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Abstract
We derive a canonical form for skew-symmetric endomorphisms F in
Lorentzian vector spaces of dimension three and four which covers all non-
trivial cases at once. We analyze its invariance group, as well as the connection
of this canonical form with duality rotations of two-forms. After reviewing the
relation between these endomorphisms and the algebra of conformal Killing
vectors of S2, CKill

(
S2
)
, we are able to also give a canonical form for an arbi-

trary element ξ ∈ CKill
(
S2
)

along with its invariance group. The construction
allows us to obtain explicitly the change of basis that transforms any given F
into its canonical form. For any non-trivial ξ we construct, via its canonical
form, adapted coordinates that allow us to study its properties in depth. Two
applications are worked out: we determine explicitly for which metrics, among
a natural class of spaces of constant curvature, a given ξ is a Killing vector
and solve all local traceless and transverse tensors that satisfy the Killing initial
data equation for ξ. In addition to their own interest, the present results will be
a basic ingredient for a subsequent generalization to arbitrary dimensions.

Keywords: skew-symmetric, canonical, conformal Killing, conformal, TT ten-
sor, KID equations at scri

(Some figures may appear in colour only in the online journal)

1. Introduction

Finding a canonical form for the elements of a certain set is often an interesting problem to
solve, since it is a powerful tool for both computations and mathematical analysis. By canonical
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form (sometimes also called normal form) of the elements x of a set X one usually understands
a specific form, depending on a number of parameters, that every element x can be carried to.
The value of such parameters is obviously determined by x. The most common examples are
canonical forms of matrices, such as the echelon form or the Jordan form. However, the same
concept arises in other sets, such as smooth fields on a manifold or even systems of differential
equations (e.g. canonical coordinates for Hamiltonian systems). A canonical form must be
somehow useful either to simplify the calculations or to make explicit some information we
may want to exploit. Taking an element to its canonical form requires showing the existence of
(and ideally also finding explicitly) a transformation, namely, a change of basis, coordinates,
etc that brings the element into its canonical form, and which need not to be unique.

When dealing with Lie algebras g, one may attempt to find a canonical form for every
element F ∈ g that captures all the information of its orbit under the (e.g. adjoint) action of
the Lie group G. For example, this is the case of the already mentioned Jordan canonical form,
regarded as the matrix form (up to permutations of the blocks) that encodes all the information
of the gl(n,C) orbits under the adjoint action of the group GL(n,C). Identifying these orbits,
and the more general problem of the orbits generated by an algebraic group action on a set, is
an active field of research in different fields of mathematics and it is already well-understood
for the case of classical Lie groups. We refer the reader to [4] and references therein for an
extensive review of this problem and other references such as [1, 3, 6, 11, 15].

From the point of view of physics, it is of particular importance the study of the pseudo-
orthogonal group O(1, n + 1) because of its role in the theory of relativity and other physi-
cal theories. First, it is the group of isotropies in the special theory of relativity and in the
Lorentz–Maxwell electrodynamics. For the latter, the elements of the Lie algebra o(1, n +
1), represented here as skew-symmetric endomorphisms of Minkowski M1,n+1 (or equiva-
lently the two-forms of the same space), also represent the electromagnetic field (e.g. [16]).
Besides, and this is of great importance in our approach, in general relativity the pseudo-
orthogonal group is related to the group of conformal transformations of certain spaces
[22, 24]. Also, techniques in conformal geometry allow to recast the Einstein field equations (in
fact, an equivalent set thereof) as a Cauchy or characteristic problem in a hypersurface I ([8,
9] and references therein) representing ‘infinity’ in a physically precise sense. We are specially
interested in the case of positive cosmological constant, where this Cauchy problem is always
well-posed and I happens to be Riemannian. The initial data consist of a metric γ in I and a
symmetric ‘TT’ tensor D of I , i.e. traceless and transverse (zero divergence). If the solution
spacetime is to have a Killing vector, then the so called Killing initial data (KID) equations
must be satisfied [21], and this involves a conformal Killing vector (CKV) of γ. Moreover,
only the conformal class of the data matters and of particular importance is the case of γ con-
formal to the standard metric of the sphere, in particular because of its relation with black hole
spacetimes such as Kerr-de Sitter [17]. We will expand on this later in this introduction.

In the physics literature a ‘canonical’ form for the o(1, n + 1) elements is often employed
mostly in four dimensions [26] but also in arbitrary dimensions [14, 17]. This form requires
identifying the causal character of the eigenvectors of a given element F ∈ o(1, n + 1) and
gives rise to two different types of canonical forms, one and only one admitted by each given F.
Something similar is done in more generality in [6] where, from a powerful classification result,
a list of canonical forms for a wide sample of Lie algebras is given, but the pseudo-orthogonal
case still requires two different forms. All these forms contain sufficient information to identify
the orbit generated by the adjoint action of the group acting on the given element. However, it
is surprising that, to the best of the authors’ knowledge, there are no previous attempts to find
a unified canonical form to which any single element of the algebra o(1, n + 1) can be carried
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to. In the present paper, we address and solve the problem of finding a unified canonical form
for skew-symmetric endomorphisms in three (n = 1) and four (n = 2) dimensions.

As mentioned above, one aspect of the relevance of pseudo-orthogonal groups (or any
signature) lies in their relation with the conformal group of a related space. For O(1, n + 1)
this is the conformal group of the sphere Sn, that we denote Conf (Sn). More specifically, the
orthochronous subgroup (i.e. the one preserving time orientation) O+(1, n + 1) is isomorphic
to Conf (Sn) [17, 22], and so it is the lie algebra o(1, n + 1) to the CKV fields CKill (Sn). Thus,
finding a canonical form for the elements of o(1, n + 1), in turn implies a canonical form for
the elements of CKill (Sn). Amongst other applications, it is particularly useful to employ the
canonical form to find adapted coordinates to an arbitrary ξ ∈ CKill (Sn). In these coordinates,
the KID equations are straightforward to solve with generality, which is a first step in order to
obtain all TT tensors that generate spacetimes with at least one symmetry. This is a possible
route to obtain a new characterization result for Kerr-de Sitter, specially relevant for the phys-
ical n = 3 case. Indeed, given any CKV ξ on a pseudo-riemannian manifold of any dimension
there exists [17] a special TT tensor that can be canonically built out of ξ. This TT tensor is
moreover a KID with respect to ξ. Kerr-de Sitter (in dimension 3) can be characterized [17]
by the properties of having a conformally flat scri with a TT tensor built canonically from a
CKV lying in an appropriate conformal class. The idea we want to explore in the future is
to find sufficient conditions that force a TT tensor satisfying the KID equations to adopt the
special form we just mentioned. Here we study in detail the n = 2 case, where in addition
we prove that there always exist an element ξ⊥ ∈ CKill (Sn), which is everywhere orthogonal
to ξ, with the same norm and such that [ξ, ξ⊥] = 0 (cf lemma 3 below), so it is convenient
to adapt coordinates simultaneously to ξ, ξ⊥. With these coordinates at hand, we obtain all
TT tensors satisfying the KID equation in a very simple and elegant form (cf section 9). It
turns out that a basis of such tensors can be written down explicitly in terms of ξ and ξ⊥ and
that one of its elements is precisely the TT tensor canonically built from ξ that arises in the
characterization of Kerr-de Sitter. Thus identifying sufficient conditions under which the TT
tensor adopts the canonical form becomes explicit in dimension n = 2. This gives support to
our programme of characterizing Kerr-de Sitter in the physical dimension n = 3 by means of
a detailed classification of TT tensors satisfying the KID equation.

This will obviously require generalizing the results obtained here to higher dimensions.
These results will be presented in a subsequent work [18]. The problem in higher dimensions
is considerably harder and relies to a large extent on the results obtained here. Presenting the
low dimensional case in a separate paper is convenient for several reasons. First, the most
relevant physical dimension for a spacetime is four, so studying this case in detail is particularly
important and intrinsically interesting. Second, as already mentioned, the results presented here
turn out to be an essential building block for the generalization to arbitrary dimensions. As it
will be shown in [18], the canonical form for any dimension will follow by combining the
results in this paper and well-known classification theorems of pseudo-orthogonal algebras.
In addition, dealing with low dimensions allows us to analyze some of the questions in more
depth and get additional insights into the problem. This perspective also provides clues about
the possible solutions to the problem in more dimensions. Finally, although simpler than in
higher dimensions, even the low dimensional case is far from trivial, so it makes sense the
present this case in a separate work.

This paper is intended to be self-contained and only requires elementary knowledge of
algebra and differential geometry. Our intention is to make our results accessible for read-
ers with different backgrounds. The paper is organized as follows. Sections 2–4 are devoted to
the obtention and analysis of a canonical form for any given (non-zero) element F ∈ o(1, 3).
In section 2 we obtain our canonical form in four dimensions, i.e. for o(1, 3) and show its
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universal validity for every non-trivial F. The change of basis that yields to the canonical form
is not unique. This implies the existence of an invariance group, that we derive in section 3.
In section 4 we analyze the generators of the invariance group and obtain a decomposition of
the element F in terms of these. We also make a connection between this decomposition and
the standard duality rotations for two-forms. In all these sections, the three-dimensional case
is obtained and discussed as a corollary of the four-dimensional one.

The following sections 5–8 are devoted to the study of so-called global CKVs (GCKV)
defined on Euclidean space E2, and which are directly related to CKV on the sphere S2.
Section 5 defines such vectors and section 6 describes a known relation between them and
the Lie algebra o(1, 3). In section 7 we apply all the results for the o(1, 3) algebra to the CKVs
of the sphere, namely, the obtention of a canonical form and its invariance group. As a useful
consequence of the two viewpoints, we are able (corollary 4) to obtain in a fully explicit form
the change of basis that transforms any given F into its canonical form. Finally, section 8 gives
a set of coordinates adapted to an arbitrary ξ and its orthogonal ξ⊥. The results concerning the
canonical form of GCKV and the adapted coordinates are summarized in theorem 1. Our last
section 9 gives two interesting applications for the previous results. First, given a GCKV ξ,
theorem 2 gives a list of all metrics, conformal to the metric of a two-sphere, for which ξ is
a Killing vector. Second, theorem 3 gives an elegant solution of the TT tensors satisfying the
KID equations in S2.

2. Canonical form of skew-symmetric endomorphisms in M1,3

In this section we consider Lorentzian four-vector spaces (V , g), i.e a four dimensional vector
space V endowed with a pseudo-Riemannian metric g of signature {−,+,+,+}. The inner
product with g is denoted by 〈·, ·〉. We will often identify Lorentzian vector spaces of dimension
n with Minkowski M1,n−1. Null vectors are vectors with vanishing norm (in particular, the zero
vector is null in our conventions). An endomorphism F : V → V is skew-symmetric when it
satisfies

〈e, F(e′)〉 = −〈F(e), e′〉, ∀ e, e′ ∈ V. (1)

This subset of End (V) is denoted by SkewEnd (V). We take, by definition, that eigenvectors
of an endomorphism are always non-zero. ker F and Im F denote, respectively, the kernel and
image of F ∈ End (V).

We now briefly discuss a few basic properties of skew-symmetric endomorphisms that we
will be referring to. First, it is immediate from (1) that every vector e ∈ V is perpendicular to
its image, i.e. 〈F(e), e〉 = 0. Second, consider a, possibly complex, eigenvalue λ ∈ C and its
eigenvector w ∈ VC (the complexification of V). By the previous property, w must be null if
λ 
= 0, because 〈F(e), e〉 = λ 〈e, e〉 = 0. Eigenvectors with zero eigenvalue may be both null
and non-null. Since F is real, the complex conjugate λ� ∈ C is an eigenvalue with eigenvector
w� ∈ VC, so

〈F(w),w�〉 = λ 〈w,w�〉 = −λ� 〈w,w�〉 .

Thus, either λ is purely imaginary (including zero) or, if not, w,w� are a pair of null vec-
tors orthogonal to each other. Suppose the latter and denote w = u + iv for u, v ∈ V . Then
the nullity condition implies 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉 and orthogonality to w� implies
〈u, u〉 = −〈v, v〉. Hence u, v are null and proportional, i.e. u = av for some a ∈ R, in conse-
quence w = (a + i)v. Therefore, v ∈ V is a real null eigenvector and its corresponding eigen-
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value λ must be real. Summarizing, F has only real or purely imaginary eigenvalues and their
corresponding eigenvectors must be null for non-zero eigenvalues.

It will be useful to work with two-dimensional subspaces which are invariant under the
action of F, which we will call ‘eigenplanes’. Let span {e, e′} = Π be a spacelike eigenplane
for a pair of spacelike, orthogonal, unit vectors e, e′. Then by F-invariance

F(e) = a1e + a2e′, F(e′) = b1e + b2e′, a1, a2, b1, b2 ∈ R,

by skew-symmetry a1 = 〈F(e), e〉 = 0, b2 = 〈F(e′), e′〉 = 0 and a2 = 〈F(e), e′〉 = −〈e, F(e′)〉
= −b1 =: μ. Hence

F(e) = μe′, F(e′) = −μe, μ ∈ R, (2)

which is equivalent to the following eigenequations

F(e + ie′) = −iμ(e + ie′), F(e − ie′) = iμ(e − ie′). (3)

In a similar way, for a pair of orthogonal vectors e0, e1 spanning a timelike eigenplane, with e0

unit timelike and e1 unit spacelike, one can immediately verify

F(e0) = μe1, F(e1) = μe0, μ ∈ R (4)

and

F(e0 + e1) = μ(e0 + e1), F(e0 − e1) = −μ(e0 − e1). (5)

If F admits an invariant subspace U of any dimension, F also leaves the orthogonal space U⊥

invariant. This follows immediately from

0 = 〈F(u), v〉 = −〈u, F(v)〉 ∀ u ∈ U, ∀ v ∈ U⊥.

In particular, in four dimensions the existence of a timelike eigenplane is equivalent to the
existence of an (orthogonal) spacelike eigenplane.

Another well-known property of skew-symmetric endomorphisms is that dim Im F is always
even. Equivalently, in four dimensions dim ker F is also even (in arbitrary dimension V ,
dim ker F has the same parity as dim V). To see this, consider the two-form F associated to
F ∈ SkewEnd (V) by the standard relation

F(e, e′) = 〈e, F(e′)〉 , ∀ e, e′ ∈ V. (6)

The matrix representing F is skew in the usual sense. The dimension of Im F ⊂ V� (the dual
of V) is the rank of this matrix, which is known to be even (see e.g. [10]), and clearly dim Im
F = dim Im F.

The first step towards our canonical form for F is the following classification result, which
relies on the properties described above.

Lemma 1 (Classification of SkewEnd
(
M1,3
)
). Let F ∈ SkewEnd (V) in a Lorentzian

vector space (V, g) of dimension four. If F 
= 0 then one of the following exclusive possibilities
hold:

(a) F has a spacelike eigenvector orthogonal to a null eigenvector, both with vanishing
eigenvalue.

