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Abstract: This paper presents a procedure for the closed-loop stability analysis of a certain variant
of the strategy called Fuzzy Model-Based Predictive Control (FMBPC), with a model of the Takagi-
Sugeno type, applied to the wastewater treatment process known as the Activated Sludge Process
(ASP), with the aim of simultaneously controlling the substrate concentration in the effluent (one of
the main variables that should be limited according to environmental legislations) and the biomass
concentration in the reactor. This case study was chosen both for its environmental relevance and
for special process characteristics that are of great interest in the field of nonlinear control, such as
strong nonlinearity, multivariable nature, and its complex dynamics, a consequence of its biological
nature. The stability analysis, both of fuzzy systems (FS) and the very diverse existing strategies of
nonlinear predictive control (NLMPC), is in general a mathematically laborious task and difficult
to generalize, especially for processes with complex dynamics. To try to minimize these difficulties,
in this article, the focus was placed on the mathematical simplification of the problem, both with
regard to the mathematical model of the process and the stability analysis procedures. Regarding the
mathematical model, a state-space model of discrete linear time-varying (DLTV), equivalent to the
starting fuzzy model (previously identified), was chosen as the base model. Furthermore, in a later
step, the DLTV model was approximated to a local model of type discrete linear time-invariant (DLTI).
As regards the stability analysis itself, a computational method was developed that greatly simplified
this difficult task (in a local environment of an operating point), compared to other existing methods
in the literature. The use of the proposed method provides useful conclusions for the closed-loop
stability analysis of the considered FMBPC strategy, applied to an ASP process; at the same time, the
possibility that the method may be useful in a more general way, for similar fuzzy and predictive
strategies, and for other complex processes, was observed.

Keywords: stability analysis; fuzzy model-based predictive control; Takagi-Sugeno; multivariable
control; wastewater treatment plant; activated sludge process; computational approach

1. Introduction

In general, the control of non-linear industrial processes is not an easy task and it is
further complicated in the case of processes of a biological nature, especially if the process
is affected by major disturbances. One of the possible alternatives to approach the control
of this type of systems could be the well-known and effective advanced control strategy
called Model-Based Predictive Control (MBPC or MPC) [1–4]. However, this strategy is not
associated with a single control algorithm, but rather it is a methodology or procedure to
search for optimal control actions based on the predictions of the behavior of the process to
be controlled, provided by some mathematical model thereof (in classic MPC, the search
for the optimal control actions is carried out imposing the minimization of a certain cost
function). Consequently, there are many types of predictive control, depending on the
type of model chosen, the method of identifying the model, the procedure or algorithm
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to determine the control actions, and the control law itself that is finally adopted, among
other aspects. Regarding the nonlinear nature of the processes to be controlled, for systems
whose nonlinearity is not very high, if there is or is possible to obtain a model or several
linearized sub models of the process that are sufficiently valid under certain hypotheses
and restrictions, then the well-known and proven techniques of the so-called linear MPC
(highly consolidated) could be enough. However, if the system is highly nonlinear, it is
necessary to consider a predictive control strategy based on nonlinear models that more
accurately represent the behavior of the process. This approach is framed (along with
other variants) within the so-called nonlinear model predictive control (nonlinear MPC, or
NLMPC) [5–9]. For highly nonlinear, complex, or unknown systems, one class of models
that seems quite adequate for predictive control purposes are fuzzy models (FM), especially
the Takagi-Sugeno (TS) type fuzzy models [10], which are very useful because the outputs
of the sub models are given in the form of affine linear combinations. In addition, there
are consolidated procedures for obtaining TS fuzzy models from series of numerical input-
output data (collected by simulation or from real experiments). The fuzzy models obtained
using data-based identification techniques have the enormous advantage of being able
to directly capture the dynamics of such systems. In addition, this type of modeling is
also able to deal with multivariable systems in a straightforward manner. In other words,
within the framework of predictive control, the strategy known as Fuzzy Model-Based
Predictive Control (FMBPC) and especially the variant that uses TS fuzzy models [11–17]
can be a good alternative, in general, to approach the control of highly nonlinear and
complex systems, among them, the systems of a biological nature; in particular, the so-
called activated sludge process (ASP), which is a very common purification procedure in
Wastewater Treatment Plants (WWTP) [18–20].

In this article, a certain FMBPC multivariable control strategy is analyzed [21–23], which
is framed at the same time in the so-called Predictive Functional Control (PFC) [1,24,25]. In
such a strategy, the considered prediction original model is a TS fuzzy model, obtained by
identification from input-output data, later represented in the state-space by means of an
equivalent model of linear time-varying (LTV) type. As for the control action, it is calculated (at
each sampling instant) by means of an analytical and explicit expression (with time-dependent
coefficients), deduced using the state-space LTV model and applying the so-called equivalence
principle (used in PFC and related to the concepts of reference trajectory and coincidence point),
rather than by minimizing a cost function. This control algorithm is applied to an ASP
biological process, taken as a case study, with the aim of simultaneously controlling the
substrate concentration in the effluent and the biomass concentration in the reactor, with
the activated sludge recirculation flow-rate being the only control variable used. The main
objective of this paper is to study some issues of the closed-loop stability analysis of the
specific FMBPC strategy that has just been described, by a practical computational approach.

The stability analysis of nonlinear control systems is much more complex, in general,
than the linear systems stability analysis. Moreover, there are many different approaches,
depending on both the type of control law and the type of system to be controlled. The
objective of this work is not to analyze all these possibilities, but to focus on the field of
fuzzy predictive control, especially in control strategy and in the case study presented
in [23]. However, it is important to mention some of the works that have addressed the
stability of nonlinear systems—it was highlighted in works [26–32], among many others.
In the case of the FMBPC strategy, the stability analysis may be even more complicated
than other types of nonlinear control strategies, due, on the one hand to the particular
characteristics of the nonlinear predictive control and on the other hand, to the structure of
the Fuzzy Systems (FS) [11,33], initially in the form of rules, which are intrinsically very
nonlinear, in general, and that logically does not facilitate the use of already consolidated
classical procedures. The stability analysis of the FMBPC strategy is, moreover, more
uncertain and diverse than other strategies, as a consequence of the great variety of types of
fuzzy models and possible parameterizations or choices (antecedent vector and consequent
vector, set of fuzzy values for each variable, form and parameters of the membership



Processes 2021, 9, 531 3 of 50

functions, number of rules, and others). Potentially, many alternatives could be explored to
analyze the stability of this type of strategy, but there are two fields in which it seems more
logical to focus on initially, and explore the lines of work on this topic: the field of NLMPC
control systems and the field of FS systems. Each of the two fields has its particularities,
but a large part of the stability analysis approaches developed in them share a theoretical
framework: the so-called Lyapunov’s stability theory [34,35], which could be considered as
the main theoretical reference on stability. One of the most useful mathematical procedures
provided by this theory is the so-called direct method, consisting of the search for certain
characteristic functions, called Lyapunov Functions, which provide sufficient conditions for
the internal stability, simple or asymptotic, of a system.

Regarding the first of the considered alternatives—the NLMPC control systems—it
is known that stability has been an essential and recurring matter in the evolution of the
MPC. From its origin in the late 1970s, one of the main problems or disadvantages of the
MPC was that stability could not be guaranteed (especially in the presence of constraints)
and solutions were not introduced until the end of the 1990s and early year 2000, when the
conditions to guarantee stability were clearly established [36,37]. Throughout this period
of time, numerous works were carried out on the stability of predictive control algorithms,
with the greatest efforts being directed to the search and proposal of procedures that could
guarantee closed-loop stability (predictive controllers with guaranteed stability). The use
of restrictive terminal regions for states [38] and the consideration of infinite prediction
horizons and inclusion of terminal penalty terms in the cost function [39–42] constitute
some of the most important contributions and have been, at the same time, a reference for
further lines of research in predictive controllers analysis and design, from then until now.
In [3], a precise list of works on predictive controllers with guaranteed stability, carried
out until 2002, is shown, including methods such as: MPC with terminal restriction of
equality, MPC with terminal cost, MPC with terminal restriction of inequality, and MPC
with terminal cost and terminal restriction. In addition, the author’s proposals on stability
and robustness of predictive controllers of nonlinear systems subject to constraints (with or
without uncertainties) are also presented, based on the combination of Lyapunov’s theory
and invariant set theory. In [43], the advances in stability analysis of predictive control are
also reviewed, within the framework of a general review or state of the art of predictive
control. In [44], a brief but precise review of some methods on stability in predictive
control existing at that time is included, specifically focused on the formulation of the MPC
with guaranteed stability. In [45], a methodical and complete study of nonlinear model
predictive control (theory and algorithms) is carried out, treating the stability aspects with
an amplitude and intensity consistent with their importance. In addition, [9] reviews the
state of the art of predictive control today, with special emphasis on the main objective of
research works on predictive control, which is (as in the early 2000s) to ensure stability
and robustness of the closed-loop system in a compatible way with the optimization
approach. In all the referenced works, the use of Lyapunov’s theory (direct method) tries
to demonstrate that the cost function (the minimization of which allows us to calculate
the optimal control signal) is a Lyapunov function. However, all the proposed closed-loop
stabilization methods are not directly applicable to our FMBPC control strategy, since in it
the control variable is not determined from a cost function. It is, therefore, necessary to
analyze other alternatives.

Regarding the second of the alternatives considered—FS systems—it must be noted
that the stability analysis of control systems in such a frame or field is not a trivial task,
due, on the one hand, to the intrinsic nonlinear structure of this type of systems and, on
the other, to the great diversity of modalities of use of fuzzy logic for control purposes.
In relation to the latter and among other possible classifications, we could differentiate
between controllers based on fuzzy plant models and controllers based on fuzzy rules (the
plant models being fuzzy or not). Our strategy, FMBPC, fits the first type, but even if we
focus only on that category, there can be, in principle, many possible ways to approach
stability analysis, since there is no single method of stability analysis for FS systems. Many
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lines of research have been developed and numerous works with different approaches
have been presented. Many of the works carried out have consisted of deducing sufficient
(but not necessary) stability conditions. Furthermore, due to the great difficulty of general-
ization, many of the results have been developed, or tested, only for specific case studies.
In short, there is a great diversity of proposals. Nevertheless, a large part of them share the
theoretical framework of reference, which is, of course, Lyapunov’s stability theory, widely
used also by many other control strategies, as we have already commented previously.
In [46], an exhaustive review of the state of the art of FS systems stability analysis is carried
out (until 2006), highlighting its difficulty due to the non-linearity characteristic of this
type of systems, and focusing the study on global and asymptotic stability. Different
stability criteria and various techniques based on Lyapunov’s stability theory are reviewed
(considering quadratic, but also fuzzy Lyapunov functions) and a specific review of FS
systems’ stability using TS fuzzy models is made. Likewise, the approach of Linear Matrix
Inequalities (LMIs) [47,48] is analyzed. In [49], there is also a review of several works and
results related to stability analysis and control algorithms design for nonlinear systems
represented by TS fuzzy models. In such works, the general procedure used to address
stability and derive stabilization results is the Lyapunov’s direct method. The stability
conditions and the control design problem are expressed by means of constraints in the
form of LMIs. Additionally, regarding the stability analysis, most of the methods studied in
the mentioned review use a quadratic Lyapunov function (quadratic stability) and obtain,
as a result of the demonstrations, only sufficient stability conditions (stability does not
necessarily imply quadratic stability). With regard to stabilization methods, the review
focuses mainly on those based on state feedback, although other alternative methods,
such as those using output feedback, are also discussed. Naturally, in addition to these
two great references that have just been described (where several criteria, techniques and
approaches are reviewed and numerous authors are cited), there are many other works
on the stability of FS systems. Thus, in the following list of works (not exhaustive, but
extensive), we can see other contributions and approaches, some of them very signifi-
cant: [11,50–82]. In addition, some more specific references, relative to control systems that
use fuzzy models (among them, FMBPC control systems) and that include (to a greater
or lesser degree) stability analysis, or stability-based design, may be, among others, the
following: [11–13,22,83–93].

Our stability analysis could follow, in principle, any of the multiple lines of work or
approaches mentioned in the two fields analyzed. However, regardless of the approach,
FMBPC control systems’ stability analysis is not an easy task. For this reason, our choice
consisted in looking for a practical computational approach, which is less complex, de-
veloped for our specific case study, but with theoretical possibilities of generalization.
Our approach consists, basically, of starting from the identified model of the system, a
TS fuzzy discrete model, expressing it in the state space in discrete linear time-varying
(DLTV) form, and subsequently obtaining an approximate local model of type discrete
linear time-invariant (DLTI) for states located in the vicinity of a certain operating point,
and applying the first Lyapunov’s stability method or theorem, demonstrating its (local)
fulfillment computationally. As has been already previously commented, the stability
analysis of control systems based on fuzzy models, starting from the original structure
of these in the form of rules, is very complicated. However, the use of equivalent LTV
state-space models could dramatically simplify the stability analysis task. The stability
theory for state-space linear systems is well established and there are numerous works,
both for continuous-time and for discrete-time. In [94–98] can be found the basic theoretical
foundations, and in [99,100], two specific works on stability analysis of LTV systems of
continuous-time and discrete-time, respectively, can be seen. The work presented in [101]
can also be consulted, where a theoretical review is made regarding the so-called convex
systems based on Takagi-Sugeno, linear parameter varying (LPV), or quasi-LPV models.
LPV systems can be considered a generalization of certain LTV systems and therefore,
the stability analysis carried out in the said paper could be useful in some way. In any
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case, the work developed in [100] cited above would be more suitable for our modeling
approach and could be a good reference to study the stability corresponding to our case
study, after having converted the TS fuzzy model of the process to an equivalent DLTV
model. However, and although some necessary and sufficient stability conditions are
derived in that specific work, most of the conclusions of this type of study refer only to
sufficient stability conditions. Furthermore, the mathematical complexity of the proposed
methods in this type of work does not facilitate their use, in a simple and methodical way,
in determining the stability of other different case studies. This justifies our attempt to
solve the problem by making use of an equivalent local DLTI model (valid for states close
to a certain steady state) and using a computational method to analyze stability.

In Section 2, the chosen case study, the ASP wastewater treatment biological process,
is presented. Furthermore, the plant identification procedure, which produces a discrete
TS fuzzy model, as a result, is revised and this model is converted into another equivalent
in the state space, of DLTV type. In Section 3, a local state-space DLTI model is deduced
and using such a model, open-loop stability is analyzed using the appropriate criteria for
DLTI systems. Section 4 is dedicated to describing the control law and the closed-loop
stability criteria are derived. In Section 5, using a symbolic computational approach and
an induction process, the closed-loop stability conditions are obtained as a function of the
controller parameters and open-loop dynamics of the selected case study. In Section 6,
several numerical results are presented: first a stability test and then a series of FMBPC
control experiments performed by simulation. Finally, in Section 7, the conclusions are
presented, together with some future research options. Complementarily, Appendix A
contains detailed numerical information on the membership functions associated with
the identification of the fuzzy models of the ASP process and Appendix B includes a
complementary mathematical development of Section 4.

2. The Activated Sludge Process: Takagi-Sugeno Fuzzy Modeling and Representation
in State Space

In this article, we chose as case study the ASP biological purification procedure,
commonly used in wastewater treatment plants. This process has a complex dynamic and
is highly nonlinear due to its biological nature. The identification of a fuzzy model of
the process from input-output data is a good choice to represent the behavior of this type
of processes (as already noted in the Introduction). Initially, the resulting models of the
identification procedure are Takagi-Sugeno type fuzzy models, but through the appropriate
formalization they will be expressed finally as equivalent state space models, in the form
of DLTV models. This section describes the process chosen as a case study, as well as the
procedure for the fuzzy identification of the said process and the representation of the
resulting TS model in state space, in the form of a DLTV model.

