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Abstract

In this thesis we study the asymptotic Cauchy problem of general relativity with positive
cosmological constant in arbitrary (n + 1)-dimensions. Our aim is to provide geometric
characterizations of Kerr-de Sitter and related spacetimes by means of their initial data
at conformally flat (n-dimensional) .#. In our setting, the conformal Killing vector fields
(CKVFs) of . become very relevant because of their relation with the symmetries of
the spacetime.

In the first part of the thesis, we study the CKVFs & of conformally flat n-metrics -,
as well as their equivalence classes [¢] up to conformal transformations of v. We do
that by analyzing in detail SkewEnd(Mb""*1), the skew-symmetric endomorphisms of
the Minkowski space M1 The cases n = 2,3 are worked out in special detail. A
canonical form that fits every element in SkewEnd(M!"*!) is obtained along with several
applications. Of relevance for the study of asymptotic data is that it gives a canonical
form for CKVFs which allows us to determine the conformal classes [£] and study the
quotient topology associated to these clases. In addition, the canonical form for CKVFs
is applied to the n = 3 case to obtain a set of coordinates adapted to an arbitrary
CKVEF. With these coordinates we provide the set of asymptotic data which generate
all conformally extendable spacetimes solving the (A > 0)-vacuum field equations and
admitting two commuting symmetries, one of which axial. From this, a characterization
of Kerr-de Sitter and related spacetimes follows. Our study provides in principle a
good arena to test definitions of mass and angular momentum for positive cosmological
constant.

In the second part of this thesis we focus in the asymptotic Cauchy problem in arbitrary
dimensions. For this we use the Fefferman-Graham formalism. We carry out an study of
the asymptotic initial data in this picture and extend an existing geometric characteri-
zation of them, in the conformally flat . case, to arbitrary signature and cosmological
constant. We discuss the validity of this geometric characterization of data beyond
the conformally flat .# case. We provide a KID equation for asymptotic analytic data
(which comprise Kerr-de Sitter). This equation being satisfyied by the data amounts to
the existence of a Killing vector field in the corresponding spacetime. With the above
results in hand we provide a geometric characterization of Kerr-de Sitter by means of
its asymptotic initial data, which happen to be determined by the conformally flat class
of metrics [y] and one particular conformal class of CKVFs [{] of [y]. These data admit
a generalization, keeping [v] conformally flat, by allowing [¢] to be an arbitrary confor-
mal class. This extends the so-called Kerr-de Sitter-like class with conformally flat .7,
defined in previous works in four spacetime dimensions, to arbitrary dimensions. We
study this class and prove that the corresponding spacetimes are contained in the set
of (A > 0)-vacuum Kerr-Schild spacetimes, which share (conformally flat) .# with their
background metric (de Sitter). We name these Kerr-Schild-de Sitter spacetimes. The
proof largely relies on our study of the space of classes of CKVFs and in particular on
the properties of its quotient topology. In addition, we prove the converse inclusion,
providing a full characterization of the Kerr-de Sitter-like class as the Kerr-Schild-de
Sitter spacetimes.
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Chapter 1

Introduction

1.1 Context and motivation

Eversince its original formulation in 1915, the Einstein general theory of relativity has
become the paradigm which governs the large and massive scales in nature. The aston-
ishing phenomenology predicted in its final version [45], later observationally confirmed,
largely contributed to its settlement. The original predictions were three: the preces-
sion of the perihelion in planetary motion, the gravitational redshit and the bending of
light rays by effect of gravity. The precession of Mercury’s perihelion had puzzled astro-
physicists for decades, because no neat argument arose from Newton’s laws, leading to
rather cumbersome explanations such as postulating the existence of an intramercurian
planet. However, in Einstein’s theory, this precession appeared as a natural and accu-
rate consequence of the equations. On the other hand, the bending of lightrays was soon
observed in the celebrated Eddington and Dyson expedition in 1919 [42]. The gravita-
tional redshift experiments took some more time to give concluding measurements, by
Popper [126] in 1954, since the first ones by Adams [4] were considered too poor (see also
[80, 81]). Since then, all these phenomena have been repeatedly observed. Indeed, the
gravitational lensing, based in the bending of light rays when passing nearby massive

spots in the universe, is today a useful effect for astronomical observations.

The theory delivered other exotic and controvesial predictions, such as the existence of
black holes and the emision of gravitational waves, for which experimental confirmation
had to be awaited until the new century. The first black hole solution was actually the
first exact solution of the Einstein equations published soon after Einstein’s theory by
Schwarzschild [134]. For long time black holes were not considered as a serious physical
prediction and their inherent singularities were regarded as a pathological consequence of
the high symmetries of the model. This view, however, was proven wrong in both sides.
In the formal aspect, the singularity theorems by Penrose [121] and Hawking and Penrose

[76] showed that singularities are a stable feature of general relativity (see also the



reviews [136, 137]). In the observational aspect, the extreme motion of stars measured
at the center of our galaxy evidenced the presence of a black hole [68]. Moreover, with
the Event Horizon Telescope array, the direct reconstruction of black hole shadows is
possible and there are currently available images from data taken at the center of the
galaxy MS8T7 [44]. The processing of data taken from the center of our galaxy is now in
progress and the results are expected soon. Therefore, the existence of black holes is

today accepted by the vast majority of the general relativistic community.

The first theoretical approach to gravitational waves was carried by Finstein with its
famous quadrupole formula. The later works by Bondi et al. [21], Sachs [130] and
Newman and Penrose [109] gave the basic setting for a fully non-linear analysis of the
gravitational waves, which largely relies on the asymptotic behaviour of the gravita-
tional field. Subsequent works by Penrose in the 1960’s [120, 122, 123] got deeper into
the asymptotic analysis of general relativity, on which we will expand later. The tech-
nological challenges that the experimental measurements of gravitational waves entail
delayed their first observation until 2017, where the LIGO experiment [1] confirmed the
detection of the gravitational waves generated by the merge of two black holes. Note,
however, that this detection is more than just another confirmation of Einstein’s theory.
It is claimed by the observational community that the surprisingly high number of events
registered in the years following 2017 by the gravitational wave detectors LIGO Virgo
and KAGRA is changing our understanding of the universe.

In view of the success of general relativity in explaining nature, there is no doubt that,
within its range of applicability, it is the “correct” theory. The search for new exciting
theories extending the general relativity, may lead one to believe that the theory is,
in words of H. Friedrich, “essentially understood” [62], and that the formal study of
general relativity is a matter of sharpening ideas. However, the simplicity of the Einstein

equations is only apparent, namely,

_ 8nG
=

e Scal(g). <
Ric(g) — z(g)g + Ag T,

where Ric(g) stands for the Ricci curvature tensor of the metric g, Scal(g) is the trace
of Ric(g), A the cosmological constant and 7" the stress-energy tensor, which accounts
for presence of matter, radiation and other fields. This becomes obvious if one expands
the tensor in terms of the metric components and its derivatives and casts the Einstein

equations as a non-linear PDE problem. Just to make ourselves an idea, the Ricci tensor



looks like
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The unknown mathematical implications of these equations are still many and, perhaps,
with a better understanding of them, even new phenomenology might be predicted.
Therefore, the study of the formal aspects of the Einstein theory of general relativity
is not purely a mathematical exercise, but also fundamental in physics. In this thesis,
we shall address some of these mathematical problems, which will be described in the

remainder of this introduction.

A spacetime is said to be globally hyperbolic if it contains a Cauchy surface, which is
a spacelike hypersurface that is intersected exactly once by each inextendible timelike
curve. Global hyperbolicity is a reasonable requirement for a physical spacetime. This is
primarily because globally hyperbolic spacetimes are known to be uniquely determined
by their initial configurations. Indeed, the Einstein equations admit a Cauchy problem
which is longtime known to be well-posed by the landmark results of Y. Choquet-Bruhat
[54] and Choquet-Bruhat and Geroch [30]. This allows, in particular, to extract interest-
ing properties of the solutions without actually having to deal with the full complexity
of the Einstein equations. This Cauchy problem splits the Einstein equations into con-
straint equations on an initial spacelike hypersurface! plus evolution equations, which
propagate the fields (and the constraints). This is the classical initial value formula-
tion and a set of initial data is by definition any solution of the constraint equations.
Although certainly simpler that the full Einstein equations, they still pose a difficult
problem in geometric analysis (see e.g. [85] and references therein). In addition, the
solutions evolving from a set of initial data are local due to the intrinsic hyperbolicity

of the evolution equations.

As mentioned above, the works by Bondi et al. [21], Sachs [130] and Newman and
Penrose [109] were motivated by the fully non-linear study of the gravitational radiation.
This led them to consider what in today’s language would be called an asymptotic
characteristic initial value problem. Following this track, the works by Roger Penrose
[120, 122, 123] pioneered the use of conformal techniques in general relativity, enhancing
the role that the conformal structure plays in the Einstein equations. He gave a precise
definition of asymptotic flatness in terms of conformal extensions of the physical metric g.

Namely, given a smooth? manifold (M, ), a conformal extension of (M, §) is a smooth

Tt can be also cast as a characteristic initial value problem if the initial hypersurface is null (see
[128)).
%We consider the smooth case for simplicity, but one could assume ”sufficient differentiability “ instead.



manifold (M, g) with boundary M, whose interior can be identified with M = Int(M)
and such that there exists a smooth function  in M which is positive in Mv, where
it satisfies ¢ = Q%¢, and Q |spp= 0 and d€2 |sp# 0. The boundary equipped with its
first fundamental form ~y is denoted .#. This manifold, called conformal infinity or null
infinity, gives a precise definition of the asymptotic region for the spacetime (Mv ,g). If
the Ricci tensor of g satisfies Ric(g) = 0 in a neighbourhood of .# or, more generally,
decays sufficently fast to zero at .#, then g is called asymptotically flat. The physical
importance of asymptotically flat manifolds is that they are considered to model self-
gravitating isolated systems, which are sufficiently far away from other systems so that
one can ignore the influence of the latter except, possibly, for the effects of gravitational

radiation.

When written in terms of the conformal metric g, the Einstein equations of g are sin-
gular at .. However, in a remarkable achievement H. Friedrich was able (by means of
introducing carefully chosen variables) to rewrite the equations in spacetime dimension
four as a system of geometric PDE that are regular at .# (see the seminal works [57], [56]
and the reviews [61], [63]). These equations allow to take into account the asymptotic
behaviour of the spacetime by posing an “asymptotic PDE problem”, on which we shall
comment next. Furthermore, it should be mentioned that the conformal formulation of
the Einstein equations have important consequences in the field of numerical relativity.
We shall not discuss any of these here, as they are beyond the scope of this thesis, but
we refer to [55] for a detailed review of the conformal field equations and their numerical

aspects.

So far we have discussed classical results which historically have assumed zero cosmolog-
ical constant. When it comes to determine the nature of the asymptotic PDE problem
posed by the Friedrich equations, the sign of the cosmological constant has drastic con-
sequences. This is because the Einstein equations determine the causal character of .#,
which is null if A = 0; timelike if A < 0 and spacelike A > 0. The A zero and negative,
are respectively a characteristic initial value problem and boundary value problem, for
which existence and uniqueness is a hard and subtle issue. We shall briefly comment on
these again in subsection 2.4.1, but let us now focus on the central case for this thesis,

which is the positive A case.

From the physical point of view, it is noteworthy that the Supernova Cosmology Project
have determined a universe with positive cosmological constant [125], recently confirmed
again by the Planck collaboration [3]. Since then, the paradigm of cosmology assumes
a positive cosmological constant, while the zero A case is still having an important
relevance in mathematical relativity. However, in the recent years, the positive cosmo-
logical constant has increasingly caught the attention of several general relativists and
many advances have been done in this direction. Just to quote some, on the general

asymptotic framework [8, 11], on the gravitational radiation [12, 13, 51, 52, 132], the



peeling property of the Weyl tensor [53] and on the definition of mass and momenta
23, 24, 41, 131, 143, 144].

The present thesis is yet another example.

From the formal side, it was also proven by Friedrich [58] that the Cauchy problem
at # is always well-posed if the cosmological constant is positive. The well-posedness
already gives a special interest to this problem. It is also noteworthy that associated to
a conformal metric g solving the conformal Friedrich equations, there is a solution to
the Einstein equations § which is “semiglobal” (i.e. the “physical” spacetime g = Q~2g
extends infinitely towards the future or past, depending on whether .# is a final or an
initial state). Morever, a remarkable simplification occurs in the constraint equations
at ., as opposed to the standard constraint equations of the classical initial value
problem. The data at .# consist of a Riemannian three-manifold (X, ) which prescribes
the (conformal) geometry of .#, together with a symmetric two-tensor D with vanishing
trace an divergence, i.e. a transverse and traceless (TT) tensor. This tensor prescribes
certain components of the suitably rescaled Weyl tensor at ., known as the electric part
of the rescaled Weyl tensor. Of course, since the result cannot depend on the conformal
scaling of the physical metric, there is a large residual gauge freedom in the data, being

all sets (X, w?y, w1 D) equivalent to (X,~, D) for any smooth positive function w of ¥.

As we shall discuss in more detail in subsection 2.4.1, the Friedrich conformal field
equations are specially taylored to dimension four and do not appear to extend to higher
dimensions. The basic problem is that there do not appear to be enough evolution
equations that remain regular at % [61]. Actually, one of the fundamental objects in
the conformal Friedrich equations is the rescaled Weyl tensor, which plays a central role
in this thesis. Our analysis in Chapter 5 shows that in dimension higher than four this
object is regular at . only in few particular cases. Thus, there are reasons to believe
that any attempt to find a regular Cauchy problem well-posed at .# based on this object

will be unfruitful.

Before entering into the discussion of the mathematical aspects of the higher dimensional
general relativity, it should be mentioned that there are also physical motivations in its
study. These are, basically, that the modern theories aiming to concilliate general rela-
tivity with quantum mechanics, such as string theories or the AdS/CFT correspondence,
seem to require more than four spacetime dimensions. We shall not discuss the physical
aspects in any detail, as many of them lie beyond the classical formulations of general
relativity, which is our interest here. We refer the interested reader to the reviews in
string theory [106], AdS/CFT correspondence [83] and also in higher dimensional black
hole [46].

As mentioned above, the higher dimensional Cauchy problem in general relativity re-
quires a different approach than the one given by Friedrich to the four dimensional

case. The formalism which eventually allowed for well-posedness results in appropriate



circumstances is due to Fefferman and Graham, first given in the paper [48] and later
extended into a monograph [50]. We review the basics of this formalism in Section 2.3,
so we may just introduce here the very basic ideas in order to discuss the initial value

problem of general relativity.

An important part of the Fefferman and Graham work focuses in the so called Poincaré
metrics. Roughly speaking, these are asymptotically Einstein (n + 1)-dimensional met-
rics, namely, conformally extendable metrics which satisfy the Einstein equations with
non-zero cosmological constant (to a certain order) at (n-dimensional) .#. In the
Fefferman-Graham formalism, their study is carried through an asymptotic formal series
expansion, usually called Fefferman-Graham (FG) expansion, which is generated from
the Einstein equations at .#. It should be noticed that the analysis by means of formal
series expansions does not necessarily require the series to be convergent away from ..
This, however, sets a framework which allows to study asymptotic properties of Poincaré
metrics and, as we shall next see, even prove some existence and uniqueness results if
these metrics are Einstein also in a neighourhood of .#. From now on, we shall use n+ 1

for the spacetime dimension and n for the dimension of .#.

The term “asymptotic expansion” means in this case that it is performed in terms of
the conformal factor Q “near” the boundary {2 = 0}. In the Fefferman and Graham
setting a very particular conformal factor is employed, namely, the one whose gradient
is geodesic with respect to the conformally extended metric g = Q?§. The FG expansion
associated to an asymptotically Einstein metric g is generated as follows. The first order
coefficient is given by the boundary metric v induced by g. Then, provided that the
Einstein equations at .# are satisfied to order m, the coefficients of an even power series
expansion (directly obtained from derivatives of the metric in Q) up to order m are
recursively determined. However, a remarkable difference appears between the cases n
even and n odd. If n is odd, one may keep generating even order terms to infinite order,
by demanding that the Einstein equations are satisfied to infinite order at .#. If n is even,
generically no power series expansion can be generated beyond the n-th order because
of the presence of the so-called obstruction tensor O(v), which is entirely determined
by «. One is then forced to introduce logarithmic terms, which spoil smoothness, but
allows one to satisfy the Einstein equations to infinite order at .#. It is also remarkable
that for both n even and odd, one can always introduce an undetermined smooth term
9(n)2", with the only constraint that the trace and divergence of g(,) are determined by
v, being both zero if n is odd. The presence of this term does not destroy the Einstein
asymptoticity, but of course, modifies the subsequent coefficients. Hence, the seed data

which generate the FG expansion are a pair (7, g(n)).

Interestingly it is the obstruction tensor what allows Anderson [6] to find an asymptotic
Cauchy problem for the Einstein equations in the n odd case. Although the core idea
appears for the first time in [6], neither this paper nor [7], which attempts to give

a detailed proof, are fully correct. The mistakes in those papers have recently been



identified in [86] where a complete proof of the existence results has been provided. The
idea in [6] relies on the fact that the obstruction tensor is conformally covariant and
that it vanishes for all conformally Finstein metrics. Then, for n + 1 even dimensional
metrics g, this tensor provides a differential equation O(g) = 0, which for Lorentzian
conformally Einstein metrics, can be cast as a Cauchy problem at .#. Anderson (and
the subsequent works mentioned above) proves that solutions of this Cauchy problem
exist and are uniquely determined for every pair of symmetric two-tensors (7, g(n)), vy
positive definite and g, traceless and transverse w.r.t. . A posteriori, v determines
the geometry of .# and g, is n-th order coefficient of the asymptotic expansion of g.
Thus, Anderson’s theorem associates a unique FG expansion, which recall a priori need
not to be convergent, to a unique Einstein metric g in a neighbourhood of .#. This
idea is not extendable to the n even case, for no obstruction tensor can be built out of
g when n + 1 is odd. In this case, however, a result by Kichenassamy [87] proves the
convergence of the FG expansion in the case where the data are analytic, regardless of
the parity of n. It should be noticed that in the n even case, the initial data (v, g(n))
also determine the geometry of .# and the n-th order coefficient of the FG expansion,
but g,y has generically non-zero trace and divergence determined by + (cf. Appendix
A). In addition, just like in the four spacetime dimensional case, the initial data in these
problems have a large conformal gauge freedom, namely, data (2, w?y, wQ_”g(n)) (where
¥ is the manifold on which v is defined) are equivalent to (3,7, g(,)) for every smooth

positive function w of X.

An existence and uniqueness theorem can be used to characterize spacetimes by means of
their Cauchy data. The situation is particularly interesting in the case of the asymptotic
Cauchy problem for positive A, because of the simplicity of the data (specially if n
odd), which potentially allows one to achieve classification results for spacetimes whose
explicit form need not to be known. However, for this definition to be geometric, we
must have a proper geometric characterization of the initial data, which for n > 3 is not
straightforward. The original definition of the coefficient g(,) is not covariant, because
the Fefferman-Graham expansion is constructed in a very particular set of coordinates,
that is not in general easily obtainable. This issue will be addressed in Chapter 5, where
we shall reformulate the initial data (3,7, g,)), with (3,7) locally conformally flat, as
an equivalent set (3,7, J(,)) , where g, is geometrically defined, up to a constant, as
the electric part of the rescaled Weyl tensor at .#. This extends to the A > 0 case
a previous result by Hollands-Ishibashi-Marolf [82] in the A < 0 case. Actually, this
extension is straightforward if one takes into account general results [5],[139] relating
the coefficients of the Fefferman-Graham expansion for opposite signs of A. A geometric
reformulation of the initial data (2,7, g(,)) in the general case should be possible, but
as we shall also discuss, it is not immediate to relate g, with the electric part of the

rescaled Weyl tensor in general.

It should be remarked that geometric characterizations of spacetimes are important

in general relativity because of the intrinsic diffeomorphism covariance of the theory.



Namely, for a physical spacetime (Mv,ﬁ), i.e. with g satisfying the Einstein equations
in M, the (also physical) manifold (M, ¢*(g)) for every diffeomorphism ¢ of M, is
physically equivalent to (./\7, g). It is in general a very hard task to determine by in-
spection whether two metrics are diffeomorphic to each other and obtaining a geometric
characterization may simplify this problem. Thus, geometric characterizations are also

fundamental from a physical perspective.

In this context, it is worth highlighting the famous uniqueness theorems of stationary
black holes. More specifically, the no-hair conjecture asserts, roughly speaking, that
every stationary electrovacuum black hole solution is entirely characterized by its (suit-
ably geometrically defined) mass, angular momentum and electric charge. The no-hair
conjecture has been extensively studied in the zero cosmological constant setting and
it is well-known (see e.g. [32, 102] and references therein) to be satisfied by static
(i.e. Schwarzschild) and stationary axisymmetric configurations® (i.e. Kerr). The latter
cases are of particular relevance because of the role that they are believed to play as the

endpoint states of collapsing self-gravitating systems.

An alternative local characterization of the Kerr and Kerr-NUT metrics among space-
times with one Killing vector field can be given in terms of the vanishing of the so-called
Mars-Simon tensor [93, 138]. Remarkably, it has been shown [98] that in the non-zero
cosmological constant case, the vanishing of the Mars-Simon tensor also characterizes the
Kerr-NUT-(A)de Sitter metrics and related spacetimes. Recall that the latter generalize
Kerr-NUT to the arbitrary cosmological constant setting, so they are also important
from a physical perspective. Particularly, in the case of positive cosmological constant,
the geometric characterizations of Kerr-de Sitter are interesting because this metric is
expected to satisfy a uniqueness theorem among stationary, axisymmetric, (A > 0)-
vacuum black hole spacetimes. We remark that a uniqueness theorem (in the sense of
black holes uniqueness theorems) is a much more subtle result than simply a geometric
characterization. Nevertheless, it is a step towards a possible uniqueness result in the

future.

The results in [98] are used in [99, 100] to provide a characterization in terms of asymp-
totic initial data of Kerr-NUT-de Sitter metrics and related spacetimes, which altogether
define the so-called Kerr-de Sitter-like class® (see also [66, 67] for a similar character-
ization of Kerr-de Sitter and Schwarzschild-de Sitter with spinorial techniques). An
important part of this thesis is devoted to deepen into this characterization. Namely,
we identify, in terms of asymptotic initial data, the Kerr-de Sitter-like class and Kerr-de
Sitter family among the set of asymptotic initial data with n = 3 of all spacetimes with

two symmetries, one of which axial. In addition, we obtain the asymptotic initial data

3The proof of the stationary case is not considered fully general, as one has to assume non-degenerate
analytic horizons, which imply axisymmetry. Giving a general proof of this is still today a difficult open
problem.

4We stress the difference between the Kerr-de Sitter family and Kerr-de Sitter-like class, the first
being one of the multiple families included in the latter.




of Kerr-de Sitter in all dimensions, which allows us to extend to higher dimensions the
definition of the Kerr-de Sitter-like class in the conformally flat .# case. We will come

back to this in subsection 1.2 below.

In any dimension, the initial data, that we denote generically (X,~, D), must store all
the information of the spacetime evolving from them. Specifically, the necessary and
sufficient conditions for the existence of symmetries in the spacetime has been studied
in four spacetime dimension. In the asymptotic Cauchy problem with positive A, this
was determined by Paetz in [116] to be a neat geometric PDE involving ~, D and a
conformal Killing vector field (CKVF) £ of v (cf. Theorem 2.35), known as the Killing
initial data (KID) equation. The CKVF ¢ is, a posteriori, the Killing vector field ¢ of
the spacetime, restricted to .. It becomes natural to define the initial data for this case
to be (X,v,D,§). Apart from this n = 3 case, no previous results relating continuous
local isometries to initial data at .# were known in more dimensions. In this thesis
we prove a higher dimensional result (cf. Theorem 5.18), analogous to the n = 3 one,
restricted to the case of analytic metrics with zero obstruction tensor. The result is a

natural generalization of the Theorem proven by Paetz.

The conformal Killing vector fields of a manifold (X,~) define a Lie algebra CKill(X,~)
whose uniparametric group of diffeomorphisms are in general local conformal transfor-
mations of (X, ), which we shall denote ConfLoc(X,~y). The fact that these conformal
transformations are local raises certain difficulties, which we analyze in more detail
in subsection 2.2.2, specially for the study of the quotient CKill(3,~)/ConfLoc(X, 7).
The interest in the study of this quotient stems from the fact that the vector fields in
CKill(%, v) which lie in the same equivalence class in CKill(X, v)/ConfLoc(X, v) actually

generate the same symmetry (cf. Remark 2.37).