(b) F has a spacelike eigenplane (as well as a timelike orthogonal eigenplane).
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Proof Since F is not identically zero, dim ker F only can be either 2 or 0. Consider first
dim ker F = 0 and let us prove that (b) must happen. We show this by proving that equations (3)
and (5) must be satisfied. Since ker F = {0}, F can only have non-zero eigenvalues, and we
already know that they are either real or purely imaginary. The existence of a purely imaginary
one leads to equation (3), which in turn implies (5). Suppose now that all eigenvalues are real
non-zero. If there exist two different real eigenvalues μ, μ′ their respective eigenvectors w,w′

(which recall are null) must satisfy

〈F(w),w′〉 = μ 〈w,w′〉 = −μ′ 〈w,w′〉 .

The product 〈w,w′〉 cannot be zero, as otherwise w,w′ would be proportional and the eigen-
values μ and μ′ would be the same. Thus, μ = −μ′, and hence (5), and also (3), hold.
The remaining case is when all eigenvalues are equal, i.e. the characteristic polynomial is
pF = (F − Iμ)4. By the Cayley–Hamilton theorem 〈pf (u), v〉 = 0, ∀ u, v ∈ V . In particu-
lar, 〈pf (u), v〉 = 〈pf (v), u〉 , ∀ u, v ∈ V . By skew-symmetry the even powers on each side
cancel out and we are left with

−4 μ
〈
F3(u), v

〉
− 4 μ3 〈F(u), v〉 = −4 μ

〈
F3(v), u

〉
− 4 μ3 〈F(v), u〉

= 4 μ
〈
F3(u), v

〉
+ 4 μ3 〈F(u), v〉 , ∀ u, v ∈ V.

Since we are in the case μ ∈ R \ {0} we conclude that F(F2 + μ2) = 0, and since F is
invertible (ker F = {0}) also F2 + μ2 = 0. But this means that F admits a complex eigen-
value, which is a contradiction, and we have exhausted all possible cases with dim ker F = 0.

Now let dim ker F = 2. According to the causal character of ker F, either ker F is null, and
we are in case (a) of the lemma or ker F is non-degenerate, and we are in case (b). The fact that
cases (a) and (b) are mutually exclusive is obvious. �

The classification in lemma 1 contains two possible cases. It is common to use this result
to find simple forms for each case, for example, in case (a) by including in the basis two
orthogonal vectors k, e ∈ ker F; or in case (b), by combining bases in the orthogonal and
timelike eigenplanes, so that F is explicitly a direct sum of two two-dimensional endomor-
phisms. In the following proposition we find a canonical form which includes cases (a) and (b)
simultaneously, and which depends on two parameters only.

Proposition 1 For every non-zero F ∈ SkewEnd (V), with (V, g) a four-dimensional
Lorentzian vector space with a choice of time orientation, there exists an orthonormal unit
basis B := {e0, e1, e2, e3}, with e0 timelike future directed such that

⎛⎜⎜⎝
F(e0)
F(e1)
F(e2)
F(e3)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 −1 +

σ

4
τ

4
0 0 1 +

σ

4
τ

4
−1 +

σ

4
−1 − σ

4
0 0

τ

4
−τ

4
0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

e0

e1

e2

e3

⎞⎟⎟⎠ , σ, τ ∈ R, (7)

where σ := − 1
2 Tr F2 and τ 2 := − 4det F, with τ � 0. Moreover, if τ = 0 the vector e3 can

be taken to be any spacelike unit vector lying in the kernel of F.

Proof By lemma 1 there exist two possible cases. We start proving the proposition assuming
that we are in case (a). Let span {k, e} = ker F, with k, e ∈ V a pair of orthogonal null and
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spacelike unit vectors respectively. We can complete them to a semi-null basis B = {k, l,w, e},
i.e. such that 〈k, l〉 = −2, 〈w,w〉 = 〈e, e〉 = 1 and the rest of scalar products all zero. Using
these orthogonality relations and skew-symmetry of F we can calculate:

F(k) = 0, F(l) = aw, F(w) =
a
2

k, F(e) = 0,

for a constant a ∈ R \ {0}. Redefine a new basis {l′, k′,w′, e′}, with k′ := εa
2 k, l′ := 2ε

a l,
w′ := − εw, e′ := e, where ε2 = 1 is chosen so that k′, l′ are future directed. Then

F(k′) = 0, F(l′) = w′, F(w′) = k′, F(e′) = 0,

which in the orthonormal basis B = {e0, e1, e2, e3} given by k′ = e0 + e1, l′ = e0 − e1,
w′ = e2, e′ = e3 is

F(e0) = −e2, F(e1) = e2, F(e2) = −e0 − e1, F(e3) = 0.

This corresponds to expression (7) with σ = τ = 0.
It remains to prove the proposition for case (b). In this case, there exist timelike and

spacelike eigenplanes, Πt = span
{

e′0, e′1
}

and Πs = span
{

e′2, e′3
}

respectively, i.e. fulfilling
equations (2) and (4) for respective eigenvalues μ0 and μ1, such that at most one of them van-
ishes. We can take the bases of Πt,Πs so that that B′ :=

{
e′0, e′1, e′2, e′3

}
is an orthonormal basis

of V , with e0
′ past directed and the eigenvalues μ0 and μ1 are positive or (at most one) zero.

Then, the following change of basis is well-defined:

e0 =
−1√
μ2

0+ μ2
1

[(
1+

μ2
0 + μ2

1

4

)
e′0+

(
1− μ2

0 + μ2
1

4

)
e′2

]
, e2 =

1√
μ2

0 + μ2
1

(
μ0e′1+ μ1e′3

)
,

e1 =
1√

μ2
0+ μ2

1

[(
1− μ2

0 + μ2
1

4

)
e′0+

(
1+

μ2
0 + μ2

1

4

)
e′2

]
, e3 =

1√
μ2

0+ μ2
1

(
−μ1e′1+ μ0e′3

)
.

One checks by explicit computation that B := {e0, e1, e2, e3} is an orthonormal basis, with e0

timelike and future directed (because
〈
e0, e′0
〉
> 0). It is also a matter of direct calculation to

see that

F(e0) =
(
−1 +

σ

4

)
e2 +

τ

4
e3, F(e1) =

(
1 +

σ

4

)
e2 +

τ

4
e3,

F(e2) =
(
−1 +

σ

4

)
e0 −
(

1 +
σ

4

)
e1, F(e3) =

τ

4
(e0 − e1) ,

where the parameters σ, τ ∈ R are σ = μ2
1 − μ2

0 and τ = 2μ0μ1 � 0. This corresponds to (7)
with at most one of the parameters σ, τ vanishing.

To show the last statement, a simple computation shows that (when τ = 0) the kernel of F
is given by

ker F =
{

a
(

1 +
σ

4

)
e0 + a

(
1 − σ

4

)
e1 + be3, a, b ∈ R

}
.

The subset of spacelike unit vectors in ker F is given by 1 + a2σ > 0 and b = ε
√

1 + a2σ,
ε = ±1. We introduce the four vectors

e′0 =

(
b + ε

2
+

(
1 +

σ2

16

)
b − ε

σ

)
e0 +

(
1 − σ2

16

)
b − ε

σ
e1 + a

(
1 +

σ

4

)
e3,
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e′1 = −
(

1 − σ2

16

)
b − ε

σ
e0 +

(
b + ε

2
−
(

1 +
σ2

16

)
b − ε

σ

)
e1 + a

(
−1 +

σ

4

)
e3,

e′2 = εe2,

e′3 = a
(

1 +
σ

4

)
e0 + a

(
1 − σ

4

)
e1 + be3,

and observe that they are well-defined for all values of σ, including zero. A straightforward
computation shows that this is an orthonormal basis, and that (7) holds with τ = 0. The last
statement of the proposition follows. �

Obtaining a canonical form in the three-dimensional case is much easier, the main reason
being that any two-form in three-dimensions is simple, i.e. F ∧ F = 0 or, in other words, that
F is of rank one as a differential form. So, the reader may wonder why it has not been treated
before. The reason is that we can obtain the three dimensional case as a direct corollary of the
four-dimensional one. The construction is as follows. Let F ∈ SkewEnd (V) with V Lorentzian
three-dimensional. From F we may define an auxiliary skew-symmetric endomorphism F̂
defined on V ⊕ E1 endowed with the product metric (E1 is the one-dimensional Euclidean
space). It is obvious that this space is a Lorentzian four-dimensional vector space. We denote
by E3 a unit vector in E1 and define F̂ simply by F̂(u + aE3) = F(u) + 0, for all u ∈ V and
a ∈ R (we will identify u ∈ V with u + 0 ∈ V ⊕ E1 from now on). It is immediate to check that
F̂ is skew-symmetric. Moreover, it has τ = 0, by construction. Then, the following corollary
is immediate:

Corollary 1 For every non-zero F ∈ SkewEnd (V), with (V, g) a Lorentzian three-
dimensional vector space with a choice of time orientation, there exists an orthonormal unit
basis B := {e0, e1, e2}, with e0 timelike future directed such that

⎛⎝F(e0)
F(e1)
F(e2)

⎞⎠ =

⎛⎜⎜⎜⎝
0 0 −1 +

σ

4
0 0 −1 − σ

4
−1 +

σ

4
1 +

σ

4
0

⎞⎟⎟⎟⎠
⎛⎝e0

e1

e2

⎞⎠ , σ := − 1
2

Tr
(
F2
)
∈ R. (8)

Proof By the last statement of proposition 1, the canonical basis B = {e0, e1, e2, e3} of F̂
can be taken with e3 = E3, which means that {e0, e1, e2} is a basis of V . �

Remark 1 (Classification from the canonical form). For the canonical forms (8) and
(7) we can derive a classification result for skew-symmetric endomorphisms and recover lemma
1 in terms of σ, τ . For F ∈ SkewEnd

(
M1,2
)

non-zero it is straightforward that q := (1 + σ/4)
e0 + (1 − σ/4)e1 generates ker F and furthermore 〈q, q〉 = −σ. Hence, the sign of σ deter-
mines the causal character of the kernel, namely spacelike for σ < 0, null for σ = 0 and
timelike for σ > 0. In the four-dimensional case, if τ 
= 0, then ker F = {0} and we must
be in case (b) of lemma 1. If τ = 0, then e3 ∈ ker F (spacelike) and the sign of σ determines
the causal character of any non-zero vector q ∈ span {e0, e1, e2} ∩ ker F just like in the pre-
vious case. That is, τ = 0 and σ = 0 corresponds with case (a) of lemma 1 and otherwise we
are in case (b).

At this point, it is convenient to comment on the relation between our results and previous
canonical forms of skew-symmetric endomorphisms. It is standard in the literature to work
with two-forms of M1,3, also called bivectors, instead of skew-symmetric endomorphisms.

8
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The usual classification of two-forms in M1,3 (which can be found in e.g. [13, 26]) reduces to
two cases with their respective canonical forms, namely

F = ae ∧w + bu ∧ v, F = k ∧ v, a, b ∈ R (9)

where w, u, v are spacelike, unit and orthogonal to each other, e is unit and orthogonal to all
of them and k is null and orthogonal to v. Our main improvement is that we no longer need
to distinguish two cases and we are able to cover every case with one single canonical form.
The first of the canonical forms in (9) obviously corresponds to a skew-symmetric endomor-
phism which admits a timelike eigenplane with eigenvalue a and a spacelike eigenplane with
eigenvalue b. These endomorphisms correspond to a canonical form (7) in which at least one
of the parameters σ, τ is not zero (cf remark 1). From (9) it follows easily that a, b are directly
related to the eigenvalues of F, specifically it holds |a| = μ0 and |b| = μ1. The second canon-
ical form in (9) corresponds with a skew-symmetric endomorphism that has a null eigenvector
orthogonal to a spacelike eigenvector, both with zero eigenvalue, which in our canonical form
is σ = τ = 0 (cf remark 1). We also remark that our result is valid only for real skew-symmetric
endomorphisms, because it relies on lemma 1. For the complex case see [12] where, however,
the classification is also done in a case by case basis.

The three dimensional case is always simple (i.e. of rank one) and thus can be written as
product of two one-forms, whose causal character will determine the classification. In this
paper we have treated this case as a corollary of the four-dimensional one. This approach will
be useful in our extension of the classification results to the higher dimensional case [18].

3. Group of invariance of the canonical form

In this section F is a non-zero skew-symmetric endomorphism in a four-dimensional vector
space, and B = {e0, e1, e2, e3} is a canonical basis, i.e. one where e0 is future directed and
(7) holds. It is useful to introduce the semi-null basis {	, k, e2, e3} defined by 	 = e0 + e1,
k = e0 − e1. In this basis the endomorphism F takes the form

F(	) =
σ

2
e2 +

τ

2
e3, F(k) = −2e2, F(e2) = −	+

σ

4
k, F(e3) =

τ

4
k. (10)

We are interested in finding the most general orthochronous Lorentz transformation which
transforms B into a basis B′ = {e′0, e′1, e′2, e′3} in which F takes the same form. In terms of the
corresponding semi-null basis {	′, k′, e′2, e′3} we must impose (10) with primed vectors. We
start with the following lemma:

Lemma 2 Let F be skew-symmetric and {	, k, e2, e3} be a semi-null basis that satisfies

F(k) = −2e2, F(e2) = −	+
σ

4
k (11)

and

〈F(	), F(	)〉 = σ2 + τ 2

4
. (12)

Then either the semi-null basis {	, k, e2, e3} or {	, k, e2,−e3} fulfills (10), and both do
whenever τ = 0.

Proof Skew-symmetry imposes F(	) and F(e3) to satisfy

F(	) =
σ

2
e2 +

q
2

e3, F(e3) =
q
4

k′, q ∈ R.

