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A novel control fuzzy predictive control law is proposed and successfully applied to a wastewater treatment process in this paper. The
proposed control law allows us to evaluate the control signal in an analytical way, each sampling time being a nonlinear and fuzzy
alternative to other classic predictive controllers. The control law is based on the formalization of the internal fuzzy predictive model
of the process as linear time-varying state space equations that are updated every discrete time instant to take into account the
nonlinearity effects due to disturbance action and changes in the operating point with time. The model is then used to evaluate
the predictions, and, taking them as a starting point and considering them as a paradigm of the predictive functional control
strategy, a control law, it is derived in an analytical and explicit way by imposing on the outputs of the follow-up of certain
reference trajectories previously established. The work presented here addresses the application of this particular strategy of
intelligent predictive control to the case of an activated sludge wastewater treatment process successfully in a simulation
environment of a real plant taking into account real data for the disturbance records. Such a process is multivariable, nonlinear,
time varying, and difficult to control due to its biological nature. The proposed control law can be straightforwardly used within

a dual-mode MPC scheme to handle constraints, as a nonlinear and fuzzy alternative to the classic state feedback control law.

1. Introduction

The traditional strategy of model-based predictive control
(MBPC or MPC) [1-3] consists basically of the use of a pre-
diction model to determine the necessary control actions at
each instant, imposing the minimization of a cost function
(which will generally include a term dependent on the error
and another dependent on the control efforts, among other
possible scenarios). This strategy includes however multiple
variants or approaches depending on various factors, mainly
on the type of model that will be used to calculate the predic-
tions and the mathematical algorithm used to determine the
control law. There are various fundamental methods based
on linear models of the process which determine the control
variable by means of optimization (the minimization of the
cost function chosen). Other methods consider nonlinear
mathematical models (fuzzy models [4], models formalized
by means of artificial neuronal networks [5], or other

alternatives), but they also determine the control signal by
means of optimization in the same way as the first ones. In
[6], an orderly bibliographic review of the evolution of the
linear and nonlinear MPC is carried out, detailing numerous
contributions and approaches in this field of process control.
Our study falls within the category of predictive control strat-
egies based on nonlinear models and more specifically on
tuzzy models: fuzzy model-based predictive control (FMBPC).
For the internal model of the process, a fuzzy model of the
Takagi-Sugeno (TS) [7] type was chosen in which the pre-
mises of the rules are diffuse logical expressions while the
conclusions are linear numerical combinations of the conse-
quents. TS-type fuzzy models are suitable for the identifica-
tion and description of complex nonlinear processes from
numerical input-output data and, if available, expert knowl-
edge of the process. The parameters of our TS fuzzy model
were deduced by identification as from input-output numer-
ical data previously obtained in simulation. In [6, 8-15],
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several process control strategies can be seen, based on
Takagi-Sugeno fuzzy models, some of them framed in the
FMBPC field, with the identification made from available
input-output data.

Concerning the calculation of the control variable, in our
study, such a calculation is carried out following a methodol-
ogy that could be considered as an extension of the so-called
predictive functional control (PFC) [2, 16-18] (which was ini-
tially designed for linear systems) to nonlinear systems. The
approach that we have chosen uses a fuzzy model of the pro-
cess (for the calculation of the predictions) developed in the
state space form and follows a PFC strategy for the derivation
of a control law in an analytical explicit form, which can be
an advantage in comparison with optimization-based control
schemes [10, 18]. In relation to this issue, it is possible to say
that some strategies or approaches of MPC could be consid-
ered as analytical MPC algorithms, such as dynamic matrix
control, generic model control, or predictor-corrector control
(in case of unconstrained linear MPC problems with qua-
dratic cost functions, the control rules can be expressed in
an analytical form and even for nonlinear MPC problems, if
the model is linearized). But in the case of these algorithms,
the analytical obtaining of a control law implies the statement
and solution of a problem of optimization of a cost function.
However, the PFC strategy offers us a method for the obtain-
ing of the control law in which it is not necessary to solve an
optimization problem, which is mathematically less complex.
In addition, our approach deals with nonlinear models in a
direct and practical way, by formalizing the fuzzy model in
the form of time-varying state space equations (with coeffi-
cients that must be updated at each discrete time instant)
and without this supposing a great increment in the com-
plexity of the mathematical derivation of the control law.

The main contribution of our work to the FMBPC field is
the application of this approach to a multivariable, with dis-
turbances, strongly nonlinear, with a complex dynamic and
of a biological nature case study (carried out by simulation),
with the aim of a future generalization.

No parameters have been included to handle constraints
in the proposed control law, that is, it is an unconstrained
control law. But our control law can be used, as base law,
within a MBPC scheme that is designed to satisfy previously
fixed constraints (on the control action, on the control action
increment, on the plant output, etc.). In particular, following
the approach of the MPC schemes proposed by Rossiter [3]
could be used (OLP or CLP dual-mode MPC schemes).

To obtain the control law by means of the procedure
mentioned above, some relevant mathematical tasks must
be carried out. It will be necessary to deduce the mathemati-
cal expression that relates the model outputs, for a certain
prediction horizon, to the control variable, that is, the appro-
priate expression for calculating the predictions, making use
of the fuzzy model of the process. In addition, it will also be
necessary to specify the control objective for the outputs of
the plant, which in our case will consist in the imposition
of the tracking of the previously established reference trajec-
tories. And, of course, we must also formalize mathematically
the model-based predictive control characteristic or nature,
by means of some kind of relationship between the model
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and the process (the plant). We will establish such a rela-
tionship using the incremental equivalence principle between
the model and the plant (equivalence between the plant
output-desired increment and the model output increment)
[2, 16, 17]. Finally, combining appropriately all the relation-
ships and equations mentioned, it will be necessary to find
the control variable that guarantees the control objective
established at each sampling instant. Due to the multivariable
character of the process considered and the intrinsic mathe-
matical complexity of the fuzzy models, in order to obtain
the control variable in an analytical and explicit manner, we
need to start from a (fuzzy) mathematical model expressed
compactly and clearly. In addition to working with matrix
expressions, therefore, in this study, we have formalized the
expressions of the fuzzy model with a format similar to that
of state equations, with the peculiarity that the coeflicients
of the various terms are not constant but depend on the
instant of sampling. This is due to the fact that they depend
on the instantaneous premise vector (more specifically on
the levels of compliance with the various rules by the premise
vector at each instant); it is therefore necessary for these coef-
ficients to be updated (recalculated) during each period. This
particular strategy of predictive control considered in this
paper has previously been approached by other authors; to
be precise, it is developed in [10] for a case study with a
manipulated input and a single controlled output and with-
out considering disturbances (previously, something similar
was also developed in [18], for another case study). This work
however approaches the case of a multivariable system and
disturbances in the input are considered. To be precise, our
system has three inputs: a manipulated input and two distur-
bances. It also has two outputs, both of which are controlled.
Its multivariable character involves working with matrices,
which leads to an increase in mathematical complexity.
Moreover, due to the existence of two disturbances and a sin-
gle manipulated input, it is assumed that it will not be easy to
control the process, especially taking into account that the
process considered is of a biological nature (significantly
more unpredictable than many industrial physical-chemical
processes). Tackling all these complexities is another of the
contributions of this paper.

The present work has focused on the application of our
fuzzy predictive control strategy to wastewater treatment bio-
logical processes. In our case study, the plant to be controlled
was a wastewater treatment plant (WW'TP) that originally
had a relatively simple architecture (something that is clearly
advantageous for the purposes of the study) and whose
depuration method was the well-known activated sludge pro-
cess. The entire study was implemented through simulation.

The control of the biological processes present in waste-
water treatment plants is a rather complex problem, due to
the nonlinear character of the corresponding physical-
chemical reactions and also to the abrupt changes that can
occur (sometimes unpredictably) in the influent input flow
rate and in its degree of contamination (disturbances). The
proposals that have been made to improve the control and
operation of biological processes (generic or related to
WWTPs) have been numerous and different, highlighting
in our case those that include some variant of nonlinear
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model-based predictive control (NLMPC) and, especially, the
proposals framed in the field of the fuzzy model-based pre-
dictive control (FMBPC). In [19-34], some of these contribu-
tions can be seen. Our work tries to be, precisely, a
contribution more in this last area, proposing a strategy
of predictive control based on a fuzzy model (obtained
from numerical input-output data), but formalizing the
law of control in an analytical and explicit way.

The paper is organized as follows. Section 2 describes
the case study chosen: a municipal WWTP with a rela-
tively simple architecture and with a biological purification
method, the so-called activated sludge. The subsection
related to the mathematical model is complemented by
the Appendix D. In Section 3, the fuzzy modeling and
identification procedure of the treatment plant is devel-
oped, starting only from input-output numerical data
and also the subsequent formalization of the fuzzy model
in an equivalent model in the state space (with time-
dependent coefficients). In Section 4, we address the prob-
lem of control, in the FMBPC field, adopting a nonlinear
PFC strategy based on a fuzzy model. In this section, all
the mathematical tasks necessary to deduce an analytical
and explicit control law for our case study are carried
out (using Appendices A, B, and C). In Section 5, we explain
the FMBPC scheme that will be implemented and we present
and explain some experiments developed by simulation and
their corresponding results. And, finally, Section 6 contains
the conclusions of the work.

2. Case Study: Wastewater Treatment Processes

Our case study consists of applying the previously introduced
the FMBPC strategy to a multivariable biological process,
highly nonlinear and with complex dynamics, but with a
simple architecture that can facilitate the extraction of use-
ful conclusions. For this reason, a municipal wastewater
treatment plant (WW'TP) located in Manresa (in the prov-
ince of Barcelona, Spain) [35], equipped with only the
elements and processes necessary for the purification of
basic organic water pollution, that is, for the purification
of the substrate, was chosen. The study was carried out
in a simulation environment, for obvious reasons of feasi-

bility and availability.

2.1. Plant Description and Input-Output Configuration. The
wastewater treatment plant chosen was originally designed
to achieve a relatively simple purification process, without
including a nitrification-denitrification process. So, the cen-
tral objective of the overall process of purification in this
plant was mainly the reduction of the concentration of the
substrate, carried out through the so-called activated sludge
process, of a biological nature. The plant had a single subpro-
cess of substrate biological depuration (with six reactors
working in parallel, arranged in two lines of three, which
can be considered equivalent to one only for the purposes
of mathematical modeling) and, following the reactors, a sin-
gle decantation subprocess (with two settlers working in par-
allel, which can also be considered as one, for modeling
purposes). The equivalent architecture of the considered
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FIGURE 1: Wastewater treatment plant with activated sludge.

plant corresponds to that shown in Figure 1 with a single
aerated biological reactor followed by a secondary settler;
the meaning of the main variables of the WWTP can be
seen in Table 1.