2.1. The Activated Sludge Process: Description and Classical Mathematical Model

In our case study, the basic structure for the WWTP (an aerated biological reactor
followed by a secondary settler) was considered. The corresponding purification process
consists, essentially, of the elimination of organic contaminants (substrate) through a culture
of bacteria (biomass) that will feed precisely on that substrate. This biological process takes
place in the aerated and stirred reactor and the treated water is sent to a secondary decanter
in which the clean water separates from the resulting sludge. This sludge is sedimented at
the bottom of the decanter and sent back to the reactor (sludge recirculation process). The
complete cycle is called the activated sludge process. The mass balance of the reactions
that take place in this process can be described using the classical Monod model. Based
on this model, together with the hypothesis of a perfectly mixed reactor, in [23], a certain
mathematical model is specified to represent the activated sludge process. The adopted
model, which can be considered as a simplification of the well-known Activated Sludge
Model No. 1 (ASM1) [102], consists of a set of differential and algebraic equations that
relate the temporal evolution of the masses of the substrate, biomass, and oxygen. From
the analysis of the mathematical model, either the complete or the simplified model, it can
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be deduced that it is highly non-linear, and this is precisely one of the main reasons why
it is interesting to adopt it as a case study, in the context of a control problem. Another
important reason why it is an attractive system as a case study is that it is a difficult system
to control (due to its biological nature). In addition, it is multivariable.

Our case study has focused on a sub model of the adopted model (mentioned above),
consisting of the equations that describe the interactions of five variables: three inputs
(one manipulable variable and two disturbances) and two outputs (to be controlled both,
simultaneously). Figure 1 shows schematically the different inputs and outputs of the
biological process taken into account, as well as its characterization. The variables to be
controlled simultaneously are two: the substrate concentration in the effluent, s, and the
biomass concentration in the reactor, x. The inputs variables are three: one manipulated
variable, the sludge recirculation flow-rate, qr, and two disturbances, the wastewater
flowrate in the input of the plant, qi, and the substrate concentration in the input of the
plant, si. This set of inputs and outputs, and its role, is more clearly detailed in Table 1.
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Table 1. Inputs and outputs of the activated sludge process (ASP) and its role.

Inputs Outputs
Disturbances Manipulated Variable Controlled Variable_1 Controlled Variable_2

u1 ≡ d1 u2 ≡ d2 u3 ≡ u y1 y2

Input
flow-rate (influent)

qi

Substrate concentration
in the influent

si

Sludge recirculation
flow-rate

qr

Substrate concentration
in the effluent

s

Biomass concentration
in the reactor

x

In our work, the municipal WWTP of Manresa (Barcelona, Spain), operating since 1985
(with an evolution of the population of the urban area of the city from about 67,000 people
in 1985 to about 76,000 people today), was considered as a reference plant. The dynamics of
the ASP process of this treatment plant, in its initial period of operation, is acceptably well
represented by the model and sub-model considered above and, therefore, it is coherent to
make use of real data from such a plant for our studies. Thus, various series of input and
output data recorded in such a period, in different industrial campaigns of this WWTP [103],
were used (or taken into account for reference) to guide the fuzzy identification procedures
of the simulated ASP process and also to adjust, in the control experiments implemented by
means of simulation, the ranges of values of the process inputs. Both in the identification
procedures and in the control experiments, a part of the numerical values used for the
inputs correspond, or are related, to the data collected in the campaigns of the reference
WWTP, as follows: for the disturbances, typical values (real or weighted), and for the
manipulated variable, similar values to the real values at the different operating points.
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2.2. Fuzzy-TS Identification of the ASP Process

The identification of the ASP process was carried out from input-output numerical
datasets, with the inputs properly selected, taking as reference data recorded in industrial
campaigns of the WWTP of Manresa. The outputs were obtained in simulation, using the
mathematical model chosen for the treatment plant (specified in the previous subsection).
The result of the identification carried out is a multivariable TS fuzzy model.

The tasks and procedures of the fuzzy identification were performed using the soft-
ware tool known as FMID (Fuzzy Model Identification Toolbox) [104], complemented with
some adaptations made within the framework of this work, programmed with Matlab®

& Simulink®. The FMID tool was developed to support the fuzzy modeling and identifi-
cation techniques described in [11]. The fuzzy identification functions of this tool allow
the implementation of clustering techniques based on the Gustafson-Kessel algorithm.
The numerical data of input-output provided to the FMID tool for the identification and
validation of the process were composed as follows: for the input data, as we said in the
previous subsection, typical values or similar to the real values of the WWTP of Manresa;
as for the output data, they were obtained by simulation in open loop, with the mentioned
inputs and with the plant represented by its continuous model in the form of differential
equations. In the numerous identification tests carried out, the various available data series
were generally divided into two subsets: identification data and validation data (although,
for comparison purposes, in part of the tests, the same data set was used for both identi-
fication and validation). Our case study is a multivariable system (MIMO system), with
three inputs and two outputs. This multivariable architecture can be seen schematically in
Figure 2:
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tified process: 𝑹𝒋:   𝒊𝒇 𝑥  𝑖𝑠 𝐴  𝑎𝑛𝑑 𝑥  𝑖𝑠 𝐴  𝑎𝑛𝑑 ⋯ 𝑎𝑛𝑑 𝑥  𝑖𝑠 𝐴  (1)

Figure 2. The multivariable architecture of the ASP process (3 inputs and 2 outputs).

Consistent with such architecture, the input-output datasets required for the FMID
tool must be arranged as arrays with as many rows as samples and with five columns:
three columns for the inputs and two columns for the outputs.

The identification tool provides TS fuzzy models (as well as mechanisms for their
validation), expressed in the form of logical rules of the if-then type, that is: if (antecedent)
then (consequent), where the consequent is a linear combination of the components of the
consequent vector, plus a constant term (affine function). In Equation (1), we show the
structure of a generic rule, Rj (j-th rule), corresponding to a certain output, y(k), of the
identified process:

Rj : if
(
xa1 is Aj1 and xa2 is Aj2 and · · · and xap is Ajp

)
then

y(k) = φj(x) = αj1x1 + αj2x2 + · · ·+ αjqxq + δj

(1)

where:

• xa(k) =
(

xa1, xa2, · · · , xap
)

is the antecedent vector
• x (k) =

(
x1, x2, · · · , xq

)
is the consequent vector

• Ajp is the fuzzy set (or fuzzy value) associated with the p-th component of the
antecedent vector (for j-th rule); this fuzzy set will associate a certain membership
function µAjp(x) : R → [0, 1] , which, applied to any value of the variable xap, will
determine its membership grade with respect to the fuzzy set Ajp, that is: µAjp

(
xap
)
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(for each component of the antecedent vector, there will be as many membership
functions as rules are)

• k is the k-th instant (discrete-time system)
• φj(x) is an affine function of x
• αjq is the coefficient, in the affine function, of the q-th component of the consequent

vector (for j-th rule)
• δj is the independent term or offset (in the affine function)

Each rule of the TS fuzzy model is equivalent to a linear sub-model associated with a
certain region of the input space of the model, in a greater degree than the sub models of the
other rules. The output of each sub model is calculated by the corresponding affine function.
In addition, the global output of the TS fuzzy model will be calculated by combining or
aggregating the outputs of all the rules in a weighted way, according to the degree to which
the antecedent vector fulfills or satisfies the premise or antecedent of each of the rules. This
calculation will be called global weighted output and will be represented by ỹ(k). In the fuzzy
logic literature, there are several methods for combining or aggregating rules; among them
is the well-known centroid method. Applying such a method to the fuzzy model represented
in (1), for a general case with multiple outputs, the weighted global output can be expressed
as shown in (2) (see [23]), where ỹi(k) (i = 1, 2, . . . , l) is the expression corresponding
to the global i-th output (having omitted, for the antecedent and consequent vectors, xa
and x, respectively, and also for their respective components, the i index, i.e., indication
of the dependence with respect to the i-th output, except in the dimension of the vectors
(pi and qi, respectively), in order to simplify the notation; for the same reason, the express
indication of the dependency of the two vectors with respect to k, has also been discarded):

ỹi(k) = ∑mri
j=1 βij(xa)φij(x)

with :

βij(xa) =
µAj1 (xa1) µAj2 (xa2)... µAjpi

(xapi )

∑
mri
j=1 µAj1 (xa1) µAj2 (xa2)... µAjpi

(xapi )
; ∑mri

j=1 βij(xa) = 1

φij(x) = αj1x1 + αj2x2 + · · ·+ αjqxqi + δij

(2)

where:

• ỹi(k) is the i-th weighted global output
• k is the k-th instant (discrete-time system)
• i = 1, 2, . . . , p (number of outputs)
• j = 1, 2, . . . , mri (number of rules of fuzzy model for output yi)
• βij(xa) are the normalized membership functions of the antecedent vector, xa (for j-th

rule of i-th output)
• φij(x) is the affine function of the consequent vector, x (for j-th rule of i-th output)

In the specific case of our ASP process, the output variables considered are two: y1(k),
the substrate in the effluent, and y2(k), the biomass in the reactor. Therefore, each of the
fuzzy identification tests carried out led to a fuzzy model constituted by two TS fuzzy sub-
models (one TS model for each output). In the present work, the results obtained in two of
the many identification tests carried out (see [23]) were selected, denoting the two obtained
fuzzy models as FM1 and FM2, respectively. The criteria for their selection were two: on
the one hand, the dynamic structure of the models and on the other, the identification
validation index known as VAF (percentile Variance Accounted For between two signals).
Thus, two different dynamic structures were chosen (see Dynamical Parameters in Table 2)
to test the possible influence of this structural aspect on the performance of the control
strategy, and from among the identified models, two models were chosen, one for each
structure, with sufficiently high VAF indices. Specifying more, each of these fuzzy models is
characterized by the choice (in the design phase) of different values of several identification
parameters, which are shown below, in Table 2. Among them, Ny, Nu and Nd (Dynamical
Parameters of the recursive discrete model) have special relevance in the identification
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process and its results, since they contain implicit information related to the dependencies
of the process outputs at any k-th instant with respect to the different inputs and outputs in
previous time instants (the legend of Table 2 explains the particular meaning for the model
FM1; the meaning is analogous for FM2):

Table 2. Identification parameters of the FM1 and FM2 fuzzy models.

FM

Dynamical Parameters of the Recursive
Discrete Model

Number of Data
Clusters for Each

Output

Identification in-out Data
Versus Validation in-out

Data

Ny Nu Nd y1 y2 The Same Differents
(Partition)

Sample Time
Ts (hours)

FM1

(
1
0

1
1

) (
1
1

1
0

2
1

) (
1
1

1
0

1
1

)
6 5

•
0.2

FM2

(
1
0

1
1

) (
0
0

1
0

2
1

) (
0
0

1
0

1
1

)
•

where the Ny, Nu, and Nd parameters and its concrete values, for FM1 (for FM2 it would
be analogous), mean the following:

• Ny: output-output dynamic relationship matrix (2 × 2) Ny o f FM1(row 1) mean that
y1(k) depends on y1(k− 1) and y2(k− 1) Ny o f FM1(row 2) mean that y2(k) depends
on y2(k− 1)

• Nu: input-output dynamic relationship matrix (2 × 3) Nu o f FM1(row 1) mean that
y1(k) depends on u1(k− 1), u2(k− 1), u3(k− 1) and u3(k− 2) Nu o f FM1(row 2)
mean that y2(k) depends on u1(k− 1) and u3(k− 1)

• Nd: input-output transport delays matrix (2 × 3) Nd o f FM1(row 1) mean that
they is 1 transport delay for the three inputs (u1, u2 and u3) with respect to y1(k)
Nd o f FM1(row 2) mean that they is 1 transport delay for the u1 and u3 inputs with
respect to y2(k)
From the parametric specifications contained in Table 2 and with a suitable selection

of the available input and output data, the chosen identification tool (FMID) will determine
the two fuzzy models of the ASP process (FM1 and FM2). Each of these models will be
characterized by the rules corresponding to the two TS sub-models, making it necessary to
know, for each rule, the fuzzy sets associated with each of the antecedent vector components
(that is, the identifiers of those sets and their corresponding membership functions), and
the affine function of the consequent, φij(x) (or equivalently the numerical coefficients that
multiply the components of the consequent vector, and the independent term or offset).
The structure of the models identified by using the FMID tool, FM1 and FM2, their rules,
and the corresponding fuzzy and numerical elements that have just been mentioned, are
shown in detail in different tables. For the FM1 model, Table 3 show the fuzzy sets of
the antecedent and Table 4 the affine function of the consequent; and for the FM2 model,
Table 5 presents the fuzzy sets of the antecedent, and Table 6 shows the affine function of
the consequent. In all cases, the input and output variables of the ASP process are the ones
shown in Table 1. It can be observed that all these tables contain information corresponding
to the two outputs of the ASP process (the two TS submodels), but a different notation
has been used for each one. Thus, in the case of the FM1 model, the rules are represented
by por Rj, for y1(k), and R∗j , for y2(k); as for the fuzzy sets of the antecedent vector, they
are represented by Ajp, for y1(k), and A∗jp, for y2(k). In the case of the FM2 model, the

established notation differences are analogous (Rj and R∗j , for the rules of y1(k) and y2(k),
respectively, and Ajp and A∗jp, for the fuzzy sets of the antecedent vector of y1(k) e y2(k),
respectively). Finally, precise and detailed information related to the membership functions
µAjp(x) defining each fuzzy set Ajp (using a general notation), has been specified, given its
extension, in Appendix A (Tables A1 and A2), in parametric form. In our case, membership
functions are piece-wise exponential type functions.
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Table 3. Fuzzy sets of the antecedent in the rules of the identified FM1 fuzzy model.

Components of the Antecedent Vector, xa, and Corresponding Fuzzy SetsASP Output Rule y1(k−1) y2(k−1) u1(k−1) u2(k−1) u3(k−1) u3(k−2)

y 1
(k
)
=

s (
k )

,
su

bs
tr

at
e

R1 A11 A12 A13 A14 A15 A16

R2 A21 A22 A23 A24 A25 A26

R3 A31 A32 A33 A34 A35 A36

R4 A41 A42 A43 A44 A45 A46

R5 A51 A52 A53 A54 A55 A56

R6 A61 A62 A63 A64 A65 A66

y 2
(k
)
=

s (
k )

,
bi

om
as

s

R∗1 - A∗11 A∗12 - A∗13 -

R∗2 - A∗21 A∗22 - A∗23 -

R∗3 - A∗31 A∗32 - A∗33 -

R∗4 - A∗41 A∗42 - A∗43 -

R∗5 - A∗51 A∗52 - A∗53 -

where:

• Auv is the fuzzy set (or fuzzy value) corresponding to the v-th component of the an-
tecedent vector, for the u-th rule, Ru, of the output y1(k) (substrate); the corresponding
membership functions are of piece-wise exponential type.

• A∗wz is the fuzzy set (or fuzzy value) corresponding to the z-th component of the an-
tecedent vector, for the w-th rule, R∗w, of the output y2(k) (biomass); the corresponding
membership functions are of piece-wise exponential type.

• The membership functions corresponding to the fuzzy sets Auv and A∗wz are provided
by FMID tool in parametric form; these parameters, as well as the mathematical ex-
pression of this type of membership functions, are detailed in Appendix A (Table A1).

Table 4. Coefficients of the consequent as per the rules of the identified FM1 fuzzy model, and offset terms.

Components of the Consequent Vector, x, and Corresponding CoefficientsASP
Output Rule y1(k−1) y2(k−1) u1(k−1) u2(k−1) u3(k−1) u3(k−2) Offset

y 1
(k
)
=

s (
k )

,
su

bs
tr

at
e

R1 (8.54)× 10−1 −(8.10)× 10−3 (4.09)× 10−3 (1.57)× 10−2 −(1.88)× 10−2 (1.91)× 10−2 (1.41)× 101

R2 (5.85)× 10−1 (3.09)× 10−2 (3.37)× 10−1 −(1.30)× 100 0 0 0

R3 (8.50)× 10−1 −(1.76)× 10−2 (1.11)× 10−2 (3.97)× 10−2 (1.43)× 10−2 −(1.62)× 10−2 (1.12)× 101

R4 (8.90)× 10−1 −(2.66)× 10−3 (3.44)× 10−3 (3.01)× 10−2 (3.58)× 10−4 (2.34)× 10−3 −(5.16)× 100

R5 (1.53)× 100 (1.79)× 10−2 −(3.75)× 101 −(3.80)× 102 (3.14)× 102 0 0

R6 (8.92)× 10−1 −(5.38)× 10−3 (1.66)× 10−2 (3.98)× 10−2 −(3.00)× 10−2 (2.72)× 10−2 −(2.55)× 101

y 2
(k
)

=
x(

k)
,

bi
om

as
s

R∗1 - (9.93)× 10−1 −(2.08)× 10−2 - (7.72)× 10−3 - (4.37)× 101

R∗2 - (8.83)× 10−1 −(5.07)× 10−2 - (1.24)× 10−1 - (2.32)× 102

R∗3 - (7.95)× 10−1 −(1.32)× 10−1 - (1.01)× 10−1 - (4.57)× 102

R∗4 - (8.62)× 10−1 −(6.17)× 10−2 - (2.48)× 10−2 - (3.35)× 102

R∗5 - (9.57)× 10−1 −(4.07)× 10−2 - (3.66)× 10−2 - (1.20)× 102
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Table 5. Fuzzy sets of the antecedent as per the rules of the identified FM2 fuzzy model.