The issues with locality mentioned above appear because ConfLoc(X, ) is actually given
by the local action of an abstract Lie group G on X, whose algebra g induce the set of
conformal vector fields CKill(X,~). Then, it should be possible to study the classes in
CKill(3, v)/ConfLoc(X, v) by means of the study of classes in g/G. In the case of locally
conformally flat n-manifolds (3, ), the Lie group G can be identified [100] with the
orthochronous component of the Lorentz group O"(1,n+1), and g = o(1,n+1) is well-
known to admit a representation as the space of two-forms in MV *1 or equivalently, as
skew-symmetric endomorphisms of Minkowski, SkewEnd(M!"*1). This reason strongly
motivates the study of SkewEnd(M"*1) in Chapters 3 and 4 of this thesis.

A typical way of studying quotients g/G is by obtaining a canonical form (also normal
form) which all elements in g admit such that it is invariant under the adjoint action of
the group G. In other words, a form shared by all elements in the orbits [F| generated
by adjoint action of the group on a given element F' € g, i.e. F' € [F] if and only if
F' = A-F-A7! for some A € G. This amounts to finding a unique respresentative
for such orbits. We assume matrix representation of both g and G and “dot” denotes

usual multiplication of matrices. The most common example of a canonical form in
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this context is the well-known Jordan form, which represents the conjugacy classes of
GL(n,K) (where K is usually R, C or the quaternions H). Besides this example, the
problem of finding a canonical representative for the conjugacy classes of a Lie group has
been adressed numerous times in the literature. The reader may find a list of canonical
forms for algebras whose groups leave invariant a non-degenerate bilinear form in [39]
(this includes symmetric, skew-symmetric and simplectic algebras over R, C and H) as
well as the study of the affine orthogonal group (or Poincaré group) in [36] or [84]. Notice
that these works deal, either directly or indirectly, with our case of interest O(1,n) (and

therefore its orthochronous component).

When giving a canonical form, it is usual to base it on criteria of irreducibility rather
than uniformity (e.g. [36], [39], [84]). This is similar to what is done when the Darboux
decomposition is applied to two-forms (i.e. elements of o(1,n)), for example in [100] or
for the low dimensional case n = 3 (e.g. [74], [142]). As a consequence, all canonical
forms found for the case of 0(1,n) require two different types of matrices to represent all
orbits, one and only one fitting a given element. One of the results in this thesis gives
unique matrix form which represents each element F' € o(1,n), depending on a minimal
number of parameters that allows one to easily determine its orbit under the adjoint
action of O (1,n). Indeed, these orbits coincide with those generated by the whole
group O(1,n). The unification of the canonical form is obviously achieved by loosing
explicit irreducibility with respect to previous canonical forms. However, this canonical
form will be proven to be fruitful by giving several applications, which we shall mention

later in this introduction.

1.2 Aim of this thesis

The aim of this thesis is to study the asymptotic Cauchy problem of the A positive
vaccum Einstein equations in all dimensions. Our intent is to provide characterizations
of the Kerr-de Sitter family in terms of their asymptotic inital data, which may help
understanding in what sense is this family of spacetimes special. Our point of departure
is the characterization of the Kerr-de Sitter-like class, in the n = 3 case provided in
[99, 100] by means of their asymptotic data at .#.

The asymptotic data for the Kerr-de Sitter-like class are of the form (3, v, kD¢), where

(X,7) is a Riemannian three-manifold, x a real (non-zero) constant and D¢ a T'T tensor
1 €13
De=—— [ty 1.1
€ e ( 3 -
with ¢ a CKVF of v and £ := y(§,-). The TT tensor D¢ has several remarkable prop-

erties. First, it is a very simple solution among all possible TT tensors. Second, it is

of the form

easy to check that it satisfies the KID equation for . Thus, the tensor D¢ singles out

a CKVF of .# and a particular symmetry of the spacetime. Concerning the metric 7,
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besides the condition that it must admit a non-trivial CKVF (so that (1.1) makes sense)
it is further restricted by the condition that its Cotton-York tensor is also of the form
kD¢ for &£ € R. Recall that the Cotton-York tensor is defined only in three-dimensions
and is constructed by dualization of the Cotton tensor in two of its indices. It is always a
symmetric TT tensor, so taking the form (1.1) is admissible. The constant & is directly
related to the so-called NUT charge of the spacetime and vanishes when the metric be-
longs to the Kerr-de Sitter family. £ = 0 is equivalent to v being locally conformally flat
because the Cotton-York tensor vanishes if and only if the metric is locally conformally
flat. By conformal invariance of the asymptotic Cauchy problem, the data (3,, kD)
happen to be uniquely determined by the conformal class [¢] of &, i.e. all CKVFs ¢
differening from ¢ by a conformal diffeomorphism® ¢ of (3, ). Therefore the study of
conformal classes of CKVFs is indeed relevant in this thesis. We focus on the locally
conformally flat v case, because this one contains the Kerr-de Sitter family of metrics,
but also because with the current techniques, conformal flatness of .# is required for an

analysis in higher dimensions.

Our first achivement is to give a classification in the n = 3 case, also in terms of their
asymptotic data (X, v, D), of all spacetimes admitting a smooth conformally flat ., with
at least two commuting symmetries (cf. Chapter 4). Our analysis assumes that one of
these symmetries is axial, but removing this asumption gives raise to only a few extra
cases, straightforwardly obtainable. The TT tensors D are obtained taking advantage
of a canonical decomposition for CKVFs £ = E + 7, inherent to the conformal class of
&, where both E, n are CKVFs, with n associated to an axial symmetry. By identifying
the Kerr-de Sitter-like class (with conformally flat .#) within this set of data, we aim
to shed some light on the role played by the CKVF &. For instance, the structure of
the solution suggests a possible connection between the terms E and n with “mass” and

“angular momentum” respectively.

However, our main aim is to extend this analysis to all dimensions. For that, a study
of the Fefferman-Graham formalism and its asymptotic data is required. As mentioned
above, the basic issue that we first address is how to provide a geometric definition of
the asymptotic initial data in this picture. This can be done in the conformally flat .#
case, in terms of which we can calculate the initial data for the Kerr-de Sitter family of
metrics in arbitrary dimensions (cf. [70]). We find these to be a locally conformally flat
n-manifold (3,v) and a TT tensor kD¢, with £ € R and D¢ of the form

1 2
D¢ = R (6 ®&— %b’y) : (1.2)

This turns out to be a natural generalization of the n = 3 case (1.1). It is remarkable

that the original metrics in [70] are constructed from heuristic arguments. Indeed, [70]

5The conformal diffeomorphism could be locally defined in an open neighbourhood ¢ C ¥. In such
case the equivalence holds in U N ¢(U). A detailed discussion is given in Chapter 2.
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contains no general proof of these metrics being A-vacuum solutions, which was given
later in [75]. Our chacterization actually shows in which sense these metrics are a natural
extension of Kerr-de Sitter in four spacetime dimensions. The TT tensor (1.2) shares the
basic properties with (1.1), namely, it is a T'T tensor for every CKVF ¢ whose Cauchy
development is only determined by the conformal class of £ (keeping 7 fixed to be locally
conformally flat). This property will allow us to define the Kerr-de Sitter-like class with
conformally flat .# in more dimensions by simply allowing £ to be an arbitrary CKVF.
In order to demonstrate the expected connection between £ and the symmetries of the
Cauchy development of (X,v, kD¢ ), we extend the KID equation to arbitrary dimensions
in Chapter 5. We prove that this equation gives a necessary and sufficient condition for
the Cauchy development of analytic data with zero obstruction tensor (if n is even) to
admit a Killing vector field. These restrictions, however, are not a problem in our setup
because the Kerr-de Sitter-like class is indeed analytic and moreover, conformal flatness
of .# implies the vanishing of the obstruction tensor for the even dimensional boundary

metrics.

From our study in terms of initial data an interesting method to generate solutions of
the Einstein equation follows. The idea is to use the well-posedness of the initial value
problem to obtain limits of spacetimes from limits if their initial data. In Chapter 6
we apply this to the Kerr-de Sitter-like class with conformally flat .#. In addition, it
should be stressed that in order to tackle these questions, a considerable amount of
mathematical tools are required, some of them already discussed. We shall describe

them in more detail in the following section.

1.3 Contents

The study outlined in the previous section is organized as follows. We start in Chapter 2
by discussing in more detail the mathematical tools that we shall require in the following
chapters. The basic concepts of conformal geometry and asymptotics are given in Section
2.2, with a review in subsection 2.2.1 on the n-sphere and its conformal transformations
and its relation with the orthochronous Lorentz group. In addition, we provide a note
on local conformal flatness in subsection 2.2.2; which applies for n > 2. The n = 2 has
some particularities (cf. Remark 2.16) and it is addressed in more detail in Chapter 3.
In section 2.3 we discuss the Fefferman-Graham formalism and review its two equivalent
formulations: in terms of ambient metrics (cf. subsection 2.3.1) and of Poincaré metrics
(cf. subsection 2.3.2). Related to this, we also include an Appendix A where we derive
the fundamental equations of the Fefferman-Graham formalism for Poincaré metrics,
which play a basic role in this thesis. Finally, in Section 2.4 the initial value problems
of general relativity are reviewed, in four spacetime dimension in subsection 2.4.1 and

in higher dimension in subsection 2.4.2.
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Except for some results on the local conformal group in locally conformally flat spaces
described in Chapter 2, the original results of this thesis start in Chapter 3. Firstly, in
Section 3.1 we give a list of general useful properties of skew-symmetric endomorphisms,
which shall also be required in Chapter 4. Then, Sections 3.2, 3.3 and 3.4 are devoted to
the obtention and analysis of a canonical form for any given (non-zero) skew-symmetric
endomorphism F of M!'3. The set of all skew-symemtric endomorphisms of M3 is de-
noted SkewEnd(M"3). The change of basis that yields the canonical form is not unique.
This implies the existence of an invariance group, that we derive in Section 3.3. In Sec-
tion 3.4 we analyze the generators of the invariance group and obtain a decomposition
of the element F in terms of these. We also make a connection between this decom-
position and the standard duality rotations for two-forms. In all these sections, the
three-dimensional case is obtained and discussed as a corollary of the four-dimensional

one.

The following Sections 3.5, 3.6, 3.7, 3.8 are devoted to the study of so-called global CKVs
(GCKV) defined on Euclidean space E2, and which are directly related to global CKVFs
on the sphere S?2. We remark that these are a particular subset among all CKVFs of
E? (cf. Remark 3.14). Section 3.5 defines such vectors and in Section 3.6 we revisit
the connection between them and the Lie algebra SkewEnd(M!?), already discussed
in all dimensions in subsection 2.2.1. In Section 3.7 we apply all the results for the
SkewEnd(M!?) algebra to the GCKVs of the sphere, namely, the obtention of a canonical
form and its invariance group. As a useful consequence of the two viewpoints, we are able
(Corollary 3.21) to obtain in a fully explicit form the change of basis that transforms any
given I into its canonical form. Finally, Section 3.8 gives a set of coordinates adapted
to an arbitrary GCKV ¢ and a second orthogonal GCKV &1, readily obtainable from
&. The results concerning the canonical form of GCKV and the adapted coordinates are
summarized in Theorem 3.23. Our last Section 3.9 gives two interesting applications for
the previous results. First, given a GCKV &, Theorem 3.24 gives a list of all metrics,
conformal to the metric of a 2-sphere, for which ¢ is a Killing vector. Second, Theorem
3.25 gives an elegant solution of the TT tensors satisfying the KID equations in open
sets of 2.

The analysis of Chapter 3 is extended to arbitrary dimension in Chapter 4. It is worth
to remark that the low dimensional case deserves its own chapter because of the level
of detail that it allows, hardly achievable in arbitrary dimension. In order to properly
define the canonical form, in Section 4.1 we rederive a classification result for skew-
symmetric endomorphisms (cf. Theorem 4.6), employing only elementary linear algebra
methods. The results of this section are known (see e.g. [73], [89]), but the method
is original and we believe more direct than other approaches in the literature. Section
4.1 leads to the definition of canonical form in Section 4.2. Section 4.3 deals with a
particular type of skew-symmetric endomorphisms (the so-called simple, i.e. of minimal
matrix rank), which will be useful in the analysis of CKVFs in the second part of the

chapter. In Section 4.4 we work out some applications of our canonical form: identifying
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invariants which characterize the conjugacy classes of the orthochronous Lorentz group
(cf. Theorem 4.22) and obtaining the topological structure of this quotient space (cf.
Section 4.4.1). It is remarkable that we obtain sequences, contained in open domains of
the quotient topology, whose limit points are non-unique. In other words, we prove by
working out some particular limits, that the quotient topology is non-Hausdorff. This
is not so surprising for such kind of quotients, but we will find interesting consequences

of this fact in the Cauchy problem of general relativity in Chapter 6.

In Section 4.5 we use the homomorphism between O (1,n+1) and Conf (S"), described
in Section 2.2.1, and apply the canonical form obtained for skew-symmetric endomor-
phisms to give a canonical form for CKVFs, together with a decomposed form (cf.
Proposition 4.33) which is analogous to the one given for skew-symmetric endomor-
phisms in Theorem 4.6. It should be remarked that the canonical form of the CKVFs
also determines their equivalence class under conformal transformations (cf. Theorem
4.35). In Section 4.6, we adapt coordinates to CKVFs in canonical form, first in the even
dimensional case, from which the odd dimensional case is obtained as a consequence.
These coordinates are analyzed in depth, obtaining the domain of definition as well as
the form of a flat metric in adapted coordinates. The analysis is summarized in Theorem
4.45. Finally, in Section 4.7 we employ the adapted coordinates to find the most general
class of data at spacelike .# corresponding to spacetime dimension four, such that .# is
conformally flat and the (A > 0)-vacuum spacetime they generate admits at least two
symmetries, one of which is axial. It is remarkable how easily these equations are solved
with all the tools developed before. The solution is worked out in adapted coordinates,
but the final form is diffeomorphism and conformally covariant (cf. Theorem 4.47).
With this solution at hand, we are able to identify the Kerr-de Sitter family within (cf.
Corollary 4.51).

In Chapter 5 we address the arbitrary dimensional asymptotic Cauchy problem in the
Fefferman-Graham picture. We begin, in Section 5.1, by deriving two useful formulas
for the Weyl tensor and its electric part (cf. Lemmas 5.2 and 5.4), which have several
applications in the remainder of the thesis. We discuss the consequences of both for-
mulas and we conclude that the electric part of the rescaled Weyl tensor is, generically,

divergent at .#, while it is not if .# is conformally flat, a case on which we focus next.

Some applications of Lemmas 5.2 and 5.4 are found readily in subsection 5.1.1. These
include the FG expansion of all (A # 0)-vacuum Einstein metrics with constant curvature
(i.e. locally isometric to de Sitter or anti-de Sitter if the signature is Lorentzian) obtained
in Lemma 5.8 (see also Remark 5.9), and the decomposition in Proposition 5.11 for all
metrics admitting a conformally flat .#. Another consequence of the formulae for the
Weyl tensor is Theorem 5.14, also proven in subsection 5.1.1. This result establishes
that a well-defined free (TT) part g, of the n-th order coefficient of the FG expansion
coincides (up to a certain constant) with D, the electric part of the rescaled Weyl tensor

at .# in the case when .# is conformally flat and n > 3 (for n = 3 this is true in full
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generality). This theorem finds immediate application in the Cauchy problem of the
Einstein equations at .# with positive cosmological constant (cf. Corollary 5.17). In
addition, exploring the necessary conditions for g(,) and D to coincide up to a constant,
we come to the conclusion that conformal flatness of .# is not only sufficient, but actually
necessary as long as no purely magnetic A-vacuum spacetimes exists, in addition to the
trivial case of constant curvature. Remarkably, the non-existence of the latter is a

longstading and still open conjecture in general relativity (cf. Remark 5.10).

In Section 5.2 we derive the KID equation for analytic data at .# for n odd or n even
provided that the obstruction tensor vanishes (we indicate that the result should also
hold when the obstruction tensor is non-zero, but this requires additional analysis).
This equation is necessary and sufficient for the Cauchy development of the data at .
to admit a Killing vector field. Our final Section 5.3 gives an interesting application of
the previous results. Namely, we calculate the initial data of the Kerr-de Sitter family
of metrics in all dimensions [70]. As discussed above, these data happen to be a natural
extension of the n = 3 case studied in [100] of the form (X,v,xD¢), where (X,7) is
a locally conformally flat manifold and kD¢ is a TT tensor determined by a CKVF
€ of .# of the form (1.2) and a constant k € R. Like in the n = 3 case, the data
turn out to be uniquely characterized by the conformal class of ¢ (cf. Lemma 5.21).
The characterization is completed by identifying the conformal class which defines the
Kerr-de Sitter family with the results in Chapter 4.

The final Chapter 6 of this thesis is a non-trivial and interesting application of the
previous results of this thesis. It turns out that the data of the form (3, v, xD¢) provide
a good set of initial data no matter which CKVF ¢ one chooses. By previous results,
the Cauchy development is uniquely determined by the conformal class [¢]. The starting
point in Section 6.1 is to define the spacetime corresponding to data (3, v, xDg), with
(X,7) locally conformally flat and £ an arbitrary CKVF of « as the Kerr-de Sitter-like
class with conformally flat .# (which for short we shall simply call Kerr-de Sitter-like
class). One of the main results of this chapter (cf. Theorem 6.5) proves that the
spacetimes in the Kerr-de Sitter-like class amount to all Kerr-Schild type metrics which
solve the (A > 0)-vacuum field equations and which share a smooth (conformally flat)
# with its background (i.e. de Sitter) metric. These are called Kerr-Schild-de Sitter
spacetimes. It should be noted that “sharing a smooth conformally flat .# with its
background metric” is, in principle, more than simply admitting a smooth conformally
flat .# (cf. Remark 6.4). The other main result (cf. Theorem 6.6) constructs all the

spacetime metrics in the Kerr-de Sitter-like class.

The sections in Chapter 6 give a proof of both theorems. In Section 6.2 we prove that the
Kerr-Schild-de Sitter spacetimes are contained in the Kerr-de Sitter-like class by direct
calculation of their initial data at .#. One easily finds that the initial data have the form
(2,7, kD¢), where D¢ is determined by a vector field £. The subtle part of the proof is to
show that & is a CKVF of v, which we find as a consequence of the A-vacuum Kerr-Schild
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spacetimes being algebraically special. The inclusion of the Kerr-de Sitter-like class in
the Kerr-Schild-de Sitter spacetimes is obtained by direct construction of the metrics in
the class. This is achieved from limits of the Kerr-de Sitter family of metrics because of
the following argument. As the data (3, v, kDg), with (X,~) locally conformally flat, are
only determined by the conformal classes of CKVFs [¢], the structure of this quotient
space is directly inherited by the space of initial data of the form (3, v, kD). Recall that
this quotient was studied in subsection 4.4.1 in terms of skew-symmetric endomorphisms,
which is a representation of the algebra of CKVFs. From well-posedness of the Cauchy
problem, the limits of data must induce limits of spacetimes. More precisely, in the n
even case, all spacetimes in the Kerr-de Sitter-like class are limits of the Kerr-de Sitter
family with none of its rotation parameters vanishing. In the n odd case is similar,
except that there is one exceptional case obtained by analytic extensions of the Kerr-
de Sitter family. In any case, the limits and analytic extensions obtained are given in
explicit Kerr-Schild form, proving that they are Kerr-Schild-de Sitter. From this last
part, it is remarkable that the existence of such limits is neat at the level of initial data
and follows from our analysis in subsection 4.4.1. However, it would be hard to guess at

the level of spacetimes directly.



Chapter 2

Preliminaries

2.1 Conventions, definitions and identities

We start by listing the conventions, definitions and identities that we shall use in this

thesis. Unless otherwise specified, the convenion of indices in the manifolds is as follows:

1. Greek indices «, 3,7, - -+ range from from 0 to n.
2. Lower case latin indices i, j, k, - - - range from 1 to n.

3. Upper case latin indices I, J, K,--- range form 0 to n + 1.

In some situations where several spaces arise, it will not be possible to respect this

general convention. Any exception of the above rules will be clearly indicated.

The identities below are given for an N dimensional space, for which we use lower case
latin indices a,b,c,---. In the main text they will be adapted to the criterion above,

depending on the case.

Our convention for the Riemann tensor is such that for any covector X,
R Xe = —VaVXa + ViV X
The covariant Riemann tensor is
Ready = gee R adb,

where the index is always lowered with its defining metric. Given a Riemann tensor, its

Ricci tensor and Ricci scalar are, respectively,
._ . b
Rab = RCacby R:= Rabga .

17
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Let ¢ and ¢® be two different metrics and let V1, V@) be their respective Levi-
Civita connections. The difference of connections S := V(1) — V() is the tensor given
by

1
Scab = §(g(l)ﬁ)6d(vf(z2)g(l)bd + Vl(;2)g(1)ad - Vé2)g(1)ab)a (21)

where for any metric g, we use ¢* to denote its associated contravariant metric in index-
free notation. When using indices, we will omit the ff symbol and write simply (gﬁ)Cd =
g°®. From this relation between the connections (2.1), a formula for the difference of

Riemann and Ricci tensors follows (e.g. [146])

R(l)cadb - R(2)Cadb = 2v(2)[dscb]a - 2S€[d|a\Scb}ev (22)
R(l)ab - R(Q)ab = 2v(2)[cscb}a - 2Se[c|a|Scb}e' (23)

Expression (2.1) and identities (2.2) and (2.3) can be also written using derivatives V)
of g@

1

Scab = _5(9(2)ﬁ)0d(vg})g(2)bd + vl()l)g(2)ad - vgll)g@)ab)’ (24)
and
RWe g — RO, = 2V W 138%, + 2513101 S e (2.5)

R(l)ab - R(Q)ab = 2v(1)[c80b}a + 2Se[c|a|‘s’cb]e'

We will often work with conformally related metrics g = Q2g, where Q is a sufficiently
differentiable positive function. Particularizing (2.1) to gV =G and ¢® = g and letting
V = V® gives
1
S0 == (To0% + Ta0’ = Tgpa),  Te:=Vcl, T°:= 9%T. (2.6)
Given its importance in this thesis, we compute explicitly the transformation of the

Riemann and Ricci tensors for conformally related metrics. On the one hand we have

1
V(a5 =02 (T1aTy0% + T1adyTa — TiagejaTC)
1 C C C
—q (VT + ViaTja 0% = ViaTGjapy)
1

1
=z (TaT1a0% = TTiagna) = q (ViaTla) 0% = ViaT*gjaps))

hence

. 1 TTC N -2
V[cs bla — — @(N - 2)TbTa T2 Gba + 19

1
VT, + ﬁgbaVcTC.
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For the quadratic term, we get

1
SedaScbe = @(Td(sea + Taéed - Tegda) (Tbéce + Teécb - Tcgeb)

= @(Tdeﬁca + 274766 % + TuT0%% + TTh g4

—TaT g — TaTgay — TeT9aa0s — TThG9da)
SO

e C 1 (& C e C
S djalS ble = oz (T1a00Ta — TTtaghja — TeTGafady)

and

N -2
Se[c|a|Scb]e = g (_TaTb + TeTegab) .

02
Replacing T by V{2, (2.2) and (2.3) give

~. . 2 . B . VOVeQ

Ry — R aqp = a (6°aVRVaQ = 9aja V) VQ) + 2941a0% — (2.7)
-~ N_ 2 VCVCQ N - 1 c
Rap = Rap = —5— VoV + gap g Jabgr V. OVQ, (2.8)

for two conformal metrics g = 92§. We can also calculate the relation between the Ricci

scalars, taking trace in (2.8) with g

R 2N -1) c N(N -1) .
0z R q V.VeQ — TVCQV Q. (2.9)
The Weyl tensor, defined as follows,
C (& 2 C C 2R (&
Cadp = Raab — 7 (0“(aRb)a — Ga[alp) + (N—1)(N 2)5 [d9b)a> (2.10)

N -2

is fundamental in conformal geometry. It can be also written in terms of the Schouten

tensor,

as
Cap = Radb + 2Pa(a0%) + 2gaaPY)- (2.11)

Both tensors are specially taylored for conformal geometry. The transformation law for
the Schouten tensor of conformally related metrics g and g respectively is, from identities
(2.8) and (2.9),

~ 1
Pab_Pab: *VGV{,Q—

1
O ﬁgabVCQVCQ (2.12)
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and the well-known invariance of the Weyl tensor also follows
CCadp — Caap = 0.

We shall also use index-free notation. For any vector fields X, Y, Z, X and field of one-

forms w, the Riemann tensor
Riem(w, Z, X,Y) := R°,qpwe Z°XY?,
or in its covariant version
Riem(W, Z,X,Y) := ReagyW°ZoXY?.
The Ricci tensor and Ricci scalar
Ric(X,Y) = Ryp XYY, Scal := R.
Also, the Weyl and Schouten tensors
Weyl(w, Z, X,Y) := We,apwe Z° XYY", Sch(X,Y) = Py XY?.

When it is necessary to specify the metric, we shall do so with parentheses, e.g. Ric(g)

denotes the Ricci tensor associated to g.

One important type of tensor that will be relevant in this thesis is the so-called traceless
and transverse (TT) tensors. These are symmetric two-covariant tensors D on an N-

manifold (//\/lv, g) with zero trace (traceless) and zero divergence (transverse):
gabﬁab = 07 Va(gabﬁbc) =0.

