chosen, to obtain the desire spectral broadening one can change the 
pressure or the HCF length to enhance the nonlinearity. The gas pressure also presents 
a restriction to avoid the critical value for which self-focusing takes place and the HCF 
length is limited to 1 m to avoid the bending, setting an upper limit in the input energy 
itself. The solution to this many-parameters problem was proposed in 2008 by Nagy et al. 
with the utilization of flexible HCF, whose ends can be pulled to keep the fiber straight 
[Nagy et al., 2008]. Another strategy to increase the input energy apart from increasing 
the HCF length, is using pressure gradients inside the HCF, which was introduced by 
Midorikawa‘s group. To avoid self-focusing and ionization of the gas medium at the HCF 
entrance, they apply the gas at the output side and flows to the entrance through the 
fiber, but this reduces the interaction length [Suda et al., 2005]. A different alternative 
is the utilization of hollow-planar waveguides to increase the mode area [Nurhuda et al., 
2006]. This made possible to reach the terawatt level at sub-15 fs duration, but the beam 
profile cannot be controlled properly resulting in an inhomogeneous spectral broadening 
[Arnold et al., 2010]. Combining all the methods mentioned above for energy scaling it 
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is possible to obtain compressed pulses of 3.8 fs and 6.1 mJ with a peak power of 1.2 
TW [Nagy et al., 2020]. 

An alternative method to obtain high-energy pulse compression avoiding the ionization 
of the medium, consists in the propagation of long input pulses of a few hundred of 
femtoseconds, but to compress them to the few-cycle regime it is necessary a large 
compression ratio. One of the possible ways to obtain few-cycle pulses with this method 
is to use molecular gases taking advantage of the non-instantaneous nonlinear Raman 
response related to the alignment of molecules in the field direction, enhancing the red 
side of the spectrum [Wahlstrand et al., 2011]. This technique can be improved to 
obtain a two-octave spectrum and a compression factor of 45, by matching the input 
pulse duration to the time constant of the delayed Raman response [Beetar et al., 2020]. 

 
 

1.1.3 Pulse Soliton Self-Compression in Hollow Capillary Fibers 
 

An alternative nonlinear compression technique would be the soliton self-compression 
dynamics during nonlinear propagation. With this technique it is possible to obtain 
few-cycle pulses with multi-octave spanning spectra without needing further phase com- 
pensation. However, the self-compression dynamics is highly dependent on the input 
pulse and HCF parameters: under some circumstances, a high-intensity laser pulse 
propagates in the anomalous dispersion regime inside the HCF. Since the dispersion and 
the self-phase modulation effect induce group velocity dispersion with opposite signs 
inside the HCF, they can be balanced resulting in a stable optical soliton. The max- 
imum possible compression is limited by higher-order linear and nonlinear effects, like 
higher-order dispersion terms, self-steepening and Raman response, which can cause the 
soliton fission [Voronin and Zheltikov, 2008]. 

 
The first experimental demonstration of self-compression dynamics in a hollow waveg- 
uide was reported by Wagner et al. in 2004. They compressed down to 13 fs an initial 
30-fs pulse from a Ti:sapphire laser after the propagation inside a hollow waveguide filled 
with argon at low pressure [Wagner et al., 2004]. This technique has been studied in de- 
tail for infrared pulses in filaments [Kretschmar et al., 2014], bulk material [Shumakova 
et al., 2016] and photonic crystal fibers [Ermolov et al., 2019, Joly et al., 2011]. Recent 
results about a much larger energy soliton self-compression in HCFs were reported by 
Travers’ group. They demonstrated that standard HCFs also present negative disper- 
sion just choosing the fiber and laser parameters carefully [Travers et al., 2019]. The 
linear dispersion experimented by the laser pulse depends on the gas dispersion and the 
HCF contributions, while the nonlinear response depends not only on the gas proper- 
ties, but also on the mode confinement. Travers’s group scaled the soliton effects to the 
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multi-millijoule energy and terawatt peak power level, orders of magnitude above optical 
fibers and photonic crystal fibers. They observed experimentally the self-compression of 
a previously post-compressed 10-fs laser pulse down to 1.2 fs in a 3 m flexible HCF with 
125 µm inner radius filled with 0.4 bar of helium. In addition, they generated tunable 
few-cycle ultraviolet pulses by changing the pressure of the gas. This effect is observed 
at the maximum compression point, when the soliton fission occurs and some energy is 
resonantly transferred from the soliton to a certain frequency in the normal dispersion 
region in a phase-matching process [Akhmediev and Karlsson, 1995, Karpman, 1993]. 
This emitted radiation propagates linearly and its wavelength can be tuned changing 
the gas pressure inside the HCF. This effect, named dispersive wave generation process, 
sets the foundations for a new topic in nonlinear optics. 

This dispersive wave is a result of the interplay between the anomalous dispersion that 
the pulse experiences during the propagation, and the nonlinear effects, leading to a 
soliton formation and a self-compression process. Thus, it is possible to achieve an 
ultrashort pulse with a high intensity peak. In addition, this self-compression process is 
accompanied by an important spectral expansion or shed of energy to a certain frequency 
in the normal dispersion regime, produced under perfect phase matching conditions, 
separated from the soliton spectrum [Akhmediev and Karlsson, 1995], usually known as 
dispersive wave emission. 

 
 
1.1.4 State-of-the-Art 

 

During the last few years, the race towards the generation of ultrashort and energetic 
laser pulses has achieved several milestones. In this subsection we briefly outline the 
best compression results related to the different techniques in terms of compressed pulse 
duration, pulse energy, peak power, compression factor and average power. In general, 
these parameters are limited by physical laws or technical issues, so their improvement 
is quite demanding. 

The shortest pulses and the highest peak powers are generated by propagating short 
pulses from Ti:sapphire lasers (blue markers in Fig. 1.3) in HCFs and flexible HCFs 
(SF-HCF) [Bohman et al., 2010, Nagy et al., 2020, Ouill é et al., 2020], while the highest 
average powers are obtained with ytterbium-based systems (orange markers in Fig. 1.3) 
[Hädrich et al., 2016, Russbueldt et al., 2019]. If we compare the compression methods, 
the multi-pass cell technique (MPC) is the only one above sub-3-cycle operation [Balla 
et al., 2020], but together with HCFs, they generate the highest pulse energy and average 
power [Hädrich et al., 2016, Lücking et al., 2014, Nagy et al., 2019, Russbueldt et al., 
2019]. It should be noted that the HCF is one of the most successful post-compression 



CHAPTER 1. INTRODUCTION 

13 

 

 

 
techniques being able to reach the high-energy few-cycle regime (red area in in Fig. 1.3 
left) with above-mJ and sub-3-cycle pulses [Bohman et al., 2010, Nagy et al., 2020]. It 
is possible to obtain higher energies in planar waveguides [Jarnac et al., 2014] and using 
weakly ionized gases [Hort et al., 2015]. Recently, the post-compression of sub-30 fs 
pulses at the terawatt level for an ytterbium laser system has been reported in HCFs 
filled with liquid, which presents an important advance [Fan et al., 2021]. 

According to the compression ratio the cascaded setups present a larger compression 
ratio, even though they are more complex than single stage compressors. The com- 
pression factors obtained in single-stage setups based on multi-pass cells (MPC) [Balla 
et al., 2020, Kaumanns et al., 2018] or very long flexible HCFs [Nagy et al., 2019] filled 
with molecular gases [Beetar et al., 2020], are more than 2 times larger than in a 1 
m standard HCF [Hädrich et al., 2013]. In cascaded setups like multi-pass cells [Balla 
et al., 2020], hollow-core photonic crystal fibers (HC-PCF) [Köttig et al., 2020] or HCFs 
[Hädrich et al., 2016], it is possible to obtain a compression factor between 3-7 times 
larger than in a 1 m standard HCF. These results were reported in the near infrared, but 
since the period of the optical cycle decreases at shorter wavelengths, the development 
of short new wavelength sources is an important topic. Although the compression of 
ultraviolet pulses was demonstrated in 1999 using HCFs through parametric frequency 
mixing when propagating the fundamental and the second harmonic [Durfee et al., 1999], 
the highest-energy few-cycle pulses in the ultraviolet range were obtained through the 
dispersive wave generation process in a flexible HCF [Travers et al., 2019]. 
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Figure 1.3: Top panel shows the output pulse energy versus the output pulse duration 
in compression experiments with different techniques. Bottom panel shows the output 
peak versus average power achieved by different post compression techniques (Fig. 
based on Ref. [Nagy et al., 2021]). 



 

 

 
 
 
 
 
 
 

Chapter 2 
 
 

Pulse Propagation in Hollow 
Capillary Fibers 

 
2.1 Pulse Propagation Equation for Nonlinear Media 

 
In the present section we derive the equation that governs the pulse nonlinear prop- 
agation in hollow capillary fibers (HCFs). This equation is relevant to describe the 
propagation of an ultrashort laser pulse through a nonlinear and dispersive medium. 

Let us begin considering Maxwell’s equations in the International System of Units 
[Agrawal, 2013]. 

∇ · D = ρ (2.1) 

∇ · B = 0 (2.2) 
∂B 

∇ × E = − ∂t (2.3) 

∂D 
∇ × H = J + (2.4) 

∂t 
 

where E and H are the electric and the magnetic field respectively, and D and B = µ0H 

are the electric and magnetic flux densities, E0 and µ0 being the vacuum permittivity 
and the vacuum permeability. The current density vector J and the charge density 
ρ represent the sources for the electromagnetic field. The electric flux density can be 
expressed in terms of the electric field and the polarization vector P as D = E0E + P. 
We can obtain the wave equation that governs the nonlinear pulse propagation from 
Maxwell’s equations by taking the curl of Eq. 2.3 

∂ ∂ ∇ × (∇ × E) = − (∇ × B) = − (∇ × µ 
H) = − 

(
µ J + µ 

∂ 
∂D

 
(2.5) 

∂t ∂t 0 
15 

∂t 0 0 ∂t 
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We can simplify this equation considering the propagation in a neutral and homogeneous 
medium such as ∇· D = ∇· (E0E+P) = 0. We can use this approximation if the medium 
is isotropic and electrically neutral (ρ = 0) [Boyd, 2020]. Femtosecond pulses are the 
subject under consideration in this study, so even at high pulse intensities that can ionize 
the medium, we can assume that the positive and negative charges in the medium do not 
have enough time to separate on such a short time scale, and the average local charge 

remains zero. Then ∇ × (∇ × E) = ∇(∇ · E) − ∇2E = −∇2E using Eq. 2.1. We can 
rewrite this equation as 

2 1 ∂2E ∂ ∂2 
∇ E − c2 ∂t2  = µ0 ∂t J + µ0 ∂t2 P (2.6) 

 

Equation 2.6 describes the propagation of an electromagnetic field in a homogeneous 
and isotropic medium, where the relation E0µ0 = 1/c2 was used, c being the speed of 
light in vacuum. Since we are working with dielectric materials, we are interested in the 
induced polarization vector P, related to the density current of bound charges, so the 
current density associated with free charges is zero (J = 0). 

2 1 ∂2E 1 ∂2 
∇ E − c2 ∂t2 = E c2 ∂t2 P (2.7) 

 

From Eq. 2.7 we deduce that the polarization acts as a source of the electromagnetic 
field. If the intensity of the electromagnetic field applied to a dielectric material is high, 
the response of this material to light becomes nonlinear. The origin of this nonlinear 
response is related to the anharmonic motion of bound electrons under the interaction 
with the applied field. As a result, the total polarization P includes the linear and 
nonlinear response. 

 
P(r, θ, t, z) = PL(r, θ, t, z) + PNL(r, θ, t, z) (2.8) 

 
PL being the linear part and PNL the nonlinear part, which are related to the electric 
field by 

P = PL + PNL = E χ(1) · E + E (
χ(2) : EE + χ(3). 

 
(2.9) 

 
where χ(j)(j = 1, 2, ...) is the jth order susceptibility. In general, χ(j) is a tensor of rank 
j + 1, so all the field combinations are possible. The linear susceptibility χ(1) represents 
the principal contribution to P and the high-order terms of the susceptibility correspond 
to the nonlinear polarization contribution. To study the propagation of short laser pulses 
inside a HCF, both dispersive and nonlinear effects must be considered. We can write 
Eq. 2.7 as 

2 1 ∂2E 1 ∂2 L 1 ∂2 NL 
∇ E − c2 ∂t2 = 

E c2 ∂t2 P 
+ 

E c2 ∂t2 P (2.10) 

0 
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2 

0 

∂z2 ∂r2 r ∂r r2 ∂θ2 

c 

 
where we assume that PNL is treated as a small perturbation to PL, since the changes 
in the refractive index due to the nonlinear effects are < 10−6 [Boyd, 2020]. We also 
assume that the electric field maintains the polarization along the propagation inside 
the HCF so that a scalar approach is valid. If we express Eq. 2.10 as a function of the 
displacement field D = E0E + PL + PNL. 

 
D = DL + PNL (2.11) 

 

2 1 ∂2DL 1 ∂2 
NL 

∇ E − E c2 ∂t2 = 
E c2 ∂t2 P (2.12) 

Since the pulse is going to propagate through a cylindrical HCF filled with gas as non- 
linear medium, the Laplace operator has the form ∇2 = ∂2

 + ∂2 + 1 ∂ + 1 ∂2  in 
cylindrical coordinates. In Eq. 2.12 the nonlinearity of the medium acts as a source 
term in the right-hand side of the equation. We can express both the electric field E 
and the polarization PNL as 

 

E(r, θ, t, z) = A(r, θ, t, z)ei(k0z−ω0t) + c.c 

PNL(r, θ, t, z) = pNL(r, θ, t, z)ei(k0z−ω0t) + c.c 

 
(2.13) 

 
where ω0 is the central frequency of the pulse, k0 = n0ω0/c is the wavevector, with n0 

the linear refractive index of the medium at ω0, nL(ω0), and E and PNL represent non- 
plane waves with complex time- and space-dependent varying amplitudes, A(r, θ, t, z) 
and pNL(r, θ, t, z). The field quantities in terms of their Fourier transforms can be 
expressed as 

E(r, θ, ω, z) = 
 1  

E(r, θ, t, z)eiωtdt 
2π 

DL(r, θ, ω, z) = 
 1  

DL(r, θ, t, z)eiωtdt 
2π 

PNL(r, θ, ω, z) = 
 1  

PNL(r, θ, t, z)eiωtdt 
2π 

 
 
 

(2.14) 

 

We assume that D(L)(r, θ, ω, z) and E(r, θ, ω, z) are related by the linear dispersion 
relation [Boyd, 2020] 

DL(r, θ, ω, z) = E0E(1)(ω)E(r, θ, ω, z) (2.15) 
 

where E(1) is the linear relative permittivity, a dielectric complex scalar quantity in the 
case of a dissipative and isotropic medium. By introducing expressions 2.13-2.15 in Eq. 
2.12, we obtain the Helmholtz equation in the frequency domain 

∇ E(r, θ, ω, z) + 
 ω 2 
 

 
E(1) 

ω2 
NL 

(ω)E(r, θ, ω, z) = − E c2 P 
 
(r, θ, ω, z) (2.16) 

 

where we define the complex refractive index of the medium as n2(ω) = E(1)(ω). We can 
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∞ 

0 

2 

 
make this simplification assuming low losses inside the HCF in the wavelength region 
of interest, so the imaginary part of E(ω) is small compared to the real part. We will 
include the losses later in a perturbative way. 

To derive a wave equation for the envelopes A(r, θ, t, z) and pNL(r, θ, t, z), we represent 
them in terms of the Fourier transforms of A(r, θ, t, z) and pNL(r, θ, t, z), which are 
given by 

A(r, θ, ω, z) =
  ∞ 

A(r, θ, t, z)eiωtdt 
  ∞ 

 
 

(2.17) 
pNL(r, θ, ω, z) = pNL(r, θ, t, z)eiωtdt 

−∞ 
 

and they are related to E(r, θ, ω, z) and PNL(r, θ, ω, z) by 
 

E(r, θ, ω, z) = A(r, θ, ω − ω0, z)eik0z + A∗(r, θ, ω + ω0, z)e−ik0z  A(r, θ, ω − ω0, z)eik0z 

(2.18) 
PNL(r, θ, ω, z) = pNL(r, θ, ω − ω0, z)eik0z + pNL∗(r, θ, ω + ω0, z)e−ik0z  

  pNL(r, θ, ω − ω0, z)eik0z 

With these expressions the wave equation 2.16 becomes 

 
(2.19) 

 

∇2
  

A(r, θ, ω − ω0, z)e ik0z
 
 +k(ω)2A(r, θ, ω−ω0, z)e 

 
ik0z ω2 

= 
E0c2 

 
pNL (r, θ, ω−ω0, z)e 

 
ik0z 

(2.20) 
where k(ω) = nL(ω)ω/c. The Laplace operator can be expressed as ∇2 = ∂2/∂z + ∇2 , 

2 2 
⊥

 
where ∇2 = ∂ 

2 + 1 ∂ + 1 ∂ 2 is the transverse Laplacian in cylindrical coordinates. 
⊥ ∂r r ∂r r2 ∂θ 

The approximation of considering the evolution of the pulse envelope alone is valid down 
to single-cycle pulses, as long as the slowly evolving wave approximation is applicable 
[Brabec and Krausz, 1997]. 

We assume that the complex amplitude A(r, θ, t, z) evolves slowly in z over a wave- 
length since the fast variations are in the complex exponentials (see 2.13), |∂2A/∂z2| << 
2k|∂A/∂z|, so the highest-order derivatives may be neglected. Taking the slowly evolv- 
ing wave approximation we can neglect the term ∂2/∂z2 in the Laplace operator in Eq. 
2.20 and for simplicity we use A(r, θ, ω, z) and pNL(r, θ, ω, z)) 

 
∂ 2 2 2 ω2 

NL 
2ik0 ∂z A(r, θ, ω, z) + ∇⊥A(r, θ, ω, z) + (k(ω) − k0 )A(r, θ, ω, z) = − E c2 p (r, θ, ω, z) 

(2.21) 
 

∂  i A(r, θ, ω, z) − 2  i ∇ A(r, θ, ω, z) − (k(ω)2 − k2)A(r, θ, ω, z) = 
∂z 2k0 ⊥ 2k0 

i = 

0 
 ω  

pNL(r, θ, ω, z) 
(2.22) 

2k0 E0c2 

− 
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The nonlinear polarization term includes several contributions from second, third and 
higher orders, as can be seen in Eq. 2.9. Since these effects are perturbative in the range 
of intensities considered in this work, only the first contributions will be significant. The 
second-order susceptibility χ(2) is responsible for second-harmonic generation, optical 
rectification and sum-frequency generation. However, it is nonzero only for media that 
lack an inversion symmetry at the molecular level. In gases χ(2) vanishes and the first 
contribution to the nonlinear polarization that they present is χ(3). The third-order 
susceptibility χ(3) is responsible of third-harmonic generation, four-wave mixing and 
nonlinear refraction effects, among others. 

The general expression for the third-order nonlinear polarization in the time domain to 
study the third-order nonlinear effects in waveguides is [Agrawal, 2013] 

 PNL(r, θ, t) = E 
     ∞ 

χ(3)(t − τ , t − τ , t − . 
0 1 2 

−∞ 
τ3). 

(2.23) 
×E(r, θ, τ1)E(r, θ, τ2)E(r, θ, τ3)dτ1dτ2dτ3 

 
where χ(3) is a tensor and all the field combinations are possible, and τ represents the 
delay between the medium response and the applied field. Due to the complexity of 
this expression, it is necessary to make several approximations. First of all, not all 
the nonlinear effects considered here are relevant to our discussion, such us third-order 
harmonic generation or four-wave mixing. Most nonlinear effects in waveguides are a 
consequence of the nonlinear refraction. In this case, the refractive index of the medium 
in the presence of an intense laser beam does not only depend on its frequency but 
also on the space- and time-dependent intensity I(r, t) of the laser [Chiao et al., 1964, 
Couairon and Mysyrowicz, 2007]. 

 
n = nL + nNLI (2.24) 

 
where nL is the linear part and nNL is the nonlinear part of the refractive index, related 
to the third order susceptibility χ(3). Considering only the effects associated to a self- 
induced change in the refractive index, the expression of the third-order susceptibility 
is 

χ(3)(t − τ1, t − τ2, t − τ3) = χ(3)R(t − τ1)δ(t − τ2)δ(τ1 − τ3) (2.25) 

R(t) being the nonlinear response function normalized in a manner similar to the delta 
function, i. e. ∞ 

−∞ R(t)dt = 1, and it should include the electronic and vibrational 
contributions. The nonlinear polarization in the time domain for self-induced effects in 
waveguides becomes [Agrawal, 2013] 

PNL(r, θ, t) = E0χ(3)E(r, θ, t) 
∞ 

R(t − τ1)|E(r, θ, τ1)|2dτ1 (2.26) 
−∞ 
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PNL(r, θ, t) = 3E χ(3) 
(  ∞ 

E(r, θ, ω )e−iω1t dω1
  (  ∞ 

C(r, θ, ω )e−iω2t dω2
 
 

 
where we assume that the electric field and the induced polarization vectors point along 
the same direction. We assume that R(t) obeys the causality condition R(t) = 0 for 
t − τ1 < 0, so the nonlinear polarization only depends on the past values of the electric 
field. In general, the functional form of R(t) can be written as 

 
R(t − τ1) = (1 − fR)δ(t − τ1) + fR · hR(t − τ1) (2.27) 

 
where the first term is the instantaneous electronic response and the second term is the 
retarded vibrational response. We will explain in detail the terms fR and hR below. 

We can transform Eq. 2.26 into the frequency domain by introducing the Fourier trans- 
forms 

 
0 1 2π 

−∞ −∞ 2 2π   
(2.28) 

 

where C(r, θ, ω ) is the Fourier transform of C(r, θ, t) = ∞ 
−∞ R(t − τ1)|E(r, z, τ1)|2dτ1. 

The factor 3 comes from the possible combinations of the three electric fields to generate 
the Kerr effect. The nonlinear polarization in the frequency domain is the following 

PNL(r, θ, ω) = 3E χ(3)

  ∞ 
E(r, θ, ω − ω )C(r, θ, ω ) 

dω2
 
 

(2.29) 
0 2 2 

−∞ 
 

2.1.1 Nonlinear Spatial Effects: Self-Focusing 
 

In the case of a monochromatic laser beam, i.e. a sufficiently long laser pulse with 
central frequency ω0 and a narrow spectrum, we can neglect the temporal depen- 
dence because only the spatial effects are significant during the propagation. In ad- 
dition, to observe the instantaneous spatial response we only take into account the spa- 
tial and longitudinal dimensions and assume cylindrical symmetry, so we can simplify 
A(r, θ, ω, z) = A(r, z)δ(ω). For the case of a material with an instantaneous third-order 
response, we can derive the polarization amplitude from Eq. 2.26 

 
pNL(r) = 3E0χ(3)|A(r, z)|2A(r, z) (2.30) 

 
χ(3) = 2/3nLnNL being the third-order susceptibility [Boyd, 2020] and the dimensions 
of |A(r, z)|2 are W/cm2. Introducing this expression in Eq. 2.22 

∂  i 2  i  2 2  A(r, z) − ∇ A(r, z) − k(r) − k (r) A(r, z) = 
∂z 2k0 ⊥ 2k0(r) 

ω0 
= i 

c 

0 
 
nNL(r)|A(r, z)|2A(r, z) 

(2.31) 

2π 
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∂ 
A(r, z) −  i  ∇2 A(r, z) −  i  

(kR(r))2 − k (r)2
 

A(r, z) + 
α(r) 

A(r, z) = 

 
where in the case of a monochromatic beam k = k0. We can express k(r) = kR(r) + 
iα(r)/2 [Brabec and Krausz, 1997], kR being the propagation constant and α(r) the 
linear absorption due to the gas and the propagation losses due to the HCF. Assuming 
that the leaks are low and the absorption of the gas is negligible at the wavelengths 
considered here, and hence so is the dispersion that would come from this absorption, 
then kR >> α and we can neglect the terms α2. We have included the radial dependence 
in k0, kR, α, nL and nNL since we consider the possibility of inhomogeneous media, like 
a step-index fiber. 

 
∂z 2k0(r) ⊥ 2k0(r) 0 

= i
ω0 n 

c NL 

2 

(r)|A(r, z)|2A(r, z) 

(2.32) 
 

where ∇2 = ∂2 + 1 ∂ assuming cylindrical symmetry. We have assumed kR(r)/k (r) ≈ 
⊥ ∂r2 r ∂r 0 

1 since the imaginary part of k is small in the absorption term. In Eq. 2.32 we can 
identify which effects change the field amplitude during the propagation. The second 
term on the left-hand side represents the diffraction of the pulse and the nonlinear 
term on the right-hand side represents the optical Kerr effect. The consequence of this 
nonlinear intensity-dependent term is the self-focusing of the beam towards the highest 
intensity regions, usually its central part [Kelley, 1965]. This process is activated when a 
laser beam with peak power above a critical value, called critical power (Pcr) [Marburger, 
1975], propagates through a material for which nNL is positive. As a result, the medium 
acts as a positive lens and the beam self-focuses, as can be seen in Fig. 2.1. This 
process is of great practical importance, because if the intensity of the laser beam is 
high enough, it can damage the material. Moreover, it is the principal effect in the 
filamentation process in materials. 

 
We can use Eq. 2.32 to model the self-focusing dynamics of a laser beam propagating 
inside a HCF. The numerical model is described in Section 3.1 and the phenomenology 
of the role of the self-focusing dynamics on the propagation inside the HCF and the 
results are discussed in detail in Chapter 4. 

 
 

2.1.2 Nonlinear Spatio-Temporal Effects 
 

Since we are in a context of short pulses, we also need to study the temporal nonlinear 
effects in addition to the spatial effects. For this reason, we include the temporal de- 
pendence in the field amplitude and calculate the second order derivative in time of the 
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Figure 2.1: Self-focusing of a beam in air by optical Kerr effect due to the intensity- 
dependent refractive index of the medium. When the peak power of the beam exceeds a 
critical value, (Pcr) self-focusing overcomes diffraction (orange solid line) in the propa- 
gation dynamics. The blue solid line represents the free space propagation of the beam 
when diffraction dominates the propagation dynamics. 

 
 
nonlinear polarization that appears on the right-hand side of Eq. 2.12 using Eq. 2.13. 

 
∂2 PNL(r, θ, t, z) = −ω2 

 

 (
1 + 

i
 ∂

  2 pNL(r, θ, t, z)

l
 

 
ei(k0z−ω0t) + c.c. (2.33) 

∂t2 0 ω0 ∂t 
 
We rewrite Eq. 2.20 as 

( 
∂2 ∂ 2

 
2 2 

∂z2 + 2ik0 ∂z + ∇⊥ A(r, θ, ω, z) + (k(ω) − k0)A(r, θ, ω, z) =  (2.34) 
2 

− 
E0c2 

(
1 + ω 

pNL(r, θ, ω, z) 
ω0 

 

where k(ω) = n(ω)ω/c and n(ω) is the complex refractive index. Since k(ω) is the prop- 
agation constant it represents the linear response including all the dispersion terms and 
the absorption. We can approximate k(ω) as a power series in the frequency difference 
ω − ω0 as 

k(ω) = k0(ω0) + k1(ω − ω0) + D(ω) (2.35) 
∞ 

D(ω) = 
 1  

k 
m! m 

(ω − ω0)m (2.36) 
m≥2 

where D represents the higher-order dispersion terms, km = (∂mk/∂ωm)ω=ω and k1 = 
(∂k/∂ω)ω=ω0 = 1/vg(ω0) is the reciprocal of the group velocity vg. The first order term, 
k0, can be expressed as k0 = kR + iα/2. In Eq. 2.35, kR and km represent the complete 

0 0 

linear dispersion response and α represents the linear absorption considered only to the 
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∞ 

ω 

0 

2 

0 

0 

∂z2 + 2ik0 ∂z + ∇⊥ + (k0 ) − k0 − 4 − k1 ∂t2 + D + iβ0α + 2ik1k0 ∂t − αk1 ∂t + 

m! ∂t 

∂z 2 − 2k1 ∂z ∂T + k1 ∂T 2 + 2ik0 ∂z − k1 ∂T + 
∇⊥ 

A + (k0 ) − k0 − 4 
− 

−k1 ∂T 2 + D + ik0 α + 2ik1k0 ∂T − αk1 ∂T + iαD + 2ik1D∂T + 2k0 D 

∇⊥ + + − iD 

⊥ 2 2E0n2 

=
  

m≥2 

ω0 ∂T 

 
first order, since in our study the absorption is small. If we introduce these expressions 
in the Eq. 2.34 and we convert the equation to the time domain, then we obtain 

( 
∂2 

∂ 2 R 2 
2 α2 

 

 
2 ∂2 

˜2 R ∂ ∂ 

˜ ˜ ∂ ˜
 
 ω2 (  i ∂

  2
 R 

+iαD + 2ik1D∂t + 2k D A(r, θ, t, z) = − 0 
E0c2 

1 + 
ω0 ∂t 

pNL(r, θ, t, z) 

(2.37) 
 

The differential operator D̃ is written as follows 
 

D̃ (t) = 
¿  1  

k 
 

 

(i 
∂ 

)m (2.38) 

Using a frame moving with the pulse, T = t − k1z and z = z, Eq. 2.37 becomes 

( 
∂2  

 ∂ ∂ 2 ∂2 ( 
 ∂  ∂ 2

 ( 
R 2 2 α2 

 

 

2 ∂2 
˜2 R R  ∂  ∂ ˜ ˜  ∂ R ˜

  

 
2 

− 
E0c2 

(
1 + 

 
 i ∂ 
ω0 ∂T 

 
2 

pNL 

 
(2.39) 

 

Now we group terms together and we assume that kR  k0, since the imaginary part 
of the refractive index is very small in our case. We can drop all the terms D2, α2 and 
∂2/∂z 2 because they are invariably small. 

 i 
( 
 ∂ α 

 

   

˜
 (  

k1 ∂  ik0  
(

 
 

 

 i ∂
  2

 
 

 

The ratio k1/k0 = vg
−1/(nLω0/c) = ng/(nLω0) can be approximated to 1/ω0 ignoring 

dispersion [Boyd, 2020]. So this equation can be written as (for simplicity we write 
z = z) 

  
∂ i 2 

(
 i ∂

  −1 ˜ α
  

∂z 
− 

2k0 
∇⊥ 

1 + 
ω0 ∂T − iD + 2 

A(r, θ, t, z) =  (2.41) 

=  ik0  
(

1 +  i ∂ 
  

pNL(r, θ, t, z) 
2E0n2 

or 
ω0 ∂T 

∂  i 
− ∇2 T˜−1 − i D̃  + 

α
 

A(r, θ, t, z) = 
 ik0  T̃ pNL(r, θ, t, z) (2.42) 

 

 0 

2E0n2 2 ∂z  2k
 

m 

A = 

− 1 + i k0 ∂T A = 1 + pNL (2.40) 

∂z 2k0 

  

( 
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ω0 ∂T where T˜ is an operator defined as T˜ =
 

1 +  i ∂
 

. This is a general expression of 
the nonlinear propagation equation. It includes the linear effects that appear in the 
propagation, the diffraction, the spatio-temporal coupling (which improves the model 
above the slowly envelope approximation) and the high-order dispersion terms through 
D̃ .  The spatial widening of the beam due to diffraction is represented by the transverse 
Laplacian, while the temporal distortion of the pulse due to the material dispersion is in- 
cluded in D̃ .  Related to the nonlinear dynamics, the self-steepening effect is represented 
by the differential operator T˜ in the right-hand side and the linear space-time coupling 
is represented by the inverse of the same differential operator on the left-hand side. By 
considering this linear spatio-temporal coupling, we do not neglect the term ∂2/∂z∂t 
that appears in Eq. 2.39, so we impose the slowly varying amplitude approximation in 
the propagation direction z, but not in time, which is useful in the case of ultrashort 
pulses (this approximation is known as the slowly evolving wave approximation, SEWA) 
[Couairon and Mysyrowicz, 2007]. 

 
It is usually stated that envelope pulse propagation description is limited to those regimes 
that can be described as quasi-monochromatic. However, the nonlinear envelope equa- 
tion (NEE), which corresponds to Eq. 2.42 and was derived by Brabec and Krausz 
[Brabec and Krausz, 1997], is valid for ultrashort, broad-band spectrum laser pulses 
due to different ”correction terms” beyond the slowly varying envelope approximation. 
This equation can manage pulses with broad spectrum and fast temporal features, even 
though the field is described through its envelope. 

 
 

2.1.2.1 Self-Phase Modulation and Self-Steepening 
 

The subsequent step is to assume a material with purely electronic instantaneous third- 
order response. In that case, according to Eq. 2.26 the polarization amplitude takes the 
form 

pNL(r, θ, t, z) = 3E0χ(3)|A(r, θ, t, z)|2A(r, θ, t, z) (2.43) 

χ(3) = 2/3nLnNL being the third-order susceptibility, so |A(r, θ, t, z)|2 is expressed in 
W/cm2 [Boyd, 2020]. Introducing this expression in Eq. 2.41, we describe the nonlinear 
phase acquired during the propagation. 

− ∇ T −1 − iD + 
  

A(r, θ, T, z) = i T˜|A(r, θ, T, z)|2A(r, θ, T, z) ∂  i 2 ˜ ˜ α ω0 nLnNL 
∂z 2k0 ⊥ 2 c n0 

(2.44) 

α being the linear absorption that, in the case of a HCF, includes the propagation losses 
due to the gas absorption and to the HCF confinement, as we will see in Section 2.2. 
The refractive index n0 is defined as n0 = nL(ω0). The term on the right-hand side of 

( 
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dt 0 c ∂t 

 
the equation describes the self-phase modulation and self-steepening effects. Self-phase 
modulation is a fundamental effect in post-compression schemes due to the effective 
spectral broadening. This effect is a consequence of the optical Kerr effect, similarly 
to self-focusing, and it also appears due to the nonlinear contribution to the refractive 
index, nNL, which induces a change in the temporal phase of the pulse during the 
propagation. Let us consider the case of a laser pulse whose shape is described by 

E(t, z) = E0(t, z)ei(kz−ω0t), E0(t, z) being the envelope, k = nLω0/c and ω0 the central 
frequency. If this laser pulse is intense, then it will experience self-phase modulation 
which leads to a change in the refractive index as a function of the pulse intensity 
n = nL + nNLI(t). 

 

E(t, z) = E (t, z)ei(nL 
ω0 z+nNLI(t) ω0 z−ω0t) (2.45) 

0 c c 

 
So the phase φ of the electric field experiences a new temporal modulation induced by 
the pulse itself. This time-varying phase induces an instantaneous frequency of the pulse 
ω(t) 

d 
ω(t) = − φ(t, z) = ω − n 

ω0 z 
∂ 

I(t) (2.46) 
 

This instantaneous frequency shifts through the propagation of the pulse in the non- 
linear medium leading to the formation of new spectral components and to a spectral 
broadening of the laser pulse. According to Eq. 2.46, the new spectral components are 
created on the slope of the pulse envelope: the leading edge of the pulse (∂I/∂t > 0) 
shifts to the red side, while the trailing edge (∂I/∂t < 0) shifts to the blue side of 
the spectrum, which leads to a positively chirped pulse after the propagation in the 
nonlinear medium. The maximum broadening can be determined by the highest slope 
of the pulse. In addition, there are points with the same slope, which means that the 
same spectral components are created at different times leading to spectral fringes with 
different period depending on the time difference. In the peak of the pulse there is no 
spectral shift (∂I/∂t = 0) so this region contributes to the central wavelength. Since the 
pulse energy is proportional to the integral of both the pulse shape and the spectrum, 
the steeper the slope is, the less energy it contains which is distributed in a broader 
spectral region, as it is observed in the blue side of the spectrum on the right of Fig. 2.2 
[Nagy et al., 2021]. 