Components of the Antecedent Vector, xa, and Corresponding Fuzzy SetsASP Output Rule y1(k−1) y2(k−1) u2(k−1) u3(k−1) u3(k−2)

y 1
(k
)
=

s (
k )

,
su

bs
tr

at
e

R1 A11 A12 A13 A14 A15

R2 A21 A22 A23 A24 A25

R3 A31 A32 A33 A34 A35

R4 A41 A42 A43 A44 A45

R5 A51 A52 A53 A54. A55

R6 A61 A62 A63 A64 A65

y 2
(k
)

=
x(

k)
,

bi
om

as
s

R∗1 - A∗11 - A∗12 -

R∗2 - A∗21 - A∗22 -

R∗3 - A∗31 - A∗32 -

R∗4 - A∗41 - A∗42 -

R∗5 - A∗51 - A∗52 -

where:

• Auv is the fuzzy set (or fuzzy value) corresponding to the v-th component of the an-
tecedent vector, for the u-th rule, Ru, of the output y1(k) (substrate); the corresponding
membership functions are of piece-wise exponential type.

• A∗wz is the fuzzy set (or fuzzy value) corresponding to the z-th component of the an-
tecedent vector, for the w-th rule, R∗w, of the output y2(k) (biomass); the corresponding
membership functions are of piece-wise exponential type.

• The membership functions corresponding to the fuzzy sets Auv and A∗wz are provided
by FMID tool in parametric form; these parameters, as well as the mathematical ex-
pression of this type of membership functions, are detailed in Appendix A (Table A2).

Table 6. Coefficients of the consequent in the rules of the identified FM2 fuzzy model, and offset terms.

Components of the Consequent Vector, x, and Corresponding CoefficientsASP
Output Rule y1(k−1) y2(k−1) u2(k−1) u3(k−1) u3(k−2) Offset

y 1
(k
)
=

s (
k )

,
su

bs
tr

at
e

R1 −(2.47)× 106 −(8.91)× 104 0 (3.95)× 105 −(6.26)× 104 0

R2 (9.53)× 10−1 −(4.07)× 10−3 (1.58)× 10−2 −(4.45)× 10−3 (4.60)× 10−3 (4.93)× 100

R3 (9.26)× 10−1 (4.13)× 10−3 −(1.39)× 10−2 −(1.84)× 10−2 (1.96)× 10−2 (1.61)× 10−1

R4 (7.45)× 10−1 −(4.32)× 10−2 (8.83)× 10−3 (8.83)× 10−3 −(1.02)× 10−2 (1.01)× 102

R5 (5.70)× 10−1 −(5.68)× 10−2 (5.93)× 10−2 −(5.08)× 10−1 (5.07)× 10−1 (1.45)× 102

R6 (9.69)× 10−1 −(3.84)× 10−3 (2.57)× 10−2 (1.73)× 10−3 −(1.17)× 10−2 0

y 2
(k
)

=
x(

k)
,

bi
om

as
s

R∗1 - (9.66)× 10−1 - (1.32)× 10−1 - (4.97)× 100

R∗2 - (9.27)× 10−1 - (3.73)× 10−2 - (9.81)× 101

R∗3 - (9.86)× 10−1 - (3.79)× 10−2 - (6.85)× 100

R∗4 - (1.00)× 100 - (3.00)× 10−2 - −(3.45)× 101

R∗5 - (1.03)× 100 - −(1.21)× 10−3 - −(7.36)× 101

The above tables specifically show the dynamic relationship between the outputs of
the ASP process and the consequent vector x, consistent with the configuration defined
by the values of Ny, Nu, and Nd parameters shown in Table 2. Furthermore, it can also
be observed in the above tables that, in the fuzzy TS models obtained by using the used
identification tool, the antecedent vector is coincident with the original consequent vector,
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i.e., xa = x. All these relationships or dependencies can also be functionally expressed as
described below.

Thus, in the case of the FM1 model, the observed dependencies for the output y1(k),
and for the global output ỹ1(k), which is a weighted linear combination of the outputs of
all rules (Equation (2)), as well as the components of the corresponding antecedent and
consequent vectors, xa = x|(FM1, out1)

, are the following (Equation (3)):

y1(k)|(FM1, Rj)
= f1j(y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

ỹ1(k)|FM1
= f1(y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

xa = x|(FM1, out1)
= (y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

(3)

Regarding the output y2(k) and the global output ỹ2(k), as well as the components
of the corresponding antecedent and consequent vectors, xa = x|(FM1, out2)

, the observed
relationships are the following (Equation (4)):

y2(k)|(FM1, R∗j )
= f2j(y2(k− 1), u1(k− 1), u3(k− 1))

ỹ2(k)|FM1
= f2(y2(k− 1), u1(k− 1), u3(k− 1))

xa = x|(FM1, out2)
= (y2(k− 1), u1(k− 1), u3(k− 1))

(4)

Note that from Equations (3) and (4) can be observed that the consequent vector corre-
sponding to the y1(k) output is not exactly the same as the consequent vector corresponding
to the y2(k) output, but the components of the first vector include the components of the
second vector. We will consider then the set formed by the union of the components of
both vectors and we will form a consequent vector common to both outputs, x| FM1

, to be
able to mathematically deal together the fuzzy models of both outputs, within a matrix
mathematical framework (by considering, logically, null factors where necessary in the
numerical expressions related to output y2(k)). Equation (5) summarizes the functional
relationships of the two weighted global outputs, with respect to the common consequent
vector, x| FM1

:

ỹ1(k)|FM1
= f1c(y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

ỹ2(k)|FM1
= f2c(y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

x| FM1
= (y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

or (abbreviated) :
ỹ1(k)|FM1

= f1c

(
x| FM1

)
ỹ2(k)|FM1

= f2c

(
x| FM1

)
(5)

where:

• f1c(·) and f2c(·) are the trivial adaptations of f1(·) and f2(·), respectively, after the
definition of the common consequent vector, x| FM1

• x| FM1
is the consequent vector, common to both outputs

For the FM2 model, after a process of observation and deduction analogous to that of
the FM1 model, we observe the following dependency relationships for the two outputs of
the ASP process, as well as the corresponding consequent vectors (Equations (6) and (7)):

y1(k)|(FM2, Rj)
= f 1j(y1(k− 1), y2(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

ỹ1(k)|FM2
= f 1(y1(k− 1), y2(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

xa = x|(FM2, out1)
= (y1(k− 1), y2(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

(6)

y2(k)|(FM2, R∗j )
= f 2j(y2(k− 1), u3(k− 1))

ỹ2(k)|FM2
= f 2(y2(k− 1), u3(k− 1))

xa = x|(FM2, out2)
= (y2(k− 1), u3(k− 1))

(7)
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Again, as in the case of the previous model, we observe that the consequent vectors of
both outputs are not coincident, but given that the one corresponding to the output y1(k)
includes among its components those of the one corresponding to the output y2(k), we
can define a common consequent vector that is the union of both, x| FM2

(considering null
factors in the numerical expressions related to output y2(k) where necessary). Equation (8)
summarizes the functional relationships of the two weighted global outputs, with respect to
the common consequent vector, x| FM2

:

ỹ1(k)|FM2
= f 1c(y1(k− 1), y2(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

ỹ2(k)|FM2
= f 2c(y1(k− 1), y2(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

x| FM2
= (y1(k− 1), y2(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

or (abbreviated) :
ỹ1(k)|FM2

= f 1c

(
x| FM2

)
ỹ2(k)|FM2

= f 2c

(
x| FM2

)
(8)

where:

• f 1c(·) and f 2c(·) are the trivial adaptations of f 1(·) and f 2(·), respectively, after the
definition of the common consequent vector, x| FM2

• x| FM2
is the consequent vector, common to both outputs

Generalization: Finally, and given that the components of the consequent vector x| FM1
include those of the consequent vector x| FM2

, or equivalently, those of the latter are a subset
of those of the first, we can consider the union of both as a consequent vector common to
both models (in our case, it would be coincident with the first), representing it as x. In this
way, we can express the functional dependency relationships, for either of the two models,
with respect to a single common consequent vector, x, naturally considering null factors,
where necessary, in the numerical expressions corresponding to the FM2 model. The
summarized general expressions, formally valid for both models, would be the following
(Equation (9)):

ỹ1(k) = fa f 1(x)
ỹ2(k) = fa f 2(x)

or, simpli f ying the notation
(denoting to the f inal weighted outputs in the same way

as to the individual rules outputs : ỹ1(k) ≡ y1(k) and ỹ2(k) ≡ y2(k)) :
y1(k) = fa f 1(x)
y2(k) = fa f 2(x)

being :
x = (y1(k− 1), y2(k− 1), u1(k− 1), u2(k− 1), u3(k− 1), u3(k− 2))

(9)

where:

• fa f 1(·) and fa f 2(·) are the affine functions corresponding to the outputs ỹ1(k) and
ỹ2(k), respectively (the coefficients and offset term of these affine functions depend
on the fuzzy model (FM1 or FM2))

• x is the consequent vector, common to both fuzzy models (and common to two outputs)

Remark: Both the outputs of the process, as well as the different antecedent and
consequent vectors, have been expressed in the original form used by the FMID software
tool, concerning temporal dependencies. Thus, the expressions corresponding to the
outputs at the k-th time instant have been explicitly expressed. In order to specify the
expressions of the outputs at the (k+ 1)-th time instant, as well as those of the corresponding
antecedent and consequent vectors, we will simply have to substitute k by (k + 1) in the
expressions we have shown previously. Thus, for example, in the case of the FM1 model, the
antecedent and consequent vectors corresponding to the outputs y1(k + 1) and y2(k + 1),



Processes 2021, 9, 531 14 of 50

as well as the fuzzy rules, in their generic form, would be as is detailed below (before
adopting a common consequent vector):

FM1 model (outputs at the (k + 1)-th time instant).

For the output y1(k + 1) :
xa = x|(FM1, out1)

= (y1(k), y2(k), u1(k), u2(k), u3(k), u3(k− 1))
j-th rule, Rj :

if
(
y1(k) is Aj1 and y2(k) is Aj2 and u1(k) is Aj3 and u2(k) is Aj4 and u3(k) is Aj5 and u3(k− 1) is Aj6)

then
y1(k + 1) = αj1y1(k) + αj2y2(k) + αj3u1(k) + αj4u2(k) + αj5u3(k) + αj6u3(k− 1) + δj

j = 1, 2, . . . , 6
For the output y2(k + 1) :

xa = x|(FM1, out2)
= (y2(k), u1(k), u3(k))

j-th rule, R∗j :

if
(

y2(k) is A∗j1 and u1(k) is A∗j2 and u3(k) is A∗j3
)

then
y2(k + 1) = α∗j1y2(k) + α∗j2u1(k) + α∗j3u3(k) + δ∗j

j = 1, 2, . . . , 5

(10)

2.3. State-Space DLTV Equivalent Model

Making use of the necessary mathematical basis (mainly, basic matrix calculation) and
by an adequate treatment, the TS fuzzy models obtained can be transformed or expressed
in the state space, in the form of discrete, linear, and time-varying models, that is, as DLTV
type models.

We will start from Equation (2), the mathematical expression that allows us to cal-
culate the outputs of the process (at every k-th time instant) from the knowledge of the
membership functions of the antecedent and of the numerical coefficients of the consequent,
obtained as a result of the identification of fuzzy models (FM1 or FM2, in our case study).
If we develop Equation (2) for a generic TS fuzzy model (of the type identified), for each
of the two global outputs of the ASP process at the k-th time instant (that is, returning to
the form provided by the software tool FMID), explicitly showing the affine function (as a
linear combination of the components of the consequent vector, plus the independent term),
we would obtain the following two equations (where, so as not to overload the notation, as
in Equation (2), it has been omitted again the formal indication of the dependency of xa
with respect to the i index, that is, with respect to the i-th output, and also the dependency
of xa and x with respect to k):

y1(k) = ∑mr1
j=1 β1j(xa)φ1j(x) =

= ∑mr1
j=1 β1j(xa)

(
αj1y1(k− 1) + αj2y2(k− 1) + αj3u1(k− 1) + αj4u2(k− 1)
+αj5u3(k− 1)+αj6u3(k− 2) + δj

)
=

=
(

∑mr1
j=1 β1j(xa)

(
αj1 αj2

))( y1(k− 1)
y2(k− 1)

)
+
(

∑mr1
j=1 β1j(xa)

(
αj3 αj4

))( u1(k− 1)
u2(k− 1)

)
+
(

∑mr1
j=1 β1j(xa)

(
αj5 αj6

))( u3(k− 1)
u3(k− 2)

)
+
(

∑mr1
j=1 β1j(xa)δj

)
being :

mr1 : number o f rules o f f uzzy model, f or output y1

(11)
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y2(k) = ∑mr2
j=1 β2j(xa)φ2j(x) =

= ∑mr2
j=1 β2j(xa)

(
α∗j1y1(k− 1) + α∗j2y2(k− 1) + α∗j3u1(k− 1) + α∗j4u2(k− 1)

)
+α∗j5u3(k− 1) + α∗j6u3(k− 2) + δ∗j

)
=

=
(

∑mr2
j=1 β2j(xa)

(
α∗j1 α∗j2

))( y1(k− 1)
y2(k− 1)

)
+
(

∑mr2
j=1 β2j(xa)

(
α∗j3 α∗j4

))( u1(k− 1)
u2(k− 1)

)
+
(

∑mr2
j=1 β2j(xa)

(
α∗j5 α∗j6

))( u3(k− 1)
u3(k− 2)

)
+
(

∑mr2
j=1 β2j(xa)δ∗j

)
being :

mr2 : number o f rules o f f uzzy model, f or output y2

(12)

By introducing now suitable mathematical definitions (mr y βj(xa)), we can group
Equations (11) and (12) into a single matrix equation:(

y1(k)
y2(k)

)
=

(
∑mr

j=1 βj(xa)

(
αj1 αj2
α∗j1 α∗j2

))(
y1(k− 1)
y2(k− 1)

)
+

(
∑mr

j=1 βj(xa)

(
αj3 αj4
α∗j3 α∗j4

))(
u1(k− 1)
u2(k− 1)

)
+

(
∑mr

j=1 βj(xa)

(
αj5 αj6
α∗j5 α∗j6

))(
u3(k− 1)
u3(k− 2)

)
+

(
∑mr

j=1 βj(xa)

(
δj
δ∗j

))
being :

• mr = max. (mr1, mr2) = common number o f rules (6, in our case study)

• βj(xa) =

(
β1j(xa) 0

0 β2j(xa)

)
, where :

β1j(xa) is the normalized membership f unction o f the antecedent vector
corresponding to the f irst output (y1), f or the j-th rule
β2j(xa) is the normalized membership f unction o f the antecedent vector
corresponding to the second output (y2), f or the j-th rule
• β26(xa) = 0; α∗6i ≡ 0 (i = 1, . . . , 6), δ∗6 ≡ 0(there are only 5 rules f or y2)

(13)

and by substituting k for (k + 1) in Equation (13), that is, considering the outputs at
the (k + 1)-th time instant (see (10)), we will obtain the equivalent Equation (14) (having
mr y βj(xa) the same or analogous meaning, respectively, as they have in Equation (13),
and where xa represents, in β1j(xa), the corresponding antecedent vector to the output
y1(k + 1), and in β2j(xa), xa represents the corresponding antecedent vector to the output
y2(k + 1); all these meanings and the numerical peculiarities for j = 6 shown in (13) will
be kept from now on):(

y1(k + 1)
y2(k + 1)