In index free notation Tr,, (D) indicates the trace and div§(5) the divergence. The latter,
is a well-behaved operation under conformal scalings g = 22¢, with £ a smooth positive
function of M. In the following lemma we recall two well-known conformal covariance

results, that will be required later. The proof is added for completeness.

Lemma 2.1. Let g and g be conformally related metrics g = Q%G on a manifold Mv,
with %, V their respective Levi-Civita connections. Let 15ab be a symmetric two-covariant
traceless tensor and CC.qp o tensor with the symmetries of the Weyl tensor. Then the

following identities hold

Q—N%a(gabﬁbc) _ Va(gab92_Nﬁbc),
DNV .Ca = V(3 NC ).
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Proof. Consider the difference of connections tensor S in (2.6). Then

Va(g* N Dye) = Va(g"Q N Die) — 5%ag™ Q> N Dye + S%0cg™ Q>N Dig
= V("N Dye)
+ NN Tyg® Dypg — QN (T06% + To6% — T%ac) 9% Dpa
= —~NQ NG, Dy + Q NV, (5% Dye)
+ NQO VT 5% Dy — Q' N(T Dy + Tog™ Dypa — T Do)
= NV, (5" D),

where for the last equality we have used the traceless property of D. For the second

equality, first expand
V(@ NC%am) = (3= N NTC%a + >V VCa (2.13)
with
VeCCaih = VeCCaib — S esC%aty + S caCab + S%cdCsh + S Cads.  (2.14)

Expanding the above expression and taking into account the symmetries of C' and that

all its traces vanish, we get

1 N
Sccscsadb = 5 (Tcécs + Ts(scc - Tcgcs) CYsadb = _*Tscsadln

Q Q
1 2
Sscaccsdb = _5 (Tcésa + Taésc - ngca) Ccsdb = _ﬁTcCCadbv
1 1
SschCasb = _ﬁ (Tcésd + Tdésc - ngcd) C’casb - _5 (chcadb - Tscdasb) P
1 1
SschCads = _5 (Tc(ssb + Tb(ssc - ngcb) Ccads = _ﬁ (chcadb - TSCbads) .

Inserting into (2.14) yields

~ N —4 TS
vcOCadb = vcCCadb + TTSCSadb + 6 (Csbda + Csdab)
~ N -3
=V.Cam + TTscsadb (2.15)

where in the first equality we have rearranged indices of the four-covariant terms the

last equality is a consequence of the first Bianchi identity
Csbda + Csdab = _Csabd‘

Now the second equality of the Lemma follows by inserting (2.15) into (2.13) O
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2.1.1 Geometry of submanifolds

Consider an (n + 1)-dimensional manifold (M, g) and a local foliation, whose leaves
Yo = {Q = const.} are defined by a sufficiently differentiable function Q2. We denote
ga to the covariant projector (i.e. the projector with two low indices) onto the n-
submanifolds ¥q and we assume that the normal covector, given by T, = V,(2, is
nowhere null. Its normal unit is denoted u, = VoQ/|V,QV*Q|Y? and € = u,u
determines the causal character of the foliation. All indices in M are moved with g.

From the definition of the projector, we can write de decomposition

02
g=——=9aq, (2.16)
v
where —v is the lapse function, —v = V,QV#Q and clearly sign(v) = —e. We can

construct Gaussian-like coordinates {2, 2/} adapted to the foliation, by taking coor-
dinates {z'} of an initial leaf {Q2 = 0} and propagating them as T%0,(z*) = 0. Then, go
has no terms in d{) and thus coincides with the metric induced in the leaves ¥q. When
T is geodesic, the Gaussian-like coordinates are actually Gaussian coordinates. We shall

need the following explicit expressions in Gaussian-like coordinates.

Let us fix a leaf ¥q and let V(& be the Levi-Civita connection induced by go. By
(2.16), the tangent-tangent components to the leaves of the metric g satisfy g;; = (90)ij-
Then, it follows that for any two vector fields y,w € T3¢, the tangent components of

the covariant derivative V,w satisfy
y'Viw! = y(w’) + Tyw",
The fully tangent components of the Christoffel symbols satisfy, by decomposition (2.16),

. 1 .
[k = 59" (Oigku + Okgin — Ougi)

1 ‘
= 595(&'(9&)1@ + 0k(g0)a — Ai(ga)i) = T

where F(Q)gk are the Christoffel symbols of the metric gn. Thus
YVl = yiVZ(-Q)wj.

The same rule extends to all tangential derivatives of all tensors in ¥q. The normal

component of the V,w can be written

Y (Viw"u, = —y'w! Viu; = —y'w! Kij;
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The tangent components of K := Vu define the second fundamental form of ¥q. It is

immediate to check that it is a symmetric tensor because
yiwjviuj = —u“yiviwu = —u“(wiviyu + [y, w),) = —u“wiviyu = wiijiuj

where we have used that [y, w] = V,w — V,w is tangential to X, hence orthogonal to

u.

The second fundamental form can be also expressed in terms of the Lie derivative £, gq.

It is easier to derive this in index-free notation:

= (Equ)(ya U)) + gﬂ(vuya w) =+ gQ(y7 vuw) - gﬂ(vyu7 w) - QQ(% ku)
= ('Cugﬂ)(yv w) + vu(gQ (yv ’LU)) _QK(ya w),
——————

=Lu(go(y.w))
from which it follows
Kij = %(ﬁugﬁ)zj = Viu;.
Summarizing, we have obtained the well-known Gauss formula (e.g. [40])

Vyw = Véﬂ)w —eK(y, w)u.

From this, one can easily derive two fundamental formulas for the ambient curvature in
terms of the geometry of the submanifolds. We do not include their derivation for the

sake of brevity (see standard references, e.g. [40], [110]).

The first one is the Gauss identity, which relates the tangent components of the Riemann

tensor of g with the Riemann tensor of g, denoted by R(Q)ijklz
Rijin = R + e (KK, — K K1) . (2.17)

The second is the Codazzi identity and gives the one-normal, three-tangential component

of the Riemann tensor of g
R sy, = (Vi Ky — VIV Ky), (2.18)

where recall that V,E:Q)Klj = VK in Gaussian-like coordinates.

2.2 Basics on conformal geometry

In this section we review the basic tools on conformal geometry that we shall use in this

thesis.
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Let (M, §) be a Lorentzian (n+ 1)-manifold. The causal structure of a spacetime (M, )
is the assignation of a null cone NV, at the tangent space of each point p € M. This is of
great physical relevance as it determines the causal character of curves in the manifold,
which in turn establishes which two points are physically accesible from one another.
The causal character of a submanifold is given by the signature of its first fundamental
form . A submanifold is timelike if v is Lorentzian; spacelike if it is positive definite

and null if it is degenerate. For the latter we will also use degenerate submanifold.

The causal structure of a Lorentzian manifold is closely related to its conformal geometry.

We start by giving basic definitions.
Definicin 2.2. Let (M,§) be a manifold. Then:

1. A metric g of M is said to be conformal to g if there exists a smooth, positive
function Q of M such that g := Q?g.

2. The set of all conformal metrics [§] in M is called conformal class of § and

conformal structure of (Mv, g)-

3. A manifold M equipped with a conformal structure [g] is called a conformal
manifold (M, [7]).

It is obvious that in the Lorentzian case a conformal structure determines a causal
structure for the manifold. The converse statement is also true (e.g. [78]), namely, a

causal structure on a spacetime (M, g) determines a unique conformal structure on M.

Analogously, one defines a conformal transformation between different manifolds equipped

with metrics as follows:

Definicin 2.3. Let (Mj,¢g1) and (Mg, g2) be two manifolds. A conformal map ¢ :
Mj — Mas, is a smooth map satisfying ¢*(g2) = Q2g1, for a smooth positive function
Q of My. When M and My are of the same dimension, conformal maps are required
to define a diffeomorphism between M; and its image. When Im(M;) = Mo, ¢ is
called a conformal diffeomorphism. If (M, g1) = (Ma,g2), the set of conformal
diffeomorphisms, denoted Conf(M;, g1), is a group under composition called conformal

group of (M, g1).

The next notion we introduce is the conformal infinity and conformal extensions of met-
rics. Let us consider an (n+ 1)-dimensional manifold M with (n-dimensional) boundary
OM and denote its interior M = Int(M) . Let g be a smooth metric defined on M, but

not necessarily at the boundary. We allow g to be pseudo-Riemannian of any signature.

Definicin 2.4. A pseudo-Riemannian manifold g in M is said to be conformally
extendable if there exists a manifold with boundary M such that M = Int(M) and
a smooth function €2 of M positive in M such that

OM ={Q=0nNndQ # 0}, and g := 0%,
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is (at least) C2-extendable to M. Then (M, g) is said to be a conformal extension
of (M, 3).

The notion of conformal extension can be equivalently formulated by means of conformal
diffeomorphisms. Namely, a manifold with boundary (M, g) is a conformal extension
of (./\7, g) if there exists a conformal diffeomorphism ¢ : Int(M) — M such that Q
extends as a C? function to M and at OM it holds = 0 and d2 # 0. The equivalence
follows by the identification of M with Int(M) by ¢. We shall understand a conformal

extension as given in Definition 2.4.

The requirements of differentiability of Definition 2.4 are minimal so that curvature
tensors can be defined at dM. In most cases we deal with smooth extensions, but it
is useful to have a broader definition in order to accommodate the Fefferman-Graham

formalism (cf. Section 2.3).

For a given conformal extension (M, g), the boundary geometry is given by its first
fundamental form v := g|,,, so that the manifold .# := (OM, ) represents the asymp-
totic behaviour of (Mv, g) and it is called “conformal infinity” or “null infinity”. One
can always scale ¢ with a smooth positive function of M so that ¢’ = w?¢ induces
a different first fundamental form 7 = wQ‘ 7. Then, in order to define a notion of
conformal infinity independent of the particular extension, one considers the manifold
S = (0M, [v]), where [7] is the class of bilinear forms obtained from ~ by scaling with
any smooth positive function. Obviously, when v is non-degenerate, v is a metric and

[7] a conformal class of metrics in OM.

So far, we have not imposed g nor g to satisfy any equations. In this thesis we will be

interested in (physical) metrics g which satisfy the A-vacuum Einstein equations,

2A

Ric(g) —nAg =0, )\::n_l,

(2.19)

with particular emphasis in the case of positive cosmological constant A and Lorentzian
signature. However, it is also interesting to weaken this condition. In particular, we will
only impose (2.19) to be “asymptotically satisfied” to order m, for whatever sign of non-
zero \ and signature (n4,n_). We will not in general consider vanishing cosmological

constant. We say that (2.19) is asymptotically satisfied to order m if

2A

n—1

Ric(g) —nAg = 0(Q™), A= (2.20)

where O and o are Landau’s big O and little o. In particular, if m > 1, the equations

and all their derivatives to order m vanish at 2 = 0.

Definicin 2.5. A conformally extendable metric ¢ is asymptotically Einstein to
order m if it satisfies (2.20).
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The weakest notion of asymptotically Einstein metrics that we shall deal with are the

so-called [96] asymptotically of constant curvature (ACC).

Definicin 2.6. A metric g is asymptotically of constant curvature (ACC) if it

asymptotically Einstein with m = —1.

Before justifying the name, let us remark that this is a generalization of the class of
asymptotically hyperbolic metrics (e.g. [49, 72]), which correspond to the ACC case

with negative A\ and Riemannian signature.

Obviously, for ACC metrics, the Einstein tensor diverges at ., but “relatively slowly”,
so one is still imposing interesting asymptotic conditions. From the transformation

formula (2.8) for the Ricci tensors of conformal metrics g = 923, we have
QRas + (0 = )VaVsQ + gagVuV'Q = Q (Rag + GasnV,QV Q) | (2.21)
where all indices are moved with the metric g. If g is ACC, we have

QR+ (n = 1)VaVQ + 9as ViV = Q (Gasn (A + V,QVHQ) + 0(27))
= Q(Japn (A + V,,QVHQ)) = QRap + (n — 1)Va Vs + 9oV, V2 + O(1).

By construction, the RHS extends to €2 = 0, hence so it does the LHS,

QGapn (A + V,QVFQ) = Q1 guam (A + V,QVHFQ)
which implies V,QV#Q| , = —A. On the other hand, if V,QV#Q| , = —X holds, then
it follows immediatelly from (2.21) that g must be ACC. Thus, we have proven,

Lemma 2.7. A conformally extendable metric g is ACC if and only if for every con-

formal extension g = Qg it is satisfied

By OV0| = -\
g \ P

Using the relation (2.7) for the Riemann tensors of two conformal metrics g = Q2§ (with
S given by (2.6)), and performing a computation to leading order in €, one readily
obtains

R,uau,B = _gUAVJQv)\Q(g,quaﬁ - guﬁgau)9_4 + 0(9_3).

Hence, for every pair of linearly independent vectors X,Y of M spanning a non-null

plane, the sectional curvature is given by

Riem(X,Y, X,Y)

K(X,Y) := = g7V, QVAQ + 0(Q).
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j-i—

FIGURE 2.1: Conformal diagrams of de Sitter, Minkowski and Anti-de Sitter

Therefore, if g is ACC, the sectional curvature tends asymptotically to the constant
value —\. This justitifies the name “asymptotically of constant curvature” given to the

metrics.

Imposing the relatively weak condition of a metric being ACC suffices to determine the
causal character of .#, because its normal vector has norm given by ¢*? ViVl = =)
(independently on the choice of conformal extension). Null infinity is therefore spacelike
when A > 0, null when A = 0 and timelike when A < 0. In particular, in the cases
of positive or zero A, .# has generically two components (Figure 2.1) % = 4T U .4 ".
The (future) component .#* has empty intersection with the past of every point and
the (past) component .#~ has empty intersection with the future of every point. This
does not happen in the case of negative A\ because .# is timelike (Figure 2.1). The
causal character of .# is particularly relevant for the asymptotic Cauchy problem of the
A-vacuum Einstein metrics. Being Einstein is obviously stronger than being ACC, so all
results proven in this section for ACC metrics also hold for that case too. In a similar
manner, they also hold for intermediate notions of asymptoticity (weaker than Einstein
and stronger than ACC) to be introduced in Section 2.3.

Note that in the non-zero A cases, the first fundamental form v at .# is a non-degenerate
bilinear form, thus a metric. From now one we restrict ourselves to A # 0 and call v the

boundary metric.

With the notion of ACC metrics, we can already introduce a useful type of conformal

extensions, called geodesic, as well as basic existence results.

Definicin 2.8. A conformal extension (M, g) of (MV, g) is geodesic if T is geodesic

affinely parametrized w.r.t. g. Namely

T"V,T, = 0.

The necessary and sufficient condition for a conformal extension of an ACC metric to

be geodesic is given in the next lemma.
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Lemma 2.9. Let g be an ACC metric. Then, a conformal extension g = Q2%g is geodesic
if and only if
VadVQ = =\

Proof. The lemma follows from
1
VIOV Vaf = VIOV, Vs = SV, (vsavia), (2.22)

because if V,QV*Q = —X the RHS of (2.22) vanishes and 7' is geodesic. Conversely, if
T is geodesic then (2.22) is zero, so V,Q2V*Q is constant and, g being ACC, its value is

everywhere equal to —A\. O

Another important result concerning geodesic conformal extensions is whether, for a
given boundary metric v, there exists one such conformal extension. The answer is that
there always exists a unique geodesic conformal extension realizing a given . The proof
(see also [72] for a similar argument) relies on the method of characteristics, which we
describe briefly. For further details we refer to Chapter 3 of [47].

In a manifold M with boundary OM = 3, consider a first order PDE Cauchy problem
with inital data at X

F(z% f,Vaf) =0,  fls=9, (2.23)

where f is a scalar function. By the collar neighbourhood theorem [25], there exists a
neighbourhood of M which can be diffeomorphically mapped into a neighbourhood of
[0,00) x 3. We consider coordinates {z®} = {2, 2} adapted to this Cartesian product,
where {z'} are coordinates on ¥, which is identified with {0} x ¥ C [0,00) x X. Two
functions {¢,v¢p} of ¥ are a set of admissible initial data whenever they satisfy the

following compatibility condition'

9 8¢

F(xozov‘ri;qsaw(]v%?"' 7%

) = 0. (2.24)

Denote by Dy, ¢F the derivative of F' w.r.t. Vo f and let V(2% f, Vo f) be the vector
of components V¢ = Dy_F. Also, let T' be the normal covector to X, i.e. T, = V(2.
Then, for every set of admissible initial data, the Cauchy problem is said to be non-

characteristic if L) foler
S Sy £,

where - denotes the usual action of a covector on a vector. A non-characteristic Cauchy

TV (2° = 0,2 ¢, 1,

problem is known to be locally well-posed (e.g. [47]), i.e. that there exists a unique
solution f of (2.23), satisfying f|x, = ¢, dof|s = vo.

After this reminder, we can prove the next lemma.

!Compared to the the general setup of [47], the compatibility condition takes this simple form precisely
because of the use of coordinates {€, z°}.
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Lemma 2.10. Let g be an ACC metric for A\ # 0 with conformal infinity (X, [7]).
Then, for each representative v € [y], there exist a unique geodesic conformal extension

g = Q%q which induces the metric v at 3.

Proof. Consider a conformally extended metric g such that g = 22g and g |[o—o= 7. Let
g € [g] be such that § = w?g with w > 0 and w |g—o= 1, so that § realizes the same
boundary metric y. Therefore g = f22§, with ) = wq2, so by Lemma 2.9, we have to
show that there exists a function w such that ) satisfies (2.22) for the metric §

ap
A A A g
PV V0 = 5 Va(W)Vj(wh) = -\

Expanding the derivatives and defining f := logw, this amounts to

—\ = g*PV,QV;Q

9P 2V QVsf + QVLfVsf) = aQ

(2.25)
The LHS of (2.25) is obviously regular at 2 = 0. Also, since g is ACC
9PV QV5Q [omo= —A,

thus the RHS tends to —0q (gaﬁanV5Q) at Q = 0, which has finite value at .#.
Hence, we can pose a Cauchy problem at {2 = 0}, for which we must complete ¢ =
logw |x= 0 to admissible initial data for (2.25). These data must satisfy (2.24), thus
o is fixed to satisfy 29"y = —0a(g*?VaQV Q) |5. Observe that this is the unique
possible set of admissible data once ¢ has been fixed. The vector field V has components
2g°%(V5Q + QVu) and therefore

9 8¢

T -V(z® =0, 2" = ... 22
(:U y L 7¢7¢07 8:61’ 78.%'”

) = 29°PV, V50 = —2).

Hence the problem is non-characteristic if A # 0. Existence and uniqueness follows the

well-posedness result mentioned above. ]

2.2.1 The conformal sphere (S", [ys»])

We now introduce the construction of the conformal n-sphere as the projective cone in
Minkowski MY+ (see e.g. [133]). This procedure allows one to construct the conformal
group of the sphere, Conf(S™) (cf. Definition 2.3), from the isotropies of M+ The
conformal sphere, i.e. the n-sphere equipped with its conformal structure (S™, [ysn]), is
specially relevant because of its relation with local conformal flatness (cf. subsection

2.2.2) as well as the Fefferman-Graham formalism (cf. Section 2.3).

Let us consider M»"*1 endowed with Minkowskian coordinates {z!}71;, so that the
Minkowski metric is

g, = nryda’dz’
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FIGURE 2.2: A spherical section of the cone and a diffeomorphic arbitrary section.

where nyy is oo = —1 and n;y = 1, for I = 1,--- ,n + 1, and the rest of components
are zero. Let us define the null cone N := {z € MY+ | g/ (z,2) =0, =z #0}. In N,
we define the equivalence relation z ~ 2’ iff x = k2’ for k a non-zero real number. The
projective cone is the quotient N/ ~, which we canonically represent with the section
{2% = 1}NN. This section is identified with an n-sphere S via the isometric embedding
ts : S™ < N, such that t5(S") = {2° = 1} NN and ys» = 15(gr) is the usual spherical
metric. Now consider the scaling map f : M+ — MU+ o s f(z) = w(z)x for
an arbitrary smooth positive function w. Notice that f(1s(S™)) C N, so for each point
q € S", f(zg) = w(zqg)xy, where z; = 15(q) and we use Minkowskian coordinates in
Mbm+1 This generates an arbitrary smooth section of the cone (Figure 2.2), which is
also an n-dimensional submanifold. We may pullback now the metric by iy := fotg
and compare to the original spherical metric ¢§(gr,). In order to simplify the notation,

we do not specify in every step where each object is evaluated. Firstly

(f ous)*(9) =0&(F*(gr)) = ¢5(nrsd(f (=) d(f(x))7)
=g (meIx‘](dw)2

+ w(@)nry (2’ dz’ dw + 27 dwdz’) + w(z)?nrydz’dz?),
where note that the “cross terms” can be written
1
nry(z'daz’ dw + 27/ dwdz’) = E(d(nuajla:‘])dw + dwd(nrsztz”)).

Then, since Lg(nuxlx‘])q = (nuxéxq‘]) = 0 and Lg(d(nuxlx‘]))q = d(nuxéa?g) =0

J

, 1 constant equal to zero along S"), it follows

(because nr iz
(f o us)"(gr)q = & (wnrsda'da”) = w(2q)c5(91)q.

Thus, the pullback metric at S™ is the original spherical metric scaled by w?. That is,
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FI1GURE 2.3: Two spherical sections of the cone. The composition of transformations
wo A defines a conformal tranformation of the sphere Y.

by scaling points of S™ along the generators of the cone we generate new sections which
are conformal to S". In other words, the projectivization of the null cone amouts to the

n-sphere equipped with its conformal structure (S", [ysn]).

The conformal sphere constructed as the projective cone in M1 can be used to
generate the set of all conformal diffeomorphisms of S™. Firstly, the Lorentz group
O(1,n+1) acts by isometries on A/. Thus, the action of an element A € O(1,n+1) on S"
generates a new section A(S™) of the null cone, which must also be spherical. Therefore,
for each A € O(1,n + 1) there corresponds one transformation 1, of the conformal
group of diffeomorphisms of S™, Conf(S™), which assigns to each x € S™ the point
Pa(x) € S™ given by ¥a(x) := (7o A)(x), where 7 is the projection w : N' — S" (Figure
2.3). Conversely [133], for each ) € Conf(S™) one can find exactly two transformations
O(1,n+1), Ay and A_ such that ¢y = moA1. One of these transformations A preserves
the time orientation, while A_ reverses it. Hence, the conformal group Conf(S") is
in one-to-one correspondence with the orthochronous component of the Lorentz group
O*(1,n + 1). Moreover, since the action of O7(1,n + 1) is well-defined on rays on N\,
the correspondence is an homomorphism of groups, because ¥ o Ypr = moAomo A =
moA oA =p.n, where note that the second equality holds precisely because A has a

well-defined action on the rays of the cone.

For calculations, it is often useful to give a representation of Conf(S™) in the set of
conformal transformations of the Euclidean space E™. Observe that we do not use the
word “group” because, as we will see next, it is not a group globally acting on E™ (its
action is only local in a precise sense). This set is denoted ConfLoc(E™) and we will later
give an abstract general definition in subsection 2.2.2. The n-sphere S”, embedded as
above in M *1 may be projected into an n-dimensional spacelike plane of E" C {20 =
1} ¢ MY+ via Sty 0 S* — E", the stereographic projection, defined w.r.t. to a pole
N € §™ and at a signed distance d from S™ to E™ (cf. Figure 2.4). The relation between
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the metric ygn of E™ and ~s» is well-known to be conformal (e.g. [133]). Hence, for each
conformal diffeomorphism 1y € Conf(S™) the maps of the form ¢ := Styovpo(Sty)~?
are conformal transformations of E™. In the particular cases where 15 (N) = N, ¢, is an
affine transformation [133], thus a (global) conformal diffeomorphism of E”. In any other
case, ¢ gives a conformal diffeomorphism of E™\{p1, p2}, where the points p1,ps € E",
satisfy N = 1A (Sty' (p1)) and N = ¢ '(Sty'(p2)). Since the points pi, ps depend on
the particular transformation 5 one must proceed carefully with the maps ¢, because
the domain where they are well-defined changes under composition. However, one can

easily see that, away from conflictive points, it holds

PA O PAr = YA O YA = PpoAr = Proa,

so the composition preserves the group law. The set of conformal transformations of E™
obtained from Conf(S™) as just described is denoted ConfLoc(E™).

Notice that there is a certain freedom in the above construction, such as the choice of
section of the cone to represent the projectivization, as well as the pole N and distance
d in the definition of Sty. We now see how this freedom can be absorbed in the choice

of coordinates and flat metric.