9
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Condition (12) imposes q2 = τ 2. Thus q = ±τ . Since reflecting e3 replaces q by −q, either
the basis {	, k, e2, e3} or the basis {	, k, e2,−e3} satisfies (10) with τ � 0 (and both do in case
τ = 0). �

Thus, to understand the group of invariance of (10) it suffices to impose (11) and (12) for
{	′, k′, e′2}. Let us decompose k′ in the original basis as

k′ = Ak + B	+ c2e2 + c3e3. (13)

Observe that A, B � 0 as a consequence of k′ being future directed. Let us introduce two vectors
e′2 and 	′ so that (11) are satisfied, namely

e′2 := − 1
2

F(k′) =

(
A − Bσ

4

)
e2 −

Bτ
4

e3 +
c2

2
	 − 1

8
(σc2 + τc3) k, (14)

	′ :=
σ

4
k′ − F(e′2) =

B
(
σ2 + τ 2

)
16

k + A	− 1
4

(σc2 + τc3) e2 +
1
4

(σc3 − τc2) e3. (15)

The conditions of k′ being null, future directed and e′2 spacelike and unit are easily found to be
equivalent to

−4AB + ‖c‖2 = 0, A, B � 0, (16)

A2 +
σ2 + τ 2

16
B2 +

σ

8

(
c2

2 − c2
3

)
+

τ

4
c2c3 = 1, (17)

where we have set ‖c‖2 = c2
2 + c2

3. Under (16) and (17) one easily checks that the condi-
tions 〈e′2, k′〉 = 0, 〈e′2, 	′〉 = 0, 〈	′, 	′〉 = 0 and 〈	′, k′〉 = −2 are all identically satisfied. Thus,
{	′, k′, e′2} defines a timelike hyperplane and we can introduce e′3 as one of its two unit normals.
By construction, the semi-null basis {	′, k′, e′2, e′3} satisfies (11). By lemma 2, this basis or the
one defined with the reversed e′3 will be a canonical basis of F if and only if (12) is satisfied.
By skew-symmetry, this condition is equivalent to

〈	′, F2(	′)〉+ σ2 + τ 2

4
= 0. (18)

Directly from (10) we compute

F2(	) = −σ

2
	+

σ2 + τ 2

8
k, F2(k) = 2	− σ

2
k,

F2(e2) = −σe2 −
τ

2
e3, F2(e3) = −τ

2
e2,

from where it follows

F2(	′) =
1
2

(
(σ2 + τ 2)B

4
− σA

)
	+

σ2 + τ 2

8

(
A − 1

4
σB

)
k

+

(
2σ2 + τ 2

)
c2 + στc3

8
e2 +

τ (σc2 + τc3)
8

e3.

One easily checks that (18) is identically satisfied when (16) and (17) hold. Thus, it only
remains to solve this algebraic system. To that aim, it is convenient to introduce Q � 0 and
an angle θ ∈ [0, π

2 ] defined by

σ = Q cos(2θ), τ = Q sin(2θ). (19)

10
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When σ2 + τ 2 > 0, {Q, θ} are uniquely defined. When σ = τ = 0, then Q = 0 and θ can take
any value. Define also λ2,λ3 by

c2 = 2λ2 cos θ − 2λ3 sin θ, c3 = 2λ2 sin θ + 2λ3 cos θ.

In terms of the new variables, equations (16) and (17) become (with obvious meaning for ‖λ‖2)

AB − ‖λ‖2 = 0, 16A2 + Q2B2 + 8Q
(
λ2

2 − λ2
3

)
− 16 = 0 A, B � 0.

When Q = 0, the solution is clearly A = 1, B = ‖λ‖2, with unrestricted λ2,λ3. When Q > 0,
we may multiply the first equation by Q and find the equivalent problem

(4A + QB)2 = 16(1 + Qλ2
3), (4A − QB)2 = 16(1 − Qλ2

2), A, B � 0.

This system is solvable if and only if

|λ2| � 1√
Q

(20)

and the solution is given by

A =
1
2

(√
1 + Qλ2

3 + ε
√

1 − Qλ2
2

)
, B =

2
Q

(√
1 + Qλ2

3 − ε
√

1 − Qλ2
2

)
, (21)

where ε = ±1. Observe that the branches ε = 1 and ε = −1 are connected to each other across
the set |λ2| = 1/

√
Q. Note also that the case Q = 0 is included as a limit Q → 0 in the branch

ε = 1 (and then the bound (20) becomes vacuous, in accordance with the unrestricted values
of {λ2,λ3} when Q = 0). We can now write down explicitly the vectors 	′, k′, e′2 defined in
(13)–(15). It is useful to introduce the two spacelike, orthogonal and unit vectors

u2 = cos θe2 + sin θe3, u3 = − sin θe2 + cos θe3

which simplify the expression to

	′ =
Q2

16
Bk + A	+

Q
2

(−λ2u2 + λ3u3) ,

k′ = Ak + B	+ 2λ2u2 + 2λ3u3,

e′2 = (λ2 cos θ − λ3 sin θ) 	− Q
4

(λ2 cos θ + λ3 sin θ) k

+ ε cos θ
√

1 − Qλ2
2 u2 − sin θ

√
1 + Qλ2

3 u3,

where A, B must be understood as given by (21) (including the limiting case Q = 0). The fourth
vector e′3 is unit and orthogonal to all of them. The following pair of vectors satisfy these
properties (and of course there are no others).

e′3 = ε̂

(
(λ3 cos θ + λ2 sin θ) 	+

Q
4

(λ3 cos θ − λ2 sin θ) k

+ ε sin θ
√

1 − Qλ2
2 u2 + cos θ

√
1 + Qλ2

3 u3

)
(22)

11
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where ε̂ = ±1. It is also straightforward to check that F(e′3) = ε̂(τ/4)k′. Thus, if τ 
= 0, we
must choose ε̂ = 1 while in the case τ = 0 both signs are possible (in accordance with lemma
2). Summarizing, the most general orthochronous Lorentz transformation that transforms a
canonical semi-null basis of F into another one is given by

⎛
⎜⎜⎜⎜⎜⎝

	′

k′

e′2

ε̂e′3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

(√
1 + Qλ2

3 + ε
√

1 − Qλ2
2

)
Q
8

(√
1 + Qλ2

3 − ε
√

1 − Qλ2
2

)
−Qλ2/2 Qλ3/2

2
Q

(√
1 + Qλ2

3 − ε
√

1 − Qλ2
2

)
1
2

(√
1 + Qλ2

3 + ε
√

1 − Qλ2
2

)
2λ2 2λ3

λ2 cos θ − λ3 sin θ −Q(λ2 cos θ+ λ3 sin θ)/4 ε cos θ
√

1 − Qλ2
2 − sin θ

√
1 + Qλ2

3

λ3 cos θ + λ2 sin θ Q(λ3 cos θ − λ2 sin θ)/4 ε sin θ
√

1 − Qλ2
2 cos θ

√
1 + Qλ2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos θ sin θ

0 0 − sin θ cos θ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

	

k

e2

e3

⎞
⎟⎟⎟⎟⎟⎠ :=TF (λ2, λ3, ε)

⎛
⎜⎜⎜⎜⎜⎝

	

k

e2

e3

⎞
⎟⎟⎟⎟⎟⎠

where ε̂ = 1, unless τ = 0 in which case ε̂ = ±1. Concerning the global structure of the group,
recall that λ3 takes any value in the real line, while |λ2| � 1/

√
Q. We have already mentioned

that as long as Q 
= 0, the two branches ε = ±1 are connected to each other through the values
|λ2| = 1/

√
Q. The topology of the group is therefore R× S1 (hence connected) when Q 
= 0

and τ 
= 0. When Q 
= 0, τ = 0 the group has two connected components (one corresponding
to each value of ε̂) each one with the topology of R× S1. Finally, when Q = 0, the group has
two connected components (again one for each value of ε̂) and the topology of each component
is R2. By construction all elements of the group (in all cases) are orthochronous Lorentz trans-
formations. Moreover, it is immediate to check that the determinant of TF(λ2,λ3, ε) is one for
all values of λ2,λ3, ε. Thus, all elements with ε̂ = 1 preserve orientation, while the elements
with ε̂ = −1 reverse orientation.

3.1. Invariance group in the three-dimensional case

We have found before that for any non-zero skew-symmetric endomorphism F in M1,2 there
exists an orthonormal, future directed basis B3 = {e0, e1, e2} where F takes the canonical form
(8). As in the previous case it is natural to ask what is the group of invariance of F, i.e. the
most general orthochronous Lorentz transformation which transforms B into a basis where F
takes the same form. From F, recall the auxiliary skew-symmetric endomorphism F̂ defined
on M1,2 ⊕ E1 that was introduced before corollary 1, that is, the endomorphism that acts as
F̂(u + ae3) = F(u) + 0, for all u ∈ M1,2 and a ∈ RwhereE1 = span {E3}, with E3 unit. More-
over, the basis B := {e0, e1, e2, e3 = E3} is canonical for F̂ in the sense of (7) and in addition
τ = 0. It is clear that there exists a bijection between the set of orthonormal, future directed
bases B′

3 = {e′0, e′1, e′2} where F takes its canonical form and the set of future directed orthonor-
mal bases B′ in M1,2 ⊕ E1 where F̂ takes its canonical form and the last element of B′ is E3.
Thus, in order to determine the group of invariance of F it suffices to study the subgroup of
invariance of F̂ which preserves the vector e3. Since τ = 0 we must impose

B = Q sin(2θ) = 2Q cos θ sin θ = 0

and three separate cases arise: (case 1) when Q 
= 0, θ = 0, (case 2) when Q = 0 and (case 3)
when Q 
= 0, θ = π/2. Equivalently, cases 1, 2 and 3 correspond respectively to σ > 0, σ = 0
and σ < 0. Recall also that when Q = 0 we may choose any value of θ ∈ [0, π/2] w.l.o.g. We
choose θ = 0 in this case. Recall also that the case Q = 0 is recovered as a limit Q → 0 after
setting ε = 1.

12
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We only need to impose the condition e′3 = e3 in each case. Directly from (22) one finds
(we also use that Q = |σ|)

e′3 = ε̂

(
λ3	+

|σ|
4
λ3k +

√
1 + |σ|λ2

3 e3

)
, Case 1

e′3 = ε̂ (λ3	+ e3) , Case 2

e′3 = ε̂

(
λ2	−

|σ|
4
λ2k + ε

√
1 − |σ|λ2

2

)
e3, Case 3

Thus, cases 1 and 2 require ε̂ = 1,λ3 = 0 and in case 3 we must set ε̂ = ε,λ2 = 0. Inserting
these values in the group of invariance of F̂ one finds the most general orthochronous Lorentz
transformation that preserves the form of F. We express the result in the canonically associated
semi-null bases 	 = e0 + e1, k = e0 − e1, e2 = e2. Renaming λ2,λ3 as λ, the three cases can
be written in the following form

σ � 0 :

⎛⎝	′

k′

e′2

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
2

(
1 + ε

√
1 − |σ|λ2

) |σ|
8

(
1 − ε

√
1 − |σ|λ2

)
−|σ|λ

2
2
|σ|
(

1 − ε
√

1 − |σ|λ2
) 1

2

(
1+ ε
√

1− |σ|λ2
)

2λ

λ −|σ|λ
4

ε
√

1− |σ|λ2

⎞⎟⎟⎟⎟⎟⎠
⎛⎝ 	

k
e2

⎞⎠

σ < 0 :

⎛⎝	′

k′

e′2

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
2

(
ε+
√

1 + |σ|λ2
) |σ|

8

(√
1 + |σ|λ2 − ε

)
−|σ|λ

2
2
|σ|

(√
1 + |σ|λ2 − ε

) 1
2

(√
1 + |σ|λ2 + ε

)
−2λ

−λ −|σ|λ
4

√
1 + |σ|λ2

⎞⎟⎟⎟⎟⎟⎠
⎛⎝ 	

k
e2

⎞⎠

with the understanding that the case σ = 0 is obtained from the first expression by setting ε = 1
and then performing the limit σ → 0.

When σ > 0, the parameter λ is restricted to |λ| � 1/|σ| and the two branches ε = 1 and
ε = −1 are connected through |λ| = |σ|. The group is connected and has topology S1. As an
immediate consequence all the elements in the group are not only orthochronous Lorentz trans-
formations (by construction) but also orientation preserving, as they are all connected to the
identity. This can also be checked by computing the determinant of its matrix representation,
which is one irrespectively of the value of λ and ε. When σ = 0 the parameter λ takes values
in the real line and the group has R-topology. Again all its elements are orientation preserving.
In fact, in this case the group is simply the set of null rotations preserving 	. Finally, in the case
σ < 0, λ also takes values in the real line and the group has two connected components (cor-
responding to the two values of ε). Each component has topology R. The determinant of the
matrix representation is now ε, so the Lorentz transformations with ε = 1 preserve orientation
(and define the connected component to the identity) while ε = −1 reverse orientation.

4. Generators of the invariance group

Returning to the four dimensional case, the identity element e of the group of invariance cor-
responds to λ2 = λ3 = 0 and ε = ε̂ = 1. We may compute the Lie algebra that generates it
by taking derivatives of the group transformation with respect to λ2 and λ3 respectively and

13
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evaluating at e. This defines two skew-symmetric endomorphisms

h2 :=
∂TF(λ2,λ3, ε)

∂λ2

∣∣∣∣
e

, h3 :=
∂TF(λ2,λ3, ε)

∂λ3

∣∣∣∣
e

.

It is immediate to obtain their explicit expression

⎛⎜⎜⎝
h2(	)
h2(k)
h2(e2)
h2(e3)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 −Q

2
cos θ −Q

2
sin θ

0 0 2 cos θ 2 sin θ

cos θ −Q
4

cos θ 0 0

sin θ −Q
4

sin θ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

	
k
e2

e3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
h3(	)
h3(k)
h3(e2)
h3(e3)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 −Q

2
sin θ

Q
2

cos θ

0 0 −2 sin θ 2 cos θ

− sin θ −Q
4

sin θ 0 0

cos θ
Q
4

cos θ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

	
k
e2

e3

⎞⎟⎟⎠ .

Note that any skew-symmetric endomorphism G that commutes with F generates a one-
parameter subgroup of Lorentz transformations that leaves the form of F invariant. It follows
that this uniparametric group is necessarily a subgroup of the full invariance group of F. Hence
G must belong to the Lie algebra generated by h2 and h3. Conversely, h2, h3 (and any linear
combination thereof) defines a skew-symmetric endomorphism that commutes with F. In other
words, CF := span{h2, h3} defines the Lie subalgebra of so(1, 3) formed by the elements that
commute with F. This Lie subalgebra is called the centralizer of F (e.g. [15]) and, as we
have just shown, it is two-dimensional for any non-zero F. An easy computation shows that
[h2, h3] = 0, so the centralizer of F is an Abelian Lie algebra. With these properties, it is not
difficult to obtain the exponentiated form of the group elements. Define the two C1 functions
tε(s), t3(s) (prime denotes derivative with respect to s)

t′ε = ε

√
1 − Qt2

ε , tε(s = 0) = 0,

t′3 =
√

1 + Qt2
3, t3(s = 0) = 0,

and set

Tε(s) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

(
1 + t′ε

) Q
8

(
1 − t′ε

)
−Q

2
cos θ tε −Q

2
sin θ tε

2
Q

(
1 − t′ε

) 1
2

(
1 + t′ε

)
2 cos θ tε 2 sin θ tε

cos θ tε −Q
4

cos θ tε cos2θ t′ε + sin2θ sin θ cos θ
(

t′ε − 1
)

sin θ tε −Q
4

sin θ tε sin θ cos θ
(

t′ε − 1
)

sin2θ t′ε + cos2θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
14
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T3(s) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

(
1 + t′3

) Q
8

(
t′3 − 1

)
−Q

2
sin θ t3

Q
2

cos θ t3

2
Q

(
t′3 − 1

) 1
2

(
1 + t′3

)
−2 sin θ t3 2 cos θ t3

− sin θ t3 −Q
4

sin θ t3 cos2θ + t′3 sin2θ sin θ cos θ
(
1 − t′3

)
cos θ t3

Q
4

cos θ t3 sin θ cos θ
(
1 − t′3

)
sin2θ + cos2θ t′3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(in the right-hand sides tε, t′ε etc are to be understood evaluated at s). By direct computation
one checks that (Id stands for the 4 × 4 identity matrix)

dTε
ds

= h2Tε, Tε=1(s = 0) = Id,

dT3

ds
= h3T3, T3(s = 0) = Id,

TF(λ2,λ3, ε)|λ2=tε(s1),λ3=t3(s2) = Tε(s1)T3(s2) = T3(s2)Tε(s1).