 
The differential operator on the right-hand side of Eq. 2.44 describes the self-steepening 
effect. This effect can be understood like an intensity dependence of the group velocity, 
vg = dω/dk = c/(nL + ωdn/dω) [Boyd, 2020]. In general, the nonlinear refractive index, 
nNL, is positive and as the pulse envelope propagates with the group velocity, the peak 
of the pulse with high intensity slows down with respect to the wings of the pulse. As 
a result, the slope of the leading edge decreases while the slope of the trailing edge 

NL 
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Figure 2.2: Self-phase modulation and self-steepening effects in a nonlinear propaga- 
tion. The initial intensity and spectrum are represented in blue dashed lines. Self-phase 
modulation is responsible of the spectrum broadening and modulates its structure, while 
self-steepening is responsible of the slowdown of the intensity peak and the asymmetry 
of the spectrum. 

 
 
becomes steeper, which can lead to an optical shock wave. This temporal asymmetry 
due to self-steepening leads to an asymmetry in the spectrum. Since the slope is higher 
in the trailing edge of the pulse, there is a larger spectral broadening in the blue side of 
the spectrum, containing less energy than the red side, as Fig. 2.2 illustrates. 

 
 

2.1.2.2 Delayed Raman Response 
 

If we now assume a material with molecular response, which is slower than the elec- 
tronic response, we have to consider the non-instantaneous response of the third-order 
susceptibility. Taking this into account, the Kerr term has an instantaneous part and a 
delayed part. We have to use the general form of the nonlinear polarization, as defined 
in Eq. 2.26 [Agrawal, 2013] and the polarization amplitude takes the form 

pNL(r, θ, t, z) = 3E0χ(3)A(r, θ, t, z) 
∞ 

R(t − τ1)|A(r, θ, τ1, z)|2dτ1 (2.47) 
−∞ 

 
χ(3) = 2/3nLnNL being the third-order susceptibility, so |A(r, θ, t, z)|2 is expressed in 
W/cm2 [Boyd, 2020]. Introducing this expression in Eq. 2.41 

∂  i − ∇2 T˜−1 − i D̃  + 
α
 

A(r, θ, T, z) = 
∂z 

ω n n  
2k0 ⊥ 2 

  ∞ (2.48) 

c n0 −∞ 
= 
 

R(T − τ1)|A(r, θ, T, z)|2dτ1 

( 
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where n0 is defined as the linear refractive index at ω0, nL(ω0). As can be seen in Eq. 
2.27, the Raman effect of a molecular gas contributes with a fraction fR and a temporal 
response hR(t) to the nonlinear response. In the particular case of gases, which we 
will study in this work, this term can be expressed as R(T − t) = (1 − fR)δ(T − t) + 
fR/τK exp (−(T − t)/τK), fR being the ratio between the self-phase modulation and the 
Raman effect, and τK the characteristic time for the Raman response [Conejero Jarque 
et al., 2018]. 

 

 

Figure 2.3: Pulse spectrum modulated by the Raman response when propagating 
through air. The initial spectrum is represented in blue dashed line and the final 
spectrum in orange solid line. There is a red shift in the spectrum due to the Raman 
effect. 

 
 

In the latter equation, the terms on the left-hand side are the diffraction, the space- 
time coupling, the dispersion and the linear absorption. On the right-hand side we 
describe the self-phase modulation and the Raman delayed response, both affected by 
self-steepening. Because of the delayed Raman response, the pulse spectrum suffers a 
red shift as the pulse propagates inside the HCF (see Fig. 2.3), a phenomenon referred 
to as the self-frequency shift [Mitschke and Mollenauer, 1986]. This is due to the fact 
that Raman effect is the result of light interaction with the vibrations of the molecules. 
The Raman scattering is an inelastic scattering process in which a medium absorbs a 
photon and emits a new one with slightly different frequency. Usually the frequency 
of the emitted photon is lower than the frequency of the one absorbed. The energy 
difference is accounted for by a vibrational energy (see Fig. 2.4). When this process is 
stimulated by the light intensity, it can be described as a nonlinear third order process 
in a similar way as the optical Kerr effect, as we have presented. 

 
The new lower frequencies components are called the Raman Stokes components, which 
are generated from the ground level. There are also Raman anti-Stokes components, but 
they are much weaker than the Stokes components because they consist of a transition 
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E − 
c2 ∂t2 = 

E 
 

∂t2 P + ∂t2 P 
0 

 
from an excited level to the ground level and, at low temperatures, the population in 
the ground level is larger (as sketched in Fig. 2.4). Of course, if the intensity of the 
Raman Stokes component is large enough, the re-emitted photon can be scattered again 
at a lower energy, and so on, which means that the process can cascade generating a 
broadband spectrum at longer wavelengths. 

 

 
Figure 2.4: Left panel: an incident photon (green) can be absorbed by the nonlinear 
medium and scattered with lower energy (Stokes components (yellow and orange)). 
Right panel: an incident photon (green) can be absorbed by the nonlinear medium 
and scattered with higher energy (anti-Stokes components (blue and purple)). In the 
process there is a molecular transition between different energy states. 

 
 
 

2.1.3 Ionization Effects: Plasma Generation and Multiphoton Absorp- 
tion 

 
When the intensity of the pulse reaches 1013 − 1014 W/cm2, it is enough to ionize the 
molecules or atoms of the medium inside the core of the HCF. These intensity values can 
be reached when the pulse propagates inside the HCF by the self-focusing of the beam, 
for example, leading to the ionization of the medium and the generation of plasma. The 
way of introducing the effects of the ionization in the models presented in the previous 
subsections is by means of the plasma current density Jp associated with the ionized 
medium [Brabec and Krausz, 2000, Couairon et al., 2002]. 

2 1 ∂2E  1  
( 

∂2 L 
 

 

 

∂2 
NL 

 

 

∂Jp
 
 

 
 

∂Jp σ W (|E|2)Ui 

∂t  = − 2 (1 + iω0τc)ρE − 2I (ρa − ρ)E (2.50) 

where Ui is the ionization potential of the gas, ρ(r, θ, t, z) is the density of free elec- 
trons, τc is the collision time (relaxation time) and σ is the cross section for the inverse 
Bremsstrahlung, which is written as follows [Couairon et al., 2011] 

 ω0 ω0τc  σ = 
n (ω)cρ 1 + ω2τ 2 

 
(2.51) 

0 c 

∂t 

L
 
 

∇ + (2.49) 
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ρc = E0meω2/e2 being the value of the critical plasma density above which the plasma 
becomes opaque for the frequency ω0, and me and e are the electron mass and charge, 
respectively. The first term of Eq. 2.50 is the contribution of free electrons moving away 

 

 
 

Figure 2.5: Pulse spectrum modulated by self-phase modulation in argon. The initial 
spectrum is represented in blue dashed line and the final spectrum in orange solid line. 
Due to the effect of the ionization the spectrum presents a blue shift. 

 

from the atom after the ionization process [Couairon and Berg é, 2000] . The real part 
of this first term represents the absorption of light by the generated plasma itself, while 
the imaginary part leads to plasma defocusing and blue shifting of the laser spectrum 
typically observed in ionized gases [Bloembergen, 1973], as can be seen in Fig. 2.5. The 
second term accounts for the absorption related to the ionization process. The parameter 

W (|E|2) is the ionization rate, which depends on the ionization potential (Ui), the laser 
intensity and the central pulse frequency, and it is able to describe the ionization in the 
multiphoton and tunnelling regime. We use the model of Perelomov-Popov-Terent’ev 
(PPT model) to calculate the ionization rates since it is valid for a wider intensity range 
compared to other ionization models [Couairon and Mysyrowicz, 2007, Couairon et al., 
2011, Perelomov et al., 1966]. Both plasma defocusing and absorption prevent beam 
collapse when self-focusing dominates the propagation. 

Including these terms, the complete nonlinear wave equation for ultrashort pulses is the 
following [Couairon and Mysyrowicz, 2007] 

∂  i 
− ∇2 T −1 − iD + 

α
  

A(r, θ, T, z) = N (|A|2, A, ρ) (2.52) 
 

where the nonlinear effects mentioned above are included in 
 

N (|A|2, A, ρ) = NKerr(|A|2, A) + Nioniz(A, ρ) + Nabs(|A|2, A, ρ) (2.53) 

∂z 2k0 

( 
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NKerr(|A| , A) = i c n 1 + 
ω0 ∂T 

R(T − t)|A(r, θ, T, z)| dt 
−∞ 

A(r, θ, T, z) 
(2.54) 

σ 
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 i ∂ 
 

 

 −1 
 

 
 

Nabs(|A|2, A, ρ) = − 
W ( A(r, θ, T, z) 2)U 

2|A(r, θ, T, z)|2 (ρat − ρ)A(r, θ, T, z)− 
 
 (2.56) 

σ 
( 

 i ∂
  −1

 
 

Equation 2.56 includes the losses due to the ionization process (first term) and the losses 
due to the plasma absorption (second term). Equation 2.52 is solved simultaneously with 
the equation describing the evolution of the density of electrons 

∂ρ 
= W (|A|2)(ρ − ρ) (2.57) 

 
W (|A|2) being the ionization rate calculated with the PPT model [Perelomov et al., 
1966] and ρat is the atomic density of the medium. 

The most important parameters related to the ionization process are the central fre- 
quency ω0, the peak amplitude of the pulse A0 and the ionization potential of the gas 
Ui. The relation among these parameters through the Keldysh adiabaticity parameter, 
Γ, indicates the ionization regime [Keldysh, 1965]: Multiphoton ionization, tunnelling 
ionization and barrier suppression ionization. 

 

ω0(2meUi)1/2 
Γ = 

eA0 

 
(2.58) 

 
 
 
 

 
 
 

Figure 2.6: Scheme of different ionization regimes depending on the external electric 
field applied. 

 
 

Multiphoton ionization is the dominant process when Γ » 1, which happens for high 

ρ(r, θ, T )A(r, θ, T, z) (2.55) 
∂T 

ρ(r, θ, T )A(r, θ, T, z) 

at 

0 
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frequencies or weak fields (I ≤ 1013 W/cm2). In this case, a certain number of photons, 
K, are absorbed by an electron, which passes to the continuum with a kinetic energy 
given by Kmω0 − Ui. On the other hand, in the case of low frequencies and moderate 

intensity fields (I ≥ 1014 W/cm2), then Γ « 1, which means that we are in the tunnelling 
ionization regime. The intense field modifies the atomic or molecular potential forming a 
potential barrier through which the electron can pass via tunnelling effect. The limiting 
case of tunnelling is the barrier suppression ionization, which occurs when the amplitude 
of the field is sufficiently high that the potential barrier lies underneath the ionization 
potential level. A scheme of these ionization regimes is represented in Fig. 2.6. 

 

 

Figure 2.7: Ionization rates for argon at 532 nm (blue line) and 800 nm ( orange line), 
and for neon at 800 nm (green line) with the multiphoton ionization model (MPI) and 
the PPT model. 

 
 

As stated before, the PPT model that we use to calculate the ionization rates describes 
both the multiphoton regime, valid for I » 1013 W/cm2, and the tunnel regime for I » 
1014 W/cm2. There are other ionization models that also work well in the multiphoton 
regime (MPI model) or in the tunnelling ionization regime (ADK model [Ammosov et al., 
1986]), but since in this thesis we use laser intensities in the intermediate regime, we 
use the PPT model as the best approximation. Figure 2.7 shows the ionization rates for 
argon and neon computed from the PPT model (solid line) and from the multiphoton 
ionization (dashed line). 

 
 

2.2 Hollow Capillary Fiber Spatial Modes 
 

In this section we will introduce the spatial modes of the hollow capillary fiber (HCF) 
that we will use to study the propagation of a laser pulse though such HCF. In general, 
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solving the nonlinear propagation equation in three dimensions is quite time-consuming. 
For this reason, we use the decomposition of the electric field in the spatial eigenmodes 
of the HCF, which is faster, as we will explain in Chapter 3. In the following subsections 
we will present the field configurations and the complex propagation coefficients of the 
different spatial eigenmodes of the HCF that we will study in this thesis. 

We consider a dielectric and cylindrical HCF and we assume that if the wavelength 
is smaller than the core radius (λ << rF ) and the HCF does not present curvature, 
the light propagates essentially within the core by grazing incidence reflections at the 
inner surface, so there is little energy flux into the cladding [Marcatili and Schmeltzer, 
1964]. The field in the cladding is weak, and the index difference between the core and 
the cladding is high enough that any coupling on the femtosecond time scale from the 
cladding back to the core is negligible, as done in previous studies [Homoelle and Gaeta, 
2000, Tempea and Brabec, 1998]. We also assume that |kz/k − 1| « 1, which means 
that the axial propagation constant of each mode (kz) is nearly equal to that of free 
space, so only modes with low losses are supported. 

There are three types of spatial modes supported by this cylindrical HCF: transverse 
circular electric modes, transverse circular magnetic modes and hybrid modes. We will 
distinguish between different spatial modes with two integers, p and q, where |p| is the 
number of periods of each field component in the azimuthal direction and q the number 
of maxima and minima of each field component in the radial direction. The expression 
of the electric field for the different spatial modes in the core of the HCF is written as 
follows [Marcatili and Schmeltzer, 1964] 

1. Circular electric modes TE0q (p = 0) 
 
If (E0q)z = 0 and (E0q)r = 0 everywhere, the electric field has only a tangential compo- 
nent (E0q)θ that can be approximately expressed as 

 
(E ) = J 

(
u 

r
  

exp(i(k z − ωt)) (2.59) 
 
where upq is the qth root of the Jp−1 Bessel function, rF is the core radius and kz is the 
complex propagation constant of the spatial mode we consider. The result is a transverse 
circular electric mode (TE0q, q = 1, 2, ...) in which the electric field lines are transverse 
concentric circumferences centered on the propagation axis. 

These spatial modes, which belong to the so-called vector beam family of the optical 
beams, present azimuthal polarization and a singularity in the propagation axis. As a 
consequence of this spatially varying polarization, the spatial intensity distribution has a 
doughnut shape profile. Figure 2.8 shows a representation of the first two spatial modes 

θ 
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Figure 2.8: First two circular electric modes TE01 and TE02 [Marcatili and 
Schmeltzer, 1964]. 

 
 

of the family, TE01 and TE02 modes [Marcatili and Schmeltzer, 1964], where vectors 
represent the polarization direction of the local field. In Chapter 5 we will study the 
features of the propagation of this type of beams inside the HCF. 

 
 
 
 

2. Circular magnetic modes TM0q (p = 0) 
 

If (E0q)θ = 0 everywhere, the other two components of the electric field can be approx- 
imately expressed as 

 
(E0q)r = J 

(
u  

r
  

exp(i(k z − ωt)) 

u  
( 

r
  

 

 

 
 

(2.60) 

 

where, again, upq is the qth root of the Jp−1 Bessel function, rF is the core radius, k is 
the free wavevector in the gas and kz is the complex propagation constant of the spatial 
mode we consider. The result is a transverse circular magnetic mode (TM0q, q = 1, 2, ...) 
in which the electric field lines are radial lines. 

The longitudinal component of these modes is very small since λ << rF , so we can 
neglect it and the electric field is almost transverse. These spatial modes, also named 
vector beams as the TE0q modes, present radial polarization and a singularity in the 

rF 



CHAPTER 2. THEORETICAL FOUNDATIONS 

34 

 

 

  
        
 

(
−

 
(p+1)q rF

 

p
 

p−1 pq rF
 2kr p (p+1)q rF

 z 

( ( 
(p+1)q 

p 

( 

 
 

 
 
 

Figure 2.9: First two circular magnetic modes TM01 and TM02 [Marcatili and 
Schmeltzer, 1964]. 

 
 
propagation axis. As the TE0q modes, the spatial intensity distribution of the circular 
magnetic modes has a doughnut shape profile. Figure 2.9 shows a representation of the 
first two spatial modes [Marcatili and Schmeltzer, 1964]. In Chapter 5 we will study the 
propagation of this kind of beams inside the HCF and try to find the differences in the 
propagation dynamics between TE0q and TM0q modes. 

 
 
 

3. Hybrid modes EHpq (p /= 0) 

In this case all field components are present and the approximated expressions for each 
field component are 

 
(Epq)θ = 

 
Jp−1 

 
r 

upq 
F 

 
2 

+ i pq  
2nLkrF 

 
   

ν2 − 1Jp
 u 

 
cos(pθ) exp(i(kzz − ωt)) 

 
(E ) = 

(
J 

(
u 

r
  

+ i 
upq  

ν2 − 1J 
(

u r
   

sin(pθ) exp(i(k z − ωt)) 
 
(Epq)z 

 
= i 

upq J u 
krF 

r
   

sin(pθ) 
 
 
 
(2.61) 

 
where upq are the qth root of the Jp−1 Bessel function of the first kind of order p − 1, rF 
is the core radius, n is the refractive index of the nonlinear medium filling the core, ν is 
the ratio between the refractive index of the external and internal medium, k is the free 
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wavevector in the gas and kz is the complex propagation constant of the spatial mode 
we consider. 

 

 
 

Figure 2.10: First two hybrid modes EH11 and EH12 [Marcatili and Schmeltzer, 
1964]. 

 
 

These are the hybrid modes, indicated as EHpq. The terms that depend on krF can be 
neglected since we assume λ << rF , thus the hybrid modes are almost transverse and 
the imaginary part of the radial and azimuthal component can be neglected too. 

These hybrid modes present a uniform linear polarization, a maximum of intensity on 
the propagation axis and the higher-order modes (q > 1) present concentric intensity 
rings. Figure 2.10 shows a representation of the first two spatial modes of these EH1q 
modes, EH11 and EH12 [Marcatili and Schmeltzer, 1964]. Among the hybrid modes of 
the first order, EH11 mode is called the fundamental spatial mode and it is the most 
frequently used in standard post-compression setups. In Chapter 4 and Chapter 7 we 
will study the propagation of this kind of beams inside the HCF. 

For core radius sufficiently larger than the wavelength, which is the subject of study in 
this work, we can approximate the expressions for the field components of the different 
spatial modes as 

1. Circular electric modes TE0q (p = 0) 
 

(E0q)θ = J1 
(

u 
r
 

(2.62) 
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2. Circular magnetic modes TM0q (p = 0) 

 

(E0q)r 

 
3. Hybrid modes EHpq (p /= 0) 

= J1 
(

u 
r
 

(2.63) 

 

(Epq)θ = Jp−1 
(

u 
( 

r
  

cos(pθ) 

r
  

 

 
 
 

(2.64) 

 

These simpler expressions are the ones that we have used to simulate the propagation 
of the spatial modes inside the HCF. 

4. Necklace Beams 
 
These spatial modes are a composition of two degenerate hybrid modes: EH(−|p|)q + 
EH(|p|+2)q , both with the same complex propagation coefficient, as we will see below. If 
these two hybrid modes are added, we obtain a new family of linearly polarized modes. 
Its spatial amplitude can be represented by a radially dependent Bessel function of the 
first kind with a sinusoidal azimuthal dependence. 

 
EH(−|p|)q 

 
+ EH(|p|+2)q = Jp+1 

(
u 

r
  

sin ((p + 1)θ) (2.65) 
 
where rF is the core radius and upq represent the q-th root of the Jp−1 Bessel function. 
Necklace beams are a type of structured laser beams with amplitude and phase rota- 
tional symmetry around the propagation axis. There are different families of necklace 
beams in a HCF depending on the number of rings and beads they present (see Fig. 
2.11). Although the spatial structure of these modes seems complex, their generation 
has already been demonstrated [Grow et al., 2007]. We will study the nonlinear propa- 
gation of these type of modes in Chapter 6 to see if we can obtain any benefit by using 
such structured modes. 

 
 
 
 

Propagation and absorption coefficients 
 
The propagation and absorption coefficients of each pq-mode are the real and imaginary 
parts of the axial complex propagation coefficient kz for a HCF 

 
kz(ω) = βpq(ω) + iαpq(ω) (2.66) 

(Epq )r = Jp−1 upq r 
sin(pθ) 
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Figure 2.11: Two necklace beams with 6 and 4 beads [Marcatili and Schmeltzer, 
1964]. 

 
 

the expression for βpq and αpq being the following [Marcatili and Schmeltzer, 1964] 

2π
 
 1 

( 
upqλ  2

l 

βpq(ω) = Re(kz(ω)) = nL(ω) λ 1 − 2 2πrF nL(ω)  (2.67) 
 upq

 2 λ2 
 

   
 

where nL(ω) is the linear refractive index of the medium in the core and λ is the central 
wavelength in vacuum (λ = 2πc/ω). The expression for νp depends on the chosen spatial 
mode as follows 

 
νp = 



 

 

1 
 ν2−1 
√ ν2 

 

1 (ν2+1) 
 

 

ν2−1 

TE0q 

TM0q 

EHpq 

 

, (2.68) 

where ν is the ratio between the refractive index of the cladding and the core. These 
expressions can be used as the propagation constant kR and the absorption coefficient 
α defined in the wave equations in the previous section, where the absorption depends 
on the frequency in this case. Special attention should be paid to the expression of 
βpq in Eq. 2.67. An important topic in nonlinear pulse compression is the dispersion 
experienced by laser pulses during the propagation inside the gas-filled HCF. We can 
note that carefully choosing the pulse wavelength, the core radius or the spatial modes 
coupled to the HCF, the group velocity dispersion can be negative (∂2βpq/∂ω2 < 0), 
thus entering in the anomalous dispersion regime. This great variety of parameters 
will play an important role in this work, since in the anomalous dispersion region new 

F L n 2
 

2 

αpq(ω) = Im(kz(ω)) = 
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features arise from the interplay between the second order dispersion (or group velocity 
dispersion) and self-phase modulation. These two effects can cooperate in such a way 
that the pulse propagates as an optical soliton and it can self-compress during the 
propagation, as we will see in Chapter 7. On the other hand, the attenuation constant 
is proportional to λ2/a3. This allows us to decrease the losses by choosing large core 
radii, but this will reduce the negative contribution of βpq at the same time and enhance 
the multimode propagation regime. Seeing the expression for αpq in Eq. 2.67, we realize 
that high-order modes present higher losses. 

Lately, there has been an increasing interest in nonlinear multimode systems. The 
presence of different spatial modes and its interaction have led to the observation of new 
optical effects and the theoretical challenge of understanding their collective dynamics 
[Wright et al., 2015]. 



 

 

 
 
 
 
 
 
 

Chapter 3 
 
 

Numerical Methods 
 
 

The aim of this chapter is to develop a numerical model to study the nonlinear propaga- 
tion of a femtosecond laser pulse along a gas-filled hollow-core capillary (HCF) through 
the nonlinear propagation equation presented in Section 2.1. This nonlinear partial dif- 
ferential equation (Eq. 2.42), cannot be described analytically in most of the cases, and 
a numerical solution of the nonlinear propagation equation is necessary to understand 
the nonlinear effects that affect propagation of the pulse. For this reason, we have de- 
veloped different numerical models according to the effects that we are interested in or 
the spatial profile of the input beam. 

Several numerical methods can be used to solve the nonlinear propagation equation. 
The easiest one to implement, and the one we have chosen in this work, is a split- 
step scheme in which the linear terms (diffraction, dispersion and absorption) and the 
nonlinear terms are solved separately [Agrawal, 2013]. Although in general, diffraction, 
dispersion and nonlinearity act together through the propagation along the HCF, with 
the split-step method we can obtain an approximate solution by assuming that linear 
and nonlinear effects act independently in a small longitudinal step size. To solve the 
linear and nonlinear part, we use a variety of numerical models like finite-difference 
scheme, Fourier space, Runge-Kutta algorithm,... and we will indicate which one we use 
in the following sections. 

 
In this chapter, we shall present different numerical models for the nonlinear propagation 
equation, but its expression is adapted according to the dimensions and symmetries 
that we assume. We have divided this chapter in three sections where we explain the 
numerical model used to solve the propagation equation in different circumstances. In 
the first section we will introduce our one-dimensional numerical model, developed in 
the frame of this thesis, to study the nonlinear propagation of a laser beam considering 
only the spatial dynamics of the beam during the propagation. We solve the linear part 
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A(r, z) = 
∂z 2k0(r) ∂r2 + 

r ∂r 
+
 (

 
(r)) A(r, z)+ 

2 

 
using a finite-difference scheme and the nonlinear part as an intensity-dependent phase. 
In the second section, we include the temporal effects and we model the complete spatio- 
temporal dynamics during the propagation of the pulse with a two-dimensional model. 
This model was developed by the ”Aplicaciones del L áser y Fotónica” research group 
in the University of Salamanca, and it has been adapted to the different spatial modes 
we will study in this thesis. We solve the linear part making use of the decomposition 
of the electric field into the spatial modes of the HCF and a Runge-Kutta algorithm 
in the time domain to solve the nonlinear part. In the third section we model the 
complete spatio-temporal dynamics in the case of pulses with a structured beam profile 
with a three-dimensional model, also developed in the frame of this thesis. We solve the 
equation mixing techniques used in the models presented in the two previous sections. 
We solve the linear part using a finite-difference scheme and the nonlinear part with a 
Runge-Kutta algorithm in the time domain. 

 
 
3.1 The Time-Independent Model (1+1)D 

 
The first numerical model we have developed is time-independent, useful for the un- 
derstanding of the self-focusing dynamics in HCF, which is a purely spatial effect. In 
the literature, the early numerical studies on the self-focusing dynamics solved a prop- 
agation equation including only the diffraction and self-focusing effects and neglecting 
any time-dependent term [Kelley, 1965]. In accordance with this approach, we have de- 
veloped a time-independent model ((1+1)D model) based on the nonlinear propagation 
equation obtained in Subsection 2.1.1 (Eq. 2.32) to study the spatial dynamics of a 
monochromatic laser beam inside the HCF and how the spatial confinement influences 
the propagation dynamics. The notation (1+1)D refers to the fact that we only take into 
account the radial transverse dimension r plus the propagation dimension z. We assume 
linear polarization so the envelope is a scalar quantity A(r, z). The nonlinear propa- 
gation equation for the spatial envelope A(r, z) of the laser beam assuming cylindrical 
symmetry and neglecting the temporal dynamics is written as follows 

∂ i 
( 

∂2 1 ∂ R 2 
    

 

2
  

α(r) 
 

 

 

+i
ω0 n 

c NL 

 
(r)|A(r, z)|2A(r, z) 

 
where k0(r) = n0(r)ω0/c, ω0 being the laser frequency and n0 the linear refractive 
index in ω0. The linear absorption of the spatial mode propagating inside the HCF 
is α(r) = 2α(r)pq, defined in Eq. 2.67, nL(r) is the transverse structure of the linear 
refractive index, calculated by the corresponding Sellmeier equation at ω0, and nNL(r) 
is the transverse structure of the nonlinear contribution to the refractive index of the 

(3.1) 
− k0(r) A(r, z) 

− 
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gas inside the HCF, also calculated at ω0. In this case, kR(r) = nR(r)ω0/c represents 
the propagation constant at the different HCF structures (the core and the cladding), 
each of them with their own refractive index. Both contributions to the refractive index 
and kR and α show radial dependence since we are including the optical linear response 
of the core and the cladding of the HCF. 

The amplitude of the laser beam A(r, z) has initially, at z = 0, the radial dependence 
of a HCF mode, so it can be expressed as A(r, 0) = F (r), F (r) being the modal field 
distribution, and z is the propagation coordinate. The intensity |A(r, z)|2 has units of 
W/m2 so that the product nNL(r)|A(r, z)|2 is dimensionless. Equation 3.1 is solved 
numerically using a standard split-step method [Agrawal, 2013]. To understand this 
method, we write Eq. 3.1 in the form of the two terms that govern the beam propagation, 
L̂ and N̂ .  

∂A(r, z) 
= L̂A(r, z) + N̂ ( A 2, A) (3.2) 

∂z 

The linear part of the propagation equation, L̂ ,  represents the diffraction and the ab- 
sorption of the input spatial mode propagating inside the HCF. The nonlinear part, N̂ ,  
represents the self-focusing process induced by the optical Kerr effect on the propagation 
[Couairon et al., 2011]. 

ˆ i 
( 

∂2 1 ∂ R 2 2
  

α(r) 
 

 

 

 

N̂ (|A|2 , A) = i
ω0 n (r) |A(r, z)|2 A(r, z) (3.4) 

 

With the split-step method we solve Eq. 3.2 in two steps. In the first step, the linear 
operator L̂ is discretized with a finite-difference scheme for the derivatives in z and r. 
The resulting system of equations is solved using a Crank-Nicolson algorithm [Couairon 
et al., 2011, Crank and Nicolson, 1947] . 

∂A = F 
∂z 

 
A, r, z, 

∂A ∂2A 
∂r 

, 
∂r2 

 
 

(3.5) 
Āj+1 − Aj 

 
 

 
1  

j+1 j
  

 

 
 

where the i subscript refers to the radial points in the grid and the j superscript 
refers to the longitudinal points in the propagation direction. The equation for the 
Crank–Nicolson method is a combination of the forward difference at the point j and 
the backward difference at point j + 1 for the longitudinal coordinate. With this algo- 
rithm we solve the unknown envelope at the point j + 1, Āj+1 , only including the linear 
effects. Discretizing the equation above, we obtain a matrix equation of the form 

 
BĀj+1 = CAj (3.6) 

2 ∆z 

− k0(r) − 

= 

NL 
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where B and C are both tridiagonal matrices. We use Neumann boundary conditions 
in r = 0, ∂A/∂r = 0, and since there is a singularity in r = 0, we apply L’Hôpital 

 

 
lim 
r→0 

1 ∂A 
r ∂r 

 
= 

r=0 

∂2A 

∂r2 (3.7) 
 

We apply Dirichlet boundary conditions at the end of the radial grid, the cladding edge, 
and to avoid reflections we implemented an absorber at the end of the radial grid. To 
be sure that the absorber was acting properly, we compared the propagation using the 
absorber with the propagation in a HCF with a very large cladding to avoid reflections. 
Thus the matrices B and C are the following 

1 + 4a − aξ −4a 0 . . . 0 

 

−a(1 − ) 1 + 2a − aξ −a(1 + ) . . . 0  

     
0 0 . . . −a(1 − ∆r ) 1 + 2a − aξ 

 


1 − 4a + aξ 4a 0 . . . 0 


 

 a(1 ∆r ) 1 − 2a + aξ a(1 + ∆r ) . . . 0  

    
0 0 . . . a(1 − ∆r ) 1 − 2a + aξ 

where a = i∆z/4k0∆r2 and ξ = ∆r2((kR)2 − k2), ∆z and ∆r being the longitudinal 
and radial step sizes, respectively. We use a uniform grid for both coordinates, with 
transversal and longitudinal step sizes. Since the Crank-Nicolson method is uncondi- 
tionally stable but not always converges to the correct solution, different step-sizes have 
to be implemented to find the final solution. 

In the second step, the nonlinearity acts individually and it is solved as an exponen- 

tial operator exp(∆zN̂ ), which means introducing an intensity-dependent phase factor 
iγ|A|2, γ being the nonlinear parameter defined as γ = ω0 nNL 

 

∂A 
= iγ A 2A 

∂z 
Aj+1 = exp(iγ|Āj+1|2∆z)Āj+1 

 

(3.10) 

 

Āj + 1 being the solution obtained when solving linear part with the Crank-Nicolson 
algorithm. As we have mentioned before, we have implemented an absorbing grid to 
avoid artificial reflections at the end of the spatial grid. The numerical absorber we 
use is sufficiently smooth to avoid reflections from the absorber itself. The numerical 
expression of the absorber is cos1/8 |r0−r|π , where r0 is the point where the absorber 
begins and d is the length of the absorber [He et al., 2007]. 

. . . 
 

. .  . 

. . . 
 

. .  . . 
B = 

  
(3.8) 

C = (3.9) 
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We will use this numerical model in Chapter 4 to study the self-focusing dynamics of 
a laser beam propagating inside a HCF. The parameters used in the simulation will be 
specified in Chapter 4 according to the laser beam and the nonlinear medium used in 
the propagation. 

 
 

3.2 The Time-Dependent Model (2+1)D 
 

Since HCFs are multimode systems, it is not surprising that their multimode nature 
could be relevant to fully understand the pulse dynamics during the propagation inside 
the HCF. In the (1+1)D model presented in Section 3.1 we model the diffraction solv- 
ing the transverse Laplacian, so we do not take into account the full dynamics of the 
different spatial modes. However, if the pulse intensity is sufficiently high, the nonlinear 
propagation through the HCF induces an important energy transfer between different 
spatial modes [Homoelle and Gaeta, 2000]. In addition, considering the short pulse du- 
ration of the laser beams, the dispersion and nonlinear temporal effects could also play 
an important role in the propagation. For this reason, we use a numerical model that 
includes the temporal dynamics and instead of solving the radial effects directly, it de- 
composes the electric field into the spatial modes considering only the spatial structure 
in the core of the HCF. Since these are leaky modes, the propagation losses of each mode 
are also included in the model. 

 
To observe the influence of the temporal effects and the role of the spatial modes, we 
use a more complete description of the pulse propagation using a time-dependent model 
((2+1)D model) that includes the spatial and temporal dynamics of the pulse. We refer 
to this model as (2+1)D model, meaning two dimensions, the radial r and the temporal 
T dimensions, plus the propagation dimension z. We assume linear polarization so 
the envelope is a scalar quantity A(r, T, z). Considering cylindrical symmetry again, 
the propagation equation for the temporal envelope of the pulse, A(r, T, z), is the one 
obtained in Eq. 2.52, where we include the spatio-temporal dynamics and the effects 
related to the ionization of the medium.   

∂ i 2 
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i ∂
  − α

 
 

1 

∂z 
− 

2k0 
∇T 

1 + 
ω0 ∂T 

− iD + 2 A(r, T, z) = N (|A| , A, ρ) (3.11) 

 
2 

where ∇2 = ∂ + 1 ∂ , k = n ω /c and n is the linear refractive index at ω the 
central frequency. The linear nL and nonlinear nNL refractive indices will also depend 
on the gas pressure. We have included the losses of each spatial mode propagating inside 
the HCF though the absorption coefficient α = 2αpq defined in Eq. 2.67. Now nL and 
nNL, the linear and nonlinear refractive indices of the gas filling the HCF, do not show 
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radial dependence as in the previous model in Section 3.1, since we are simulating only 
the core of the HCF. Once more, we write Eq. 3.11 in the form of the two terms that 
govern the beam propagation, L̂ and N̂ .  

 
∂A(r, T, z) 

= L̂ A(r, T, z) + N̂ (  A 2, A, ρ) (3.12) 
∂z 

 
where A(r, T, z) can be expressed initially as A(r, T, 0) = F (r)e−T 2/(T0)2 , F (r) being the 
initial modal field distribution. Equation 3.12 is solved again with a split-step method. 
This model was developed by the “Aplicaciones del Laser y Fotónica” research group 
and it is described in detail in reference [Conejero Jarque et al., 2018]. In this case, 
the linear part is solved decomposing the input pulse in the family of spatial modes 
of the HCF, and the nonlinear part is solved by means of a fourth-order Runge-Kutta 
algorithm [Press et al., 2007] in the time domain. The nonlinear operator includes self- 
focusing, self-phase modulation, self-steepening, Raman, ionization and the losses due 
to the ionization process and plasma absorption. The model uses a finite number of 
modes, N , for the modal decomposition, usually thirty, which are enough to model the 
beam dynamics (in all our simulations, we have checked that the energy transferred to 
the highest modes is almost negligible). 

To solve the linear part we start from the premise that we already know the pulse 
envelope A(r, T, z) in a certain point but our goal is to obtain A(r, T, z + ∆z). The 
envelope can always be expressed as the combination of different spatial modes in the 
Fourier domain 

N 
A(r, ω, z) = cq(ω, z)Fq(r) (3.13) 

q=1 
 

where A(r, ω, z) represents the Fourier Transform of A(r, T, z) and Fq(r) is the family 
of p-spatial modes propagating inside the HCF (the modes TE0q, TM0q and EHpq 
with q = 1, 2, 3...). The coefficients of the decomposition, cq, are calculated by doing 
the inverse Hankel Transform of the spatial beam distribution in the core of the HCF 
[Guizar-Sicairos and Gutiérrez-Vega, 2004]. 