Consider Minkowskian coordinates {z!} of M!"*+! and let us pick the section of the
cone S” = N'N{z" = 1}. Any other spherical section of the future cone S is related to
S™ by a transformation A € O (1,n + 1), i.e. S = A(S"). In the coordinates defined
by 2’1 = (A71)! 27, the section S™ looks the same as S" in coordinates {z'}, that
is ™ = N N {2’ = 1}. Hence, for any representative we can assume Minkowskian
coordinates of Mb"*! into which S* = NN {z" = 1}. In a similar way, any two possible
poles N and N’ in S" are related by an SO(n) transformation. So the same idea applies
and we may by default select Minkowskian coordinates of MU+ into which N is given
by 2% = —z! = 1 and the rest of components are zero. Finally, let two Euclidean n-
planes E® and E, both lying in the hyperplane {z° = 1}, at respective signed distances
d and d’ of N (neither equal lo zero) and equipped with metrics (induced by gr) vgn
and g~ respectively. It is immediate that yg» and = must be homothetic to each
other (cf. Figure 2.4). Hence, for a given flat metric ygn, d fixes a scale s?ygn, s* € R.

So if we allow yg» to be scaled by a constant?, the distance d may be set d = 2.

Summarizing, w.l.o.g. we may consider Minkowskian coordinates {x'} of M""*! such
that S* = {2 =1} NN and N = (1,-1,0,---,0). In addition, we may also fix d = 2
by setting an adequate flat metric yg», so we consider E® = {z" = 2! =1, yA = AT
where {y?}, for A =1,--- ,n, are Cartesian coordinates of yg» inherited from Mb*+1,
For some applications, we may be given a flat space with a fixed flat metric (E™, ygn)
and Cartesian coordinates {y'}. Then, we shall embed (E", yg») in M'"*! as the n-

submanifold E* = {20 = 2! = 1,94 = 24%1} so the above conventions hold.

2This is actually innocuous in problems with conformal equivalence.
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With the above choices we have con-

d d structed the map

¢:07(1,n+1) — ConfLoc(E"),
A — ¢A-

The differential of this map transforms the

respective Lie algebras of the groups. The
Lie algebra of O*(1,n+ 1) consists of the

FIGURE 2.4: Stereographic projection w.r.t. to set of two-forms of Minkowski, or equiv-
pole N and distance d. The arrow indicates

growing positive distance. For difference dis- i } ]
tances d and d’', the planes are homothetic when morphisms, to which an important part

vertically identified. of this thesis is devoted. This set will be

denoted SkewEnd(M!'"*1). On the other

hand, the Lie algebra of ConfLoc(E") is

[133] the set of conformal Killing vector fields (CKVFs) of the metric ygn. These are
vector fields £ satisfying

Y

alently, the set of skew-symmetric endo-

Levpn = —(divag, &)yEn,

2
n
that we shall denote CKill(E™). We next give, for later use, the explicit form of the
differential map

6 : SkewEnd(M" 1) —  CKIll(E™),

P g (F) =&

In order to emphasize the fact that a CKVF is the image by ¢, of a skew-symmetric
endomorphism F', we write {r. Conversely, if F' is the preimage by ¢, of a CKVF
&, we shall use the notation F(§). Besides, recall that ¢ preserves the group law, i.e.
dA © dAr = PAorr, SO In this sense it is a morphism of groups. As a consequence of
this (cf. Theorem 2.11), the action of O*(1,n + 1) on SkewEnd(M'"*!), also maps to
the action of ConfLoc(E™) on CKill(E™). Similarly, the differential ¢, is a Lie algebra

(anti)homomorphism?.

Theorem 2.11 below gives the explicit form of the differential ¢y, as given in [100]. In
this reference, the Killing vector fields of Minkowski are first mapped into the Poincaré
disk model of the (n + 1)-dimensional hyperboloid of future unit timelike vectors. The
conformal infinity of the (n + 1)-dimensional Poincaré disk D"*! is S*, and the Killing
vector fields extend to CKVFs of S”. The disk D" is then mapped to the hyperbolic
half plane model via an inversion map, in such a way that the boundary S™ maps
to the boundary E™ by a stereographic projection. In this way, CKVFs of E" are
obtained from CKVFs of S”. The whole procedure, with the various choices made in
[100], is equivalent to the construction described above, including the choices for the

stereographic projection and representative of the projective cone.

30bserve that by switching the sign in the CKVFs % := —¢r the antihomorphism becomes an
homomorphism [£5, 6] = [€F,&c] = —€r.q) = &(r,q)- We keep the sign which gives the usual form of a
CKVF.



34

The matrix in Theorem 2.11 is an endomorphsim with entries F!;, where the upper
index ! stands for row and the lower index ; stands for column. Acting on vectors
v =1vley of MLt gives

F(v) = F! e

Teorema 2.11. [[100]] Let M""*! be endowed with Minkowskian coordinates {z'} and

consider any element F' € SkewEnd(M'" 1) written in the basis {01} in the form

0 —v  —al+bl/2
F= —v 0 —al —bt/2 |, (2.26)
—a+b/2 a+b/2 —w

where a,b € R™ are column vectors, ! stands for the transpose andw is a skew-symmetric
n x n matriz (w = —w'). Then, in the Cartesian coordinates {y} of E* defined by the
embedding i : E® «— MV G(E?) = {20 = 2! = 1, 2% = ¢4}, the image by ¢ of F
1s the CKVF
1
fp = <aA + vy + (apy®)y? — E(yByB)aA - wAByB) Oya- (2.27)

Moreover, Eaqy (r) = Oax(EF), where Adp(F) :== A-F - A1, for every A € OF(1,n+1)
and ¢ is a Lie algebra (anti)homomorphism, i.e. [{r,&c] = —§rq)-

Observacin 2.12. For later use, we write explicitly the parameters of the vector field

v,a, at,wAp in terms of the entries F'; of the endomorphism F':

1
v=—FY, ag=—3 (F41+ Flay),
(2.28)

0 1 A At1
ba= s (F'ay1—Flap), wip=—-F* g,

N |

where capital Latin indices are lowered with the Kronnecker dap.

2.2.2 Local conformal transformations and local conformal flatness

The conformal diffeomorphisms of a manifold (X, v) need not to be globally defined, as we
have seen in the case of E” (cf. subsection 2.2.2). This raises a difficulty for establishing
conformal equivalences of global objects, such as global vector fields, because if ¢ is only
defined in an open neighbourhood ¢ : & — 3, any conformal relation between vector
fields must be restricted to U and ¢(U). In the particular case of locally conformally flat

manifolds we can use the conformal sphere as a reference to make these relations global.
Following [148], we define:

Definicin 2.13. A Riemannian n-manifold (3, ) is locally conformally flat if there
exists an open cover {V,} of ¥ and a collection of conformal maps {x,} from V, to

the n-sphere, x, : V, — S"™. The set of pairs {V,, X} is called a conformal cover.
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A conformal cover {V,, xq} is said to be maximal if every possible conformal map
Xb : Vb — S" of a domain V, C ¥ is contained in {V,, xa}-

Observe that a maximal conformal cover {V,, x,} of (3,7) can always be constructed

as the union of every conformal cover. It is also clear that the maximal cover is unique.
We next prove that the maximal conformal cover provides a cover of the sphere:

Lemma 2.14. Given the mazximal conformal cover {V,, xa} of a locally conformally flat
manifold (3,7), the images {W, := Va(Xa)} are a cover of S™.

Proof. The group of diffeomorphisms Conf(S") acts transitively on the sphere (note
that it contains SO(n)). As a consequence, given any (Vy, x) € {Va, Xa} the set of all
neighourboods (¢ o x3)(V,) generated with every ¢ € Conf(S™) covers S™. Now, since
every xj, := Y oxs is a conformal map from V, to S™, it must be contained in the maximal

cover and the lemma follows. O

From now on, we shall assume that every locally conformally flat manifold (3,7) is
endowed with its maximal conformal cover. Next, we define the local conformal trans-

formations of (X,~) as follows

Definicin 2.15. A map ¢ : U — X, where U C 3 is an open set, is called a local diffeo-
morphism of ¥ if ¢ is a diffeomorphism of &/ onto its image. The set ConfLoc (X, ~)
is the set of local diffeomorphisms such that ¢* (7] o)) = w2'y|u, for a positive smooth

function on U.

Observacin 2.16. In the following discussion, global extendability of the conformal
transformations and CKVFs of the n-sphere will be key. This property is true for every
conformal transformation and CKVF of S™ and dimension n > 2 [20]. For n = 2,
S? admits non-global conformal transformations, as an indirect consequence of its com-
plex structure (cf. Remark 3.14). Nevertheless, note that all the global transformations
Conf(S?) are also generated from the orthochronous Lorentz group OT(1,3) by the pro-
cedure explained in subsection 2.2.1 (e.g. [133]).

In a locally conformally flat 2-manifold (3,), the non-global conformal transformations
of S? as well as the global conformal transformations Conf(S?), induce transformations
of ConfLoc(X, v) which are not a priori distinguishable. To avoid this difficulty, we shall
restrict ourselves to the n > 2 case in this subsection. The n = 2 case will be described

in detail in Chapter 3.

Let (X,7) be a locally conformally flat manifold. We want to establish a relationship
between ConfLoc(X,y) and Conf(S™). We start by showing that to each transformation
1 € Conf(S™) one can associate maps ¢ € ConfLoc(X,v). Choose a conformal map

xb : Vp — S™. As a consequence of Lemma 2.14 and restricting Vj, if necessary, the image
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FIGURE 2.5: Relation between elements ¢ € ConfLoc(X,~) and ¢ € Conf(S™).

¥ (xp(Vp)) lies in the image of some map . in the maximal cover. Then ¢ := x_ oo,
is clearly an element of ConfLoc(X,y) (Figure 2.5). One can construct as many elements
of ConfLoc (X, 7) as conformal maps x. exist in the maximal cover satisfying the required
condition. Also, observe that the transitivity property of Conf(S") induces a transitivity
property in ConfLoc(X, ) in the sense that the map ¢ can always be constructed so

that ¢(p) = ¢ for any two given points p,q € X. Indeed, such ¢ can be constructed from
any ¢ € Conf(S") satsifying ¢ (xs(p)) = Xc(q)-

Conversely, to each ¢ € ConfLoc(3,7) defined in a neighbourhood Y C ¥, one can
locally associate a map . Let (Vy, xp) and (V. x¢) belong to the maximal conformal
cover {V,, Xq} of ¥ and satisfy that the intersections U NV, and ¢(U) NV, are non-
empty. The map 1) := x.o0¢o Xb_l is well-defined on x3(U NV,) C S™ and it is obviously
a conformal map. It is a fundamental property of the conformal group of the sphere [133],
that there always exists a unique element 1 € Conf(S™) extending the previous map to
the whole sphere. As before, the assingment of a given element ¢ € ConfLoc(X, ) to an
element of Conf(S™) is highly non-unique. Thus, there is no one-to-one correspondence
between ConfLoc(X,v) and Conf(S™). However, as we show next this correspondence

provides a useful notion of conformal class for (local) conformal vector fields in (X, ).

Before doing this, let us relate ConfLoc(E™), as constructed in subsection 2.2.1, with the
abstract definition of ConfLoc. Recall that a map ¢ € ConfLoc(E"), constructed from a
1 € Conf(S™), defines a diffeomorphism in E™ minus two points, which correspond with
the preimage and the image of north pole N by t». When ¢(N) # N, the map ¢ is a

so-called M6bius transformation [20] and takes the explicit form

gb(y) _ KR<y — pl)

- +p2a 2.29
ly — p1? ( )
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where K € R, R is a rotation and py, ps are the points in E" associated to ¢ as described
above. This defines a map E"\{p1} — E"\{p2}. When ¢(N) = N, ¢ is an affine
transformation of E”, hence a global diffeomorphism. Given an open set U C E™ the
elements of ConfLoc(X, ygr) whose domain is U are precisely the collection of Mobius
transformations (2.29) satisfying p1,p2 € E™ \ U, together with the set of all affine

transformations.

We have now the necessary tools to define the notion of conformal class of CKVFs. We
define:

Definicin 2.17. Let £ be a CKVF of a Riemannian manifold (3,7). The conformal
class of £ is the set of all CKVFs ¢ defined in some non-empty open neighbourhood
U and generated by an element ¢ € ConfLoc(X,vy) whose domain is U. Specifically,
it consists of all fields ¢.(&ly) = &'y A conformal class is said to be global if

U=oU) =3

This definition is local, and nothing guarantees that £’ can be extended to a global CKVF
in Y. However, when X is locally conformally flat, we can show that there is a precise
sense in which this local conformal class can be put in a one-to-one correspondance with

a global conformal class in the sphere. We do this next.

Let (X,7) be a locally conformally flat manifold and a global CKVF . Let & be an
element of the conformal class of £ and let ¢ € ConfLoc(X, ) be the map relating them,
defined in a neighbourhood U C X. Let also (W, xp) and (V,, x.) be pairs in the maximal
conformal cover of (X,v) with non-empty intersections U NV, and ¢(U) N V.. Denote
their images as W, = xp(UNVy) and W, = x.(¢(U)NV,). One can locally assign CKVFs
of S™ in W, and W,, through the maps x, and x., i.e. ¢ := xp(§) and ¢' := xex(&).
The sphere being simply connected, it follows easily that ¢, (" extend uniquely to global
CKVFs in the sphere (as each one of them is the generator of a unique ¢ € Conf(S™)
[133]). The vector fields ¢,¢’ are locally related by the map ¢ := x.o¢o Xb_l, which
obviously satisfies ¢ € Conf(S™) and we have already mentioned that v extends to an
element in Conf(S™). The relation ,(¢{) = ¢’ is global because 1, (¢) is a CKVF that
equals ¢’ in W,, so it must equal ¢’ everywhere, by the uniqueness of extensions of
CKVFs on the sphere.

The vector field ¢, associated to a given global CKVF ¢ of (X, v), depends on the element
(Vp, xp) of the maximal cover used to define it. However, let (Vy, xp) and (V,, x¢) in the
maximal cover have domains with non-empty intersection, i.e. VNV, # 0. In S”, define
the CKVFs of (p := xp«(§) and (; := Xex(€). Then, the map ¢ := x. o Xb_l restricted to
Xo(VeNV,) satisfies 1, ((p) = (.. But ¢ extends to a global map in Conf(S™) and, by the
argument above, this relation also extends globally to S™. Therefore, the vector fields
(p, (. associated to £ are in the same global conformal class of S™ if V}, and V, intersect.

Moreover, if ¥ is connected, this is true even if V, NV, = 0, because V;, and V. can
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be joined through a finite sequence of neighbourhoods* {V;}X, in the maximal cover
{Vk, Xk}kK:1 C {Va, Xa} such that Vy N\ Vy11 # and Vi =Vyand Vg =V,. In Vi Vi1,
the map Y = X,;}l o xk establishes a conformal map. All such maps, extended globally

in S™ and combined v := 11 0 - - 0 Y _1, determine a conformal relation ¢, = 1), ({c).

Thus, the above discussion shows that all CKVFs in the conformal class of & and &' of
a connected, locally conformally flat manifold ¥, determine a unique global conformal
class of CKVF in S™. The converse is also true because of the following argument. Let
(Vp, X») belong to the maximal conformal cover and consider ¢ = yp(§) and ¢’ = ¥, (¢)
for any ¥ € Conf(S™). Then, as a consequence of Lemma 2.14, there exists a pair
(Ve, Xe) in the maximal conformal cover such that x.(V.) N ¥(xs(Vs)) # 0. Hence, in
Xe(Ve) N9 (x6(Vp)) the vector field ¢’ induces, via x. !, a CKVF ¢ of 4. By construction,
the map ¢ := x.! o1 oy, belongs to ConfLoc(X,7) and satisfies ¢.(¢) = ¢ on a

non-empty domain. Thus, £’ is in the conformal class of £&. Summarizing

Proposicin 2.18. Let (X,7) be a Riemannian, connected and locally conformally flat
n-manifold with n > 2. Then, the conformal classes of CKVF in (3,7) as given in
Definition 2.17 are in one-to-one correspondence with global conformal classes of CKVFs

of S™.

2.3 Fefferman-Graham expansion

The results in this thesis concerning general relativity in dimensions higher than four
are based on the Fefferman and Graham formalism (see the seminal paper [48], later ex-
panded into the monograph [50]). This framework was originally intended for the obten-
tion of conformal invariant quantities (specially scalars) for a given conformal structure
(3, [y]) of dimension n and signature (ny,n_). From (X, [7]), two constructions emerge
which are in a precise sense equivalent. The first one, which is actually the main object
of study by Fefferman and Graham, are the ambient metrics g4. These are (n + 2)-
dimensional metrics of signature (n4 + 1,n_ + 1) living in a so-called ambient space
G. The space G contains a hypersurface N, whose projectivization yields (X, [y]). The
second construction are the Poincaré metrics, which are asymptotically Einstein metrics
of dimension n + 1 and signature (n4 + 1,n_) or (n4,n_ + 1), conformally extendable
with . = (%, [7]).

The model example for ambient and Poincaré metrics is the conformal n-sphere (S™, [ysn]),
obtained as the projectivization of the null cone N in Minkowski space M'"*1 (cf. sub-

section 2.2.1) or, as we show next, the conformal infinity of the Riemannian hyperboloid

4Connected manifolds are path connected so there exists a continuous curve o : [0,1] — X joining
a point p € V, with a point ¢ € V.. The set of points «([0,1]) is compact, so from any cover one can
extract a finite subcover. It suffices to start with the full cover {V,} associated to the maximal conformal
cover, extract a finite subcover and, in necessary, supplement with V,, V. to fulfill all the properties that
we require.
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and of the Lorentzian hyperboloid (i.e. de Sitter space). The Minkowski spacetime
of dimension n + 2 is an ambient space for (S",[ys»]) and each (n + 1)-dimensional

hyperboloid is a Poincaré metric for (S", [ysn]).

Let us consider the hyperboloids Hy := {x € MM ! | g/ (z,2) = A}, for A a non-zero
real constant. The sign of A determines whether H ) is a one-sheeted hyperboloid, i.e.
de Sitter space (A > 0), or a two-sheeted hyperboloid (A < 0). In the later case we
restrict ourselves to the connected component with {z > 0}. We first focus on the

A > 0 and the A < 0 is indicated at the end. Parametrizing H ) with the set of functions
{t, {ci}72]'} satisfying,

n+1
2% = A2 sinh(A1/2¢), 2 = A2 cosh(AV%t)ay,  with Z o? =1
i=1
the induced metric on H) takes the form
gL]HX = —dt® + )\coshQ(/\_l/zt)fySn,
where ygn = 5ijdaidaj|zn+1a2_l is a spherical n-metric. On the domain {t > 0} let
=1 "1

us introduce Q := (cosh(A~1/2t)) 1 so that dt = —/AQ~1(1 — Q?)~1/2dQ and we obtain

the following metric conformal to gr |y,

dQ? + Mysn.

A

2

This metric is obviously extendable to {2 = 0} and we recover the well-known fact
that .# = (S, [ysn]) for de Sitter spacetime. The A < 0 case is analogous in terms of
the parametrization 20 := |A|/2 cosh(|A|~1/2t), 2% := |\ sinh(|A\|~1/?t)a; where also
Srtla? = 1.

The Fefferman and Graham construction extends the above example from the n-sphere
to general conformal manifolds. Generically, both ambient and Poincaré metrics are
solutions of certain PDEs whose initial data are determined by the conformal structure.
Namely, ambient metrics are asked to be Ricci flat at a null hypersurface A/, analogue to
the null cone in the (S™, [ysn]) example; while Poincaré metrics are asked to be asymp-
totically Einstein with non-zero cosmological constant. Whether these PDEs propagate
away from the initial surface is not required in the Fefferman and Graham construc-
tion, so their analysis remains formal, i.e. they find formal (non-necessarily convergent)
series solving the PDEs at the initial hypersurface. It is important to stress that for
the construction of conformally invariant scalars, the formal solutions are sufficient [50].
We are, however, interested in the asymptotic initial value problem of general relativity,
which also uses the Fefferman and Graham formalism [5-7, 86, 87, 129], and it is more
focused on Poincaré metrics. Nevertheless, for the sake of completeness, we outline first
the main idea of the ambient construction, which is in the base of the Fefferman and

Graham formalism.
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2.3.1 Ambient metrics

The idea of the ambient space is to lift the conformal structure (X,[y]) into an R*-
bundle N, called the metric bundle, in such a way that each section (t(x)?v,z) € N
gives a conformal representative of (X2, [y]). Then, one embeds N into a neighbourhood
of G = N x R identifying N’ with N’ x {0}. The ambient metric may extend from
N in a non-unique way, but this freedom can be dealt with by constructing a certain

equivalence class of metrics provided they are all Ricci flat to a certain order at N.

In more detail, the ambient construction is as follows. One starts with a conformal
manifold (3, [y]) and chooses a representative v € [y]. The manifold (X,~) is the base
of the metric bundle A/, which consists of all pairs (h,z) with 2 € ¥ and h = sy
for some s € RT. The bundle AV is endowed with a dilation operator ds which scales
the first term in the pair d4(h,t) = (s2h,t) for all s € RT. Thus, A is an R*-bundle
. Associated to each representative ~y, the exists a trivialization N/ ~ R* x ¥ whose
points (¢, ) are associated to pairs (t>y,z) and thus, its sections (¢(x)?, ) correspond
to conformal representatives (t(z)%y,z) of (X,[y]). In the remainder, we shall work

assuming a trivialization, namely, identifying ' with R* x 3.

We consider local coordinates {x}"_; of ¥ which endow A with coordinates {t,z‘}. In
these coordinates, the bundle projection map is 7 : (t,x) — x, the dilations (¢, ) —
(st,x), Vs € R, and the infinitesimal generator of ds is 7 = td;. Moreover, at each point
of TN, a symmetric two-tensor g is defined by go(X,Y) := t?y(m X, mY), VX,Y €
T(t»N'. In coordinates {t, 2"} it reads

go = tzfyijdwidxj.

Now consider the embedding ¢ : N' < N x R, where +(N) = N x {0}, whose points we
denote by (z,p) € N x R. The action of the dilations d5 extends to N' x R by leaving
the second factor invariant and acting on the first factor as already defined. The local
coordinates {t,z'} of A/ extend to local coordinates {t,z;, p} of N'x R. In /' x R we
define G, a neighbourhood of A/ x {0} which is dilation invariant. In addition G is such
that, for every z € N, the set of all p € R for which (z, p) € G is an open interval I,. In

G, we will define a metric g4 for which Vp is a geodesic vector.

We next give the conditions which make G an ambient space and g4 an ambient metric.
The definition that we give corresponds, in the original work [50], to a special case called
straight ambient metric in normal form. We emphasize that assuming normal form does
not entail any loss of generality because Fefferman and Graham also show that, up to
a certain equivalence relation, every ambient metric admits a normal form and it is

straight in a sufficiently small neighbourhood of N x {0}.

Before giving the precise definition, we introduce a notion of decay for symmetric tensors

on G.
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Definicin 2.19. A symmetric two-tensor S of G is said to be Ot (p™) if it is O(p™)
and moreover, at each point z € N, *(p~™8S) is of the form 7*(o), for a symmetric

two-tensor o of N, which may depend on ¢ and x.

Now we define:

Definicin 2.20. Let (3, [y]) be a conformal n-manifold of signature (n4,n_) and fix a
representative v € [y]. An ambient space (G, g4) for (X,7) is an (n 4 2)-dimensional
manifold of signature (ny +1,n_ +1) such that, in the local coordinates {t,z%, p}, takes
the form

ga = 2pdt* + 2tdtdp + t2g,(z), (2.30)

where g,(z) = g,(x); jdxidxj is a l-parameter family of n-metrics, with parameter p,

such that g,—o = go. Moreover:

1. If n =2 or n > 3 and it is odd, Ric(g4) vanishes to infinite order at every point

of N x {0}.
2. If n > 4 and it is even, Ric(g4) = O (p™/?71).
Observe that (2.30) is already decomposed in a 2 x 2 block with terms dp and d¢, plus

an n x n block with only terms dz?. Using this structure, it is an immediate calculation
that

Vo,0, =T14,01 =0,
Via, (t0;) = t; + t*TLor = to,

thus Vp and 7 are both geodesic with the first affinely parametrized.

The main existence result for ambient metrics is as follows.

Teorema 2.21 (Fefferman-Graham [48, 50]). Let (X, [v]) be a smooth conformal man-
ifold of dimension n > 2 and let v € [y] be a representative of the conformal class of

metrics. Then

a) There exists an ambient space (G, ga) for (£,7).

b) Let (G1,9.41) and (G2,gas) be two ambient spaces for (X,v). Then, if n is odd
g4 — g.Ao vanishes to infinite order at N'x {0}. If n is even gay —gas = O (p™/?).

Note that statement b) of Theorem 2.21 says that, for n odd, the metric v uniquely
determines the ambient metric g4 to infinite order at A x {0}, while for n even, it only
determines it up to order n/2. This is a consequence of the mechanism by which these

metrics are generated. This is outlined here for ambient metrics, but in Appendix A we
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will give a more precise derivation of the formulae in the equivalent setting of Poincaré

metrics.