This shows in particular that Tε=1(s) = exp(sh2) and T3(s) = exp(sh3). Observe also that (in
agreement with a previous discussion), when Q 
= 0 the branch Tε=−1 is connected to the
branch Tε=1 because in this case

tε=1(s) =
sin(

√
Qs)√

Q
, s ∈

[
− π

2
√

Q
,

π

2
√

Q

]
,

tε=−1(s) = − sin(
√

Qs)√
Q

, s ∈
[
− π

2
√

Q
,

π

2
√

Q

]
,

so that s = ±π/(2
√

Q) in the first branch is smoothly connected to s = ∓π/(2
√

Q) in the
second branch.

From the matrix representation of h2 and h3 it is obvious (the last two columns are lin-
early dependent) that det(h2) = det(h3) = 0 so both h2, h3 are simple, i.e. of matrix rank two.
Moreover,

−tr (h2 ◦ h2) = tr (h3 ◦ h3) = 2Q (23)

and tr (h2 ◦ h3) = 0. Given that F commutes with itself, i.e. F ∈ CF, it must be a linear
combination of h2 and h3. Indeed, it is immediate to check that

F = − cos θ h2 + sin θ h3. (24)

This expression suggests that the connection between F and the basis {h2, h3} is via a duality
rotation. To show that this is indeed the case, we define the one-forms {�, k, e2, e3} metrically
associated to the semi-null basis {	, k, e2, e3}. Also, for any skew-symmetric endomorphism
F, we associate the two-form F by the standard relation (6). It is straightforward to find the
explicit forms of h2 and h3 to be1

h2 =

(
�− Q

4
k
)
∧ (cos θ e2 + sin θ e3) ,

1 Our convention for the exterior product is u ∧ v := u ⊗ v − v ⊗ u.
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h3 =

(
�+

Q
4

k
)
∧ (− sin θ e2 + cos θ e3) . (25)

Duality rotations of a two-form are defined in terms of the Hodge-dual operator, which in turn
depends in a choice of orientation in the vector space. To keep the comparison fully general,
we let κ = +1 (κ = −1) when the orientation in M1,3 is such that the basis {	, k, e2, e3} is pos-
itively (negatively) oriented. Equivalently, if η is the volume form that defines the orientation,
κ is given by

η(	, k, e2, e3) = 2κ. (26)

Let G� denote the Hodge dual2 associated to G. It is then immediate to check that

h�
2 = κh3.

Defining f := − h2 and μ := − κθ, we may rewrite (24) as

F = cosμ f + sinμ f�, (27)

which indeed shows that F is obtained from the simple form f by a duality rotation of angle μ.
Notice that fαβ f αβ = 2Q � 0 (by (23)). For later use, we observe that the most general linear
combination f = a0h2 + b0h3 that defines a simple two-form such that fαβ f αβ � 0 and (27)
holds for some value of μ is:

Q = 0 : f = − cos(θ + κμ)h2 + sin(θ + κμ)h3, μ ∈ R

Q > 0 : f = − cos(nπ)h2, μ = −κθ + nπ, n ∈ N. (28)

This can be proved easily from the explicit expressions of h2, h3 and the fact that they are
linearly independent simple two-forms.

One may wonder whether this connection with duality rotations could have been used as
the starting point to obtain in an easy and natural way the canonical form of F. We will argue
that this alternative approach, although possible, it is far from obvious and cannot be regarded
as natural.

We fix a skew-symmetric endomorphism F in a four-dimensional vector space with a
Lorentzian metric, and let F be the metrically associated two-form. Define as before σ := − 1

2
trace
(
F2
)

and τ 2 = −4det(F), τ > 0 where the determinant is taken for any matrix represen-
tation of F in an orthonormal basis. The invariants σ and τ are directly related to the two
algebraic invariants of F as

σ =
1
2

FαβFαβ , τ =
1
2

abs
(
FαβF�αβ

)
. (29)

The first one follows trivially from the definition of σ. The second is a well-known algebraic
identity that can be found e.g. in [16]. Given F, a duality rotation of angle −μ defines the

two-form
μ

F as [19, 23],

μ

F := cosμF − sinμF∗. (30)

2 In abstract index notation G�
αβ = 1

2ηαβμνGμν .
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A simple computation shows that
μ

F is simple (i.e.
μ

Fαβ

μ

F�αβ = 0) and satisfies
μ

Fαβ

μ

F�αβ � 0 if
and only if (see [19])

σ sin(2μ) + κ̂τ cos(2μ) = 0,

σ cos(2μ) − κ̂τ sin(2μ) � 0, (31)

where κ̂ is the sign defined by 1
2 FαβF�αβ = κ̂τ (when τ = 0, κ̂ can take any value κ̂ = ±1).

Inserting (19) we find that whenever Q = 0 all values of μ solve (31) (which reflects the fact
that F is null, and so are all its duality rotated two-forms). When Q 
= 0, the solutions of (31)
are μ = −κ̂θ + nπ, n ∈ N. Thus, we recover the expression in (28) provided we can ensure
that κ̂ = κ. Note that the sign of FαβF�αβ only depends on F and the choice of orientation.
It is a matter of direct checking that F as given in (10) with the choice of orientation where
(26) holds satisfies FαβF�αβ = 2κτ , so that indeed κ̂ = κ follows (unless τ = 0, of course, in
which case κ̂ = ±1).

We can now show how the canonical basis can be constructed from F using a duality rota-
tion approach. Fixed an orientation on the vector space (i.e. a choice of volume form η, and its
associated Hodge dual) define σ and τ as in (29). Let κ̂ ∈ {−1, 1} be such that 2κ̂ = FαβF�αβ

(if τ = 0, we allow any sign for κ̂). Introduce θ so that (19) holds with θ ∈ [0, π/2] (if σ = τ

= 0 then θ can take any value in this interval). Define then μ = −κ̂θ and construct
μ

F by (30).

We let h2 := −
μ

F. Since this two-form is simple, there exist two linearly independent vec-
tors a, b such that h2 = a ∧ b. These vectors are obviously not unique, but certainly at least
one of them must be spacelike. It can also be taken unit. We let E2 := b have this property.
Exploiting the freedom a → a + sE2, s ∈ R we may take a perpendicular to E2. By construc-
tion (h2)αβ(h2)αβ � 0 (recall (31)) which is equivalent to 〈a, a〉 � 0, i.e. a is spacelike or null.
Let Q � 0 be defined by Q = 〈a, a〉. It is clear that there exists a timelike plane Π containing
a and orthogonal to E2 (this plane is obviously non-unique). Fixed Π, it is easy to show that
there exists a future directed a null basis {	, k} on Π satisfying 〈	, k〉 = −2 and such that a = �
− (1/4)Qk. Finally, consider the timelike hyperplane defined by span{	, k, E2} and select the
unique unit normal E3 to this hyperplane satisfying the orientation requirement (cf (26))

η(	, k, E2, E3) = 2κ̂.

So far, from a non-zero F we have constructed a (collection of) semi-null basis {	, k, E2, E3}
in quite a natural way. Observe that when σ = τ = 0, the angle θ is arbitrary, so the semi-
null basis has extra additional freedom in this case. What appears to be hard to guess from
this construction is that instead of {E2, E3} we should introduce {e2, e3} by means of the θ-
dependent rotation (cf (25))

E2 = cos θe2 + sin θe3, E3 = − sin θe2 + cos θe3. (32)

It is by using this transformation that the form of F in the basis {	, k, e2, e3} takes a form
that depends only on the invariants σ, τ . It is remarkable that the θ-freedom inherent to the
case σ = τ = 0 (i.e. when F is null) drops out after performing the rotation (32), and we get
a canonical form that covers all cases and depends only on σ and τ , irrespectively of which
values these invariants may take.
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5. Global conformal Killing vectors on the plane

In the following sections we connect our previous results with the Lie algebra of CKV fields of
the sphere and the group of motions they generate, i.e. the Möbius group. In our analysis, it is
useful to employ the Riemann sphere C ∪ {∞}. Although we will rederive some of the results
we need here, we refer the reader to [20, 25] for more details about the Möbius transforma-
tions on the Riemann sphere. Some of the contents may also be found in other more general
references such as [22, 24]. Regarding Lie groups and Lie algebras, most of the results we will
employ can be found in introductory level textbooks such as [13], but other references [11, 15]
are also appropriate.

Consider the euclidean plane E2 = (R2, gE) and select Cartesian coordinates {x, y}. It is
well-known that the set of CKV on E2 is given by

ξ = U(x, y)∂x + V(x, y)∂y,

where U, V satisfy the Cauchy–Riemann conditions ∂xU = ∂yV , ∂yU = −∂xV . These vector
fields satisfy

£ξgE =
(
∂xU + ∂yV

)
gE.

Consider the one-point compactification of E2 into the Riemann sphere S2. It is also standard
that the set of CKV that extend smoothly to S2 is given by the subset of CKV for which U
and V are polynomials of degree at most two. We name them global conformal Killing vectors
(GCKV). Thus, the set of GCKV is parametrized by six real constants {bx , by, ν,ω, ax , ay} and
take the form

ξ =

(
bx + νx − ωy +

1
2

ax

(
x2 − y2

)
+ ayxy

)
∂x

+

(
by + νy + ωx +

1
2

ay

(
y2 − x2

)
+ axxy

)
∂x

= ξ(ax, bx, ν,ω, bx, by) (33)

It is clear that the use of complex coordinates is advantageous in this context. For reasons
that will be clear later, it is convenient for us to introduce the complex coordinate z = 1

2 (x −
iy). In terms of z, the set of CKV is given by ξ = f∂z + f∂z (recall that bar denotes complex
conjugation) where f is a holomorphic function of z, while U, V are defined by 2 f = U − iV .
The set of GCKV is parametrized by three complex constants {μ0, μ1, μ2} as

ξ =

(
μ0 + μ1z +

1
2
μ2z2

)
∂z +

(
μ0 + μ1z +

1
2
μ2z2

)
∂z. (34)

The relationship between the two sets of parameters is immediately checked to be (we
emphasize that this specific form depends on our choice of complex coordinate z)

μ0 =
1
2

(
bx − iby

)
, μ1 = ν − iω, μ2 = 2

(
ax + iay

)
. (35)

We denote the GCKV with parameters μ := (μ0, μ1, μ2) as ξ{μ}. We shall need the following
lemma concerning orthogonal and commuting GCKV. The result should be known but we did
not find an appropriate reference.
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Lemma 3 Let ξ{μ}, ξ{σ} be GCKV fields on E2 with corresponding parameters μ = {μ0,
μ1, μ2}, σ = {σ0, σ1, σ2}. Assume that ξ{μ} is not the zero vector field. Then

(a) ξ{σ} is everywhere perpendicular to ξ{μ} if and only if σ = irμ with r ∈ R.
(b) ξ{σ} commutes with ξ{μ} if and only if σ = cμ with c ∈ C.

Moreover, ξcμ has Euclidean norm

gE(ξ{cμ}, ξ{cμ})|p = |c|2gE(ξ{μ}, ξ{μ})|p, ∀ p ∈ E2.

Proof Let fμ = μ0 + μ1z + 1
2μ2z2 so that ξ{μ} = fμ∂z + fμ∂z and define fσ correspond-

ingly. The euclidean metric is gE = 4 dz dz, so

gE(ξ{μ}, ξ{μ})|p = 2
(

fμ fσ + fμ fσ
)
|z(p). (36)

The condition of orthogonality is equivalent to fμ fσ + fμ fσ = 0. This is a polynomial in {z, z},
so its vanishing is equivalent to the vanishing of all its coefficients. Expanding, we find

μ0σ0 + μ0σ0 = 0, μ1σ1 + μ1σ1 = 0, μ2σ2 + μ2σ2 = 0, (37)

μ1σ0 + μ0σ1 = 0, μ2σ0 + μ0σ2 = 0, μ2σ1 + μ1σ2 = 0. (38)

Equations (37) are equivalent to the existence of three real numbers {q1, q2, q3} such that
μaσa = iqa, a = 0, 1, 2. Multiplying the equations in (38) respectively by μ0μ1, μ0μ2 and μ1μ2

one finds

q0|μ1|2 − q1|μ0|2 = 0, q0|μ2|2 − q2|μ0|2 = 0,

q1|μ2|2 − q2|μ1|2 = 0 ⇐⇒ (q0, q1, q2) ×
(
|μ0|2, |μ1|2, |μ2|2

)
= (0, 0, 0),

where × stands for the standard cross product. Since (|μ0|2, |μ1|2, |μ2|2) 
= (0, 0, 0) (from
our assumption that ξ{μ} is not identically zero) there exists a real number r such that
(q0, q1, q2) = −r(|μ0|2, |μ1|2, |μ2|2). Thus μaσa = −ir|μa|2. Fix a ∈ {0, 1, 2}. If μa 
= 0, it fol-
lows that σa = −irμa. If, instead, μa = 0 then it follows from (38) (since at least of the μ’s is
not zero) that σa = 0. In either case we have σa = irμa. This proves point (a) in the lemma.

For point (b) we compute the Lie bracket and find

[
ξ{μ}, ξ{σ}

]
=

(
fμ

d fσ
dz

− fσ
d fμ
dz

)
∂z +

(
fμ

d fσ
dz

− fσ
d fμ
dz

)
∂z.

The two vectors commute iff

fμ
d fσ
dz

− fσ
d fμ
dz

= μ0σ1 − μ1σ0 + (μ0σ2 − μ2σ0) z +
1
2

(μ1σ2 − μ2σ2) z2 = 0

⇐⇒ (σ0, σ1, σ2) ∝ (μ0,μ1,μ2),

and point (b) is proved. The last claim of the lemma follows from (36) and the linearity
fcμ = c f μ. �

An immediate corollary of this result is that the set of GCKV that commute with a given
GCKV ξ{μ} is two-dimensional and generated by ξ{μ} and ξ⊥{μ} := ξ{−iμ}.