 1 
  rF 

( 
r
 
 

F  p (p−1)q 0 F 
 

where rF is the core radius and upq are the qth-zeros of the Jp Bessel function of the 
first kind of order p. When dealing with hybrid modes, we will be using the family of 
spatial modes with p = 1, while when studying the nonlinear propagation of TE- or 
TM -modes, we will use the family of the spatial modes with p = 2. 

In the first part of the Eq. 3.12, the operator L̂ ,  represents the linear propagation 
effects: diffraction, absorption and also dispersion, that we solve using the propagation 

rdr (3.14) 
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and absorption coefficients of each mode, βpq(ω) and αpq(ω) in the frequency domain as 
defined in Eq. 2.67 [Marcatili and Schmeltzer, 1964]. 

 

N 

A(r, ω, z + ∆z) = cq(ω, z)Fq(r)exp(i(β(ω)pq + iα(ω)pq)∆z)) (3.15) 
q=1 

 

In this case, the spatio-temporal coupling is included in the propagation constant of 
each mode βpq, as a correction to the dispersion relation k(ω) in free space [Rothenberg, 
1992]. 

The nonlinear part, N̂ ,  not only includes self-focusing but also self-phase modulation, 
self-steepening, Raman, the ionization and all the losses related to that process. 

 

N̂ = (N̂Kerr + N̂ ioniz + N̂ abs) (3.16) 
 

The analytical expression that we use for each term is standard and can be found in 
Eqs. 2.54-2.56 [Couairon and Mysyrowicz, 2007]. Equation 3.16 is solved simultaneously 
with the evolution of the density of electrons ∂ρ = W (|A|2)(ρat − ρ). To solve the 
nonlinear operator, we use a fourth-order Runge-Kutta algorithm in the time domain. 
The evolution of the free-electron density is also solved with a fourth-order Runge-Kutta 
method, using the rates obtained from the PPT model [Couairon and Mysyrowicz, 2007, 
Perelomov et al., 1966]. 

We will use this numerical model in Chapter 4 to study the influence of the temporal 
effects and the multimode nature in the self-focusing dynamics of a laser pulse inside a 
HCF. In Chapter 5 we will study the nonlinear propagation of vector beams inside the 
HCF and in Chapter 7 we will study the dispersive wave generation also with this model. 
The parameters used in the simulations will be specified in each chapter according to 
the laser pulse and the nonlinear medium used in the propagation. 

 
 

3.3 The Non-Cylindrical Symmetry Model (3+1)D 
 

In this work we also study the nonlinear propagation dynamics of laser beams without 
cylindrical symmetry, such as necklace beams, through gas-filled HCF. For this reason, 
we need to modify the previous models to include the azimuthal dependence in the 
spatio-temporal dynamics. We have developed a (3+1)D model, three dimensions that 
include the two transverse dimensions (radial r and azimuthal θ) and the temporal 
dimension T , plus the propagation dimension z. We assume linear polarization so the 
envelope is a scalar quantity A(r, θ, T, z). The propagation equation for the envelope of 
the pulse in cylindrical coordinates, A(r, θ, T, z), is again Eq. 2.52 but including now 
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the azimuthal coordinate:   

∂ i 2 
( 

i ∂
  − α

 
 

1 

∂z 
− 

2k0 
∇T 

1 + 
ω0 ∂T 

− iD + 2 A(r, θ, T, z) = N (|A| , A, ρ) (3.17) 

 

where ∇2 = ∂2 + 1 ∂ + 1 ∂2 . As the previous models, this equation is also solved 
with a split-step method. 

 
∂A(r, θ, T, z) 

= L̂A(r, θ, T, z) + N̂ (  A 2, A, ρ) (3.18) 
∂z 

where A(r, θ, T, z) can be expressed initially as A(r, θ, T, 0) = F (r, θ)e−T 2/(T0)2 , F (r, θ) 
being the modal field distribution. The first term, L̂ ,  represents the linear effects, namely 
the diffraction, the linear losses and the dispersion of the laser beam in the HCF. The 
expression that we have used for these effects in this case is: 

ˆ i 
( 

∂2 1 ∂ 
 

1 ∂2  ( 
 

 

i ∂
  −1 α ¿ 

 
  

 

  

 
im+1 ∂m 

 
  

 
where k0 = n0ω0/c and n0 is the linear refractive index at ω0, α = 2αpq is the absorption 
coefficient of the input spatial mode obtained from [Marcatili and Schmeltzer, 1964] and 
km = (∂mk/∂ωm)ω , k = nL(ω)ω/c being the dispersion relation of the gas, where nL(ω) 
is represented by the corresponding Sellmeier equation. 

The second term, N̂ ,  represents the most significant nonlinear effects, such as self-phase 
modulation (and self-focusing), self-steepening, Raman, ionization, and the losses due 
to the ionization process and plasma absorption. The expressions that we have used for 
these effects are Eqs. 2.54-2.56, the same we use in the (2+1)D model in Section 3.2: 

N̂ = (N̂K err + N̂ ioniz + N̂abs). This model is a 3D extension of the model presented 
in Ref. [Fibich and Gaeta, 2000] and in the previous sections, enhanced to study the 
nonlinear propagation of beams without cylindrical symmetry through gas-filled HCFs. 

We solved Eq. 3.18 by using a split-step method [Agrawal, 2013]. Although it is possi- 
ble to perform a mode decomposition for beams without cylindrical symmetry like these 
ones, it is quite time-consuming since we should consider spatial modes from different 
families and the coupling between them. Hence, we decided to directly solve the Lapla- 
cian operator. We solve the linear part at different steps, the dispersion is solved as an 
exponential operator evaluated in the Fourier domain using the Fast Fourier Transform 
(FFT) algorithm [Frigo and Johnson, 2005]. 

 
A(r, θ, ω, z + ∆z) = exp(∆zD(iω))A(r, θ, ω, z) (3.20) 

∂T 0 

∞ 

m=2 
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where D(T ) =
  ∞

m=2 

 
im+1 

m! 

 
∂m 

m ∂T m 

 
and D(iω) is obtained just replacing the differential 

operator  ∂ by −iω. The evaluation of Eq. 3.20 is straightforward and relatively fast 
using FFT algorithm. 

 
The azimuthal dependence is solved also in the Fourier space, which involves replacing 
the differential operator ∂2

 by −l2, where l is the orbital angular momentum. The 
 

    
 

 
a Crank-Nicolson algorithm, as in Section 3.1, applied to each spectral component, which 
allow us to consider also the spatio-temporal coupling effect. The matrix equation has 
the same form as in Eq. 3.6. Since the azimuthal term presents another singularity 
at r = 0, we avoid this point and start the simulation in ∆r/2. We apply again the 
Neumann boundary conditions on axis, so (∂A/∂r)r=0 = 0. In this (3+1)D model we 
only simulate the propagation in the core of the HCF assuming that the light is confined 
inside the core and it does not escape into the cladding, so we apply the Dirichlet 
boundary condition at the core edge, where A = 0 if r = rF . The matrices B and C in 
this case are the following 

 
 

 −a(1 − ∆r ) 1 + 2a + a∆r2 l
2 −a(1 + ∆r )  . . .  0 

 . . . . . . .  
 

 
 
 
 

 a(1 − ∆r ) 1 − 2a − a∆r2 l
2 a(1 + ∆r )  . . .  0 

 . . . . . . .  

0 0 . . . 0 0 
 

where a = i∆z/4k0∆r2. We have included the angular momentum obtained from the 
Fourier transform of the azimuthal coordinate in the terms of the diagonal. The terms in 
the superdiagonal and subdiagonal are identical to the ones in the matrix of the (1+1)D 
model (see 3.1) except in the first row. 

The rest of the terms that appear in Eq. 2.52, included in the nonlinear part, are solved 
with a fourth-order Runge-Kutta algorithm in the time domain as in the (2+1)D model 
in Section 3.2. 

We will use this numerical model in Chapter 6 to study the nonlinear propagation of 
structured beams inside the HCF, in particular necklace beams with different number of 
beads. The parameters used in the simulation will be specified in Chapter 6 according 
to the laser pulse and the medium used in the propagation. 

0 0 . . . 0
  

and it can be solved now using l 1 ∂ 
r ∂r + ∂2 

∂r2 
diffraction term in Eq. 3.19 is then i 
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k 

B = (3.21) 
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Chapter 4 
 
 

Energy Limit in 
Post-Compression Schemes: 
Study on Self-Focusing Dynamics 

 
One of the first nonlinear effects that appears when a laser beam propagates through 
a nonlinear medium is the optical Kerr effect. This effect consists in the dependence 
of the refractive index on the intensity of the beam, as shown in Eq. 2.24 . The main 
consequence of this effect, in the spatial domain, is the self-focusing of the beam towards 
the highest intensity regions, usually its central part [Kelley, 1965]. 

 
n(r) = nL + nNLI(r) (4.1) 

 
where nL and nNL are the linear and nonlinear refractive indices, respectively. In most 
of the media, the nonlinear refractive index, nNL, is positive so the refractive index 
increases where the intensity of the beam is higher, which means that the medium acts 
as a positive lens modifying its own propagation due to the nonlinear response of the 
medium. 

The theory of self-focusing was developed in 1965 by Talanov [Talanov, 1965], proposing 
the nonlinear propagation equation to obtain the numerical results on self-focusing and 
the concept of the self-focusing distance, which has been usually defined as the distance 
where a beam will self-focus and collapse at beam axis [Boyd, 2020, Chiao et al., 2009]. 
Since this initial work, several important contributions and reviews have been made. The 
self-focusing process is of great importance in a wide variety of contexts such as in the 
formation of the Townes soliton [Chiao et al., 1964, Moll et al., 2003, Ruiz et al., 2005], 
in the design of laser resonators to prevent the presence of hot spots (local self-focusing 
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processes) [Gobbi and Reali, 1984], as a natural limit in the intensity up-scaling of fiber 
amplifiers [Farrow et al., 2006], as the initial step of the filament formation [Braun et al., 
1995], as a limit in some post-compression schemes [Conejero Jarque et al., 2018] or in 
the material processing context [Lapointe and Kashyap, 2017], where the self-focusing 
process triggers other higher order nonlinear effects that worsen the output result. 

It is well-known from the literature that for input peak powers above a threshold value, 
called critical power (Pcr), the self-focusing dynamics is activated. This fundamental 
parameter was defined already in the early self-focusing studies [Chiao et al., 1964] and, 
since then, its definition has been revisited many times due to its dependence with the 
spatial profile [Fibich and Gaeta, 2000, Fibich and Ilan, 2000], the temporal and non- 
paraxial dynamics [Fibich and Papanicolaou, 1997, McAllister et al., 1968], the focusing 
geometry [Cheng et al., 2015], the spatial impurities [Fibich et al., 2005], the influence of 
the Raman effect [Chen et al., 2013], etcetera. All these dependencies are an indication 
of the rich and complex interplay between self-focusing and other linear and nonlinear 
effects, which is the reason why it is still an active research topic. 

Another important concept in the study of self-focusing dynamics is the collapse distance 
(zc). There are different models and formulas to estimate its value depending on different 
parameters, such as the beam waist, the input power and the critical power of the 
medium. In the case of a free propagating beam several similar formulas have been 
proposed in different studies [Boyd, 2020, Chiao et al., 2009, Fibich and Ilan, 2000, 
Marburger, 1975]. 

The self-focusing process in waveguides (optical fibers, photonic crystal fibers and hollow 
capillary fibers (HCFs)) has been studied theoretically obtaining contradictory results. 
Tempea and Brabec reported that the critical power in HCFs is substantially higher (5 
times) than the critical power in free space [Tempea and Brabec, 1998]. Some years 
later, Fibich and Gaeta obtained essentially the opposite result, the critical power was 
slightly lower for the fundamental mode propagating inside the HCF, the EH11 mode, 
than for a free Gaussian beam propagating in bulk media [Fibich and Gaeta, 2000]. 
Similarly, Farrow and co-workers observed stationary solutions in a fiber amplifier for 
peak powers below the critical power of a free Gaussian beam, suggesting a decrease 
of the real critical power in the fiber, although concluded that the critical power in a 
step-index fiber was nearly the same than in free space [Farrow et al., 2006]. Finally, self- 
focusing below the critical power of a free Gaussian beam was also observed in photonic 
crystal fibers [Köttig et al., 2017], suggesting again a different behaviour between a free 
and a spatially confined propagation [Homoelle and Gaeta, 2000]. 

 
In this chapter we will study the self-focusing dynamics of a beam propagating in a 
HCF, which is the most usual technique to compress laser pulses in the near infrared 
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down to the few-cycle regime [Nisoli et al., 1996, Silva et al., 2018]. During the post- 
compression process, a fundamental criterion in controlled pulse propagation in HCFs 
is that the input peak power should be below the critical power of self-focusing to avoid 
the coupling between modes and the ionization of the medium, which increases the losses 
and worsens the beam quality and the output result [Conejero Jarque et al., 2018]. These 
limitations set an upper limit in the energy scaling. However, there are some strategies 
to scale up the energy: using HCF with a larger core radius or using longer wavelengths 
due to the scaling of the critical power with the wavelength, although the ionization 
threshold is lower. 

 
We will try to gain some insight into this problem comparing the self-focusing dynamics 
of free beams and beams propagating in a HCF using two different theoretical models 
of the nonlinear propagation equation, the (1+1)D and the (2+1)D models explained 
in Chapter 3. We will see with both numerical models that the collapse distance zc of 
the fundamental mode inside the HCF, EH11, is remarkably different than in free space 
due to the influence of the spatial confinement of the HCF, specially for peak powers 
slightly higher than the critical power of the fundamental mode of the HCF. 

Moreover, the (2+1)D model that includes the temporal dynamics, shows that the spatial 
collapse can appear also for pulses with peak power below the critical power Pcr, the 
temporal pulse evolution and the interference between different spatial modes in the 
HCF being the two main ingredients of this complex propagation. We also study the 
dependence of the self-focusing dynamics with different parameters, such as the HCF 
radius, the pulse duration, the laser wavelength or the gas pressure. In the last part 
of this chapter we discuss how the self-focusing dynamics, accompanied by other higher 
order nonlinear terms, would manifest in a real experiment, demonstrating that pure self- 
focusing studies help to identify the energy limit of the HCF post-compression scheme. 

 
 

4.1 Spatial Collapse: Critical Power and Collapse Crite- 

rion 

 
It is well-known from the literature that self-focusing sets an upper limit on the beam 
power that can be propagated through a Kerr medium. For powers above a threshold 
value, called critical power, self-focusing overcomes diffraction during the propagation 
and the beam undergoes spatial collapse [Kelley, 1965, Marburger, 1975] with the peak 
intensity reaching high values that can damage or ionize the medium. Among the 
different expression for the critical power, in this work we use the following definition as 
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a reference [Fibich and Gaeta, 2000] 

 

 λ2 
Pcr = Ncr 

4πnLnNL 

 
(4.2) 

 

where λ0 is the wavelength in free space and Ncr is a constant that depends on the beam 

shape as Ncr =  |F (r)|2rdr, F (r) being the spatial beam distribution, which is assumed 
to have cylindrical symmetry [Fibich and Gaeta, 2000]. In the case of the Townes profile 
[Chiao et al., 1964], for which diffraction and self-focusing are balanced, this constant 
is Ncr ≈ 1.86225. Beams with another spatial profile undergo collapse when their peak 
power exceeds a threshold usually larger than the critical power for the Townes soliton. 
In the case of a Gaussian beam propagating in bulk media, the critical power is slightly 
higher (Ncr = 1.8962). However, in the case of the fundamental mode propagating in 
the HCF, the EH11 mode, the critical power is the same as the critical power for the 
Townes profile (Ncr = 1.86225) [Fibich and Gaeta, 2000]. The reason for this behaviour 
is that the spatial confinement of the HCF prevents the shedding of energy towards the 
cladding, keeping it confined in the core. We will use this value of the critical power of 
the fundamental mode EH11 in the HCF as a reference in this work. 

There are different theoretical models that propose an expression for the collapse distance 
zc of free propagating Gaussian beams when the input peak power is above the critical 
power. According to the theory, collapse occurs when the beam intensity becomes 
infinity at a certain distance and the whole beam shrinks to a single point. Here we 
briefly summarize the most usual models for the collapse distance: 

• In the case of Marburger’s model, the collapse distance for a Gaussian beam prop- 
agating in free space is described by a semi-empirical formula [Dawes and Marburger, 
1969, Marburger, 1975] 

zc = )1 
0.367zR 

(Pin/Pcr)1/2 − 0.852 
 
− 0.0219 

 
(4.3) 

 
where zR is the diffraction length (or Rayleigh length) of the beam, defined as zR = 
πw2/λ, λ = λ0/nL being the wavelength in the medium and w0 the initial beam waist. 
This expression is valid for Gaussian beams with moderate input powers in purely Kerr 
media [Couairon and Mysyrowicz, 2007]. 

• In another model proposed by Chiao et al., they defined a collapse distance taking 
into account the interplay between the nonlinearity and the diffraction as [Chiao et al., 
2009] 

z =  2zNLzR  
1 − 2zNL/zR 

(4.4) 
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where zNL = nL/(knNL|A0|2) is the nonlinear distance, k = nL(ω)ω/c and |A0|2 being 
the initial pulse intensity. The authors observed that the expression gives a zc two times 
larger than the one obtained in the numerical simulations when zR » zNL. 

• A different approach introduced by Boyd [Boyd, 2020] discerns two expressions for the 
collapse distance valid at different power regimes. 

 
zc = 

2nLw2 
λ0 

1   
P/Pcr 

(P » Pcr) (4.5) 

 

This expression considers only the effect of self-focusing and it is valid when the peak 
power is considerable higher than the critical power and self-focusing overcomes diffrac- 
tion. 

In the case of lower peak powers, the diffraction effect is not negligible and must be also 
taken into account. The collapse distance can be expressed as 

 
zc = 

2nLw2 
λ0 

1   
P/Pcr − 1 

(P ≥ Pcr) (4.6) 

 

• The last model we present here was proposed by Fibich and Ilan [Fibich and Ilan, 
2000] to predict the collapse of a free propagating Gaussian beam, which consists in a 
correction to the formula presented by Marbuger and Dawes (Eq. 4.3) 

 
zc = 0.634zR 

 
P 
Pcr 

−0.6346 

− 1 
 

(4.7) 

 

One of the main issues when numerically studying the self-focusing process is the collapse 
criterion, which determines the propagating distance at which the spatial collapse takes 
place. Looking into the literature, one finds that to identify the self-focusing dynamics 
and the beam collapse, some authors use the beam spatial width evolution [Farrow et al., 
2006, Hesketh et al., 2012] while others use the field amplitude or intensity evolution 
[Fibich and Gaeta, 2000, Fibich et al., 2005]. This type of field amplitude criterion is 
not adequate for our problem, as we are dealing with beams propagating inside HCFs, 
whose spatial modes are intrinsically leaky. The absorption losses inherent to the HCF 
would affect those spatial collapses occurring at short distances in a different way than 
those occurring at long distances, although both beams would present similar spatial 
dynamics and widths. Moreover, the peak intensity depends on the spatial size of the 
beam, so it provides an idea of the spatial collapse, but it also depends on the temporal 
dynamics. Our spatio-temporal simulations show important pulse compression dynamics 
that induces a rise of the peak intensity, as we will see in the following sections. While 

(   
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the peak intensity mixes the spatial and the temporal dynamics, the spatial width is a 
purely spatial parameter. 

For these reasons we prefer to use a beam width criterion and define the spatial collapse 
in the numerical simulations when the spatial width, measured as the full width at half 
maximum (FWHM) from the peak intensity, drops below 0.1 times the initial beam 
waist. With this collapse criterion we can compare our collapse distances obtained from 
the simulations with one of the collapse models presented in Eqs. 4.3-4.7 to validate it. 

 
Gaussian beam collapse distance 
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Figure 4.1: Collapse distances (zc) obtained for a free propagating Gaussian beam 
with two different initial beam waists (97.5µm and 130µm) using the collapse criterion 
of 0.1 times of the initial waist. The dots represent the zc obtained with the (1+1)D 
model and the square markers are obtained with the (2+1)D model. The dashed lines 
represent the free-space propagation formula used as a reference (Eq. 4.7) [Fibich and 
Ilan, 2000]. 

 
 
For this purpose, we have propagated a free Gaussian beam with both numerical models 
and compared the numerical collapse distances obtained using our collapse criterion, 
with those predicted by the free-space propagation formula proposed in Eq. 4.7, which 
is the most precise prediction compared to the numerical simulations. We have plotted 
the comparison in Fig. 4.1, where the dashed lines represent the free-space propagation 
formula (Eq. 4.7) used as a reference, and the markers are the numerical collapse 
distances obtained with both numerical models. The agreement is fairly good, which 
demonstrates that our collapse criterion is suitable to study the self-focusing dynamics. 

z c 
(m
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A different collapse criterion could change the quantitative results, the collapse distances, 
but qualitative results, the collapse tendency or dynamics, would remain the same. 

 
 

4.2 Self-Focusing Dynamics in Hollow Capillary Fibers 
 

To study the collapse process in HCFs we have used two of the numerical models ex- 
plained in Chapter 3. The first model we use is the time-independent model (1+1)D 
(Subsection 3.1), which focuses on the spatial dynamics including only the diffraction 
and the self-focusing effects. It should be noted that this analysis of self-focusing does 
not represent the actual physics since other nonlinear effects will interplay with self- 
focusing, but it helps us to isolate and understand the self-focusing dynamics in HCFs, 
as had been done in previous self-focusing studies [Fibich and Gaeta, 2000, Kelley, 1965]. 

As we want to study the self-focusing process in the post-compression context, we need 
to verify the possible influence of the evolution of the temporal structure of the pulse, 
which could be relevant for pulses in the femtosecond regime. For this reason, we also 
use the time-dependent model (2+1)D (Subsection 3.2), which includes the complete 
spatio-temporal dynamics of a laser pulse propagating in a HCF. This second model 
includes the diffraction and self-focusing effects together with the dispersion, self-phase 
modulation and self-steepening, but we do not include the ionization, in order to be able 
to compare these results with those obtained with the (1+1)D model. 

In a real experiment, self-focusing should be avoided because it leads to the ionization 
of the medium. The plasma causes a reduction of the refractive index that defocuses the 
beam and prevents beam collapse [Chiao et al., 1964]. In the last part of this chapter, 
we will add the ionization of the medium to the (2+1)D model to see how self-focusing 
affects the general dynamics in a more realistic way. 

 
 

4.2.1 The Time-Independent Model ((1+1)D Model) 
 

To understand how the self-focusing dynamics is affected by the spatial confinement 
induced by the HCF, we have simulated the nonlinear propagation of the fundamental 
spatial mode of a HCF, the EH11 mode, with the (1+1)D model. The initial condition 
used to solve numerically Eq. 3.2 (see Subsection 3.1) is 

 

A(r, z = 0) 
J0 (u11r/rF ) r ≤ rF 
0 r > rF 

 
, (4.8) 
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u11 being the first zero of the Bessel J0 function and rF the HCF core radius. We 
simulate the propagation of the EH11 hybrid mode centered at 800 nm in a HCF with 
core radius rF and filled with argon at 1 bar, so nL = 1.0003 [Zhang et al., 2008] 
and nNL = 1.74 · 10−23 (m2/W) in the core [Couairon et al., 2008], and nL = 1.4533 
[Malitson, 1965] and nNL = 3.2 · 10−20 (m2/W) in the fused silica cladding [Boyd, 2020]. 

Using the collapse criterion already defined, we will compare the collapse distances 
obtained numerically from the propagation of the EH11 mode inside the HCF, with the 
free-space collapse distances for a Gaussian beam predicted by the free-space propagation 
formula in Eq. 4.7 that we use as a reference. To apply this formula we choose the waist 
of the Gaussian beam that best fits the fundamental mode of the HCF (w0 = 0.65rF ), its 
zR and the critical power corresponding to the EH11 mode with Ncr = 1.86225. Figure 
4.2 shows the numerical collapse distances (dots) obtained with the (1+1)D model and 
the prediction obtained through the free-space propagation formula used as a reference 
(dashed lines) for different input pulse energies and two HCF core radius (150 µm and 
200 µm). 
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Figure 4.2: Collapse distances (zc) for the EH11 mode at 800 nm as a function of the 
input peak power and of the core radius of the HCF. Dots represent the zc obtained 
from the (1+1)D numerical model for HCFs of 150 µm and 200 µm core radius, solid 
lines are obtained from the estimation formula (Eq. 4.9) and dashed lines correspond to 
the prediction from the free-space propagation formula in Eq. 4.7 used as a reference. 
Pcr is the critical power for the fundamental mode of the HCF as defined in 4.2 
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From the observation of Fig. 4.2 we arrive at two important conclusions: first, we do 
not observe spatial collapse for peak powers below the critical power, which is consistent 
with the self-focusing theory [Marburger, 1975]. Second, and maybe the most important 
observation, the tendency of the collapse distances in the HCF is different from those 
obtained from the free-space propagation predicted by Eq. 4.7, especially when the input 

peak power is close to the critical power (Pin � Pcr) for the two HCFs. The collapse 
distances are shorter in the HCF than in free space, which means that the critical power 
in the HCF should be lower than in free space, in agreement with previous references 
[Fibich and Gaeta, 2000, Köttig et al., 2017]. Surprisingly, the collapse distances in the 
HCF disappear abruptly at the critical power, instead of diverging when getting close 
to this threshold value (Pcr) as occurs in the case of free-space propagation. This new 
behavior can be explained with the reduction of diffraction and the small losses induced 
by the spatial confinement of the HCF. At moderate input peak powers, diffraction, 
absorption and self-focusing interact during the propagation in a different manner than in 
free space. However, at high input peak powers, where the self-focusing term overcomes 
the absorption and the diffraction during the propagation, the difference between the 
collapse distances in the HCF and in free space notably reduces. The conclusion obtained 
from the (1+1)D model is clear: the spatial confinement of the beam limits its diffraction 
and prevents the shedding of the energy, which favors the self-focusing dynamics during 
the propagation, specially for peak powers close to the critical power. 

Since the free-space propagation formula (Eq. 4.7) does not predict the collapse distances 
in the case of a propagation inside the HCF, we try to find a new expression. Fitting 
our numerical results we can obtain a simple formula to predict the collapse inside the 
HCF: 

zc = 0.625zR Pin 
Pcr 

− 0.715 
 −0.6346 

(P ≥ Pcr) (4.9) 

Pcr and zR being the critical power and the diffraction length corresponding to the 
EH11 mode with Ncr = 1.86225. This expression is just a correction of the free-space 
propagation formula reported by Fibich and Ilan (Eq. 4.7). We have plotted the results 
obtained from Eq. 4.9 as solid lines in Fig. 4.2 to show the agreement between numerical 
and analytical results. 

 
 

4.2.2 The Time-Dependent Model ((2+1)D) Model 
 

A more complete description of the nonlinear pulse propagation dynamics in the HCF 
is simulated with the time-dependent model, (2+1)D model, that includes spatial and 
temporal dynamics (Eq. 3.12 of the Subsection 3.2). The temporal effects included in 
this case are dispersion, self-phase modulation and self-steepening. The Raman response 
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is not included because the gas filling the HCF is argon, which does not have vibrational 
response. Since we are studying the spatial nonlinear process, to better identify the col- 
lapse dynamics, we have not taken into account the gas ionization inside the HCF, that 
would inhibit it. Otherwise, it would not be possible to compare the results obtained 
from the (1+1)D model, which does not include ionization either. In fact, neither the 
effect of the plasma induced by the pulse nor the losses related to the ionization process 
or the presence of the plasma are included. This is a standard procedure applied in 
many previous self-focusing studies to isolate the spatial dynamics [Fibich and Papani- 
colaou, 1997, Hesketh et al., 2012, Kelley, 1965]. Obviously the self-focusing process will 
eventually activate ionization in a real scenario, changing the spatio-temporal evolution 
of the beam. Such an intense nonlinear propagation introduces a very complex spectral 
phase that makes the output pulse not useful for post-compression and, for this reason, 
we are interested in the regime where the beam is approaching the blow up instead of 
in the blow up itself [Hesketh et al., 2012]. 

 
In this case we simulate the propagation of the EH11 mode, centered at 800 nm, coupled 
to a HCF with 150 µm core radius and filled with 1 bar of argon. Since the linear 
refractive index now presents a dependence with the frequency, we use the expression in 
Ref. [Zhang et al., 2008]. 

n (ω, p) = 1 + p 10−8 12236.13 + 
 1232158.1  

(4.10) 
90.7 − 1/λ2 

 

where p is the gas pressure in bar and λ is the wavelength in micrometers. The nonlinear 
refractive index is proportional to the gas pressure (nNL · p). This expression presents a 
resonance at 105 nm. To prevent the divergence of the beam when the pulse spectrum 
broadens to the ultraviolet, we use a numerical absorber and we use the same value of 
the linear refractive index for wavelengths smaller than 110 nm. A similar equation is 
used to calculate the lineal refractive index of the cladding, which in our case is fused 
silica, [Malitson, 1965]. The losses during the propagation are included in the imaginary 
part of the complex propagation coefficient, α1q, as defined in Eq. 2.67. 

With the collapse criterion we have chosen, we obtain again the collapse distances with 
the (2+1)D numerical model for different input pulse durations. In Fig. 4.3, the differ- 
ent markers show the collapse distances obtained numerically for different input pulse 
durations (triangles for 30 fs, dots for 50 fs and circles for 100 fs), the dashed line rep- 
resents the formula for free-space propagation that we use as a reference (Eq. 4.7) and 
we also show our new fit (Eq. 4.9) with a solid line. 

The more remarkable observation is that the simulations from the (2+1)D model present 
collapses when the input peak power is below the critical power. We can distinguish two 
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Figure 4.3: Collapse distances (zc) of the EH11 mode at 800 nm as a function of the 
input power and pulse duration for a HCF with core radius 150µm. Markers represent 
the zc obtained from numerical (2+1)D simulations for different laser pulse duration, 
the dashed line represents the collapse distances predicted by Eq. 4.7 in free space, 
while the solid line corresponds to the fit obtained from the (1+1)D model (Eq. 4.9). 

 
 

different regions in Fig. 4.3: the high peak power region (Pin > Pcr) and the new low 
peak power region (Pin < Pcr), where only the (2+1)D numerical model presents spatial 
collapses. In the high peak power region, both (1+1)D and (2+1)D numerical models 
present basically the same collapse tendencies, which demonstrates that for high-power 
pulses the self-focusing process weakly depends on the input pulse duration. For these 
cases self-focusing overcomes diffraction, absorption, and also all the temporal effects, 
dominating the propagation of the beam. All the collapse distances in this regime are 
well described by the (1+1)D model represented by the estimation formula Eq. 4.9. 

 
 

4.2.2.1 Role of the Spatial Modes in the Self-Focusing Dynamics: a Multi- 
mode Self-Compression 

 
The collapse dynamics observed in the low peak power region in Fig. 4.3 is much more 
rich and complex than in the high peak power region. First, we should recall that there 
are already several references that present self-focusing for peak powers below the critical 
value [Farrow et al., 2006, Hesketh et al., 2012, Köttig et al., 2017], all of them related 
with multimode guiding systems. 
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Hollow capillary fibers are also multimode systems and it is not surprising that their 
multimode nature could be relevant to understand the self-focusing dynamics observed 
in the simulations, which is the interpretation given by Brabec and Krausz [Brabec and 
Krausz, 1997]. Although we assume that at the HCF entrance the beam is purely coupled 
into the fundamental mode, the EH11 hybrid mode, self-focusing induces an important 
energy transfer from the fundamental mode towards higher-order spatial hybrid modes 
of the type EH1q, since the field is linearly polarized and keeps always the cylindrical 
symmetry [Homoelle and Gaeta, 2000, Nurhuda et al., 2006]. These higher-order spatial 
modes, besides activating the self-focusing process due to their narrower spatial distribu- 
tion (see Fig. 2.10), might present an anomalous dispersion response, which means that 
they could temporally self-compress. To understand the rich spatio-temporal dynamics 
that one could expect from this (2+1)D model, we present in Table 4.1 the values of 
the group velocity and the group velocity dispersion (GVD) at 800 nm for the first four 
hybrid spatial modes of a HCF with 150 µm core radius and filled with argon at 1 bar 
of pressure. 

 

λ = 800 nm EH11 EH12 EH13 EH14 
vg (nm/fs) 

GVD (fs2/m) 
299.71 
15.17 

299.707 
-10.02 

299.702 
-55.34 

299.695 
-120.80 

Table 4.1: Group velocity and GVD values for the EH11 mode and first three excited 
hybrid modes at 800 nm in a HCF with 150 µm core radius and filled with argon at 1 
bar. 

 
 
 
Figure 4.4 shows the pulse on-axis temporal intensity distribution of a 30 fs pulse with 
Pin = 0.93Pcr at 800 nm (right column) and the on-axis intensity distribution of the first 
seven spatial modes (EH1q, q from 1 to 7, left column), at three different propagation 
distances inside the HCF. At the beginning (z = 0 mm) only the fundamental mode 
EH11 contributes (Fig. 4.4 top left), but as the pulse propagates through the HCF 
the self-focusing induces an energy transfer to higher-order spatial modes that mainly 
occurs in the most intense part of the pulse (Fig. 4.4 middle left, see the initial intensity 
distribution shown for comparison with a black dashed line). Since the energy transfer 
between the fundamental and the higher-order modes occurs at the peak intensity, the 
generated modes are shorter and their spectrum should be broader. It seems like there 
is a compression effect in the energy transfer process itself. The new generated spatial 
modes send energy back to the fundamental mode during their propagation, inducing 
an interference in the fundamental mode (Fig. 4.4 bottom left). At z = 70 cm, which 
is close to the collapse distance (72 mm for this case), almost all the spatial modes 
contribute in the trailing part of the pulse simultaneously generating a high interference 
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peak, as can be seen in the evolution of the on-axis temporal intensity distribution of 
the pulse (Fig. 4.4 bottom right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Left column shows the on-axis temporal intensity distribution of different 
spatial modes and right column shows the on-axis temporal intensity distribution of 
a 30 fs pulse at 800 nm with Pin = 0.93Pcr, propagating in a 150 µm core radius 
HCF filled with 1 bar of Ar at three propagation distances. The left column includes 
the intensity distribution of the fundamental mode at z=0 mm with a dashed line for 
comparison. 

 
 

Figure 4.4 demonstrates how the particular nonlinear mixture of the different spatial 
modes distorts the temporal intensity distribution in such a way that it shows an unex- 
pected self-compression process, and a subsequent increase of the peak intensity. Note 
that the self-compression occurs even when most of the population is in the fundamental 
mode, which has a normal dispersion response. The key point of this dynamics is the 
nonlinear energy transfer between the different spatial modes. This self-compression 
dynamics presents some features of a standard solitonic self-compression [Köttig et al., 
2017, López-Zubieta et al., 2018b, Travers et al., 2011], which appears clearly for the 
higher-order spatial modes and that is translated into the whole pulse through the mode 
superposition process. The self-compressed pulse has a long front tail, with the peak of 
the pulse located at the trailing part. Moreover, our simulations indicate the emission 
of a dispersive wave with the presence of some amplitude oscillations in the trailing part 
of the pulse (see Ref. [Travers et al., 2011]). This oscillations are a consequence of the 
interference between the self-compressed pulse and the dispersive wave generated. We 
will study in detail the generation of dispersive waves in Chapter 7. In our case this 
interference between the self-compressed pulse and the dispersive wave is clearly visible 
around t = 15 fs as shown in Fig. 4.5. This figure shows a time zoom of the same 
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temporal structure of the bottom right plot in Fig. 4.4, where we can see the clean 
interference pattern. 

 
12 

 

10 
 

8 
 

6 
 

4 
 

2 
 

0 
0 5 10 15 20 

t(fs) 
 

Figure 4.5: We show a zoom of the temporal oscillations in the last graph of the right 
column of Fig. 4.4, which are a consequence of the interference between the dispersive 
wave and the self-compressed pulse. 