Asalready indicated in the introductory chapter, the puri-
fication technique used in this plant is consisting of the elim-
ination of organic pollutants by means of activated sludge (a
mixed culture of microorganisms in suspension in the aerated
biological reactor), with the recirculation of this sludge being
the main control action and the sludge recirculation flow rate
to the reactor (g,) being the only manipulated variable con-
sidered. The purification process that reduces the substrate
concentration in the water is based on the interaction,
through an aerobic reaction, between the microorganisms
(the biomass) and the organic matter present in the water
(the substrate). The microorganisms feed on the substrate
(digest it), and consequently, its concentration decreases
and therefore the contamination. This reaction takes place
in the biological reactor (where the mix is supposed to be per-
fect) and requires a sufficient concentration of oxygen dis-
solved in the water. The concentration of oxygen (c) is one
of the three variables involved in the basic mathematical
models of the purification process and also needs to be con-
trolled. However, in order to reduce the complexity of the
case study, we will assume that the control of ¢ will be guaran-
teed by the implementation of an adequate aeration system (a
set of aeration turbines) and one independent control loop
(with a PID algorithm for example), with an appropriate sam-
pling period. After the biological reaction, the treated water is
sent to a secondary settler, where the clean water and the acti-
vated sludge are separated. The clean water is sent to the out-
side of the plant and the activated sludge is recirculated and
divided in two flows: one part of the sludge (q,) is purged
from the bottom of the settler, and the other one (q,) is recir-
culated into the reactor with the objective of maintaining the
population of the microorganisms.

In our case study, we will control only the substrate and
the biomass (s, x). The input variables are the input flow rate
(q,), the input substrate concentration (s;), and the sludge
recirculation flow rate sent to the reactor (g,). The first two
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TaBLE 1: Main variables of the WWTP with activated sludge.
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are the system disturbances and the third is the manipulated
variable. Figure 2 shows the block diagram of the multivariable
nonlinear system considered, with the input and output vari-
ables involved and their role in the control system (in the case
of the inputs, an alternative notation has been used, between
brackets, more suitable and usual in control systems).

The information relating to the considered inputs and
outputs of the plant is shown more detailed in Table 2 includ-
ing for each of them and also their biological or physical-
chemical significance.

The system chosen has two disturbances in the input, and
the ultimate objective is to simultaneously control two output
variables (coupled) by means of a single manipulated vari-
able. In this study, we consider the wastewater treatment
plant basically as a multivariable system case study with a
complex dynamic and strongly nonlinear, the model of
which (that could be unknown in a generic case) is identified
from input-output numerical data.

2.2. Mathematical Model of the Wastewater Treatment
Process. The mathematical model of the wastewater treatment
process taken as reference is based on mass balances for the
substrate, biomass, and oxygen, and it is founded on the clas-
sical Monod and Maynard-Smith model (with the assumption
of a perfectly mixed tank reactor). This model could be consid-
ered a simplification of the standard model denominated as
activated sludge model no. 1, which is better known by its

initials, ASM1 [36], but it is the corresponding model to the
plant considered, a simple plant in its origin, but real.

The equations that constitute the model and the values of
the different parameters of the Manresa WWTP [35] can be
seen in [23] and in Appendix D (in English language). We
will use this model, in substitution or representation of the
plant, both in the identification process and in the simulation
study of the proposed control strategy. But we will only use
the equations of the substrate and the biomass, taking into
account the aforementioned, in the sense of assigning oxygen
control to an independent loop. This simplification does not
however make the study any less interesting because it
approaches a general problem of interest: the possible utility
of a predictive control scheme based on fuzzy models to con-
trol strongly nonlinear multivariable systems, starting only
from the information implicit in input-output sets of data.

3. Fuzzy Identification and State Space
Modeling of a Wastewater Treatment Plant

One of the great advantages of using fuzzy models is their
potential for describing nonlinear behaviour. This capacity
depends on the suitability of the identification process.
Fuzzy identification is therefore a data treatment proce-
dure (with modelling objectives) of great significance both
in the general sector of the modelling of nonlinear systems
and in the more specific one of predictive control based
on models. However, the identification of fuzzy models
and their use within predictive control strategies can be
studied and applied from many points of view. Our study
focuses on the application to nonlinear multivariable sys-
tems of a particular fuzzy modelling methodology which
consists of the following: expressing a fuzzy model (previ-
ously obtained by means of identification) in the form of
state equations in such a way that it can be useful in cal-
culating predictions and in the search for and obtaining of
an explicit analytical expression for the predictive control
law within the framework of a fuzzy model-based predic-
tive control (FMBPC) system [14]. It is for this reason that
in this article, we will concentrate more on the analytical
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TaBLE 2: Inputs and outputs of the wastewater treatment plant.
] u, (dy) Input flow rate (influent) a4
Disturbances o )
Inputs u, (d,) Substrate concentration in the influent S
Manipulated variable uy (u) Sludge recirculation flow rate q,
Controlled variable 1 Vi Substrate concentration in the effluent s
Outputs ) ) o
Controlled variable 2 b2 Biomass concentration in the reactor X

formalization of the fuzzy model that has already been
identified than on the identification itself.

In our case study, the wastewater treatment plant was iden-
tified starting from a series of input-output numerical data pre-
viously obtained by open-loop simulation and subsequently
treated with the fuzzy identification software tool known as
FMID (fuzzy model identification toolbox) [37]. Some func-
tions of the toolbox were (partially) adapted and some code
complements were also included (in the Matlab and Simulink
environment) so as to be able to make our calculations and
carry out our experiments. This tool, which is based on
clustering techniques by means of the Gustafson-Kessel algo-
rithm, was developed by Babuska et al. as software support
for the theories and techniques of fuzzy modelling and identi-
fication described in the book Fuzzy Modelling for Control [9].

3.1. Input-Output Data. The input-output numerical data of
our system were obtained by means of simulation in open
loop with the wastewater treatment plant represented by
the differential equations corresponding to its traditional
nonlinear mathematical model ([23], Appendix D). The
identification process could also have been carried out with
samples from the real system, but in this case, the predictive
control tests would have been carried out with the real waste-
water treatment plant, which is not usually possible.

The multivariable system to identify corresponding to
our case study has 3 inputs and 2 outputs. Figure 3 shows
another simplified block diagram of the wastewater treat-
ment plant to emphasize the multivariable nature of the said
system with multiple inputs and outputs (MIMO system).

The inputs of the considered plant were the following:
the incoming water flow rate (influent), g;(k); the substrate
concentration in the influent (organic pollution of the
incoming water), s;(k); and the activated sludge recirculation
flow rate, g, (k). The first two are disturbances and the third is
an input variable that can be used as a control variable
(manipulated variable). And the two outputs taken into
account are the substrate concentration in the outgoing
water (effluent), s(k), and the biomass concentration
(microorganisms that feed on the substrate and therefore
purify the water) in the reactor, x(k).

The values chosen for the first two inputs (disturbances)
were chosen by taking as a reference data from real experi-
mental campaigns of an industrial wastewater treatment
plant, to be precise, of the municipal wastewater treatment
plant of Manresa, in the province of Barcelona, Spain (see
the physical-chemical parameters of such a treatment plant
in Table 12, in sub-Appendix D1). These data originated
from tests and measures carried out at this plant on the

Multiple input Multiple output
Uy qi
_ - (N S
u:(uz)z(si) y= = )
)= (-
Wastewater treatment
—_— -

plant (activated sludge)

FiGUure 3: The MIMO system to identify (3 inputs and 2 outputs).

occasion of the work on predictive control carried out at
the time by Moreno [35].

For the control variable, pseudorandom value sequences
were chosen, initially taking as a reference the values of the
control variable used in the aforementioned campaigns of
the industrial wastewater treatment plant and subsequently
incorporating modifications both in variability and in the
extreme values, aiming to cover different areas of operation,
all this with the aim of capturing and extracting sufficient
information on the dynamics of the wastewater treatment
plant. For each combination of values of the input variables
({g;(k),s;(k),q,(k)}), we determined by simulation the
corresponding output values ({s(k), x(k)}), thus obtaining
(for each test) a matrix of input-output data with 5 columns
and as many rows as samples (thousands of samples), with
each line consisting of 5 values (three inputs and two out-
puts). The sampling period of the data set recorded in the
campaign was of the order of one hour. But the data was
extended by performing a mathematical interpolation
between each two samples, obtaining intermediate estimated
data every 0.2 hours (i.e., 12 minutes).

Figures 4 and 5 represent the input-output data of one of
the numerous identification tests carried out, which we will
refer to as case A. Figure 4 is a graphic representation of the
sequences of values of the inputs, and Figure 5 is a graphic rep-
resentation of the sequences of values of the outputs, the latter
having been obtained by means of simulation in open loop
(being the wastewater treatment plant represented by the
aforementioned standard nonlinear mathematical model).
The variable associated with the abscissa axis of both graphs
is the sample number, not the time, but the samples were
ordered temporarily, as is logical.

3.2. Fuzzy Model: Type, Structure, and Parameters. The inter-
nal model that we will use for to the predictions, in our
model-based predictive control frame, will be a Takagi-
Sugeno-type discrete time fuzzy model [7]. These models
are composed of a series of if-then rules, each of which repre-
sents a linear submodel corresponding to a certain subset or



6 Complexity
Identification data (3 inputs: g;, s;, Identification data (2 outputs: : s, x
5500 (3 inputs: g;, s;, q) 2500 (2 outp )
__ 2000 A 2000 -
=
g =
= 1500 | 2 1500 -
Eo =
1000 4- - 2 1000
= =
g
S 500 - 500 -
0 T T T T t T 0 T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Samples Samples

—— g (input flow rate (influent)) —— s (concentration of substrate in effluent)

—— s; (concentration of substrate in influent) —— x (concentration of biomass in reactor)

—— g, (flow rate of sludge recirculation)

FiGure 5: Identification data of case A (outputs).
FiGURE 4: Identification data of case A (inputs).
Rj:if (x, is A; and x,, is A, and, ..., and x,, is A;)) then:
y(k) = ¢; (x)
=0 X)Xy + e g, + 6
where:
j=1(1,2,..., mr); mr: number of rules

X, = (X, X5 -+

(h=

> xap): antecedent vector
x = (%1, %y, "+, X, ): consequent vector
(Aji»Ajs ..., Ajy): fuzzy sets related to the components
of the antecedent vector (ruleR;)
Membership function associated to the fuzzy set A
0, , : R— [0, 1] (smooth function)
J/
Xah— Wy, (x,,) (membership grade of x,
with respect to the fuzzy set Aj,)

)

ArLGoriTHM 1: General form of the Takagi-Sugeno-type fuzzy models.

partition of the universe of fuzzy values of the antecedent
vector (vector premise). The antecedent or premise of each
of the rules is composed of several simple propositions con-
nected by means of and logical operators. The simple propo-
sitions compare each of the components of the antecedent
vector with a certain set or associated fuzzy value (charac-
terised by its membership function). And the consequent or
conclusion of each rule allocates to the output a linear com-
bination of the variables that form the consequent vector,
plus an independent term. Algorithm 1 shows the general
form of this type of discrete time fuzzy models. The mathe-
matical expression by means of which the numeric value that
will allocate to the output is calculated is a function of the
consequent vector x and has been represented in the said
algorithm by ¢,(x).

The composition of both the antecedent vector and the
consequent vector, as well as the number of rules, is two of

the main aspects of the structure of a fuzzy TS model. The
first is directly related to the dynamics of the process we want
to model, that is, will depend on the input-output dynamic
dependencies or relationship, and the number of rules will
depend on the number of clusters observed or considered
in the product space of the available input-output data set.
Another characteristic aspect of the fuzzy model (less intui-
tive) is the type of membership functions associated with
different sets or fuzzy values.