Recall that a Möbius transformation is a diffeomorphism of the Riemann sphere C ∪ {∞}
of the form
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χA : C ∪ {∞}→ C ∪ {∞}

z �→ χA(z) =
αz + β

γz + δ
, A :=

(
α β
γ δ

)
, αδ − βγ = 1. (39)

The set of Möbius transformations forms a group under composition, which we denote by
Moeb, and the map χ : SL(2,C) → Moeb defined by χ(A) = χA is a group morphism. The
kernel of this morphism is K := {I2,−I2} and in fact χ descends to an isomorphism between
PSL(2,C) :=SL(2,C)/K and Moeb. In geometric terms, the Möbius group corresponds to
the set of orientation-preserving conformal diffeomorphisms of the standard sphere (S2, gS2)
(recall that a diffeomorphism χ := S2 → S2 is conformal if χ�(gS2) = Ω2gS2 for some Ω ∈
C∞(S2,R+)). The Möbius group thus transforms CKV of S2 into themselves, and, hence it
also transforms global GCKV of E2 into themselves. In other words, given a GCKV ξ{μ},
the vector field χA

� (ξ{μ}) is also a GCKV3. Let μ′ := (μ′
0, μ′

1, μ′
2) be the set of parameters of

χA
� (ξ{μ}) =: ξ{μ′}. A straightforward computation shows that

⎛⎝μ′
0

μ′
1

μ′
2

⎞⎠ =

⎛⎜⎝ α2 −αβ
1
2
β2

−2αγ αδ + βγ −βδ
2γ2 −2γδ δ2

⎞⎟⎠
︸ ︷︷ ︸

:=QA

⎛⎝μ0

μ1

μ2

⎞⎠ . (40)

The determinant of this matrix is one, so QA ∈ SL(3,C). As a consequence of
χA1 ◦ χA2 = χA1·A2 (where · denotes product of matrices), it follows that the map
Q : SL(2,C) → SL(3,C) defined by Q(A) = QA is a morphism of groups, i.e. QA1 ·QA2 =
QA1·A2 . This property can also be confirmed by explicit computation. In particular Q defines a
representation of the group SL(2,C) onC3. It is easy to show that this representation is actually
isomorphic to the adjoint representation. Recall that for matrix Lie group G (i.e. a Lie subgroup
of GL(n,C)), the adjoint representation Ad takes the explicit form (e.g. [13])

Ad: G → Aut(g)

g �→ Ad(g) :=Adg : g → g

X �→ gXg−1

where g is the Lie algebra of G and Aut(g) is the set of automorphisms of g. The isomorphism
between Q and Ad is as follows. Let us choose the basis of sl(2,C) given by

w0 :=

(
0 2
0 0

)
, w1 :=

(
1 0
0 −1

)
, w2 :=

(
0 0
−1 0

)
,

and define the vector space isomorphism h : C3 → sl(2,C) defined by h(μ0,μ1,μ2) = μaw
a

(a, b, . . . = 0, 1, 2). One then checks easily by explicit computation that h−1 ◦ Adg ◦ h = Q(g),
for all g ∈ SL(2,C).

Recall that the Killing form of a Lie algebra g is the symmetric bilinear map on g defined by
B(a1, a2) :=Tr (ad(a1) ◦ ad(a2)) where ad(a), a ∈ g is the adjoint endomorphism ad(a) : g→ g

3 Note that χA has singularities as a map from E2 into E2, but χA

� (ξ{μ}) extends smoothly to all E2, and in fact to the
whole Riemann sphere. Again this is standard and well-understood, so we will abuse the notation and write χA

� as if
the map χA were well-defined everywhere on E2
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defined by ad(a)(b) := [a, b]. The Lie algebra sl(2,C) is semi-simple, so its Killing form is
non-degenerate (e.g. [15]). The explicit form in the basis {w0,w1,w2} is given by

B(μaw
a, σaw

a) = 8 (μ1σ1 − μ0σ2 − μ2σ0) .

A fundamental property of the Killing form is that it is invariant under automorphisms (see
e.g. [27]), so in particular under the adjoint representation B(Adg(a), Adg(b)) = B(a, b) for all
g ∈ G. Given {μ} we define two real quantities σ{μ}, τ {μ} by

σ{μ} − iτ{μ} := 2μ0μ2 − μ2
1.

As a consequence of the discussion above, the quantities σ{μ}, τ {μ} associated to a GCKV
ξ{μ} are invariant under Möbius transformations. We have now all necessary ingredients to
determine the set of Möbius transformations that transform a GCKV into its canonical form.
Before doing so, however, we summarize known results on the relationship between GCKV
and skew-symmetric endomorphism in the Minkowski spacetime.

6. GCKV and skew-symmetric endomorphisms

It is well-known that conformal diffeomorphisms on the standard sphere of dimension n � 2,
Sn, are in one-to-one correspondence with orthochronous Lorentz transformations in the
Minkowski spacetimeM1,n+1. The underlying reason (see e.g. [22] or [24]) is that such Lorentz
transformations leave invariant the future null cone, and the set of null semi-lines in the cone
admits a differentiable structure and a metric that makes it isometric to Sn. The action of the
orthochronous Lorentz group on the set of future directed null semi-lines gives rise to a confor-
mal transformation, defining a map that turns out to be one-to-one. This property translates, at
the infinitesimal level, to the existence of a one-to-one map between CKV of Sn and the set of
skew-symmetric endomorphisms in M1,n+1. The explicit form of these two maps depends on
the choice of isometry between the set of null-semilines and Sn. This freedom amounts, essen-
tially to fixing a future directed orthonormal Lorentz frame {eα} with associated Minkowskian
coordinates {T, Xi} in M1,n+1 and selecting a unit spacelike direction u = uiei with respect to
which one performs a stereographic projection of the sphere {T = 1,

∑n+1
i=1 (Xi)2 = 1} minus

the point pu := {Xi = ui} onto an n-dimensional spacelike plane Πu that lies in the hyperplane
{T = 1}, is orthogonal to u and does not contain the point pu (such a plane is uniquely defined
by the signed euclidean distance from Πu and pu in the Euclidean plane {T = 1}). The final
choice is a set of Cartesian coordinates in Πu.

The construction above can also be done using the hyperboloid of timelike unit future
vectors H ⊂ M1,n+1, whose isometries are the orthochronous Lorentz transformations. The
boundary∂H of the conformal compactification of the hyperboloid (which represents ‘infinity’
of H) is a standard sphere, where the action of the Lorentz group can be extended and it
turns out to generate conformal transformations. Details of this construction can be found
e.g. in appendix A of [17]. As in the other representation, the details of the map depend
on how the sphere at infinity is introduced. The way how the explicit construction was car-
ried out in [17] corresponds, in the description above, to choosing the vector u = −e1, the
plane Πu = {T = 1, X1 = 1} and Cartesian coordinates in Πu given by {X2, . . . , Xn+1}. With
these choices, and restricting to dimension n = 2, the explicit map between the set of skew-
symmetric endomorphisms SkewEnd

(
M1,3
)

and the set of global conformal Killings vectors
on R2 (denoted by GCKV(R2)) is
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Ψ := SkewEnd
(
M1,3
)
→ GCKV(R2)

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ν −ax +
bx

2
−ay +

by

2

−ν 0 −ax −
bx

2
−ay −

by

2
−ax +

bx

2
ax +

bx

2
0 −ω

−ay +
by

2
ay +

by

2
ω 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�→ ξF := ξ(bx, by, ν,ω, ax, ay),

(41)

where F ∈ Skew(M1,3) is expressed in the orthonormal basis {eα} (specifically F(eν) = Fμ
νeμ

with Fμ
ν being the row μ, column ν of the matrix above), ξ(bx, by, ν,ω, ax , ay) is given by (33)

and the coordinates of the plane Πu are renamed as {x :=X2, y :=X3}.
Given an (active) orthochronous Lorentz transformation Λ(eμ) = Λν

μeν , we may consider
the skew-symmetric endomorphism FΛ :=Λ ◦ F ◦ Λ−1. The construction above guarantees
that

ξFΛ
= ΞΛ

� (ξF),

where ΞΛ is the conformal diffeomorphism associated to the Lorentz transformation Λ. Let us
restrict from now on to proper (i.e. orthochronous and orientation preserving) Lorentz transfor-
mations. Thus,ΞΛ is an orientation preserving conformal diffeomorphism,and having fixed the
coordinate system {x, y} ∈ R2, as well as z = 1

2 (x − iy), ΞΛ is a Möbius transformation. Thus
there exists a pair ±A ∈ SL(2,C) such that χ±A(Λ) = ΞΛ. We are interested in determining the
explicit form of A(Λ) (actually of its inverse map Λ(A)). Having also fixed a future directed
orthonormal basis {eα}, we may represent a proper Lorentz transformation as an element of
SO↑(1, 3) (the connected component of the identity of SO(1, 3)). The aim is, thus, to determine
the map O : SL(2,C) → SO↑(1, 3) satisfying ΞO(A) = χA. Of course, this maps depends on the
choices we have made concerning the unit spacelike direction u and plane Πu to perform the
stereographic projection.

As discussed at length in many references, (see e.g. [22], pp 8–24), when the vector u is
chosen to be ez, the plane is selected to be {T = 1, X3 = 0} and the complex coordinate z′ in
this plane is taken as z′ = X1 + iX2, the corresponding map O′ is (we parametrize A is in (39))

O′(A) =
1
2

⎛
⎜⎜⎜⎜⎝

αα+ ββ + γγ + δδ αβ + βα+ γδ + δγ) i(αβ − βα+ γδ − δγ) αα − ββ + γγ − δδ

αγ + βδ + γα+ δβ αδ + βγ + γβ + δα i(αδ − βγ + γβ − δα) αγ − βδ + γα− δβ

i(−αγ − βδ + γα+ δβ) i(−αδ − βγ + γβ + δα) αδ − βγ − γβ + δα i(−αγ + βδ + γα− δβ)

αα+ ββ − γγ − δδ αβ + βα− γδ − δγ i(αβ − βα− γδ + δγ) αα − ββ − γγ + δδ

⎞
⎟⎟⎟⎟⎠.

We may take advantage of this fact to determine our O(A). To do that we simply need to relate
the action of the Möbius group in the plane Πu := {X1 = 1} (in the coordinate z) with the
corresponding action on the plane Π′

u := {X3 = 0} in the coordinate z′. At this point we can
explain the reason why we have chosen z = 1

2 (x − iy). The reason for the factor 2 comes from
the fact that the plane Πu lies at distance 2 from the point of stereographic projection, while
the plane Π′

u lies at distance 1 of its corresponding stereographic point. The sign is introduced
because the basis {−e1, e2, e3} (with respect to which the point u and the coordinates {x, y}
are defined) has opposite orientation than the basis {e3, e1, e2} with respect to which the point
u′ and the coordinates {X1, X2} are built. By introducing a minus sign in z we make sure that
the transformation ψ of S2 defined by {z(p) = z′(ψ(p))} is orientation preserving (where z(p)
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and z′(p) stand for the two respective stereographic projections of S2 onto C2 ∪ {∞}). Now, a
straightforward computation shows that an orientation preserving conformal diffeomorphism
χ : S2 → S2 which in the plane Πu takes the form

z(χ(p)) =
αz(p) + β

γz(p) + δ
, αδ − βγ = 1, p ∈ S2,

has the following form in the Π′
u plane

z′(χ(p)) =
α′z′(p) + β′

γ ′z′(p) + δ′
,

where (
α′ β′

γ ′ δ′

)
= U−1

(
α β
γ δ

)
U, U :=

1
2

(
1 − i −1 + i
1 + i 1 + i

)
.

Since the map O′ is a morphisms of groups, it follows that the Lorentz transformation O(A) is
given by

O(A) = O′(A′) = O′(U)−1O′(A)O′(U)

The SO↑(1, 3) Lorentz matrix O′(U) is the rotation

O′(U) =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 0 −1
0 −1 0 0

⎞⎟⎟⎠
and we conclude that the Lorentz transformation O(A) takes the explicit form

O(A) =
1
2

⎛
⎜⎜⎜⎜⎜⎝

αα+ ββ + γγ + δδ −αα+ ββ − γγ + δδ αβ + βα+ γδ + δγ i(−αβ + βα − γδ + δγ)

−αα− ββ + γγ + δδ αα− ββ − γγ + δδ −αβ − βα+ γδ + δγ i(αβ − βα− γδ + δγ)

αγ + βδ + γα+ δβ −αγ + βδ − γα+ δβ αδ + βγ + γβ + δα i(−αδ + βγ − γβ + δα)

i(αγ + βδ − γα− δβ) i(−αγ + βδ + γα− δβ) i(αδ + βγ − γβ − δα) αδ − βγ − γβ + δα

⎞
⎟⎟⎟⎟⎟⎠
(42)

(to avoid ambiguities, recall that the Lorentz transformation defined by this matrix is Λ(eμ)
= Λν

μeν with Λν
μ the row ν and column μ).

7. Canonical form of the GCKV

We start with a definition motivated by the canonical form of skew-symmetric endomorphisms
discussed in section 2.

Definition 1 Let E2 be Euclidean space and {x, y} a Cartesian coordinate system. A GCKV
ξ is called canonical with respect to {x, y} if it has the form

ξ = (μ0 + z2)∂z +
(
μ0 + z2

)
∂z, z :=

1
2

(x − iy), μ0 ∈ C.

Equivalently, a GCKV is canonical with respect to {x, y}whenever its corresponding form (34)
has μ1 = 0 and μ2 = 2. We next characterize the class of Möbius transformations χA which
send a given GCKV into its canonical form.
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Proposition 2 Let {x, y} be a Cartesian coordinate system in E2. Let ξ be a non-trivial
GCKV and define the complex constants {μ0, μ1, μ2} such that ξ = ξ{μ} when expressed in
the complex coordinate z = (x − iy)/2 and its complex conjugate. Then χA ∈ Moeb has the
property that χA

� (ξ) is written in canonical form with respect to {x, y} if and only if

A =

(1
2

(δμ2 − γμ1)
1
2
δμ1 − γμ0

γ δ

)
,

1
2
δ2μ2 − γδμ1 + γ2μ0 = 1. (43)

Moreover, for any such A, it holds

χA
� (ξ) =

(
1
4

(
σ{μ} − iτ{μ}

)
+ z2

)
∂z +

(
1
4

(
σ{μ} + iτ{μ}

)
+ z2

)
∂z.