Roughly speaking, the equation Ric(g4) = 0 at N x {0} is used to generate recursively
the terms of the formal expansion of g,, with initial condition g,—¢p = <. The m-th order
coefficient in the expansion satisfies the following equation, which arises from taking

derivatives of the equation Ric(g4) = 0 and evaluating at N’

n

(5 —m) O onl,—y = RHS (00,05 <"9y)| (231)
where RHS(g,, 8;”/<mgp) indicates that the RHS of (2.31) depends on g, (and its inverse
g;l) and derivatives in p of order lower than m. There also appear derivatives of them
in the variables z* up to second order. If n is odd or n = 2, one can impose Ric(g4) =0
to infinite order at N' x {0} and the generation of polynomial terms in the expansion
goes on to infinite order. The situation is more subtle if n is even and larger than two.
In this case, the equation Ric(g4) = 0 to the order p™/? at N x {0}, cannot be satisfied
by a formal power series expansion, because the factor in the LHS of (2.31) vanishes
identically. One says then that the existence of the power series is obstructed by the
presence of the so-called obstruction tensor O, which is essentially given by the RHS of
(2.31) with m = n/2. If this tensor, which entirely depends on +, is non-zero, one must
include logarithmic terms in the expansion in order to satisfy the equations (2.31) at

/2 The logarithmic terms spoil smoothness, but allow one to keep the expansion

order p
so that Ric(g4) = 0 holds to infinite order at A/ x {0}. Hence, smooth solutions are

determined by the metric 4 only up to order p"/2.

The obstruction tensor has interesting properties, which we give in the next theorem.
As a tensor determined by a metric vy, we shall denote its explicit dependence by O(7)

if necessary.
Teorema 2.22 (Fefferman-Graham [50]). Let n > 4 be even. The obstruction tensor
Oi; depends only on the geometry of (£,7) and
1. It admits a covariant expression in terms of v, the contravariant metric %, Ric(y)
and its covariant derivatives.

2. O;; 1s traceless and divergence-free.

3. Oy is conformally covariant of weight n — 2, i.e. O(w?y) = W2 "O(y) for every

smooth positive function of 3.
4. If v is conformally Einstein, then O;; = 0. In particular if v is locally conformally
ﬂat Oij =0.

Coming back to the series expansion, if n > 4 is even we already indicated that one can

continue generating terms in the expansion so Ric(g4) = 0 to infinite order at N x {0}
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provided smoothness is dropped and only finite differentiability up to order n/2 at p =0
is required. The metric is no longer a formal power series expansion, but it is called
polyhomogeneous expansion, because of the presence of logarithmic terms. Moreover,
one can freely prescribe a TT tensor which appears multiplying a power p™? without
logarithms in the expansion. This is possible precisely because the equation Ric(g4) =0
(cf. (2.31)) does not determine this term. On the other hand, its trace and divergence
cannot be prescribed because they are determined by geometric identities, also coming

from the vanishing of Ric(g4) at N.

If is n odd, something similar happens in the non-smooth case, in the sense that an
undetermined TT tensor multiplying the half-integer power p™/2 can also be prescribed.
The presence of such a term clearly means that the ambient metric is no longer smooth.
However, the situation is different in the case of Poincaré metrics where a corresponding
free term can be added without spoiling differentiability of the metric to all orders.
Indeed, this undertermined term plays a key role in the free data at null infinity in the

context of Poincaré metrics, as we will see in Appendix A.

Because of their different behaviour, we state the existence results for generalized am-

bient metrics into separate Theorems for n even and n odd.

Teorema 2.23 (Fefferman-Graham [50]). Let (3, [y]) be a conformal n-manifold with n
odd, and let v € [y] be a representative of the conformal class. Let also h be a symmetric

TT tensor of (X,[y]). Then, there exists a generalized ambient metric ga for -y

(QA)[J = 711??1) + wg?lp\"ﬂ

where Y@ and V) extend smoothly to p = 0 and 'l/}ij‘p:(] = t2hij. These conditions
uniquely determine the coefficients of the Taylor expansions at p =0 of »© and v to

infinite order.

Teorema 2.24 (Fefferman-Graham [50]). Let (X, [v]) be a conformal n-manifold with
n even, vy € [y] be a representative of the conformal class and h a symmetric two-tensor
on X. Then, there exist a one-form b(y) and a scalar a(y), both covariantly determined
by v, such that if Tryh = a(vy) and divyh = b(7), then there exists a generalized ambient
metric ga for -y

o0
N
(9a)r; = Z 1/)}])(9”/2 log |p|)N,
N=0
such that every YN extend smoothly to p = 0 and 62/2(1#)1(?) = (n/2)! t*h;; at p = 0.
These conditions uniquely determine the Taylor expansions at p =0 of 1/1%[) to infinite

order. Moreover g4 is smooth if and only if the obstruction tensor vanishes. If n = 2,

then the obstruction tensor is identically zero, b(y) = 5xd(Scal(y)) and a = 1Scal(y).
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2.3.2 Poincaré metrics

We now review the main ideas on the Poincaré (smooth) metrics and generalized Poincaré
metrics, which as in the case of ambient metrics are not necessarily smooth if n is even.
We denote both such metrics g. The construction arises by imposing certain asymp-
totic behaviour which makes g asymptotically Einstein to certain order with .# being a

prescribed conformal manifold (X, [v]).

Let (X, [y]) be a conformal n-manifold of signature (ny,n_). A Poincaré metric g is a
smooth (n + 1)-metric of signature (n4 +1,n_) or (ny,n_ +1) defined in the interior of
a manifold M := Int(M) with boundary ¥ = 0 M. The manifold M is a neighbourhood
of [0,00) x ¥, where § admits a smooth conformal extension g = Q2§ with prescribed
conformal infinity .# := (3, [y]). In M, Q is a defining function of {0} x ¥ C [0,00) x &
and we understand 3 in M as the image of the embedding i : ¥ < 3 x [0, 00) such that
i(X) = ¥ x {0}. Moreover, Poincaré metrics are asymptotically Einstein, with decay
rate depending on the parity of n. For the n even case, we adapt the Definition 2.19 of

O™ to the case of Poincaré metrics

Definicin 2.25. A symmetric 2-tensor field S of M is OT(Q™) if S = O(Q™) and
Tr,i*(Q~™S]x) = 0.

With this notation we can give the formal definitions [48], [50]:

Definicin 2.26. Let (X, [y]) be a conformal n-manifold of signature (ny,n_) and A a
positive (resp. negative) real constant. A Poincaré metric for (3, [y]), is a smooth metric
g of signature (n4 +1,n_) (resp. (n4,n_+1)) admitting a smooth conformal extension
such that . = (3, [y]) and

1. If n =2 or n > 3 and odd, Ric(g) — Ang vanishes to infinite order at X.
2. If n > 4 and even, Ric(g) — A\ng is OF(Q"2).
A Poincaré metric is by definition asymptotically Einstein, so in particular it is ACC.

Hence, by Lemma 2.10, for each boundary metric v € [y] there exists a geodesic confor-

mal extension g = 902g. We now define

Definicin 2.27. An ACC metric is said to be in normal form w.r.t. a boundary metric

~ if
1 d0? dQ?
5= — : = -—— 2.32

where gq is the metric induced on the leaves X by g and gq |g=o= 7.

Associated to each geodesic extension, there exists a set of Gaussian coordinates {§2, z*}
in which ¢ and ¢ are in normal form. These coordinates are most adequate for working

with Poincaré metrics and will be assumed from now on unless otherwise specified.
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For a given ambient metric g4, one can asign a Poincaré metric in the region p < 0 and
another Poincaré metric in the region p > 0. They are obtained by restricting g4 onto
the “hyperboloids® Hy := G N {|7|> = A71}, for a real non-zero constant A\~! € R with
sign(\) := sign(p). Writing g4 as in (2.30), and changing the local coordinates {t, z%, p}
to {s,z,Q} by setting p =: Q2/(2)\) and s := Qt, with Q > 0, we obtain |7|> = \71s?
thus Hy = G N {s = 1}. Note that the constant A\ dissapears from the definition of #)
because the coordinates {2, s} do not cover both regions p > 0 and p < 0 simultaneously.

In terms of the new coordinates the ambient metric is

ds? s d0? ds? 1 d0?
= 4+ (= 4+ =—+s¢g with g:=—5|—-—+ 2.
9a=—+ o3 ( 3 gn) T sg with gi= s ( 3 99) (2.33)

where gq is the one-parameter family of metrics g, reparametrized by p = 02/(2)). The
Ricci flatness of Ric(ga) at N x {0} translates [50] into the Einstein asymptoticity for
g, according to Defintion 2.26. In other words, g is a Poincaré metric in normal form

for ~.

Regardless of the value of A, the metric on each hypersurface H, is a Poincaré metric in
normal form, inducing the same initial data at .#, which actually is the projectivization
of NV, i.e. (X,[y]). This is interesting from the point of view of the asymptotic Cauchy
problem of GR, to which section 2.4 is devoted. The Poincaré metric in the interior
region p < 0 gives an asymptotic solution of the A < 0 vacuum Einstein equations
with prescribed boundary data at .#, while the one in the exterior region p > 0 gives
an asymptotic solution the A > 0 vacuum Einstein equations propagating the initial
data at .#. Thus, both Poincaré metrics are in a certain sense analogue, but not equal
(in particular, their signatures are different). To understand this correspondence it is
useful to bear in mind the example of the conformal n-sphere in subsection 2.2.1. As
we are interested in the A > 0 case, we restrict ourselves to such values. Instead, the
original publication [50] concentrates on the the A < 0 case, so one must be careful when

comparing the corresponding expressions.

Another important observation is that it is common in the literature (e.g. [5, 6, 50]) to
fix the parameter A to 1. From a geometrical point of view, this means choosing the hy-
persurface Hy—1 to define the Poincaré metric. This certainly simplifies the calculations.
However, from a physical point of view it is desirable to keep track of the role that the
cosmological constant plays in the expressions. Another benefit is that it allows one to
make consistency checks on the calculations. This is because the expression obtained
by setting A = 1 in a formula with general A must agree with the expression obtained
by scaling the conformal factor by A2 in the same formula, as follows from the next
argument. Given a Poincaré metric g with constant A it follows that g\ := Ag is a
Poincaré metric with A = 1, as we show next. Firstly, Ric(g)) —ngy = Ric(g) —n\g as a
consequence of the invariance of the Ricci tensor under scaling of the metric. Secondly,
fix a conformal extension of the original metric so that ¢ = Q%§ = A™1Q2g). This means

that the conformal factor Q) = A~1/2Q defines a conformal extension of §y. Both things
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together show that gy is a Poincaré metric with A = 1 according to Definition 2.26. It
follows at once from the expression of g in (2.33) that the expressions with A = 1 can be
generalized to an arbitrary value of A upon scaling the conformal factor by A~1/2 (and

vice versa).

The Poincaré metrics are recursively generated from the asymptotic Einstein equations,
just like ambient metrics are generated from Ricci flatness at N x {0}. Indeed, the
equations for g, obtained from Ric(ga) = 0 at N x {0} are, after redefining p = Q?/2),
exactly the same as those obtained for gg from Ric(g) —Ag = 0 at {2 = 0}. In the n odd
or n = 2 cases, the equations for ambient metrics generate a smooth metric to infinite
order, uniquely determined at p = 0 by the metric 4. The corresponding Poincaré metric
is smooth and even in € to infinite order. For n even case, the smooth power expansion

of the ambient metrics is obstructed at the order p™/2

. Consequently, so are the Poincaré
metrics at order n. Moreover, the expansion of the smooth Poincaré metric is also even

in all orders previous to the n.

The asymptotic expansions for g, in Theorems 2.23 and 2.24 are translated into an
asymptotic expansion for g, which will be called Fefferman-Graham (FG) expansion.

Explicitly, this has the form

(n—1)/2

go ~ Z 9025 + ZQ(S)QS, if nisodd, (2.34)
s=0 s=n
0 e’} me
ga ~ 29(25)928 + Z Z O(s,t)QQS(log Q)Y if n is even, (2.35)
s=0 s=n/2 t=1

where ms < 2s —n + 1 in an integer for each s, the coefficients g() are objects defined
at . and extended to X as independent of ). The first logartighmit term involves
O(n/2,1) Which is precisely the obstruction tensor O in Theorem 2.22. These expansions
can be generated independently of the ambient construction and we devote Appendix
A to doing so in the particular case of vanishing obstruction tensor. In the rest of this
subsection, we describe the main properties of the FG expansions and provide existence

results analogous to Theorems 2.23 and 2.24.

The n odd case (2.34) contains even powers of Q up to order 2s < n. They are recursively
generated only from the zero-th order, i.e. the boundary metric . The n-th order term
9(n) is a symmetric T'T tensor and independent of previous coefficients. Terms of order
s >n may be even or odd and are generated exclusively from (7, g(,,)). Thus, a unique
FG expansion arises from any pair of tensors (v, g(,)), with v symmetric of signature
(ny,n_) and gy TT wr.t. 7. Observe that, unlike in the case of ambient metrics,

the n-th order (which corresponds to term p"/?

in the ambient metric) and subsequent
odd order terms, do not entail any loss of smoothness. The convergence of such series
in a neighbourhood of .# or existence and uniqueness of non-analytic solutions will be

addressed in section 2.4.
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In the n even case, the expansion (2.35) is even in all powers of  and also contains
logarithmic terms. Up to order 2s < n, all terms are generated by the boundary metric .
At the order n, two coefficients appear: g,), which multiplies solely 2", and O = O, 2,1
which multiplies the first logarithmic term 2" log ). The obstruction tensor O as well
as the trace and divergence of g(,), are determined exlusively by 7. One can always
add to g(,) an arbitrary TT term g,), so that the asymptotic Einstein equations are
still satisfied. Hence, in this case the boundary metric v and the n-th order coefficient
9(n) With trace and divergence fixed by v, determine a unique FG expansion. If the
obstruction tensor does not vanish, the logarithmic term makes the series non-smooth.
Therefore, these metrics do not fulfill all the requirements for being Poincaré metrics.
We shall call them Fefferman-Graham-Poincaré (FGP) metrics. Specifically:

Definicin 2.28. In n + 1 dimensions, with n even or odd, a Fefferman-Graham-
Poincaré (FGP) metric is a metric satisfying the Einstein equations to infinite order

at &

In other words, a FGP is an asymptotically Einstein metric (cf. Definition 2.5) to
infinite order. The convergence of the asymptotic series of FGP metrics with n even will
be addressed in section 2.4. Unfortunately, there are no yet existence and uniqueness

results for the non-analytic case with n even.

We now summarize the above discussion in a lemma for future referrence. All the

properties in Lemma 2.29 which refer to the zero obstruction case are proven in Appendix

A.
Lemma 2.29 (Properties of the FG expansion).
1. Each coefficient g(s) with 0 < s < n depends on previous order coefficients up to
order g(s—z) and tangential derivatives of them up to second order. This is also

true forn < s if n odd or n even with O = 0. If n is even and O # 0, the terms
9(s) and O, yy with n < s depend on previous terms up to order g,_9) and O(s_ay).

2. Up to order n, both expansions (2.34), (2.35) are even and all terms g(s) with s <n
or s =n+1 (but not s = n) are solely generated from ~. If n is even, O is also

generated from ~y.

3. The n-th order coefficient g(y) is independent on previous terms except for
Trvg(n) = a, divwg(n) = b,

where a =0, b =0 for n odd and a is a scalar and b a one-form determined by ~y

for n even.

So far we have not discussed existence results of FGP metrics. We emphazise that

these existence results are not of Einstein metrics, since the equations are only satisfied
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asymptotically at infinite order. We conclude this section with an existence result due

to Fefferman and Graham.

Teorema 2.30 (Fefferman-Graham [50]). Let (X,7) be a pseudo-Riemannian manifold

of signature (ny,n_) and let h be a symmetric two-tensor of 3.

e Ifn =2 and if divyh = 5d(Scal(y)) and Tryh = $Scal(y), there exists an even
(i.e. with only non-zero coefficients of even order) Poincaré metric g in normal

form w.r.t v which admits an expansion of the form (2.35) (with O, 4 = 0) and

o Ifn > 3 is odd and if divyh = 0 and Tryh = 0, there exists a Poincaré metric g
in normal form w.r.t vy, which admits an expansion of the form (2.34) such that

9n) = h (in particular, trace-free).

e Ifn > 4 is even, there exist a one-form b(y) and a scalar a(v), both covariantly
determined by v, in such a way that if div,h = b(y) and Try(h) = a(y), then
there exists a FGP in normal form w.r.t. v which admits an expansion of the form
(2.35) such that 9n) = h. The solution is smooth if and only if the obstruction

tensor of v vanishes.

2.4 Asymptotic initial value problems in GR

In this section we review the asymptotic Cauchy problem in general relativity. In sub-
section 2.4.1 we construct the Friedrich’s conformal field equations (FCFE) [56, 57].
Although these can be formulated in any dimension, they are adequate for initial value
problems only in four spacetime dimensions. In subsection 2.4.2 we give higher dimen-
sional results which, as advanced in section 2.3, are based in the Fefferman and Graham

formalism. We focus on well-possedness results for the asymptotic initial value problem.

As already mentioned, we make special emphasis in the case of Lorentzian metrics solving
A > 0 vacuum Einstein’s equations (2.19). For other values of the cosmological constant
one can pose other asymptotic problems, such as initial-boundary value problems (A < 0)
or characteristic initial value problems (A = 0). We shall not discuss them in any detail

here and will just mention some fundamental results and references.

2.4.1 Friedrich’s Conformal Field Equations

For the derivation in this section we follow [63]. Consider an (n + 1)-dimensional
Lorentzian metric g with n > 2. Using the Bianchi identity V(,R" |5 = 0, it fol-
lows from (2.11)

VieC"aws) = 2V (o (Papd”g) +2V(o (glap P g) - (2.36)
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Contracting the indices o and p we are left with
VuC'avp = 2(n = 2)V, Pgla — 290V [ Py + 2900 Vi P! 5. (2.37)
Since C' is traceless, contraction of the indices v and 3 fields
0=VP,, (2.38)
which is just a rewriting of the divergence-free property of the Einstein tensor. Hence
VuCFovp = 2(n = 2)V|, Pgq- (2.39)

Now let (//\/lv ,g) be an (n+1)-Lorentzian Einstein manifold and let (M, g) be a conformal
extension g = Q%¢g. As usual, let V, V denote their respective Levi-Civita connections.
By conformal invariance, we can replace the Weyl tensor 5’“an of g by C*,,5. Equation
(2.37) for g is

V,uC s = 0. (2.40)

The divergence free property of a tensor with the symmetries of the Weyl tensor is a
conformally covariant property (cf. Lemma 2.1). Specifically, the following identity
holds

Vu(QFCH,,5) = 27V ,CF 5 = 0.

Hence, the rescaled Weyl tensor defined by
o = QO 5 (2.41)
satisfies the following Bianchi equation
Vucavg = 0. (2.42)

The tensor c is in a certain sense the fundamental object in the FCFE. Equation (2.11)

can obviously be rewritten as
Q"2 o5 = Rfayg + 2Py, 0" 5 + 2901, PP ). (2.43)
In terms of ¢ and after using (2.42), expression (2.39) takes the form,
Q"3(V )t s = 2V, Pyla. (2.44)

In order to obtain equations for the conformal factor we use the transformation law

(2.12). Firstly, observe that the Einstein equations for g are

<~ AL
Pog = 5908, (2.45)
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and its trace gives P := §*PP,s = (n + 1)\/2. Taking trace with ¢* in (2.12) gives

n+1
2

P =0?P+QV,V'Q - V,.QVHQ. (2.46)

Substuting A\/2 = P/(n+1) and using (2.46), the Einstein equation (2.45) can be written

in the form

B P n 1 V,VEQ  V, QVEQ
W= \n+l ntl Q 202 ) 98

which has the advantage that A\ is no longer explicit and it only involves geometric

quantities associated to g. Inserting this into (2.12) yields the equation for the conformal

factor in the FCFE, namely

VBVQQ = —QPBQ + 598a; (2.47)
where ) .
= kQ + ——PQ. 2.4
STt 1v“v T (2.48)

Observe that this equation makes no reference to the value of A\. Taking a derivative V,

in (2.47), commuting V, and Vg in the LHS and contracting with ¢g** one obtain
VsV, V'Q+ RFgV,Q = —(V,Q)P"3 — QV, P53+ Vgs. (2.49)
The Ricci tensor can be written in terms of the Schouten tensor as
RV'g = Pé'g + (n —1)PHg. (2.50)
Using (2.48), (2.50) and (2.38) in (2.49) gives another of the FCFE, namely
Vs = —(V,Q)PY5. (2.51)

The last equation in the FCFE is for the cosmological constant. It is obtained directly
from A = 2P/(n + 1), replacing P from and using the definition of s in (2.48). The
result is

A =205 — V,VHQ. (2.52)

Observe that (2.47) and (2.51) imply that the RHS of (2.52) is constant, so this equation

only needs to hold at one point.

Definicin 2.31. The Friedrich conformal field equations (FCFE) is the sys-
tem of equations (2.42), (2.43), (2.44), (2.47), (2.51) and (2.52) for the unknowns

{gaﬁa Qa S, Paﬂv C#auﬂ}-

A remarkable feature of the FCFE, is that they extend regularly to .#. This allows one to
pose a Cauchy problem at .#. Another important property is that the conformal factor
), despite being one of the variables of the FCFE, possesses a large gauge freedom. This

is obvious if one observes that the FCFE are satisfied for every metric g and conformal
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factor Q related to an Einstein metric § by ¢ = ©92g. On the one hand, this allows
one to choose the best conformal gauge in order to manipulate the equations. It also
implies that the initial data have a large residual conformal gauge freedom (cf. Theorem
2.34). Before getting deeper into these facts, we shall make an observation concerning

the dimensions in which the FCFE provides a well-posed system of equations.

As it is well-known (e.g. [63]), that from the full Bianchi identity (2.36) for the physical
metric g
%ocuauﬁ + 6zzcuoz,é’a + %Bcuam/ =0,

one can extract a subsystem of hyperbolic equations. Moreover [63], in the four di-
mensional case, i.e. n = 3, the full Bianchi identity is equivalent to the contracted one
(2.40). Thus, equation (2.42) implies hyperbolic equations for ¢ for n = 3. In the higher
dimensional case this is no longer true, as the contracted Bianchi identity can no longer
provide sufficient evolution equations for the rescaled Weyl tensor. One could attempt
finding a suitable set of evolution equations using the full Bianchi identity. This, how-
ever, cannot be done in such a way that the system remains regular at .# [63]. Hence,

for the higher dimensional problem one must find a different system of equations.

We now come back to the initial value problem of the FCFE at .#. As discussed in
section 2.2, the causal character of .# is determined by the sign of the cosmological
constant. This, in turn, determines the nature of the asymptotic PDE problem. We
start by describing very briefly the A = 0 and A < 0 cases and the concentrate on the
A > 0 case

In the A = 0 case .# is degenerate and the initial value problem is characteristic. Roughly
speaking, this means that one of the natural directions of propagation of the initial data
(determined by the equations) is parallel to the initial hypersurface. In order to obtain
a well-posed problem (see [128] and also [90]), one must suplement the data at .~
with data on an outgoing null hypersurface ", which intersects .# ~ in a 2-dimensional
spacelike surface (Figure 2.6). In the negative A case .# is timelike, so instead of an
initial surface it defines a boundary. One can consider an initial-boundary problem,
setting data on a hypersurface ¥ which intersects .# (Figure 2.6), where a boundary
condition is imposed. In [59], a geometric uniqueness result is achieved for a certain
class of boundary conditions. In [64] the problem with general boundary conditions is

considered.

In the positive A case .# is spacelike and the problem turns out to be well-posed [58].
The system admits a reduction to a symmetric hyperbolic system of evolution equations
(see [60]), which propagate the constraints. Then, the local existence and uniqueness of
a spacetime evolving (Figure 2.6) from data at .#~ is guaranteed by standard theorems
(e.g. [146]). Existence and uniqueness can be used for local characterization of space-

times, but we must restrict the spacetime to the patch evolving from .#~. In this patch
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FI1GURE 2.6: Asymptotic data problems from left to right: characteristic initial value
problem, initial-boundary value problem and inital value problem.

& = #~ (Figure 2.6), and for this reason, we will not explicitly distinguish different

components of .# in this context.

In order to give the freely specifiable data for this problem, we must first define the

electric part of the rescaled Weyl tensor (2.41) w.r.t. to the normal u:

Definicin 2.32. The electric part of the Weyl tensor C' and of the rescaled Weyl

tensor ¢ w.r.t. to a unit vector u are, respectively
(C1)ap = CHovpuyuu”, (c1)ap = cavpuyu”.
If w is normal to .# the .#-electric part of the rescaled Weyl tensor is

Dap = (e1)asl , (2.53)

Observe that D is tangent to 7.