Before carrying out the identification process, we must
choose what structure we will consider, that is, what decision
we will take on the characteristics mentioned above. Such a
choice could be based on hypothesis or be the consequence
of expert knowledge of the process to be identified (if such
empirical information is available) and implies the need to
set various concrete numerical parameters, such as the spe-
cific number of rules and the order of discrete time recursive
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TaBLE 3: Structural parameters for fuzzy identification.

Parameter Meaning Description

c Number of data clusters (for each output) Vector with two integer components
N, Output-output dynamic relationship Matrix (2 x2)

N, Input-output dynamic relationship Matrix (2 x 3)

N, Input-output transport delays Matrix (2 x 3)

T, Sample time Real number

models that make up each rule. Subsequently, after the
appropriate identification process, based on our case in
input-output numerical data, we will obtain the specific
numerical values of the coefficients of the different terms of
the mathematical expression of the consequent of each of
the rules, as well as the centers of clusters and constants relat-
ing to the membership functions.

3.3. Analytical Expression of the Fuzzy Model Output. To cal-
culate the outputs of the considered fuzzy models (given by
several rules), a numerical calculation method should be
applied from among those contemplated in the fuzzy logic
theory, adding or combining all the rules, with the appropri-
ate weight to the consequent of each rule; for example (in our
case), by means of the centroid method:

~ Zjn:lrf.“Aﬂ (Xa1) Ba, (Xg2) - Ba,, (xap,) ¢;;(x) )
yi = mr. >
Zj:fVAﬂ (Xa1) Ba, (Xg2) - Ha,, (xap,.)

(1) i=1,2 (two outputs).

(i) j=1,2,...,mr,

(ili) mr; is the number of rules of the output y,.

(iv) p; is the number of components of the antecedent
vector corresponding to y;.

V) p A, (x4p,) is the membership grade of x,, with
respect to the fuzzy set A, .

And defining for each output and rule the following
membership functions (normalized) for all the antecedent
vector

[’lAjl (xal) AMA}»Z (qu) MAJ‘P;‘ (xap') (2)

ﬁij(xa) —
Zj:fP‘Ajl (Xa1) Ba, (¥a2) Ha,, (xap,.)

the numerical expression of the output will remain as
mr;
Vi= Zﬁij(xa)(/)ij(x)’
=1

i=1,2,
j=12,...,mr;,

where mr; is the number of rules of the output y,.

3.4. Identification of the WWTP. The fuzzy identification
process consists of searching, as from the input-output
data map obtained, a fuzzy model to represent the
behaviour of the system as faithfully as possible. As we
said above, in order to do so, it is necessary to choose,
previously, a certain type of fuzzy model with a specific
structure and with determined dynamic characteristics
and then to try to adjust unknown coeflicients or param-
eters by means of an appropriate mathematical method.
In our experiments, as has been mentioned in the intro-
duction to this section, the whole of the identification
process was carried out by using the FMID software tool
[37], which is capable of extracting a fuzzy model of the
Takagi-Sugeno type [7] for each of the outputs of the
system to identify, as from the objective information
implicit in the input-output data provided and according
to the previous choice of certain parameters concerning
the possible dynamics of the plant. Numerous identifica-
tion tests were carried out with different input-output
data set (corresponding to different campaigns) and with
different choices for the values of various parameters
(available in the tool) related to the dynamic characteris-
tics of the recursive discrete model that will represent the
plant. The result obtained in each of the tests carried out
was a fuzzy model for each of the two outputs. Some of
the experiments done are presented in [31, 32] and
many others were subsequently carried out as the study
and the research progressed. In this paper, we will refer
to some of the case studied during the whole of the pro-
cess, which we will refer to as case A, case B, case C,
and case D.

The main dynamic structural parameters that need to
be chosen to carry out the identification of the WWTP
with the FMID software tool can be summarized in
Table 3.

Next, in Table 4, we will specify the choice of
parameters carried out in case D and its concrete mean-
ing, as well as the relationship with the dynamics of the
model.

The result of each identification test carried out con-
sists of a fuzzy model of the Takagi-Sugeno type for each
of the two outputs of the wastewater treatment plant.
After the identification, all parameters of each fuzzy
model are available in appropriate numerical structures
and we did an adequate use of them for the automatic
processing of information in our simulation study. The
rules of the two fuzzy models that have been identified
corresponding to case D of the WWTP identifications
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TaBLE 4: Structural parameters in case D.

Parameter Value Dynamic model
. 6 5 Out-y, (k) = s(k): 6 clusters/6 rules
Out-y, (k) = x(k): 5 clusters/5 rules
1 [Row 1]: y, (k) depends on y, (k- 1) and y,(k - 1)
Ny (0 ) [Row 2]: y, (k) depends on y, (k- 1)
11 2 [Row 1]: y, (k) depends on u; (k- 1), u,(k - 1), u3(k— 1) and u;(k — 2) (the parameter value of
N, the first row and the third column, equal to 2, implies two consecutive terms of u; (in discrete time))
101 [Row 2]: y, (k) depends on u, (k— 1) and uz(k—1)
1 1 1 [Row 1]: they are 1 transport delay for the three inputs (1, u,, and u3) with respect to y, (k)
N 1 0 1 [Row 2]: they are 1 transport delay for the u; and u; inputs with respect to y, (k)
T 0.2 Sample time (hours)

1.if (y,(k—1)is A}, and y,(k—1) is A\, and u;(k—1) is A;; and u,(k— 1) is A,
and u;(k—1) is A5 and u;(k—2) is A;;) then

y,(k)=(8.74)- 107 -y, (k= 1) = (2.72) - 1073 - y, (k= 1) + (3.96) - 1072 - u; (k- 1)
+(2.24) - 1072 - uy (k= 1) +(5.33) - 107 - uy (k= 1) = (5.98) - 1072 - uy (k- 2) —
(6.47) - 1071

2.if (y;(k—1)is A, and y,(k—1) is A,, and u, (k- 1) is A,; and u,(k—1) is A,,
and u;(k—1) is A,; and uy(k—2) is A,;) then

Yl(k) =
+(2.31) 1072 -1y (k— 1) — (3.89) - 107 - 5 (k — 1) + (3.69) - 107 - uy (k- 2) +

(6.93) -107!

y, (k)
+(
1

O, (k
duy(k—1)is Ags and uy(k—2) is Agg) then
=(

3.59) 1072 uy (k= 1) +(3.01) - 1072 - uy (k= 1) = (3.04) - 1072 - u5 (k- 2) —
25)-10!

(8.58)-107" -y, (k—1) - (3.87) - 107 - y, (k= 1) + (5.19) - 107 - u, (k — 1)

—1)is Ag and y,(k—1) is Ay, and u, (k- 1) is Ag; and u,(k—1) is A,

8.70)-107 .y, (k—1) = (6.54) - 107 - y, (k— 1) + (1.33) - 102 - uy (k— 1)

AvrGoriTHM 2: Takagi-Sugeno fuzzy model for substrate y, (k) = s(k).

Lt

=(9. 58) 107"y, (k—=1) = (2.22) - 1072 -0y (k= 1) + (1.33) - 1072 -y (k- 1) +
)-10?
2. 1f (yz( -1)is A", and u;(k—1) is A*), and u;(k—1) is A*,;) then
(1. 01) 10°-y,(k—1) = (4.10) - 1072 - u; (k— 1) + (3.54) - 1072 - us (k- 1) +
5)-10
3.
4. ...
5.if (y,(k—1)is A*;; and u, (k—1) is A*;, and u;(k—1) is A*;;) then
¥,(k)=(9.35)- 107" - y,(k—=1) = (5.22) - 1072 - u; (k= 1) = (3.96) - 1072 - u5 (k- 1) +
(2.62) - 102

1) is A*11 and u;(k—1)is A", and u;(k—1) is A*;;) then

AvrGoritaM 3: Takagi-Sugeno fuzzy model for biomass y, (k) = x(k).

carried out can be seen as follows: in Algorithm 2, the = The relationship between the parameters contained in
fuzzy model corresponding to output 1 and in Algo-  Table 4 (except T,) and the structure of the rules of
rithm 3, the fuzzy model corresponding to output 2.  the fuzzy model of the two outputs is quite clear. Thus,
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TasLE 5: Consequent parameters for substrate y, (k) = s(k).
Rule y(k-1) y,(k—1) u;(k—1) u,(k—1) uy(k—1) uy(k—2) Offset
1 8.74.107" -2.72:107° -5.98107°
2 8.58.107" -3.87.107° 3.69-10°
3
4
5 8.83.107" -3.15.107° 5721077
6 8.70-107" -6.54-10° -3.04:1072
TasLE 6: Cluster centers for substrate y, (k) = s(k).
Rule y,(k-1) y,(k-1) u (k-1) u,(k—1) uy(k-1) uy(k-2)
1 5.71-10° 1.84-10° 8.29-10°
2 5.72-10" 1.99:-10° 1.07-10°
3
4
5 1.06-10* 1.99-10° 7.90-10°
6 1.66-10° 1.90-10° 1.56:10°
TasLE 7: Consequent parameters for biomass y, (k) = x(k). TaBLE 8: Cluster centers for biomass y, (k) = x(k).
Rule y(k-1) u(k-1) uy(k—1) Offset Rule y,(k-1) u (k-1) uy(k-1)
1 9.58.10"" 2221072 1.33.1072 1.02:10% 1 1.80-10° 5.68-10*
2 1.01-10° —-4.10-1072 3.54-1072 24510 2 1.82:10° 4.81-10°
3 3
4 4
5 9.35.107" -5.22:1072 -3.96:1072 2.62:10° 5 2.12:10° 9.96-10°

the recursive dynamic

models of y, (k) and y,(k) have the

are compared. Such information must be searched in the

following structure:

yi(k)=f10(k=1),y,(k=1),uy (k- 1),
uy(k=1), uz (k= 1), us(k ~2)),
or alternatively,

yi(k+1) = f1(1(Kk), y, (), uy (), uy (K), s (k) us (k = 1)),
(4)

Y2 (k) = fo(r2(k = 1), uy (k = 1), us (k= 1)),

or alternatively, (5)
ya(k+1) = fo(v, k), uy (), us (k).

In Tables 5 and 6, the consequent parameters and the clus-
ter centers, respectively, can be seen corresponding to output
1, and in Tables 7 and 8, the consequent parameters and the
cluster centers, respectively, can be seen corresponding to
output 2. All these numerical coefficients are results provided
by the identification tool that uses the Gustafson-Kessel algo-
rithm. The clustering techniques implicit in the tool are deci-
sive when identifying the linear submodels.

The identification tool also provides the necessary
numerical information relating to the fuzzy sets or values

A;j, with which the components of the antecedent vectors

analytical expressions of the membership functions corre-
sponding to such sets, which will be given in a parametric
form. Using these parameters automatically and developing
the suitable software, we can represent in graphic form the
membership functions of each set. As an example, we show
below a graph (Figure 6) with the membership functions cor-
responding to the six fuzzy sets (one for each rule) associated
with the u;(k - 1) = g,(k — 1) variable, which is one of the
components of the antecedent vector of the rules of the out-
put y, (k), for the case A.