Proof From (40) and the fact that the canonical form has μ′
1 = 0 and μ′

2 = 2, we need to
find the most general α, β, γ, δ subject to αδ − βγ = 1 such that

−2αγμ0 + (αδ + βγ)μ1 − βδμ2 = 0, (44)

2γ2μ0 − 2γδμ1 + δ2μ2 = 2. (45)

The first can be written, using the determinant condition αδ − βγ = 1, as −2αγμ0 + (1
+ 2βγ)μ1 − βδμ2 = 0. Multiplying by δ yields

0 = −2αδγμ0 + δμ1 + β
(
2γδμ1 − δ2μ2

)
= −2αδγμ0 + δμ1 + β

(
2γ2μ0 − 2

)
= −2γμ0 + δμ1 − 2β =⇒ β =

1
2
δμ1 − γμ0, (46)

where in the second equality we used (45) and in the third one we inserted the determinant
condition. To determine α we compute

αδ = 1 + βγ = 1 +
1
2
γδμ1 − γ2μ0 =

1
2
δ (δμ2 − γμ1)

=⇒ δ

(
α+

1
2
γμ1 −

1
2
δμ2

)
= 0,

where in the third equality we used (45) to replace γ2μ0. If δ 
= 0 we conclude that
α = (1/2)(γμ1 − δμ2), and the form of A is necessarily as given in (43). If, on the other hand,
δ = 0, then the determinant condition forces γ 
= 0. Thus, equation (44) gives−2αμ′

0 + βμ1 =
0, which after using (46) implies α = −(1/2)γμ1, so (43) also follows. This proves the ‘only
if’ part of the statement. For the ‘if’ part one simple checks that β and α obtained above indeed
satisfy (44) and (45), as soon as γ, δ satisfy the determinant condition given in (43).

The second part of the proposition is immediate form the fact that 2μ0μ2 − μ2
1 is invariant

under (40). Thus, χA
� (ξ) has μ′

0 satisfying

4μ′
0 = 2μ′

0μ
′
2 − μ′2

1 = 2μ0μ2 − μ2
1 = σ{μ} − iτ{μ}. (47)

�
Corollary 2 The subgroup of SL(2,C) that leaves invariant a GCKV field in canonical form
with parameter μ0 is given by

Aμ0 =

{(
δ −γμ0

γ δ

)
, δ2 + μ0γ

2 = 1

}
.
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Proof Insert μ1 = 0 and μ2 = 2 into (43). �

Corollary 3 Given any GCKV ξ as in proposition 2, the set of elements A ∈ SL(2,C) such
that χA

� (ξ) takes the canonical form is

A 1
4 (σ{μ}−iτ{μ}) · A0

where A0 is any element of SL(2,C) satisfying (43).

Proof Fix A0 satisfying (43). Any other element A1 will satisfy (43) if and only if A1A
−1
0

leaves invariant the column vector (μ′
0, 0, 2), 4μ′

0 :=σ{μ} − τ {μ}, i.e. if and only if A1 · A0 ∈
Aμ′0

.

�

Corollary 4 Let F be a non-zero skew-symmetric endomorphism in M1,3 and let the
matrix (F) be defined by F(eμ) = Fν

μeν where {eμ} is an orthonormal basis. Define
{bx , by, ν,ω, ax , ay} so that (F) reads as in (41). Define μ0, μ1, μ2 by means of (35) and
let Λ :=O(A), where A is any of the matrices defined in proposition 2. Then, in the basis
e′ν :=Λμ

νeμ, the endomorphism F takes the canonical form (7) with σ − iτ = 2μ0μ2 − μ2
1.

In proposition 1 we showed the existence of the canonical form of F ∈ SkewEnd
(
M1,3
)
,

and this motivated the definition 1 of canonical form of GKVFs. However, it is only in corollary
4 that we have been able to (easily) find the explicit change of basis that takes F to its canonical
form. This is possible because we are dealing with low dimensions and the GCKVFs take a
very simple expression in complex coordinates of the Riemann sphere, but this is a much more
difficult problem in higher dimensions.

We can however easily derive the three-dimensional case as a simple consequence. For that
we consider, as usual, the extension F̂ ∈ SkewEnd

(
M1,3
)

of F ∈ SkewEnd
(
M1,2
)

described
before corollary 1. In the basis {e0, e1, e2, e3 :=E3}, F̂ has ay = by = ω = 0, so the quanti-
ties μ0, μ1, μ2 defined in (35) are real. In order to apply corollary 4 to find the change of
orthonormal basis {e0, e1, e2} that brings F into its canonical form we simply need to impose
that e′3 = e3, which amounts to Λ0

3 = Λ1
3 = Λ2

3 = 0 and Λ0
3 = 1. It is easy to show (recall

that α, β are expressed in terms of γ, δ in the matrix A of corollary 4) that the general solution
to the first three equations is γδ̄ = γ̄δ. The condition Λ0

3 = 1 is then

1
2
δδ̄μ2 − γδ̄μ1 + γγ̄μ0 = 1.

Multiplying by δ and using the determinant condition in (43) implies δ = δ̄, while multiplying
by γ gives γ = γ̄, and then Λ0

3 = 1 is just identical to the determinant condition so no more
consequences can be extracted. Thus all parameters α, β, γ, δ are real. Summarizing:

Corollary 5 Let F be a non-zero skew-symmetric endomorphism of M1,2 and the matrix (F)
be defined by F(ei) = F j

ie j where {ei}i=0,1,2 is an orthonormal basis. Define μ0 := (F1
3 −

F2
3)/2,μ1 := − F1

2,μ2 := − (F1
3 + F2

3). For any pair of real numbers γ, δ satisfying
δ2μ2 − 2γδμ1 + 2γ2μ0 = 2, let α := (δμ2 − γμ1)/2 and β := δμ1/2 − γμ0. Then, in the basis
e′i :=Λ j

ie j, with

Λ :=

⎛⎜⎜⎝
1
2

(
α2 + β2 + γ2 + δ2

) 1
2

(
−α2 + β2 − γ2 + δ2

)
αβ + γδ

1
2

(
−α2 − β2 + γ2 + δ2

) 1
2

(
α2 − β2 − γ2 + δ2

)
−αβ + γδ

αγ + βδ −αγ + βδ αδ + βγ

⎞⎟⎟⎠ ,
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the endomorphism F takes the canonical form (8) with σ = 2μ0μ2 − μ2
1.

8. Adapted coordinates to a GKCV

So far we have explored the action of the Möbius group on a GCKV and have found that for
any such vector, there exists a set of transformations that brings it into a canonical form. The
perspective so far has been active. We now change the point of view and exploit the previous
results to find coordinate systems in (appropriate subsets of) E2 that rectify a given (and fixed)
GKCV ξ.

Consider E2 and fix a non-trivial GCKV field ξ. Let us select a Cartesian coordinate sys-
tem {x, y} and define, as before z = (1/2)(x − iy) and z = (1/2)(x + iy). When expressed in
the {z, z} coordinate system ξ will be ξ = ξ{μ} for some triple of complex numbers {μ} =
{μ0, μ1, μ2}. We now view the Möbius transformation as a change of coordinates. Specifically,
given α, β, γ, δ complex constants satisfying αδ − βγ = 1, the quantity

ω =
αz + β

γz + δ

and its complex conjugate ω define a coordinate system on R2 \ {γz + δ = 0}. The inverse of
this coordinate transformation is, obviously,

z =
δω − β

−γω + α
. (48)

It is well-known that transformations of a manifold can be dually seen as coordinate changes
in suitable restricted coordinate patches. We will refer to (48) as a Möbius coordinate change.
With this point of view, we may express ξ in the coordinate system {ω,ω} and the duality
above implies that ξ takes the form

ξ =

(
μ′

0 + μ′
1ω +

1
2
μ′

2ω
2

)
∂ω +

(
μ′

0 + μ′
1ω +

1
2
μ′

2ω
2

)
∂ω ,

with {μ′
0, μ′

1, μ′
2} given by (40) (this can also be checked by direct computation).

We may now take {α, β, γ, δ} so that corresponding matrix A satisfies (43). It follows that
ξ takes the canonical form

ξ :=

(
1
4

(
σ{μ} − iτ{μ}

)
+ ω2

)
∂ω +

(
1
4

(
σ{μ} + iτ{μ}

)
+ ω2

)
∂ω.

By lemma 3, the vector ξ⊥ defined by ξ⊥ := ξ{iμ} is a GCKV orthogonal to ξ everywhere, with

the same pointwise norm as ξ and satisfying [ξ, ξ⊥] = 0. In particular ξ and ξ⊥ are linearly
independent except at points where both vanish identically. As a consequence, it makes sense
to tackle the problem of finding coordinates that rectify ξ by trying to determine a coordinate
system {v1, v2} (on a suitable subset of R2) such that

ξ = ∂v1 , ξ⊥ = ∂v2 .

Assume that we have already transformed into the coordinates {ω,ω} where ξ (and also ξ⊥)
take their canonical forms

ξ =

(
1
4

Qe−2iθ + ω2

)
∂ω + c.c, ξ⊥ =

(
i
4

Qe−2iθ + iω2

)
∂ω + c.c (49)
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where we have defined the real constants Q � 0 and θ ∈ [0, π) by

σ{μ} − iτ{μ} = Q e−2iθ (50)

and where c.c. stands for complex conjugate of the previous term. We are seeking a coordinate
system {ζ, ζ} defined by

ζ :=
1
2

(v1 + iv2)

such that

ξ − iξ⊥ = ∂ζ

(this is because∂ζ = ∂v1 − i∂v2 ). Since ξ − iξ⊥ = 2
(

1
4 Q e−2iθ + ω2

)
∂ω the coordinate change

musty satisfy the ODE

dζ
dω

=
1

2ω2 + Q
2 e−2iθ

.

This equation can be integrated immediately. The result is

ζ(ω) = ζ0 +
−i eiθ

2
√

Q
ln

(
ω − i

√
Q

2 e−iθ

ω + i
√

Q
2 e−iθ

)
⇐⇒

ω(ζ; ζ0) =
i
√

Q e−iθ

2
1 + e2i

√
Qe−iθ(ζ−ζ0)

1 − e2i
√

Qe−iθ(ζ−ζ0)
, (51)

where ζ0 is an arbitrary complex constant. These expressions include the case Q = 0 as a limit.
Explicitly

ζ − ζ0 = − 1
2ω

⇐⇒ ω = − 1
2(ζ − ζ0)

. (52)

Since the logarithm is a multivalued complex function, one needs to be careful concerning the
domain and range of this coordinate change. In the {ω,ω} plane, the vector field ξ vanishes
at the two points (cf (49)) ω = ±i

√
Q

2 e−iθ (which degenerate to the point at the origin when
Q = 0). It is clear that neither of these points will be covered by the {ζ, ζ} coordinate system.
The case Q = 0 is very simple because, from (52), it is clear that the {ζ, ζ} coordinate system
covers the whole {ω,ω} plane except the origin. Since the point at infinity in the ω-plane is
sent to the point ζ0 in the ζ-plane we conclude that the {ζ, ζ} coordinate covers the whole
Riemann sphere except the single point where ξ vanishes.

When Q 
= 0, the situation is more interesting. The reason in the multivaluedness of the
logarithm. This suggests that the coordinate change may in fact define a larger manifold that
covers the original one. In order to discuss this, let is introduce the auxiliary function

z :=
ω − i

√
Q

2 e−iθ

ω + i
√

Q
2 e−iθ

.

This is a Möbius transformation, so it maps diffeomorphically C ∪ {∞} onto itself. The two
zeroes of ξ are mapped respectively to the origin and infinity in the z variable. Since (51)
can be written as ζ − ζ0 = −i eiθ ln(z)/(2

√
Q) and ln(z) = ln |z|+ i(θ(z) + 2πm), m ∈ N,

a single value of z may be mapped to an infinite number of points depending on the branch
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on the branch of logarithm one takes. One may decide to restrict the {ζ, ζ}-domain to be
the band B := {ζ ∈ C : Im(2i

√
Q e−iθ(ζ − ζ0)) ∈ (0, 2π)} and then the coordinate change ζ(z)

defines a diffeomorphism between C \ {z = (r, 0), r � 0} into B. Let ∂1B be the con-
nected component of ∂B defined by Im(2i

√
Q e−iθ(ζ − ζ0)) = 0 and ∂2B the other component

∂2B := {Im(2i
√

Q e−iθ(ζ − ζ0)) = 2π}, then the semi-line {z = r}, with r real and positive
and θ(z) ∈ {0, 2π}, is mapped to the respective points ζ1(r) = −ieiθ ln(r)/(2

√
Q) ∈ ∂1B and

ζ2(r) = −ieiθ ln(r)/(2
√

Q) + π eiθ/
√

Q ∈ ∂2B. This shows that these two boundaries are to
identified by means of the translation defined by the shift

ζt := π eiθ/
√

Q. (53)

The topology of the resulting manifold is R× S1. This is in agreement with the fact that ξ
vanishes at precisely two points of the Riemann sphere, and the complement of two points on
a sphere is indeed a cylinder. The alternative is to let ζ take values in all C and consider the
inverse map

z(ζ) := e2i
√

Qe−iθ(ζ−ζ0).

It is clear that this defines an infinite covering of the z-punctured complex plane C \ {0}. As
described above, the fundamental domain of this covering is the (open) band B limited by the
lines (see figure 1, where we have set ζ0 = 0 for definiteness)

ζ1(s) = ζ0 +
−i eiθ s
2
√

Q
, s ∈ R,

ζ2(s) = ζ0 +
−i eiθs
2
√

Q
+ ζt, s ∈ R.

The ζ-complex plane therefore corresponds to the complete unwrapping of the cylinder, i.e.
to its universal covering. In the {ζ, ζ} coordinate system we have

ξ =
1
2

(
∂ζ + ∂ζ

)
, ξ⊥ =

i
2

(
∂ζ − ∂ζ

)
,

so ξ points along the real axis and ξ⊥ into the imaginary axis. The angle of the boundaries
∂1B (and ∂2B) with the real axis is π

2 + θ. For generic values of θ it follows that the integral
lines of ξ descend to the quotient B (with the boundaries identified as above) as open lines that
asymptote to the two points at infinity along the band (as in figure 2). Observe that these two
asymptotic values correspond to z = 0 or z = ∞, which correspond to the two zeros of ξ. Thus,
the integral lines of ξ start asymptotically at one of its zeros and approaches asymptotically
the other zero. Along the way, the integral lines circle each zero an infinite number of times
(because the projection to the lines parallel to the real axis descend to the quotient in such a
way that they intersect the boundaries of B an infinite number of times). The only exception
to this behaviour is when θ = π

2 or when θ = 0 (recall that by construction θ ∈ [0, π)). In the
former case, the integral lines of ξ, never leave the fundamental domain. This means that the
curves asymptote to the two zeros of ξ and they never encircle them along the way. The case
θ = 0 corresponds to the situation when the projection of the integral lines of ξ define closed
curves on B with the boundaries identified. This is the situation when the integral curves of ξ
in the original {ω,ω} plane are topological circles (which degenerate to points at the zeroes of
ξ).

It is interesting to see how the limit Q = 0 is recovered in this setting. The translation vector
that identifies points in the boundary ∂1B with points in the boundary ∂2B diverges as Q → 0.
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Figure 1. Domain of the complex coordinate ζ = 1
2 (v1 + iv2) adapted to ξ = ∂v1 and

ξ⊥ = ∂v2 . The parameters Q and θ determine the width and tilt of the band respectively.
The factor two in the distance between the boundaries (compare (53)) arises because
ζ = 1

2 (v1 + iv2).