Each set of initial data is (X, v, D), with (X, 7) a Riemannian manifold which prescribes
the geometry of .#, and D a TT tensor which prescribes the .#-electric part of the

rescaled Weyl tensor. Then, we define

Definicin 2.33. An asymptotic data set for n = 3 is the triad (X, v, D), where (X, )

is a Riemannian 3-manifold and D is a symmetric two-tensor, TT w.r.t. .

As mentioned after Definition 2.31, the freely specifiable data at .# possesses a large
gauge group arising from the conformal freedom in the FCFE. For every smooth positive

function w of ¥, the following equivalence of data holds
(3,7, D) = (8,0, w2 " D), (2.54)

which we write for arbitrary n for later use, even though at this point n has been fixed
to n = 3. In other words, the equivalence (2.54) defines the class ([v],[D]) in X, whose
elements are given by the following conformal behaviour. If v € [y] and D € [D] are two
representatives, with D being TT w.r.t. ~, then any other pair ' € [y] and D’ € [D]
must be

v = w?y, D' =w?> ™D,
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for w a smooth, positive function of ¥. The fact that D is TT w.r.t v if and only if D’

is TT w.r.t 4/ is a direct consequence of Lemma 2.1.
We can now summarize the above discussion in the following theorem:

Teorema 2.34 (Friedrich [58]). Let (3,7, D) an asymptotic initial data set for n = 3.
Then, there exists a unique, maximal, globally hyperbolic solution (Mv, g) of (2.19), ad-
mitting a smooth conformal extension g = Q%q, which induces the boundary metric v and
the & -electric part of rescaled Weyl tensor (2.53) coincides with D. Fach representative
in the class (X, [v],[D]) determines the same physical metric g, but different conformal

extensions.

Since the initial data determine a unique spacetime, they must store all the information
within them. Sometimes this information can be made very explicit. One example is
determining necessary and sufficient conditions that the initial data set must satisfy in
order for the evolving spacetime to have a Killing vector field. These are the so-called
Killing Initial Data (KID) equations. Originally formulated for the Cauchy problem of
the Einstein equations (see [17] and [31]), the same idea can be applied for the asymptotic
Cauchy problem of the FCFE (see [115] for the characteristic case and [28] for the initial-
boundary problem). We are specially interested in the spacelike .# case [116]. In this
case, the KID equations are particularly simple. They are given by a unique geometric
formula which depends on a CKVF ¢ of v which, a posteriori, is the restriction at .#
of the Killing vector field ¢ that the spacetime admits. As one could expect, the KID

equations are conformally well-behaved.

Teorema 2.35 (Paetz [116]). The spacetime corresponding to an asymptotic data set
(2,7, D) for n =3 admits a Killing vector field if and only if there exists a CKVF £ of
~v such that

1
LD + 5(div,§)D = 0. (2.55)

The same KID equation (2.55) is satisfied for any two representatives ', D' of the classes
[v], [D]-

We also define

Definicin 2.36. An asymptotic Killing initial data set (asymptotic KID) for
(X,v,D,§) is an asymptotic initial data set (X,v, D) with a CKVF ¢ satisfying the
KID equation.

Observacin 2.37. It is interesting to notice that the diffeomorphism equivalence of data
implies that, for any diffeomorphism ¢, the asymptotic KID (X, ¢*(v), #*(D), ¢z 1(€)) is
equivalent to (X,v,D,€). Let now ¢ € ConfLoc(X,v) be defined in an open subset
U C X (¢f. Definition 2.15) and assume that U' = ¢(U) NU # 0. Then, in U', the
data (2, ¢*(7), ¢*(D), ¢ 1(€)) = (B, w?y,w? "D, ¢ 1(€)) is, using the conformal gauge
freedom, equivalent to (3,7, D, ¢z 1(€)). That is, the conformal class of CKVFs as given
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in Definition 2.17 establishes an equivalence between CKVFs (restricted to U') of the

data generating the same symmetry.

In order to either select the desired conformal representative (of & and/or for v) we shall
often use this equivalence through local diffeomorphisms in ConfLoc(X,~). For this to
make sense, we must restrict to the open subset U' of X where this equivalence holds.

When this happens, we implicitly restrict ¥ = U'.

2.4.2 Higher dimensional results

The higher dimensional asymptotic Cauchy problem of general relativity relies in the
Fefferman and Graham formalism, already introduced in Section 2.3. In this subsection

we describe the existence and uniqueness results that we shall require.

In subsection 2.3.2, we have explained how to associate a formal power or polyhomo-
geneous series to a FPG metric g. The metric induces data v and g(,), from which a
unique FG series arises. In particular, this is also true for Einstein metrics. Recall that
the trace and divergence of g, are given by a scalar a(y) and a one-form b(7y) deter-
mined by v (cf. Lemma A.7). The converse is more delicate, namely, whether for data
(7, 9(ny) (equivalently, for a FG expansion), there exists a unique conformally extendable
Einstein metric g realizing these data at .#. The question is answered affirmatively for
arbitrary n if the initial data are analytic [48, 50, 87] and in the general case if n is odd
[6, 7, 86, 129].

If (7, 9(n)) are in the analytic class, standard convergence results for Fuchsian problems
[14] can be applied to establish convergence of the FG expansion when the obstruction
tensor vanishes [48, 50]. These results hold regardless of the signature of . In the case
of non-vanishing obstruction tensor, Kichenassamy [87] has established convergence in
a neighbourhood of .# (see also [129]). This result is proven under the assumption of

the boundary metric v being Riemannian.

Hence, analyticity of the data is sufficient to prove convergence of the FG series ex-
pansion, irrespectively of whether the obstruction tensor is zero or not. When the
obstruction tensor is zero, the metric g defined by the (convergent) power series is ana-
lytic (in the sense that the Taylor series converges to the metric). Therefore, so are all
its derivatives and in particular, the tensor Ric(g) — Ag. This tensor vanishes to infinite
order at .# and analiticity implies that it vanishes in a neighbourhood of .# i.e. g is
Einstein in that neighbourhood. When the obstruction tensor is non-zero, the propaga-
tion of the Einstein equations away from .# is not so immediate, but can also be proven®
[87]. Observe that although the conformal metric in this case is no longer smooth at .#,

the form of FG expansion (2.35) shows that the geodesic extension g = Q%7 still extends

Reference [87] actually proves Ricci flatness of the ambient metric in a neighbourhood of N, but
this condition is known to be equivalent [50] to the associated Poincaré metric being Einstein in a
neighbourhood of .#.
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as a C™ metric to .#. So sufficient differentiability is always granted to define curvature

tensors at ¢ of the conformal metric.

Therefore, in the analytic case we can bypass the difficulty of finding an equivalent
system to the Kinstein equations which admits a well-posed asymptotic initial value
problem (see discussion below Definition 2.31). However, analytic data are restrictive
and it is clearly of interest to see if such equivalent system of equations can be found. In
[6] one such system is found when n is odd, thus extending the existence and uniqueness
results beyond the analytic case. Anderson proposes to use the obstruction tensor as a
replacement of the Einstein equations. The obstruction tensor is known to vanish for
metrics conformal to an Einstein metric (cf. Theorem 2.22). Thus, denoting O(g) the

obstruction tensor of g, Anderson proposed studying well-posedness of the equation
O(g) =0. (2.56)

Using the conformal gauge freedom and harmonic coordinates (i.e. satisying Cz® = 0)
and assuming that ¢ is Lorentzian, the author is able to reduce (2.56) to a hyperbolic
system of equations. The Cauchy problem for this equation admits many solutions
which are not conformal to an Einstein metric, but constraining appropriately the initial
data one can show that the solution is conformally Einstein. Moreover, by conformal
covariance there is no problem in setting up initial data directly at .#. Recall that, as
mentioned in the introduction, the first two proofs of Andeson’s theorem in [6] and [7]

are not fully correct, and they have been recently amended in [86].

In both the analytic case and in Anderson’s approach, the final outcome is that one can
associate an Einstein metric g to each FG expansions. Thus, the free data (3, 7, ﬁ) must
generate the corresponding FG expansion. Namely, the Riemannian metric v prescribes
the geometry of .7, i.e. the zero-th order coefficient g, while the tensor D prescribes
the n-th order coefficient in the FG expansion g(,). For n > 3, the relation of the latter
with the electric part of the rescaled Weyl tensor at .# is limited to few cases, as we will
see in Chapter 5. Observe that for n odd Dis always TT w.r.t. v while for n even D has
trace and divergence determined by -+, by the scalar a(v) and the one-form b(~) given
in Appendix (A) (cf. Lemma A.7). Thus, we generalize the Definition 2.33 to arbitrary
n

~

Definicin 2.38. An asymptotic data set is the triad (X,v, D), where (X,7) is a
Riemannian n-manifold and D a symmetric two-tensor whose trace and divergence are
determined by 7 through the scalar a(y) and the one-form b(y) in Lemma A.7. In

particular for n odd D isa TT tensor w.r.t. .

If n is odd, the conformal equivalence of data is the same as in the n = 3 case, in the
sense that conformal class of data (3,[y],[D]) defined by (2.54) determine the same
physical solution (cf. [6]). If n is even, this is more subtle because D has generically

non-zero trace and divergence. First, we remark that the constraint equations divﬂ,f) =
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b(v), Trwﬁ = a(y) can always be locally solved® for any metric v (cf. [50]). In order to
determine the class of equivalent data (X, [y], [D]), one fixes a representative of the class
of metrics y and Dy a solution to the constraint equations div7ﬁ0 = b(7), Tr«,lA?o = a(y).
Whenever one knows that the data (3, , ﬁo) correspond to a unique Einstein metric g,
a conformal change of boundary metric v/ = w?~ determines a unique geodesic conformal
factor €' for which ©'2gg induces a new n-th order coefficient gEn) =: 136 The tensor lA)()
satisfies the constraint equations div.,Dj = b(v'), Tr,,Dj = a(y’) and it is computable
in terms of w,~y and ﬁg. This defines the conformal class [ﬁo], although the explicit
transformation formula is hard to be given with generality. If one can select “canonical”
background data (X, , lA?o) for which the conformal class [130] is computable, then one
could define a free TT part D := D - 130 for every tensor D satisfying the constraint
equations. Notice that the fact that D is T'T is immediate as the trace and divergence of
D and ZA?O must be equal because they are determined exclusively by . Also, notice that
knowning (3, , 15) implies knowing (X, v, D) and viceversa. Then, one expects that the
free part D behaves as w?~ ™D under conformal scalings of the boundary metric. This
is what we achieve in the conformally flat .# case, by selecting de Sitter as reference
spacetime (see Definition 5.12). Moreover, in this case we prove that the free part
coincides, up to a constant factor, with the electric part of the rescaled Weyl tensor
at .# (cf. Theorem 5.14), so the conformal tranformation formula is immediate. For
this reason, our results do not require a general explicit tranformation formula for the
equivalence classes of data, although it would be interesting to study and clarify this

issue.

Teorema 2.39. Let (2,7, ZA?) be an asymptotic initial data set. Ifn is odd [6, 7, 86] or if
v, D are analytic [48, 50, 87], then there exists a unique metric g, which solves (2.19) and
admits a conformal extension such that the boundary metric can be identified with (3, )
and D prescribes gy, the n-th order coefficient of its FG expansion. Each representative
in the class (%, [7], [13}) determines the same physical metric g, but different conformal

extensions.

In this thesis we shall discuss the extension of Theorem 2.35 to higher dimensional cases.
Namely, what are the necessary and sufficient conditions for n-dimensional asymptotic
KID to generate a symmetry. For the cases studied, the result is a natural extension of
formula (2.55) (cf. Theorem 5.18), namely

n

-2 .
dlvfy(f)g(n) =0.

Egg(n) + o

We remark that the definition of asymptotic KID in arbitrary dimension is completely
analogous to Definition 2.36, but with n-dimensional asymptotic data (cf. Definition
2.38 below) and the n-dimensional KID equation. For asymptotic KID in higher di-
mension, the equivalence of data in Remark 2.37 under local conformal transformations

ConfLoc(X, v) also holds when restricted to suitable domains.

5The existence of global solutions is a harder problem which is not always guaranteed [50].



Chapter 3

Skew-symmetric endomorphisms
of M2 and M!? & CKVFs of S?

In this Chapter we deal with skew-symmetric endomorphisms of four and three di-
mensional Lorentzian vector spaces, which shall be often identified with M'? and M3
respectively, as well as CKVFs of the 2-sphere S?. The contents of this Chapter have
been published in [94].

We start, in Section 3.1, by proving several basic properties of skew-symmetric endomor-
phisms of Lorentzian vector spaces. This Section is worked out in arbitrary dimension,
because some of the properties will be useful in Chapter 4, where we shall extend many
of the results in this Chapter to higher dimension. In Section 3.2 we obtain a canonical
form for every skew-symmetric endomorphism of M2 and M3, i.e. a unique matrix
form, depending on an optimal number of parameters, to which every single element
can be brought to. The orthogonal unit vector bases realizing this canonical form are
non-unique, which means that there exists a group of invariance, which we analyze in

depth in Section 3.3 and whose generators are obtained in Section 3.4.

The analysis of skew-symmetric endomorphisms is then carried into the set of global
CKVFs of the Riemann 2-sphere in Sections 3.6 and 3.7, for which complex coordinates
are specially suited. We remark that S? is particular in that not all CKVFs are global,
as observed previously in subsection 2.2.2 (cf. Remark 2.16) and here in Section 3.5
(cf. Remark 3.14). A canonical form for global CKVFs, based in the canonical form
of Section 3.2, is given in Section 3.7. This canonical form is used in Section 3.8 to
obtain adapted coordinates which fit every global CKVF ¢. The adapted coordinates
finds an application in subsection 3.9.1, where we find a class of metrics for which £ is a
Killing vector. Finally, in subsection 3.9.2 we obtain a class of TT tensors such that an

arbitrary (non-necessarily global) CKVF satisfies the KID equations in two dimensions.

We note that Chapter 4 addresses similar issues but in arbitrary dimension. It is worth

to remark that the low dimensional case deserves a separate analysis because some of the

o7
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core results can be given with a level of detail difficult to reach in arbitrary dimension.
For example, the explicit transformation which takes any skew-symmetric endomorphism
and a CKVF to its canonical form is calculated. Similarly, the corresponding invariance
group is also explicitly calculated. These two are examples of results which would be

difficult to obtain in arbitrary dimension.

In this chapter, capital Latin indices I, J, K, take values in 0,1, 2, 3 and lower case Latin
indices 7,7,k = 0,1, 2.

3.1 Basic properties of skew-symmetric endomorphism of
Ml,d—l

Let V be a d-dimensional vector space endowed with a Lorentzian metric g of signature
{—,+, -+ ,+}. The vector space V shall often be identified with Minkowski spacetime
Mb4=1 and the scalar product with g is denoted by (, ).

Definicin 3.1. An endomorphism F': V — V is skew-symmetric when it satisfies
(x, F(y)) = —(F(x),y) Ve,y e V.

We denote this set by SkewEnd (V') C End (V).

We take, by definition, that eigenvectors of an endomorphism are always non-zero. In
our convention all vectors with vanishing norm are null (in particular, the zero vector is
null). We denote ker F' and Im F, respectively, to the kernel and image of F' € End (V).

The first result that we state and prove is a compendium of the basic properties of
SkewEnd(V') that we shall often use.

Lemma 3.2. [Basic facts about skew-symmetric endomorphisms] Let F be a skew-
symmetric endomorphism in a Lorentzian vector space V' of dimension d. Then

1) Yw € V, F(w) is perpendicular to w, i.e. (F(w),w) = 0.

2) Im F C (ker F)* and ker F C (Im F)*.

3) If w € ker FNIm F then w is null.

4) If w €V is a non-null eigenvector of F, then its eigenvalue is zero.

5) If w is an eigenvector of F with zero eigenvalue, then all vectors in Im F are orthog-

onal to w, i.e. Im F C wt.
6) The non-zero eigenvalues of I are either real or purely imaginary.

7) If F restricts to a subspace U C 'V (i.e. F(U) C U), then it also restricts to U+,
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8) dimIm F is always even. Equivalently, dimker F has the parity of d.

Proof. Property 1) is immediate by definition of skew-symmetry (w, F(w)) = —(F(w), w).

For 2), let v € ker F' and w be of the form w = F(u) for some u € V, then
<w,v> - <F(U),U> = —<U,F('I})> =0

the last equality following because F'(v) = 0. As a consequence of 2) it follows 3), because
w belongs both to ker ' and to its orthogonal, so in particular it must be orthogonal to

itself, hence null.

Property 4) is immediate from
0= (w, F(w)) = ANw,w)

so if w is non-null, its eigenvalue A must be zero. Eigenvectors with zero eigenvalue may

be both null and non-null.

Property 5) is a corollary of 2) because by hypothesis w € ker F' so
Im F C (ker F)* c wh

the last inclusion being a consequence of the general fact Uy C Uy = Us- C Ui-.

To prove 6), let A\ be a non-zero (possibly complex) eigenvalue and w its associated
eigenvector in Vg, the complexification of V. Since F' is real, the complex conjugate

A € C is an eigenvalue with eigenvector w* € V¢, so
(F(w),w*) = XMw,w*) = =\ (w,w*) .

Thus, either A is purely imaginary or, if not, w,w* must be orthogonal and by 4) both
must be also null. Then, denoting w = u + v for u,v € V, the nullity condition implies
(u,v) = 0 and (u,u) = (v,v) and orthogonality w* implies (u,u) = — (v,v). Hence u,v
are null and proportional, i.e. u = av for some a € R, in consequence w = (a + i)v.
Therefore, v € V is a real null eigenvector and its corresponding eigenvalue A must be

real.

Property 7) is true because for any u in a F-invariant subspace U and w € U+

Finally, for 8), consider the 2-form F' assigned to every F' € SkewEnd(V') by the standard
relation

F(e,e) = (e, F(¢)), Ve,e' € V. (3.1)
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The matrix representing F' is skew in the usual sense, hence the dimension of Im F' C V*
(the dual of V') is the rank of that matrix, which is known to be even (see e.g. [65]) and
clearly dimIm F' = dimIm F'. O

An important part of the results that we will prove rely on the existence of F-invariant

two-dimensional non-null spaces. The next two lemmas give their basic properties.

Lemma 3.3. Let F' € SkewEnd(V'). Then F has a F-invariant spacelike plane 1l if
and only if
F(u) = po, F(v) = —pu, (3.2)

for Iy = spanf{u, v} with u,v € V spacelike, orthogonal, unit and p € R. Moreover, (3.2)
is satisfied for u # 0 if and only if +ip are eigenvalues of F with (null) eigenvectors
u x v,

F(u+iv) = —ip(u + i), F(u —iv) = ip(u — iv), (3.3)

for u,v € V spacelike, orthogonal with the same square norm.

Proof. 1f (3.2) is satisfied for u,v € V spacelike, orthogonal, unit, then II; = span{u, v}
is obviously F-invariant spacelike. On the other hand, if Il is F-invariant, then it must

hold that
F(u) = aju + agv, F(v) = biu + byv, ai,a2,bi, by € R,

for a pair of orthogonal, unit, spacelike vectors u, v spanning Il;. Using skew-symmetry
and the orthogonality and unitarity of u, v, the constants are readily determined: as =

by = 0 and ag = —by =: u, which implies (3.2). This proves the first part of the lemma.

For the second part, it is immediate that if (3.2) holds with u # 0, then +iu are
eigenvalues of I’ with respective eigenvectors u + iv. The orthogonality of u,v follows
from (F(u),u) = 0 = u (v,u) and the equality of norm from skew-symmetry (F'(u),v) =
—{(u, F(v)) = p(v,v) = p(u,u). Assume now that F' has an eigenvalue iy # 0 with
(necessarily null) eigenvector w = u + iv, for u,v € V. Since F' is real, neither u nor
v can be zero. From the nullity property (w,w) = 0, it follows that (u,u) — (v,v) =0
and (u,v) = 0. Hence, u,v are orthogonal with the same norm, so they are either null
and proportional, which can be discarded because it would imply that u (and v) is a
real eigenvector with complex eigenvalue; or otherwise u, v are spacelike, thus the lemma

follows.

There is an analogous result for F-invariant timelike planes:

Lemma 3.4. Let F' € SkewEnd(V'). Then F' has a F-invariant timelike plane I1; if and

only if
F(e) = v, F(v) = pe, (3.4)
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for I, = span{e, v} with e,v € V for e timelike unit orthogonal to v spacelike, unit and
w € R. Moreover, (3.2) is satisfied for p # 0 if and only if +u are eigenvalues of F with

(null) eigenvectors e + v,
Fe+wv) = pu(e+v), Fe—v) = —pu(e —v). (3.5)

for e;v € V orthogonal, timelike and spacelike respectively with opposite square norm.

Proof. For the first claim, repeat the first part of the proof of Lemma 3.3 assuming u = ¢

timelike.

For the second claim, assume (3.2) is satisfied with g # 0. Then it is immediate that
(F(e),e) =0 = p(v,e), hence e,v are orthogonal and by skew-symmetry (F(e),v) =
— (e, F(v)) = p(v,v) = —pu (e, e), i.e. must have opposite square norm. Conversely,
let £u # 0 be a pair of eigenvalues with respective null eigenvectors ¢+, that w.l.o.g can
be chosen future directed. Then e := ¢4 + q— and v := ¢y — q_ are orthogonal, with
opposite square norm (e, e) = 2(q+,q—) = — (v,v) < 0, and they satisfy (3.4). O

With these results we can now define:

Definicin 3.5. An F-invariant spacelike or timelike plane is called a eigenplane and

the parameter p in equations (3.2) and (3.4) is its associated eigenvalue.

Observacin 3.6. Notice that a simple change of order in the vectors spanning a timelike
or spacelike eigenplane switches the sign of the eigenvalue p. Thus, unless otherwise
stated, we will consider the eigenvalues of eigenplanes (both spacelike and timelike)

non-negative by default.

3.2 Canonical form of skew-symmetric endomorphisms in
MLS

The first step towards our canonical form for F is the following classification result,

which relies on the properties described above.

Lemma 3.7 (Classification of SkewEnd(M!'3)). Let F' € SkewEnd(V) in a Lorentzian
vector space (V,g) of dimension four. If F # 0 then one of the following exclusive
possibilities hold:

a) F has a spacelike eigenvector orthogonal to a null eigenvector, both with vanishing

etgenvalue.

b) F has a spacelike eigenplane (as well as a timelike orthogonal eigenplane).
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Proof. Since F' is not identically zero, dimker F' only can be either 2 or 0. Consider
first dimker F = 0 and let us prove that b) must happen. We show this by proving
that equations (3.3) and (3.5) must be satisfied. Since ker F' = {0}, F' can only have
non-zero eigenvalues, and we already know that they are either real or purely imaginary.
The existence of a purely imaginary one leads to equations (3.3), which in turn implies
(3.5). Suppose now that all eigenvalues are real non-zero. If there exist two different real

eigenvalues pu, ' their respective eigenvectors w, w’ (which recall are null) must satisfy
<F(w),w/> =u <w,w/> =—u <w,w/> )

The product (w,w’) cannot be zero, as otherwise w,w’ would be proportional and the
eigenvalues p and g/ would be the same. Thus, p = —p/, and hence (3.5), and also
(3.3), hold. The remaining case is when all eigenvalues are equal, i.e. the characteristic
polynomial is pp = (F — Iu)%. By the Cayley-Hamilton theorem (pr(u),v) =0, Vu,v €
V. In particular, (pr(u),v) = (pr(v),u),Yu,v € V. By skew-symmetry the even powers

on each side cancel out and we are left with

—4p (F3(u),v) — 4p® (F(u),v) = —4p (F3(v),u) — 4p° (F(v), u)
= 4p (F3(u),v) + 4p® (F(u),v) Vu,v e V.

Since we are in the case u € R\ {0} we conclude that F(F? + u?) = 0, and since
F is invertible (ker F = {0}) also F? + y? = 0. But this means that F admits a
complex eigenvalue, which is a contradiction, and we have exhausted all possible cases
with dimker F' = 0.

Now let dimker F' = 2. According to the causal character of ker F', either ker F' is null,
and we are in case a) of the lemma or ker F' is non-degenerate, and we are in case b).

The fact that cases a) and b) are mutually exclusive is obvious. O

The classification in Lemma 3.7 contains two possible cases. It is common to use this
result to find simple forms for each case, for example, in case a) by including in the basis
two orthogonal vectors k, e € ker F'; or in case b), by combining bases in the orthogonal
and timelike eigenplanes, so that F' is explicitly a direct sum of two 2-dimensional
endomorphisms. In the following Proposition we find a canonical form which includes

cases a) and b) simultaneously, and which depends on two parameters only.

Proposicin 3.8. For every non-zero F' € SkewEnd(V'), with (V,g) a four-dimensional
Lorentzian vector space with a choice of time orientation , there exists an orthonormal

unit basis B := {eq, e1, ea, €3}, with eq timelike future directed such that

F(eo) 0 0 -1+ % i €0
F 0 0 1+¢ I
(61) - * 4 4 “ ) o, T € Rv (36)
Fl(ey) ~14+9¢ -1-¢ 0 0 es
F(eg) i —i 0 0 €3
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where o = —%TI‘FQ and 7% := —4det F, with 7 > 0. Moreover, if T = 0 the vector e3

can be taken to be any spacelike unit vector lying in the kernel of F.