)
=

(
∑mr

j=1 βj(xa)

(
αj1 αj2
α∗j1 α∗j2

))(
y1(k)
y2(k)

)
+

(
∑mr

j=1 βj(xa)

(
αj3 αj4
α∗j3 α∗j4

))(
u1(k)
u2(k)

)
+

(
∑mr

j=1 βj(xa)

(
αj5 αj6
α∗j5 α∗j6

))(
u3(k)

u3(k− 1)

)
+

(
∑mr

j=1 βj(xa)

(
δj
δ∗j

)) (14)

Next, to improve the characterization of the different terms of Equation (14), we will
introduce the following notation changes:

αj1 = aj1, αj2 = aj2, α∗j1 = a∗j1, α∗j2 = a∗j2
αj3 = dj1, αj4 = dj2, α∗j3 = d∗j1, α∗j4 = d∗j2
αj5 = bj1, αj6 = bj2, α∗j5 = b∗j1, α∗j6 = b∗j2

δj = rj, δ∗j = r∗j

(15)

Now, rearranging the terms of Equation (14) (exchanging the positions of the second
and third terms) and applying the notation changes introduced in (15), the following
equation will be obtained:
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(
y1(k + 1)
y2(k + 1)

)
=

(
∑mr

j=1 βj(xa)

(
aj1 aj2
a∗j1 a∗j2

))(
y1(k)
y2(k)

)
+

(
∑mr

j=1 βj(xa)

(
bj1 bj2
b∗j1 b∗j2

))(
u3(k)

u3(k− 1)

)
+

(
∑mr

j=1 βj(xa)

(
dj1 dj2
d∗j1 d∗j2

))(
u1(k)
u2(k)

)
+

(
∑mr

j=1 βj(xa)

(
rj
r∗j

))
with : a∗6i ≡ 0, b∗6i ≡ 0, d∗6i ≡ 0 (i = 1, 2), r∗6 ≡ 0 (there are only 5 rules f or y2)

(16)

As a further step, in the process of development and transformation of the original
Equation (2), with integration of the two outputs, we will make the following vector and
matrix definitions and formalizations (where the particularities corresponding to j = 6,
indicated in (16), are maintained):

zmN(k) =
(

y1(k)
y2(k)

)
, zmN(k + 1) =

(
y1(k + 1)
y2(k + 1)

)
ua(k) =

(
u3(k)

u3(k− 1)

)
≡
(

u(k)
u(k− 1)

)
d(k) =

(
u1(k)
u2(k)

)
≡
(

d1(k)
d2(k)

)
AmNj =

(
aj1 aj2
a∗j1 a∗j2

)
, BmNj =

(
bj1 bj2
b∗j1 b∗j2

)
, DmNj =

(
dj1 dj2
d∗j1 d∗j2

)
, RmNj =

(
rj
r∗j

)
(17)

where:

• k represents (k·T) and T is the sampling period
• zmN(k) is the definition of state vector at the k-esimo time instant (which groups the

two outputs of the process at the k-th time instant)
• ua(k) is the input vector or the extended input vector (with two components: the

manipulated process variable at the k-th time instant and the manipulated variable
at the(k− 1)-th time instant, respectively)

• d(k) is the disturbances vector (which groups the two unmanipulated process vari-
ables at the k-th time instant)

• ymN(k) is the output vector (that matches the state vector definition)

and where the different input and output process variables involved (whose physical
meaning can be seen in Table 1) are the following:

• inputs: u1(k) = qi(k), u2(k) = si(k), u3(k) = qr(k)
• outputs: y1(k) = s(k), y2(k) = x(k)

Finally, by substituting in Equation (16) the definitions and formalizations made
in (17), we will have the following state equation, where the time dependence of the an-
tecedent vector, xa, (xa = xa(k)) has been shown explicitly due to its importance in the
model characterization:

zmN(k + 1) =
(

∑mr
j=1 βj(xa(k))AmNj

)
zmN(k) +

(
∑mr

j=1 βj(xa(k))BmNj

)
ua(k)

+
(

∑mr
j=1 βj(xa(k))DmNj

)
d(k) +

(
∑mr

j=1 βj(xa(k))RmNj

) (18)

On the other hand, taking into account that ∑mri
j=1 βij(xa) = 1, for any i (see Equation

(2)), it is then true that ∑mr
j=1 β1j(xa) = 1 and ∑mr

j=1 β2j(xa) = 1 (since mr = max. (mr1, mr2)

and β26(xa) = 0). Taking into account these last two equalities and grouping the outputs
y1(k) and y2(k) in a single vector, it follows:(

y1(k)
y2(k)

)
=

(
1 0
0 1

)(
y1(k)
y2(k)

)
=

(
∑mr

j=1 β1j(xa) 0

0 ∑mr
j=1 β2j(xa)

)(
y1(k)
y2(k)

)
=

(
∑mr

j=1

(
β1j(xa) 0

0 β2j(xa)

))(
y1(k)
y2(k)

)

=

(
∑mr

j=1

(
β1j(xa) 0

0 β2j(xa)

)(
1 0
0 1

))(
y1(k)
y2(k)

)
=

(
∑mr

j=1 β j(xa)

(
1 0
0 1

))(
y1(k)
y2(k)

) (19)
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and doing now the following vector and matrix definitions and formalizations:

ymN(k) =
(

y1(k)
y2(k)

)
CmNj =

(
1 0
0 1

) (20)

where:

• k represents (k·T) and T is the sampling period
• ymN(k) is the output vector (which groups the two outputs of the process at the k-th

time instant and matches the state vector definition)

and by substituting Equation (20) in Equation (19), we will have the following output
equation, where the time dependence of the antecedent vector, xa, (xa = xa(k)) has been
shown explicitly (as in the state equation) due to its importance in the model characterization:

ymN(k) =

(
mr

∑
j=1

βj(xa(k))CmNj

)
zmN(k) (21)

Next, we will represent by means of a single matrix each of the matrix sums of the
different terms of Equations (18) and (21), according to the following definitions:

AmN = ∑mr
j=1 βj(xa(k))AmNj , BmN = ∑mr

j=1 βj(xa(k))BmNj

DmN = ∑mr
j=1 βj(xa(k))DmNj , RmN = ∑mr

j=1 βj(xa(k))RmNj

CmN = ∑mr
j=1 βj(xa(k))CmNj

(22)

The matrices defined in (22) can also be expressed in the following symbolic and
generic way (which will be useful later to simplify the stability analysis), representing the
elements of the matrices in a simplified way, taking into account the dynamic characteristics
of each one of the models (see the identification parameters Ny, Nu and Nd, in Table 2), and
by specifying its relationship with the original coefficients of the starting fuzzy models,
FM1 and FM2:

AmN =

(
a b

0(1) f

)
( f or FM1 and FM2)

a =
(

∑mr
j=1 β1j(xa)aj1

)
, b =

(
∑mr

j=1 β1j(xa)aj2

)
, f =

(
∑mr

j=1 β2j(xa)a∗j2
)

(1) f or both f uzzy models, a∗j1 = 0, ∀j; then :
(

∑mr
j=1 β2j(xa)a∗j1

)
= 0

BmN =

(
m n
p 0(2)

)
( f or FM1 and FM2)

m =
(

∑mr
j=1 β1j(xa)bj1

)
, n =

(
∑mr

j=1 β1j(xa)bj2

)
, p =

(
∑mr

j=1 β2j(xa)b∗j1
)

(2) f or both f uzzy models, b∗j2 = 0, ∀j; then :
(

∑mr
j=1 β2j(xa)b∗j2

)
= 0

DmN =

(
c d
g 0(3)

)
( f or FM1; f or FM2 : c = 0 and g = 0 (4))

c =
(

∑mr
j=1 β1j(xa)dj1

)
, d =

(
∑mr

j=1 β1j(xa)dj2

)
, g =

(
∑mr

j=1 β2j(xa)d∗j1
)

(3) f or both f uzzy models, d∗j2 = 0, ∀j; then :
(

∑mr
j=1 β2j(xa)d∗j2

)
= 0

(4) f or FM2 : dj1 = 0, d∗j1 = 0, ∀j; then :
(

∑mr
j=1 β1j(xa)dj1

)
= 0 and

(
∑mr

j=1 β2j(xa)d∗j1
)
= 0

RmN =

(
r1
r2

)
( f or FM1 and FM2)

r1 =
(

∑mr
j=1 β1j(xa)rj

)
, r2 =

(
∑mr

j=1 β2j(xa)r∗j
)

CmN =

(
1 0
0 1

)
( f or FM1 and FM2)

(23)
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Finally, and independently of the possible formal matrix representations shown in
(23)), if we substitute the matrices defined in (22) in Equations (18) and (21), and we consider
both equations together, we will obtain the final equivalent state space model (Equations (24)
and (25)), which is of DLTV type, as we will reason below:

zmN(k + 1) = AmNzmN(k) + BmNua(k) + DmNd(k) + RmN (24)

ymN(k) = CmNzmN(k) (25)

where:

• k represents (k·T) and T is the sampling period
• zmN(k) is the state vector
• ua(k) is the input vector (or the extended input vector)
• d(k) is the disturbances vector
• ymN(k) is the output vector
• AmN, BmN, DmN, RmN, and CmN are the system matrices

As can be seen in the equations of the obtained model, the state Equation (24) and the
output Equation (25), the final equivalent model is a state-space discrete model, with input
disturbances, and formally linear. However, observing Equation (22), it is immediate to de-
duce that the system matrices (AmN, BmN, DmN, RmN, and CmN) depend on time, since they
depend on βj(xa(k)), and xa(k) depends directly of k. That is: AmN = AmN(xa(k)) = AmN(k),
BmN = BmN(xa(k)) = BmN(k), DmN = DmN(xa(k)) = DmN(k), RmN = RmN(xa(k)) = RmN(k),
CmN = CmN(xa(k)) = CmN(k). Therefore, the equivalent state-space model just described is
time-varying and, more specifically, it is of DLTV type (which is what we want to demonstrate).
Furthermore, as a global conclusion of the transformation process, we can highlight that the
highly non-linear system under study (the ASP process), initially identified through fuzzy mod-
els, has finally been represented by a model in state space, with a linear formal appearance,
although with varying coefficients over time.

Remark: The dependence of the system matrices, AmN, BmN, DmN, RmN, and CmN, with
respect to the antecedent vector xa(k), and therefore also with respect to time, implies that
it is not possible to characterize the fuzzy models of the ASP process using a set of unique
constant numerical matrices (as is the case of time-invariant linear systems), except for
small environments around certain operating points or for small time intervals, in the case
of sufficiently slow systems. On the other hand, as a consequence of this dependence of
the system matrices with respect to xa(k), in each iteration of the simulation experiments
with the FMBPC control strategy, it is necessary to carry out the corresponding update
sequence. That is, at the k-th time instant, both xa(k) and βj(xa(k)) must be updated, as
well as, finally, the system matrices, AmN(k), BmN(k), DmN(k), RmN(k), and CmN(k).

State-space DLTV model of ASP process, in matrix form and with the elements of all matrices
expressed in a generic symbolic way: Replacing in (24) and (25) the state, input, disturbances
and output vectors by their corresponding expressions (Equations (17) and (20)) and the
system matrices by their corresponding generic symbolic expressions (defined in (23)), we
would have, for the specific case of our identified ASP process, the state-space DLTV
model in matrix form and with the elements of the system matrices expressed in a generic
way, as shown below (which will be useful, as we already said in the paragraph before
Equation (23), to simplify the stability analysis of the system and its interpretation):

zmN(k+1)︷ ︸︸ ︷(
y1(k + 1)
y2(k + 1)

)
=

AmN︷ ︸︸ ︷(
a b
0 f

) zmN(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
+

(
m n
p 0

)
︸ ︷︷ ︸

BmN

(
u(k)

u(k− 1)

)
︸ ︷︷ ︸

ua(k)

+

(
c d
g 0

)
︸ ︷︷ ︸

DmN

(
d1(k)
d2(k)

)
︸ ︷︷ ︸

d(k)

+

(
r1
r2

)
︸ ︷︷ ︸

RmN

(26)
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ymN(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
=

CmN︷ ︸︸ ︷(
1 0
0 1

) zmN(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
(27)

this formalization being valid for both FM1 and FM2 (with c = 0 and g = 0, for FM2).

3. Open-Loop Local Stability

We will now assume that for the model represented by Equations (24) and (25), there
will be some equilibrium point, that is, we will assume that there will be some steady state,
zmNss, for a certain input, uass, for certain values of the disturbances, dss, for a certain
antecedent vector xass and consequently, for certain matrices AmNss, BmNss, DmNss, RmNss
and CmNss and with a certain output, ymNss. Such a state must satisfy the steady state
condition for a discrete-time system, i.e.:

zmN(k) = zmN(k + 1) = zmNss (28)

and on the other hand, it must also satisfy the equations of the model ((24) and (25)), that is:

zmNss = AmNsszmNss + BmNssuass + DmNssdss + RmNss (29)

ymNss = CmNsszmNss (30)

Let us now consider a generic state, zmN(k), belonging to the model represented by
(24) and (25) and suppose that the disturbances, d(k), are the same or very similar to those
corresponding to the steady state, that is:

d(k)− dss ∼= 0 (31)

and let us also suppose that the antecedent vector, xa(k), is close enough to xass (in its
corresponding space), to be able to consider that the system matrices are approximately
equal to those of the steady state, that is:

AmN ∼= AmNss
BmN ∼= BmNss
DmN ∼= DmNss
RmN ∼= RmNss
CmN ∼= CmNss

(32)

The assumption made, xa(k) close to xass, would imply the following, considering the more
general case of the antecedent corresponding to the output y1(k + 1) of the FM1 model (for the others
cases, it would be analogous): for this case, xa(k) = (y1(k), y2(k), u1(k), u2(k), u3(k), u3(k− 1)),
that can be also expressed as xa(k) =

(
zmN

T(k), dT(k), ua
T(k)

)
(see (17)); consequently, the as-

sumption xa(k) ∼= xass would imply that all variables (state variables, disturbances and the extended
input) should be close to the corresponding values associated to the considered stationary state, i.e.,:
zmN(k) ∼= zmNss, d(k) ∼= dss (hypothesis already considered in (31)), and ua(k) ∼= uass. We will
assume the fulfillment of these conditions in our case study (for all cases) and will refer to them, in
abbreviated form, simply as: proximity condition of state zmN(k) with respect to the steady state zmNss.

Subtracting now the Equalities (24) and (29), on the one hand, and (25) and (30), on
the other, we will obtain the equality relations that are shown in the following equations,
by also considering some groupings of terms and some numerical considerations derived
from the hypothesis mentioned above (d(k)− dss ∼= 0 y RmN −RmNss ∼= 0):

(zmN(k + 1)− zmNss)︸ ︷︷ ︸
∆zmN(k+1)

= AmN(zmN(k)− zmNss)︸ ︷︷ ︸
∆zmN(k)

+ BmN(ua(k)− uass)︸ ︷︷ ︸
∆ua(k)

+ DmN(d(k)− dss)︸ ︷︷ ︸
∼=0

+
(
RmN −RmNss

)︸ ︷︷ ︸
∼=0

(33)
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(ymN(k)− ymNss)︸ ︷︷ ︸
∆ymN(k)

= CmN(zmN(k)− zmNss)︸ ︷︷ ︸
∆zmN(k)

(34)

The Equations (33) and (34) describe an incremental model, valid for small deviations
with respect to a certain operating point, certain steady state taken as a reference (as just
explained above), that can be simplified and expressed more compactly as follows (using
the hypotheses and the complementary notation included in the same expressions (33)
and (34)):

∆zmN(k + 1) = AmN∆zmN(k) + BmN∆ua(k) (35)

∆ymN(k) = CmN∆zmN(k) (36)

and making the following change of notation:

∆zmN(k + 1) ≡ xinc(k + 1)
∆zmN(k) ≡ xinc(k)
∆ua(k) ≡ uinc(k)

∆ymN(k) ≡ yinc(k)

(37)

the incremental model will be finally expressed in the following standard form:

xinc(k + 1) = AmNxinc(k) + BmNuinc(k) (38)

yinc(k) = CmNxinc(k) (39)

which constitutes a state-space local model, valid for states close to zero state, of DLTI type
(considering the matrices AmN, BmN and CmN as constants, approximately equal to the
corresponding matrices associated with the steady state, zmNss).