Observing the previous tables, we can see the composi-
tion of the antecedent and consequent vectors of each of
the two outputs. The antecedent vector of output-1, X,ou
coincides with the consequent vector of output 1, X5, and
the same is true for the antecedent vector and consequent
vector of output 2, X, and X,,,,. Therefore, we will refer
to the antecedent-consequent vector of output 1 and the ante-
cedent-consequent vector of output 2. The composition of
such vectors and the physical meaning of each component
are specified below.

X, =Xjouy = V1 (k= 1), y, (k= 1), uy (k- 1), (6)
uy(k=1), uz(k = 1), u3(k - 2)],

XuleoutZZD/Z(k_l)’ul(k_1)’u3(k_1)]’ (7)
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= qr(k - 1)

output with the model estimated output and, numeri-
cally, by calculating and giving the validation index
known as VAF (VAF: percentile variance accounted
for between two signals), which is among those habitu-
ally used for giving validity to the identified models. In
our study, the real process output was obtained by
means of simulation (with the wastewater treatment
plant represented by the nonlinear model mentioned
in Section 2.2 and detailed in Appendix D, given in
the form of differential equations) and the model esti-
mated output was obtained by applying to the identified
fuzzy model the same inputs as to the wastewater treat-
ment plant simulated.

10
g
£
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ks
&
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b
£
=}
Z
0 2(')0 4(')0 6(')0 8(')0 10'00 12'00 14'00 16'00 18'00 2000
Antecedent variable: g,(k — 1) (flow rate of sludge recirculation (m3/h))
FiGure 6: Membership functions of u;(k — 1)
where
¥, (k—=1)=s(k - 1); effluent substrate at (k — 1),
¥,(k=1)=x(k - 1) ; reactor biomass at (k - 1),
u;(k—=1) =g;(k—1); input flow rateat (k - 1),
u,(k—1)=s(k-1);inffluent substrateat (k — 1),
uy(k—1)=gq,(k-1);sludgerecirculation at (k - 1),
uz(k—2) =g,(k - 2) ; sludge recirculation at (k - 2),
(k=N)=(k-N) =T,
N=1,2,

T = sampling period (discrete time system).
(®)

As can be seen by comparing (6) and (7), initially, the
antecedent-consequent vectors of both outputs do not coin-
cide. However, in this study, we decided to treat the math-
ematical expressions of the fuzzy models jointly for both
outputs (using matrices), defining a single mixed anteced-
ent-consequent vector formed by the union of the two
antecedent-consequent vectors (considering, naturally, null
factors where appropriate in the necessary mathematical
developments). Such vector, antecedent-consequent common
to both outputs, is as follows:

where the involved variables are the same as those detailed
in (8).

3.5. Validation of the Identified Fuzzy Models. An essential
part of any identification process is the validation of the iden-
tified models. The FMID software tool [37] uses a specific
mathematical procedure of validation and provides the
results both in graphic form, comparing the real process

In our research process, numerous identifications
were made with the same or different input-output data
sets. Likewise, the use of the available input-output data
was diverse, beginning with basic tests, using the same
set of input-output data in the identification and valida-
tion of the model, and then carrying out more reliable
tests in which a partition was made of the available
input-output data, using a certain percentage of the
data to identify the model and the rest to validate the
model. On the other hand, and as we said at the begin-
ning of Section 3.4, identifications with different
dynamic characteristics of the recursive discrete model
that will represent the plant were made. The presenta-
tion, analysis, and discussion of the results of all the
identifications made, together with the study of the
relationship between the used data or the choice of
parameters of the structure of the fuzzy model and
the goodness of the identification, are beyond the scope
of this article. However, it is necessary to consider at
least the four identification cases mentioned at the
beginning of Section 3.4, cases A, B, C, and D, com-
menting in this section the graphic and numerical
results of the validation process of the corresponding
fuzzy models identified. We summarize in Table 9 the
main characteristics of the four cases.

For case A and case B, dependence on y, (k) and y,(k)
outputs with respect to u;(k—1)=g¢,(k—1) input has not
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TaBLE 9: Parameters and use of input-output data in 4 cases.

Dynamical Parameters of the

Identification in-out data versus validation

Ju—
(=]
—

Case recursive discrete model in-out data
N, N, N, The same Different (partition)
1 1 0o 1 2 0 1 1
A [ ]
0 1 0 0 1 0 0 1
1 1 0o 1 2 0 1 1
B [ ]
0 1 0 0 1 0 0 1
1 1 1 1 2 1 1 1
C ®
0 1 1 0 1 1 0 1

S
izl
5
g
2
=
3
3
38 o : : : : . .
0 100 200 300 400 500 600 700
Time (hours)
—— Output 1 of wastewater treatment plant
(classic model equations)
-—-— Output 1 of the fuzzy model identified
S
2
Z
g
S
B
g VAF(out2) = 92.15%
= out2) =92.15%
é’_ 500
g o ; ; : : : :
0 100 200 300 400 500 600 700

Time (hours)

—— Output 2 of wastewater treatment plant
(classic model equations)
-—-— Output 2 of the fuzzy model identified

FIGURE 7: Validation of the identified fuzzy model corresponding to
case A for output 1, s(k), and output 2, x(k).

been considered. But it has been considered in case C and
case D. We are interested in testing the effectiveness of the
control algorithm, both in cases where the model is the result
of more complete identification (C and D) and in cases where
the identification is incomplete or less precise (A and B).

3.5.1. Results of the Validation Process for Case A and Case B.
The results of the validation corresponding to case A are
shown in Figure 7. This figure contains two graphic represen-
tations (one for each output of the wastewater treatment
plant under study) and compares the values of the
real process output with those of the model estimated
output (for the same set of values of the inputs),

Validation of identified fuzzy model (wastewater treatment plant)

= 200
>
Q; \
< 150 1|\
b= \ A
17 . ~ ! .
= 1001 \N\ SVANVEAVA
2 o . A | \./‘ N
: \ / =S |
2 AN NAV
= 7 '~ VAF(outl) = 61.89%
3 o : : : : . .
0 20 40 60 80 100 120 140
Time (hours)
—— Output 1 of wastewater treatment plant
(classic model equations)
-—-— Output 1 of fuzzy model identified
S 2400
®
g 2200 -
<
: N
£ 2000 1
=
2 1800 -
= ' VAF(out2) = 41.84%
O 1600 T T T T T

0 20 40 60 80 120

Time (hours)

100 140

—— Output 2 of wastewater treatment plant
(classic model equations)
-—-— Output 2 of fuzzy model identified

FiGure 8: Validation of the identified fuzzy model corresponding to
case B for output 1, s(k), and output 2, x(k).

including in addition the VAF index, which measures
the goodness of the identification for each of the two
partial identifications.

In case B, we have the same structure of rules for the
fuzzy model as in the case A and therefore the same compo-
nents for the antecedent vector and the consequent vector,
but with the difference that in this case, the numerical
input-output data sequences used in the identification pro-
cess were different from those used in the validation process
(the available input-output data were partitioned). The
results of the corresponding validation, for the two outputs
of the wastewater treatment plant, can be seen in Figure 8.
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FIGURE 9: Validation of the identified fuzzy model corresponding to
case C for output 1, s(k), and output 2, x(k).

In relation to the two identifications shown above, we can
give a brief comparative analysis of both cases, taking into
account the corresponding graphs and validation indexes.
In case A (Figure 7), the adjustment is quite precise for the
two outputs, with very high VAF indexes (over 92%), while
in case B (Figure 8), the adjustment is markedly lower with
VAF indexes around 62% (output 1) and 42% (output 2).
The difference is due to the fact that in the second case, the
input-output data used to identify the model were not the
same as the input-output data used to validate the model, a
situation in which a more difficult adjustment can be
expected. In case B, however, although the VAF indexes are
lower, the response of the fuzzy model follows quite well
the evolution of output 1 of the wastewater treatment plant
and acceptably that of output 2, the tendency of which
was at least detected by the identification. On the other
hand, one of the potential complementary objectives of
this study is precisely the assessing of the efficiency of
fuzzy predictive control algorithms, including with imper-
fect models, as indeed we have checked in the control
experiments (FMBPC) carried out with both fuzzy models
and which we will subsequently discuss.

3.5.2. Results of the Validation Process for Case C and Case D.
In case C and case D, dependence on y, (k) and y, (k) outputs
with respect to u; (k—1) =g;(k—1) input has been consid-
ered. Therefore, in principle, these two cases are more pre-
cise and realistic when it comes to identifying the model
of the plant and one would expect a greater utility of the
models within a strategy of predictive control based on
models. The dynamic structure of the model considered

Complexity
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F1GURE 10: Validation of the identified fuzzy model corresponding
to case D for output 1, s(k), and output 2, x(k).

for the identification of the plant is the same in both cases,
as can be seen in Table 8, but they differ (as in the previ-
ous two cases) in that, in case D, the numerical input-
output data sequences used in the identification process
were different from those used in the validation process
(the available input-output data were partitioned). The
results of the validation, for the two outputs of the wastewater
treatment plant, corresponding to case C and case D, can be
seen in Figures 9 and 10, respectively.

In relation to the other two identifications shown above,
we can also give a brief comparative analysis of both cases,
considering the corresponding graphs and validation indexes
shown. In case C (Figure 9), the adjustment is quite precise
for the two outputs, with very high VAF indexes (around
99% for output 1 and of 87% for output 2). In case D
(Figure 10), the adjustment is also quite precise for output 1
(95%) and quite acceptable for output 2 (around 66%). In
addition, the responses of the two fuzzy models follow quite
well the evolution of the corresponding outputs of the waste-
water treatment plant (output 1 and output 2), that is, the
tendency in the two outputs was detected very well by the
identification. Finally, it is relevant to emphasize that the good-
ness of the validation of the model identified in case D is signif-
icantly better than that of case B. The difference between both
cases is the consideration, in case D, of the dependence of the
two outputs with respect to u, (k — 1) = g,(k — 1) input. In the
simulation study presented in Section 5, four different cases of
predictive control (FMBPC) applied to the WWTP have been
considered, each of them corresponding to the use of one of
the four identified models (case A, case B, case C, and case
D). We are interested in analyzing the possible influence of
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the models on the effectiveness of the control algorithm,
although a detailed study of this aspect is not possible to
address it in this article.