 
 
One may wonder how it is possible a compression rather than a pulse stretching since 
different spatial modes have different group velocities, as shown in Table 4.1. It is true 
that the different group velocity of each spatial mode could limit the pulse compression, 
although that effect is clearly not enough for the pulses used in our simulations, as shown 
in the left column of Fig. 4.4. In that figure one can see how the different modes are 
delayed in time due to the different group velocities but that delay is not sufficient to 
avoid the coupling of the different modes in the trailing side of the pulse and its final 
compression. Moreover, Fig. 4.4 shows that the spatial modes are “locked” in time 
with each other through the nonlinear coupling, as also observed in Ref. [López-Zubieta 
et al., 2018a], which reduces the modal stretching of the pulse. 

 
 

4.2.2.2 Self-Focusing Dynamics in the Low Power and High Power Regimes 
 

In this subsection we will examine if the multimode dynamics and self-compression 
process explained above is related to the collapses observed in the low peak power 
region. As shown in Fig. 4.3 the tendency of the collapse distance in the low peak 
power region is completely different than in the high peak power region. While in 
the high peak power region we have obtained a quite smooth tendency, increasing the 
collapse distance continuously when getting close to the critical power, the low peak 
power region (P < Pcr) presents a discrete tendency (specially visible for the shortest 
pulses). 

1014 

I(W
/c

m
2 ) 



CHAPTER 4. SELF-FOCUSING DYNAMICS 

63 

 

 

 
Regarding the spatial dynamics, the presence of higher-order spatial modes also induces 
oscillations in the beam spatial width, as shown in [Hesketh et al., 2012], that could 
eventually produce the spatial collapse of the beam when the peak power is moderate. 
This complex spatio-temporal nonlinear evolution explains the collapses in the low peak 
power region shown in Fig. 4.3 and the different collapse tendencies depending on the 
pulse duration. 

 

Figure 4.6: Left column corresponds to the propagation of a 30 fs pulse at 800 nm, 
with 150 µJ input energy and Pin = 0.86Pcr, propagating in a 150 µm core radius HCF 
filled with 1 bar of Ar. Right column corresponds to the same propagation but with 162 
µJ input energy and Pin = 0.93Pcr. Each column shows the evolution of the percentage 
mode contribution (M.C.) of the first four spatial modes (a), the evolution of the peak 
power and the pulse energy, indicating the Pcr with a horizontal dashed line, (b), the 
evolution of the on-axis pulse duration (c), the evolution of the spatial width (d) and 
the evolution of the on-axis spectrum (log scale) (e) with the propagation distance. A 
vertical dashed line indicates the collapse distance, 137 mm (left) and 72 mm (right). 
The shortest pulse duration obtained would be 2.7 fs (left) and 1.5 fs (right). The 
coherence length between EH11 and EH12 is represented by a black arrow. Note the 
different length of the z-coordinate for each case. 

 
 

To unveil the origin of these collapse tendencies in the low peak power region we show in 
Fig. 4.6 a complete set of plots for two different collapses that summarizes the observed 
phenomenology. Each column of Fig. 4.6 corresponds to the propagation of a 30 fs pulse 
at 800 nm, with 150 µJ (Pin = 0.86Pcr, left) and 162 µJ (Pin = 0.93Pcr, right) of input 
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energy, propagating in a 150 µm core radius HCF filled with 1 bar of Ar. Each column 
shows the evolution of the percentage contribution of the first four spatial modes (a), 
the evolution of the peak power and the pulse energy (b), of the on-axis pulse duration 
(c), of the spatial width (d) and of the on-axis spectrum (in log scale) (e), with the 
propagation distance. The vertical dashed lines indicate the collapse distance for each 
case (137 mm (left), 72 m (right)). 

The first important thing to note is that there is an important self-compression, as 
commented before and shown in Fig. 4.6 (c), which induces an increase of the peak 
power (shown in Fig. 4.6 (b)). Therefore, although the input peak power is below the 
critical power Pcr, the collapse always occurs after the peak power has surpassed the 
critical value during the propagation inside the HCF, as one would expect. We have 
observed in our simulations that the collapse happens if the peak power is above the 
critical value in a certain position, but the collapse does not occur necessarily at the first 
self-focus episode of the beam (4.6 left). The self-focusing is an accumulative process, 
so even though the peak power is above the critical value, if the accumulated nonlinear 
phase is not high enough, the pulse might self-focus yet not collapsing at that point but 
at a longer distance. 

 
As pointed out earlier, this process is similar to a solitonic process. The self-compression 
is accompanied by a dispersive wave generation [Travers et al., 2019] (see Fig. 4.6 (c,e)), 
that occurs simultaneously with the spatial collapse, as can be seen in Fig. 4.6 (d). 
The complex nonlinear coupling between the spatial and the temporal dynamics is also 
corroborated by the evolution of the population of the different spatial modes forming 
the pulse (see Fig. 4.6 (a)). Another important fact is the oscillatory nature of the 
spatial collapse (Fig. 4.6 (d)) in contrast with the free-space monotonous catastrophic 
collapse. This is in agreement with other self-focusing studies in multimode confined 
media [Hesketh et al., 2012]. 

Regarding the oscillatory nature of the collapse, it is well-known that the transfer of en- 
ergy between two spatial modes shows an oscillatory behavior related to a characteristic 
coherence length, Lcoh = π/(β1a − β1b), where β1a and β1b represent the propagation 
coefficient of each mode [Tempea and Brabec, 1998]. This coherence length indicates the 
distance at which the transfer of energy from the first spatial mode towards the second 
spatial mode is maximum. In our case, the pulse is composed by a mixture of several 
modes, each of them with its own propagation coefficient, which makes this oscillatory 
behavior more difficult to identify. Nevertheless, we can use these coherence lengths to 
remark once more the multimode nature of the self-focusing dynamics in the low peak 
power region and to estimate the collapse distances. 
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In the HCF one can define the coherence length between the fundamental, EH11 mode, 
and the higher-order EH1q mode as L(q) = π/(β(11)(ω0) − β(1q)(ω0)), where β(1q)(ω0) 
represents the propagation coefficient of the qth-spatial mode in the HCF at the central 
frequency ω0. At L(2) , which in the parameters of Figure 4.6 (a) is 45 mm, the energy 
transferred from the fundamental mode to the EH12 mode should be maximum, in the 
case of pure two-mode system. Figure 4.6 (a) shows that we are not exactly in this pure 
case because the maximum transfer of energy to the second spatial mode appears at 
slightly longer distances. So the collapse, if it takes place, should occur between L(2) 

and 2L(2) , where the energy is transferred back to the fundamental mode. This would 
be the first possible collapse region, that we will show below in Fig. 4.7. 

From L(2) there are two possible scenarios depending on the input peak power: one 
scenario in which the self-focusing dominates the evolution before reaching 2L(2) , and 
the spatial collapse takes place between L(2) and 2L(2) (between 45 and 90 mm), the first coh coh 
possible collapse region. This spatial collapse, shown in Fig. 4.6 (right), is accompanied 
by an important self-compression process and the subsequent generation of a dispersive 
wave at a wavelength around 140 nm, all these effects occurring almost simultaneously. 
In the other scenario, the self-focusing process is arrested by other terms (diffraction, 
absorption and dispersion), as occurs in Fig. 4.6 (left). In this case the pulse reaches 
2L(2) , where the energy transferred to the second spatial mode is returned back to 
the fundamental and, therefore, the spatial collapse cannot occur yet, but in the next 
possible collapse region. 

The second scenario commented above, which does not show a spatial collapse between 
(2) 
coh and 2L(2) , could undergo collapse in a second coherence cycle when the energy is 

transferred again from the fundamental mode to the second spatial mode. This second 
collapse process should occur between 3L(2) and 4L(2) (135 mm and 180 mm). Although 
the case represented in Fig. 4.6 (left) undergoes collapse at 137 mm, it is clear that it 
reaches the spatial collapse in a second coherence cycle and the collapse is linked again 
to a second dispersive wave generation process. The evolution of the contribution of the 
different spatial modes indicates that the collapse distance does not correspond well with 
the estimation obtained from the coherence length L(2) . We should define the second 
collapse region in a more complex way. 

To understand the collapses at longer distances and to obtain a better estimation, we 
have to take into account not only the second mode, but also the third mode EH13. In 
that case, following the same reasoning used before, one estimates that the pulse would 
have a second chance to collapse between 2L(2) +(L(2) +L(3) )/2 and 2L(2) +(L(2) +L(3) ), 

coh coh coh coh coh coh 
which in our case is between the propagation distances 121 and 152 mm, which is the 
second possible collapse region as observed in Fig. 4.6 (left). This oscillatory dynamics, 

L 
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Figure 4.7: Collapse distances (zc) of the EH11 mode at 800 nm in the low peak 
power region for a HCF with core radius 150µm. Markers represent the zc obtained 
from numerical (2+1)D simulations for different laser pulse duration. The shadowed 
rectangles represent the two first possible collapse regions as described in the text. 

 
 
related to the periodic energy transfer between the different spatial modes, demonstrates 
the multimode nature of the self-focusing process and is the reason why we observe 
discrete collapse distance regions. 

To better visualize this discrete collapse behavior we have indicated in Fig. 4.7 these two 
regions in which the spatial collapse could take place. These regions are related to the 
energy transfer and the coherent lengths between the fundamental mode EH11 and the 
higher-order spatial modes. The grey shadowed rectangle is defined as the first possible 
collapse region, resulting from the interplay between the first two spatial modes, and 

it goes from L(2) to 2L(2) (from 45 mm to 90 mm). The pink shadowed rectangle is 
defined as the second possible collapse region, considering the interplay between the first 
three spatial modes, and it goes from 2L(2) + (L(2) + L(3) )/2 to 2L(2) + (L(2) + L(3) ) 

coh coh coh coh coh coh 
and corresponds to the collapse distances between 121 mm and 152 mm. Although the 
spatial beam collapse is driven by more than three spatial modes, these regions estimate 
quite well the collapse regions, specially for the shortest pulses. 

It is clear from Fig. 4.7 that this discrete collapse behaviour is specially significant for 
short pulses, while the collapse behaviour for longer pulses (100 fs) presents a smoother 
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collapse tendency. In the following section we will give an explanation of the origin of 
these differences. 

The behaviour in the high peak power region is less rich in the sense that the self-focusing 
dominates the rest of spatio-temporal effects that are included in the (2+1)D model and 
the collapse dynamics is clean, with no oscillatory behaviour. We have observed in the 
high peak power region, for all the different pulse durations that we used, a very similar 
dynamics to that presented in the right column of Fig. 4.6. Indeed, the higher input 
peak power cases show such a strong self-focusing process, leading to a short collapse 
distance, and, as a consequence, the shortest pulse duration is a bit longer than those 
obtained in the low peak power region but always below 3 fs. This is the main difference 
between the self-focusing dynamics in the low peak power region and in the high peak 
power region. 

 
One may ask if the appearance of high-order modes during the self-focusing process, 
especially in the low peak power region, would affect the total beam spatial profile in 
the far field and if it will be very different from the high peak power region. 

For this reason we show in Fig. 4.8 the time integrated far field of the beam at the 
collapse distance at two different power regimes, one from the low peak power region 
and another from the high peak power region in log scale (top row) and in linear scale 
(bottom row). Figure 4.8 (left) corresponds to the far field of a 30 fs pulse with input 
energy 162 µJ input energy and Pin = 0.93Pcr. In this case, at the collapse distance 
(72 mm) the modes contribution of the first four spatial modes is the following: 48.17% 
of EH11, 21.94% of EH12, 9.52% of EH13 and 5.18% of EH14. Figure 4.8 (right) 
corresponds to the far field of the same pulse but with input energy 270 µJ input energy 
and Pin = 1.55Pcr. Here, the collapse distance is 33 mm and the modes contribution of 
the first four spatial modes in this case is: 26.26 % of EH11, 23.76% of EH12, 14.10% 
of EH13 and 9.46% of EH14. Note that the sum of the different modes contribution 
explicit here is not 100% since we only take into account the first four modes of the 
thirty we use in the simulations. 

As can be observed in Fig. 4.8, the differences between the far field for the two power 
regimes are very small despite the particular modes contribution in each case, which 
makes difficult the identification of the self-focusing dynamics by observing directly the 
far field distributions even with this simplified pure self-focusing model. In the bottom 
row of Fig. 4.8 we show the far field of the input beam (blue line) for comparison. We 
can see that the beam at the collapse distance presents slightly larger divergence (orange 
line). 



CHAPTER 4. SELF-FOCUSING DYNAMICS 

68 

 

 

 
 

 
 

Figure 4.8: Far field of the field at the collapse distance zC for a 30-fs pulse at 800 nm 
with Pin = 0.93Pcr (left column) and with Pin = 1.55Pcr (right column) in log scale 
(top row) and in linear scale (bottom row). In the bottom row we show the far field of 
the input beam for comparison. 

 
 

4.2.3 Influence of the Parameters of the Input Laser Pulse and the 
Filling Gas on the Self-Focusing Dynamics 

 
It is interesting to analyze how the properties of the laser pulse, like the pulse duration 
or central wavelength, and the gas inside the HCF affect the self-focusing dynamics we 
have presented before. 

 
 

4.2.3.1 Input Pulse Duration 
 

It is true that the dependence of the collapse distance with the pulse duration in the 
low peak power region, shown in Fig. 4.7, is not very significant but the dynamics of 
the collapse process is different. Figure 4.7 shows that for the lowest input peak power 
cases we observe collapse for the 30-fs pulse but not for the 100-fs pulse. The key point 
to understand this difference is that self-steepening is very active for shorter pulses but 
not for longer pulses, so the shorter pulses suffer more nonlinear interaction. 
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To see the differences on the nonlinear propagation due to the pulse duration we show 
in Fig. 4.9 the dynamics of a 100-fs pulse with Pin/Pcr = 0.93 (left) compared with the 
same input peak power case for a 30-fs pulse shown in Fig. 4.6 (right). The 100-fs pulse 
presents very similar dynamics to that shown by the 30-fs pulse, but not in the cases of 
very low input peak powers. Comparing the evolution of a 30-fs pulse in Fig. 4.9 (right) 
and a 100-fs pulse in Fig. 4.9 (left), with the same input peak power, we can observe 
that the main difference here is that the spatial collapse takes place at a longer distance 
for the 100-fs pulse, but showing very similar spatio-temporal dynamics. The minimal 
pulse duration we obtain is also similar: 1.9 fs for the 100-fs pulse and 1.5 fs for the 
30-fs pulse. 

 

 
Figure 4.9: Left column corresponds to the propagation of a 100 fs pulse at 800 
nm with Pin = 0.93Pcr, in a 150 µm core radius HCF filled with 1 bar of Ar. Right 
column corresponds to the propagation of a 30 fs pulse at 800 nm with Pin = 0.93Pcr, 
in the same HCF. Each plots shows the evolution of the percentage mode contribution 
(M.C.) of the first four spatial modes (a), the evolution of the peak power and the pulse 
energy, indicating the Pcr threshold with a horizontal dashed line, (b), the evolution of 
the on-axis pulse duration (c), the evolution of the spatial width (d) and the evolution 
of the on-axis spectrum (log scale) (e) with the propagation distance. A vertical dashed 
line indicates the collapse distance at 87 mm (left) and 72 mm (right). The minimal 
pulse duration would be 1.9 fs (left) and 1.5 fs (right). Note the different length of the 
z-coordinate for each case. 

 
 

As mentioned previously, the self-steepening induces a strong accumulation of the energy 
at the trailing part of the pulse, increasing the amount of nonlinear effect. Shorter pulses 
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experience a stronger self-steepening so, the 30-fs pulses take advantage of activating 
this nonlinear term while the 100-fs pulses are not able to do it. In Fig. 4.10 we show the 
comparison of the mode population for Pin = 0.93Pcr for a 30-fs pulse (solid lines) and a 
100-fs pulse (dashed lines). Left panel of Fig. 4.10 shows the propagation of both pulses 
taking into account the self-steepening effect, while in the right panel of Fig. 4.10 the 
self-steepening effect is neglected for the 30-fs pulse, showing a longer collapse distance. 
In accordance, we can observe that the energy transfer between the spatial modes when 
self-steepening is neglected is very similar to the 100-fs pulse modes dynamics. 

 

 
Figure 4.10: Comparison of the mode contribution of the first four spatial modes 
for a 100-fs pulse and a 30-fs pulse to observe the effect of self-steepening in the self- 
focusing dynamics (Pin/Pcr = 0.93 at 1 bar of Ar). We have performed two simulations, 
including the self-steepening in the simulation of the 30-fs pulse (left) or neglecting it 
(right). Grey dashed vertical lines indicate the collapse distance in each case. 

 
 
 

4.2.3.2 Central Wavelength of the Laser 
 

Another important parameter is the central wavelength of the laser pulse. For instance, 
ultrashort ytterbium-based laser systems have gained a lot of interest in recent years 
due to their high average power levels which make them useful in scientific as well as 
industrial applications, and the compression of Yb-based pulses is a current hot topic 
in the field (see, for instance, [Beetar et al., 2018, 2019, Jeong et al., 2018, Lavenu 
et al., 2017, 2018, 2019]). Taking into account that the anomalous dispersion response 
of the gas increases with the wavelength [López-Zubieta et al., 2018a], as shown in Table 
4.2, the fundamental mode at 1030 nm is closer to the zero-dispersion, and the higher- 
order modes present a larger anomalous dispersion response than in the 800 nm case. 
Therefore, one expects to observe a stronger self-compression process for the Yb-doped 
than for the Ti:sapphire laser and, therefore, an earlier spatial collapse. 

 
We have performed simulations for the wavelength of an Yb-doped source, 1030 nm. In 
particular, we have studied the propagation of a 30 fs laser pulse, centered at 1030 nm, 
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λ = 1030 nm EH11 EH12 EH13 EH14 
vg (nm/fs) 

GVD (fs2/m) 
299.710 

3.40 
299.706 
-50.36 

299.698 
-147.11 

299.686 
-286.79 

 

Table 4.2: Group velocity and GVD values for the fundamental and first three excited 
modes at 1030 nm in a HCF with 150 µm core radius and filled with argon at 1 bar. 

 
 

 

Figure 4.11: Left column corresponds to the propagation of a 30 fs pulse at 1030 
nm with Pin = 0.93Pcr, propagating in a 150 µm core radius HCF filled with 1 bar 
of Ar. Right column corresponds to the propagation of a 30 fs pulse at 800 nm with 
Pin = 0.93Pcr, propagating in the same HCF. Each plot shows the evolution of the 
percentage mode contribution (M.C.) of the first four spatial modes (a), the evolution 
of the peak power and the pulse energy, indicating the Pcr threshold with a horizontal 
dashed line, (b), the evolution of the on-axis pulse duration (c), the evolution of the 
spatial width (d) and the evolution of the on-axis spectrum (log scale) (e) with the 
propagation distance. A vertical dashed line indicates the collapse distance at 53 mm 
(left) and 72 mm (right). The minimal pulse duration would be 1.2 fs (left) and 1.5 fs 
(right). Note the different length of the z-coordinate for each case. 

 
 

with Pin/Pcr = 0.93 through a HCF with 150 µm core radius filled with 1 bar of Ar. For 
the case of the Yb-based pulses we use a nNL = 0.93 · 1023 m2/W for the argon in the 
core given in [Lavenu et al., 2018]. We compare this case at 1030 nm in Fig. 4.11 (left) 
with the same propagation dynamics of a 30 fs pulse at 800 nm with Pin/Pcr = 0.93 
through the same HCF, Fig. 4.11 (right). The collapse occurs at 53 mm in the 1030 
nm case and at 72 mm in the 800 nm case. Except for the collapse distance, that is 
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shorter in the case of 1030 nm as expected, the general self-focusing dynamics is very 
similar for both wavelengths. In both cases, although the input peak power is below 
the critical power, the collapse occurs once the peak power surpasses the critical value. 
The self-focusing dynamics is also accompanied by the self-compression of the pulse and 
at the collapse distance a dispersive wave is generated at 136 nm for the 1030 nm case 
and at 145 nm in the 800 nm case. The black arrows in the first panel represents the 
coherence length, L(2) , between the fundamental mode EH11 and the EH12 mode. In 

the case of 1030 nm L(2) corresponds to 35 mm and in the 800 nm case, L(2) is 45 mm. 
 

Collapse distances for a 30-fs pulse at 1030 nm 
in HCF ((2+1)D model) and in free space 

125 
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75 
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Figure 4.12: Collapse distances (zc) of the EH11 mode as a function of the input 
power for a HCF with core radius 150µm. The markers represent the zc obtained from 
(2+1)D simulations for a 30-fs pulse at 1030 nm, the dashed line shows the collapse 
distances predicted by the free space formula and the solid line corresponds to the fit 
obtained from the (1+1)D model (Eq. 4.9). The gray and pink areas represent the 
collapse regions according to Lcoh. The gray area goes from 35 to 70 mm and the pink 
area goes from 94 to 117 mm. 

 
To corroborate this similarity in the collapse dynamics between the 1030 nm and 800 
nm, we have done a series of calculations for the Yb-doped fiber laser to see if we find 
the same collapse distance trend obtained for the Ti:sapphire laser. We have performed 
simulations with the (2+1)D model for different input peak powers as done in the 800 
nm and calculated the collapse distances using the same collapse criterion. In Fig. 4.12 
we represent the collapse distances zc obtained for the 1030 nm case (square markers) 
and it shows again that the self-focusing dynamics at different central wavelengths are 
very similar, with almost the same tendency, but at shorter distances. Moreover, our fit 
equation (Eq. 4.9) obtained for the (1+1)D model at 800 nm, also provides an excellent 

 
Ref 
Fit 
30fs 1030 nm 

z C
(m

m
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agreement only adapting the Pcr for 1030 nm (solid line). We have also plotted the gray 
and pink areas corresponding to the first two possible collapse regions for this situation, 
as done in the 800 nm case in Fig. 4.7, recovering again a good prediction for the 
collapse distances. The gray shadowed area represents the first possible collapse region 
which corresponds to the collapse distances between L(2) and 2L(2) (35 to 70 mm). The 
pink area represents the second possible collapse region between 2L(2) +(L(2) + L(3) )/2 

coh coh coh 
and 2L(2) + (L(2) + L(3) ), which corresponds to the collapse distances between 94 mm 

coh coh coh 

and 117 mm. These results demonstrate the consistency of the dynamics of the spatial 
collapse in a HCF explained before. 

 
 

4.2.3.3 Gas Pressure 
 

Gas pressure is another parameter which has an important role in nonlinear propagation 
in HCFs because it affects both linear dispersion and nonlinear coupling [Conejero Jarque 
et al., 2018, Jeong et al., 2018]. One of the main advantages of post-compression schemes 
is that the nonlinearity of the gas can be controlled just changing the pressure of the gas 
filling the HCF. Varying the pressure, one can obtain the desirable spectral broadening 
and at the same time avoid reaching the critical power for which self-focusing takes 
place. 

In order to study the possible use of the pressure as a control parameter to locate the 
collapse at a desired distance, we have performed a pressure scan for a 30 fs Ti:Sa laser 
pulse with fixed input energy propagating inside a HCF with core radius 150µm filled 
with argon using the (2+1)D model without ionization. The optimal fiber length should 
be slightly below the collapse distance, so that the pulse does not collapse but gets 
close to that point. In order to find the appropriate effective length of the HCF, one 
typically changes the input pulse energy, the gas type or pressure inside the HCF. Here 
we perform the pressure scan for two different input energies, 162 µJ and 204 µJ. 

The results shown in Fig. 4.13 (left) demonstrate that gas pressure is indeed an excellent 
parameter to tune the spatial collapse position. As the pressure increases, the nonlin- 
earity also increases and the critical power decreases, so the beam collapses at shorter 
distances. For gas pressures below 1 bar we do not observe collapse since we enter in 
the Pin << Pcr region. At high pressures, the collapse distances for different input 
energies are almost the same, since the nonlinearity is high and self-focusing overcomes 
diffraction. At low pressures, the difference between the collapse distances for the two 
input energies is more significant due to the balance between the self-focusing and the 
diffraction effects in this regime. The lower pressure together with a lower nonlinearity 
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Figure 4.13: This figure shows the collapse distances (left) and minimum pulse dura- 
tion at this distance inside the HCF (right) for a 30-fs pulse centered at 800 nm with 
fixed input energy (162 µJ (blue circles) and 204 µJ (orange squares)). Both panels 
represent the dependence of the collapse distance and pulse duration with the pressure 
inside the HCF. 

 
 
leads to longer collapse distances at low input energies, because the nonlinearity needs 
a longer propagation inside the HCF until it is strong enough for collapse. 

Moreover, to have an idea of how the temporal dynamics changes during this pressure 
scan we show the shortest pulse obtained for each case in Fig. 4.13 (right). One can 
observe that the lower the pressure, i.e. the lower the nonlinearity, the more necessary 
is the temporal self-compression effect to achieve the nonlinear spatial collapse. If we 
increase the pressure, the nonlinearity increases and therefore, the pulse collapses at 
shorter distances and the minimal pulse duration achieved is longer, since the pulse has 
undergone less self-compression. 

Let us remark that these simulations cannot be directly compared with real experiments 
because we have not included all the nonlinear effects needed to have a realistic model. 
The model used in this chapter, so far, is devoted to study the self-focusing process in a 
HCF, isolated from other spatial nonlinear interactions, and it is not designed to make 
direct comparisons with experiments. We propose, nevertheless, to use our simplified 
model to predict the regime where high spatial nonlinear processes, such as the self- 
focusing and the ionization, would be relevant in a real experiment and the spectral 
nonlinear phase acquired due to the high spatial nonlinear effects will be observable at 
the end of a longer HCF. 

162  J 
204  J 
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τc=350 fs 
Ui=15.76 eV 0 

20 2 −3 
c ρ =3.14208 · 10 ω cm 

ρat= 2.7 · 1019 p(bar) cm−3 

 

4.3 The Trace of the Self-Focusing Process in a Real Ex- 

periment: the Time-Dependent Model ((2+1)D) in- 

cluding Ionization 

 
All the results presented before in this chapter have been obtained with models which do 
not include the effects of the generated plasma in the HCF, in order to isolate the spatial 
dynamics of the self-focusing process. Therefore, one cannot compare directly those 
results with experiments, where other high nonlinear effects such as the gas ionization 
eventually prevent the spatial collapse. In this section we will add the gas ionization, 
the losses due to the ionization process and due to the plasma absorption to the (2+1)D 
model (see Section 3.2 in Chapter 3) in order to prove that the collapse dynamics shown 
before is an useful tool to find out the energy limit of a standard HCF post-compression 
setup. 

The parameters used in this new simulation are the same as in the previous ones. Re- 
lated to the ionization, the critical density ρc depending on the central wavelength ω0, 
the collision time τc, the atomic density ρat depending on the gas pressure p and the 
ionization potential Ui are presented in the following table: 

 

Table 4.3: Parameters for the ionization of argon, the gas used in the simulations 
according to [Couairon and Mysyrowicz, 2007]. The critical density ρc depends on the 
central wavelength ω0 and the atomic density ρat depends on the gas pressure p. 

 
 

We propagate a 30-fs pulse centered at 800 nm with Pin = 0.93Pcr in a 150 µm core 
radius HCF filled with 1 bar of Ar including ionization. Figure 4.14 shows the complete 
dynamics, including the ionization effects (left), and the comparison for the same con- 
ditions shown but without ionization as in Fig. 4.6 (right). The ionization arrests both 
the spatial collapse and the self-compression dynamics. It is clear that the beam collapse 
does not occur for this particular input power, although according to the spatial width, 
the beam still self-focuses but is not able to achieve the collapse due to the appearance 
of the plasma (see the peak plasma density shown in Fig. 4.14 (d)). As a consequence 
of the arrest of the spatial dynamics, the temporal self-compression slows down, and 
the peak power does not increase as in the pure self-focusing case. Also, the self-phase 
modulation is much less effective showing a narrower spectral broadening. Although 
these new simulations bring more nonlinear terms into play, they mutually counteract, 
making difficult to identify them by simply observing the energy or spatial structure of 
the output pulse. 
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Figure 4.14: Left column corresponds to the propagation of a 30 fs pulse at 800 nm 
with Pin = 0.93Pcr including ionization, propagating in a 150 µm core radius HCF 
filled with 1 bar of Ar. Right column corresponds to the same propagation without 
ionization. Each plot shows the evolution of the percentage mode contribution (M.C.) 
of the first four spatial modes (a), the evolution of the peak power and the pulse energy, 
indicating the Pcr threshold with a horizontal dashed line, (b), the evolution of the on- 
axis pulse duration (c), the evolution of the spatial width and the plasma density if 
it is the case (d) and the evolution of the on-axis spectrum (log scale) (e) with the 
propagation distance. A vertical dashed line indicates the collapse distance (72 mm) 
obtained with the pure self-focusing model (without ionization) 

 
 
As expected, the results when including the ionization are different, the beam does not 
collapse according to our criterion, although the self-focusing is the effect responsible for 
the activation of the ionization and therefore a key nonlinear effect. We do know that 
the collapse of the beam into a single point cannot be observed in a real experiment 
due to the ionization of the gas. Therefore, we do not propose nor expect a direct 
observation of the self-focusing dynamics of the beam inside the HCF. However, nobody 
could affirm with certainty, according to the beam size, the spectrum or even the energy 
at the end of the HCF, that the self-focusing was a relevant nonlinear process in the 
case shown in the right panel of Fig. 4.14. For this reason, the self-focusing is such an 
invisible effect in complex experiments, and there have been studies during the last fifty 
years to understand it, studying it isolated from other effects. We propose that if our 
self-focusing simulations indicate that the beam collapses in the HCF, a real experiment 
will show the self-focusing dynamics in an indirect way. 
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The best way to realize that this propagation presents strong nonlinear dynamics is 
through the complex nonlinear phase of the pulse acquired when the self-focusing triggers 
other high nonlinear processes such as ionization during the propagation in the HCF. 
For example, one could use the d-scan [Miranda et al., 2012], which is a technique 
to compress and perform a complete measurement of the pulse, including the phase 
information. It is well-known that the d-scan trace is a perfect tool to optimize a 
standard HCF post-compression setup [Conejero Jarque et al., 2018]. 

To achieve the optimum stable and shortest output pulse the d-scan trace must present 
a long, flat and smooth structure, in many cases slightly tilted due to the third order 
dispersion acquired during the nonlinear propagation. Figure 4.15 shows different d- 
scan traces of the output field of a 30-fs pulse at 800 nm with an initial EH11 mode 
spatial structure, after the propagation inside a 200 mm long and 150 µm core radius 
HCF filled with 1 bar of argon for three different input powers. Despite Fig. 4.14 (left) 
shows the propagation dynamics with the ionization during 100 mm inside the HCF for 
a better comparison with the no ionization case (Fig. 4.14 (right)), it is clear from the 
FWHM evolution (Fig. 4.14 (c left)) that the self-compression process has not achieved 
the optimal minimum pulse duration at this distance compared to the case without 
ionization. For this reason, we obtain the d-scan trace at a longer distance inside the 
HCF (200 mm) trying to reach the possible optimal output pulse. 

 

 
Figure 4.15: D-scan traces of the output field after the propagation (including ioniza- 
tion) inside a 20 cm long and 150 µm core radius HCF filled with 1 bar of argon of an 
input 30-fs pulse at 800 nm with an initial EH11 mode spatial structure. The values of 
the input powers are Pin/Pcr = 0.8 (left), Pin/Pcr = 0.93 (middle) and Pin/Pcr = 1.1 
(right). 

 
 

During the propagation all the nonlinear spatio-temporal effects have been taken into 
account together with the gas ionization. In Fig. 4.15 we show the d-scan traces for 
different values of the input powers are Pin/Pcr = 0.8 (left), Pin/Pcr = 0.93 (middle) 
and Pin/Pcr = 1.1 (right). The two cases with moderate and high input powers (middle 
and right) show spatial collapse, according to the pure self-focusing simulation (without 
ionization), and they also show structured d-scan traces, useless for post-compression 
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applications. Only the Pin/Pcr = 0.8 case, which does not undergo collapse according to 
the pure self-focusing simulations, shows a nice d-scan trace, close to the optimum, with 
a pulse duration of 5 fs after the post-compression. Figure 4.15 demonstrates that the 
isolated self-compression study is a solid tool to identify the energy limits of the standard 
HCF self-compression setup, which are those that do not present spatial collapse. 

 
 
4.4 Conclusions 

 
As we stated in the introduction, the aim of this work is to gain some insight into 
the energy limits of the post-compression schemes. In this sense, we try to find the 
limits to avoid the activation of undesirable high order nonlinear effects (such as spatial 
collapse or noticeable ionization) that distort the output spectral phase making it useless 
for post-compression applications. The study presented in this chapter is valid in any 
power region, specially in the high-power region, since it helps to find the optimal length 
of the HCF for each input peak power used before the strong spatial dynamics overcomes 
the propagation. 

In this study on the self-focusing dynamics in HCFs, we have demonstrated that the 
spatial confinement of the fundamental spatial mode EH11 in a HCF plays a key role 
in the self-focusing process. This spatial confinement minimizes the diffraction and 
enhances the self-focusing of the beam. We have identified two different power regions 
related to the self-focusing process in the HCF: for input peak powers slightly greater 
than the critical power, the collapse appears at shorter distances than in the free space 
case and independently of the pulse duration. This means that the critical power in 
the HCF is slightly lower for the fundamental mode than for a free beam propagating 
in bulk media, in agreement with previous studies [Fibich and Gaeta, 2000]. For input 
peak powers below the critical power, we have obtained spatial collapses induced mainly 
by the energy transfer between spatial modes. The interplay between the spatial modes 
explains the appearance of discrete collapse regions that we have numerically observed. 
We have also observed that the superposition of the higher-order spatial modes and the 
fundamental mode leads to a self-compression process and the self-focusing of the beam. 

 
Regarding the interplay between the spatial modes, since the energy transfer between 
the fundamental and the higher-order modes occurs at the peak intensity, the generated 
modes are shorter and their spectrum should be broader. This process can be understood 
as a compression effect in the energy transfer process itself, which could be a promising 
compression technique for further development. 
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In this low peak power region the spatial collapse is more complex and depends not 
only on the peak power but also on the input pulse duration. We have found that in 
the case of short pulses the self-steepening effect plays an important role enhancing the 
nonlinearity and thus the self-focusing of the beam. 

In addition, we have studied the dependence of the self-focusing dynamics with different 
parameters. We have found that the collapse behaviour, explained at the 800 nm case, is 
observed again when changing the pump wavelength, which underlines the consistency 
of the obtained results. Moreover, we have explored the tunability of the spatial collapse 
position with the gas pressure, obtaining shorter collapse distances for higher pressures. 

The spatial collapse dynamics explained here can be used to identify the energy limits 
when up-scaling the standard post-compression schemes based on HCFs. 



 

 

 



 

 

 
 
 
 
 
 
 

Chapter 5 
 
 

Propagation of Vector Beams in 
Hollow Capillary Fibers 

 
Vector beams are a type of beams which show a spatially varying polarization (see Sec- 
tion 2.2). As a consequence, they have a singularity on the optical axis and a doughnut- 
shaped intensity distribution. Vector beams with radial and azimuthal polarization have 
become an interesting tool to control light-matter interactions, high-harmonic genera- 
tion [Hernández-Garc´ıa et al., 2017], particle acceleration [Wen et al., 2019], microscopy 
and processing due to their special properties [Zhan, 2009]. For instance, radial vector 
beams present a non-vanishing longitudinal electric field component, which allows to 
focus light significantly tighter, demanding less peak power to achieve high longitudinal 
intensities [Dorn et al., 2003]. The azimuthally polarized field also presents interesting 
features, it can generate a strong magnetic field on the optical axis while the electric 
field is purely transverse [Blanco et al., 2019, Guclu et al., 2016]. For this reason, the 
possibility of generating an ultrashort pulse with these features has been studied over the 
last decades. As we have already mentioned, the most usual post-compression technique 
to achieve these few-cycle laser pulses in the near infrared is the nonlinear propagation 
of a laser pulse inside a HCF. 