Open-loop local stability: The form of the approximate (local) model that we have just
deduced allows us to directly apply the more known and accepted stability criterion (neces-
sary and sufficient condition) for DLTI systems described in the state-space: a DLTI system
is asymptotically stable in the sense of Lyapunov (internal stability) if and only the eigenvalues
of the state matrix are strictly within the unit circle. Therefore, taking into account that the
state matrix corresponding to our case, AmN, is triangular (see Equation (23)), the system
described by Equations (38) and (39), which we will denote by SOL below, will be stable if
and only the absolute value of all the elements of the main diagonal of AmN is strictly less
than unity, that is:

SOL is asymptotically stable the eigenvalues o f AmN are all strictly within the unit circle

→ f or particular cases with triangular state matrix, AmN =

(
a b
0 f

)
, we would have :

SOL is asymptotically stable |a| < 1 ∧ | f | < 1
and in our case study (both f or FM1 and FM2), replacing the elements o f the main diagonal o f the

AmN matrix by their respective original expressions, based on the original coe f f icients
o f the identi f ied Fuzzy Models (see (23)), we would have :

SOL is asymptotically stable |a| =
∣∣∣∑mr

j=1 β1j(xa)aj1

∣∣∣ < 1 ∧ | f | =
∣∣∣∑mr

j=1 β2j(xa)a∗j2
∣∣∣ < 1

(40)

4. Closed-Loop Local Stability of ASP Process Controlled by FMBPC Law

The objective of this section is to analyze the closed-loop local stability of our ASP
process, making use of a certain FMBPC control strategy. We will start from the equa-
tions of DLTI local model developed in Section 3 (Equations (38) and (39)) and will re-
place in them the FMBPC control law deduced in [23], thus obtaining the corresponding
closed-loop model.



Processes 2021, 9, 531 21 of 50

4.1. FMBPC Control Law

In [23], an analytical and explicit FMBPC control law was deduced following a method
that could be considered an extension to the multivariable case of the well-known PFC
strategy (already mentioned in the introductory section of this article), one of whose main
bases is the so-called equivalence principle. In Figures 3 and 4, we summarize the FMBPC
strategy implemented in such work and the mentioned principle, respectively:
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The control law was derived by imposing on the outputs of the prediction model the
following certain reference trajectories, along the so-called coincidence horizon (H), and
applying the equivalence principle to the end of that horizon. The result of the deductive
process carried out in [23] was an analytical and explicit expression for the control action
u(k) (which is the sludge recirculation flow rate of the ASP process, i.e., u(k) = qr(k))
and also, implicitly, the mathematical expression corresponding to the vector variable
ua(k) (reviewing the mathematical development and making some trivial considerations
will suffice).

This control law is the one that has been chosen to be implemented and obtain the
closed-loop control system considered in this work. The original form of the law obtained
in [23] is a matrix algebraic expression, deduced from a certain global model of predictions
in the state space, characterized by a certain extended state vector and certain system matrices.
Consequently, the deduced control law is a function of those system matrices and of the
aforementioned extended state vector. Therefore, in order to use such a law in the local
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model developed in Section 3 of this article (Equations (38) and (39)), must be first adapted.
This local model derives from the global model in the state space obtained in Section 2.3
(Equations (24) and (25)), which is characterized by a state vector and system matrices
different from those of the model used in [23]. However, the two state space global models
considered, the one deduced in [23] and the one deduced in Section 2.3 of this article, both
of type DLTV, are actually equivalent, since both are transformations of TS fuzzy models
of the ASP process (previously identified). Due to this equivalence and also taking into
account that the extended state vector of the first model includes the state vector of the second,
it will be possible to transform the expression of the control law into an equivalent one,
which is a function of the matrices of the system and of the state vector corresponding to
the global model deduced in this article. On the other hand, and prior to this adaptation,
the expression corresponding to the extended manipulated input variable, ua(k), which is
really implicit in the development done in [23], must be specified. The original expression
of ua(k) and its subsequent adaptation have been detailed in Appendix B of this article.
The resulting final expression for this variable, already adapted and therefore suitable to
be substituted in our local open-loop model, is the following (see details of the matrices
involved in Appendix B):

ua(k) = MaN
−1(yr(k + H)− y(k) + ymN(k)− CmNAmN

HzmN(k) − CmNγd(k)− λmN )
being :

MaN
−1, λmN : matrix f unctions o f system matrices; γ : submatrix o f order 2;

H : coincidence horizon (PFC concept) [H ∈ Z+, H ≥ 1]

(41)

4.2. Closed-Loop Local Stability Analysis

In the closed-loop stability study, we will also assume the existence of some equilibrium
point for the open-loop plant model, given for Equations (24) and (25), and we will represent
the corresponding steady state also by zmNss. We will consider that the objective of our
control system is precisely to drive the system towards that state, whose output, ymNss,
must therefore be the reference for the output of the closed-loop system. Furthermore,
we will assume that the control strategy will achieve the system reaching this state and,
consequently, the entry of the steady state input will be compatible with the control law.
Finally, we will suppose that the model described in Equations (24) and (25) is a perfect
model of the process that it represents, or what is the same, that for each k (k-th instant), the
following will be verified: y(k) = ymN(k) and, therefore, −y(k) + ymN(k) = 0.

Taking into account now the previous assumptions regarding the perfection of the
model and the compatibility of the steady state input with the control law, we can first
simplify the expression of the control law, uaN(k) (Equation (41)), and secondly substitute in
the resulting expression the values of the different variables and coefficients corresponding
to the equilibrium point, obtaining the two following relationships:

ua(k) = MaN
−1(yr(k + H)− CmNAmN

HzmN(k) − CmNγd(k)− λm)
[H ∈ Z+, H ≥ 1]

(42)

uass = MaNss
−1(ymNss − CmNssAmNss

HzmNss − CmNssγssdss − λmss)
[H ∈ Z+, H ≥ 1]

(43)

The control law expressed in Equation (42) is the one that corresponds to the k-th
instant and is a function of the generic state, zmN(k), but also depends on the following
variables and parameters: the coincidence horizon, H (which will have been previously
chosen); the reference trajectory at (k + H), yr(k + H); the disturbances, d(k); and the
system matrices, which depend on the antecedent vector, xa(k). We will assume, as in
the study of open-loop stability, that the disturbances will be the same or similar to those
corresponding to the steady state (d(k)− dss ∼= 0 or d(k) ∼= dss; see Equation (31) and that
the antecedent vector, xa(k), will be close enough (in its corresponding space) to xass, such
that the system matrices (and also other matrices that appear in Equation (42) and that are
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a function of them) are approximately equal to those of the steady state (see Equation (32)).
Furthermore, we will assume that what we called in Section 3 as proximity condition of
state zmN(k) with respect to the steady state zmNss, will be fulfilled (with its corresponding
implications). Finally, we will assume that both the curvature of the reference trajectories,
yr(k) (function of the parameters ari and bri , i = 1, 2), and the value of H, will be adequate
(H, large enough) to be able to consider that yr(k + H) is sufficiently close to the output
reference value, which is, as we said, the process output corresponding to the steady state,
ymNss; that is, we will suppose that it is verified: yr(k + H) ∼= ymNss. Considering all these
assumptions, if we subtract expressions (42) and (43), we will have the following expression
for the increase in the control action (with respect to that of the steady state) or incremental
control law:

∆ua(k) = −
(
MaN

−1CmNAmN
H)∆zmN(k)

being :
∆zmN(k) = (zmN(k)− zmNss)

and :
MaN

−1 ∼= MaNss
−1

CmN ∼= CmNss
AmN

H ∼= AmNss
H

(44)

and using the change of notation introduced in Equation (37) (i.e., ∆zmN(k) ≡ xinc(k)
and ∆ua(k) ≡ uinc(k)), it will be as follows:

uinc(k) = −
(

MaN
−1CmNAmN

H
)

xinc(k) (45)

Remark: It should be noted that, formally, the deduced incremental control law coin-
cides with the known state-feedback control law (u = −Kx), although in our case it was
obtained from a previously identified fuzzy model and under the PFC approach.

Once the expression of the incremental control law has been obtained (Equation (45)),
the next step will be to substitute it in the state equation of the open-loop incremental DLTI
model (Equation (38)) and adequately group terms, obtaining the following:

xinc(k + 1) = AmNxinc(k)− BmN
(
MaN

−1CmNAmN
H)xinc(k)

=
(
AmN − BmNMaN

−1CmNAmN
H)xinc(k)

where :
AmN ∼= AmNss, BmN ∼= BmNss, MaN

−1 ∼= MaNss
−1, CmN ∼= CmNss, AmN

H ∼= AmNss
H

(46)

Now we will group in a single matrix the matrix expression that multiplies to xinc(k)
in Equation (46), which we will denote with AmNCL and we will name as a closed-loop state
matrix of the incremental model:

AmNCL =
(

AmN − BmNMaN
−1CmNAmN

H
)

(47)

and, by analogy, we will also define the following matrix:

AmNCLss =
(

AmNss − BmNssMaNss
−1CmNssAmNss

H
)

(48)

being the relationship between the matrices defined in Equations (47) and (48):
AmNCL

∼= AmNCLss, according to the proximity specifications between matrices summarized
in Equation (46)). Substituting Equation (47) in Equation (46), we obtain Equation (49)
(below) and repeating the output equation of the open-loop incremental DLTI model
(Equation (39), in which uinc(k) does not intervene), we have Equation (50) (below). Ex-
pressing both together (Equations (49) and (50)), we finally have the following closed-loop
incremental DLTI model:

xinc(k + 1) = AmNCLxinc(k) (49)

yinc(k) = CmNxinc(k) (50)
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which constitutes a state-space local model, valid for states close to zero state, of DLTI
type (considering the matrices AmNCL and CmN as constants, approximately equal to the
corresponding matrices associated with the steady state, zmNss, i.e.,: AmNCL

∼= AmNCLss
and CmN ∼= CmNss).

Closed-loop local stability: The form of the obtained local DLTI model, given by
Equations (49) and (50) and which we will denote by SCL below, will allow us to apply
the same stability criterion in the sense of Lyapunov (internal stability) that was applied
in open-loop analysis. Such criterion will now be expressed as follows:

SCL is asymptotically stable the eigenvalues o f AmNCL are all strictly within the unit circle (51)

that is, the asymptotic stability of SCL will depend on the eigenvalues of AmNCL = AmN −
BmNMaN

−1CmNAmN
H . However, the analysis of the eigenvalues of this matrix expression

is not as simple as in the case of the open-loop, both because of the presence of multiple
operations between matrices and the dependence on H, and not in a simple way (H is
the exponent of a power of matrix base). To try to solve this problem, a computational
approach is proposed in the next section.

5. Practical Determination of Closed-Loop Local Stability: A Computational Approach

The purpose of this section is to analyze by computation the closed-loop local stability
of our case study, carrying out the study through a direct numerical analysis, which can
be considered as an alternative approach to the classical analytical analysis (which is not
applicable in a direct way in the case of multivariable fuzzy systems).

The stability analysis will be carried out with the help of the so-called symbolic cal-
culation considering generic expressions for the matrices involved in the previously de-
duced mathematical models of our system. We will use the software tool Symbolic Math
Toolbox™ belonging to the Matlab® programming environment (The MathWorks Inc., Natick,
MA, USA).

The procedure consists of determining the position in the plane of the eigenvalues
of the closed-loop state matrix, AmNCL Equation (47), which depends on the coincidence
horizon, H, for a succession of increasing values of this parameter, and afterwards the
tendency when H tends to infinity is also determined by means of an inductive process.
The position of these eigenvalues will be compared with that of the eigenvalues of the
open-loop state matrix, AmN (see Equations (22) and (23)), and conclusions will be drawn
about the closed-loop stability, taking into account the stability criterion expressed in
Equation (51).

Closed-loop stability analysis by means of symbolic computation: We will start from the
following generic specifications for the matrices involved in the considered mathematical
models, adding the symbol suffix to the subscript of the matrices names (consistent with the
generic name for the system matrices introduced in Equation (23)):

AmN_symb =

(
a b
0 f

)
; BmN_symb =

(
m n
p 0

)
; DmN_symb =

(
c d
g 0

)
;

RmN_symb =

(
r1
r2

)
; CmN_symb =

(
1 0
0 1

) (52)

Of the above matrices, the most significant initially is the open-loop state matrix,
AmN_symb, whose eigenvalues (with Matlab code: eig

(
AmN_symb

)
) are the following:

a
f

(53)

and therefore, the open-loop system will be asymptotically stable ⇔ |a| < 1 ∧ | f | < 1, as
already established in Equation (40).

Next, we will assign increasing values to H and determine, for each value of H, the
closed-loop state matrix and its eigenvalues, by means of symbolic calculation. The use of
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this type of calculation will allow us to carry out the necessary matrix operations (see the
original expression of AmNCL, in Equation (47)) with matrices expressed in generic form,
including sums, products, and powers with exponent H (H ∈ Z+, H ≥ 1), even for very
large H values, and later determine the eigenvalues of the matrix obtained.

The results obtained using the above cited software tool are (for some selected H
values) the following (where AmNCL_symb_Hn is the, generically expressed, closed-loop state
matrix corresponding to case H = n and f is the second of the eigenvalues shown in
Equation (53), corresponding to the open-loop state matrix, AmN_symb):

H = 6

→ Matlab code: eig
(
AmNCL_symb_H6

)
→ calculated eigenvalues:

0
f ·
(

f 4 + f 3 + · · ·+ f + 1
)
/
(

f 5 + f 4 + · · ·+ 1
) (54)

H = 10

→ Matlab code: eig
(
AmNCL_symb_H10

)
→ calculated eigenvalues:

0
f ·
(

f 8 + f 7 + · · ·+ f + 1
)
/
(

f 9 + f 8 + · · ·+ 1
) (55)

H = 100

→ Matlab code: eig
(
AmNCL_symb_H100

)
→ calculated eigenvalues:

0
f ·
(

f 98 + f 97 + · · ·+ f + 1
)
/
(

f 99 + · · ·+ 1
) (56)

H = 1000

→ Matlab code: eig
(
AmNCL_symb_H1000

)
→ calculated eigenvalues:

0
f ·
(

f 998 + f 997 + · · ·+ f + 1
)
/
(

f 999 + · · ·+ 1
) (57)

From observation of the results obtained and reasoning by induction, we can deduce,
with respect to the eigenvalues of AmNCL_symb_Hn (for all H > 1, H increasing), that the
first is always 0 and that the second fits a sequence whose general term depends on H
analytically, according to the following expression:

f ·
(

f H−2 + · · ·+ f + 1
)

/
(

f H−1 + · · ·+ 1
)

(58)

That is, the eigenvalues of AmNCL_symb_Hn are the following:

eig1 = 0
eig2 = f ·

(
∑H−2

n=0 f n
)

/
(

∑H−1
n=0 f n

) (59)
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where we can observe, for the eig2, that the summations in the numerator and denominator
satisfy (both) the shape of a geometric series (GSm) of the following type:

GSm =
m

∑
n=0

k·rn (60)

k being a nonzero constant coefficient, r the ratio of the series and m the upper level of the
summation (in our case: k = 1, r = f and m = H − 2 or m = H − 1).