3.6. State Space Modeling. By using suitable definitions and
mathematical treatments, we can describe or formalize the
rules of the fuzzy models of the Takagi-Sugeno type in the
form of state equations. This involves the huge advantage of
being able to treat the fuzzy models in an analytical manner
and also to calculate the predictions analytically and ulti-
mately being able to express the control law in an analytical
and explicit manner. The application of this methodology
to the case study which concerns us constitutes one of the
main contributions of our study, which follows the line pre-
viously initiated by other authors [10]. The mathematical
development necessary for our case study has previously
been presented [31]. The discrete time fuzzy models in the
state space were formalized jointly for the two outputs of
the water treatment plant (with the necessary definitions),
and the equations corresponding to them both were grouped
together using matrices to obtain a single state equation and a
single output equation. The result of the mathematical for-
malization was as follows:

z,(k+1)=A,z,(k)+B,u,(k) +R,, (10)

Yo (k) = Cpu2, (K, (11)
where

(i) z,,(k) is the extended-state vector, integrated by the
outputs and disturbances of the WWTP, at the kth
instant

(i) z,,(k+ 1) is the extended-state vector, at the (k + 1)th
instant

(iii) y,, (k) is the output of the model in the state space,
integrated by the outputs of the WWTP, at the kth
instant

(iv) wu,(k)input of the model in the state space, integrated
by the manipulated variable of the WWTP, at the kth
instant and the previous one

(v) A,,,B,,R,,, and C,, are the state matrices

and the corresponding expressions are

y1(k) y1(k) s(k)
5 (k 5 (k x(k
2 (k) = ya(k) | k) | x(k) W
) || mm || a®
hk) \wm) \swk

B, = ‘ <ﬁj(xa)ij)’
j=1

C, = an(ﬁju(xa)cm]),
j=1

R =Y (Bj(xa)RmJ),

where
Byx) 0 0
_ 0 Byi(xa) 0
ﬁj( a) - 0 0 1
0 0 0
_ ﬁlj(xa) 0
P < 0 Bylxa) )
Bas(xa) =0,
mr = max - (mr;, mr,),
being that

Jj1
= 1
Amf 6o 0 — 0
mr
1
0 0 0 —
mr
by by
bi; 0
me— ]3 >
’ 0 0
0 0

1 0 0
ij =
01 0

o O
N——

13
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(i) aj1,ap, b1, by, bj3, by, rj are the coefficients of the
antecedent vector and independent term in the jth
rule of the output 1 fuzzy model of the WWTP.

LR bﬂ, b 3 r are the coefficients of the antecedent
vector and 1ndependent term in the jth rule of
the output 2 fuzzy model of the WWTP (with

ay, =0, bg; =0, bg; =0, and r; =0).

(ii) a

It is important and relevant to point out that the
matrix coefficients of the state equations obtained, A
B,.R,, and C,, depend on the antecedent vector x,
(through B;(x,)) and therefore also depend on the kth

instant, because x, depends on time. This assumes that
concerning the necessary calculations to achieve the simu-
lation, it will be necessary to update those coefficients in
each iteration after having updated the antecedent vector
x, and subsequently B;(x,). And as a conclusion to this

process of formalization of the fuzzy models identified in
the state space, we can summarize by saying that the
behaviour of our nonlinear multivariable system, initially
identified by fuzzy models, was finally represented by a
state equation system with a linear shape, but with coeffi-
cients depending on time. In [10], two theoretical refer-
ences are mentioned on the association of systems with
nonlinear dynamics, with variant linear systems over time
(Leith, D.J. and Leithead, W.E., 1998 and 1999).

4. The Control Law in Analytical Form

The next step of our fuzzy predictive control strategy con-
sists of deducing an analytical and explicit control law,
making use of the model in the form of state equations.
As was mentioned in the introduction, the deduction
method for the control law can be considered an extension
of the so-called predictive functional control 1 [2, 16-18]
for the multivariable case. To be able to use this method,
the following will be necessary: on the one hand, to define
both the desired behaviour of the closed-loop system and
the control goal and, on the other hand, to formalize the
relationship between the model and the plant that allows
carrying out a model-based predictive control strategy.
The desired behaviour will be defined by imposing on
the plant outputs the follow-up of certain reference trajec-
tories (one for each output), as faithfully as possible, and
the control goal will consist on calculating the future con-
trol action so that the predicted plant output values coin-
cide with the reference trajectory in at least one point. In
our case, we will consider a single coincidence point. The
difference between the current time (kth time instant)
and the one corresponding to the coincidence point,
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Ficure 11: Predictive functional control-equivalence principle.

measured on the number of sampling periods, is called
coincidence horizon and it is usually represented by H. There-
fore, starting from time instant k, the coincidence with each
trajectory must occur at time instant k + H.

The relationship between the model and the plant will
be established assuming the so-called equivalence principle
between the plant and the model, used in PFC. This principle
consists in supposing that, for each output of the plant, the
plant output increment, between k and k + H, necessary to
coincide with the reference trajectory, A,, will be equal

to the predicted model output increment, also between k
and k+ H, A,,. This principle is analytically expressed by
the following expression:

Ay =Dy (18)

which must be satisfied for each output of the plant. If we
consider the equations of both outputs simultaneously, we
would have a vector equality: A, =A,,, where A, is usually
the so-called objective increment vector and A, is the
model output increment vector. The idea of the PFC strat-
egy and equivalence principle can be shown in graphical
form (Figure 11).

4.1. Predictions Based on the Model. The control actions in
the various existing predictive control strategies are not cal-
culated in the same way in all cases; there are different
methods and different formulas or algorithms that are
applied. However, all these strategies share the use of some
type of mathematical model to represent as faithfully as
possible the process to be controlled (in our case, a fuzzy
model formalized in the state space) and which serves to
predict the future behaviour of the process and ultimately
to determine the appropriate control action for compliance
with the control objectives. We can therefore say that the
mathematical basis of the predictive control strategies will
be the general expression corresponding to y,,(k + H), that
is, the expression of the output at the instant (k+ H), pre-
dicted by the model at the kth instant, with H being the
prediction horizon.
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The deduction of such an expression, from the state
equations previously obtained, is fairly extensive in our
case and has for this reason been developed in its totality
in Appendix A with the objective of facilitating the follow-
up of the article. The calculation of Hstep ahead predic-
tion is done under the assumption of constant future
manipulated variables, that is, u(k) =u(k+1)=--=u(k+
H —1). The final expression deduced is the following (see
(A.26), at the end of Appendix A):

v, (k+H)=C,, (AmHzm(k) + (AMH*Bm + (Am”*l - 1)

where

HeZz' H=1;3A,"if (H-n)>1(withneZ*),

1 0 1 0
I= ( ) , the order 2 identity matrix, and Py, = ( ) .
0 1 1 0

(20)

4.2. Deduction of the Control Law in an Analytical and
Explicit Way. As from the expression of y,,(k+ H), which
allows the prediction at the kth instant of the evolution of
the outputs of the model, H periods further on, we can
search an analytical and explicit expression for the control
law. This is precisely the main objective of our paper. We
detail below the necessary mathematical process. In the
first place, we will find u,(k) in (19), obtaining an expres-
sion that will be a function of y, (k+H) and we will
subsequently extract, of the vector variable u,(k) obtained,
the scalar variable u(k), which will also be a function of
¥,.(k+ H). This first stage is developed in Section 4.2.1.
Secondly, we will establish the desired behaviour of our
system in a closed loop, imposing the follow-up by the
outputs of the WWTP of certain reference trajectories,
which will also condition to y,,(k+H). And as from the
relations obtained, we will deduct the expression of the
control action u(k) which is necessary to comply with
the control objective, which will be a function of the refer-
ence (set point) of the future outputs (at (k+H)). The
second stage is developed in Section 4.2.2.

4.2.1. Manipulated Variable u(k) as a Function ofy,,(k + H).
Leaving at (19) to one side of equality, the term in which
u, (k) is multiplying
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and grouping together terms for simplification, defining
matrix M, as follows:

we will have (21) simplified, obtaining

H-1
m

")Rm (23)

Vm(k+H)-C,A, "z, (k) - C, (A
)

+ (AMH’l - 1) (A, -

and multiplying on the left, on both sides of equality, by the
matrix M, !, we will have the following matrix expression:

u, (k) =M, (ym<k+H> C,A,"2,

e ).

and replacing u, (k) by its generic expression specified in (12),
we will have

u(k) o _
< > = Ma_l <Ym(k + H) - CmAmHZm (k) - Cm
u(k-1)
. (AmH‘1 + (AmH‘l - 1) (A, - 1)-‘)Rm),

(25)

where u(k—1) will be the value of the variable u at the
previous sampling instant to the kth and should therefore
have been conveniently memorized (or for the first sam-
pling instant have a predetermined initial value). In short,
u(k—1) will be a data, a specific numerical value saved,
while u(k) will be the unknown quantity to find or determine.

If matrix (25), with u(k — 1) given, has a single numerical
solution (or if it has none, assuming that it is possible to
determine an approximate solution by computer), then we
will be able to determine the numerical value of u(k) by
means of the following expression:

u(k) = Pyou,(k), (26)
being

Ppy=(1 0) (27)

and replacing u, (k) by its expression given by (24), we would
finally have
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which is the expression that will allow the determining
of the variable u(k) which will be necessary at the kth
sampling instant so that the model can attain, H periods
later (ie, at the (k+ H)th instant), a certain vector
valuey, (k+ H).

4.2.2. Control Action u(k) Necessary for the Follow-Up of
the Output Reference Trajectories. The control action u(k)
which we search will be that guaranteeing compliance with
the control objectives for the process output. Thus, follow-
ing the same approach as in [10, 18], we will establish the
desired behaviour of the closed-loop system imposing for
the outputs the follow-up of discrete reference trajectories,
which must gradually approach to the corresponding
references. These trajectories constitute the reference model
and will be given formally by means of the following
recursive equations:

yr, (k + 1) = ariyri (k) + br,-yset_point,»(k)’

(29)
i= 1,2 (number of outputs),

where )’set,poim,.(k) is the reference or desired value of the
ith output y;(k) at the kth instant, y, (k) and y, (k+1),
the values in k and in k+ 1, respectively, of the reference
trajectory, and a, and b, the parameters of the reference
model, the values of which must be such so as to ensure
that the gain of the reference model is the unit (for both
outputs). For this to occur, as can be seen in Appendix
B expression (B.5), the following mathematical relationship
should be complied with

-1

l1-a,) b, =1,
( 'i) T (30)
i= 1,2 (number of outputs).

And as we have introduced at the beginning of the
section, to achieve the follow-up of the reference trajecto-
ries, the control goal fixed will consist on to calculate the
future control action so that the predicted plant output
values coincide with the reference trajectory (for each out-
put of the plant) in a single coincidence point. Such a point
will correspond to the instant k + H, where H is called the
coincidence horizon.

The control action at each kth instant, u(k), should there-
fore be such that the plant outputs match the corresponding
reference trajectories, H sampling periods later, such that
yi(k+H) equals y, (k+H). Therefore, the desired plant

output increment should be equal to [y, (k+H) - y,(k)],
for each ith output (i=1,2), that is,

Byl =, e+ H) =3, (6, -
i= 1,2 (number of outputs).

On the other hand, we need now to do use of the rela-
tionship between the model and the plant established in

Complexity

the introduction of this section, consisting of adopting
the so-called equivalence principle (following again the
same approach as in [10, 18]), which is a way to introduce
the main idea or mechanism implicit in the model-based
predictive control. We must therefore consider equality
(18), ApzAm, for each ith output (i=1,2), where A, is
the predicted model output increment, whose expression
is as follows:

Am|i =ym,(k+H) _ym,-(k)’

(32)
i=1,2 (number of outputs),

and matching (31) and (32) (ie., matching the desired

plant output increments with the predicted model output

increments: Ayl; = A,,l;), we will have

Yy (k+H) = y;(k) =y, (k+ H) = y,, (k),

(33)
i=1,2 (number of outputs).