 
There are several methods to generate vector beams: through the combination of two 
orthogonally polarized beams, such as two linearly polarized beams or two circularly- 
polarized beams [Tidwell et al., 1990], using liquid crystal modulators [Stalder and 
Schadt, 1996], segmented wave plates [Machavariani et al., 2007] and more. The post- 
compression of high-energy few-cycle radially polarized pulses in gas-filled HCF with 
peak powers of 85 GW has already been demonstrated [Carbajo et al., 2014], but the 
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polarization is converted from linear to radial or azimuthal after the spectral broad- 
ening in the HCF with the fundamental mode EH11 and before the temporal com- 
pression. Although the efficiency is higher and the losses are lower at least before the 
compression stage, a broadband polarization mode converter is needed. The possibil- 
ity of direct spectral broadening of the radially polarized pulses in the HCF and the 
subsequent post-compression was studied numerically later, arguing that this method 
is more advantageous [Wang et al., 2017]. The spectral broadening in this case is not 
limited to the bandwidth of the plate so it is possible to generate structured beams 
with non-conventional wavelengths. The coupling and the propagation of vector beams 
in photonic crystal fibers has also been demonstrated, but only at low energies (few 
microjoules) [Ishaaya et al., 2009]. Recently, the propagation and post-compression of 
50-fs radially polarized pulses at 1.8 µm in a HCF has been reported [Kong et al., 2019]. 
The radially polarized beam is coupled into a krypton-filled HCF of 20 cm long and 150 
µm diameter and then post-compressed with a fused silica plate down to 15 fs with 60 
µJ. Moreover, the spectral broadening of vector beams by using the multipass cell tech- 
nique and the subsequent post-compression down to sub-5 fs has also been theoretically 
studied as a promising technique [Cao et al., 2019]. 

Vector beams propagating inside a HCF are represented in different ways in the liter- 
ature. On the one hand, Marcatili’s model is the most frequently used [Marcatili and 
Schmeltzer, 1964]. The radially polarized vector beam which propagates in the hollow 
capillary fiber (HCF) corresponds to the TM0q mode, while the azimuthally polarized 
vector beam corresponds to the TE0q mode, where q denotes the number of concentric 
rings they show. In this model, explained in Section 2.2, the energy propagates essen- 
tially within the core of the HCF and the transverse electric field of the vector beams 
is represented as a Bessel function of the first kind J1 (u01r/rF ), while the longitudinal 
component can be neglected. In this case each spatial mode presents its own propaga- 
tion and attenuation coefficient to model the energy loss during its propagation (see Eqs 
2.67). On the other hand, there are other models in which the losses into the cladding 
are treated using different boundary conditions for the radial and azimuthal polariza- 
tion [Andreasen and Kolesik, 2013]. Using these core-cladding boundary conditions, the 
resulting spatially polarized HCF mode cannot be represented as any kind of Bessel 
function [Wang et al., 2017]. Within this different theoretical approach, numerical sim- 
ulations showed that 40-fs pulses can be post-compressed down to sub-9 fs pulses at 800 
nm, although the spectrum was not spatially homogeneous. 

 
In this chapter we will study the propagation of vector beams through a gas-filled HCF to 
explore the spectral broadening and the propagation features that these pulses present. 
We will use the (2+1)D model that performs a mode decomposition. In the first section 
of this chapter we will study the propagation features of vector beams and the interplay 



CHAPTER 5. VECTOR BEAMS 

83 

 

 

 
∝

 

1 01 r 
0 

F 

 
between the higher-order spatial modes. We will explore different propagation schemes 
changing the parameters of the laser and the HCF, such as pulse duration, input energy, 
constant pressure inside the HCF and even implementing pressure gradients. In the 
second section we will try to couple experimentally the vector beams to the HCF and 
analyze the spatial mode at the output, which will be useful to validate our numerical 
simulations when comparing with other theoretical approaches. A complete numerical 
study of the propagation of these beams in HCFs could be useful for the optimization 
of the compression process, even considering the possibility of a direct self-compression 
of these beams in the HCF, which would simplify this post-compression scheme. 

 
 

5.1 Nonlinear Propagation Dynamics of Vector Beams in 

Hollow Capillary Fibers 

 
We will study the propagation of vector beams inside a HCF filled with gas with the 
(2+1)D model presented in Section 3.2. Although the polarization of these modes varies 
spatially, the local polarization is linear and we can express the beam with only one 
polarization component, so we can use the (2+1)D model to study the propagation of 
vector beams in gas-filled HCFs. As we have already explained, the (2+1)D model is 
based in mode decomposition of the laser pulse in the HCF core into an approximation 
of the modal fields using Marcatili’s model. The electric field on the propagation axis is 
zero E(r = 0) = 0 and it is confined within the core E(r > rF ) = 0, rF being the core 
radius. The leaky nature of the spatial modes is included by the absorption coefficient 
of each mode αpq defined in Eq. 2.67. The initial condition to solve numerically Eq. 

3.12 in this case is 

A(r, z = 0) 
J1 (u01r/rF ) r ≤ rF 
0 r > rF 

, (5.1) 
 

where u01 = 3.8317 is the first zero of the Bessel J1 function and rF is the HCF core 
radius. The complete expression of the component of the electric field amplitude in the 
core of the HCF is then: 

E(r, θ, t, z = 0) = J 
(

u 
r
  

e−t
2/t2 

, (5.2) 

 

t0 being the input pulse duration. We propagate a 100-fs laser pulse, centered at 800 nm, 
with 1 mJ input energy through a HCF with 150 µm core radius and filled with argon (we 
use the linear and nonlinear refractive indexes as in Eq. 4.10 and nNL = 1.74 · 10−23 · p 
(m2/W), where p is the gas pressure [Couairon et al., 2008]). These laser and HCF 
parameters are the same parameters of the laser system available in the laser facility in 
the University of Salamanca, so that we can compare our simulations with experimental 
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results. For the parameters chosen in the simulations, the input vector beam (TE01 or 
TM01) propagates in the normal dispersion regime, since the zero-dispersion wavelength 
is 1092 nm. Although in the simulations the input beam is a pure vector beam, as 
defined in Eq. 5.1, we have already seen in Chapter 4 that it is possible to have an energy 
transfer to higher-order modes during the propagation, especially if the nonlinearity is 
high. These higher-order modes may present an anomalous dispersion response, so we 
can expect a complex propagation dynamics. 

To gain a better understanding of the spatio-temporal dynamics that we will obtain 
with the (2+1)D model, we present in Table 5.1 the values of the group velocity and 
the group velocity dispersion (GVD) at 800 nm for the first four vector beams (TE or 
TM since the propagation coefficient is the same for both) in a HCF with 150 µm core 
radius and filled with argon at a pressure of 1.25 bar. The only difference between the 
radial and the azimuthal polarized vector beams is the absorption coefficient (see Eq. 
2.67). 

 

λ = 800 nm TE01/TM01 TE02/TM02 TE03/TM03 TE04/TM04 
vg (nm/fs) 

GVD (fs2/m) 
299.689 
11.37 

299.685 
-23.87 

299.679 
-79.26 

299.671 
-154.80 

Table 5.1: Group velocity and GVD values for the first four vector beams HCF spatial 
modes at 800 nm in a HCF with 150 µm core radius and filled with argon at 1.25 bar. 

 
 
 
We numerically propagate the vector beams inside the Ar-filled HCF at 1.25 bar and we 
observe that with these parameters the differences between the TE01 and TM01 mode 
are negligible despite the different absorption they present. In Fig. 5.1 we show the 
comparison of the evolution of the energy for both vector beams (left), both at the radial 
position of maximum intensity (r = 1.84rF /u01), and the spectral intensity distribution 
in log scale of the TM01 mode (center) and of the TE01 mode (right) after propagating 
50 cm inside the HCF. The spatial dynamics is not important even though we are above 
the critical power of a Gaussian beam (P = 1.7Pcr), as defined in Eq. 4.2. We observe 
neither self-compression nor dispersive wave generation despite the high input energy. 
The output spectrum at 50 cm corresponds to a Fourier Limit of 17 fs, which is a 
compression ratio of 6. This could be a suitable regime for post-compression schemes 
with vector beams, although still far from the few-cycle pulse duration. However, if we 
would like to obtain a broader spectrum or even achieve the generation of the dispersive 
wave (as we will study in the next chapters for different beams), we need to increase 
the nonlinearity. We have performed a scanning over different parameters such as the 
energy, the duration of the pulse and the gas pressure looking for the self-compression of 
vector beams in HCF. Since the differences between the TE01 mode and the TM01 mode 
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are hardly noticeable, we will study only the propagation of the TE01 mode (azimuthal 
polarization) in the following simulations. 

 

Figure 5.1: Evolution of the energy for both types of vector beams at 1.25 bar (left) 
and evolution of the spectral intensity distribution at the point of maximum intensity 
in log scale (arb. u.) of the TM01 mode (center) and the TE01 mode (right) during the 
propagation in the HCF. 

 
 

To achieve a higher nonlinearity we can increase the input pulse energy or the gas 
pressure. The limit input pulse energy in our laser system is 1 mJ, so we decided 
to increase the pressure in the simulations. In Fig. 5.2 we present the propagation 
dynamics of a 100-fs and 1 mJ TE01 mode at 2 bar of argon, parameters that are 
experimentally accessible. In the top left panel in Fig. 5.2 we show the evolution of the 
spectral intensity distribution at the point of maximum intensity in log scale, in the top 
right panel we show the evolution of the temporal intensity distribution at the point of 
maximum intensity and also in log scale, in the bottom left panel we show the evolution 
of the beam waist and in the bottom right panel we show the mode contribution during 
the propagation in the HCF. 

 
Looking at the whole set of plots in Fig. 5.2, it is clear that the spatio-temporal dy- 
namics is complex in this parameter regime. In this case, the beam is breaking in many 
substructures, specially in the rear part of the pulse (see top right panel of Fig. 5.2). 
This type of evolution is understood as a modulational instability and was called soliton 
shower to remark the high number of substructures in which the pulse breaks during 
the nonlinear propagation [Russell et al., 2014]. The soliton shower appears at the rear 
part of the pulse due to the relevant role of the ionization in this process, which usually 
affects more the rear part than the front part of the pulse. From the spectral point of 
view (see top left panel of Fig. 5.2), the soliton shower in the temporal domain results 
in an important spectral broadening in the blue side but grown from noise, which in- 
duces this typical noisy temporal and spectral pulse structure. In a pure soliton shower 
generation regime, as the one presented in [Russell et al., 2014, Tani et al., 2013], one 
expects to find a supercontinuum generation process, but we only have an important 
spectrum broadening with traces of a dispersive wave, which means that we are entering 
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Figure 5.2: Evolution of the spectral (top left) intensity distribution in log scale 
(arb. u.) and evolution of the temporal (top right) intensity distribution (W/cm2) 
at the point of maximum intensity, of the beam waist (bottom left) and of the mode 
contributions (bottom right) of the TE01 mode at 2 bar. 

 
 
this high-nonlinear regime. To better understand how high the nonlinearity is we can 
calculate the soliton order defined as 

 
N 2 = LD/LNL (5.3) 

 
where LD = t2/(|β2|) is the dispersion length, LNL = c/(ω0nNLI0) is the nonlinear 
length, t0 is the input pulse duration, |β2| is the group velocity dispersion (GVD) and 
I0 is the input laser intensity [Agrawal, 2013]. From this expression we can deduce that 
N is an indication of the importance of the self-phase modulation and dispersion effects 
during the propagation along the HCF. If N » 1 the nonlinearity overcomes dispersion 
and it dominates the propagation. In this case the soliton order is N ≈ 80, so it is clear 
that the nonlinear effects during the propagation are important, which is in agreement 
with the high nonlinear regime observed in Fig. 5.2. 

There is one more thing that we should remark regarding this simulation: the input pulse 
lies in the normal dispersion region. This could be surprising because in most of the 
cases, this soliton shower regime is observed when the pulse lies in the anomalous region 
[Russell et al., 2014, Tani et al., 2013]. In fact, as we will see in Chapter 7, the dispersive 
wave is understood as a phase-matched energy transfer from a soliton in the anomalous 
region towards some particular wavelength in the normal dispersion region. So one may 
wonder how could the soliton shower and the dispersive wave appear in our case since the 
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pulse is in the normal dispersion region. We believe that the appearance of the high-order 
spatial modes during the propagation, all of them presenting an anomalous dispersion 
response, is crucial. The right bottom panel of Fig. 5.2 shows the contribution of the first 
four spatial modes, where we can see an important coupling between the fundamental 
mode (TE01)and the first excited mode, (TE01). After some propagation distance in the 
HCF, where there is a coherent interaction between these two modes showing relatively 
clean oscillations in their populations, the contribution of the excited mode flattens (after 
20 cm). This change of the population evolution of the excited state coincides with the 
appearance of the blue frequencies and the soliton shower generation. We believe that 
these effects are all connected and linked with ionization and the presence of higher 
spatial modes and their own nonlinear propagation dynamics. 

 
As commented above, the presence of higher-order modes is of great importance to 
understand the propagation dynamics. To explore another interesting consequence of 
the mixture of spatial modes that appear during the nonlinear propagation in the HCF, 
we can examine the spatio-temporal intensity profile of the pulse during the propagation. 
Figure 5.3 shows the spatio-temporal intensity profile (W/cm2) of the full pulse (top left), 

 

Figure 5.3: Spatio-temporal intensity profile (W/cm2) of the pulse (top left), of the 
input spatial mode TE01 (top right) and of the first two excited modes, TE02 (bottom 
left) and TE03 (bottom right), at 22 cm inside the HCF for a 100-fs pulse. Black arrows 
represent the sign of the polarization of each ring. 

 

of the first spatial mode TE01 contribution (top right) and of the first two excited modes, 
TE02 (bottom left) and TE03 (bottom right) contributions, 22 cm inside the HCF just 
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before the soliton shower regime starts. The higher-order modes TE02 and TE03 present 
two and three concentric intensity rings, respectively. In the top left panel we can see 
that the pulse exhibits a quite complex spatio-temporal intensity distribution. Although 
the total pulse basically has a single ring structure, its intensity peak is located in the 
inner part of the ring and at the trailing part of the pulse. However, in the outer part 
of the ring the pulse presents an important temporal leading pedestal. To understand 
this complex structure we have to consider the polarization distributions of the different 
spatial modes. The input TE01 mode in Fig. 5.3 (top right) transfers energy to the 
higher-order modes, leading to an important depletion of the fundamental mode around 
50 fs. Thus, the higher-order spatial modes must have a significant contribution around 
that temporal region, as we can see in the two bottom panels of Fig. 5.3. Nevertheless, 
as the higher-order modes have several spatial rings, we have to consider the polarization 
direction (the sign of the electric field, that we have represented as black arrows in the 
figure) when adding all the contributions. As the different spatial rings of the higher- 
order modes alternate the sign of the field, we could find situations where the sum of the 
different contributions cancel each other. At the inner part of the pulse around 50 fs, the 
first spatial rings of the TE02 and TE03 modes (the closest to r = 0 µm) have the same 
sign to the polarization of the input TE01 mode and the constructive superposition of 
all of them results in the high intensity peak of the pulse. However, at the outer part of 
the pulse at 50 fs, the second spatial ring of the TE02 mode, that is placed between 90 
and 140 µm, and the second spatial ring of the TE03 mode, that is placed between 64 
and 96 µm, have the opposite sign to the polarization of the TE01 mode. In this case 
the destructive superposition of all of them leads to a decrease of the intensity of the 
pulse (top left) in this region (between 60 and 120 µm). These destructive interferences 
between the fundamental mode and the second ring of the TE02 mode are also presented 
around 0 and 30 fs, at the outer part of the beam. As a consequence of the constructive 
interference between the three first modes, the pulse presents a single ring structure. All 
these interference patterns appear at the rear part of the pulse because the higher-order 
modes have a lower group velocity. This means that they will be located at the rear 
part of the fundamental mode and they will eventually walk off if the propagation is 
long and clean enough. In any case, this nonlinear propagation generates a non-uniform 
broadening, showing a quite different temporal and spectral structure in the inner and 
in the outer part of the ring. 

 
One may ask if the higher-order spatial modes could walk off the fundamental mode 
completely under some circumstances. In order to explore this possibility we have de- 
veloped new simulations with shorter pulses, for which the walk off dynamics should be 
more relevant. In this case, we have simulated the propagation of a TE01 mode of 30 
fs centered at 800 nm, inside the HCF of 150 µm core radius and filled with argon at 2 
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bar. We have to decrease the input pulse energy to avoid a strong ionization, so we use 
0.3 mJ as input energy in this case. The same dynamics is obtained for shorter input 
pulses but at shorter distances inside the HCF. Figure. 5.4. shows the spatio-temporal 
intensity profile (W/cm2) of the pulse (top left), of the input spatial mode TE01 (top 
right) and of the first two excited modes, TE02 (bottom left) and TE03 (bottom right), 
at 7 cm inside the HCF for this short pulse, before the soliton shower regime. 

It becomes evident that with these parameters, vector beams present a strong and com- 
plex nonlinear dynamics which complicates their propagation in HCF and prevent the 
achievement of a broad spectrum for few-cycle pulses post-compression. The interplay 
between the higher-order spatial modes is clearly the main origin of this very complex 
propagation dynamics. 

A different approach that can be useful to obtain a smoother propagation dynamics 
could be using pressure gradients inside the HCF. This technique is widely used in post- 
compression schemes. A positive pressure gradient, where the pressure increases along 
the HCF, could be very useful to avoid a strong ionization and self-focusing effect at 
the entrance [Carbajo et al., 2014, Nagy et al., 2019, Suda et al., 2005]. In such a 
situation, the spectrum broadens gradually along the propagation due to the moderate 
increase of the nonlinearity. However, if the losses are high, the intensity of the pulse 

 

Figure 5.4: Spatio-temporal intensity profile (W/cm2) of the pulse (top left), of the 
input spatial mode TE01 (top right) and of the first two excited modes, TE02 (bottom 
left) and TE03 (bottom right), at 7 cm inside the HCF for a 30-fs pulse. Black arrows 
represent the sign of the polarization of each ring. 
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will be low when reaching higher pressures and the efficiency of the nonlinear interaction 
would decrease. Another option is the implementation of a negative pressure gradient, 
especially useful for ultra-broadband spectrum [Brahms et al., 2019, Mak et al., 2013, 
Wan and Chang, 2021]. This way the main nonlinear effects occur at the HCF entrance 
and then the pulse experiences less dispersion along the propagation, which is important 
when generating short pulses in the ultraviolet due to the dispersive wave emission. 
Also, the coupling between the spatial modes is less effective in the later stage of the 
compressor, 

 

Figure 5.5: Evolution of the spectral (top left) intensity distribution in log scale 
(arb. u.) and of the temporal (top right) intensity distribution (W/cm2) at the point 
of maximum intensity, of the beam waist and pressure gradient (bottom left) and the 
mode contribution (bottom right) of the TE01 mode at a pressure gradient from 2 to 0 
bar for a 100-fs pulse. 

 
 
With this idea in mind, we have propagated the same 100-fs pulse, but this time there 
is a negative pressure gradient from 2 to 0 bar inside the HCF. We implement a simple 
linear gradient p(z) = p0/L(L + z), where p0 is the pressure at the input and L is the 
HCF length. We show in Fig. 5.5 the new dynamics obtained in this case. In the top 
left (right) panel we show the evolution of the spectral (temporal) intensity distribution 
in log scale, in the bottom left panel we show the evolution of the beam waist and the 
pressure gradient, and in the bottom right panel we show the mode contributions during 
the propagation in the HCF. It is evident that the dynamics is smoother now and the 
nonlinear propagation is not able to enter in the soliton shower regime, as in the constant 
pressure case. 
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We can examine again the spatio-temporal intensity profile of the pulse and its decom- 
position in the spatial modes 22 cm inside the HCF, the same point as in the constant 
pressure case (see Fig. 5.4). Figure 5.6 shows the spatio-temporal intensity profile 
(W/cm2) of the pulse (top left), of the input spatial mode TE01 (top right) and of the 
first two excited modes, TE02 (bottom left) and TE03 (bottom right), 22 cm inside 
the HCF. The obtained pulse presents basically the same complex and inhomogeneous 
spatio-temporal structure as in the constant pressure case, although in this case the inter- 
action is moderately nonlinear, so all the propagation dynamics shown here is smoother. 

 
 

 

Figure 5.6: Spatio-temporal intensity profile (W/cm2) of the pulse (top left), of the 
input spatial mode TE01 (top right) and of the first two excited modes, TE02 (bottom 
left) and TE03 (bottom right), at 22 cm inside the HCF for a 100-fs pulse propagating 
in a negative pressure gradient from 2 to 0 bar. Black arrows represent the sign of the 
polarization of each ring. 

 
 

We use the same type of pressure gradient for the 30-fs pulse but with 0.2 mJ input 
energy and an initial pressure of 2.8 bar, which is the maximum pressure experimentally 
accessible in the laser facility in the University of Salamanca. The main difference from 
the 100-fs case can be seen in the spectrum. 

Figure 5.7 shows the spatio-spectral intensity profile of the pulse (left), of the input 
spatial mode TE01 (center) and of the first excited mode, TE02 (right), at the HCF 
output (100 cm in this case). We can see that the spectrum of the pulse is broad, from 
550 to 1100 nm, and it shows the typical modulation from the spectral broadening by 
the self-phase modulation effect with a higher spectral intensity in the infrared. The 
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Figure 5.7: Spatio-spectral intensity profile (arb. units) of the pulse (left), of the 
input spatial mode TE01 (center) and of the first excited mode, TE02 (right), at 100 
cm inside the HCF for a 30-fs pulse propagating in a decreasing pressure gradient from 
2.8 to 0 bar. 

 
 
spectrum of the TE01 mode (center) shows similar features, with a clean self-phase 
modulated spectrum. 

On the other hand, the spectrum of the TE02 mode (right) is centered at 800 nm and 
expands to the visible band with the expected double ring spatial structure. 

 

 
Figure 5.8: Zoom of the spectral modulations of the pulse shown in Fig. 5.7 (left). 
The spectrum shows spatial inhomogeneity due to the interplay of the spatial modes. 

 

Apart from the significantly wider spectral broadening, the most interesting feature in 
this case is the interplay of the spatial modes that produces a spatial inhomogeneity in 
the spectrum (see Fig. 5.8, where we show a zoom of the spectrum of the pulse at 100 
cm.). If we look at the spectrum at two different radii, 50 and 120 µm for instance, 
we can see that the spectrum in the region between 600-850 nm is complementary: 
the maxima for smaller radii correspond to minima for larger radii, and vice versa. In 
center and right panels of Fig. 5.7 we show the spectrum of the TE01 mode and of 
the TE02 mode, respectively. We can see that this curious spatio-spectral distribution 
is produced by the two spatial rings of the TE02 mode, which have opposite signs 
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of the electric field and interfere constructively or destructively with the field of the 
fundamental mode. As a consequence, at different radii the spectral composition of the 
beam varies, in this particular case, is complementary, which could be interesting for 
spectroscopy experiments. 

To explore the possibility of obtaining a supercontinuum spectrum by adding these 
complementary spectral contributions, which would allow us to obtain few-cycle vector 
beam pulses, we have integrated the spectrum over all radii r. Figure 5.9 shows the 
resulting integrated spectrum which goes from 550 to 1100 nm approximately. The 
integrated spectrum is still quite modulated due the different weight of the spectrum at 
different radii. Moreover, the integrated spectrum shows a relatively noisy spectrum in 
the high frequency region (for wavelengths below 500 nm). By looking at the spectrum 
of the fundamental mode (center panel of Fig. 5.7) we can see that it has no signal 
in that blue region, which again indicates that all that noisy blue part belongs to the 
higher spatial modes. 
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Figure 5.9: Spectral intensity profile of the 30-fs pulse integrated over all radii after 
propagating in a 1m HCF with a decreasing pressure gradient from 2.8 to 0 bar. 

 
 

For completeness, we tried several pressure gradients schemes: linear, step, symmetric 
and asymmetric, but the results obtained were all similar to the cases presented here. in 
summary, the results from the nonlinear propagation of vector beams with the (2+1)D 
models show a very complex dynamics where the higher-order spatial modes have a 
relevant role in the propagation. The possibility of building ultrashort laser beams 
with such complex spatio-spectral structures is very attractive, although the complex 
nonlinear modal coupling and interferences indicate that the coupling and propagation 
of vector beams through a HCF in a real experiment could be challenging. 
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5.2 Experimental Propagation of Vector Beams in Hollow 

Capillary Fibers 

 
5.2.1 Coupling Vector Beams in the Hollow Capillary Fiber: Evaluat- 

ing the Polarization State and the Spatial Profile 

 
As mentioned above, there are different approaches to represent vector beams numeri- 
cally. Apart from the numerical model we have used in the previous section based on 
Marcatili’s modes [Marcatili and Schmeltzer, 1964], there are other numerical models 
that establish different boundary conditions to take into account the loss of light into the 
cladding. This correction in principle is needed for longer wavelengths (λ > 4µm) where 
the approximation of Marcatili’s model breaks down and losses are greater ([Andreasen 
and Kolesik, 2012] details the propagation model with these boundary conditions). Ac- 
cording to this model, there are two possible choices as boundary conditions for the 
propagation of vector beams in HCFs. First, the electric field on the propagation axis 
is zero E(r = 0) = 0 as in our (2+1)D model. Second, the electric field at the inter- 
face of gas and cladding E(r = rF ) has a different value depending on the vector beam 
propagating inside the HCF [Andreasen and Kolesik, 2013] 

 
ET M (r = rF ) =  4E1 − E2  

3 − 2ikcl∆r/n2 

 
 

(5.4) 

ET E(r = rF ) =  4E1 − E2  
3 − 2ikcl∆r 

 

where E1 and E2 are the electric fields in the HCF core at ∆r and 2∆r from the core- 
cladding interface, and ncl and kcl are the linear refractive index and wavenumber of the 
cladding, respectively. With these boundary conditions the HCF spatial mode differs 
from Marcatili’s modes, not corresponding to any known HCF spatial modes described 
in terms of Bessel functions [Wang et al., 2017]. 

To find out the spatial profile of the fundamental mode with these boundary conditions, 
we propagate a vector beam with an input modal distribution as defined in 5.1 with the 
time-independent (1+1)D model with the boundary conditions detailed in Eq. 5.4. The 
linear propagation of the input field under these conditions will converge to a new stable 
mode profile at the HCF output, which one should interpret as the new spatial profile 
of the fundamental mode in the HCF when using this numerical approach. 

We propagate a laser beam with an input J1(u01r/rF ) spatial profile centered at 800 
nm through a HCF with 150µm of core radius filled with argon at 1 bar. In Fig. 5.10 
we show the comparison between the spatial mode obtained at the end of the HCF with 
the boundary conditions in Eq. 5.4, labeled in the figure as TM01 and TE01, and the 
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J1 Bessel function from the Marcatili’s model (yellow line). We can see that the stable 
spatial profile after the linear propagation deviates significantly from the input J1 Bessel 
function and it is consistent with Ref. [Wang et al., 2017]. 
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Figure 5.10: Comparison of the J1(u01r/rF ) function (yellow line) with the stable 
radially polarized TM01 and azimuthally polarized TE01 beams resulting from the linear 
propagation inside the HCF with the other boundary conditions from Eq. 5.4. 

 
 

In order to gain some insight into which is the real spatial profile of the spatial mode 
of the vector beams inside the HCF, we have performed an experiment trying to solve 
the actual disagreement between the numerical models. The experiment was realized in 
collaboration with the experimental group of Aplicaciones del L áser y Fotónica research 
group. A schematic experimental layout is shown in Fig. 5.11: A femtosecond linearly 
polarized Gaussian pulse from a Ti:Sapphire laser system with 100 fs pulse duration, 
centered at 800 nm, operating at a repetition rate of 1 kHz and ∼ 0.7 mJ input energy, is 
converted into a radial or azimuthal infrared vector beam using a s-waveplate, courtesy of 
R. Drevinskas, A. Cerkauskaite and P. G. Kazansky from the University of Southampton. 
These s-waveplates are retarder elements based on the inscription of nanogratings in 
silica glass using a femtosecond laser. They can induce birrefrigence and the orientation 
of the optical axis varies spatially. 

By rotating the polarization of the beam before the s-waveplate by 90º it is possible 

to switch between radially and azimuthally polarized beam. To control the input beam 
polarization we use a half-wave plate before the s-waveplate. After the conversion we 
couple the vector beam inside a 75 cm long, 150 µm core radius HCF in vacuum. At the 
HCF output we place a linear polarizer and a CCD to analyze the beam polarization 
distribution. 

In Fig. 5.12 we show the measured spatial intensity distribution at the output of the 
HCF (left panels). We can observe that both azimuthal (TE01 (top)) and radial (TM01 

(bottom)) vector beams are conserved during the propagation, although they seem very 

TM01 

TE 01 
J (u  r/r ) 1  01 F 
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Figure 5.11: Experimental layout: a linearly polarized Gaussian pulse is converted to 
a radially or azimuthally polarized beam with a s-waveplate (SW). A half-wave plate 
(λ/2) rotates the polarization before the SW. The pulses are then coupled into a HCF 
(150 µm core radius). 

 
 
sensitive to the HCF alignment. The intensity distribution shown in the left panels has 
the typical doughnut shape at the output of the HCF. 

 

Figure 5.12: Spatial intensity distribution of azimuthal (TE01 (top)) and radial 
(TM01 (bottom)) vector beams. Center and right panels show the intensity distri- 
bution after placing a linear polarizer in horizontal and vertical directions (see black 
arrows). 

 
 
We have checked that the polarization distribution is maintained after the propagation 
in each case. Center and right panels of Fig. 5.12 show the intensity distribution when 
placing the analyzer after the HCF output. The intensity profile in this case has two 
lobes that rotate with the orientation of the analyzer, which is indicated by black arrows. 
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We can see that the polarization is maintained quite well, which means that these HCF 
spatial modes are indeed vector beams after linear propagation in the HCF. 

With these spatial intensity distributions we can now determine which numerical model 
suits well with the real spatial profile of vector beams inside our HCF. We have calculated 
the average intensity profile from each measured spatial intensity distribution and then 
we have compared it to the Bessel function J1 truncated to its first root. Figure 5.13 
shows the comparison of the radially and azimuthally polarized beam average intensity 
profile (blue lines) with the J1(u01r/rF ) function (yellow dashed line). The agreement 
between the J1(u01r/rF ) Bessel function and the experimental data is remarkable, so 
we conclude that the Marcatili’s modes represent properly the propagation of the radial 
and azimuthal spatial modes inside the HCF, and the energy losses into the cladding in 
this parameter regime are negligible. 

 

 
Figure 5.13: Comparison of the calculated average spatial intensity from the exper- 
imental data for the azimuthal (TE01 (left)) and radial (TM01 (right)) vector beams 
with the J1(3.83r/rF ) Bessel function (yellow dashed lines). 

 
 
 

5.2.2 First Nonlinear Propagation Experimental Results 
 

Now that we are able to successfully couple vector beams into the HCF in vacuum, the 
next step is to verify if the spatial profile and the polarization distributions are still 
maintained after a nonlinear propagation regime and if the output spectrum is wide 
enough for a few-cycle pulse compression. 

With this purpose, we fill the HCF with argon and increase the pressure inside up to 2.8 
bar, which is the maximum pressure accessible in the experiment. In this case the input 
energy is ≈ 0.4 mJ since almost half of the laser energy is lost in the s-waveplate during 
the conversion to the vector beam. Figure 5.14 shows the comparison of the experimental 
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spectrum measured at the HCF output with the spectrum obtained from the (2+1)D 
model simulations propagating 60 cm inside the HCF. The input pulse energy in the 
simulations in this case is 0.1 mJ, which is a 25% of the input energy in the experiment. 
With the simulated spectrum, the Fourier Limit of the output pulse would be 26.4 fs 
and 27.7 fs for the TE01 and for the TM01 mode, respectively. 

 

 
Figure 5.14: Comparison of the measured spectrum at the HCF output for each vector 
beam (blue lines) with the spectral intensity profile at 60 cm in the HCF obtained from 
the simulations with the (2+1)D model (yellow dashed line) at 2.8 bar of argon. 

 
 
Analyzing the polarization of the output pulses at the horizontal and vertical directions 
the polarization seems correct, but at different directions the two-lobe structure was 
not clean. We developed some preliminary measurements of a full spatio-temporal and 
polarization characterization of these vector beams at the HCF output with a new 
algorithm developed by B. Alonso et al. [Alonso et al., 2020], where we observe that the 
polarization structure of these vector beams at the output of the HCF was different. 

Considering the experimental difficulties to maintain the polarization structure of these 
vector beams in highly nonlinear propagation regimes and the energy loss in the conver- 
sion, we looked for some possible alternatives. According to the literature, a possibility 
would be to place the s-waveplate after the HCF. This way the input pulse energy would 
be higher and the spectral broadening more efficient since the coupling of the EH11 mode 
is less critical. However, the s-waveplate must have a broad bandwidth to obtain a pure 
vector beam. In Fig. 5.15 we show the measured spatial intensity distribution of the 
radially polarized vector beam after the s-waveplate (top left). The two lobes of the 
resulting intensity profile rotate with the orientation of the analyzer (indicated as black 
arrows), as can be observed in top right, bottom left and bottom right panels. Note 
that the spatial mode distribution changes in this case. Although the spectrum after the 
s-waveplate was broader than the spectrum shown in Fig. 5.14, we did not have time 
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Figure 5.15: Spatial intensity distribution of the radial (TM01) vector beam (top 
left) with the s-waveplate placed after the HCF. Top right, bottom left and bottom 
right panels show the intensity distribution after placing a linear polarizer in different 
directions (see black arrows). 

 
 

to develop a full characterization of the resulting pulse to determine the polarization 
distribution in this case. 

 
 

5.3 Conclusions 
 

The main objective of the numerical study on the nonlinear propagation of vector beams, 
presented in this chapter, was the possibility of performing post-compression experiments 
or even achieving self-compression of these beams inside the HCF. However, in the 
experiments we found out that the coupling of these vector beams into the HCF in a 
highly nonlinear regime was challenging and, unfortunately, we did not have enough laser 
time to be able to explain some of the results obtained in the lab. A different strategy 
should be implemented to generate and post-compress vector beams in the HCF. 

Nevertheless, we have learned interesting aspects related with the propagation of vector 
beams in HCFs from the theoretical model: 

First, the self-compression of these beams is not easily accessible and we have not found 
any simulations where this process occurs. In principle, the main advantage of these 
beams is the possibility of scaling up the energy and to obtain directly at the HCF output 
an ultrashort and energetic structured pulse. However, if these beams propagating in 
the HCF are more unstable in practice, the setup of compressing the EH11 mode first 
and then perform the conversion seems more useful. 
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We have found that the propagation of vector beams inside the HCF results in peculiar 
structured profiles. This structure, or modulation, is a consequence of the intense mul- 
timode dynamics. The constructive or destructive superposition of the different spatial 
modes along the propagation leads to a spatial inhomogeneity and in some cases, this 
inhomogeneity is also translated into the spectrum of the pulse. 

The propagation of the hybrid modes is more stable and in any case, the superposition 
of higher-order hybrid modes does not result in these complicated structured fields. 
They seem a better choice than vector beams in order to obtain few-cycle pulses in 
post-compression and self-compression processes. 

We have experimentally checked that the spatial profile of vector beams inside HCFs is 
accurately described by Marcatili’s model, at least in the linear regime. We have not 
observed spatial profiles similar to the one obtained with the boundary conditions from 
[Andreasen and Kolesik, 2013]. 