The geometric series of the type shown in Equation (60), with k ∈ R, k 6= 0 and ratio
r ∈ R, are convergent (when m tends to infinity) if and only |r| < 1 and, if this is verified,
its sum will be: k/(1− r). That is:

i f (k 6= 0 ∧ |r| < 1)⇒ lim
m→∞

(GSm) = k· 1
1− r

(61)

and therefore, in our case: if | f | < 1, both the numerator and the denominator of the
expression corresponding to the eig2 eigenvalue, in Equation (59), will tend to 1/(1− f )
when H tends to infinity. That is, we will have the following:

i f | f | < 1⇒ lim
H→∞

(eig2) = f ·

(
1

1− f

)
(

1
1− f

) = f (62)

Thus, for the limit case corresponding to H tending to infinity, we will finally have:

H → ∞
→ deducted eigenvalues for AmNCL_symb_H∞:

eig1∞ = 0
eig2∞ = f (i f | f | < 1)

(63)

Next, in Table 7, we will summarize the results obtained in the calculation of the
eigenvalues corresponding to the closed-loop state matrix, together with the eigenvalues
of the open-loop state matrix:

Table 7. Eigenvalues of the state matrices obtained by means of symbolic computation.

eig(AmN) [Open-Loop]
H

eig(AmNCL)→ H Dependent
[Closed-Loop]

eig1 eig2 eig1 eig2
6 0 f ·

(
f 4 + · · ·+ 1

)
/
(

f 5 + · · ·+ 1
)

10 0 f ·
(

f 8 + · · ·+ 1
)
/
(

f 9 + · · ·+ 1
)

100 0 f ·
(

f 98 + · · ·+ 1
)
/
(

f 99 + · · ·+ 1
)

1000 0 f ·
(

f 998 + · · ·+ 1
)
/
(

f 999 + · · ·+ 1
)

>1000 0 f ·
(

f H−2 + · · ·+ 1
)
/
(

f H−1 + · · ·+ 1
)a f

→ ∞ 0 f (i f | f | < 1 )

The main characteristic of the trend that we can observe in Table 7 is that, for H → ∞ ,
the eigenvalues of the closed-loop state matrix, AmNCL, are: 0 and a second eigenvalue, f ,
which coincides with the second eigenvalue of the open-loop state matrix, AmN. Conse-
quently, we can state the following conclusions:

Conclusion 1. When the coincidence horizon tends towards infinity, H → ∞ , one of the two
eigenvalues of the closed-loop state matrix is zero and the other coincides with one of the eigenvalues
of the open-loop state matrix (the second eigenvalue of (53)) if the absolute value of this eigenvalue
is less than 1.
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Conclusion 2. If the open-loop plant is locally asymptotically stable (around some equilibrium
point), then for a large coincidence horizon ( H → ∞ ), the corresponding closed-loop plant will also
be locally asymptotically stable (around from that equilibrium point).

Proof of the Conclusion 2. If the open-loop plant is locally asymptotically stable, then all the
eigenvalues of the open-loop state matrix will be strictly within the unit circle Equation (40).
On the other hand, if H tends towards infinity, the eigenvalues of the closed-loop state
matrix will be (Conclusion 1): the zero (which is clearly within the unit circle) and a second
eigenvalue, which will match some eigenvalue of the open-loop state matrix with absolute
value less than 1, if it exists, and this happens, since its eigenvalues are all within the unit
circle, as we just established in the starting hypothesis. Therefore, all the eigenvalues of the
closed-loop state matrix will also be within the unit circle and, consequently, taking into
account the criterion expressed in Equation (51), we can affirm that the closed-loop plant
will also be locally asymptotically stable. �

6. Stability Test and FMBPC Experiments

This section is dedicated to the presentation of some practical and experimental tests
carried out, showing both their description and their results. First, we carry out a stability
test, consisting of the verification of the inductive process developed in the previous section,
for a specific numerical example, that is, considering numerical values for the elements
of the system matrices. Second, as an experimental test of the behavior of the closed loop
control system, we analyze the evolution of the controlled variables in two of the multiple
FMBPC simulation experiments carried out in the framework of the research corresponding
to the present work.

6.1. Stability Test

To carry out this test, a specific case was chosen, determined by simulation in the
vicinity of an equilibrium point, for a certain antecedent vector, and characterized by
certain open-loop system matrices, with specific numerical values. From these matrices, we
will determine, for each value of the coincidence horizon, H, the corresponding closed-loop
state matrix, AmNCL (according to expression shown in Equation (47)), expressed with
specific numerical values as well. The numerical open-loop system matrices corresponding
to our example are the following:

AmN =

(
0.8000 0.7700

0 0.8800

)
; BmN =

(
0.9000 0.5700
0.8100 0

)
;

DmN =

(
0.2900 0.4800
0.2900 0

)
; RmN =

(
0.7900
0.8800

)
; CmN =

(
1 0
0 1

) (64)

where the most significant matrix for our study is the open-loop state matrix, AmN, whose
eigenvalues (eig

(
AmN

)
in Matlab code) are:

0.8000
0.8800

(65)

and therefore, since the two eigenvalues are strictly within the unit circle, in this case, the
open-loop system would be asymptotically stable (see (40)).

Next, we will repeat the systematic calculation process performed in Section 5 (now
with numbers), giving increasing values to H and determining, for each value of H (H = n),
the corresponding closed-loop state matrix, AmNCL_Hn Equation (47), as well as its eigen-
values. The results obtained in the Matlab® environment are the following (where we have
approximated the numbers using only four decimal places):
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H = 6

→ closed-loop state matrix:

AmNCL_H6 =

(
0.0000 0.8682

0 0.7759

)
(66)

→ calculated eigenvalues (Matlab code: eig
(
AmNCL_H6

)
):

0.0000
0.7759

(67)

H = 10

→ closed-loop state matrix:

AmNCL_H10 =

(
0.0000 −3.6440

0 0.8336

)
(68)

→ calculated eigenvalues (Matlab code: eig
(
AmNCL_H10

)
):

0.0000
0.8336

(69)

H = 100

→ closed-loop state matrix:

AmNCL_H100 =

(
0.0000 −51653.6594

0 0.8799

)
(70)

→ calculated eigenvalues (Matlab code: eig
(
AmNCL_H100

)
):

0.0000
0.8799

(71)

H = 1000

→ closed-loop state matrix:

AmNCL_H1000 =

(
0.0000 ∗

0 0.8800

)
(72)

∗ very large number (negative)
→ calculated eigenvalues (Matlab code: eig

(
AmNCL_H1000

)
):

0.0000
0.8800

(73)

H > 1000

→ the eigenvalues of the closed-loop state matrix coincide with those obtained for
H = 1000 (Equation (73)), repeating the same result as we continue increasing H

Next, in Table 8, we summarize all the results obtained:
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Table 8. Eigenvalues of the state matrices obtained by means of direct computation.

eig(AmN) [Open-Loop]
H

eig(AmNCL)→ H Dependent
[Closed-Loop]

eig1 eig2 eig1 eig2

0.8000 0.8800

6 0.0000 0.7759
10 0.0000 0.8336

100 0.0000 0.8799
1000 0.0000 0.8800

>1000 0.0000 0.8800

From observation of previous calculations, summarized in Table 8, we can conclude
that as H increases and tends towards large values, one of the eigenvalues of the closed-
loop state matrix, AmNCL, is 0.0000, in all cases, and the other increases slowly, always
with a value less than 1 (and greater than 0), until it reaches the value 0.8800, which
coincides with the second eigenvalue (the greater) of the open-loop state matrix, AmN. For
our particular numerical example, Conclusion 1 established in Section 5 has been verified.
On the other hand, in our case, we started from a plant that is locally asymptotically stable
in open-loop and it has been found that, for sufficiently large values of H, the eigenvalues
of the corresponding closed-loop state matrix are all strictly within the unit circle and
therefore, according to criterion expressed in Equation (51), the corresponding closed-loop
plant will also be locally asymptotically stable. That is, Conclusion 2 established in Section 5
has also been verified for our particular numerical example.

6.2. FMBPC Control Experiments

Within the framework of this work, many control experiments were carried out ap-
plying the considered FMBPC control-law to a simulated ASP process (represented by a
continuous model given by differential equations). The objective of these experiments was
to test the behavior of our FMBPC control strategy, both for constant reference values and
for variable reference values, in the neighborhood of certain operating points in terms of
the control performance and the stability of the closed loop system. The simulations were
performed using the MATLAB & Simulink software environment (Matlab®: programming
environment of The MathWorks, Inc.). The controlled variables are the substrate concentra-
tion in the effluent and the biomass concentration in the reactor (s and x, respectively), the
only manipulated variable being the sludge recirculation flow-rate (qr).

The general control objective is to drive the system to an appropriate operating point
(sre f , xre f ) despite the strong variations in disturbance signals (the input flow-rate of con-
taminated water, qi, and the organic substrate concentration in it, si). More precisely, the
substrate concentration in the effluent must be kept at a certain reference value fulfilling
legal regulations, while the biomass concentration approaches some convenient refer-
ence values according to biochemical criteria to guarantee a proper purification ability of
the plant, avoiding certain inappropriate dynamic behaviors of the purification process
(dependent on the work area) among other operational aspects.

In this section, a set of control experiments considering different changes in the
biomass concentration reference while keeping the substrate concentration reference at a
constant value, are presented. The action of strong disturbances is also considered. The
experiments with the FMBPC strategy are structured in three cases: Case 1, Case 2, and
Case 3. The performance of the FMBPC control algorithm will be qualitatively studied in
terms of disturbances rejection and references tracking from the closed-loop simulation
model. The stability of the closed-loop system, with the FMBPC control strategy, can be
qualitatively analyzed if the design of the experiment is appropriate and, both the open-
loop stability conditions of the plant and the conditions of the controller parameter H, are
fulfilled. Consequently, tests to evaluate the performance and stability of the closed-loop
control system were developed within an operating range in which the plant is locally
open-loop stable and high-enough values of H are chosen.
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Classical-PID control Tests: In the reference industrial plant [103], the control algorithm
used to control the substrate concentration was the classical-PID algorithm. For this reason,
it has been considered that it could be useful to simultaneously carry out tests with a
monovariable classical PID control algorithm, for some of the FMBPC cases considered.
Specifically, for Cases 1 and 2, two tests with the classical PID control algorithm were
carried out: one, focusing the PID to substrate concentration control and the other, focusing
the PID to biomass concentration control. The results of these PID tests, as well as a small
qualitative study of the stability and performance of this control strategy applied to the
control of the ASP process, are also included in this section.

Configuration of the FMBPC experiments and classical-PID control tests: For implemen-
tation of the FMBPC strategy, the identified fuzzy models FM1 and FM2, described in
Section 2.2 and whose identification parameters, as well as their meaning, are shown in
Table 2, were used. Three cases of multivariable FMBPC control are presented, with the
substrate and biomass being the variables simultaneously controlled. In the first two cases,
the same control experiment is also carried out with the classic PID methodology, in du-
plicate, considering that the controlled variable is either the substrate or the biomass. The
information about the configuration, several characteristics, and parameters considered
for these FMBPC and PID control experiments is shown in Table 9. In this table, we will
refer to the three FMBPC control experiments as Case 1, Case 2, and Case 3 and to the
PID control experiments as PID tests (1a and 1b, corresponding to Case 1, and 2a and 2b,
corresponding to Case 2). This table contains (from left to right): an identifier (FM1 or FM2)
for the original fuzzy model of the ASP process, chosen from several models, previously
identified; the FMBPC control algorithm design parameters,

{
arj

}
j=1,2

and H, which are

the outputs reference trajectories parameters and the coincidence horizon, respectively;
the information regarding which are the controlled variables in the case of the FMBPC
strategy (the substrate, s, and the biomass, x); an identifier (DA or DB) for the chosen input
disturbances, which are certain sets of typical values, or logical variations thereof, of qi
and si variables that were measured in the real WWTP of reference; the simulation interval
(0 to 166 h, in all cases); the reference values, sre f and xre f , of the controlled variables, s
and x, respectively; the time instants scheduled for the changes in the biomass reference
(step time); and, finally, the choice of the variable that will be the control target, that is, the
variable controlled, for the implemented classical monovariable PID controller, considering
two options: either the substrate (s) or the biomass (x), depending on the PID test.

The reference value sre f is kept constant over time with the same value for all the tests.
However, the reference value xre f is changed throughout the entire simulation interval,
going from a constant value to another in two different time instants for all the tests (two
sequences were planned: one for the two sub-cases of Case 1 and another for the two sub-
cases of Case 2 and for the Case 3). For the PID controller, the reference for the controlled
variable (s or x) is the same (sre f or xre f , respectively) that considered for the FMBPC in the
corresponding case.

The PID controller tuning was carried out in two phases: a first approximation was
obtained by applying the Ziegler-Nichols method and later it was adjusted more finely by
a trial-and-error procedure to improve the performance of the control system. The PID
tuning parameters used were: kp = 1 and ki = 0.1 (in practice, a PI controller) and a bias
value for the control signal equal to 775 m3/h.
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Table 9. Configuration of the FMBPC control experiments and classical PID tests.

FMBPC Strategy Dist. Simulation Parameters Class. PID
FMBPC Parameters

Case FM Refer. Traject.
Param. H CV Simul. interv.

(h)
sref

(mg/L)
xref

(mg/L) ST (h) PID
Test CV

1a (s)
1 FM1

ar1 = 0.76
ar2 = 0.96 6 (s, x) DA 0 to 166 55 1800 to 2200

2200 to 2000
30
80 1b (x)

2a (s)
2 FM2

ar1 = 0.76
ar2 = 0.96 3 (s, x) DB 0 to 166 55 1300 to 500

500 to 750
30
60 2b (x)

3 FM2
ar1 = 0.76
ar2 = 0.96 3 (s, x) DA 0 to 166 55 1300 to 500

500 to 750
30
60 – –

where:

� FM: fuzzy model (FM1 or FM2)
� Refer. Traject. Param.: reference trajectories parameters (ar1 and ar2 )
� H: coincidence horizon
� CV: controlled variables (s: substrate; x: biomass)
� Dist.: disturbances
� Simul. interv. (h): simulation interval (hours)
� sre f , xre f : substrate and biomass references (respectively)
� ST(h): step time (hours)
� Class. PID: classical PID controller (monovariable)

Results of the simulation: The results of the different experiments carried out are shown
graphically. For all cases corresponding to FMBPC strategy (Cases 1, 2 and 3), the time
evolution of each of the two controlled variables (substrate and biomass) is represented,
separately, together with their corresponding references and reference trajectories. The two
input disturbances are also included (in the graphs of the two controlled variables) to show
the magnitude of the values that the controller must compensate. The time evolution of the
control variable (sludge recirculation flow-rate) is also represented in a separate graphic.
The objective of all the representations is to show the evolution of the controlled variables
in terms of disturbance rejection and reference tracking.

Furthermore, for cases 1 and 2 and for each controlled variable, the temporal evolution
corresponding to the FMBPC strategy and that corresponding to the classical monovariable
PID control algorithm (in its two modalities or tests: substrate control and biomass control)
have been represented jointly, although avoiding showing the input disturbances in these
graphs, so as not to impair the observation of the controlled variables. The time evolutions
of the control variables corresponding to both strategies have also been shown jointly, but
in different graphs than those of the controlled variables.

The graphical results obtained are shown below, organized according to the different
cases and tests specified in Table 9:

6.2.1. FMBPC—Case 1 and PID-Tests (1a and 1b)

Case 1 is characterized by the use of the fuzzy model FM1, the disturbance pattern DA,
and a certain sequence of changes in the biomass concentration reference signal, within an
operation range between 1800 y 2200 (mg/L). The remainder parameters of this experiment
are shown in Table 9. The output responses of the system controlled by the FMBPC strategy,
as well as corresponding to the two tests performed with the PID (PID-test 1a and PID-test
1b), are presented below in Figures 5–7, respectively:
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In Figure 5 shown above, the behavior of the ASP process controlled by using the
FMBPC strategy is represented, for Case 1. From the observation of the graphic rep-
resentations presented in this figure, we can conclude that the values of the substrate
concentration along the time remain relatively close to their set points and, at the same
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time, the values of the biomass concentration follow quite closely the jump changes in
the corresponding reference signal, following very precisely the predetermined reference
trajectory. Furthermore, it can be noted that the control variable varies adequately to
reject the disturbances, with moderate control efforts, except in certain cases, in which the
two disturbances change simultaneously and abruptly. Moreover, stable behavior of the
closed-loop system is observed, despite the strong changes in the biomass reference.