The control action at each kth instant, u(k), should be
such that equality (33) is satisfied for each of the two outputs.
And considering together the two equalities implicit in (33),
we will have the following single vector expression:

Finding nowy,, (k + H) in (34), we will have that the pre-
dicted model output in the (k + 1)th time instant should sat-
isfy the following expression:

Yu(k+H) =y, (k+H)-y(k) +y,(k). (35)

Replacing (28) y,,(k+H) by the second member of
equality (35), which we have just obtained, we will finally
have the expression that we were looking for u(k), depen-
dent on terms that can be determined using the plant
model or the reference model or that can be measured
at the kth instant. The final expression for u(k) is the fol-
lowing, where M, is given by (22) and P,, by (27) and
where the matrix coefficients that intervene must be
updated in each iteration of the implementation of the
control algorithm (due to their dependence on the ante-
cedent vector and therefore on time)

u(k) = PogM, ™ (¥, (k + H) =y (k) +,,(k) - C, A, "2, (K)
-cm(AmH-‘+(AH1 ) ) ) (36)

HeZ', H=>1,

where the term y,(k+H) would remain to be specified,
which would be developed by induction. This development
is shown in an abbreviated form together with the result
obtained under the hypothesis of maintenance of the
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reference on the prediction horizon in Appendix C. The result
is as follows (see (C.10) at the end of said appendix):

Yr(k + H) = ArHy,(k) + (I - ArH)Yset,point(k)’

H
A o
H = >
' 0 aZ
1 0 (37)
1= R
0 1
HeZ",
H=>1.

Formula (36), complemented with (37), constitutes the
analytical and explicit expression of the control law u(k)
which would be needed, at each kth instant, to guarantee the
desired behaviour of our multivariable closed-loop system,
which is precisely what we were searching in this section.

5. FMBPC Applied to WWTP

The main objective of this work is the deduction of a
fuzzy predictive control (FMBPC) law, expressed in an ana-
Iytical and explicit way and to apply it to the control of
wastewater treatment biological processes that are multi-
variable, highly nonlinear, time-varying, and complex pro-
cesses. These processes are difficult to control due to their
biological nature, and, in addition, our control system will
use a single manipulated variable to control two output var-
iables. Therefore, the possible obtaining of positive results
would be quite interesting.

Next, we show the configuration of the implemented
control system and the experiments carried out by means
of simulation.

5.1. FMBPC Scheme. The implemented control strategy is
in the field of nonlinear predictive control (NLMPC) and
uses principles and methodology of functional predictive
control (PFC) in the deduction of the control law. The
basic mechanisms of operation of this strategy have been
reflected in Figure 12.

As can be seen, our FMBPC scheme uses an internal fuzzy
model to carry out the predictions and uses PFC principles
for the calculation of the control law. The controller needs
the information related to the set point of the outputs and
the corresponding reference trajectories. In addition, in each
iteration (sampling period), state matrices must be updated,
because they depend on the premise or antecedent vector
(and ultimately also of time). Therefore, the controller must
also have the instantaneous information of all the variables
that constitute the antecedent vector.

The task sequence that must be executed for the imple-
mentation of our FMBPC strategy and that constitute the
control algorithm is shown in Algorithm 4.

5.2. Simulation Study. The predictive control experiments
were carried out by means of simulation in the Matlab and
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Set point/ref. trajectory

Predictive
functional control | :

T e .|

Fuzzy model (T'S type) :
— Update state matrices [¢-|** :
at each kth instant  |e.loooooooii :

F1GURe 12: FMBPC scheme with an internal fuzzy model.

Simulink environment. Of all the developed software, the
most important part was that corresponding to the imple-
mentation of the control algorithm, that is, the necessary
code for the calculation in each iteration of the control vari-
able, using the analytical and explicit expression obtained
((36) and (37)), including the necessary updating of the state
matrices, which depend on time.

The study included numerous experiments carried out at
different periods of time, some of which are presented in [31,
32]. Numerous tests were carried out with different fuzzy
models, different input disturbances, and different output
references (mainly between 45 (mg/l) and 65 (mg/l) for the
substrate and between 700 (mg/l) and 2000 (mg/l) for the
biomass). For each case, different tests with different values
of H, the coincidence horizon, were carried out. The simula-
tion time interval chosen was from 0 to 166 hours. For this
study, four predictive control experiments were selected,
based on fuzzy models that were the result of four identifica-
tions considered in Section 3 of this paper: case A, case B,
case C, and case D. The dynamic characteristics of these
models were summarized in Table 9. In addition to imple-
menting for all cases our FMBPC scheme applied to the
WWTP, in the last two cases (C and D), a closed-loop con-
trol system for the substrate was also implemented (in par-
allel), based on a previously tuned PID controller.

We will show the results of the selected experiments
by means of several graphic representations. For each
experiment, the temporal evolutions of the different vari-
ables involved are included: the two controlled variables,
that is, the substrate concentration in effluent (s(k)) and
the biomass concentration in the reactor (x(k)), and the
control variable, that is, the activated sludge recirculation
flow rate (q,(k)), whose numerical values are precisely
the result of the application of the control law obtained
in Section 4 of this article. On the other hand, in some
of the representations, the simultaneous temporal evolu-
tions of the two perturbations considered have also been
included: the input flow rate (g;(k)) and the substrate con-
centration in the influent (s;(k)). The reason is that it is
relevant to show the high level of the disturbances that
are being tried to compensate with the control action
and, at the same time, to see the evolution of the con-
trolled variables. That is, the objective is to relate the
response of the controlled variables to the level and vari-
ability of the disturbances. In the case, the graph of the
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A,.B

> Dyys

Repeat at each kth instant (sampling period, T'):

Step 1. Update the current premise vector. Measurement of
all the necessary variables for the determination of
the current premise or antecedent vector, x,:

yi(k=1),y,(k=1),uy (k= 1), 1y (k = 1), us(k = 1), u3 (k - 2)

Step 2. Update the state matrices. The TS fuzzy model was
formalized in the form of linear time-varying state space
equations, and the state matrices depend on the current
premise vector. Therefore, at each instant, the following
parameters must be updated, using (14):

A,.B,.R,, and C,

Step 3. Calculate the predicted model outputs. The use of a
model to predict future behaviour is essential in MPC.
By means of the appropriate mathematical treatment,
the outputs predicted by the model can be calculated. In
our case, using (18), we will get:

Yu(k+H)

Step 4. Compute the current control action. By establishing
the desired behaviour of our system through the previous
definition of certain reference trajectories, which must
be followed by the outputs of the plant, and applying
principles of PFC, we can determine the expression of
the necessary control action to achieve such behaviour.
Thus, using (36), we will obtain:

u(k)
Step 5. Apply the calculated control action to WWTP.

ArcoriTHM 4: Control algorithm for FMBPC implementation.

TaBLE 10: Set points and H of experimental cases.

Set point value Coincidence horizon

Case Substrate, s, Biomass, xg, HeZ
(mg/1) (mg/1)
55 1837 6
55 750 3
55 1900 6
55 1837 180

g O|w »

temporal evolution of the substrate is even more relevant,
because the control system manages to reduce the value of
the substrate concentration to significantly lower levels.
The disturbances considered in case A were different from
those considered in case B and also different (both) to the
perturbations of C and D cases (being the same in case C
and in case D).

The set points of s and x, as well as the coincidence hori-
zons considered in each of the four experiments are detailed
in Table 10.

5.2.1. FMBPC Using Fuzzy Models of A and B Cases. The
three graphic representations for the experiment correspond-
ing to case A are shown in Figure 13 (s(k)), Figure 14 (x(k)),
and Figure 15 (g,(k)).

And the three graphic representations for the experiment
corresponding to case B are shown in Figure 16 (s(k)),
Figure 17 (x(k)), and Figure 18 (gq,(k)).

Controlled output-1 (substrate): s (mg/1)
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trajectory of the substr.; disturbances
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Substrate: s (mg/1); substrate refer.; refer.

20 40 60 80 100 120 140 160 180
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—— Disturb 1: g; (m*/h)
— Disturb 2: s5; (mg/1)

— Substrate: s (mg/l)
—— Reference of s
— Refer. traject. of s

FiGure 13: Substrate in the effluent and disturbances (case A).

The graphic representations corresponding to case A
show that the control law obtained is able to maintain the
levels of the substrate in effluent around the reference value
(with acceptable deviations), despite the strong disturbances
of the input flow rate and the pollution of the incoming water
(the substrate concentration in the influent). At the same
time, the concentration of biomass in the reactor is led to
its reference value by following the preestablished reference
trajectory. All of this is with a single manipulated variable.
On the other hand, from the observation of the evolution of
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FiGURE 14: Biomass in the reactor and disturbances (case A).
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FIGURE 15: Activated sludge recirculation flow rate: the calculated
predictive control variable (case A).
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F1GURE 16: Substrate in the effluent and disturbances (case B).
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FiGURE 17: Biomass in the reactor and disturbances (case B).
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FIGURE 18: Activated sludge recirculation flow rate: the calculated
predictive control variable (case B).

the control actions and the comparison with the distur-
bances and the outputs, we can say that the variations in
the activated sludge recirculation flow rate, determined
by the control law, timely counteract the output deviations
due to the disturbances and by means of acceptable
control efforts.

The graphic representations corresponding to case B
show, as in case A, that the control law obtained is also able
to maintain the levels of the substrate in effluent around the
reference value, despite the disturbances of the input flow rate
and the pollution of the incoming water (which are different
from those of case A). At the same time, the concentration
of biomass in the reactor is also led to its reference value
(which is also different from that of case A), following the
preestablished reference trajectory fairly faithfully (better
even than in case A). All of this is also with a single manip-
ulated variable. From the observation of the control actions,
we can say that the activated sludge recirculation flow rate,
calculated by means of the control law deduced, also
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FiGure 19: Effluent substrate by FMBPC and disturbances (case C).
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FIGURE 20: Effluent substrate by FMBPC and PID (case C).

compensates in this case, quite well, the output deviations
due to the disturbances and also by means of acceptable
control efforts. The maximum values of the control variable
(as well as its range of variation) are lower than in case A,
but also the pollution of the incoming water is much lower
in this case than in case A.

In none of the cases shown, it was necessary to impose
limits on the increase of the control action. However, in some
cases, it is necessary to do so to avoid instability. The analysis
of this problem requires further study. In relation to the
prediction horizon, many tests were carried out with differ-
ent prediction horizons, but herein, only the results corre-
sponding to an H value, for each of the cases studied, have
been shown. A specific study of the influence of the
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FIGURE 21: Reactor biomass by FMBPC and disturbances (case C).
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FIGURE 22: Reactor biomass by FMBPC and PID (case C).

prediction horizon, which is a very important design
parameter in predictive control, is needed.

5.2.2. FMBPC Using Fuzzy Models of C and D Cases. The
dynamic characteristics of C and D cases are different from
those of A and B cases (see Table 9). In addition, a previously
tuned PID controller has been implemented with the objec-
tive of evaluating the FMBPC performance, not only individ-
ually but also comparatively. The PID tune parameters were
k,=1and k; = 0.1 (with an offset or threshold for the control
signal value equal to 775 m’/h).