 

 

 
 
 
 
 
 
 

Chapter 6 
 
 

Compression of Necklace Beams 
in Hollow Capillary Fibers to 
Obtain Ultrashort and Energetic 
Pulses in the Visible 

 
In the last decades, several schemes have been developed to obtain ultrashort pulses 
in different bands of the visible spectral region. These ultrashort pulses are important 
tools for different applications, such as ultrafast spectroscopy or transient absorption 
image techniques in biomedical science [Domingue et al., 2017, Kobayashi et al., 2016]. 
There is a variety of strategies to obtain these sources. If the duration of the pulse is 
not a crucial factor, praseodymium ion-based mode-locked lasers are a straightforward 
option to obtain picosecond pulses with high average energy in red and green bands 
[Li et al., 2019, Luo et al., 2017]. However, if few-cycle pulses are also needed, two- or 
several-step setups have to be used, such as cascaded four-wave mixing [He et al., 2014, 
Liu and Kobayashi, 2009a,b, Silva et al., 2009, Weigand et al., 2009], nonlinear optical 
parametric amplification [Kobayashi et al., 2016, Okamura and Kobayashi, 2011], optical 
parametric chirped pulse amplification with second harmonic generation and excimer gas 
amplification [Clady et al., 2006], the up-conversion of different parts of the spectrum 
from fiber-based ultrafast systems [Domingue et al., 2017], spectral broadening in hollow 
capillary fibers (HCFs) [Nagy et al., 2020, Palato et al., 2020, Silva et al., 2018] or in 
filaments [Spokoyny et al., 2015], blue shifting solitons in single-ring photonic crystal 
fibers [Huang et al., 2019], or tunable dispersive waves generated during the soliton 
propagation, also in HCFs [Brahms et al., 2019, 2020, Travers et al., 2019]. Although 
the techniques described above can deliver ultrashort and energetic pulses in the visible 
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region of the spectrum, the complexity of most of the setups has motivated the search 
for alternatives. 

One of the most compact setups to achieve tunable ultrashort pulses, of all those men- 
tioned above, is the dispersive wave emission from a soliton propagation of an infrared 
laser pulse in HCFs filled with gas [Brahms et al., 2020, Travers et al., 2019]. This 
process consists of an energy transfer from the soliton, which is usually in the near or 
mid infrared, to a certain frequency in the normal dispersion region, which will lie in the 
visible or even in the ultraviolet, through a phase-matching process, as we will explain in 
detail in Chapter 7. However, the amount of energy transferred to the dispersive wave is 
still limited as a consequence of the coherent transfer of energy between the soliton and 
the dispersive wave. One possible solution would be to increase the input pulse energy, 
but this is also limited by self-focusing and the ionization of the gas inside the HCF, as 
we have explained in Chapter 4 [Conejero Jarque et al., 2018, Crego et al., 2019]. 

 
Another approach would be to study the nonlinear propagation of structured laser 
beams. These beams can be now easily generated and controlled [Forbes, 2019]. The 
possibility of propagating these beams in a standard post-compression setup, so the 
spectrum could be broadened in a controlled and efficient way to the visible region, 
could lead to the generation of ultrashort visible energetic pulses. 

As explained in Section 2.2, necklace beams are a type of structured laser beams with 
amplitude and phase rotational symmetry around the propagation axis. Although they 
are intrinsically unstable in linear free propagation, under some circumstances they 
show self-trapping features which allow them to propagate with minor variations along 
noticeable distances in different nonlinear media such as Kerr-type media [Grow et al., 
2007], thermal nonlocal media [Rotschild et al., 2006], colloidal engineered media [Silahli 
et al., 2015, Walasik et al., 2017], photorefractive media [Stoyanov et al., 2017], nonlinear 
lattice structures [Shi et al., 2019], or cubic-quintic nonlinear media [Aleksić et al., 2020]. 
By contrast to free propagation, necklace beams can be stable when linearly propagating 
inside confined structures [Fibich and Shpigelman, 2016]. 

 
In this chapter we will study the nonlinear propagation of infrared structured beams, 
in particular necklace beams with four, six and eight beads [Solja č i ć  et al., 1998]. We 
will propagate these beams along a HCF filled with argon and study the features of the 
spatio-temporal dynamics. We will explore the possibility of obtaining short energetic 
visible pulses from its propagation and the dependence of the dynamics with some system 
parameters, such as the pressure and laser wavelength. We will also study the stability 
of these beams in the case of non-ideal input spatial profiles. 
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6.1 Propagation Dynamics of Necklace Beams in Hollow 

Capillary Fibers 

 
There are different families of necklace beams in a HCF depending on the number of rings 
and beads they present, as we explained in Section 2.2. Although the spatial structure 
of these modes seems complex, their generation has already been demonstrated [Grow 
et al., 2007]. 

To study the nonlinear dynamics of necklace beams inside HCFs we have used the time- 
dependent (3+1)D numerical model presented in Section 3.3. This model includes all 
the spatio-temporal effects considering the azimuthal dependence, so it is able to study 
beams without cylindrical symmetry around the propagation axis. In this model we also 
include the ionization effects. Note that the Raman effect is absent in the monoatomic 
gases considered here. 

In the (3+1)D simulation we include all the hybrid modes of the type EH(−|p|)q + 
EH(|p|+2)q but, since we do not decompose the electric field into the different spatial 
modes, we assign to all the modes the absorption and dispersion coefficients of the 
input mode, that is the only contribution at the entrance of the HCF and we assume 
it to be the dominant contribution during the whole propagation. In this case, the 
diffraction is solved directly with the Laplacian operator and the dispersion is solved 
using the propagation coefficient of the input spatial mode in the time domain, which is 
equivalent to include the space-time coupling term [Rothenberg, 1992]. 

 
In addition, when studying the nonlinear propagation of the input beam we immediately 
observe fluctuations in the spatial and temporal structure of the beam, which are signa- 
tures of the nonlinear coupling between different spatial modes [Nurhuda et al., 2003]. 
To check that this (3+1)D model is able to study the nonlinear propagation of a pulse 
through a HCF we have compared the results of the self-compression process of a pure 
hybrid high spatial mode with cylindrical symmetry using the (2+1)D model, presented 
in Section 3.2, and the (3+1)D model. We have propagated the EH13 hybrid mode cen- 
tered at 800 nm, with 0.075 mJ of energy and 35 fs pulse duration in a HCF with a core 
radius of 150 µm filled with argon at 1 bar, the absorption and propagation coefficients 
are given by Eq. 2.67. In Fig. 6.1 we compare the propagation dynamics of this spatial 
mode using the (2+1)D model (orange lines) with the propagation dynamics using the 
(3+1)D model (blue lines). In particular, we compare the evolution of the energy (Fig. 
6.1 (left)) and the temporal duration at the Full Width Half Maximum (FWHM) (Fig. 
6.1 (right)), which shows a self-compression dynamics due to the anomalous dispersion 
response presented by the input spatial mode. 
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Figure 6.1: This figure shows the evolution of the energy (left) and FWHM duration 
(right) along the propagation of a EH13 hybrid mode inside a HCF. We compare the 
results obtained from the (2+1)D model (orange lines) with the results from the (3+1)D 
model (blue lines). 

 
 
The results demonstrate that the new (3+1)D model recovers the main phenomena 
observed in the results obtained from the (2+1)D model, which includes properly all the 
modal dispersion and absorption. The main difference between these two models is that 
the modes in the (3+1)D model neither present walk-off between different modes nor 
modal losses, which artificially enhance their coupling. Nevertheless, in the intermediate 
power regime that we are using we believe that the results shown with the (3+1)D model 
are fully valid. 

 
 
6.1.1 The Time-Dependent Model ((3+1)D Model) 

 

We have simulated the nonlinear propagation of different necklace beams in a HCF filled 
with argon with the (3+1)D model. The initial condition used to solve numerically Eq. 
3.18 is different depending on the number of beads of the necklace beam. We have 
studied the propagation of necklace beams with four, six and eight beads: 

1. Necklace beam with four beads 
 
The first necklace beam we present is a composition of the following hybrid modes: 
EH−11 and EH31. So it presents one ring (q = 1) and four beads (3 − (−1) = 4). This 
mode composition is expressed as follows 

 
EH−11 

 
+ EH31 = J2 

(
u 

r
  

sin(2θ) (6.1) 
 
The complete expression of the component of the electric field amplitude in the core of 
the HCF is: 

E(r, θ, t, z = 0) = J 
(

u 
r
  

sin(2θ)e−t
2/t2 

, (6.2) 
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where u31 = 5.1356 is the first zero of the Bessel J2 function, rF is the HCF core radius 
and t0 is the input pulse duration. The combination of these two hybrid modes leads to a 
spatial mode with linear polarization [Marcatili and Schmeltzer, 1964]. The propagation 
losses of this spatial mode are represented by the absorption coefficient α31 defined in 
Eq. 2.67. We present in Fig. 6.2 (left) the beam fluence, i.e. the temporal integration of 
the spatio-temporal intensity of the necklace beam with four beads at the HCF input. 
The propagation losses of this spatial mode are represented by the absorption coefficient 
α31 defined in Eq. 2.67. 

2. Necklace beam with six beads 
 

This spatial mode is a composition of another two hybrid modes: EH−21 and EH41. 
This mode also presents one ring (q = 1) but six beads (4 − (−2) = 6). The mode 
composition in this case is written as 

 
EH−21 

 
+ EH41 = J3 

(
u 

r
  

sin(3θ) (6.3) 
 

Note that as the number of beads increases, the order of the J Bessel function also 
increases, and we obtain a higher-order spatial mode. The complete expression of the 
component of the electric field amplitude in the core of the HCF is: 

E(r, θ, t, z = 0) = J 
(

u 
r
  

sin(3θ)e−t
2/t2 

, (6.4) 

 

where u41 = 6.3802 is the first zero of the Bessel J3 function. The propagation losses of 
this spatial mode are represented by the absorption coefficient α41 defined in Eq. 2.67. 
In Fig. 6.2 (center) we present the beam fluence of a necklace beam with six beads at 
the HCF input. 

3. Necklace beam with eight beads 
 

The last case we have studied is the necklace beam with eight beads. This spatial mode 
is expressed as a composition of these two hybrid modes: EH−31 and EH51. Once more, 
this spatial mode presents only one 1 ring (q = 1) and eight beads (5 − (−3) = 8). We 
can express the mode composition as 

 
EH−31 

 
+ EH51 = J4 

(
u 

r
  

sin(4θ) (6.5) 
 

Including the temporal evolution, the complete expression of the component of the 
electric field amplitude in the core of the HCF is: 

E(r, θ, t, z = 0) = J 
(

u 
r
  

sin(4θ)e−t
2/t2 

, (6.6) 
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where u51 = 7.5883 is the first zero of the Bessel J4 function. The absorption coefficient 
α51, defined in Eq. 2.67, account for the losses in the propagation. The beam fluence of 
the necklace beam with eight beads at the HCF input is shown in Fig. 6.2 (right). We 
have not studied the propagation of necklace beams with more than eight beads due to 
the increase of the computing time. Also note that there is no possible combination of 
HCF spatial modes with the same propagation and absorption coefficients to generate 
a necklace beam with two beads. 

 

 
Figure 6.2: This figure shows the beam fluence, i.e. the temporal integration of the 
spatio-temporal intensity of a necklace beam with four (left), six (center) and eight 
(right) beads at the HCF input. The blue dot identify the point of maximum intensity 
in the first bead. 

 
 

One of the main advantages of these necklace beams, that makes them an interesting 
alternative to hybrid modes, is that they present anomalous dispersion for standard 
HCF core sizes, with gas pressures close to atmospheric pressure in the wavelength 
region of 800 nm, which are usual conditions in the post-compression context. This 
feature is due to the fact that they are composed of higher spatial modes, as we have 
seen, and it enables the formation of a short pulse at the end of the HCF length by 
soliton self-compression dynamics, as shown in [López-Zubieta et al., 2018a,b]. This is 
very useful from the experimental point of view because there is no need of an additional 
compression stage as in standard post-compression setups. Moreover, the advantage of 
using the HCF also allows to tune the amount of linear dispersion easily just changing 
the gas type or pressure, but also with the HCF core size or the laser wavelength, as it 
is usually done in standard post-compression setups. 

 
For the parameters used in the simulations, the input necklace beams propagate in the 
anomalous dispersion regime, since the zero-dispersion wavelength is 754 nm, 679 nm 
and 625 nm for a necklace beam with four, six and eight beads, respectively. As we have 
shown before, the larger the number of beads, the higher the order of the Bessel function 
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of the spatial mode, which corresponds to a stronger anomalous response (see the group 
velocity dispersion (GVD) values for each spatial mode in Table 6.1). Furthermore, we 
have observed that in order to increase the effect of the nonlinearity it is desirable to 
increase the energy rather than the pressure, due to the higher losses that these spatial 
modes present compared to hybrid modes (see the values of the absorption coefficient 
αpq for each spatial mode in Table 6.1). By comparing the dispersion and absorption 
values of the hybrid modes with the necklace beams (Table. 6.1), we realize that the 
latter are an interesting choice in the dispersion region with low losses. 

 

λ = 800 nm EH11 EH12 EH13 NB (4 b) NB (6 b) NB (8 b) 
vg (nm/fs) 299.71 299.707 299.702 299.708 299.706 299.704 

GVD (fs2/m) 15.17 -10.017 -55.34 -5.84 -20.46 -37.68 
αpq (m−1) 0.041 0.216 0.531 0.187 0.289 0.408 

Table 6.1: Group velocity, GVD and absorption values for the EH11 mode, first two 
excited hybrid modes and necklace beams with 4, 6 and 8 beads at 800 nm in a HCF 
with 150 µm core radius and filled with argon at 1 bar. 

 
 
 
 

6.1.2 Pulse Propagation of Intense Necklace Beams in Hollow Capil- 
lary Fibers 

 
We study the propagation of 35-fs necklace beams with 0.2 mJ input energy centered at 
800 nm through a HCF with 150 µm core radius filled with argon at 1 bar. We propagate 
necklace beams with four, six and eight beads. The HCF length will be adapted to 
observe properly the spectral broadening in each case. The Sellmeier equation used for 
the linear refractive index is again Eq. 4.10 and we use the same nonlinear refractive 
index for argon, nNL=1.74 · 1023 · p (m2/W), where p is the gas pressure. The parameters 
related to the ionization used in the model for all the cases are those presented in Table 
4.3. 

The propagation dynamics of necklace beams with four, six and eight beads inside 
the HCF is shown in Fig. 6.3. In this figure we show in each row the evolution of the 
spectral distribution in logarithmic scale (left panels), the temporal distribution in linear 
scale (center panels) and the temporal FWHM duration (right panels) at the point of 
maximum intensity of one bead (marked as a blue dot in Fig. 6.2). We present the case 
of a necklace beam with four beads in the top row, with six beads in the middle row 
and with eight beads in the bottom row. 

If we look at the spectrum in each case, Fig. 6.3 (left panels), we can observe the most 
interesting feature of this type of propagation. The pulse begins the propagation in the 
anomalous dispersion region, not very far from the zero-dispersion wavelength (ZDW), 
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Figure 6.3: Each row shows the evolution of the spectral (left, in log scale) and 
temporal (center) intensity distribution and of the FWHM duration (right), at the 
peak intensity of one bead of a necklace beam with 4 (top), 6 (middle) and 8 beads 
(bottom). The dashed line in the left panels are the ZDWs, 754 nm, 679 nm and 625 
nm, respectively. Note the different length of z for each case. 
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shown as a black dashed line in the left panels (754 nm for the necklace beam with four 
beads, 679 nm for six beads and 625 nm for eight beads). In this type of propagation, 
where the nonlinearity is very high (the soliton order N is 32, 15 and 5 for four, six and 
eight beads, respectively, N ) 1 in all the cases) and the role of the third order dispersion 

is important (since the second order dispersion is small), the spectrum broadens in such 
a way that concentrates the energy in two spectral bands [Agrawal, 2013]. 

 
The evolution of each of the two main spectral bands during the propagation explains 
the evolution of the whole pulse. While the red-shifted band continues in the anoma- 
lous dispersion region, the other spectral band shifts to the visible part of the spectrum 
entering into the normal dispersion region of the HCF. These two spectral peaks cor- 
respond to the outermost peaks of the broadened spectrum by self-phase modulation, 
and in this high nonlinear propagation regime, they collect most of the energy. Since in 
the three cases we present here, the central wavelength of the input pulse is close to the 
zero-dispersion wavelength, after some distance, the blue-shifted band enters the normal 
dispersion region, which corresponds to the visible region here, and continues shifting 
towards shorter wavelengths. In the three cases presented in Fig. 6.3, the blue-shifted 
band reaches the visible region, and for that reason, we denote these blue bands as 
visible bands. 

 
The spectral dynamics is accompanied by a temporal self-compression process (center 
panels), specially supported by the red band of the spectrum, which carries an im- 
portant amount of energy and always propagates in the anomalous dispersion region. 
The generation of a soliton inside the HCF is observed around 103 cm in the case of 
the necklace beam with four beads, 66 cm in the case of six beads and 51 cm in the 
case of eight beads. This distance inside the HCF, where the soliton appears and the 
pulse reaches its shortest pulse duration, is called the self-compression distance. Note 
that during the self-compression process the peak of the intensity distribution is delayed 
(shifted towards positive time values) and, at the same time, the pulse is becoming 
slightly distorted, with the peak shifted towards the rear part of the pulse. Both effects 
are induced by self-steepening, which plays an important role in this self-compression 
process. The strong shock formation typically related to self-steepening is, in this case, 
dissipated by the dispersion. As a consequence of the temporal delay of the whole pulse, 
the high-order soliton appears at the center of the pulse but at a delayed time. 

 
The evolution of the pulse duration at its full width half maximum (FWHM) is shown in 
Fig. 6.3 (right panels). We can see that the pulse reaches a minimum pulse duration of 
10.1 fs at 103 cm inside the HCF in the case of the necklace beam with four beads, 7.5 fs 
at 66 cm inside the HCF in the case of six beads and 5.3 fs at 51 cm in the case of eight 



CHAPTER 6. NECKLACE BEAMS 

110 

 

 

 
beads. From that point on, the higher order dispersion terms cause the pulse fission, 
where the pulse breaks up in subpulses and there is no further spectral broadening. 

If we look for the generation of ultrashort pulses at wavelengths much shorter than the 
input from the propagation of these necklace beams in the HCF, one mechanism would 
be the phase-matched coupling of the soliton with a dispersive wave inside the HCF, 
resulting in the emission of radiation in the blue side of the spectrum. It is well-known 
that the efficiency of this process, defined as the energy transferred to the blue side 
of the spectrum, is around 15% of the input energy resulting in dispersive waves with 
10-20 µJ of energy [Travers et al., 2019]. Since in our case the energy carried by the 
visible band of the spectrum is basically similar to the energy of the red band that 
forms the soliton, one possible approach to directly obtain an energetic pulse at shorter 
wavelengths without a phase-matching process is through this visible band. 

It is important to remark that, although the nonlinearity is high, we have not observed 
any spatial dynamics related to self-focusing, so the beam keeps the same intensity 
structure during the whole propagation. In Fig. 6.4 we show the beam fluence of the 
necklace beams with four beads (left), six beads (center) and eight beads (right) at the 
HCF output, which is only affected by the absorption losses during the propagation. 
Although necklace beams with a large number of beads present a higher absorption as 
we have seen in Table 6.1, since the propagation of the necklace beam with eight beads 
is shorter, the losses in this case are quite similar to the four-bead case (see Fig. 6.5). 

 

 
Figure 6.4: The figure shows the beam fluence (J/cm2 of a necklace beam with 4 
(left), 6 (center) and 8 (right) beads at the HCF output. Note the different length of 
the HCF for each case. 

 
 
Finally, to find out if the ionization has a significant role in this propagation regime, 
bearing in mind the high nonlinearity of all the cases presented, we have simulated the 
propagation of one of the necklace beams, the one with six beads, without the ionization 
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Figure 6.5: The figure shows the evolution of the energy in the case of a necklace 
beam with 4 (blue line), 6 (orange line) and 8 beads (yellow line) inside the HCF with 
the parameters used in the previous simulations. 

 
 

effects. In Fig. 6.6 we show the comparison of the evolution of the energy (left) and of 
the FWHM duration (right). We can observe that the differences are so small that the 
ionization can be neglected. 

One may wonder how is it possible that the ionization of the medium has such a modest 
role with a high N parameter. The reason is the spatial structure of this beam since the 
total energy is equally distributed between all the beads and it is less confined compared 
to the hybrid modes. 

 

Figure 6.6: The figure shows the evolution of the energy (left) and of the FWHM 
duration (right) in the case of a necklace beam with 6 beads including ionization (blue 
line) and without it (orange line). 
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6.2 Ultrashort Visible Energetic Pulses from the Infrared 

Necklace Beam Propagation 

 
The two-band structure of the spectrum suggests the possibility of filtering the visible 
band to see if we are able to obtain an ultrashort visible energetic pulse. For this 
purpose, we have filtered the visible band using a square dynamic filter that takes the 
main part of the band at each point. Since the visible band shifts to the blue side of 
the spectrum at each point, the filter searches for the maximum of the band and the 
two adjacent minima. Once we have filtered the spectral band, we calculate its energy, 
temporal shape and FWHM duration. 

Figure 6.7 shows the filtered visible band, at the point of maximum intensity in the first 
bead, obtained from the propagation of a necklace beam with four beads (top row), six 
beads (middle row) and eight beads (bottom row). In each row of Fig. 6.7 we show 
the filtered spectrum (in logarithmic scale) from the propagation distance at which the 
band is in the normal dispersion region. As we can see, after the band crosses the zero- 
dispersion wavelength, it continues shifting to shorter wavelengths along the propagation 
without changing its width or structure, until it reaches a wavelength between 500-550 
nm where the soliton fission occurs and the spectral broadening stops. 

From the temporal point of view, see Fig. 6.7 (center panels), the peak intensity of 
the visible band is always of the same order during the whole propagation (between 
3 − 6 × 1013 W/cm2 depending on the case) with a similar temporal structure of a few 
femtoseconds of duration. Figure 6.7 (right panels) shows the evolution of the energy 
(blue line), the FWHM duration (solid orange line) and the FWHM duration of the 
Fourier Limit (orange dashed line) of the filtered band in each case. We examine the 
energy of the band from the moment the band crosses the zero-dispersion wavelength, 
reaching a value around 50 µJ in the case of four and six beads and 40 µJ for the eight- 
bead beam. From that point on, the energy remains approximately constant without 
presenting relevant losses during the propagation until the soliton fission occurs. In the 
case of the necklace beam with eight beads, the energy presents larger variations because 
the dynamics occurs a few centimeters before the soliton fission process (see the central 
panels of Fig. 6.3), where the spectral broadening stops. A similar behaviour can also 
be seen in the other two cases but at longer distances (around 80 cm (100 cm) for the 
necklace beam with six (four) beads). 

 
Regarding the temporal duration of the visible band, we can see that the FWHM dura- 
tion is usually shorter than 10 fs and sometimes very close to its Fourier Limit, which 
indicates that the phase structure of the visible band is very flat. It seems that the 
higher the number of beads of the beam, the shorter its visible band pulse. 



CHAPTER 6. NECKLACE BEAMS 
 

 

 
 

 
 

Figure 6.7: Left and center panels show the evolution of the spectral (in log scale) and 
of the temporal intensity distribution. Right panel shows the energy (blue line), the 
temporal FWHM duration (orange line) and Fourier limit (orange dashed line) of the 
visible band evaluated at the peak intensity of the first bead, in the case of a necklace 
beam with 4 (top), 6 (center) and 8 (bottom) beads. The dashed line in left panels 
shows the ZDWs (754, 679 and 625 nm respectively). 113 
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6.2.1 Influence of the Parameters of the Laser and the Filling Gas on 

the Visible Band 

 
Even though we have simulated the nonlinear propagation of different necklace beams 
with four, six and eight beads in an argon-filled HCF, we will continue discussing the 
case of the six-bead necklace beam in this subsection, since the dynamics for a different 
number of beads is quite similar. We have chosen this spatial mode in particular because 
it has an anomalous response high enough to self-compress the pulse in a standard one 
meter long HCF without requiring high computational time. 

Now that we have demonstrated that we are able to generate ultrashort visible energetic 
pulses, it would be interesting to understand its dependence with different parameters 
of the HCF. The easiest one to change in a real experiment is the pressure inside the 
HCF. For this reason we have performed the same study as in the previous section, but 
for different constant pressures inside the HCF for a necklace beam with six beads. We 
compare the visible bands of the spectrum, generated at each pressure value, at the same 
distance where the self-compression was optimum for the 1 bar case, at 66 cm, as if it 
were the actual HCF length. 

Figure 6.8 (left) shows a comparison of the visible bands obtained for different pressure 
values inside the HCF, scanned from 0.5 to 1.2 bar. We can observe that the band 
suffers a blue shift as the pressure inside the HCF increases, which comes from the 
higher nonlinearity and the stronger induced spectral broadening. This spectral shift 
saturates when the band reaches the 500 nm region due to the appearance of the soliton 
fission dynamics, that stops the spectral shift of that band. It is not surprising that 
the role of the pressure in the spectral tunability of this visible pulse is the opposite 
to the case of dispersive wave signals, for which increasing the pressure provides longer 
wavelengths [Brahms et al., 2020, Travers et al., 2019], since their nonlinear origins are 
different. 

 
We have also calculated the energy and the temporal duration of the bands at 66 cm 
inside the HCF to observe the dependence with the pressure. The blue triangles in 
Fig. 6.8 (right) show that the energy of the visible band is quite constant, being always 
around 50 µJ, which is a significant amount of energy. Calculating the efficiency in each 
case, the amount of energy in the visible band of the spectrum goes from 23% to 27% 
of the total input pulse energy and from 34% to 40% of the total pulse energy at 66 cm. 
The orange circles in Fig. 6.8 (right) correspond to the temporal duration at FWHM 
of the pulse obtained from the visible band (orange solid line) and its Fourier Limit 
(orange dashed line). As we can see, the pulse duration is always below 10 fs, reaching 5 
fs of duration at the cases with 0.6-0.8 bar of pressure inside the HCF. Unfortunately, in 
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Figure 6.8: This figure shows the comparison of the spectral bands in the normal 
dispersion region (left) and the comparison of the energies and pulse duration of each 
band (right), both for different constant pressures inside the HCF at 66 cm obtained 
from the propagation of a necklace beam with 6 beads. 

 
 

this optimal region the spectral phase of the output pulse is not perfectly balanced, and 
it could be post-compressed to a Fourier Limit pulse of 3 fs of duration. Nevertheless, 
all the pulses obtained are good ultrashort visible energetic pulses, according to the 
literature (see Fig. 6.9). 
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Figure 6.9: This figure shows the comparison, in log scale, of our ultrashort energetic 
visible pulse (purple star marker), obtained through the propagation of a necklace beam 
with 6 beads, with the already generated visible pulses from the literature. ((*)Energy 
and FWHM duration of the total pulse). 
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Another parameter we have explored is the laser wavelength. Since the two-band spec- 
trum is a consequence of the important role of the third-order dispersion, we have 
plotted the dependence of the third order dispersion (TOD) and the second order dis- 
persion (GVD) with the laser wavelength, for a necklace beam with six beads centered 
at 800 nm propagating in a HCF of 150 µm filled with argon at 1 bar. We can observe 
in Fig. 6.10 that at longer laser wavelengths the effect of the third-order dispersion is 
even larger, but also the second order dispersion increases and gets more negative, which 
means that the self-compression effect should be more efficient (in the sense that the 
linear and nonlinear phase should be balanced). To increase the effect of the third-order 
dispersion compared to the second order dispersion, we should use laser wavelengths 
close to the zero-dispersion wavelength (679 nm in this case). 

 

Figure 6.10: This figure shows the dependence of the second-order dispersion (GVD, 
blue line) and the third-order dispersion (TOD, yellow line) with the laser wavelength 
for a necklace beam with 6 beads centered at 800 nm propagating in a HCF of 150 µm 
filled with argon at 1 bar. 

 
 
In Fig. 6.11 we present the propagation dynamics of the same necklace beam with six 
beads of 35 fs and 0.2 mJ of energy, propagating in a HCF of 150 µm core radius filled 
with argon at 1 bar, the same as in the previous section, but centered at 1 µm. This 
figure shows the evolution of the spectral intensity distribution in log scale (left), of 
the temporal intensity distribution in linear scale (center) and of the FWHM duration 
(right), at the peak intensity of the first bead. The self-compression in this case occurs 
at 42.5 cm inside the HCF (see 6.11 (right)), this distance is 20 cm shorter than in the 
800 nm case, which means that the self-compression effect is more efficient as expected. 
The pulse duration at FWHM is 3.5 fs, shorter than the one obtained in the 800 nm 
case. On the other hand, the self-compression effect is so strong that the soliton fission 
occurs before the spectral band reaches the normal dispersion region and thus the blue 
band does not reach the visible spectral region (see 6.11 (left)). Note that in this case 
the central wavelength is farther from the zero-dispersion wavelength (ZDW) at 679 nm 
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and the spectral broadening is not enough before the soliton fission occurs, at around 
43 cm. 

 

 

Figure 6.11: Evolution of the spectral intensity distribution in log scale (left), of 
the temporal intensity distribution in linear scale (center) and of the FWHM duration 
(right), at the peak intensity of the first bead of a necklace beam with 6 beads centered 
at 1 µm. The dashed line in the left panel represents the ZDW at 679 nm. 

 
 

The cases with laser wavelengths close to the zero-dispersion wavelength are represented 
in Fig. 6.12. We present the propagation dynamics for three different laser wavelengths: 
679 nm (top row), 700 nm (middle row) and 750 nm (bottom row). Each row shows the 
evolution of the spectral intensity distribution in log scale (left panels), of the temporal 
intensity distribution in linear scale (center panels) and of the FWHM duration (right 
panels), at the peak intensity of the first bead. The dashed line in the left panels is the 
zero-dispersion wavelength (ZDW) at 679 nm. 

In the case where the central wavelength is 679 nm (Fig. 6.12 top row), at the beginning 
the dispersion is almost zero. The evolution of the FWHM duration (right panel) shows 
that, at the beginning of the propagation, the pulse almost maintains its duration besides 
some oscillations. However, as the spectrum broadens due to self-phase modulation, the 
pulse does not really propagate at the zero-dispersion wavelength and the pulse duration 
increases [Agrawal, 2013]. We can observe that, at the end of the propagation, the pulse 
has started to self-compress reaching 18 fs, which means the spectrum is broad enough 
for the anomalous dispersion to compensate the chirp from self-phase modulation. 

In the case of 700 nm (Fig. 6.12 middle row), as the central wavelength is very close 
to the zero-dispersion wavelength, the pulse also maintains its pulse duration at the 
beginning of the propagation due to the small dispersion that it suffers. However, a 
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Figure 6.12: Evolution of the spectral intensity distribution in log scale (left), of 
the temporal intensity distribution in linear scale (center) and of the FWHM duration 
(right), at the peak intensity of one bead of a necklace beam centered at 679 nm (top), 
at 700 nm (middle) and at 750 nm (bottom). The dashed line in the left panels is the 
ZDW (679 nm). 
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self-compression effect starts at the end of the propagation, as in the previous case, and 
the pulse duration reaches 12 fs. 

In the last case we present, at 750 nm (Fig. 6.12 bottom), the second-order dispersion 
is enough to compensate the chirp from the self-phase modulation from the beginning of 
the propagation. The pulse experiences a self-compression down to 8 fs at 85 cm inside 
the HCF. This dynamics is similar to the one obtained in the 800 nm case, although the 
self-compression distance and pulse duration are longer, as expected. 

The spectral broadening in each case presents the two-band structure and it is wide 
enough to reach the normal dispersion region, that is the main purpose of this study. 
We can filter again the spectral band in the normal dispersion region in each case and 
compare them at the same distance where the self-compression was optimum for the 800 
nm and 1 bar case, at 66 cm, as if it were the actual HCF length. In Fig. 6.13 (left) 
we compare the filtered visible band obtained for different laser wavelengths and we can 
observe that the visible bands are centered between 500 and 600 nm. The visible bands 
shift to the blue side of the spectrum when the laser wavelength is shorter. 
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Figure 6.13: Left panel shows the comparison of the spectral bands in the normal 
dispersion region, and right panel shows the comparison of the energies (blue triangles) 
and pulse duration (orange circles) of each band, both for different laser wavelengths 
at 66 cm inside the HCF. The Fourier limit is represented by the orange dashed line. 

 
 

We have also calculated the energy and the temporal duration of the bands at 66 cm 
inside the HCF to observe the dependence with the laser wavelength. The blue triangles 
in Fig. 6.13 (right) show that the energy of the visible band is always around 50 µJ. The 
temporal duration at FWHM of the pulse obtained from the visible band in each case, is 
represented by the orange circles in Fig. 6.13 (right), and its Fourier Limit is represented 
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by the orange dashed line. As we can see, the pulse duration is always between 8-10 fs. 
However, it seems that only the case of 800 nm is perfectly balanced, whereas for other 
input wavelengths the visible band could be post-compressed to a Fourier Limit pulse 
of 4 fs of duration. Again, all the pulses obtained are good ultrashort visible energetic 
pulses. 

 
 
6.3 Spatial Robustness of the Beam along the Hollow Cap- 

illary Fiber 

 
In this section we would like to see what occurs if the input necklace beam profile is not 
ideal. First of all, we should emphasize that we wanted to avoid any self-focusing effect, 
so in the energy regime that we have chosen for our necklace beams, the spectral broad- 
ening was enough to reach the visible part of the spectrum, but without entering in the 
self-focusing regime. For this reason, we remained below the critical power of a Gaussian 
beam. To calculate the critical power we use Eq. 4.2 again, Pcr = Ncrλ2/(4πnLnNL), 
where Ncr = 1.8962, λ0 = 800 nm and nL and nNL are the linear and nonlinear re- 
fractive indexes of argon. With these parameters, the input peak power of our necklace 
beams is P = 0.96Pcr, so each bead would be carrying a fraction of the total energy and 
would not be able to collapse, as we have already shown in Fig. 6.4 [Grow et al., 2007]. 
Of course, in case that the self-focusing effect appears, we could not observe the beam 
collapse since the ionization would inhibit it. 

 
Under these conditions we have already demonstrated, in Subsection 6.1.2, that a pure 
necklace beam shows a nice spectral broadening, keeping a very good spatial quality and 
without any spatial collapse. According to the literature, in the situation of a non-ideal 
necklace input beam, it would become unstable (the stability of the beam depends on 
the fiber geometry and the number of beads) during the nonlinear propagation inside 
the HCF if the input power of each bead is above 0.06Pcr [Fibich and Shpigelman, 2016]. 
As we are well above this threshold, we should see an energy transfer between beads 
that becomes more significant as the beam propagates inside the HCF. 

To test numerically how relevant this situation could be, we have simulated the prop- 
agation of the same necklace beams presented in Fig. 6.3 with four beads, six beads 
and eight beads, but with the first bead (labelled “B #1” in Fig. 6.14) having 5% more 
energy, as it is usually done in similar stability analyses [Fibich and Shpigelman, 2016]. 
We propagate the necklace beams centered at 800 nm with 0.2 mJ and 35 fs of duration 
in a HCF with 150 µm core radius filled with argon at 1 bar, the same parameters used 
in the previous simulations. 
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As expected, there is an energy transfer between beads but, in the moderate power 
regime that we use, the structure holds during the whole propagation distance. In Fig. 
6.14 we show the results obtained for a non-ideal necklace beam with four beads (top 
row), six beads (middle row) and eight beads (bottom row). In each row of Fig. 6.14, the 
left panels show the beam fluence for the non-ideal case, at the self-compression distance 
(zsc) of the pure input case, which is 103 cm for the necklace beam with four beads, 66 
cm for six beads and 51 cm for eight beads. As it can be observed, the spatial structure is 
kept and, although during the propagation some of the beads acquire high peak intensity 
values, we have not observed any self-focusing dynamics. Comparing the beam fluence 
of the necklace beam with four beads and eight beads, it seems that necklace beams with 
a higher number of beads are more resistant to instabilities during the propagation. To 
confirm this apparent tendency we have also propagated a necklace beam with 16 beads. 
In this case the anomalous dispersion is so strong that it self-compresses from 35 fs to 

1.75 fs in 25 cm of propagation inside the HCF. The beam again is stable, but since the 
propagation length is so short, the spectrum is not wide enough to obtain the visible 
band in the spectrum, which was our aim in this work. There is a visualization of the 
evolution of the non-ideal beam profile with six beads in [Crego et al., 2021]. 