Proof. By Lemma 3.7 there exist two possible cases. We start proving the proposition
assuming that we are in case a). Let span{k,e} = ker ', with k,e € V a pair of
orthogonal null and spacelike unit vectors respectively. We can complete them to a
semi-null basis B = {k,l,w, e}, i.e. such that (k,I) = —2, (w,w) = (e,e) = 1 and the
rest of scalar products all zero. Using these orthogonality relations and skew-symmetry

of F' we can calculate:
F(k)=0, F(l) = aw, F(w) =

for a constant a € R\ {0}. Redefine a new basis {lI',¥’,w’, ¢}, with k' := Sk, I :=

%l, w' = —ew, € := e, where €2 = 1 is chosen so that k’,’ are future directed. Then
F(k') =0, F(' = -2u/, Fw') = —F, F(e) =0,

which in the orthonormal basis B = {eg, €1, €2, e3} given by k' = ep+e1, I' = eg—eq, 0’ =

e9, € = ez is
F(eo) = —€9, F(el) = €9, F(BQ) = —€p — €1, F(eg) =0.

This corresponds to expression (3.6) with o =7 = 0.

It remains to prove the proposition for case b). In this case, there exist timelike and
spacelike eigenplanes, IT; = span{ey, €] } and I, = span{e), €5} respectively, i.e. fulfilling
equations (3.2) and (3.4) for respective eigenvalues po and g1, such that at most one of
them vanishes. We can take the bases of II;, II; so that that B’ := {ef, e}, €}, €5} is an
orthonormal basis of V', with eg past directed and the eigenvalues pg and p; are positive

or (at most one) zero. Then, the following change of basis is well-defined:

2 2 2 2
_ -1 BotTHT / potpy / _ 1 / /
ey = [(l—i— )e —1—(1—7 e ey = noeq + pie
Vud+ud 4 0 4 2| \/uﬁﬂﬁ( ! 3)

_ 1 pa+p3 ) / ( pa+p ) / } 1 / /
e1 = 1—= e+ (1+ 2L ) e, e —p1ey + poes) -
T [( )0 ) ’ \/uﬁﬂff( e 3() )
3.7

One checks by explicit computation that B := {eg,e1, e2,e3} is an orthonormal basis,

with e timelike and future directed (because (eq, ef;) > 0). It is also a matter of direct

calculation to see that

Fleo) = (14 §) e2-+ oo Fle = (14 9) e+ 3es,
F(e2):(_1+%)60_(1+%)61, F(e3) = 7 (eg —e1),

where the parameters o, 7 € R are o = p3 — p3 and 7 = 2ppu1 > 0. This corresponds to

(3.6) with at most one of the parameters o, 7 vanishing.
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To show the last statement, a simple computation shows that (when 7 = 0) the kernel

of F' is given by

kerF:{a<1+%>eo+a<1—%)el+beg, a,beR}.

The subset of spacelike unit vectors in ker F' is given by 1+ a?0 > 0 and b = /1 + a20,

e = +1. We introduce the four vectors
= (P (142 ) P s (1) P ta(1+5)e
0=\ 2 6) o )7° 16) o ° 1)
2 2
. (, o \b—e¢ b+e 0"\ b—e (_ g)
el = (l 16) - eo—i-( 5 <1+16> . >61+a 1—i—4 es,

eh = eea,

eg:a(1+%)eo+a(1—%>e1+beg,

and observe that they are well-defined for all values of o, including zero. A straightfor-
ward computation shows that this is an orthonormal basis, and that (3.6) holds with

7 = 0. The last statement of the Proposition follows. O

Obtaining a canonical form in the three-dimensional case is much easier, the main reason
being that any two-form in three-dimensions is simple, i.e. F'AF = 0 or, in other words,
that F' is of rank one in the sense of Darboux [141]. So, the reader may wonder why
it has not been treated before. The reason is that we can obtain the three dimensional
case as a direct corollary of the four-dimensional one. The construction is as follows.
Let F' € SkewEnd(V') with V' Lorentzian three-dimensional. From F' we may define an
auxiliary skew-symmetric endomorphism F defined on V &E; endowed with the product
metric (E; is the one-dimensional Euclidean space). It is obvious that this space is a
Lorentzian four-dimensional vector space. We denote by FEs a unit vector in E; and
define F' simply by F(u + aE3) = F(u) 4+ 0, for all u € V and a € R (we will identify
u €V with u+0 € V&E; from now on). It is immediate to check that F is skew-
symmetric. Moreover, it has 7 = 0, by construction. Then, the following Corollary is

immediate:

Corolario 3.9. For every non-zero F' € SkewEnd(V'), with (V,g) a Lorentzian three-
dimensional vector space with a choice of time orientation, there exists an orthonormal

basis B := {eg, €1, ea}, with eq timelike future directed such that

F(ep) 0 0 —1+%\ [ e

. 1
Fler) | = 0 0 -1-2 e |, o=—gTr (F*) eR. (3.8)
F(e2) -1+ 1+5 0 €2

Proof. By the last statement of Proposition 3.8, the canonical basis B = {eg, e1, €2, e3}
of I can be taken with es = FEs3, which means that {eg, e1,es} is a basis of V. O
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We may now properly define the canonical form of an element of SkewEnd(M!?) and
SkewEnd (M!?)

Definicin 3.10. An element F' of SkewEnd(M!?) or SkewEnd(M!?) is said to be in
canonical form if it takes the forms, respectively, of equations (3.6) or (3.8), in an

orthonormal basis B, called canonical basis.

From the canonical form (3.6), we can recover (cf. Remark 3.11 below) the classification
in Lemma 3.7 in terms of the parameters o, 7. In a similar way, a classification result
for three-dimensional skew-symmetric endomorphisms (cf. Remark 3.12 below) follows

from the canonical form (3.8).

Observacin 3.11. Let F' € SkewEnd(M!?) be in canonical form. Then only two exclu-

stve possibilities arise:

1. If either o or 7 do not vanish, F has a timelike eigenplane and an orthogonal

spacelike eirgenplane with respective eigenvalues

pe =+ (=0 +p)/2 and ps:=+/(c+p)/2 for p:=+o2+72>0. (3.9)

The inverse relation between puy, pis and o, 7 is 0 = p2 — p? and T = 24y fts.

2. Otherwise, 0 = 7 = 0 if and only if ker F' is degenerate two-dimensional. Equiv-
alently, F has a null eigenvector orthogonal to a spacelike eigenvector both with

vanishing eigenvalue.

One can easily check that when T = 0, the sign of o determines the causal character of
ker F', namely o < 0 if ker F' is spacelike, 0 = 0 if ker F' is degenerate and o > 0 if ker F’
is timelike. Obuviously, T # 0 implies ker F' = {0}. The characteristic polynomial of F
is directly calculated from (3.6)

Pr(z) = (a® — uf)(2* + p13).

Observacin 3.12. Let F € SkewEnd(M'2) be in canonical form. One can see by
direct calculation that q == (1 4+ o/4)eg + (1 — o/4)e1 generates ker F' and furthermore
(q,q) = —o. Hence, the sign of o determines the causal character of ker F', namely it is
spacelike if o < 0, degenerate if o = 0 and timelike if o > 0. Moreover, when o # 0,
F has an eigenplane with opposite causal character than q and eigenvalue \/H. The

characteristic polynomial of F' reads

Pr(z) = z(2* + o).
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At this point, it is convenient to comment on the relation between our results and previ-
ous canonical forms of skew-symmetric endomorphisms. It is standard in the literature
to work with two-forms of M!'3, also called bivectors, instead of skew-symmetric endo-
morphisms. The usual classification of two-forms in M2 (which can be found in e.g.

[73] and [142]) reduces to two cases with their respective canonical forms, namely
F=aeANw+bu Av, F=kAw, a,beR (3.10)

where w, u, v are spacelike, unit and orthogonal to each other, e is unit and orthogonal
to all of them and k is null and orthogonal to v. Our main improvement is that we
no longer need to distinguish two cases and we are able to cover every case with one
single canonical form. The first of the canonical forms in (3.10) obviously corresponds
to a skew-symmetric endomorphism which admits a timelike eigenplane with eigenvalue
a and a spacelike eigenplane with eigenvalue b. These endomorphisms correspond to a
canonical form (3.6) in which at least one of the parameters o, 7 is not zero (cf. Remark
3.11). From (3.10) it follows easily that a, b are directly related to the eigenvalues
of F, specifically it holds |a| = p and |b] = pus. The second canonical form in (3.10)
corresponds with a skew-symmetric endomorphism that has a null eigenvector orthogonal
to a spacelike eigenvector, both with zero eigenvalue, which in our canonical form is
o0 =7 =0 (cf. Remark 3.11). We also remark that our result is valid only for real

skew-symmetric endomorphisms, because it relies on Lemma 3.7.

The three dimensional case is always simple (i.e. a bivector) and thus can be written as
product of two one-forms, whose causal character will determine the classification. Here
we have treated this case as a corollary of the four-dimensional one. This approach will
be useful in our extension of the classification results to the higher dimensional case in
Chapter 4.

3.3 Group of invariance of the canonical form

In this section F' is a non-zero skew-symmetric endomorphism in a four-dimensional
vector space, and B = {eg, e1,e2,e3} is a canonical basis, i.e. one where eq is future
directed and (3.6) holds. It is useful to introduce the semi-null basis {¢, k, e2, e3} defined
by £ = ey + e1, k = eg — e1. In this basis the endomorphism F' takes the form

F0) = %62 + geg, F(k) = —2es, Fles) = —f+ %k Fles) = Zk (3.11)

We are interested in finding the most general orthochronous Lorentz transformation
which transforms B into a basis B’ = {e{, €], €5, €5} in which F takes the same form.
In terms of the corresponding semi-null basis {¢', k', €}, e5} we must impose (3.11) with

primed vectors. We start with the following lemma:
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Lemma 3.13. Let F be skew-symmetric and {{,k, e, e3} be a semi-null basis that sat-

isfies
F(k) = —2es,  F(es) = —C + %k (3.12)

and

02 7_2
(F(O), P0) = T (3.13)

Then either the semi-null basis {{, k,ea,es} or {{,k,ea, —es} fulfils (3.11), and both do

whenever T = 0.

Proof. Skew-symmetry imposes F'(¢) and F(e3) to satisfy

F(0)=Zes+3es,  Fles) =K, qek
Condition (3.13) imposes ¢ = 72. Thus ¢ = £7. Since reflecting ez replaces ¢ by —q,
either the basis {/, k, e, e3} or the basis {, k, ea, —es} satisfies (3.11) with 7 > 0 (and

both do in case 7 = 0). O

Thus, to understand the group of invariance of (3.11) it suffices to impose (3.12)-(3.13)

for {¢' k', e, }. Let us decompose £’ in the original basis as
kK = Ak + Bl + Co€g + C3€3. (3.14)

Observe that A, B > 0 as a consequence of &’ being future directed. Let us introduce

two vectors e and ¢’ so that (3.12) are satisfied, namely

1 B B 1
ey 1= —§F(k’) = (A — 40) ey — 77—63 + %26 ~3 (oca + 7c3) K, (3.15)
V= %k’ — F(e})
B (0% + 712 1 1
= (0167—)k + Al — 1 (o0co + Tc3) ea + 1 (o0c3 — Te2) e3. (3.16)

The conditions of &’ being null, future directed and €/, spacelike and unit are easily found

to be equivalent to

—4AB+||c]*=0, A,B>0, (3.17)
2 2
9 O+ TT o5 0,5 9 T
A%+ 16 B” + s (c5—c3) + 7026 = 1, (3.18)

where we have set ||c||? = ¢3 + ¢3. Under (3.17)-(3.18) one easily checks that the
conditions (e5, k') = 0, (e}, ¢') = 0, (¢/,¢') = 0 and (¢, k') = —2 are all identically
satisfied. Thus, {¢',k’,e5} defines a timelike hyperplane and we can introduce ef as

one of its two unit normals. By construction, the semi-null basis {¢',k’, €}, e5} satisfies
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(3.12). By Lemma 3.13, this basis or the one defined with the reversed e will be a
canonical basis of F' if and only if (3.13) is satisfied. By skew-symmetry, this condition

is equivalent to

2 .2
W, P2y + 2 ZT = 0. (3.19)
Directly from (3.11) we compute
F2(£)——56+‘72+T2k FPky=20-72
- 2 8 Y - 2 Y
T T
F2(€2) = —0€y — 563, F2(€3) = —562,

from where it follows
1 /(> +7%)B o? 4+ 72 1
F2y==——2" _5A A—-0oB
(0" 5 ( 1 oA )l + 3 Yid k

(202 +72) c2 + 0TC3 T(ocy + 7Tc3)
3 ez + 3

One easily checks that (3.19) is identically satisfied when (3.17)-(3.18) hold. Thus, it
only remains to solve this algebraic system. To that aim, it is convenient to introduce
@ > 0 and an angle 0 € [0, 5] defined by

o = @ cos(26), T = @ sin(20). (3.20)

When o2+ 72 > 0, {Q, 0} are uniquely defined. When ¢ = 7 = 0, then Q = 0 and 6 can
take any value. Define also Ag, A3 by

o = 2X9cosf — 2A3sin 6, c3 = 2Xosinf + 2A3 cos .

In terms of the new variables, equations (3.17)-(3.18) become (with obvious meaning for
[IAI1%)

AB —||)\|]? =0, 16A4% + Q*B? +8Q (A3 — A3) — 16 = 0, A,B>0.

When @ = 0, the solution is clearly A = 1, B = ||A||?, with unrestricted Ao, A3. When
@ > 0, we may multiply the first equation by @ and find the equivalent problem

(4A+QB)? =16(1+QX}), (4A—QB)?=16(1—Q)\3), A,B>0.

This system is solvable if and only if

Do < \/1@ (3.21)
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and the solution is given by

1 2
A= 3 <\/1+QA§+E\/1—QA%), B = 0 <\/1+QA§—6\/1—QA§) ,(3.22)

where € = £1. Observe that the branches e = 1 and ¢ = —1 are connected to each other
across the set [\a] = 1/4/Q. Note also that the case @ = 0 is included as a limit Q@ — 0

in the branch € = 1 (and then the bound (3.21) becomes vacuous, in accordance with

the unrestricted values of {2, A3} when @ = 0). We can now write down explicitly the
vectors ¢/, k', e}, defined in (3.14), (3.15) and (3.16). It is useful to introduce the two

spacelike, orthogonal and unit vectors
ug = cosf es + sin b eg, uz = —sinf ey + cos 0 e3

which simplify the expression to

2
A :%Bk + Al + % (—Aauz + A3uz),

k/ =Ak + B¢ + 2/\2U2 + 2)\3U3,

ey =(Agcos@ — A\gsinf) £ — % (A2 cosB + Agsinf) k

+ecosfy/1— QN2 uy —Sin01/1+Q>\§U3,

where A, B must be understood as given by (3.22) (including the limiting case ) = 0).
The fourth vector ej is unit and orthogonal to all of them. The following pair of vectors

satisfy these properties (and of course there are no others),
P . Q .
es =€ (()\3 cosf + Ay sinf) £ + 1 (A3cos@ — Agsinf) k

tesinfy/1 — QA3 ug + cos04/1 +Q)\§u3)

where € = £1. It is also straightforward to check that F'(e5) = €(r/4)k’. Thus, if 7 # 0,

we must choose € = 1 while in the case 7 = 0 both signs are possible (in accordance with

(3.23)

Lemma 3.13). Summarizing, the most general orthochronous Lorentz transformation

that transforms a canonical semi-null basis of F' into another one is given by

El

1 (\/1 +QA + e\/l _ ng) Q <\/1 +QA2 - e\/1 _ ng) —QXa/2 QX3/2
ol _| 3 (\/1+QA§—5\/1—Q)\§) %(\/I—FQ)\%—}-E\/I—Q)\%) 2% 273
) A2 cos @ — Az sin6 —Q(A2cos + Agsinf)/4 €cosf4/1— QA3 —sinfy/1+ QA2

€€g

Az cos O + g sin @ Q(A3cosf — Aasinf)/4 esin®y/1 — QA2 cosf/1+ QA2

1 0 0 0 ¢ l
0 1 0 0 k

= Tr (A2, Az,
0 0 cos 6 sin 0 es F(A2,43,€) e2
0 0 —sinf cosf es es
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where € = 1, unless 7 = 0 in which case € = +1. Concerning the global structure of
the group, recall that A3 takes any value in the real line, while |\o| < 1/1/Q. We have
already mentioned that as long as @ # 0, the two branches ¢ = +1 are connected to
each other through the values || = 1/4/Q. The topology of the group is therefore
R x S! (hence connected) when @ # 0 and 7 # 0. When Q # 0, 7 = 0 the group has two
connected components (one corresponding to each value of €) each one with the topology
of R x S'. Finally, when Q = 0, the group has two connected components (again one for
each value of €) and the topology of each component is R?. By construction all elements
of the group (in all cases) are orthochronous Lorentz transformations. Moreover, it is
immediate to check that the determinant of T (A2, A3, €) is one for all values of g, A3, €.
Thus, all elements with € = 1 preserve orientation, while the elements with € = —1

reverse orientation.

3.3.1 Invariance group in the three-dimensional case

We have found before that for any non-zero skew-symmetric endomorphism F in M2
there exists an orthonormal, future directed basis Bs = {eg, e1,e2} where F' takes the
canonical form (3.8). As in the previous case it is natural to ask what is the group
of invariance of F', i.e. the most general orthochronous Lorentz transformation which
transforms B into a basis where F' takes the same form. From F', recall the auxil-
iary skew-symmetric endomorphism F defined on M2 & E; that was introduced before
Corollary 3.9, that is, the endomorphism that acts as ﬁ(u + ae3) = F(u) 4+ 0, for
all u € M»? and @ € R where E; = span{F3}, with E3 unit. Moreover, the basis
B := {eg, e1,e2,e3 = E3} is canonical for F in the sense of Definition 3.10 and in ad-
dition 7 = 0. It is clear that there exists a bijection between the set of orthonormal,
future directed bases Bj = {ej, €}, 5} where F' takes its canonical form and the set of
future directed orthonormal bases B’ in M2 & E; where F takes its canonical form and
the last element of B’ is E3. Thus, in order to determine the group of invariance of F'
it suffices to study the subgroup of invariance of F which preserves the vector es. Since

7 = (0 we must impose
B = @Qsin(20) = 2Q cosfsinf =0

and three separate cases arise: (case 1) when @ # 0,0 = 0, (case 2) when @ = 0 and
(case 3) when @ # 0,0 = 7/2. Equivalently, cases 1, 2 and 3 correspond respectively
too > 0,0 =0 and o < 0. Recall also that when @ = 0 we may choose any value of
0 € [0,7/2] w.l.o.g. We choose § = 0 in this case. Recall also that the case @ = 0 is

recovered as a limit ) — 0 after setting e = 1.
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We only need to impose the condition €4 = e in each case. Directly from (3.23) one
finds (we also use that @ = |o])

e :€<)\3€+ |Z|)\3k+ 1+ |o|A\3 63> Case 1

e5 =€ (A3l + e3) Case 2
eh = E()\gﬂ — |Z|)\2k: +ey/1— ]U|/\§> es, Case 3

Thus, cases 1 and 2 require € = 1,A3 = 0 and in case 3 we must set € = €, Ay =
0. Inserting these values in the group of invariance of F' one finds the most general
orthochronous Lorentz transformation that preserves the form of F. We express the
result in the canonically associated semi-null bases £ = ey + €1,k = eg — e1,e3 = es.

Renaming Ag, A3 as A, the three cases can be written in the following form

(e

v L+ e/T=Tol?) Bl (1-eyi=Top?) -1 ¢

Fol= F eIl g (1re/TPl) 2 k] oz0
e A _lolx ey/1— [o]X2 e2

v Ve vVItlol?) B (yitlol-¢) -l ¢

Fol=| & (VITRPe-o) L (Vitlhe+e) “o\ k 7 <0

!

eh Y 7% V14 |o|A? €2

o

with the understanding that the case ¢ = 0 is obtained from the first expression by

setting € = 1 and then performing the limit ¢ — 0.

When o > 0, the parameter \ is restricted to |A| < 1/|o| and the two branches e = 1 and
¢ = —1 are connected through |\| = |o|. The group is connected and has topology S!.
As an immediate consequence all the elements in the group are not only orthochronous
Lorentz transformations (by construction) but also orientation preserving, as they are
all connected to the identity. This can also be checked by computing the determinant
of its matrix representation, which is one irrespectively of the value of A and e. When
o = 0 the parameter A takes values in the real line and the group has R-topology. Again
all its elements are orientation preserving. In fact, in this case the group is simply the
set of null rotations preserving ¢. Finally, in the case 0 < 0, A also takes values in the
real line and the group has two connected components (corresponding to the two values
of €). Each component has topology R. The determinant of the matrix representation
is now ¢, so the Lorentz transformations with € = 1 preserve orientation (and define the

connected component to the identity) while e = —1 reverse orientation.
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3.4 Generators of the invariance group

Returning to the four dimensional case, the identity element e of the group of invariance
corresponds to Ay = A3 = 0 and ¢ = € = 1. We may compute the Lie algebra that
generates it by taking derivatives of the group transformation with respect to A and Ag

respectively and evaluating at e. This defines two skew-symmetric endomorphisms

~ OTr(X2, A3, ¢€) B OTr (A2, A3, €)
B OXa ’ 8 X3

e

ho :

It is immediate to obtain their explicit expression

ha(0) 0 0 —% cos 6 —%sinﬁ 14

ho (k) B 0 0 2cos 0 2sin 6 k
ha(e2) | cosf —% cos 0 0 0 es |
ha(es) sin 0 —% sin 0 0 0 es
hs(£) 0 0 —2sing £ cosd (
hs(k) B 0 0 —2sinf  2cosé k
hs(es) | | —sind —% sin 0 0 0 €9
hs(es) cos % cos 0 0 es

Note that any skew-symmetric endomorphism G that commutes with F' generates a
one-parameter subgroup of Lorentz transformations that leaves the form of F' invariant.
It follows that this uniparametric group is necessarily a subgroup of the full invariance
group of F'. Hence G must belong to the Lie algebra generated by hy and hs. Conversely,
ha,hs (and any linear combination thereof) defines a skew-symmetric endomorphism
that commutes with F'. In other words, Cp := span{he, h3} defines the Lie subalgebra
of so(1,3) formed by the elements that commute with F. This Lie subalgebra is called
the centralizer of F' (e.g. [89]) and, as we have just shown, it is two-dimensional for
any non-zero F. An easy computation shows that [ha, hs] = 0, so the centralizer of
F is an Abelian Lie algebra. With these properties, it is not difficult to obtain the
exponentiated form of the group elements. Define the two C! functions t.(s),t3(s)

(prime denotes derivative with respect to s)

t=ey/1— Q12 te(s =0) =0,
th = /1 + Qt2, t3(s =0) =0,
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and set
T+t %(1 t’) —9 cos Ot, — 9 sin Ot
2 / 1 / :
51—t s 1+t 2cos 0t 2sin 0t
Tis)= | @1 H) 2 1) <L 6
cosft,  —%cosbt. cos?Ot. +sin®f sinfcosf (. — 1)
sin Ot —% sinft. sinfcosf (t. —1) sin?0t. + cos? 0
S (1+1t) % (th —1) — 9 sin Ot 9 cos bt
Ta(s) % (th—1) 2(1+1h) —2sin Ot3 2 cos Ots
3(s) =
— sin Ot —% sinft; cos?f+thsin?0 sinfcosd (1 —th)
cos Ot 9 cosOty sinfcosf(1—ty) sin®6 + cos? Ot}

(in the right-hand sides t.,t. etc. are to be understood evaluated at s). By direct

computation one checks that (Id stands for the 4 x 4 identity matrix)

dT; o
ds = h272, 7;:1(8 = 0) = Id,
dT3 o

ds h3Ts, Ts(s =0) =1d,

Tr(A2, A3, €) 3yt (s1) Ngmts(52) = Te(51)T3(52) = T3(s2)Te(s1).

This shows in particular that 7.—;i(s) = exp(shg) and T3(s) = exp(shg). Observe also
that (in agreement with a previous discussion), when @ # 0 the branch Tc—_; is con-

nected to the branch 7.—; because in this case
_ sin(vQs) T
S < -wawal
_ _sin(v@s) T
tezfl(s) — \/@ 3 s € |: 2\/@5 2\/@:| 5

so that s = +7/(2y/Q) in the first branch is smoothly connected to s = Fr/(2y/Q) in

the second branch.