Figure 6 shows the time evolution of the two outputs of the ASP process, when it is
controlled with two strategies: the FMBPC algorithm (Case 1) and the classic PID control
designed, in this particular case, to control the substrate concentration. We can observe that
the values of the substrate concentration produced when the PID algorithm is implemented
are a little higher than the values of the substrate concentration produced by the FMBPC
strategy, but in both cases, the dynamic response is similar. Note that, the tracking of the
biomass reference is not guaranteed with this particular PID control while the FMBPC
strategy (Figure 6b) allows us to do so. Specifically, it is observed that, during the last
time-interval, the biomass values were significantly lower than the corresponding reference
signal, what is not recommendable from an operational point of view in this type of plant.
This can be avoided when implementing FMBPC because this strategy uses a model that
simultaneously considers the dynamic behavior of both the substrate and the biomass with
respect to the manipulated variable, as well as the interaction between both variables, and
consequently is capable of adequately controlling the substrate, while maintaining the
biomass at values prescribed by your reference signal (that is, it allows both variables to be
controlled simultaneously).

In Figure 7, the responses of the ASP process controlled using two strategies are
shown together in the same graphic representation. Particularly, the FMBPC algorithm
(Case 1) is considered again, and a classic PID oriented, in this case, to the biomass
concentration control (the PID changes its target variable from control). In this test, we
can observe better PID behavior compared to the previous test (Figure 6). The values of
the substrate concentration with the PID are very similar to those of the FMBPC, both
with regard to the maximum values and the evolution over time. Regarding the values
of the biomass concentration, the PID achieves much more acceptable levels over time
than in the previous test, following quite well the selected changes in the reference signal,
although the tracking capability is less than that obtained with the FMBPC strategy. By
comparing the control actions of both strategies, we see again that the PID control actions
are not able to make the necessary efforts to achieve the biomass concentration reference
values properly in the face of high disturbances action (while maintaining the substrate
concentration values around the reference values, acceptably). In the case of FMBPC, the
biomass concentration accurately follows the reference trajectory. The multivariable control
objective is successfully achieved with our strategy, even using a single manipulated
variable, the sludge recirculation flow-rate.

Note, in the case of the PID, that a better tuning (more aggressive) would allow better
tracking of the biomass reference but causing greater variability in the values of the sub-
strate concentration, with the risk of even exceeding values not allowed by environmental
regulations. This is to be expected because the PID does not incorporate information on
the interaction between substrate and biomass. Consequently, the tuning implemented for
the PID was the result of the search for an equilibrium in the variations of both variables,
placing the accent on the fulfillment of the substrate restrictions.

6.2.2. FMBPC—Case 2 and PID-Tests (2a and 2b)

Case 2 is characterized by the use of the fuzzy model FM2, the disturbance pattern
DB, and a particular sequence of changes in the reference of the biomass concentration,
within an operation range between 500 × 1300 (mg/L). The remainder parameters of this
experiment are shown in Table 9. The responses of the system controlled by the FMBPC
strategy, as well as the corresponding to the two tests performed with the PID (PID-test 2a
and PID-test 2b), are presented below in Figures 8–10, respectively:
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In Figure 8, shown above, the behavior of the ASP process controlled by using the
FMBPC strategy is represented, for Case 2. From the observation of the time evolution of
the two outputs represented in this figure, we can conclude that, as well as for Case 1, the
values of the substrate concentration remain relatively close to its reference signal despite
the disturbance action and, at the same time, the biomass concentration values follow quite
fast the abrupt jumps in the corresponding reference variable, following very accurately the
predefined reference trajectory. Moreover, it can be observed that the changes in the control
variable and the control efforts to reject disturbances are softer than for Case 1 all the time.
Note that, although the input flow variations are fairly large and, besides, are subjected to
strong oscillations, the control system presents a very good disturbance rejection capability.
This fact can also be observed by comparing the profile of the control signal time evolution
and the input flow profile, particularly at times when the changes in the input flow are the
largest ones. It must be pointed out that the control actions respond very quickly after each
oscillation. It can also be observed that the closed-loop system keeps a stable behavior in
the presence of strong changes in the biomass reference. A conclusion from this second
case study, with important differences with respect to the first (in the fuzzy model, in the
disturbances and in the operating zone), can be drawn: the FMBPC strategy also allows to
obtain very good performance, in terms of disturbance rejection and reference tracking,
while ensuring stable behavior of the closed-loop system.

In Figure 9, the responses of the ASP process provided by the two control strategies
are shown together: the FMBPC (Case 2) and the classic PID oriented to control the
substrate concentration, respectively. In this case, we observe that the values of the substrate



Processes 2021, 9, 531 37 of 50

concentration provided by the PID control algorithm are lower than the values of the
substrate concentration corresponding to the FMBPC strategy. Now, if we look at the
graphic showing the time evolution of the biomass concentration (Figure 9b), a tracking
capability of its reference trajectory fairly optimal is observed when the FMBPC strategy
is used, while with the PID algorithm, the biomass reference tracking cannot be ensured,
as shown in the figure, and was expected. It must be noted at this point that the PID is
a monovariable control law and, particularly for this test, it was designed with the aim
of controlling just the substrate concentration. Nevertheless, it must be highlighted that
the FMBPC strategy accomplishes the multivariable control objectives very well, keeping
the two controlled variables, the substrate and the biomass concentrations, close to their
reference values using just one manipulated variable. The reason why in this test the
substrate values are slightly higher using the FMBPC than using PID control is clear and
a logical consequence of having forced the biomass to follow too low values, so that the
substrate cannot be reduced as much as it was expected. This fact can be sort out by
setting higher values of the biomass reference as in Case 1. An important conclusion is
drawn from this test: a compromised selection of the two reference variables is needed
to keep the biomass at high-enough levels to ensure a good purification process of the
water, while keeping the substrate at low-enough values according to its reference signal
and legal specifications.

In Figure 10, the responses of the ASP process controlled using the two strategies are
shown in the same graphic. Particularly, the FMBPC algorithm corresponding to Case 2 is
implemented again but, this time, a classic PID oriented to biomass concentration control is
considered (the PID changes its target variable from control). Regarding the time evolution
of biomass concentration (Figure 10b), we can observe a better PID behavior compared to
the previous test (Figure 9). Since the biomass is now the controlled variable for the PID
control, we can observe that the closed-loop system has quite a good capability to follow
the changes in the biomass reference. On the other hand, we can observe a similar reduction
in substrate concentration for both strategies (Figure 10a), although a little more favorable
to FMBPC. Finally, it is also interesting to observe the control actions of both strategies
(Figure 10c). Roughly speaking, they are quite similar; nevertheless, some of the differences
are interesting. Firstly, the PID controller presents a greater number of situations in which
the control efforts are larger, which could be bad for the actuator. Secondly, the operation
under the PID control presents saturation in the control signal, with values equal to zero
during a period of several hours (in the time interval between 20 h and 40 h of simulation
time), a circumstance that does not occur in the case of the FMBPC strategy.

6.2.3. FMBPC—Case 3

Case 3 is basically characterized by the use of the fuzzy model FM2, the disturbance
pattern DA, and a particular sequence of changes in the reference of the biomass concen-
tration, within an operation zone between 500 y 1300 (mg/L). The remainder parameters
can be seen in Table 9. The configuration of this case is the same as Case 2, except for the
disturbance pattern, which is coincident with that of Case 1. Precisely, the objective of
the experiments in this case is to study the robustness of the FMBPC strategy by using
a pattern of disturbances and operating conditions different from the ones used for the
fuzzy model identification considered in the experiments. It must be taken into account
that fuzzy models are identified with certain patterns of disturbances and in certain areas
of operation and therefore, although the ranges of the values for different variables in the
identification are wide, the validity of the models will be higher for such specific areas and
will decrease when we move to remote ones. The responses of the system controlled by the
FMBPC strategy are shown below, in Figure 11:
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Figure 11, shown above, shows the behavior of the ASP process controlled with the
FMBPC strategy for Case 3. From observation of the figure, we can conclude that, as
for Case 1 and Case 2, the substrate concentration values remain relatively close to the
reference and, at the same time, the biomass concentration values also change accordingly
the jumps in reference signal presents, following, especially in this case, an accurately
predetermined reference trajectory. From a more detailed analysis of Figure 11, it can be
noted that the substrate levels in Case 3 are higher than the corresponding ones in Case 2,
due to the fact that the variations of the substrate in the inflow water for Case 3 are much
greater than the corresponding ones for Case 2. Furthermore, although the control actions
should compensate for the excess substrate by providing an adequate sludge recirculation
flow-rate, as previously reasoned, this action is compromised by the requirement to follow
certain low reference values for biomass (multivariable control). Regarding the control
variable, it is observed that it acts adequately to reject the disturbances, as in Case 1 and
Case 2, with moderate control efforts in general, although it requires greater efforts in
some specific moments (initially and in the reference changes of biomass). Finally, we can
observe that the sludge recirculation flows used to control the two variables are different
(lower) in Case 3 than in Case 2. This is due to the differences between the patterns of
disturbances in both cases.

Overall analysis of the results: From the observation of Figures 5, 8 and 11, we can
conclude that our FMBPC closed-loop multivariable control system is stable in the face
of reference changes, presenting a satisfactory reference tracking capability. In all cases
studied, the FMBPC-strategy reacts adequately to steps in the biomass reference, in such a
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way that this variable follows its reference trajectory fairly closely and, at the same time, the
substrate remains around its reference value, with acceptable deviations despite the strong
disturbances present at the WWTP input. This behavior occurs for different patterns of
disturbances (all with many oscillations), different steps sequences of the biomass reference
and different operating points of the ASP process (the variation ranges of the references of
output variables were: sref = 55 (mg/L), for the substrate, and xref ∈ [500, 1300] (mg/L) or
xref ∈ [1800, 2200] (mg/L), for the biomass).

The other graphic representations (Figures 6, 7, 9 and 10) show the evolution of the
different variables both for the FMBPC strategy and for the PID, simultaneously. Looking at
these figures, we can deduce that both strategies are stable within the considered operating
range. Regarding the performance of both control algorithms, the performance of the
FMBPC algorithm is, in general, better than that of the monovariable PID algorithm, this
difference being much greater in the cases in which the PID is oriented to substrate concen-
tration control and not to the biomass concentration control. In these cases, the control of
the substrate concentration with both strategies is similar, while the control of the biomass
concentration with the FMBPC algorithm is much better than with the PID, as is logical,
since the FMBPC strategy is multivariable and is oriented to simultaneously control both
substrate and biomass. For the cases in which the PID is oriented to biomass concentration
control, the differences are smaller, but the performance of the FMBPC algorithm continues
to be better, mainly concerning biomass concentration control (in relation to substrate
concentration control, the performances of both algorithms are closer). As mentioned
above, the performance of the PID in relation to the tracking of the biomass reference could
be improved, but at the cost of increasing variations in substrate concentration, with the
consequent risk of not complying with environmental restrictions.

As a summary, we can highlight that the FMBPC multivariable advanced control
strategy considered in this work would be competent to address the control of the substrate
concentration in the effluent (reduction of contamination) in WWTP with ASP processes, in
a stable way and with a performance similar or better to that of a classical PID, and simul-
taneously, also control the biomass concentration in the reactor, with high performance.

Remark: It is necessary to remember again here that the classical PID control algorithm
was the technique implemented in the reference industrial plant [103], whose simulating
model together with real data of the disturbance records are used in this work. For this
reason, it has also been studied here. Being aware that the comparison with the FMBPC
is not fair according to the different degrees of complexity of both approaches, the aim is
just to show how the performance of the plant can be improved by using advanced control
techniques and to encourage their use in a real environment.

Comparison with other more advanced PID techniques is also possible and recom-
mendable. For instance, PID methods that consider a feedforward action to take into
account the effect of measurable disturbances (see [105]) could be appropriate. In addition,
comparison could be made with multivariable PID control or fuzzy PID control, and with
other controllers using explicit control laws (as in the case of our FMBPC strategy). How-
ever, a controller benchmarking is out of the scope of this paper, although it could be very
interesting for future research.

7. Conclusions

In this paper, a computational approach of closed-loop stability analysis of a specific
FMBPC control strategy, applied to an activated sludge biological process, was presented.
The original model used for the predictions is a TS type fuzzy discrete model, previously
identified and later formalized in an equivalent DLTV state-space model. Based on this
model but considering a certain generic steady-state as the operating point, in this work
we have deduced, for analysis purposes, a local incremental state-space model of the DLTI
type, valid for states close enough to steady-state (that is, for small variations or increases
with respect to the steady-state). The great advantage of working with models of that
type is the possibility of applying the existing stability criteria for DLTI models, which
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are well defined and widely used, and demonstrating their compliance for the chosen
case study. However, the demonstration procedures of compliance with such stability
criteria for systems with complex dynamics, as is our case study, are often mathematically
quite laborious and also difficult to generalize. For this reason, in the present work, it was
decided to carry out stability analysis using a computational approach, alternative to the
usual procedures existing in the literature.

The solution adopted consists of determining, first, the generic closed-loop state matrix
(with algebraic variables) and its eigenvalues, as a function of the coincidence horizon
H, by means of symbolic numerical calculation and an induction process (considering H,
increasing). Second, deduce under what conditions the eigenvalues will be within the unit
circle and consequently (stability criteria) when the closed-loop plant will be asymptotically
stable and its relationship with the stability of the open-loop plant. The result is satisfactory,
in the sense that by means of this procedure it has been possible to establish an important
conclusion regarding closed-loop (local) stability, which is the following: if the open-loop
plant is (locally) asymptotically stable, then for values large enough of H, the closed-loop
plant will also be (locally) asymptotically stable.

As a final assessment, we consider that the work carried out constitutes an appreciable
contribution in the field of stability analysis of FMBPC control systems, for two reasons. On
the one hand, due to the simplicity of the method developed, in relation to other methods,
most of them are more complicated. On the other hand, it has been considered a more
complex case study and more difficult to approach than those chosen in previous similar
works (SISO systems with not very complicated dynamics). In the present work, a useful
conclusion regarding the stability of FMBPC control systems has been deduced, for a case
study of a multivariable nature (MIMO system), highly nonlinear, with complex dynamics
(biological system), and subject to strong disturbances.

As possible future research works, we propose the following: to generalize the pro-
posed FMBPC methodology for any MIMO system and to integrate it within a Closed-loop
Predictive Control scheme to manage input and output constraints, considering at the same
time the stability analysis of the resulting system. This will allow the use of the proposed
methodology for the control of more complex systems and for complete plant control
(Plantwide Control).
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Appendix A

Membership Functions

Table A1. Antecedent fuzzy sets and membership functions of the identified FM1 fuzzy model.