The results of the experiments corresponding to case
C can be seen in the graphic representations shown in
Figures 19-23. And the results of the experiments
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Ficure 23: Control variables calculated by FMBPC and PID
strategies (case C).
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FiGure 24: Effluent substrate by FMBPC and disturbances (case D).

corresponding to case D can be seen in the graphic repre-
sentations shown in Figures 24-28. From the observation
of such figures, we can summarize the results obtained
in the experiments corresponding to C and D cases. In
both cases (for the two models used), the substrate is con-
trolled in an acceptable manner considering the strong
and permanent disturbances in the input flow rate and
in the substrate present in the effluent. In addition, the
responses of the controlled substrate with our FMBPC
strategy and with the PID strategy are also similar. The
same does not occur with the biomass present in the
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F1GURE 25: Effluent substrate by FMBPC and PID (case D).
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FIGURE 26: Reactor biomass by FMBPC and disturbances (case D).

reactor. On the one hand, the answer in case C is a little
different from that in case D: tracking the reference tra-
jectory, it is more precise in case C than in case D, prob-
ably due to the best VAF indexes in the first case,
especially for biomass. However, the case D model is
more realistic, due to the validation procedure and, there-
fore, it would be expected that in other areas of opera-
tion, further away from those of the identification, the
case D model would respond better than the case C
model. In any case, as we said at the beginning, this type
of interpretation would require a broader study. The
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FIGURE 27: Reactor biomass by FMBPC and PID (case D).

verification of the usefulness of the proposed FMBPC
strategy has more weight in this work. Thus, with respect
to the comparison of our FMBPC strategy and the PID
strategy in the control of biomass, the differences are
clear: by our FMBPC strategy, the biomass is acceptably
controlled and simultaneously also the substrate, acting
with a single manipulated variable, while the PID, acting
with the same manipulated variable, manages to control
the substrate, but at the cost of losing control of the
biomass.

5.2.3. Performance Evaluation. The goal of the proposed
control strategy is to follow the output references as
closely as possible. To evaluate the degree of performance
in the experiments carried out, the integral square (or
quadratic) error index, known as the ISE index, was
taken as a criterion. In the discrete case, the ISE corre-
sponding to each output is the sum of the differences
between the reference of the output (set point) and
the values of the outputs, squared. The results obtained
in the experiments corresponding to C and D cases can
be seen in Table 11.

Analyzing the numerical results of Table 11, we can
conclude that, for the two cases analyzed, the performance
of the FMBPC strategy is a little better than the PID strat-
egy, for the substrate, and rather better for biomass, some-
thing that was also evident after the qualitative analysis of
the graphics shown. For biomass, our FMBPC strategy
reduces 97.2% of the ISE of the PID in case C and 82%
in case D.

6. Conclusions

In this article, a fuzzy predictive control law in an ana-
Iytical and explicit way has been developed and has been
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applied to a multivariable, with disturbances, strongly
nonlinear, with a complex dynamic and of a biological
nature process. The process was an urban wastewater
treatment plant (WWTP) with purification by activated
sludge. The case study was developed in a simulation
environment. The main conclusion of this study is the
capacity of the proposed nonlinear MPC strategy to con-
trol a strongly nonlinear and multivariable system, in the
presence of strong disturbances, even with adaptation to
changes in the operating point with time. Our FMBPC
strategy has been able to control two variables of a
WWTP (substrate and biomass) simultaneously, making
use of a single manipulated variable (sludge recircula-
tion). The second important conclusion is that the per-
formance of the proposed strategy improves that of a
PID controller, in a very appreciable way for the case
of biomass and with a similar performance for the sub-
strate. The result of the evaluation made on the perfor-
mance of each strategy (using the ISE index) is, in
summary, that the proposed FMBPC approach reduces
between 82% and 97.2% the ISE of the PID for the bio-
mass variable (82% for one of the studied cases and 97.2%
for the other).

Another line of future work could be the search for a
variant of the proposed control algorithm that incorpo-
rates parameters (degrees of freedom), to be determined
by means of optimization, with the aim of avoiding insta-
bilities and improving the operation of the controlled
plant. Likewise, the possibility, already mentioned in the
introductory section of this article, that the proposed fuzzy
control law can be straightforwardly used within a dual-
mode MPC scheme to handle constraints if needed opens
another interesting line of future work both in the field
of nonlinear predictive control as well as in the field of
intelligent control.
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TaBLE 11: Performance evaluation by the ISE index.
C Out 1 (substrate) Out 2 (biomass) Both outputs (sum)
ase FMBPC PID FMBPC PID EMBPC PID
C 3.9824e + 05 4.0415e +05 1.1959%¢ + 05 4.3241e + 06 5.1783e + 05 4.7282e + 06
D 3.9619¢ + 05 4.0415e + 05 1.2063e + 06 6.7338e + 06 1.6025e + 06 7.1380e + 06
Appendix Imposing now as a hypothesis that u(k) is maintained

A. Predictions Based on the Model:
Deduction of the General Expression of the
Outputs Predicted by the Model

The objective of this appendix is the obtaining of the general
expression of the predictions of the wastewater treatment plant
outputs, as from the fuzzy model identified and subsequently
formalized in the state space. Itis a case of deducing the general
mathematical expression corresponding toy,, (k + H), that is,
the expression of the outputat theinstant (k + H), predicted by
the model at the kth instant, with H being the prediction hori-
zon. Making use of the model obtained, that is, of the state
equations (10) and (11), we will develop the expression for
a finite number of cases, giving to H consecutive numerical
values, integers (beginning with H = 1). Then we will reason
by means of induction. We detail the deductive-inductive
process below, beginning with the case H=1.

H=1(k+H=k+1)

If we replace k with (k+ 1) in state equation (11), we

will have ~

Vu(k+1)=C,z,,(k+1), (A1)
and then replacing z,,(k + 1) with the expression specified
in state equation (10), this will give

Yu(k+1)=C, (A, z,(k) +B,u, (k) +R,,). (A.2)

H=2(k+H=k+2)

If we replace k with (k+2) in state equation (10) and
then we perform the change of variable (intermediate) k' =
k+1 and then use twice consecutively state equation (10),
we will have the following, under the hypothesis of the invari-
ability of the coefficients of state equations for the predictions
(from the kth instant onwards):

constant during the prediction horizon, that is,

ulk)y=uk+1)=uk+2)=--, (A4)
it can easily be proved that
u,(k+1) =Pgou,(k), (A.5)
where
1 0
Pygio= ) (A.6)
1 0

and now, making use of equality (A.4), the correspond-
ing development to vy, (k+2) initiated in (A.3) will
finally be

Vu(k+2)=Cpp (8,72, (K) + A, (B,u,(K) +R,,)

m

(A.7)

H=3(k+H=k+3)

By replacing k with (k+3) in state equation (11) and
using successively state equation (10) and performing the
necessary changes of the variable, we will have the following,
also under the hypothesis of the invariability of the coeffi-
cients of state equations for the predictions (from the kth
instant onwards):

Ynu(k+3)=C,z,(k+3)

Zm(
(A (B2, (k) + A

=L m (Bmuu(k) + Rm)

+ (Emew)ua(k) +R,,) +B,u,(k+2)+ Rm) .
(A.8)

Considering now again the hypothesis that u(k) is main-
tained constant during the prediction horizon, expressed in
abbreviated form as (A.4) and using P,,, (the matrix speci-
fied in (A.6)), it can be proved that

u,(k+2)=u,(k+1)=P,u,(k) (A9)
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and taking into account this equality, the development
corresponding to y,,(k + 3) initiated in (A.8) will finally be
as follows:

(A.10)

H=4(k+H=k+4)

Taking into account once again the hypothesis of the
constant maintenance of u(k) in the prediction horizon,
(A.4) and using again the P, matrix, (A.6), it can be
proved that

u,(k+3)=u,(k+2)=u,(k+1) =P ou (k).  (A.11)

Carrying out the necessary development, totally analo-
gous to that of the previous cases and which we will omit
in the interests of simplification, and using equality (A.11),
the following final expression would be reached for the
output predicted by the model for the instant (k +4):

v, (k+4)=C, (Am4zm(k) +A, (B (k) +R,)
+1§m2((B PIOIO) (k) +R )
+ A, (B Pro1o) u, (K ) +R,)

+ ((BmelO)ua(k) +R ))
(A.12)

Induction Hypothesis. Once the development corre-
sponding to vy, (k+H) has been made for the first four
values of H, we will assume that we can generalize the
expressions obtained and apply them to the pth case. For
the case H = p, therefore, the final expression would be

H=p; peZ, p>4(k+H=k+p)

k+p)=Cpr(A,/2, () + A, (B,u,(k) + R,,)

—

Y
+1§mf’*2((1§ P1010) (k)i +R,,) +
+A,,((B,, P1010) )+R,)

")

+
+1((B,,Pygp)u, (k) +R
where Py, is the matrix specified in (A.6) and I is the order
2 identity matrix, that is,

(A.13)

(A.14)

Next, we will reason by means of induction. Assuming
that the expression corresponding to case H = p is correct,
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it will need to be shown that it is also correct for H=p + 1,
that is, that it would also be complied with in it if we replace
p with p + 1. In order to do so, we will use the state equations
(in a similar way to what was done in the previous cases and
with the same hypotheses) and (A.13), which is correspond-
ing to case H = p.

As from state equation (11), making a trivial change of
variable, we will have

(A.15)

Yu(k+p)=Cpz,(k+p),

and comparing (A.13) and (A.15) and equalling the right-
hand side of both equalities, we will have the following:

2, (k+9) = C (A2, (k) + A, (Buy(K) +R,,)

+A4,"7((B,, pmw) (k) R,)+

+A,,((B,, wa) +R,)

+1((B,Proro)u,(k) + R,.) ).

(A.16)

Taking into account again the state equations and also
the previous result, we can now approach the development
corresponding to case H = p + 1. First, we will use state equa-
tion (11) and then we will make the intermediate change of
variable k, = (k+p) and then we will use state equation

(10) to develop z,,(k, + 1)
H=p+1; peZ’, p>4(k+H=k+(p+1))

Yk +(p+1))=C,z,(k+(p+1))
1

mm((k+P)+ )

wm (kp +1)

(5‘\ m(kp) +Byyug(ky) +R,)

=C,(A,z,(k+p)+B,u,(k+p)+R,).
(A.17)

On the other hand, considering again the hypothesis that
u(k) is maintained constant during the prediction horizon,
expressed in (A.4), and with P, being the matrix specified
in (A.6), the compliance with the following equality sequence
can easily be proved:

Il II
(')|

u,(k+p)= =u,(k+2)=u,(k+1)=Pyou,(k),

(A.18)

u,(k+p-1)=

and taking into account (A.16) and (A.18), replacing the
terms which correspond with (A.17), and operating in
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an appropriate manner, we will obtain the development
corresponding to y,(k+ (p+1)), initiated in (A.17),
as follows:

Yulkt (p+1)=C,y (A, 2,,(K) + A, (B,u, (k) +R,,)
+Amp71((BmP1010)ua(k +R,) +
+A,7((B,Pg10)u, (k) +R,,)
+A,,((

(A.19)

This last result compared with (A.13) shows that
the predictions in case H=p+1 satisty the same for-
mula as those of case H=p. We can therefore con-
clude that the validity of (A.13) can be extended to
peZ', p>1, and understanding that the factors
A, which will appear (with ne€Z*'), one must com-
ply with (p—mn)=>1. This expression may therefore be
considered to be the general formula of the calculation
of predictions at the kth instant, based on our state-
space fuzzy model.