In Fig. 6.14, center and right panels represent the spectral and temporal distribution 
of beads #1 (which initially has 5% more energy) and the opposite beam (#3 in the 
necklace beam with four beads, #4 in the case of six beads and #5 for the eight-bead 
beam) at the self-compression distance of each necklace beam and at the peak intensity 
point. We can see that the spectral and temporal distribution are different depending on 
the bead. It is clear that the spectral broadening towards the visible and the temporal 
self-compression are still there but, of course, not equally in all the beads of the beam. 
These observations are easily explained because not all beads carry the same amount 
of energy during the propagation. We see that there are only some beads of the beam 
that reach high peak intensity values during the propagation and only those are able 
to self-compress as the ideal beam. Moreover, these beads are located opposite to each 
other, so they do not self-compress at the same propagation distance. 

 
We have calculated the weighted average spectral and temporal distribution from the 
non-ideal beam This weighted average is calculated taking into account the relative 
energy of each bead. In Fig. 6.14, center and right panels show the calculated weighted 
average spectral and temporal distribution in the non-ideal case at the self-compression 
distances (green lines) and we compare them with the spectral and temporal distribution 
from ideal beams (dark blue dashed lines) presented in Subsection 6.1.2. We can observe 
that they are quite similar, although the spectral and intensity distributions for two 
particular beads are different. 

https://osapublishing.figshare.com/articles/media/Visualization_4_mp4/13271036
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Figure 6.14: Beam fluence of a non-ideal input beam at zsc=103 cm (top), 66 cm 
(middle) and 51 cm (bottom) for 4, 6 and 8 beads. Spectral (center) and temporal 
(right) profile at the intensity peak at two beads (orange and light blue markers) and 
the weighted average spectral and temporal intensity distribution at zsc (green line). 
The dark blue dashed lines represent the ideal beam case. Vertical black dashed lines 
show the ZDWs (754, 679 and 625 nm respectively). Note the change in beads colors 

122 in the case of 8 beads. 
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In view of the spatial profiles at the self-compression distances shown in Fig. 6.14 (left), 
we can identify the optimal bead (the one with higher energy) and select it. The spatial 
selection of part of the beam would produce a decrease of the output energy. In the 
case of the necklace beam with four beads, since the blue part of the spectrum is very 
modulated, the energy of the visible band for bead #3 at 103 cm is 5.7 µJ. For the case 
of six beads the energy of the visible band for bead #4 is 14.6 µJ at z=66 cm. The last 
case, the necklace beam with eight beads, the energy of bead #1 is 8.06 µJ at 51 cm. 

We can filter the visible band, considering the weighted average spectral distribution 
at the self-compression distance, and calculate the energy in the non-ideal case, not for 
one bead, but for the whole beam. In the case of the non-ideal necklace beam with four 
beads, the energy of the visible band is 9.4 µJ, which is less than a quarter of the energy 
of the visible band in the ideal case. In the case of non-ideal necklace beams with six 
beads and eight beads, we obtain an energy in the visible band of 37.3 µJ and 25.73 µJ, 
respectively, which are not far from the ideal cases. On the other hand, Fig. 6.14 (right) 
indicates that the self-compression of the selected bead could be even better compared 
to the ideal case, especially in the cases of six and eight beads. For that purpose, we 
calculate the FWHM duration of the bead with higher energy at the self-compression 
distance in each case. For the non-ideal necklace beam with four beads we calculate the 
FWHM duration of bead #3 and we obtain 8.13 fs, while the FWHM duration in the 
ideal case at 103 cm is 12.08 fs. In the case of the non-ideal necklace beam with six 
beads we obtain a FWHM duration of 6.15 fs in bead #4, while the temporal FWHM in 
the ideal case is 7.5 fs. In the case of the non-ideal necklace beam with eight beads we 
obtain a FWHM duration of 2.2 fs in bead #1, while we obtain a temporal FWHM in 
the ideal case of 3.5 fs. Therefore, it is true that this non-ideal situation would somehow 
deteriorate the output pulse, basically the output energy, but it will still be useful. We 
can see that this degradation is especially remarkable for beams with a low number 
of beads. Moreover, we must emphasize that we are in a power regime in which the 
instability is not large enough to couple all the energy into one bead and activate a 
self-focusing process. 

 
Once again, we have checked if the ionization is significant in the case of a non-ideal 
beam. We have propagated the same non-ideal six-bead necklace beam but without 
ionization. Although at the beginning the dynamics is similar to the case with ionization, 
the energy transfer between the beads coming from the nonlinear instability leads to an 
increment of the peak power in one bead at certain moments during the propagation, 
overcoming the critical power at 48.5 cm, in this particular case. Therefore, the role 
of the ionization is crucial here since it avoids the collapse of the beam at 60 cm when 
one bead, #1 in this case, keeps almost all the available energy so the beam is able to 
collapse, as we can expect after the study on self-focusing done in Chapter 4. In Fig. 6.15 
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we show the beam fluence at the collapse distance (left), the evolution of the spectral 
intensity distribution (center) and of the FWHM duration (right) at the peak intensity 
at bead #1. Due to the high intensity, and hence the high nonlinearity achieved in the 
case of the non-ideal beam, the effect of the ionization is much more significant than in 
the ideal beam case. 

 

 

Figure 6.15: Collapse of a necklace beam with 6 beads at 60 cm without taking into 
account the ionization. Left panel shows the beam fluence at zsc=60. Center and right 
panels show the evolution of the spectral intensity distribution in log scale at the peak 
intensity at one bead (center), marked as #1, and of the FWHM duration (right). The 
black dashed line shows the ZDW (679 nm) 

 
 
 
 
6.4 Conclusions 

 
In conclusion, we have found that high-energy ultrashort pulses in the visible region 
of the spectrum can be generated in standard HCFs using infrared necklace beams as 
driving pulses. The interplay between the high nonlinearity and the dispersion broadens 
the spectrum in such a way that the energy is mainly concentrated in two spectral 
bands, one of them reaching the visible part of the spectrum during the propagation. In 
addition, the self-compression of the pulse is observed due to the anomalous dispersion 
that these beams present. 

Filtering this spectral band, we can obtain pulse energies of around 50 µJ and pulse 
durations below 10 fs using a 150 µm core radius HCF filled with argon at different 
constant pressures. The high efficiency (around 25% of the input energy) and the wave- 
length tunability of the process for different gas pressures inside the HCF, demonstrate 
that the soliton self-compression of infrared necklace beams in HCFs filled with gas could 
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be a compact tool which paves the way to new short laser pulse sources in the visible 
region. 

We have observed that depending on the pump wavelength, the interplay between the 
high nonlinearity and the dispersion is different. As a result, the optimum pump wave- 
length is the one in which the linear and nonlinear phase balanced together, so the pulse 
experiences self-compression, but the spectral broadening is wide enough to reach the 
normal dispersion region at the end of the propagation. 

We have also demonstrated that when using non-ideal input necklace beams, where there 
is a nonlinear energy transfer between the beads, they still present a similar spectral 
band and a temporal self-compression, although only in those beads that reach high 
peak intensity values during the propagation. Even in this non-ideal case, self-focusing 
does not play a role in the dynamics of the beam since the ionization prevent the beam 
collapse. 



 

 

 



 

 

 
 
 
 
 
 
 

Chapter 7 
 
 

Dispersive Wave Generation 
inside Hollow Capillary Fibers 

 
Tunable ultrashort pulses in the ultraviolet are useful for different applications, such as 
optical frequency metrology [Ye and Cundiff, 2005] and pump-probe spectroscopy [Hock- 
ett et al., 2011]. The way of generating these sources is through frequency-conversion 
schemes, such as those using nonlinear crystals [Johnson et al., 2009, Ringling et al., 
1993], high-harmonic generation [Durfee et al., 1997, Rundquist et al., 1998] or selecting 
the desired wavelength from a broadband spectrum [Jiang et al., 2015, Liu et al., 2010], 
which reduces the spectral brightness. In general, these techniques are limited by the op- 
tical damage of the material and the post-compression setups. In addition, they usually 
produce ultraviolet radiation with a narrow bandwidth, so the generation of ultrashort 
and energetic pulses in this spectral region with these techniques is challenging. 

 
Hollow capillary fibers (HCFs) are an alternative system to generate ultraviolet light. 
Under certain conditions these systems present anomalous dispersion, which combined 
with the nonlinear pulse propagation dynamics, can lead to the generation of light at 
wavelengths shorter than the pump through the phase-matched dispersive wave emis- 
sion from the propagating soliton. Wavelength-tunable dispersive wave emission from 
the ultraviolet to the infrared has been demonstrated in gas-filled photonic crystal fibers 
[Cassataro et al., 2017, Joly et al., 2011, Mak et al., 2013, Novoa et al., 2015], taking 
advantage of the Raman response of molecular gases for a more effective spectral broad- 
ening and pulse compression [Luan et al., 2021] and also in HCFs [Brahms et al., 2019, 
2020, Travers et al., 2019]. Dispersive wave generation in HCFs presents several advan- 
tages compared to other frequency generation methods: the wavelength can be tuned 
through the fiber geometry, gas species and pressure, the conversion efficiency is higher 
than in the high-harmonic process and its duration can be of just a few femtoseconds. 
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In addition, HCFs have broad ultraviolet transparency and a high damage threshold, 
which allows to scale up the energy. 

As mentioned previously, the tunability of the dispersive wave turns this emission into 
an important tool for different applications where a desired wavelength is needed, for 
instance, in atomic or nuclear clocks. Atomic clocks have been used since its first demon- 
stration in 1949 at the National Institute of Standards and Technology in Boulder (Col- 
orado). The procedure to measure the time is based on the interaction of microwave, 
optical or ultraviolet radiation with the excited states of an atom. Optical atomic clocks 
are the current basis of precise atomic clocks, reaching accuracies of 10−18, which means 
not losing or gaining one second in 30 billion years [von der Wense and Chuankun., 2020]. 
The accuracy of this time measurement is important to achieve a greate temporal preci- 
sion in scientific experiments and in different applications, such as telecommunications 
and satellites [Boulder Atomic Clock Optical Network (BACON) Collaboration*, 2021]. 

 
Since higher frequencies increase the precision, one of the most challenging goals in this 
research area is the pursuit of a nuclear clock. The operation principle is the same, 
however, the difference is using a nuclear transition instead of a transition between elec- 
tronic energy levels for time measurement. The difficulty to implement this theory lies 
in the very high frequency and thus energy, necessary for nuclear transitions, which is 
not accessible with present narrow bandwidth laser sources. However, there is an ex- 
ception, the excitation energy to the first nuclear excited state in 229Th thorium isomer, 
is comparable to typical electronic transitions in the atomic shell, which could be used 
for a nuclear clock with better precision [Campbell et al., 2012, Peik and Tamm, 2003]. 
The excitation energy between the ground state and the first excited state has been 
measured recently to be about 8.3 eV, which corresponds to a wavelength of 149.7 ± 3.1 
nm [Seiferle et al., 2019]. Since there is no broadband gain medium available in the ul- 
traviolet region, a laser oscillator is not possible at the moment. This wavelength can be 
generated through nonlinear conversion in nonlinear crystals, high-harmonic generation 
or frequency comb technology. Nevertheless, it is possible to generate radiation at this 
wavelength through the dispersive wave generation process in HCFs, a more compact 
and efficient process. 

 
In this chapter we will study the generation of dispersive waves through the soliton 
self-compression effect in HCFs. First, we will study the dispersion properties of HCFs 
and the phase-matching condition between the soliton and the dispersive wave. We will 
obtain the theoretical formulas that estimate the wavelength of the dispersive wave. We 
will study the dependence of the phase-matching condition with different parameters, 
such as gas pressure and the laser wavelength. 
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In the second section of this chapter, we will study the nonlinear propagation of the 
fundamental mode EH11 and the dispersive wave emission using the (2+1)D model, 
explained in Section 3.2 in Chapter 3, and a simplified version of this model that only 
includes the temporal dynamics (time-dependent (1+1)D model). We will give a com- 
plete description of the dispersive wave generation process, its tunability and calculate 
its duration and energy. We will also try to gain some insight into the effect of the 
multimode nature of the HCF in the dispersive wave emission process. Although in the 
(1+1)D simulations the generation of the dispersive wave is quite clean, the multimode 
nature of the HCF emerges with the (2+1)D simulations, showing a more structured 
dispersive wave emission. In the last section of this chapter we will introduce the scal- 
ing rules to choose the right laser and HCF parameters to obtain a dispersive wave at 
a desired wavelength, for instance, 150 nm that is related to the excitation energy in 
229Th. We will perform a pump wavelength scan with the time-dependent (1+1)D and 
(2+1)D models, achieving the same nonlinear dynamics in each case. 

 
 

7.1 Properties of the Dispersive Wave Emitted in Hollow 

Capillary Fibers 

The dispersion in a HCF is the combination of the material dispersion, the filling gas in 
our case, and the HCF dispersion itself. The gas dispersion is usually small due to the 
low density, but one of the advantages of the HCF is the possibility of tuning the HCF 
dispersion easily through the gas pressure and species and make the overall dispersion 
anomalous (D < 0). This makes HCFs ideal for ultrafast applications. The dispersion 
is usually calculated from the frequency dependence of the propagation coefficient βpq of 
each spatial modes [Marcatili and Schmeltzer, 1964], defined in Eq. 2.67, and it depends 
on the gas pressure through the linear refractive index of the gas. The expression for the 
dispersion of each spatial mode is defined in Eq. 2.36, where the propagation coefficient 
k is replaced by βpq. 

∞ 
D(ω) = (βpq m! )m(ω − ω0)m (7.1) 

m≥2 

 
During the pulse propagation inside HCFs, the anomalous dispersion that the pulse 
experiences, combined with the self-phase modulation, leads to soliton formation and 
soliton self-compression process resulting in an ultrashort pulse with a high intensity 
peak. This self-compression process is accompanied by an important spectral expansion. 
In general, solitons are stable but in the presence of certain perturbations they become 
unstable, which can cause the break-up of the soliton into its fundamental components, 
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a phenomenon known as soliton fission. Some of these perturbations are the higher- 
order dispersion [ H ö ö k  and Karlsson, 1993, Wai et al., 1990] and the non-instantaneous 
nonlinear response of the medium. The instability of the soliton due to the third- 
order dispersion is manifested as a shed of energy to a certain frequency in the normal 
dispersion regime, produced under perfect phase matching conditions, separated from 
the soliton spectrum [Akhmediev and Karlsson, 1995]. This emitted radiation from the 
soliton in the normal dispersion region is usually known as dispersive wave emission. 

 
 
7.1.1 Phase-Matching Condition of the Dispersive Wave 

 

In this section we are going to obtain the theoretical formulas for the phase-matching 
condition between the soliton and the emitted dispersive wave. While the soliton prop- 
agates nonlinearly in the anomalous dispersion region, the dispersive wave propagates 
linearly in the normal dispersion region. We can express the propagation coefficients 
and calculate the frequency of the dispersive wave, which is determined by the phase- 
matching between them: 

 
βsol 

 
(ω) = βpq 

 
(ωsol 

 
) + (βpq 

 
)1(ω 

 
 
sol )(ω − ω 

 
 
sol ) + ωsolnNLIsol 

2c 
βDW (ω) = βpq(ω) ≈ βpq(ωsol) + (βpq)1(ωsol)(ω − ωsol) + D(ω) 

∆β = βDW (ω) − βsol(ω) = 0 

(7.2) 

 
where we have considered that the soliton and the dispersive wave propagate as the pq- 
spatial mode of the HCF. Subscripts indicate frequency derivatives and D(ω) denotes 
the higher-order dispersion terms, as defined in Eq. 7.1. The parameter Isol is the self- 
compressed peak intensity and ωsol is the soliton frequency. The soliton propagates with 
the group velocity of the HCF spatial mode with an additional small nonlinear phase 
that is often small compared to the other terms [Akhmediev and Karlsson, 1995]. The 
dispersive wave propagates linearly at a different frequency, experiencing the normal 
dispersion of a HCF spatial mode. 

Considering the anomalous propagation of the fundamental mode in the HCF, and not 
taking into account the energy transfer from the fundamental mode to a dispersive wave 
in a higher-order mode, we can calculate the phase-matching condition by finding the 
frequency that solves the following equation: 

 

D(ω) 
ωsolnNLIsol = 0 (7.3) 

2c 
 

As mentioned above, these dispersive waves are tuneable changing the pressure and 
hence the dispersion of the medium, which changes the phase-matching relation. In 
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Fig. 7.1 we show the dependence of the phase-matching condition ∆β with the gas 
pressure for neon (top) and argon (bottom) in two different systems. In the case of 
neon, this is the phase-matching condition for a pulse centered at 800 nm propagating 
in the fudamental mode of a HCF with 100 µm core radius, while in the case of argon 
the pulse propagates as the fundamental mode, centered at 1800 nm through a HCF 
with a core radius of 150 µm. We can observe that the phase-matching occurs in the 
ultraviolet region of the spectrum in the case of neon for different pressures. For a 800 
nm laser beam, phase-matched solutions can be achieved from 160 to 240 nm. In argon 
the dependence with the pressure is stronger. 

 

 
Figure 7.1: Top panel represents the phase-matching condition of a dispersive wave 
pumped by a 800 nm pulse propagating in a HCF with 100 µm core radius filled with 
Ne as a function of the gas pressure. Bottom panel represents the phase-matching 
condition of a dispersive wave pumped by a 1800 nm pulse propagating in a HCF with 
150 µm core radius filled with Ar as a function of the gas pressure. 
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7.2 Dispersive Wave Generation Process 
 
In this section we will give a complete description of the dispersive wave generation pro- 
cess. For this purpose we will propagate through the HCF a laser pulse with anomalous 
dispersion. Consequently, we expect to observe the soliton self-compression process and 
the emission of the dispersive wave in the propagation dynamics. We will study the 
tunability of the dispersive wave wavelength, its energy and the temporal duration. In 
this study we have performed simulations with the time-dependent (1+1)D model and 
the (2+1)D model. The initial condition to solve numerically Eq. 3.12 is again 4.8. 

We simulate the propagation of a 50-fs laser pulse with 0.62 mJ input energy and centered 
at 1800 nm inside a 2-meter long HCF with 150 µm core radius filled with Ar at 0.2 
bar (we choose the parameters based on the phase-matching condition results shown in 
Fig. 7.1 (bottom)). The expression for the linear refractive index of argon is the same as 
presented in Eq. 4.10 and the nonlinear refractive index is nNL = 1.74·10−23 ·p (m2/W), 
where p is the gas pressure [Couairon et al., 2008]. We assume that the pulse is coupled 
to the fundamental mode of the HCF, EH11 mode. For these particular parameters the 
zero-dispersion wavelength is 737 nm, which means that the dispersion is anomalous. 
In Fig. 7.2 we show the (1+1)D propagation dynamics. The top left panel shows the 
evolution of the on-axis temporal intensity distribution, while the top right panel shows 
the evolution of the on-axis spectral intensity distribution. Both panels represent the 
characteristic propagation dynamics in a self-compression process. It is clear from Fig. 
7.2 (top left), that the pulse duration, which is initially 50 fs, becomes shorter along the 
propagation until it reaches 2.18 fs, below one-cycle duration for a pump wavelength of 
1800 nm due to the spectral broadening achieved. This optimal pulse self-compression 
occurs at zsc=150 cm inside the HCF. During the propagation, the dispersion and the 
self-phase modulation balance each other, leading to the formation of the soliton at 140 
cm inside the HCF. On the other hand, in the evolution of the spectrum shown in Fig. 7.2 
(top right), we can observe a symmetric spectral broadening due to self-phase modulation 
and, at the point of optimal pulse self-compression (zsc=150 cm), the spectrum expands 
shedding energy in the ultraviolet region around 204 nm, in good agreement with the 
dispersive wave predicted from the phase matching condition and depicted in Fig. 7.1. 
This emission is the dispersive wave, resulting from an energy transfer from the soliton 
to this particular frequency placed in the normal dispersion region. In Fig. 7.2, bottom 
left and right panels represent the temporal and spectral intensity profile at the point of 
maximum self-compression (150 cm). In Fig. 7.2 (bottom left) the self-compressed pulse 
presents an intensity profile with features from a soliton self-compression process. It has 
a long front tail with the peak of the pulse located at the trailing part. The generated 
dispersive wave propagates at a different group velocity and, at some point, it interferes 
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Figure 7.2: Temporal intensity (W/cm2) evolution (top left) and spectral intensity 
evolution in log scale (top right) of a 50-fs pulse centered in 1800 nm with 0.62 mJ, 
propagating inside a HCF with 150 µm core radius filled with Ar at 0.2 bar using 
the (1+1)D model. Temporal and spectral intensity profile (bottom left and bottom 
right respectively) at the point of maximum self-compression (150 cm). The ZDW is 
represented as dashed lines. We use the (1+1)D model. 

 
 

with the soliton causing the appearance of some amplitude oscillations at the trailing 
part of the pulse, as one can find in the literature [Köttig et al., 2017, Travers et al., 
2019]. In the spectral intensity evolution (Fig. 7.2 bottom right) we can observe the 
spectral broadening and at the optimal pulse compression at zsc=150 cm, the spectrum 
expands leading to the formation of a dispersive wave at 204 nm. 

Since this dispersive wave lies within the normal dispersion region, it broadens as it 
propagates away from the soliton, which explains the second structure behind the main 
peak observed in Fig. 7.2 (bottom left). As a consequence of this dynamics, the soliton 
is unstable and these perturbations cause the soliton fission and the saturation of the 
spectral broadening, as can be seen in the top panels from 150 cm until the HCF output. 

 
 

7.2.1 Features of the Dispersive Wave 
 

To use this ultraviolet emission as an ultrashort laser source, one may wonder what the 
features of this dispersive wave are. For this reason, we are going to study its tunability 
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with the wavelength and the gas pressure, but also the energy and the pulse duration of 
this radiation. 

For simplicity, we use again the (1+1)D model to perform a wavelength scan from 1400 
nm to 1800 nm. We propagate the same pulse of 50 fs and 0.62 mJ inside a HCF with 
150 µm core radius filled with Ar at 0.2 bar, but changing the pump wavelength. As 
expected, the phase-matching condition is different for each case and the emission of the 
dispersive wave occurs at a different wavelength. In Fig. 7.3 (left), we plot the spectral 
intensity profile of the dispersive waves obtained from different pump wavelengths, at 
the point of optimal self-compression in each case. The wavelength of the dispersive 
waves obtained with the theoretical formulas in this case are: 216 nm pumped by 1800 
nm, 228 nm pumped by 1700 nm, 241.5 nm pumped by 1600 nm, 258 nm pumped by 
1500 nm and 278.5 nm pumped by 1400 nm. Comparing these estimations with the 
numerical values from Fig. 7.3 (left), the agreement is satisfactory. We can observe 
that the distance where the dispersive wave is generated varies in each case (see the 
legend), being longer for shorter pump wavelengths, which is consistent with a lower 
anomalous response since they are closer to the zero-dispersion wavelength. According 
to the tunability, we can see that the wavelength of the dispersive wave depends on the 
pump wavelength in such a way that it blue-shifts for longer pump wavelengths. 

 

Figure 7.3: Spectral intensity profiles of the dispersive waves generated from different 
pump wavelengths (left) or different constant pressures inside the HCF (right) at the 
point of optimal self-compression in each case (indicated in the legend). We use the 
(1+1)D model. 

 
 
Another parameter we can easily change in a real experiment to tune the dispersive wave 
is the gas pressure. We propagate the same pulse, centered at 1800 nm, changing the 
constant argon pressure inside the HCF. We perform a pressure scan from 0.1 to 0.5 bar. 
In Fig. 7.3 (right), we plot the spectral intensity profile of the dispersive waves obtained 
for different constant pressures in the HCF, at the point of optimal self-compression in 
each case. The wavelength of the dispersive waves with these parameters obtained with 
the theoretical prediction from Fig. 7.1 are: 215.5 nm for 0.2 bar, 257.5 nm for 0.3 bar, 
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295 nm for 0.4 bar and 328 nm for 0.5 bar. The agreement of these estimations with 
the results from the (1+1)D model shown in 7.3 (right) is again fairly good. A lower 
pressure means also a lower nonlinearity, so we can observe that for lower pressures the 
dispersive wave is generated at longer distances (see legend). In fact, the case of 0.1 
bar is not plotted since we have not observed the dispersive wave emission in the HCF 
length (2 m). Related to the tunability, it is clear that a higher pressure red-shifts the 
dispersive wave wavelength with a dependence that seems stronger than changing the 
pump wavelength. 

Since we know that the spectral tuning of the dispersive wave is easily accessible, if 
we want to use this emission as an ultrashort source we have to calculate its duration 
and the amount of energy transferred to it from the soliton. For this reason, we have 
filtered the dispersive wave spectrally and reconstructed the temporal structure of the 
ultraviolet pulse for the case presented in Fig. 7.2 (1800 nm, 50 fs, 0.62 mJ and Ar at 0.2 
bar). In Fig. 7.4 (left) we show the FWHM duration of the dispersive wave (purple line) 
and the corresponding Fourier Limit (green line) from z=150 cm, the point where the 
dispersive wave is generated. At this point, the FWHM duration has a value of 1.87 fs, 
the same as the Fourier Limit and also similar to the FWHM duration of the soliton at 
this point. However, despite the low pressure, as the dispersive wave propagates in the 
normal dispersion region of the HCF it broadens reaching 26.75 fs at the HCF output. 

 

Figure 7.4: Left panel shows the evolution of the FWHM (purple line) and Fourier 
Limit duration (green line) of the generated dispersive wave. Right panel shows the 
evolution of the total pulse energy (blue line) and the energy of the dispersive wave 
(orange line) from the point where it is generated. 

 
 

On the other hand, Fig. 7.4 (right) shows the energy of the dispersive wave (orange 
line) together with the total energy of the pulse (blue line). We can see that at the 
point of the dispersive wave emission (150 cm) the energy is low, less than 4 µJ, but as 
it propagates in the HCF more energy is transferred to it reaching 40.62 µJ at the HCF 
output. We can calculate the efficiency of the process as the amount of the energy that 
goes to the dispersive wave from the total pulse energy at the HCF input. We obtain 
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an efficiency of 0.65% at 150 cm, but an efficiency of 6.6% at the HCF output. From 
this discussion we can deduce that it is possible to obtain an ultrashort source from the 
dispersive wave, if the emission occurs near the HCF output, but the energy would be 
low. On the contrary, if we are interested in an energetic dispersive wave, the more it 
propagates inside the HCF the more energy it gains, but its duration grows along the 
propagation. 

One last feature we can study is the multimode nature of the dispersive wave generation 
process and the influence of the spatial dynamics and the ionization of the medium. 
So far, we have studied the nonlinear propagation and the dispersive wave generation 
process with the time-dependent (1+1)D model. This model does not include neither the 
spatial dynamics nor the ionization, so the simulations are single mode and the energy 
transfer between the soliton and the dispersive wave is always in the same spatial mode, 
the fundamental one in this case. However, taking into account the spatial dynamics 
could lead to the emission of different dispersive waves that might be related with the 
appearance of other spatial modes besides the fundamental mode [López-Zubieta et al., 
2018b] and the generation of plasma. 

 
We have propagated with the (2+1)D model the 50-fs pulse with 0.62 mJ centered at 
1800 nm in a HCF filled with 0.2 bar of Ar. Figure 7.5 shows the comparison of the 
nonlinear propagation obtained with the (1+1)D (orange lines) and the (2+1)D model 
(blue lines). In Fig. 7.5 (right) we have plotted the evolution of the FWHM duration 
and we can see that it is quite similar with both models, meaning that neither the spatial 
dynamics nor the ionization are significant during the propagation. However, there is a 
small disagreement near the dispersive wave generation point (150 cm). 

 

Figure 7.5: Comparison of the results from the (1+1)D model (orange lines) and the 
(2+1)D model (blue lines). Left panel shows the on axis temporal intensity profile, 
center panel shows the on axis spectral intensity profile and right panel shows the 
evolution of the FWHM duration of a 50 fs pulse centered in 1800 nm with 0.62 mJ, 
propagating inside a HCF filled with Ar at 0.2 bar. 

 
 
Left and center panels of Fig. 7.5 show the comparison of the temporal and spectral 
intensity profile at the dispersive wave generation point. There, we can observe that 
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the dynamics is practically the same, however the intensity peak is lower in the (2+1)D 
model and the dispersive wave is slightly shifted to 224 nm, which presents the same 
difference with respect to the theoretical formulas and the (1+1)D model. The origin 
of the frequency shift of the dispersive wave in the (1+1)D model and the (2+1)D 
model could be the effect of the generated plasma, but we have not found a complete 
explanation of this shift. 

Figure 7.6 shows a comparison of the spectral intensity profile of the dispersive wave 
from the (1+1)D model and the (2+1)D model at 150 cm (left) and at the HCF output 
(center). We have already discussed that there is a red shift of the wavelength of the 
dispersive wave obtained from the (2+1)D model with respect to the one obtained 
from the (1+1)D model at the generation point (at 150 cm, Fig. 7.6 (left)). The 
differences between both dispersive waves are more important at the HCF output (Fig. 
7.6 (center)) because the dispersive wave obtained from the (2+1)D model is significantly 
more structured than the one obtained with the (1+1)D model. Although it is hard to 
identify exactly the origin of this structure it must be related to the ionization and the 
multimode nature of the propagation, that is only kept by the (2+1)D model. 

 

Figure 7.6: Spectral intensity profile of the dispersive wave from the (1+1)D model 
(orange line) and the spectral intensity profile from the (2+1)D model (blue line) at 150 
cm (left) and at the HCF output (center). Right panel shows the mode contribution of 
the first four spatial modes to the dispersive wave. 

 
To expose the relevance of the higher spatial modes in this particular situation, Fig. 7.6 
(right) shows the mode decomposition of the dispersive wave, illustrating the substantial 
contribution of different spatial modes to the emission during the process of emission 
of the dispersive wave along the propagation. We have filtered the dispersive wave to 
calculate the evolution of its energy and FWHM duration. In this case, the energy and 
the FWHM duration obtained with the (1+1)D model and the (2+1)D model match 
at the generation point (less than 2 fs and 4 µJ at 150 cm), but as the dispersive wave 
propagates the evolution differs, due to the multimode nature of the beam reaching a 
lower energy and a longer FWHM duration at the end of the HCF with the (2+1)D 
model (33 fs and 27 µJ at 200 cm). Note that although the spectra shown in Fig. 
7.5 (left) indicates that the dispersive wave generated from the (2+1)D models is more 
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intense than the one obtained with the (1+1)D model, these two spectra are just on-axis 
spectra. Therefore, to calculate the energy of the whole dispersive wave we have to take 
into account the complete spatio-spectral distribution, which finally results in a lower 
energetic dispersive wave from the (2+1)D model. 

 
 

7.3 Route to Dispersive Wave Generation at a Fixed Wave- 

length 

 
Once we have studied in detail the dispersive wave emission process, in this section we 
will try to gain some insight into the choice of the particular laser and HCF parameters 
to obtain a dispersive wave at a desired wavelength. 

As mentioned before, deep and vacuum ultraviolet sources have several applications 
in spectroscopy and photochemistry [Reinert and Hü fner, 2005, Sansone et al., 2010]. 
Broadband ultraviolet sources could be used to produce ultrashort pulses for precise 
temporal, spectral and spatial measurements of the electronic and vibrational dynamics 
of molecules [Galli et al., 2019, Polli et al., 2008] and in particular, we already mentioned 
the interest in nuclear clocks. For all these reasons, we will focus on the generation of 
a dispersive wave centered in 150 nm, in the region of the vacuum ultraviolet (100-200 
nm). 

First we have to choose the laser wavelength and the gas species. From the phase- 
matching condition shown in Fig. 7.1 we can infer that neon with a pump wavelength 
at 800 nm is suitable for the dispersive wave generation in vacuum ultraviolet, since in 
argon the pressure is quite low in this region and it presents a resonance at 105 nm. In 
fact, from Fig. 7.1 we can obtain precisely the gas pressure to achieve the dispersive 
wave at the desired wavelength, which will be close to 0.5 bar. We are going to propagate 
the fundamental mode EH11 with 35 fs and 0.33 mJ inside a HCF with 100 µm of core 
radius filled with neon at 0.5 bar. Using the (1+1)D model as a first approximation, we 
perform a pressure scan around 0.5 bar to obtain the right pressure for generating the 
dispersive wave at 150 nm we find that 0.468 bar is a very good choice. The nonlinear 
refractive index of neon is nNL = 0.14 · 10−23 · p (m2/W) in the core [Couairon et al., 
2008], p being the gas pressure, and for the linear refractive index we use the following 
expression [Dalgarno and Kingston, 1960] 

−4 
(

 2.24 · 105 
 

 

8.09 · 1010 
 

 

3.56 · 1016
 
 

 
 

 λ6 
nL(λ, p) = 1 + p · 1.335 · 

10 
1 + (7.4) 
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With the chosen parameters the zero-dispersion wavelength (419 nm) is shorter than the 
pump wavelength and we expect to activate the self-compression process, the subsequent 
soliton formation and the generation of the dispersive wave. The (1+1)D propagation 
dynamics of the pulse at 800 nm in a 3.5 m long HCF is the following: 

 

Figure 7.7: Temporal intensity (W/cm2) evolution (top left) and on spectral intensity 
evolution (arb. u.) in log scale (top right) of a 35-fs pulse centered in 800 nm with 
0.33 mJ, propagating inside a HCF with 100 µm core radius filled with Ne at 0.468 
bar using the (1+1)D model. Temporal and spectral intensity (bottom left and bottom 
right respectively) at the point of maximum self-compression (290 cm). The ZDW is 
represented as dashed lines. 

 
 

Figure 7.7 shows the distinctive propagation dynamics in a self-compression process, as 
we have already explained in the previous section. We can observe the soliton forma- 
tion and the self-compression process in the evolution of the on-axis temporal intensity 
distribution (Fig. 7.7). The evolution of the spectral broadening is clearly represented 
in Fig. 7.7 (top right). At the point of optimal pulse compression at zsc=290 cm, the 
spectrum shows the emission of a dispersive wave at 150 nm, in agreement with the 
theoretical predictions. As can be seen in the spectral intensity profile at 290 cm shown 
in Fig. 7.7 bottom right, the dispersive wave generation process is quite clean. Figure 

7.7 (bottom left) shows the temporal intensity profile at 290 cm. The self-compressed 
pulse has the characteristic long front tail and the intensity peak at the trailing part of 
the pulse. Once more, we can observe the amplitude oscillations at the trailing part due 
to the interference between the self-compressed pulse and the dispersive wave. 
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7.3.1 Scaling Rules for Dispersive Wave Generation at a Fixed Wave- 

length 

 
The nonlinear propagation dynamics depends on the dispersion of the HCF and its 
dependence with the laser parameters and gas pressure. The propagation dynamics is 
different depending on the interaction between nonlinearity and dispersion. One may 
wonder if it is possible to obtain the same dynamics using another pump wavelength. The 
answer to this question is that we can find the same dynamics we have observed at 800 
nm using another pump wavelength, but the remaining laser and HCF parameters must 
be chosen carefully. In this subsection we determine the scaling rules to obtain the same 
dispersive wave generation process for different pump wavelengths in approximately the 
same distance in the HCF . The method we have followed consists in several steps: 

 
1. Pulse duration 

 
The first thing we change is the pulse duration t0 to match the number of cycles (nc) of 
the new pump wavelength (λ(2)) with the 800 nm case (λ(1)). 

 

 
(2) (1) c λ(2)  

(1) 
t0 = nc 

λ(2) = 
λ(1) t0 (7.5) 

 

where c is the velocity of light in vacuum. Therefore, the duration of the new pulse will 
be fixed and related with the duration of the reference one. 