Membership Functions of piece-wise Exponential Type:

µAjp (x) or µA*
jp

(x)=

{ exp(−( x−cl
2ωl

)
2
) (if x<cl)

exp(−( x−cr
2ωr

)2) (if x>cr)
1 (otherwise)

[Parameters: cl,cr,ωl,ωr]

ASP
Process
Outputs

Antecedent
Vector

Components
xa(k)

Rules
Rj , R*

j

Fuzzy Sets
Ajp , A*

jp

cl cr ωl ωr

y1(k− 1)

R1 A11 −57.90 −57.90 66.51 100.82
R2 A21 54.89 55.01 55.01 64.11
R3 A31 −7.96 34.82 51.13 234.52
R4 A41 −13.63 37.23 99.38 244.74
R5 A51 68.76 73.27 74.27 83.19
R6 A61 −32.93 144.60 269.57 269.57
R1 A12 182.44 2005.11 2057.60 3294.68
R2 A22 1988.31 2000.00 2000.00 2011.60
R3 A32 1614.02 1748.47 1798.43 2495.98
R4 A42 1537.75 1783.24 1878.23 3373.81
R5 A52 1276.69 1276.69 1697.58 1745.50

y2(k− 1)

R6 A62 1576.80 1813.15 2792.79 2792.79

u1(k− 1)

R1 A13 260.02 260.02 1365.00 2870.08
R2 A23 1285.78 1300.00 1300.00 1318.16
R3 A33 −97.77 1520.00 1568.00 2702.66
R4 A43 −1196.17 1800.00 1800.00 3032.13
R5 A53 1756.45 1800.00 1800.00 1900.50
R6 A63 23.29 1881.99 2739.95 2739.95
R1 A14 −199.86 −199.86 403.51 827.83
R2 A24 363.10 366.67 366.67 381.52
R3 A34 −75.60 230.14 296.95 1104.52
R4 A44 −200.89 317.33 317.33 1591.24
R5 A54 315.58 317.33 317.33 324.90

u2(k− 1)

R6 A64 −1.53 641.98 1120.67 1120.67

u3(k− 1)

R1 A15 −843.67 1200.00 1200.00 4184.72
R2 A25 −200.00 −200.00 570.00 598.83
R3 A35 −153.92 1000.00 2200.00 2200.00
R4 A45 −200.00 −200.00 600.00 2553.40
R5 A55 548.75 600.00 600.00 1146.67
R6 A65 −430.47 995.00 995.00 1008.62
R1 A16 −805.16 1199.96 2200.00 2200.00
R2 A26 −200.00 −200.00 570.00 990.66
R3 A36 −2372.29 995.00 2200.00 2200.00
R4 A46 −13.53 600.00 995.00 4579.06
R5 A56 549.66 600.00 600.00 1186.76

y 1
(k
)
=

s (
k )

,s
ub

st
ra

te

u3(k− 2)

R6 A66 −395.79 995.00 995.00 1469.02

y2(k− 1)

R∗1 A∗11 1276.69 1276.69 1704.53 2071.65
R∗2 A∗21 1836.32 2000.00 2000.00 2062.48
R∗3 A∗31 1670.72 2004.62 2020.39 2107.79
R∗4 A∗41 1222.63 2089.77 2158.00 2246.92
R∗5 A∗51 1586.15 2208.53 2792.79 2792.79
R∗1 A∗12 1050.97 1800.00 1800.00 1841.40
R∗2 A∗22 260.02 260.02 1300.00 1879.38
R∗3 A∗32 1285.84 1300.00 1310.01 1709.47
R∗4 A∗42 −740.74 1743.98 1790.00 1813.00

u1(k− 1)

R∗5 A∗52 −239.52 1800.00 2739.95 2739.95

u3(k− 1)

R∗1 A∗13 513.07 600.00 600.00 1283.64
R∗2 A∗23 −200.00 −200.00 570.00 629.90
R∗3 A∗33 799.28 1200.00 1200.00 2959.47
R∗4 A∗43 1200.00 1200.00 2200.00 2200.00

y 2
(k
)
=

x (
k )

,b
io

m
as

s

R∗5 A∗53 304.47 995.00 1000.00 1380.54
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Table A2. Antecedent fuzzy sets and membership functions of the identified FM2 fuzzy model.

Membership Functions of Piece-Wise Exponential Type:

µAjp
(x) or µ

A
*
jp

(x)=

{ exp(−( x−cl
2ωl

)2) (if x<cl)

exp(−( x−cr
2ωr

)2) (if x>cr)
1 (otherwise)

[parameters: cl,cr,ωl,ωr]

ASP Process
Outputs

Antecedent
Vector

Components
xa(k)

Rules Aj , A*
j

Fuzzy Sets Ajp

, A*
jp

cl cr ωl ωr

y1(k− 1)

R1 A11 40.44 52.75 57.79 75.11
R2 A21 −113.86 −113.86 42.62 78.55
R3 A31 −113.86 −113.86 74.76 399.32
R4 A41 −80.17 139.90 175.53 395.52
R5 A51 −113.86 −113.86 37.56 84.98
R6 A61 −82.04 187.03 437.47 437.47

R1 A12 1316.27 1971.47 2087.49 2236.38
R2 A22 1520.93 2087.49 2088.98 2102.61
R3 A32 365.65 1695.29 3560.07 3560.07
R4 A42 1867.75 1905.35 1910.25 2511.25
R5 A52 1526.43 1781.70 1850.22 3748.13

y2(k− 1)

R6 A62 −1025.12 −1025.12 789.35 3530.74

u2(k− 1)

R1 A13 358.63 366.67 366.67 480.10
R2 A23 −199.86 −199.86 278.92 473.16
R3 A33 −199.86 −199.86 329.66 2428.79
R4 A43 −25.89 690.10 1120.67 1120.67
R5 A53 −199.86 −199.86 231.77 578.89
R6 A63 361.68 366.67 366.67 675.58

R1 A14 141.19 570.00 933.89 3196.54
R2 A24 −360.98 1600.00 3000.00 3000.00
R3 A34 −1341.60 995.00 3000.00 3000.00
R4 A44 436.24 570.00 570.00 2359.54
R5 A54 −866.17 1600.00 3000.00 3000.00

u3(k− 1)

R6 A64 −1000.00 −1000.00 278.89 885.23

y 1
(k
)
=

s (
k )

,s
ub

st
ra

te

u3(k− 2)

R1 A15 101.12 570.00 933.89 3196.81
R2 A25 −381.98 1600.00 3000.00 3000.00
R3 A35 −1318.67 995.00 3000.00 3000.00
R4 A45 435.38 570.00 570.00 2345.99
R5 A55 −847.74 1600.00 3000.00 3000.00
R6 A65 −1000.00 −1000.00 278.89 822.68

R∗1 A∗11 −1025.12 −1025.12 260.29 3304.59
R∗2 A∗21 70.17 1630.85 1689.19 2383.28
R∗3 A∗31 1535.36 1858.85 1983.77 2286.34
R∗4 A∗41 1330.50 2087.33 2097.72 2448.73

y2(k− 1)

R∗5 A∗51 1624.63 2101.30 3560.07 3560.07

u3(k− 1)

R∗1 A∗12 −1000.00 −1000.00 278.89 580.19
R∗2 A∗22 527.18 600.00 600.00 1341.93
R∗3 A∗32 77.73 500.00 570.00 1355.74
R∗4 A∗42 334.06 933.89 1100.00 3145.84y 2

(k
)
=

x (
k )

,b
io

m
as

s

R∗5 A∗52 374.09 1600.00 3000.00 3000.00

Appendix B

Adaptation of the Extended Manipulated Variable, ua(k), to the Global Model in the State Space
Obtained in Section 2.3 of This Article (Equations (24) and (25))

Previous observation: ua(k) was derived in [23].
1. State-space DLTV global model (the predictions model) of [23].

zm(k + 1) = Amzm(k) + Bmua(k) + Rm (A1)

ym(k) = Cmzm(k) (A2)
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where:

• k represents (k·T) and T is the sampling period
• zm(k) is the extended state vector
• ym(k) is the output vector
• ua(k) is the input vector (or the extended input vector)
• Am(k), Bm(k), Rm(k) and Cm(k) are the system matrices

being:

zm(k) =


y1(k)
y2(k)
u1(k)
u2(k)

 =


y1(k)
y2(k)
d1(k)
d2(k)

 =


s(k)
x(k)
qi(k)
si(k)

 (A3)

ym(k) =
(

y1(k)
y2(k)

)
=

(
s(k)
x(k)

)
(A4)

ua(k) =
(

u3(k)
u3(k− 1)

)
=

(
u(k)

u(k− 1)

)
=

(
qr(k)

qr(k− 1)

)
(A5)

Am = ∑mr
j=1

(
βj(xa)Amj

)
; Bm = ∑mr

j=1

(
βj(xa)Bmj

)
Cm = ∑mr

j=1

(
βj12

(xa)Cmj

)
; Rm = ∑mr

j=1

(
βj(xa)Rmj

)
(A6)

βj(xa) =


β1j(xa) 0 0 0

0 β2j(xa) 0 0
0 0 1 0
0 0 0 1


β j12(xa) =

(
β1j(xa) 0

0 β2j(xa)

)
β26(xa) = 0 (there are only 5 rules for y2)

βij(xa) : normalized membership functions of the antecedent vector, xa

(A7)

Amj =


aj1 aj2 bj1 bj2
0 a∗j2 b∗j1 0
0 0 1

mr 0
0 0 0 1

mr

; Bmj =


bj3 bj4
b∗j3 0
0 0
0 0

; Cmj =

(
1 0 0 0
0 1 0 0

)
; Rmj =


rj
r∗j
0
0

 (A8)

being:

• mr = max. (mr1, mr2): common number of rules
•

{
aji
}

,
{

bji
}

, and
{

rj
}

, the coefficients of the consequent vector, and the independent
term, respectively, in the j-th rule of the fuzzy model corresponding to output
y1(k)

•
{

a∗ji
}

,
{

b∗ji
}

, and
{

r∗j
}

, the coefficients of the consequent vector, and the indepen-
dent term, respectively, in the j-th rule of the fuzzy model corresponding to output
y2(k) (with the following particularity: a∗62 ≡ 0, b∗61 ≡ 0 b∗63 ≡ 0, r∗6 ≡ 0; (only 5
rules for y2)

State-space global model of the ASP process, corresponding to [23], with the elements
of the vectors and system matrices expressed in a generic way:
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zm(k+1)︷ ︸︸ ︷
y1(k + 1)
y2(k + 1)
−−−−
d1(k + 1)
d2(k + 1)

 =

Am︷ ︸︸ ︷
a b | c d
0 f | g 0
− − − − −
0 0 | 1 0
0 0 | 0 1



zm(k)︷ ︸︸ ︷
y1(k)
y2(k)
−−−
d1(k)
d2(k)

+


m n
p 0
− −
0 0
0 0


︸ ︷︷ ︸

Bm

(
u(k)

u(k− 1)

)
︸ ︷︷ ︸

ua(k)

+


r1
r2
−
0
0


︸ ︷︷ ︸

Rm

(A9)

ym(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
=

Cm︷ ︸︸ ︷(
1 0 | 0 0
0 1 | 0 0

)
zm(k)︷ ︸︸ ︷
y1(k)
y2(k)
−−−
d1(k)
d2(k)

 (A10)

2. State-space DLTV global model (the predictions model) of Section 2.3 of this article
(Equations (24) y (25))

zmN(k + 1) = AmNzmN(k) + BmNua(k) + DmNd(k) + RmN (A11)

ymN(k) = CmNzmN(k) (A12)

where the expressions corresponding to the state, extended input, disturbances and output
vectors, as well as those of the system matrices, are described in Section 2.3 of this article
(Equations (17), (20) and (22)).

State-space global model of the ASP process, corresponding to Section 2.3 of this
article, with the elements of the vectors and system matrices expressed in a generic way:

zmN(k+1)︷ ︸︸ ︷(
y1(k + 1)
y2(k + 1)

)
=

AmN︷ ︸︸ ︷(
a b
0 f

) zmN(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
+

(
m n
p 0

)
︸ ︷︷ ︸

BmN

(
u(k)

u(k− 1)

)
︸ ︷︷ ︸

ua(k)

+

(
c d
g 0

)
︸ ︷︷ ︸

DmN

(
d1(k)
d2(k)

)
︸ ︷︷ ︸

d(k)

+

(
r1
r2

)
︸ ︷︷ ︸

RmN

(A13)

ymN(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
=

CmN︷ ︸︸ ︷(
1 0
0 1

) zmN(k)︷ ︸︸ ︷(
y1(k)
y2(k)

)
(A14)

3. Extended manipulated variable, ua(k), deduced in [23].
In [23], an analytical and explicit expression was deduced for the scalar control

variable, u(k), corresponding to the FMBPC control strategy whose stability is analyzed in
the present article. In this mathematical process, the expression corresponding to the vector
variable ua(k) was also implicitly deduced (it is done with reviewing the corresponding
mathematical development and making some trivial consideration). The expression of
ua(k), for the moment as a function of the state vector, other variables, and the matrices
corresponding to the original model, is the following:
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ua(k) = Ma
−1( yr(k + H)− y(k) + ym(k)− CmAm

Hzm(k)
− Cm

(
Am

H−1 +
(
Am

H−1 − I
)(

Am − I
)−1
)

Rm )

being :

ua(k) =
(

u(k)
u(k− 1)

)
Ma = Cm

(
Am

H−1 Bm +
(
Am

H−1 − I
)(

Am − I
)−1BmP1010

)
P1010 =

(
1 0
1 0

)
I =

(
1 0
0 1

)
and the reference model for the output trajectories :

yr(k + H) = ArHyr(k) + (I −ArH)yset_point(k)

ArH =

(
aH

r1
0

0 aH
r2

)
(1− ari )

−1bri = 1; i = 1, 2;
[H ∈ Z+, H ≥ 1]

(A15)

where:

• ua(k): the input vector or the extended input vector (see Equation (A5))
• u(k): the next value for the control variable, computed at the k-th instant (the

current instant); will be applied from the k-th instant. In the context of our case
study (activated sludge processes), the control variable is, specifically, the sludge
recirculation flow-rate: u(k) = qr(k)

• u(k− 1): the control variable at the (k− 1)-th instant (the previous sampling
instant)

• H: coincidence horizon (PFC concept)
• yr(k + H): output variables at the (k + H)-th instant, given by a certain, previ-

ously chosen, reference model for the output trajectories
• y(k): process output variables, measured at the k-th instant (the current instant)
• ym(k): model output variables at the k-th instant, calculated using the model

equations, with the current value of the control signal (see Equation (A4))
• zm(k): state vector of the original model at the k-th instant (see Equation (A3))
• Am, Bm, Rm and Cm: time-varying system matrices (see Equations (A6)–(A8)).

These matrices must be updated at each iteration of the control algorithm imple-
mentation because they depend on the antecedent vector xa, which depends on
time (xa = xa(k))

The expression of ua(k) detailed in (A15) can be formally simplified by grouping in a
single matrix the matrix relations included in the last term, resulting in the following:

ua(k) = Ma
−1(yr(k + H)− y(k) + ym(k)− CmAm

Hzm(k)− λm )
being :

λm = Cm

(
Am

H−1 +
(
Am

H−1 − I
)(

Am − I
)−1
)

Rm

[H ∈ Z+, H ≥ 1]

(A16)

4. Adaptation of ua(k) to the global model in the state space obtained in Section 2.3 of
this article.

Next, it is necessary to relate both the state vector and the system matrices of the two
considered global models: the original model and the model obtained in Section 2.3 of this
article. Taking into account the composition of all the vector and matrix variables involved in
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the two state space models, the following relations can be easily deduced (see all the equations
previously shown in this Appendix and especially Equations (A9), (A10), and (A13), (A14)):

zm(k) =
(

zmN(k)
d(k)

)
Am =

(
AmN DmN

0 I

)
; Bm =

(
BmN

0

)
; Cm =

(
CmN 0

)
; Rm =

(
RmN

0

)
Am

H =

(
AmN

H γ
0 I

)
(A17)

being:

• γ: a submatrix of order 2
• I: the order 2 identity matrix
• 0: the order 2 null matrix

Considering now the previous relations (Equation (A17)), then the penultimate term
of the expression of ua(k) in (A16), CmAm

Hzm(k), can be developed as follows:

CmAm
Hzm(k) =

(
CmN 0

)( AmN
H γ

0 I

)(
zmN(k)

d(k)

)
=
(

CmNAmN
H CmNγ

)( zmN(k)
d(k)

)
= CmNAmN

HzmN(k) + CmNγd(k)

(A18)

In a similar way, we could transform the expressions of two other matrices present in
Equation (A16), Ma (specified in Equation (A15)) and λm (specified in Equation (A16)), in
terms of the matrices of the model of Section 2.3 of this article, making use of the relations
included in Equation (A17). However, it is not necessary to detail these transformations
and it is preferable to keep each of these expressions (matrix operations between system
matrices) as a single compact matrix, adding a suffix N referring to the corresponding
transformation. We will denote those adapted matrices as MaN and λmN, respectively
(and MaN

−1 for the inverse of MaN). On the other hand, we will adapt the corresponding
notation to the output of the model: ym(k) ≡ ymN(k). Finally, considering all these notation
adaptations and the development made in (A18), and replacing all of it in Equation (A16),
the expression of ua(k), as a function of the vector and matrix variables corresponding to
the model obtained in Section 2.3 of this article, will be the next:

ua(k) = MaN
−1( yr(k + H)− y(k) + ymN(k)− CmNAmN

HzmN(k) − CmNγd(k)− λmN )
being :

MaN
−1, λmN : matrix f unctions o f system matrices; γ : submatrix o f order 2;

H : coincidence horizon (PFC concept) [H ∈ Z+, H ≥ 1]
(A19)
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