And now, once the demonstration has been con-
cluded, we will formalize the mathematical expression of
the calculation of predictions in a more general manner,
representing the prediction horizon with H. In short,
the general expression of y, (k+ H) obtained will be as
follows (A.20):

where
HeZz*,
H>1,
A, (H-n) > 1(neZ").
(A.20)

Expression (A.20) may be presented in another way
with the objective being the appearance as main factors
of z,(k), u,(k), and R,,. Regrouping terms, therefore,
we will have
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and making use of the following development of matrix
algebra (for square matrixes)

(Am"—l) o )
X AP AT A

(Am—I) " m m
peZ,p=1,
JA,if (p-n) =1,

A 0

m

= I(with I being the order 2 identity matrix),

(A.22)
or what is the same

(AmP—I)(Am—I)_I:AmP_1+A L N

(A.24)

and replacing (A.24) in (A.21) in the two terms where it
appears to leave finally

m

vulk+ H)=C, (4, 2,k + (4, B, + (4, -1)

(A, - I)_lePmo)ua(k) +
+ (8,4 (A, 1) (A, D)7 )R,,),
being that
Hez' H>1,3A,""if (H-n)>1(neZ"),

0
(A.25)

1 0 1 0
I= ( ) , the order 2 identity matrix and Py, = ( ) .
0 1 1

The final expression obtained (A.26) is the general
analytical expression that must be used for calculating
the predictions, that is, for the calculation at instant k of
the outputs predicted by the fuzzy model for the instant
(k+ H), with H being the prediction horizon. It can easily
be proved that the final formula obtained for y,, (k+ H) is
also satisfied for each of the four particular cases devel-
oped in the induction process (H =1,2,3,4).

B. Relationship between the Parameters of the
Reference Model

The reference model of each of the two outputs of our system
is given by reference trajectories that should gradually
approach the corresponding references (set points). The
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discrete equations of these trajectories, already introduced in
(29), are as follows:

yri (k + 1) = ar,-yri (k) + briyset_pointi (k)’

(B.1)
i=1,2 (number of outputs).

As is logical, for the reference trajectories to follow their
corresponding references, the reference model gain must be
the unit. The imposition of this condition will cause a certain
relationship between the parameters a, and b, , which is pre-
cisely what we wish to determine. In order to do so, firstly, we
will calculate the discrete transfer function inz of the reference
models and then we will impose the unit gain condition.

By applying the ztransform to equality (B.1), we will have

ZYr[ (Z) = ari Yr,. (Z) + bri Yset,point,. (Z)’

(B.2)
i=1,2 (number of outputs),
and grouping terms together and operating properly
(Z - ar,-) Yr,v (Z) = br,- Yset_point,v (Z)’
Y, (z b
Gi(z) = &) _ b (B.3)

Yset,point,- (Z) (Z - afi) )

i=1,2 (number of outputs)

And now, making use of the expression of the discrete
gain that derives from the application of the final value theo-
rem and imposing the unit gain condition, we will have

. . 1 bi’t _ b?’i
S T e T e
b B4
Gain; = i =1, ( )

(i-a)

i=1,2 (number of outputs),

and in this way, we will finally obtain the relationship
between the parameters of the reference model that we were
searching (for each of the two outputs)

(1-a,)"'b, =1,

i=1,2 (number of outputs)

C. Reference Trajectory on the
Prediction Horizon

The mathematical model of the reference trajectories, intro-
duced in (B.1) and in (29), is a discrete time recursive model

Complexity

that allows the calculation of the value of the output variable
(of that model) at the instant (k+ 1). The objective of this
appendix is to show in an abbreviated manner the procedure
for obtaining the expression corresponding to the output of
the reference model at the instant (k + H).

In order to determine the expression corresponding to
y, (k+H ), for i =1, 2, we will reason by means of induction

(omitting the indication of the values of i(i =1, 2), except at
the beginning and at the end so as not to overload the devel-
opment).

H=1(k+H=k+1)

For this first case, we will use the expression defining the
reference trajectories, (B.1) and also (B.5), that is, the rela-
tionship between the parameters of the trajectories

yri(k + 1) = ariyr[(k) + br,-yset_point, (k)’
bri = (1 - aﬂ)’

i=1,2 (number of outputs),

(C.1)

and replacing b, in the expression of the trajectory

yr,»(k + 1) = ariyr,»(k) + (1 - ari)yset,point,-(k)' (CZ)

H=2(k+H=k+2)

We develop (k+ H) for H =2, considering k+2 = (k +
1) + 1 and considering the trivial change of variable k' =
k+1, which would leave k +2=k"+ 1. Using again (B.1)
that define the reference trajectories, but with k" instead of
k, and making b, = (1 - a, ), we will have

y, (k+2)=y, (k' + 1) =a,y, (k') +(1- a,i)yset_}mimx_ (k'),
(C.3)

and reversing the change of variable (k' =k + 1) and again
using (B.1) to develop y, (k + 1), we will have

y,(k+2)=a,y, (k+1)+ (1- ar[)yset_pointi(k +1)
=a,(a,5,(0)+ (1-a,)ye, (K))

+(1- a,i)ysetpml (k+1)

= aflyr[ (k)+a, (1-a,)ye

+(1-a,)ye  (k+1).

(C.4)
(k)

point ;

point;

Now considering the reference on the prediction horizon
to be constant

yset_point[ (k) = yset_pointi (k + 1) == yset_point[ (k +H - 1)’
(C.5)
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the development of y, (k +2), initiated in (C.4), will continue
as follows:

y, (k+2)=-= “i)’rf (k) + (1+a,) (1=, ) Vset_poin, (K)
- aziyri (k> + (1 - ai) yset_pointi(k)'
(C.6)

Induction Hypothesis. The expression corresponding to
the following cases would be obtained in a similar way,
deducing (with the consideration of the maintaining of the
constant reference with constant values on the prediction
horizon) the following generic expression, which will be
taken as the induction hypothesis:

H=p;peZ,p>1

vkt p)=aly, () + (1= )y oK) (C7)

If we suppose the above formula to be correct, it can be
proved easily that it is also complied with for (p + 1)

yr ket (p+ 1)) = a2y, (k) + (1= 2 )y (K),
(C.8)

and reasoning by induction, the general expression will be
the following (considering the reference on the prediction
horizon to be constant), for each of the two outputs:

yi (ke + H) = arly, (k) + (1= 07 ) Yo poum (K) H € 27,
H>1;i=1,2 (number of outputs),
(C.9)

expressions that can be formalized jointly by means of the
following (single) matrix expression:

Yo (k+ H) = Ay, (k) + (I = Agt)Yeet_point ()

afl’ 0 1 0
s I= ;
0 a 0 1
2

HeZ' H=>1,

A= (C.10)

with y,(k+ H), ¥,(k) € Yser_poinc(k) being size-two column-

vectors that group together the components corresponding
to both outputs.
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D. Mathematical Nonlinear Model of the
Wastewater Treatment Process with
Activated Sludge

The mathematical model of the wastewater treatment pro-
cess taken as reference in this article is founded on the classi-
cal Monod and Maynard-Smith model (with the assumption
of a perfectly mixed tank reactor) and it is obtained taking
into account the corresponding mass balances of the sub-
strate, biomass, and oxygen. The equations of the model, as
well as its variables and parameters, are the following:

(i) Aerated biological reactor

dx sx x? q
2 K K+ Lk —
dt Mmaxy(KS+S) d S cx+ V(xzr X)
ds sx x? q
2 - Hmax (Ks—+s) +fded? + fraKex + v (sir =)
dc x? q
7 =K fi(c;—¢) _KOLMmaxm v
Xi4; + %,

X = #

C_ 59t 54,

i q

(D.1)

(ii) Secondary settler (three layers with increasing con-
centrations of biomass)

dx
Ald d—td = out*v ~ outXd — AVS (xd)
dx,,
Al dr = gX = GouXp — G Xp + AV(xy) — Avi(xy)

dx,
Alr E = DXy — X, T Avs (xb)

vy(x4) = (nnr)x, exp ((aar)x,)

Vy(x,) = (nnr)x, exp ((aar)x,)

(D.2)
(i) Equations of equilibrium of the flow rates
q=4; + qr
qoutzqi_qp (D3)
qZ = qr + qp

(iv) Variables and parameters (with the areas expressed
in m?, the volumes in m>, the concentrations in
mg/l, and the flow rates in m>/h):

A: Settler area
V: Reactor volume
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st Input substrate concentration

X;: Input biomass concentration

x: Biomass concentration in the reactor

st Substrate concentration in the reactor

c Oxygen concentration in the reactor

X4t Biomass concentration in the top
layer of the settler

Xy Biomass concentration in the middle
layer of the settler

X, Biomass concentration in the lower
layer of the settler

I Height of the top layer of the settler

L: Height of the middle layer of the
settler

L: Height of the lower layer of the settler

q;: Input flow rate (contaminated water/
influent)

q: Reactor input-output flow rate

4 Total sludge recirculation flow rate

qp: Purge flow rate (excess sludge)

q,: Sludge recirculation flow rate (to the
reactor)

out Output flow rate (purified water/
effluent)

X Biomass concentration in the input of

the reactor
St Substrate concentration in the input
of the reactor

v,(xy) Sedimentation rate in the settler of the
top layer with respect to the middle
layer

v, (xy): Sedimentation rate in the settler of the

middle layer with respect to the lower
layer

(nnr), (aar): Empirical coefficients for the calcula-
tion of the sedimentation rates

Piax: Maximum specific rate of growth

y: Fraction of metabolized substrate that
is converted into biomass

K Saturation constant

K, Endogenous decomposition coeffi-
cient (mortality constant)

K. Cellular activity coeflicient of the
microorganisms

frat Fraction of dead biomass that
becomes a substrate

Ky, Oxygen mass overall transfer
coefficient

fi Aeration factor

s Dissolved oxygen saturation
concentration

Ko Equivalence coeflicient between cell

growth and oxygen consumption rate.

D.1. Parameters of the Manresa WWTP. The numerical
values of the Manresa wastewater treatment plant (taken as
reference) [35] are specified in Table 12.
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TABLE 12: Parameters of the Manresa WWTP.

Plant dimensions and heights of the settler layers Value
V (m?) 7268
A (m?) 2770.9
ly (m) 2

Iy (m) 1.5
Ir (m) 1
Concentrations and flow rates in the influent Value
q; (m*/h) 1300
s; (mg/1) 366.67
x; (mg/1) 80
Kinetic and stoichiometric parameters Value
Boae (071 0.1824
y 0.5948
K, (mg/l) 300
K, (™) 5¢ -5
K. (h™) 1.3333e -4
fia 0.2
nnr 3.1563
aar —-0.00078567
Ko, le—4
K, (™" 0.7
¢, (mg/l) 8
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