Thus, the band B becomes larger and larger until it covers the whole ζ-plane in the limit.
On other words, the ζ-coordinate is no longer a covering of the original ω-coordinate. In the
limit, ξ vanishes at only one point in the ω-plane (the origin) which is sent to infinity in the
ζ-coordinates. It is by the process of the band B becoming wider and wider that the limits at
infinity along the band, which correspond to two points for any non-zero value of Q, merge into
a single point when Q = 0. The process also explains in which sense the parameter θ, which
measures the inclination of the band B becomes irrelevant in the limit Q = 0, in agreement
with the fact that (50) lets θ take any value when σ{μ} − iτ {μ} (and hence also Q) vanishes.

In all the expressions above we have maintained the additive integration constant ζ0, instead
of setting it to zero as the simplest choice. The reason is that ζ0 can be directly connected with
the freedom one has in performing the coordinate change (48) that brings ξ into its canonical
form. To understand this we simply note that, from (51) one can check that the following
identity holds

ω(ζ; ζ0) =
cos
(√

Q e−iθζ0
)
ω(ζ; 0) −

√
Q

2 e−iθ sin
(√

Q e−iθζ0
)

2√
Q eiθ sin

(√
Q e−iθζ0

)
ω(ζ; 0) + cos

(√
Q e−iθζ0

) .
Thus, the relation between ω(ζ; 0) and ω(ζ; ζ0) is a Möbius transformation defined by the
matrix ⎛⎜⎝ cos

(√
Q e−iθζ0

)
−
√

Q
2

e−iθ sin
(√

Q e−iθζ0

)
2√
Q

eiθ sin
(√

Q e−iθζ0

)
cos
(√

Q e−iθζ0

)
⎞⎟⎠ .
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Figure 2. Integral lines of ξ (dashed line). The points joint by arrows are identified by
the translation defined by (53).

It is immediate to check that, letting ζ0 take any value, one runs along the full subgroupA 1
4 Qe−2iθ

defined in corollary 2. Thus, by corollary 3, the freedom in performing the coordinate change
(48) that transforms ξ into its canonical form can be absorbed into the additive constant ζ0, and
vice-versa. Having understood this, we will set ζ0 = 0 from now on.

So far we have considered ξ without referring to any specific metric. We now endow R2

coordinated by {x, y} (or {z, z}) with the following class of metrics. Let u := {u0, u1, u2, u3} ∈
R4, u 
= 0, and define

gu :=
1

Ω2
u

(
dx2 + dy2

)
=

1

Ω2
u

4dzdz,

Ωu := u0 + u1 + u2x + u3y +
1
4

(u0 − u1)(x2 + y2)

= u0(1 + zz) + u1(1 − zz) + u2(z + z) + u3i(z − z). (54)

The Gauss curvature of gu is κu := u2
0 − u2

1 − u2
2 − u2

3. Since g−u = gu, there is a sign freedom
in u that we must keep in mind. When κu � 0, then it must be that u0 
= 0 and the sign freedom
may be fixed by the requirement u0 > 0. However, this is no longer possible when κu < 0.

Observe that g{u0=
1
2 ,u1=

1
2 ,u2=0,u3=0} = gE := 4dzdz. Under a Möbius coordinate change (48),

the metric gu takes the form

gu =
1

Ω2
u′

4dωdω,

Ωu′ = u′
0(1 + ωω) + u′

1(1 − ωω) + u′
2(ω + ω) + u′

3i(ω − ω),

where the constants u′ := {u′
0, u′

1, u′
2, u′

3} are obtained from u = {u0, u1, u2, u3} by the transfor-
mation
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ε

⎛
⎜⎜⎜⎜⎜⎜⎝

u′
0

u′
1

u′
2

u′
3

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

αα+ ββ + γγ + δδ αα− ββ + γγ − δδ −αβ − βα− γδ − δγ i(αβ − βα+ γδ − δγ)

αα+ ββ − γγ − δδ αα− ββ − γγ + δδ −αβ − βα+ γδ + δγ i(αβ − βα− γδ + δγ)

−(αγ + βδ + γα++δβ) −αγ + βδ − γα+ δβ αδ + βγ + γβ + δα i(−αδ + βγ − γβ + δα)

i(−αγ − βδ + γα+ δβ) i(−αγ + βδ + γα− δβ) i(αδ + βγ − γβ − δα) αδ − βγ − γβ + δα

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Λ(α,β,γ,δ)

⎛
⎜⎜⎜⎜⎜⎜⎝

u0

u1

u2

u3

⎞
⎟⎟⎟⎟⎟⎟⎠

where ε := ± 1. This sign reflects the impossibility (in general) of choosing between u and −u.
One can check that Λ(α,β,γ,δ) = O(A−1)T (42) where A is as in (39) and T denotes transpose.
It follows that Λ(α, β, γ, δ) defines a morphism of groups between SL(2,C) and SO↑(1, 3) and
that u transforms as the components of a covector in the Minkowski spacetime. Also observe
that when u is timelike or null (i.e. κu � 0), the choice u0, u′

0 > 0 selects ε = 1.
In order to express the metric in the coordinates {v2, v2} we need to compute the functions

ωω, ω + ω and i(ω − ω) in terms of these variables. For notational simplicity we introduce the
auxiliary quantities

h1 := v1 cos θ + v2 sin θ, h2 := v2 cos θ − v1 sin θ. (55)

From (51) with ζ0 = 0, a straightforward computation that uses basic trigonometry yields

ωω =
Q
(

cosh
(√

Qh2
)
+ cos

(√
Qh1
))

4
(
cosh
(√

Qh2
)
− cos

(√
Qh1
)) ,

ω + ω =

√
Q sin θ sinh

(√
Qh2

)
−
√

Q cos θ sin
(√

Qh1

)
cosh
(√

Qh2
)
− cos

(√
Qh1
) ,

i (ω − ω) = −
√

Q cos θ sinh
(√

Qh2
)
+
√

Q sin θ sin
(√

Qh1
)

cosh
(√

Qh2
)
− cos

(√
Qh1
) .

Since dω = dω
dζ dζ = 2(ω2 + Q

4 e−2iθ)dζ, determining the line-element dω dω requires express-

ing |ω2 + Q/4e−2iθ|2 in terms of {v1, v2}. The result is obtained by a direct computation,

4

(
ω2 +

Q
4

e−2iθ

)(
ω2 +

Q
4

e2iθ

)
=

Q2(
cosh(

√
Qh2) − cos(

√
Qh1)
)2 .

Let us introduce the functions

f+(v1, v2) :=
1
4

(
cosh(

√
Qh2) + cos(

√
Qh1)
)

,

f−(v1, v2) :=
1
Q

(
cosh(

√
Qh2) − cos(

√
Qh1)
)

,

f2(v1, v2) :=
1√
Q

(
sin θ sinh(

√
Qh2) − cos θ sin(

√
Qh1)
)

,

f3(v1, v2) :=
−1√

Q

(
cos θ sinh(

√
Qh2) + sin θ sin(

√
Qh1)
)

, (56)

so that we may express

ωω =
f+
f−

, ω + ω =
f2

f−
, i (ω − ω) =

f3

f−
.
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All these function admit smooth limits at Q → 0, with corresponding expressions

f+(v1, v2) =
1
2

,

f2(v1, v2) = −v1,

f3(v2, v2) = −v2,

f−(v1, v2) =
1
2

(
v2

1 + v2
2

)
.

For Q 
= 0, the functions {f+, f−, f2, f3} are all periodic in the variable h1 with periodicity
2π/

√
Q. This corresponds to the fact that the ζ-plane is a covering of the ω-plane, with the

identification defined by the translation ζ t.
Thus, in the adapted coordinates {v1, v2} where ξ = ∂v1 and ξ⊥ = ∂v2 , the metric

g0 := 4 dω dω takes the form

g0 =
4
f 2
−

dζ dζ =
Q2(

cosh
(√

Qh2
)
− cos

(√
Qh1
))2 (dv2

1 + dv2
2

)
.

Hence, the metric gu becomes

gu =
1(

(u′
0 − u′

1) f+ + (u′
0 + u′

1) f− + u′
2 f2 + u′

3 f3
)2 (dv2

1 + dv2
2

)
:=

1

Ω̂2(v1, v2)

(
dv2

1 + dv2
2

)
. (57)

We may now summarize the results obtained so far concerning GCKV.

Theorem 1 Let E2 be the euclidean plane and {x, y} be Cartesian coordinates. Let ξ be a
GCKV in this space and define the complex constants {μ0, μ1, μ2} by means of the expression
of ξ given by (34) in the complex coordinates z = 1

2 (x − iy), z = 1
2 (x − iy). Define

α =
1
2

(δμ2 − γμ1) , β =
1
2
δμ1 − γμ0,

where γ and δ are any pair of complex constants satisfying

1
2
δ2μ2 − γδμ1 + γ2μ0 = 1.

Then ξ takes its canonical form (cf proposition 2)

ξ =
(
μ′

0 + ω2
)
∂ω +

(
μ′

0 + ω2
)
∂ω , 4μ′

0 := 2μ0μ2 − μ2
1,

in the coordinate system {ω,ω} defined by ω = (αz + β)/(γz + δ). Any other coordinate
system {ω′,ω′} where ξ is in canonical form is related to {ω,ω} by (cf corollary 2)

ω′ =
δ′ω − γ ′μ′

0

γ ′ω + δ′
, δ′2 + μ′

0γ
′2 = 1.

In addition, the real coordinates {v1, v2} defined by ζ := v1 + iv2 together with (51) and
4μ′

0 := σ{μ} − iτ {μ} = Qe−2iθ are adapted to ξ and ξ⊥ := ξ{iμ} (cf lemma 3), namely ξ = ∂v1

and ξ⊥ = ∂v2 . Moreover, the class of metrics (54) is written in adapted coordinates as (57).
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We mentioned above that the freedom in the coordinate change that brings ξ into its canon-
ical form can be translated into the freedom of a constant shift in the coordinates {v1, v2}.
Given {ṽ1, ṽ2} let h̃1 and h̃2 by defined exactly by the same expression as (55) but with

{v1, v2} replaced by {ṽ1, ṽ2}. Similarly, we introduce four functions
{

f̃ +(ṽ1, ṽ2), f̃ −(ṽ1, ṽ2),

f̃ 2(ṽ1, ṽ2), f̃ 3(ṽ1, ṽ2)
}

by the same definition as (56), with {h1, h2} replaced by {h̃1, h̃2}. Let

us now consider the coordinate change{
v1 = ṽ1 − cos θ 	1 + sin θ 	2

v2 = ṽ2 − sin θ 	1 − cos θ 	2
(58)

where 	1 and 	2 are constants. Then h1 = h̃1 − 	1 and h2 = h̃2 − 	2 and we may relate the
functions {f} written in terms of {ṽ1, ṽ2} with the functions { f̃ }. The result is

⎛
⎜⎜⎜⎜⎝

2 f+
2 f−
f2

f3

⎞
⎟⎟⎟⎟⎠

ṽ1,ṽ2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

(Coh + Co)
Q
8

(Coh − Co) −
√

Q
2

Si

√
Q

2
Sih

2
Q

(Coh − Co)
1
2

(Coh + Co)
2√
Q

Si
2√
Q

Sih

1√
Q

(cos θ Si − sin θ Sih) −
√

Q
4

(cos θ Si + sin θ Sih) cos θ Co − sin θ Coh

1√
Q

(cos θ Sih + sin θ Si)

√
Q

4
(cos θ Sih − sin θ Si) sin θ Co cos θ Coh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos θ sin θ

0 0 − sin θ cos θ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

2 f̃ +

2 f̃ −

f̃ 1

f̃ 2

⎞
⎟⎟⎟⎟⎠

:=W(	1, 	2)

⎛
⎜⎜⎜⎜⎝

2 f̃ +

2 f̃ −

f̃ 1

f̃ 2

⎞
⎟⎟⎟⎟⎠

, (59)

where for notational simplicity we have introduced Co = cos(
√

Q	1), Coh = cosh(
√

Q	2),
Si = sin(

√
Q	1), Sih = sinh(

√
Q	2). If we compare W(	1, 	2) and T (λ2,λ3, ε) we see that the

matrices are identical after setting

λ2 =
1√
Q

sin(
√

Q	1), λ3 =
1√
Q

sinh(
√

Q	2), ε
√

1 − Qλ2
2 = cos(

√
Q	1). (60)

Of course this does not happen by chance. We have seen before that the shift in ζ corre-
sponds to the subgroup of Möbius transformation that leaves the canonical form of ξ invariant.
By the relationship between GCKV and skew-symmetric endomorphism in M1,3 described
in section 6, this Möbius subgroup corresponds to the set of orthochronous Lorentz trans-
formations that leave the skew-symmetric endomorphism invariant, and this is precisely the
group {T (λ2,λ3, ε)}. With the choice we have made of the shift constants (58), the relation-
ship between the parameters {	1, 	2} and {λ2,λ3} take the remarkably simple form given by
(60). Note that the map (	1, 	2) → (λ2,λ3, ε) is again a covering. If we let 	2 be periodic with
periodicity 2π√

Q , the map is a bijection. Observe that, to make the comparison work, we have
inserted a factor 2 in front of f± in the column vector (59). The reason is easy to understand. The
constants {u′

0, u′
1, u′

2, u′
3} in the conformal factor Ω̂ in the metric gu define a Lorentz covector

of length −u′2
0 + u′2

1 + u′2
2 + u′2

3 = −(u′
0 + u′

1)(u′
0 − u′

1) + u′2
2 + u′2

3 . This means that, viewed
as vectors in a Lorentz space, the basis {f+, f−, f2, f3} is semi-null, but with scalar product
〈 f+, f−〉 = 1

2 However, the transformation law T (λ2,λ3, ε) was written in a semi-null basis
{	, k, e2, e3} with normalization 〈	, k〉 = −2, which is precisely the normalization of the basis
{2f+, 2f−, f2, f3}.
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Having obtained the transformation law for {f+, f−, f2, f3} it follows immediately that under
the coordinate transformation (58), the metric gu becomes

gu =
1(

(ũ0 − ũ1) f̃ + + (ũ0 + ũ1) f̃ − + ũ2 f̃ 1 + ũ3 f̃ 2

)2

(
dṽ2

1 + dṽ2
2

)

where the constants {ũ0, ũ1, ũ2, ũ3} are given by⎛⎜⎜⎜⎜⎜⎝
1
2

(ũ0 − ũ1)

1
2

(ũ0 + ũ1)

ũ2

ũ3

⎞⎟⎟⎟⎟⎟⎠ = ε(W(	1, 	2))T

⎛⎜⎜⎜⎜⎜⎝
1
2

(
u′

0 − u′
1

)
1
2

(
u′

0 + u′
1

)
u′

2
u′

3

⎞⎟⎟⎟⎟⎟⎠
(the reason for the sign ε is the same as discussed before).