2. HCF core radius 
 
Assuming that the losses of the pulse during the propagation correspond to the HCF 
itself and they do not depend on the pressure of the filling gas, the next parameter we 
have to change is the HCF size. This way we obtain the same propagation losses with 
the new pump wavelength as in the 800 nm case. The HCF losses are given by the 
absorption coefficient αpq defined in Eq. 2.67. From this equation we assume that the 
losses are related with the pump wavelength and the HCF core radius as 

λ2 

α ≈ r3 

 
(7.6) 

 
Matching the absorption coefficients of the new pump wavelength with the coefficient of 
the 800 nm case, we obtain the corresponding relation between the HCF core radii 

 
r(2) = 

 
λ(2) 

 
 

λ(1) 

 
2 

 

3 

r(1) (7.7) 

  



CHAPTER 7. DISPERSIVE WAVES 

141 

 

 

)I0  dz = 
λ(2) )I0  
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Therefore, the size of the new HCF must be related to the size of the HCF used with the 
reference pump wavelength. Until this point, Eqs. 7.5 and 7.7 suggest that the scaling 
parameter could be (λ(2)/λ(1)). 

3. Gas pressure 
 

Once we have scaled the HCF core radius, the next parameter we adjust is the pressure. 
By changing the pressure we adjust the dispersion of the new wavelength to be the same 
as the reference case. A different pressure modifies the location of the zero-dispersion 
wavelength, but not the location of the phase-matching wavelength for the dispersive 
wave emission since we have already scaled the core radius too. 

Since longer wavelengths induce a blue shift and higher pressures lead to a red shift in 
the dispersive wave emission, following the same reasoning as in the previous parameters, 
we change the pressure according to the wavelength as follows 

 

p(2) λ(2) 
= 

λ(1) 
p 

 
(1) 

 
(7.8) 

 

Note that a longer wavelength means a higher pressure inside the HCF, which shifts the 
zero-dispersion wavelength to the red side of the spectrum, as we have already observed 
in the previous section. 

4. Pulse energy 
 

With the scaling of the pulse duration, the core radius and the pressure we have adjusted 
the dispersion of the pulse. To obtain the same dynamics for different wavelengths the 
interplay between the dispersion and the nonlinearity should be the same too. To achieve 
this we need to scale the energy. One possible solution to establish the input energy 
would be to compare the nonlinear phase accumulated during the propagation through 
the B-integral 

 
B(1) = B(2) 

 2π   LF 

 
 

 
(1) 

 
(1)  2π   LF 

 
 

 
(2) 

 
(2) 

 
 

(2) λ(2) p(1) (1) 
I0 = 

λ(1) p(2) 
I0 

 

where we have assumed that the nonlinear refractive index nNL is proportional to the 
pressure, which is a good approximation at low and moderate pressures. We use the input 
pulse intensity as an estimation and we assume it to be constant along the propagation, 
since we do not know how the intensity evolves in advance. We can describe the intensity 

(7.9) 
0 0 λ(1) 

(nNL · 
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(nNL · 
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as a function of the energy of the pulse calculating the energy as 

 
E =

  
I(r, θ, t)drdθdt =

  
r
  

J0 (u0mr/rF )2
  

drdθ
  

I(t)dt = 

= πr2 (J1(u01))2 I0It 

 
 
 

(7.10) 

 
where It is the integral of the temporal intensity distribution. For simplicity we assume 
a Gaussian distribution It = π/2t0. So the relation between the input energies can be 
written as 
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λ(1) 
E(1)  (7.11) 

 

Again, for longer wavelengths the input energy is higher, which is translated into a 
blue-shift of the dispersive wave. 

Note that this method can be adapted to any available pulse duration, wavelength or 
HCF size. We have developed this scaling route to obtain the same nonlinear dynamics 
in the HCF and it works within our model. Let us remember that there are other 
strategies to implement similar parameter scaling in the literature to obtain the same 
nonlinear propagation [Chen and Kelley, 2002, Heyl et al., 2016, Travers et al., 2019]. 

 

λpump (nm) t0 (fs) rF µm p (bar) Ein (mJ) λZDW (nm) 
500 22.04 73.10 0.33 0.10 332 
600 26.45 82.55 0.35 0.17 340 
800 35.26 100.00 0.47 0.33 419 
1030 45.48 118.35 0.61 0.59 484 
1100 48.56 123.65 0.65 0.69 503 
1200 52.98 131.04 0.69 0.86 525 

Table 7.1: Laser and HCF parameters to obtain the same nonlinear dynamics and the 
dispersive wave emission at 150 nm for different pump wavelengths. We scale the input 
FWHM duration (t0), HCF core radius (rF ), Ne pressure (p) and input pulse energy 
(Ein) for each pump wavelength (λpump). The last column shows the zero-dispersion 
wavelength in each case. 

 

 
Using these scaling rules we have performed a wavelength scan from 500 to 1200 nm. 
In Table 7.1 we show the different laser and HCF parameters obtained for each pump 
wavelength. In Fig. 7.8 we can observe a comparison of the nonlinear propagation 
dynamics for all the pump wavelengths, laser properties and HCF parameters presented 
in Table 7.1. We show the evolution of the spectral intensity distribution in log scale 
in each case. We observe that the spectral broadening dynamics is almost identical and 
between 300 and 350 cm the dispersive wave is emitted at 150 nm (we will see that the 
dispersive wave generated with shorter pump wavelengths is slightly red-shifted). 
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Figure 7.8: Spectral intensity evolution in log scale along the propagation in the HCF 
for different pump wavelengths using the (1+1)D model. The ZDWs are represented 
as dashed lines. 

 
 

Since the input pulse with different pump wavelengths experiences anomalous dispersion 
at the beginning of the propagation, a soliton self-compression effect is observed in each 
case. As the dispersive wave is generated almost at the same distance inside the HCF 
in each case, we assume that the optimal self-compression point is the same for every 
pump wavelength (290 cm). 
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Figure 7.9: Evolution of the FWHM duration for different pump wavelengths, ob- 
tained with the time-dependent (1+1)D model. Note that the y axis represents the 
number of cycles of the pump wavelength in each case. 

 
To check this assumption, we compare in Fig. 7.9 the evolution of the FWHM duration 
of the pulse (shown in number of cycles of the pump wavelength in each case) with 
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different pump wavelengths. The self-compression process is always activated and it 
barely depends on the pump wavelength. For each wavelength, the dispersive wave 
generation process occurs at similar distances inside the HCF, as expected. 

To explore if the dispersive waves are clean and if they shift to other wavelengths along 
the propagation, we represent their evolution at different distances inside the HCF from 
the point they are generated until they reach the HCF output. In Fig. 7.10 we show the 
dispersive waves at three different distances inside the HCF, after they are generated at 
300 cm, at 324 cm and very close to the HCF output (at 348 cm). We can observe that 
at 300 cm almost all the dispersive waves are centered at 150 nm, except in the case of 
500 nm as pump wavelength. 

 

Figure 7.10: Spectral intensity profile of the dispersive waves for different pump 
wavelengths at 300 cm, 324 cm and 348 cm, obtained with the (1+1)D model. 

 
 
We have filtered each dispersive wave with a square filter to reconstruct the ultraviolet 
pulses, and we have calculated their energy along the propagation. Figure 7.11 shows 
the evolution of the energy of each dispersive wave. The energy increases from the point 
they are generated until the HCF output. 
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Figure 7.11: Evolution of the energy of the dispersive wave along the propagation 
distance for different pump wavelengths. The results were obtained with the time- 
dependent (1+1)D model. 
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The energy of the dispersive wave is higher for longer wavelengths, but since the input 
energy is also higher, a more realistic parameter would be the efficiency of the process. 
We achieve efficiencies between 4-5% , which is a normal efficiency although, recently, 
an efficiency of 15% of the input energy has been reported with HCFs filled with helium 
[Travers et al., 2019]. 

To complete this study on the dispersive wave generation at a desired wavelength, it 
is convenient to validate the results we have obtained with the (2+1)D simulations, 
including all the spatio-temporal effects and the plasma that could appear during the 
propagation. For this reason, we have performed the same simulations done with the 
time-dependent (1+1)D model, but with the (2+1)D model. 

In Fig. 7.12 we show the comparison between the results from the (1+1)D model (solid 
lines) and the (2+1)D model (dashed lines). We only represent the cases of 500 nm, 
800 nm, 1030 nm and 1200 nm for clarity. Figure 7.12 (left) represents the evolution of 
the FWHM duration, and we can observe that the self-compression dynamics obtained 
with the (2+1)D model is identical to the one observed with the (1+1)D model, even 
though we have taken into account the spatial effects and the ionization. We can deduce 
that neither the ionization nor the spatial dynamics are very significant in this regime, 
so the propagation dynamics does not change dramatically from what we have already 
obtained with the (1+1)D model. 

 

Figure 7.12: Comparison of the evolution of the FWHM duration of the pulse (left) 
and the energy of the dispersive wave (right), obtained with the (1+1)D model (solid 
lines) and with the (2+1)D model (dashed lines) for different pump wavelengths. 

 
 

If we pay attention to the dispersive wave generation process, they are all emitted at 
150 nm again for different pump wavelengths. However, they present a more complex 
structure than in the (1+1)D case. We have filtered spectrally the dispersive waves ob- 
tained with the (2+1)D model and we have calculated the amount of energy transferred 



CHAPTER 7. DISPERSIVE WAVES 

146 

 

 

 
to them from the soliton (see Fig. 7.12 (right)). We can observe that the energy of the 
dispersive waves achieved with both models is similar and the efficiency is also around 
4-5% with the (2+1)D model. 

 

Figure 7.13: Comparison of the spectral intensity of the dispersive waves obtained 
with the (1+1)D model (solid lines) and with the (2+1)D model (dashed lines) at 300, 
324 and 348 cm inside the HCF for different pump wavelengths. 

 
As mentioned above, the dispersive waves obtained with the (2+1)D model present 
a complex spectral structure, which is the first signature of the multimode nature of 
these nonlinear propagation cases. In Fig. 7.13 we show the spectral intensity profiles 
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obtained with the (1+1)D model (solid lines) and with the on-axis spectral intensity 
profiles obtained with the (2+1)D model (dashed lines) for different pump wavelengths 
at 300 cm, 324 cm and 348 cm inside the HCF. We can see that while the (1+1)D 
simulations are single mode and we obtained a clean dispersive wave, in the (2+1)D 
model, different structures appear in the range from 110 to 180 nm. These new spectral 
structures that appear in the dispersive waves obtained with the (2+1)D model have 
been interpreted as dispersive waves emitted from the soliton to other higher-order 
spatial modes [López-Zubieta et al., 2018a]. 

We can decompose the pulse resulting from the dispersive wave into the spatial modes of 
the HCF to determine the mode composition for different pump wavelengths. Figure 7.14 
shows the mode composition of the dispersive wave generated with a pump wavelength of 
500 nm (left), 800 nm (center) and 1200 nm (right). Note that the x axis corresponds to 
the distance that the dispersive waves propagate inside the HCF since its generation. We 
can see that in the 500 nm case the contribution of the EH12 is less than 20%, which 
explains that the dispersive waves obtained in this case with both numerical models 
present the most similar structure. In the rest of the cases, for longer pump wavelengths 
the influence of higher-order spatial modes becomes significant making the structure of 
the dispersive waves more complex. 

 

Figure 7.14: Mode contributions to the dispersive waves obtained with the (2+1)D 
model (solid lines) since its generation until the HCF output for a pump wavelength of 
500 nm (left), 800 nm (center) and 1200 nm (right). 

 
 

Now that we have identified which spatial modes have the most significant contributions, 
we can calculate when the phase-matching condition, defined in Eq. 7.2, between the 
soliton in the fundamental mode and the dispersive wave in a higher-order mode is 
fulfilled following the strategy presented in [López-Zubieta et al., 2018b]. This way we 
can corroborate the structures present in the spectral intensity profiles from the (2+1)D 
model, shown in Fig. 7.13. In the case of a pump wavelength of 500 nm, we obtain 
with the theoretical relations a dispersive wave at 133.72 nm coming from the EH12 

mode and at 117.1 nm coming from the EH13 mode, which are in good agreement with 
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the first two peaks observed in Fig. 7.13 (top left) at 300 cm. In the case of a pump 
wavelength of 800 nm, we obtain with the theoretical relations a dispersive wave at 
143.44 nm coming from the EH12 mode, at 131.45 nm coming from the EH13 mode and 
at 121.85 nm coming from the EH14 mode, again these results are in conformity with 
the first three peaks observed in Fig. 7.13 (center) at 300 cm. The last case we will check 
is the case with 1200 nm pump wavelength, which presents a more structured dispersive 
wave. In this case, we obtain theoretically a dispersive wave at 151.48 nm coming from 
the EH12 mode which can be represented by the irregular broadening of the main peak, 
at 143.81 nm coming from the EH13 mode and at 136.34 nm coming from the EH14 

mode, which can correspond to the second and third small peaks observed in Fig. 7.13 
(bottom) at 300 cm. This way we have verified the multimode nature of the dispersive 
wave. 

 
To conclude this study we can calculate the pulse duration of the dispersive wave. The 
pulse duration of this ultraviolet light can be ultrashort at the moment of its generation, 
as we have already seen in the previous section, but since it propagates in the normal 
dispersion region, it stretches along its propagation. We have calculated the FWHM 
duration at 300 cm, when it is emitted, and we have obtained a FWHM duration of 
1.40-1.20 fs for pump wavelengths between 1200-1030 nm, while with pump wavelengths 
of 800 nm and 500 nm the FWHM duration are 6.26 fs and 2.95 fs, respectively. 

We have checked that the phase-matching equation (Eq 7.2) is a good estimation to 
identify the emission of the dispersive wave, even from different spatial modes in the 
HCF. This theoretical approach is enough to represent the results obtained with our 
numerical models. It is true that a certain amount of disagreement has been observed 
between the theory and the simulations in some cases, but the deviation is not very 
significant. However, at high intensities the disagreement could become significant and 
a correction to the propagation coefficient of the soliton in the form of a nonlinear 
wavenumber was proposed by Austin et al. [Austin et al., 2006]. The fairly good 
agreement obtained without this correction in our cases indicates that we are not in 
such a high intensity regime. 

 
 
7.4  Conclusions 

 
It is well-known that if we propagate a laser pulse inside a HCF in the anomalous disper- 
sion region with the proper intensity, the interaction between dispersion and nonlinearity 
will form a soliton during the propagation. The higher-order dispersion terms, and also 
some other nonlinear effects, perturb this soliton leading to the generation of a disper- 
sive wave in the normal dispersion region. In this work we have shown that dispersive 
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wave emission in HCFs is a feasible alternative to other frequency-conversion processes 
to generate ultrashort tunable pulses at wavelengths which are not accessible by current 
laser systems. 

We have studied the dependence of the phase-matching condition between the soliton 
and the dispersive wave with different parameters in the HCF. Maintaining the pulse 
duration, the input pulse energy and the core size of the HCF, we explore the features 
of the dispersive wave emission for different pump wavelengths or constant gas pressures 
inside the HCF. According to the numerical results, the dispersive wave blue-shifts for 
longer pump wavelengths, but it red-shifts for higher pressures of the filling gas. 

We have found that the possibility of obtaining an ultrashort but also energetic dispersive 
wave is challenging. The shortest pulse duration is achieved at the moment when the 
dispersive wave is generated, but since it propagates in the normal dispersion region, it 
will stretch during the propagation. However, the energy grows with the propagation in 
the HCF. 

We have studied the influence of the multimode nature of HCF systems and the presence 
of higher-order modes during the propagation. We have found that the appearance of 
higher-order spatial modes leads to different dispersive waves contributions, resulting in 
a complex structure in certain cases. We have found that higher-order modes generate 
dispersive waves at shorter wavelengths. 

Finally, we have implemented a parameter scaling route to obtain the same nonlinear 
dynamics for different pump wavelengths but maintaining the HCF length. As a con- 
sequence, the rest of the laser and HCF parameters will change as well to balance the 
dispersion and nonlinearity in each case. Related to this scaling, we have shown that 
it is possible to obtain a dispersive wave at a desired wavelength for different pump 
wavelengths. As an example of these scaling rules, we have generated a dispersive wave 
at 150 nm, which is a promising laser source for nuclear clocks, in a HCF filled with 
neon for a wide range of pump wavelengths, always choosing carefully the rest of the 
parameters involved. 



 

 

 



 

 

 
 
 
 
 
 
 

Chapter 8 
 
 

Conclusions and Perspectives 
 
 

8.1 Conclusions 
 

We have presented in this thesis a numerical study on nonlinear propagation of ultrashort 
laser pulses in hollow capillary fibers (HCFs). We have used different numerical models, 
(1+1)D, (2+1)D and (3+1)D models, where the (1+1)D and (3+1)D models have been 
developed in the frame of this thesis. 

Our starting point was to understand the spatial dynamics and the multimode nature 
of HCFs in different propagation regimes, since the input energy will be limited by 
the nonlinear effects. Our objective was to find these limits to avoid the activation of 
undesirable higher-order nonlinear effects (such as spatial collapse or noticeable ioniza- 
tion), which may distort the spectral phase of the output pulse making it useless for 
post-compression applications. 

In a first set of simulations, we have compared the propagation dynamics of a laser 
pulse in a HCF using a time-independent model ((1+1)D model) which includes only 
the spatial dynamics, with a complete spatio-temporal model ((2+1)D model) developed 
previously in the group. We have demonstrated that the spatial confinement in a HCF of 
the fundamental spatial mode, EH11 mode, plays a key role in the self-focusing process, 
minimizing the diffraction and enhancing self-focusing. In particular, we have identified 
two different self-focusing regions in the HCF depending on the input power: for input 
peak powers slightly greater than the critical power, the collapse appears at shorter 
distances than in the free space case and independently of the pulse duration. For input 
peak powers below the critical power, we have obtained spatial collapses induced mainly 
by the energy transfer between spatial modes, only observable in the (2+1)D model. 
The spatial collapse dynamics explained in Chapter 4 can be used to identify the energy 
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limits in any power region when using standard post-compression schemes. In other 
words, it gives guidance about the optimal length of the HCF that one should use to 
avoid a strong nonlinear response at the HCF output. 

By studying the interplay between the spatial modes, we have found that the energy 
transfer between the fundamental and the higher-order modes occurs close to the in- 
tensity peak of the pulse. Consequently, the generated higher-order modes present a 
shorter pulse duration and their spectrum is broader. This process can be understood 
as a compression effect in the energy transfer process itself, which could be an interesting 
topic for a future research. 

Following on the study of the energy scaling in these post-compression setups, we have 
developed numerical models to study the propagation of structured beams in the HCF 
in chapters 5 and 6, such as vector beams and necklace beams. One of the main ad- 
vantages that this type of beams present is that the intensity is more distributed within 
the core area, so it is possible to couple higher input pulse energies into the HCF. Be- 
sides, the possibility of obtaining short structured pulses is very promising for different 
applications. The numerical study on the nonlinear propagation of vector beams in the 
HCF has resulted in a very complex dynamics, where the interplay between the spatial 
modes modulates the intensity and spectrum distribution of the full pulse. 

While the spatio-temporal profile of an input EH11 beam is almost maintained along 
the propagation in the HCF despite the appearance of higher-order modes, in the case of 
an input vector beam the spatio-temporal profile evolves to a complex spatio-temporal 
distribution. Furthermore, the different polarization signs of the rings from the higher- 
order modes lead to a constructive or destructive superposition of all of them when 
they overlap. These spatio-temporal modulations are transferred to the spectrum which 
shows also a similar spatial inhomogeneity. In the case of the hybrid modes of the EH1q 
type, the mode superposition is always constructive in the optical axis so the coupling 
between the modes does not hinder the propagation, which is more stable. 

We have generated and propagated vector beams through a HCF at the laser facility 
in the University of Salamanca with the collaboration of the experimental team in the 
group. The agreement of the spatial profile of the vector beam measured in experiments 
with our numerical simulations has served to validate our theoretical model. Neverthe- 
less, we have found coupling issues and lack of polarization maintenance at the HCF 
output for nonlinear propagation of vector beams. In conclusion, these vector beams 
could support a higher input energy, but since their propagation in the HCF is less 
stable, the polarization conversion after the HCF output seems a more robust approach 
for future investigation. 
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The second type of structured beams propagating in HCFs that we have considered in 
this work are necklace beams. In comparison to vector beams, these necklace beams 
were more stable during the propagation. We have found that the high nonlinearity 
broadens the spectrum in such a way that the energy is concentrated in two bands, one 
of them reaching the visible part of the spectrum during the propagation. Filtering this 
spectral band, it is possible to obtain high-energy ultrashort pulses in the visible region 
of the spectrum using infrared necklace beams as driving pulses. The high efficiency of 
the process (25%) and the wavelength tunability for different gas pressures inside the 
HCF, demonstrate that the soliton self-compression of infrared necklace beams in HCFs 
filled with gas could be a compact tool to obtain new short laser pulse sources in the 
visible region. We have also demonstrated that when using non-ideal input necklace 
beams, where there is a nonlinear energy transfer between the beads, they still present a 
similar spectral band and temporal self-compression, although only in those beads that 
reach high peak intensity values during the propagation. Even in this non-ideal case, 
self-focusing does not play a relevant role in the dynamics of the beam. 

 
From the results obtained with the propagation of necklace beams in HCF, we have 
explored the idea of generating short pulses in regions of the spectrum which are not 
directly accessible with current laser systems, such as the visible or the ultraviolet. In 
the last part of this thesis, we have studied the dispersive wave emission in a HCF 
as a feasible alternative to other frequency-conversion processes to generate ultrashort 
tunable pulses at non-conventional wavelengths. We have studied the dependence of 
the phase-matching condition between the soliton and the dispersive wave with different 
parameters. According to our numerical results, the dispersive wave blue-shifts for longer 
pump wavelengths and it red-shifts for higher pressures inside the HCF. 

We have examined the relation between the energy and the duration of the generated 
ultraviolet pulse, concluding that the possibility of obtaining an ultrashort but also en- 
ergetic dispersive wave is challenging. The shortest pulse duration is achieved when the 
dispersive wave is generated, but since it propagates in the normal dispersion region, it 
stretches during the propagation. On the other hand, the energy grows since its genera- 
tion until the HCF output. As we have already observed through the different chapters, 
the presence of higher-order modes during the propagation leads to different disper- 
sive wave contributions, in particular, higher-order modes generate dispersive waves at 
shorter wavelengths. In the cases of HCF with large mode area, the dispersive wave 
will become more structured along the propagation due to the larger contribution of 
higher-order spatial modes. 

 
Finally, we have implemented a parameters scaling route to obtain the same nonlinear 
dynamics for different pump wavelengths. By means of this scaling, we have shown that 
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it is possible to obtain a dispersive wave at a desired wavelength for different laser and 
HCF parameters. 

 
 
8.2 Outlook 

 
The possibility of obtaining few-cycle energetic pulses delivered from compact laser 
sources is an achievement of great relevance. Hollow capillary fibers (HCFs), flexible 
HCFs, multi-pass cells, photonic crystal fibers and filaments are well-established post- 
compression techniques. The perspectives in the use of post-compression schemes are 
related to the energy up-scaling, which is hindered by ionization and self-focusing, the 
pulse duration and the wavelength tunability of the output pulses. At the moment, the 
only post-compression technique able to reach energies above mJ-level and sub-3-cycle 
pulse duration is based in HCF. However, the improvements of these parameters is under 
constant study. 

A further energy scaling with these techniques is possible by increasing the length of 
the compressor, which is possible with flexible HCFs and multi-pass cells, but it may 
be a problem when reaching almost tens of meters. In addition, an approach to obtain 
shorter pulse durations is to increase the compression ratio. This development would 
enable using a longer input pulse with a higher input energy but keeping the peak power 
below the critical values. This could be achieved combining different techniques. 

Moreover, it is necessary to find a viable route to couple and propagate structured 
beams in post- and self-compression schemes, since they have the potential to achieve 
laser pulses of a higher energy than conventional beams, also in interesting spectral 
regions. 

Apart from few-cycle pulses in the near infrared, the compression of laser pulses at 
different wavelengths, such as ultraviolet or visible has a great implication in different 
applications. One of the most remarkable processes to obtain ultrashort pulses is the 
dispersive wave generation process. The promising short pulse duration, considerable 
energy and tunability from the ultraviolet to the infrared make this technique a suitable 
alternative, although it is still under development at present [Brahms et al., 2020]. 
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Conclusiones 
 
 

En esta tesis hemos realizado un estudio numérico sobre la propagación no lineal de un 
pulso l áser en una fibra hueca. Para ello hemos utilizado distintos modelos numéricos, 
(1+1)D, (2+1)D y (3+1)D, de los cuales el (1+1)D y el (3+1)D han sido desarrollados 
en este trabajo. 

Nuestro punto de partida ha sido entender la dinámica espacial y la naturaleza mul- 
timodal de las fibras huecas en diferentes reg´ımenes de propagación, ya que la energ´ıa 
de entrada del pulso estar á limitada por los distintos efectos no lineales que aparecen 
durante la propagación del pulso en la fibra hueca. Nuestro objetivo ha sido encontrar 
dichos l´ımites para as´ı evitar la activación de efectos no lineales de orden alto (como el 
colapso espacial o la ionización), que pueden empeorar la fase espectral del pulso a la 
salida complicando su posible post-compresión. 

En las primeras simulaciones realizadas, hemos comparado la dinámica de la propagación 
de un pulso l áser en una fibra hueca usando un modelo independiente del tiempo (mod- 
elo (1+1)D), el cual incluye únicamente la dinámica espacial, con un modelo espacio- 
temporal (modelo (2+1)D) que fue desarrollado previamente por el grupo. En este 
estudio hemos demostrado que el confinamiento espacial dentro de la fibra hueca del 
modo fundamental, modo EH11, juega un papel muy relevante en el proceso de auto- 
focalización, minimizando la difracción y favoreciendo la auto-focalización. En concreto, 
hemos identificado dos regiones diferentes de auto-focalización en la fibra hueca depen- 
diendo de la potencia de entrada del pulso: para pulsos con potencias pico por debajo de 
la potencia cr´ıtica, hemos obtenido colapsos espaciales inducidos principalmente por la 
transferencia de energ´ıa entre los distintos modos espaciales, solo presente en el modelo 
(2+1)D. La dinámica de colapso espacial explicada en el Cap´ıtulo 4 puede ser ú t i l  a la 
hora de identificar los l´ımites de energ´ıa en cualquier regi ón de potencia en los esque- 
mas de post-compresión. En otras palabras, este estudio puede servir como gu´ıa para 
encontrar la longitud de la fibra hueca óptima para evitar una respuesta no lineal muy 
intensa a la salida. 
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Mediante el estudio de la interacción entre los modos espaciales en la fibra hueca, hemos 
encontrado que la transferencia de energ´ıa entre el modo fundamental y los modos de 
orden alto se produce cerca del pico de intensidad del pulso. Por consiguiente, los modos 
espaciales de orden alto que se generan presentan una duraci ón temporal m á s  corta y 
un espectro m ás ancho. Este fenómeno se puede entender como un efecto de compresión 
temporal en el propio proceso de transferencia de energ´ıa, lo que puede ser interesante 
para futuras investigaciones. 

Siguiendo con el estudio sobre el posible escalado de la energ´ıa en los esquemas de post- 
compresión, hemos adaptado y desarrollado modelos numéricos para poder simular la 
propagación de haces estructurados en la fibra hueca en los cap´ıtulos 5 y 6, como haces 
vectoriales y haces tipo ”necklace”. Una de las principales ventajas que este tipo de haces 
presenta es que la intensidad est á m ás distribuida en el área transversal del núcleo de la 
fibra y por lo tanto, es posible acoplar pulsos con una energ´ıa mayor en la fibra hueca. 
Además, la posibilidad de obtener pulsos estructurados ultracortos es muy prometedora y 
de gran utilidad para diversas aplicaciones. El estudio numérico sobre la propagación no 
lineal de los haces vectoriales en la fibra hueca ha dado como resultado una dinámica muy 
compleja, donde la interacción entre los distintos modos espaciales modula la intensidad 
y el espectro del pulso. Mientras que el perfil espacio-temporal de un haz tipo EH11 se 
mantiene prácticamente igual a lo largo de la propagación en la fibra hueca a pesar de la 
aparición de modos de orden alto, en el caso de un haz vectorial el perfil espacio-temporal 
evoluciona de manera compleja. Debido a que los anillos de los diferentes modos altos 
espaciales que aparecen en la propagación presentan distinto signo en la polarización 
del campo, su acoplamiento puede llevar a una superposición constructiva o destructiva. 
Estas modulaciones espacio-temporales en el perfil del pulso se transfieren al espectro 
mostrando también la misma distribución espacial no homogénea. En el caso de los 
modos h´ıbridos de tipo EH1q, la superposición de los modos siempre es constructiva en 
eje y el acoplamiento entre los distintos modos altos no dificulta la propagación, siendo 
mucho m ás  estable. 

 
Hemos generado y propagado haces vectoriales a través de una fibra hueca en las instala- 
ciones l áser de la Universidad de Salamanca en colaboración con el grupo experimental. 
El acuerdo entre el perfil espacial del haz medido en los experimentos y el haz de nues- 
tras simulaciones numéricas ha servido para validar el modelo teórico. Sin embargo, 
hemos encontrado problemas en el acoplamiento de los haces vectoriales a la fibra y la 
polarización de estos no se mantiene al final de la fibra hueca en régimen de propagación 
no lineal. En conclusión, estos haces vectoriales pueden soportar una mayor energ´ıa de 
entrada, pero como su propagación en la fibra hueca es menos estable, la conversión de 
polarización lineal al haz vectorial después de la fibra hueca parece una propuesta m ás  
robusta para futuras investigaciones. 



157 

 

 

El segundo tipo de haz estructurado que hemos propagado a través de la fibra hueca son 
los haces tipo ”necklace”. En comparación con los haces vectoriales, estos haces tipo 
”necklace” son m ás  estables en la propagación. Durante este estudio hemos encontrado 
que la no linealidad en este caso ensancha el espectro de manera que la energ´ıa del 
pulso se concentra en dos bandas espectrales, una de ellas alcanzando la parte visible 
del espectro en la propagación. Mediante el filtrado espectral de esta banda, es posible 
obtener pulsos energéticos y ultracortos en el rango visible a partir de pulsos infrarro- 
jos tipo ”necklace”. La alta eficiencia de este proceso (alrededor del 25%) y la posible 
sintonización de la longitud de onda de la banda a través de la presión del gas en el 
interior de la fibra hueca, demuestran que la auto-compresión solitónica de haces infrar- 
rojos tipo ”necklace” en fibras huecas llenas de gas puede ser una herramienta compacta 
para obtener pulsos l áser cortos en la regi ón visible. Tambi én hemos demostrado que 
para haces de entrada no ideales tipo ”necklace”, donde tiene lugar una transferencia de 
energ´ıa entre las distintas cuentas del haz debido a esa asimetr´ıa espacial, se mantiene la 
estructura espectral de dos bandas y la auto-compresión temporal, aunque solamente en 
aquellas cuentas que alcanzan una intensidad pico alta durante la propagación. Incluso 
en el caso de un haz no ideal, la auto-focalización no juega un papel importante en la 
din ámica del haz. 

 
A partir de los resultados obtenidos en la propagación de haces tipo ”necklace” en la 
fibra hueca, hemos explorado la idea de generar pulsos cortos en otras zonas del espectro 
que no son accesibles directamente con los sistemas l áser actuales, como el visible o 
el ultravioleta. En la ú ltima parte de esta tesis, hemos estudiado la emisi ón de ondas 
dispersivas en la fibra hueca como una alternativa factible a otros procesos de conversión 
de frecuencias para generar pulsos ultracortos y sintonizables a longitudes de onda no 
convencionales. Hemos estudiado la dependencia de la condición de ajuste de fase entre 
el solit ón y la onda dispersiva en funci ón de distintos parámetros, como la presi ón o la 
longitud de onda del l áser. De acuerdo con nuestras simulaciones, la onda dispersiva se 
desplaza hacia el azul cuando el l áser tiene una longitud de onda mayor y se desplaza 
hacia los rojos cuando la presi ón dentro de la fibra hueca aumenta. 

 
Para completar este estudio hemos examinado la relación entre la energ´ıa y la duración 
del pulso ultravioleta generado, concluyendo que la posibilidad de obtener una onda 
dispersiva ultracorta y a la vez energética es exigente. La duración temporal m á s  corta 
se logra en el momento en el que se genera la onda dispersiva, pero como se propaga en 
la regi ón de dispersión normal, se ensancha a medida que se propaga hasta el final de 
la fibra hueca. Por otra parte, la energ´ıa crece durante la propagación pudiendo llegar 
a alcanzar decenas de microjulios. Como ya hemos observados a través de los diferentes 
cap´ıtulos, la presencia de modos espaciales de orden alto en la propagación influye en 
la dinámica y en este caso conlleva a diferentes contribuciones de la onda dispersiva, en 
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concreto, los modos altos generan ondas dispersivas en longitudes de onda m ás  cortas. 
En el caso de fibras huecas con un tamaño de núcleo grande, la onda dispersiva estará 
m á s  estructurada debido a la contribución de los modos espaciales de orden alto. 

Finalmente hemos implementado un escalado de parámetros para obtener la misma 
dinámica no lineal para diferentes longitudes de onda para el pulso de entrada. Mediante 
este escalado hemos mostrado que es posible obtener una onda dispersiva en una longitud 
de onda concreta para distintos parámetros del l áser y de la fibra hueca. 
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stant. Postcompression of high-energy terawatt-level femtosecond pulses and applica- 
tion to high-order harmonic generation. J. Opt. Soc. Am. B, 32(6):1055–1062, 2015. 
doi: 10.1364/JOSAB.32.001055. URL http://josab.osa.org/abstract.cfm?URI= 
josab-32-6-1055. 

https://link.aps.org/doi/10.1103/PhysRevA.75.053407
https://link.aps.org/doi/10.1103/PhysRevA.75.053407
https://www.mdpi.com/2076-3417/4/3/444
https://link.aps.org/doi/10.1103/PhysRevLett.6.9
https://link.aps.org/doi/10.1103/PhysRevLett.6.9
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-5-520
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-5-520
http://eprints.soton.ac.uk/id/eprint/342422
http://eprints.soton.ac.uk/id/eprint/342422
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-1-75
https://doi.org/10.1038/nphys1980
http://ol.osa.org/abstract.cfm?URI=ol-25-10-761
http://ol.osa.org/abstract.cfm?URI=ol-18-17-1388
http://josab.osa.org/abstract.cfm?URI=josab-32-6-1055
http://josab.osa.org/abstract.cfm?URI=josab-32-6-1055


169 

 

 

Z. Huang, Y. Chen, F. Yu, D. Wu, D. Wang, R. Zhao, Y. Zhao, S. Gao, Y. Wang, 
P. Wang, and Y. Leng. Highly-tunable, visible ultrashort pulses generation by 
soliton-plasma interactions in gas-filled single-ring photonic crystal fibers. Opt. Ex- 
press, 27(21):30798–30809, 2019. doi: 10.1364/OE.27.030798. URL http://www. 
opticsexpress.org/abstract.cfm?URI=oe-27-21-30798. 

E. P. Ippen. Low-power quasi-CW Raman oscillator. Appl. Phys. Lett., 16:303–305, 
1970. doi: 10.1063/1.1653204. URL https://aip.scitation.org/doi/10.1063/1. 
1653204. 

A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta. 
Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in 
hollow-core photonic band-gap fibers. Opt. Express, 17(21):18630–18637, 2009. doi: 
10.1364/OE.17.018630. URL http://www.opticsexpress.org/abstract.cfm?URI= 
oe-17-21-18630. 

A. Jarnac, F. Brizuela, C. M. Heyl, P. Rudawski, F. Campi, B. Kim, L. Rading, P. Johns- 
son, A. Mysyrowicz, A. L’Huillier, A. Houard, and C. L. Arnold. Compression of 
TW class laser pulses in a planar hollow waveguide for applications in strong-field 
physics. Eur. Phys. J. D, 68(373), 2014. doi: 10.1140/epjd/e2014-50558-7. URL 
https://doi.org/10.1140/epjd/e2014-50558-7. 

Y-G. Jeong, R. Piccoli, D. Ferachou, V. Cardin, M. Chini, S. Hädrich, J. Limpert, 
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