9. Applications

9.1. Killing vectors of gu

Our aim is to determine under which conditions ξ is a Killing vector of the metric gu. We will
address the question by analyzing the situation in the adapted coordinates. Since ξ = ∂v1 , ξ will
be a Killing vector of gu if and only if the function Ω̂ satisfies ∂v1Ω̂ = 0. It is straightforward
to check that

∂v1 f+ =
Q
4

(cos(2θ) f2 + sin(2θ) f3) ,

∂v1 f− = − f2,

∂v1 f2 = −2 f+ +
Q
2

cos(2θ) f−,

∂v1 f3 =
Q
2

sin(2θ) f−,

which imply

∂v1Ω̂ = −2u′
2 f+ +

Q
2

(
cos(2θ)u′

2 + sin(2θ)u′
3

)
f−

+

(
Q
2

cos(2θ)u− − 2u′
+

)
f2 +

Q
2

sin(2θ)u′
− f3,

where we have set u′
± := 1

2 (u′
0 ± u′

1). The functions {f+, f−, f2, f3} are linearly independent,
so this derivative will vanish if and only if each coefficient vanishes. If Qsin(2θ) 
= 0, it is
immediate that the only solution is u′

+ = u′
− = u′

2 = u′
3 = 0, which is not possible for a metric

gu. Thus, a necessary condition for ξ to be a Killing vector of (any) gu is that the invariant (see
(50)) σ{μ} − iτ {μ} be real (i.e. τ {μ} = 0). When Q 
= 0, the condition sin(2θ) = 0 is θ ∈ {0, π

2 }
(recall that θ ∈ [0, π) by construction). To cover all cases at once we set cos θ = ε̂ and sin θ = 1
− ε̂, with ε̂2 = ε̂. Then cos(2θ) = 2ε̂− 1 (this choice is also valid when Q = 0 because θ can
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be fixed to any value). Then

∂v1Ω̂ = 0 ⇐⇒ (u′
−, u′

+, u′
2, u′

3) = s1

(
1,

Q
4

(2ε̂− 1), 0, 0

)
︸ ︷︷ ︸

w1

+ s2(0, 0, 0, 1)︸ ︷︷ ︸
w2

, s1, s2 ∈ R.

The Lorentzian norm of this vector is −4u′
+u′

− + u′2
2 + u′2

3 = −(2ε̂− 1)Qs2
1 + s2

2. Under the
constant shift given by 	1, 	2, the two-dimensional vector space spanned by w1 and w2 remains
invariant, and the vector s1w1 + s2w2 transforms to s̃1w2 + s̃2w3 with

(
s̃1

s̃2

)
= ε

⎛
⎜⎝ ε̂ cosh(

√
Q	2) + cos(

√
Q	1)(1 − ε̂)

1√
Q

(
sinh(

√
Q	2)ε̂+ sin(

√
Q	1)(1 − ε̂)

)
√

Q
(

sinh(
√

Q	2)ε̂− sin(
√

Q	1)(1 − ε̂)
)

ε̂ cosh(
√

Q	2) + cos(
√

Q	1)(1 − ε̂)

⎞
⎟⎠

(
s1

s2

)
.

This transformation leaves the norm −(2ε̂− 1)Qs2
1 + s2

2 invariant (as it must) and defines a
group which is one-dimensional when Q 
= 0 and two-dimensional when Q = 0. Thus, when
transforming the vector u into the original coordinate system {z, z} we may ignore the action
of the invariance group that leaves the canonical form of ξ invariant provided we let u take
all non-zero values in the vector space span {w1,w2}. We may summarize the result in the
following theorem.

Theorem 2 Given a non-identically zero GCKV ξ in two-dimensional Euclidean space and
let {μ} := {μ0, μ1, μ2} be the set of parameters such that ξ = ξ{μ} in the coordinate system
{z, z}. Let U ⊂ R4 \ {0} be defined by the property that for all u ∈ U, ξ is a Killing vector of
the metric gu (defined in (54)). Then

• If 2μ0μ2 − μ2
1 /∈ R then U = ∅.

• If 2μ0μ2 − μ2
1 ∈ R, let δ, γ be any pair of complex numbers satisfying

1
2
δ2μ2 − γδμ1 + γ2μ0 = 1

and set α = 1
2 (δμ2 − γμ1) and β = 1

2δμ1 − γμ0. Then u ∈ U if and only if

⎛⎜⎜⎝
u0

u1

u2

u3

⎞⎟⎟⎠ = O(A)T

⎛⎜⎜⎜⎜⎜⎜⎝
s1

(
1
4

(2μ0μ2 − μ2
1) + 1

)
s1

(
1
4

(2μ0μ2 − μ2
1) − 1

)
0
s2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where (s1, s2) ∈ R2 \ {0}, A is the matrix (39) and O(A) was defined in (42).

Moreover, such gu has constant curvature κu given by

κu = s2
1(2μ0μ2 − μ2

1) − s2
2.

Proof We only need to check that w1 = (1, 1
4 (2μ0μ2 − μ2

1), 0, 0), This is an immediate con-
sequence of the definitions (50) and (47), which in the case cos θ = ε̂ and sin θ = 1 − ε̂ imply

Q (2ε̂− 1) = 2μ0μ2 − μ2
1.

�
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One may wonder why this problem has no been addressed in the original coordinate system
{z, z}. The Lie derivative of a metric gΨ := 4Ψ−2dz dz along ξ{μ} (given by (34)) is

£ξ{μ}gΨ =
(
−2ξ{μ}(Ψ) +Ψ (μ1 + μ1 + μ2z + μ2z)

)
gΨ.

Thus ξ{μ} is a Killing vector of gu if and only if

−2ξ{μ}(Ωu) +Ωu (μ1 + μ1 + μ2z + μ2z) = 0.

The computation gives a polynomial in {z, z} of degree two. Equating each coefficient to zero,
one finds that the conditions that need to be satisfied can be written in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ν −ax +
bx

2
−ay +

by

2

−ν 0 −ax −
bx

2
−ay −

by

2

−ax +
bx

2
ax +

bx

2
0 −ω

−ay +
by

2
ay +

by

2
ω 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
−u0

u1

u2

u3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ , (61)

where we have expressed {μ} in terms of its real and imaginary parts by means of (35). Recall-
ing the relationship between GCKV ξ and skew-symmetric endomorphisms Fξ we conclude
that ξ{μ} is a Killing vector of gu if and only if the non-zero Lorentz vector (−u0, u1, u2, u3) lies
in the kernel of Fξ (observe that this vector is obtained from the covector u by raising indices
with the Minkowski metric). Being skew-symmetric and not identically zero, Fξ can only have
rank two or four, so in order to admit a non-trivial kernel, the rank must be two. This corre-
sponds to the condition τ{μ} = 0 ⇔ Im(2μ0μ2 − μ2

1) = 0. So, the kernel is two-dimensional,
which recovers the statement in theorem 2 that the set U ∪ {0} is a two-dimensional vector
space. Thus, the problem becomes geometrically very neat in the original coordinate sys-
tem. However, in theorem 2 we have been able to determine explicitly the vector subspace
U ∪ {0} (equivalently the kernel of Fξ , after index raising) in a way that covers all cases at
once. It is not so clear how to achieve the same by a direct attempt of solving (61) in such
a way that the solution covers all possible values of {bx , by, ν,ω, ax , ay} under the restriction
bxay − byax + νω = 0 (namely Im(2μ0μ2 − μ2

1) = 0).
The issue addressed in theorem 2 is to determine for which metrics gu a given GCKV is

Killing. A complementary problem is to fix gu and determine all GCKV which are Killings
of gu. This problem may be approached in the language of skew-symmetric endomorphisms.
A skew-symmetric endomorphism F in M1,3 of rank two is necessarily of the form F = q1 ⊗
q2 − q2 ⊗ q1 where q1 and q2 are linearly independent Lorentz vectors and boldface denote
the metrically related one-form. A vector u lies in the kernel of F if and only if it is orthog-
onal to q1 and q2. Thus, the set of Killing vectors of gu is obtained from all skew-symmetric
endomorphisms

Fu⊥ := {F = q1 ⊗ q2 − q2 ⊗ q1; span{q1, q2} = u⊥}.

where u⊥ stands for the set of vectors in the kernel of the covector (u0, u1, u2, u3). We do
not attempt to find an explicitly parametrization of all Killing vectors of gu that covers at
once all possible choices of u (this problem does not appear to be simple either in terms of
endomorphisms, or by using canonical forms of ξ).
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9.2. Transverse and traceless and Lie constant tensors on E2

Transverse and traceless (TT) symmetric two-covariant tensors, namely, tensors Dαβ = Dβα

satisfying (indices are raised with a metric g and ∇ is the corresponding Levi-Civita connec-
tion)

∇αDαβ = 0 (transverse), Dα
α = 0 (traceless)

play a prominent role in General Relativity, in several circumstances. For example, they are
fundamental for the construction of initial data in spacelike slices with prescribed regularity
at spacelike infinity [5] or black hole initial data [2]. Another example is the free data at null
infinity for Λ-vacuum spacetimes with positive cosmological constant (see the original work
[7] or more modern reviews [8, 9]). In this setup, an interesting subclass that arises when the
spacetime admits Killing vectors is the subclass of TT tensors which satisfy the so-called KID
equation [21]. In dimension n, this equation is

£ξDαβ +
n − 2

n
(divg ξ)Dαβ = 0,

where ξ is a CKV of g and £ξ , divgξ stand respectively for the Lie derivative along ξ and the
divergence of ξ with respect to g. In dimension n = 2 the general solution of (local) TT tensors
satisfying the KID equation can be explicitly solved. Although this dimension is not particu-
larly interesting from a physical point of view, there are several motivations for presenting the
result. Firstly, dimensional reduction is a useful tool in many geometric problems, so it is not
unlikely that the case of dimension two may find applications in higher dimensions. Also, the
n = 2 case may serve as a toy model to address the (much more difficult) problem in higher
dimensions. In addition, the solution we find turns out to admit an interesting generalization
in arbitrary dimension. And lastly, it is remarkable, that the problem is so simple in dimension
n = 2 that its general solution can be explicitly given.

A key property of the TT conditions and of the KID equations is their conformal covariance.
If Dαβ is a TT tensor with respect to g then Ψ2−nDαβ is a TT tensor with respect to Ψ2g.
Also, if D satisfies the KID equation for g, then Ψ2−nD also satisfies the KID equation for
Ψ2g. In dimension n = 2 one actually has conformal invariance. Since all two-dimensional
metrics are locally conformal to the flat metric, and we are interested in solving the (more
general) local problem, we may assume that g = 4dzdz. As already mentioned, a vector field
ξ is conformal of this metric if and only if ξ = f (z)∂z + f (z)∂z. We expand D = Dzzdz2 +
Dzzdz2 + 2Dzzdzdz. The condition of being traceless is Dzz = 0 and D real requires Dzz = Dzz,
With these restrictions, the transverse equations take the following explicit and simple form

∂zDzz = 0, ∂zDzz = 0,

so Dzz is a holomorphic function of z. Imposing TT as well as the reality condition, the KID
equations read

f
dDzz

dz
+ 2Dzz

d f
dz

= 0,

which integrates to Dzz =
q
f 2 , q ∈ C. Writing q = q1 + iq2, with real q1, q2, we conclude

that the most general (real) TT tensor that satisfies the KID equation is a linear combination of
(we add the factor 4 for convenience)

D1 :=
1
4

(
1
f 2

dz2 +
1

f 2
dz2

)
, D2 =

i
4

(
1

f 2
dz2 − 1

f 2
dz2

)
.
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These expressions are valid in the coordinate system {z, z}. We are interested in covariant
expressions that are valid in any coordinate system, and are explicitly invariant under conformal
transformations. To achieve this, we introduce the vector field

ξ⊥ := i
(

f ∂z − f ∂z

)
. (62)

This is everywhere orthogonal to ξ and has the same norm at every point. If the zeros of ξ do
not separate the manifold, these two properties define ξ⊥ in terms of ξ uniquely except for a
global sign. If the zeroes of ξ separate the manifold, ξ⊥ is still uniquely defined (up to a sign)
if one adds the condition that ξ⊥ is a CKV of g (which (62) clearly is). Thus, we may speak of
ξ⊥ unambiguously (up to global sign), once ξ has been fixed. Next we note that, in the {z, z}
coordinate system and with respect to the metric gE := 4dzdz we have

ξ = 2 f dz + 2 f dz, |ξ|2gE
:= gE(ξ, ξ) = 4 f f ,

ξ⊥ = 2i f dz − 2i f dz, |ξ⊥|2gE
= 4 f f

and then we may write

D1 =
1

|ξ|4gE

(
ξ ⊗ ξ − 1

2
|ξ|2gE

gE

)
,

D2 =
1

2|ξ|4gE

(
ξ ⊗ ξ⊥ + ξ⊥ ⊗ ξ

)
.

These expressions are obviously coordinate independent and also conformally invariant. Thus,
D1 and D2 take this form also for the original metric g. Notice that at the fixed points of ξ, i.e.
those points where ξ vanishes, the general solution D = c1D1 + c2D2 for c1, c2 ∈ R diverges
unless c1 = c2 = 0. This follows from the fact that the square norm of D is

DαβDαβ =
1

2|ξ|4gE

(c2
1 + c2

2),

which is regular at the fixed points of ξ only if c1 = c2 = 0. Summarizing, we have proved the
following theorem.

Theorem 3 Let (M, g) be a two-dimensional Riemannian manifold and ξ a CKV of g. Let
D be a (real) TT symmetric, two-covariant tensor that satisfies the KID equation with respect
to ξ. Then D is a linear combination (with constants) of

Dξ :=
1
|ξ|4g

(
ξ ⊗ ξ − 1

2
|ξ|2gg

)
,

Dξ,ξ⊥ :=
1

2|ξ|2g|ξ⊥|2g
(
ξ ⊗ ξ⊥ + ξ⊥ ⊗ ξ

)
,

where ξ⊥ is defined as described above and ξ := g(ξ, ·), ξ⊥ := g(ξ⊥, ·). Moreover, the only
solution regular at any of the fixed points of ξ is the zero tensor.

The tensor Dξ is the TT tensor (specialized to dimension n = 2) built canonically out of the
CKV ξ mentioned in the introduction and which plays an important role in the characterization
result of Ker-de Sitter in dimension n = 3 obtained in [17]. As far as we know, the tensor Dξ,ξ⊥

has not appeared in the literature yet. As for Dξ, it admits an extension to higher dimensions
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by simply replacing ξ by any CKV η that commutes with ξ. The details of this extension will
be presented in our subsequent work in higher dimensions [18].
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