From the matrix representation of he and hjs it is obvious (the last two columns are
linearly dependent) that det(ho) = det(hs) = 0 so both hg, hs are simple, i.e. of matrix

rank two. Moreover,
—tr (h,g ] hg) = tr (h3 o h3) = 2@ (324)

and tr (hg o hg) = 0. Given that F' commutes with itself, i.e. F' € Cp, it must be a linear

combination of ho and hg. Indeed, it is immediate to check that
F = —cosBOhy + sin Ohs. (3.25)

This expression suggests that the connection between F' and the basis {hg, h3} is via a du-
ality rotation. To show that this is indeed the case, we define the one-forms {£, k, ez, e3}

metrically associated to the semi-null basis {/, k, es,e3}. Also, for any skew-symmetric
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endomorphism F, we associate the two-form F' by the standard relation (3.1). It is

straightforward to find the explicit forms of hy and hg to be!

hg = <£ - §k> A (cosfez + sinfes) , (3.26)
_ Q :
hy =€+ Zk A (—sinfeg + cosfeg) .

Duality rotations of a two-form are defined in terms of the Hodge-dual operator, which
in turn depends in a choice of orientation in the vector space. To keep the comparison
fully general, we let x = +1 (k = —1) when the orientation in M%3 is such that the
basis {/, k, ez, e3} is positively (negatively) oriented. Equivalently, if i is the volume

form that defines the orientation, k is given by
n(l, k, ez, e3) = 2k. (3.27)
Let G* denote the Hodge dual® associated to G. It is then immediate to check that
h5 = khg.
Defining f := —hg and p := —k6, we may rewrite (3.25) as
F =cosuf +sinuf* (3.28)

which indeed shows that F' is obtained from the simple form f by a duality rotation of
angle p. Notice that f,sf* = 2Q > 0 (by (3.24)). For later use, we observe that the
most general linear combination f = aghga + bohg that defines a simple 2-form such that
fapf® >0 and (3.28) holds for some value of y is:

Q=0: f = —cos(0+ ku)he + sin(0 + ku)hs, peR
Q>0: f =—cos(nm)ha, p=—kl+nm, neN. (3.29)

This can be proved easily from the explicit expressions of hga, hg and the fact that they

are linearly independent simple 2-forms.

One may wonder whether this connection with duality rotations could have been used
as the starting point to obtain in an easy and natural way the canonical form of F'. We
will argue that this alternative approach, although possible, it is far from obvious and

cannot be regarded as natural.

We fix a skew-symmetric endomorphism F' in a a four-dimensional vector space with
a Lorentzian metric, and let F' be the metrically associated 2-form. Define as before

o= —%traee (F2) and 72 = —4det(F), 7 > 0 where the determinant is taken for any

LOur convention for the exterior product is u Av = u®@v — v @ u.
2In abstract index notation G;[; = %naBWG‘“’.
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matrix representation of F' in an orthonormal basis. The invariants o and 7 are directly

related to the two algebraic invariants of F' as

1 1
0= 5FapF™, 7= abs (FaﬂF*aﬁ) . (3.30)
The first one follows trivially from the definition of 0. The second is a well-known
algebraic identity that can be found e.g. in [92]. Given F, a duality rotation of angle

—u defines the 2-form Il;‘ as [127], [105],
H .
F:= cos uF — sin uF™. (3.31)

A simple computation shows that 1€'L’ is simple (i.e. #‘ag ﬁ’*aﬁ = 0) and satisfies }lit’ aB ]l;‘ af >
0 if and only if (cf. [105])

osin(2u) + kT cos(2u) = 0,
ocos(2u) — RTsin(2u) > 0, (3.32)

where K is the sign defined by %FagF*aﬁ = R7 (when 7 = 0, K can take any value
k = %1). Inserting (3.20) we find that whenever @ = 0 all values of u solve (3.32)
(which reflects the fact that F' is null, and so are all its duality rotated 2-forms). When
Q@ # 0, the solutions of (3.32) are p = —kf +nm, n € N. Thus, we recover the expression
in (3.29) provided we can ensure that & = . Note that the sign of F,3F**? only depends
on F' and the choice of orientation. It is a matter of direct checking that F' as given in
(3.11) with the choice of orientation where (3.27) holds satisfies F,,s F**% = 257, so that

indeed k = k follows (unless 7 = 0, of course, in which case k = £1).

We can now show how the canonical basis can be constructed from F' using a duality
rotation approach. Fixed an orientation on the vector space (i.e. a choice of volume
form m, and its associated Hodge dual) define o and 7 as in (3.30). Let k € {—1,1}
be such that 28 = F,gF**8 (if 7 = 0, we allow any sign for ). Introduce @ so that
(3.20) holds with € € [0,7/2] (if 0 = 7 = 0 then 6 can take any value in this interval).
Define then p = —k6 and construct f‘ by (3.31). We let hy :== — f‘ Since this 2-form
is simple, there exist two linearly independent vectors a,b such that he = a A b. These
vectors are obviously not unique, but certainly at least one of them must be spacelike.
It can also be taken unit. We let Eo := b have this property. Exploiting the freedom
a — a+sFs, s € R we may take a perpendicular to Fs. By construction (hg)ag(hg)aﬂ >
0 (recall (3.32)) which is equivalent to (a,a) > 0, i.e. a is spacelike or null. Let @ > 0
be defined by Q = (a,a). It is clear that there exists a timelike plane II containing
a and orthogonal to Fy (this plane is obviously non-unique). Fixed II, it is easy to
show that there exists a future directed a null basis {¢, k} on II satisfying (/, k) = —2
and such that a = £ — (1/4)Qk. Finally, consider the timelike hyperplane defined by
span{/, k, E5} and select the unique unit normal E3 to this hyperplane satisfying the
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orientation requirement (cf. (3.27))
?7(5, k, EQ, Eg) = 2k.

So far, from a non-zero F' we have constructed a (collection of ) semi-null basis {¢, k, Ea, E3}
in quite a natural way. Observe that when o = 7 = 0, the angle 6 is arbitrary, so the
semi-null basis has extra additional freedom in this case. What appears to be hard to
guess from this construction is that instead of {Fs, E3} we should introduce {e2, e3} by
means of the #-dependent rotation (cf. (3.26))

Ey = cos ey + sin fes, E3 = —sinfey + cos fes. (3.33)

It is by using this transformation that the form of F' in the basis {/, k,eq,e3} takes
a form that depends only on the invariants o,7. It is remarkable that the 0-freedom
inherent to the case 0 = 7 = 0 (i.e. when F' is null) drops out after performing the
rotation (3.33), and we get a canonical form that covers all cases and depends only on

o and T, irrespectively of which values these invariants may take.

3.5 Global conformal Killing vectors on the plane

In the following sections we connect our previous results with the Lie algebra of conformal
Killing vector fields of the sphere and the group of motions they generate, i.e. the Mobius
group. In our analysis, it is useful to employ the Riemann sphere C U {oco}. Although
we will rederive some of the results we need here, we refer the reader to [108] and
[135] for more details about the Mobius transformations on the Riemann sphere. Some
of the contents may also be found in other more general references such as [124] and
[133]. Regarding Lie groups and Lie algebras, most of the results we will employ can
be found in introductory level textbooks such as [73], but other references [71], [89] are

also appropriate.

Consider the Euclidean plane E? = (R? gg) and select Cartesian coordinates {z,y}.
Recall that the set of CKVFs on E? is given by

where U,V satisfy the Cauchy-Riemann conditions 0,U = 9,V , 0,U = —0,U. These

vector fields satisfy
EggE =20, U+ 6yV) JE. (3.34)

Observacin 3.14. The space of CKVFs is in this case infinite dimensional, as it is

obvious that every analytic complex function defines a solution of the conformal Killing
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equation (3.34). As we have discussed in Remark 2.16, the uniparametric group of dif-
feomorphisms associated to a generic CKVFEF of E? induces a conformal transformation
in the sphere S? which, in many cases, is a local conformal transformation which does
not admit a global extension in S? (e.g. [133] and [20]). Namely, in the terminology of
Section 2.2.1, it is an element of ConfLoc(S?) and not of Conf(S"). As seen in subsec-
tion 2.2.2, ConfLoc(S?) is not a group. We are interested here in the global conformal
diffeomorphisms Conf(S?), which as we will discuss below, correspond to Mébius trans-
formations. Thus, we shall restrict our discussion to the CKVFs of E? whose associated

transformations are global in the sphere.

We emphasize that the case n = 2 is very special in that there exists conformal transfor-
mations of S® which are not global. This does not happen for n > 2, where all conformal
transformations are global [20]. This can be seen as an indirect consequence of S? ad-
mitting a complex structure, which enlarges the number of solutions of (3.34). This is a
unique feature of S* [22].

Therefore, taking Remark 3.14 into account, we consider the one-point compactification
of E? into the Riemann sphere S%. It is standard (e.g. [133]) that the set of conformal
Killing vectors that extend smoothly to S? is given by the subset of CKVFs for which
U and V are polynomials of degree at most two. In what follows, we shall restrict our

discussion to this set.

Definicin 3.15. The set of conformal Killing vectors which extend globally to S? are
called global conformal Killing vectors (GCKYV).

Thus, the set of GCKV is parametrized by six real constants {bs,b,,v,w,a,,a,} and
take the form

1
by + vz — wy + —ay (;1:2 — y2) + awy) Oy

$ 2

1
+ | by + vy +wz + 5% (y2 — 932) + axxy> Oy

§(ag, bz, v,w, bz, by) (3.35)

It is clear that the use of complex coordinates is advantageous in this context. For
reasons that will be clear later, it is convenient for us to introduce the complex coordinate
z= %(aj —iy). In terms of z, the set of CKVFs is given by ¢ = f0, + f&z (recall that
bar denotes complex conjugation) where f is a holomorphic function of z, while U, V" are

defined by 2f = U — iV. The set of GCKV is parametrized by three complex constants
{10, pa, po} as

1 1
£ = <,u0 + p1z + 2,u222> 0, + <,uo + iz + 2/~L222) Oz. (3.36)
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The relationship between the two sets of parameters is immediately checked to be (we

emphasize that this specific form depends on our choice of complex coordinate z)

1 . ; .
po =5 (be—iby), m=v =i, =2 (a +iny). (337

We denote the GCKV with parameters pu := (ug, 1, 2) as §(uy- We shall need the
following lemma concerning orthogonal and commuting GCKYV. The result should be

known but we did not find an appropriate reference.

Lemma 3.16. Let {3, be global conformal Killing vector fields on E? with corre-
sponding parameters j1 = { o, pi1, 2}, 0 = {00,01,02}. Assume that &,y is not the zero
vector field. Then

1. &5 is everywhere perpendicular to &,y if and only if o = ir p with r € R.

2. &gy commutes with &g,y if and only if o = cp with ¢ € C.

Moreover, &, has Euclidean norm
gE(i{cu}ag{cu})‘p = ‘c’2gE(€{u}7§{p})|p7 Vp € E?.

Proof. Let f, = po+ p1z+ %HQZQ so that &g,y = .0, +f7u@; and define f, correspond-
ingly. The Euclidean metric is gg = 4dzdz, so

98 &y Equy)lp = 2 (fuﬁ + fjﬁ;) |2(p)- (3.38)

The condition of orthogonality is equivalent to fuﬁ+ﬁ fo = 0. This is a polynomial in
{z,Z}, so its vanishing is equivalent to the vanishing of all its coefficients. Expanding,

we find

Hooo + oo = 0, pio1 + prop =0, U209 + fizoe = 0, (3.39)
p100 + oo = 0, W20 + ooz = 0, w201 + o = 0. (3.40)

Equations (3.39) are equivalent to the existence of three real numbers {q1, ¢2, g3} such
that p,o, = iqq, a = 0,1,2. Multiplying the equations in (3.40) respectively by uoft,
oz and pq a2 one finds

wlml” — alpol* =0,  qolpzl* — g2luol* =0, q1lpal® — @2lma|* =0
— (QO7Q17q2) X (’H0‘27 |/~’L1’27 |,U’2|2) = (07070))

where x stands for the standard cross product. Since (|uo|?, |u1|?, |p2]?) # (0,0,0) (from
our assumption that ;) is not identically zero) there exists a real number 7 such that

(40,91, 42) = —r(|pol?, [ |?s |p2l?). Thus pede = —ir|pa|?*. Fix a € {0,1,2}. If p, # 0,
it follows that o, = —irfig. If, instead, u, = 0 then it follows from (3.40) (since at least
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one of the u’s is not zero) that o, = 0. In either case we have o, = iru,. This proves

point 1. in the lemma.

For point 2. we compute the Lie bracket and find

df5 d dfy ——d
[Eur: €0y ) = (fu 1 — Jfo f“) <fu J —fo f“) .

The two vectors commute iff

df o df,u 1

Ju=> 5 fcr = pioo1 — p100 + (002 — p200) z + 3 (p102 — pi202) 2* =0

— (00, 01,02) o (o, p1, p2),

and point 2. is proved. The last claim of the lemma follows from (3.38) and the linearity
Jen = cfu- O

An immediate corollary of this result is that the set of GCKV that commute with a
given GCKV &,y is two-dimensional and generated by £y, and ff_u} = &_ipy-

Recall that a Mobius transformation is a diffeomorphism of the Riemann sphere CU{occ}

of the form
XAZ(CU{OO} — CU {0}

z — XA(Z) =

az+p |« I} B B
popy A'_<’7 5), ad —PBy=1. (3.41)

The set of M6bius transformations forms a group under composition, which we denote by
Moeb, and the map x : SL(2,C) — Moeb defined by x(A) = x* is a group morphism.
The kernel of this morphism is K := {Iz, —Is} and in fact x descends to an isomor-
phism between PSL(2,C) := SL(2,C)/K and Moeb. In geometric terms, the Mobius
group corresponds to the set of orientation-preserving conformal diffeomorphisms of the
standard sphere (S?, gs2) (recall that a diffeomorphism y := S? — S? is conformal if
X*(gs2) = Q2gs2 for some Q € C>(S?,R*)). The Mébius group thus transforms confor-
mal Killing vectors of S? into themselves, and, hence it also transforms global GCKV
of E? into themselves. In other words, given a GCKV §{uy» the vector field e (¢ {u}) 18
also a GCKV?3. Let u' := (uf, 1}, i) be the set of parameters of Xf(ﬁ{u}) =& A

3Note that x* has singularities as a map from E? into E2, but X‘f(ﬁ{ x}) extends smoothly to all E?,
and in fact to the whole Riemann sphere. Again this is standard and well-understood, so we will abuse
the notation and write x2 as if the map x* were well-defined everywhere on E?
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straightforward computations shows that

11 a? —af 37 1o
py | = —20y ad+py —B6 pi |- (3.42)
I 279 =296 & 12

=Qa

The determinant of this matrix is one, so Q4 € SL(3,C). As a consequence of y*1oy®2? =
x*142 (where - denotes product of matrices), it follows that the map Q : SL(2,C) —
SL(3,C) defined by Q(A) = Q4 is a morphism of groups, i.e. Qa, - Qa, = Qa,.a,-
This property can also be confirmed by explicit computation. In particular Q defines a
representation of the group SL(2,C) on C3. It is easy to show that this representation
is actually isomorphic to the adjoint representation. Recall that for matrix Lie group G

(i.e. a Lie subgroup of GL(n,C)), the adjoint representation Ad takes the explicit form
(e.g. [73])

Ad: G — Aut(g)

g—Ad(g):=Adg: g — ¢
X — ng_1

where g is the Lie algebra of G and Aut(g) is the set of automorphisms of g. The

isomorphism between Q and Ad is as follows. Let us choose the basis of sl(2,C) given

by
0 2 10 0 0
w’ = w! = w? =
0 0 0 —1 -1 0

and define the vector space isomorphism h : C* — sl(2,C) defined by h(uo, u1, p2) =
paw® (a,b, -+ =0,1,2). One then checks easily by explicit computation that h~1oAd,o
h=Q(g), for all g € SL(2,C).

Recall that the Killing form of a Lie algebra g is the symmetric bilinear map on g defined
by B(aj,as) := Tr(ad(a;) oad(az)) where ad(a), a € g is the adjoint endomorphism
ad(a) : g — g defined by ad(a)(b) := [a,b]. The Lie algebra sl(2,C) is semi-simple, so
its Killing form is non-degenerate (e.g. [89]). The explicit form in the basis {wg, w1, wa}

is given by
B(pow®, oqw®) = 8 (101 — pto02 — 11200) -

A fundamental property of the Killing form is that it is invariant under automorphisms
(see e.g. [29]), so in particular under the adjoint representation B(Ady(a), Ady(b)) =
B(a,b) for all g € G. Given {u} we define two real quantities oy, 7y, by

O () — () = Moz — pi-
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As a consequence of the discussion above, the quantities oy, 7(,) associated to a
GCKV ¢,y are invariant under Mobius transformations. We have now all necessary
ingredients to determine the set of Md&bius transformations that transform a GCKV
into its canonical form. Before doing so, however, we particularize some of the aspects
of the CKVFs discussed in Section 2.2.1 to the case at hand of S?.

3.6 GCKYV and skew-symmetric endomorphisms

We now give the explicit form of the isomorphism between the group Conf(S?) (respre-
sented as M&bius transformations on R?) and orthochronous component of the Lorentz
group O7(1,3). Let M3 be endowed an orthonormal basis {eg, e, e2,e3} with asso-
ciated Cartesian coordinates {X° X2 X2 X3}. Recall that in Section 2.2.1 (we par-
ticularize here to dimension n = 2), the conformal Euclidean plane was constructed
based on certain choices, in particular, fixing a representative of the conformal sphere
S?={X"=1=(X12+(X?)2+ (X?)?} and constructing the stereographic projection
Sty w.r.t. to the pole N = (1,—1,0,0) onto the plane Iy = {X° = X! = 1,2 :=
X2,y := X3}, which we identify with E2. With these choices, the explicit map between
the set of skew-symmetric endomorphisms SkewEnd(M!3) and the set of CKVF on [E?

is

¢» : SkewEnd(M™3) — CKill(E?)

b
0 —v az + % —ay + biy
-V 0 —ay,— 22 g, — ¢
F = b b vz vz —&r, (3.43)
—az + % ay+ 5 0 —w
—ay + % ay + %y w 0

where £ is given by (3.35) and we shall explicitly denote the dependence of £ on the

parameters {by, by, v,w, az,a,} by
gF = g(bxabya v,w,ag, ay)-

Also recall, that given an (active) orthochronous Lorentz transformation A(e,) = AY e,,
we may consider the skew-symmetric endomorphism Fj := AoFoA~!. The construction

above guarantees that
—A
§ry = By (§F )

where =% is the conformal diffeomorphism associated to the Lorentz transformation A.
Let us restrict from now on to proper (i.e. orthochronous and orientation preserving)
Lorentz transformations SO*(1,3). Thus, Z* is an orientation preserving conformal
diffeomorphism, and having fixed the coordinate system {z,y} € R? as well as z =

3(z — iy), Z* is a Mobius transformation. Thus there exists a pair £A € SL(2,C)
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+AA) — ZA We are interested in determining the explicit form of A(A)

such that x
(actually of its inverse map A(A)). Having also fixed a future directed orthonormal
basis {ep, €1, e2,e3}, we may represent a proper Lorentz transformation as an element
of SO™(1,3) (the connected component of the identity of SO(1,3)). The aim is, thus,
to determine the map O : SL(2,C) — SO*(1,3) satisfying Z°®) = yA. Of course,
this map depends on the choices we have made concerning the pole N and plane Iy to

perform the stereographic projection.

As discussed at length in many references, (see e.g. [124], pp. 8-24), when the position
vector of the north pole N’ is chosen to be e3, the plane is selected to be IT}, = {X° =
1, X% = 0} and the complex coordinate 2’ in this plane is taken as 2’ = X! 4+ iX?2, the

corresponding map O’ is (we parametrize A is in (3.41))

a@ + BB + 77 + 68 af +pa+y+67)  i(aB —fa+ s —67) o@ — BB + 7 — 68

Oyt | TTFHAEHIE @bt pT Lo oa  (aS - FT+AF-63) oy f5tya o8
| (a7 = Bs+ya+B) i(—ad—py+AB+oa)  ad—py—B+da i(—aF + 6 +ra—p)

ad + BB — v7 — 68 af+pfa—y5 -6y  i(ef—Ba—0+67)  od@—pB—7+36

We may take advantage of this fact to determine our O(A). To do that we simply need
to relate the action of the Mobius group in the plane Iy := {X" = X! = 1} (in the
coordinate z) with the corresponding action on the plane 1Ty, := {X° = 1, X3 = 0}
in the coordinate z’. At this point we can explain the reason why we have chosen
z = &(x — iy). The reason for the factor 2 comes from the fact that the plane Iy lies
at distance d = 2 from the point of stereographic projection, while the plane IT}, lies at
distance d = 1 of its corresponding stereographic point. The sign is introduced because
the basis {—e1, €2, e3} (with respect to which the point N and the coordinates {z,y} are
defined) has opposite orientation than the basis {es,e1,e2} with respect to which the
point N’ and the coordinates { X!, X2} are built. By introducing a minus sign in z we
make sure that the transformation 1 of S? defined by {z(p) = 2/(x(p))} is orientation
preserving (where z(p) and 2/(p) stand for the two respective stereographic projections
of §? onto C? U {oc}). Now, a straightforward computation shows that an orientation
preserving conformal diffeomorphism x : S? — S? which in the plane IIy takes the form
az(p) + 8

z(x(p)) = 2 p) 16’ ad — By =1, p €S?,

has the following form in the IT)y, plane

where

a/ B/ _ U*l o B U7 U - 1 1 —Z —1 +’l/ .
v v 0 2\ 144 144
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Since the map O’ is a morphism of groups, it follows that the Lorentz transformation
O(A) is given by

OA) =0'(A) =0'(U)L0'A)O'(U)

The SO™(1,3) Lorentz matrix O'(U) is the rotation

1 0 0 O

0O 0 1 O
O'U) =

0 0 0 -1

0O -1 0 O

and we conclude that the Lorentz transformation O(A) takes the explicit form

ad+PB+y7+060  —aa+PB—v7+85  aB+pfa+y5+67 i(—aB+Ba —5+6)
O(A)=1 —aad—fBB+77+38  oa—BB -7+ —af —Ba+v6+&y  i(af — Ba—~d+67)
2 o7 + B8 +~a+ 63 —ay + B85 —~va+ 8 ad+pBy+yB+da  i(—ad + By — B8 + o)

iy + Bs —ya —6B) i(—aF+ B +vya—3B) i(ad+ By —vB — da) ad — By — B + sa

(to avoid ambiguities, recall that the Lorentz transformation defined by this matrix is
A(er) = A ey with A7 the row J and column I).

3.7 Canonical form of the GCKV

We start with a definition motivated by the canonical form of skew-symmetric endomor-

phisms discussed in Section 3.2.

Definicin 3.17. Let E? be Euclidean space and {x,y} a Cartesian coordinate system.
A GCKV ¢ is called canonical with respect to {z,y} if it has the form

1
§=(no+270:+ (W +7) 0 z=@—1iy), poeC

Equivalently, a GCKV is canonical with respect to {z,y} whenever its corresponding
form (3.36) has p; = 0 and pe = 2. We next characterize the class of Mdbius transfor-

mations x* which send a given GCKV into its canonical form.

Proposicin 3.18. Let {x,y} be a Cartesian coordinate system in E2. Let & be a non-
trivial GCKV and define the complex constants {po, p1, 2} such that & = §(uy when
expressed in the complex coordinate z = (x — iy)/2 and its complex conjugate. Then

X* € Moeb has the property that x2(€) is written in canonical form with respect to
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{z,y} if and only if

LSy — L5 — 1
A= ( 3 M"y " mé " ) 3012 =0+ = 1. (3.45)

Moreover, for any such A, it holds

1 ) 1 ' -
X (€) = <4 (o = i70y) + Zz) 0. + <4 (oguy +imguy) + 22> 0s.

Proof. From (3.42) and the fact that the canonical form has p} = 0 and pfy = 2, we need
to find the most general «, 3,7, subject to ad — By = 1 such that

—2ayup + (ad + ) p1 — Boug = 0, (3.46)
292 1y — 2y + 62 = 2. (3.47)

The first can be written, using the determinant condition ad — By = 1, as —2a~vyug +
(1 4+ 287y)p1 — Boug = 0. Multiplying by ¢ yields

0 = —2adypo + dp1 + B (2v0p1 — 6%p2) = —2abyp0 + 6p1 + B (29 o — 2)

1
=—2yu0 +om =26 = f=50m —vho, (3.48)

where in the second equality we used (3.47) and in the third one we inserted the deter-

minant condition. To determine o we compute

1 1
ad =1+ fy =1+ 370 — Y = 50 (Op2 =)

= 0 <a + %’WI - ;5/@) =0,
where in the third equality we used (3.47) to replace y?ug. If § # 0 we conclude that
a = (1/2)(yu1 — dpz), and the form of A is necessarily as given in (3.45). If, on the
other hand, 6 = 0, then the determinant condition forces v # 0. Thus, equation (3.46)
gives —2aypyy + fpi = 0, which after using (3.48) implies o = —(1/2)yp1, so (3.45) also
follows. This proves the “only if” part of the statement. For the “if” part one simply
checks that 3 and « obtained above indeed satisfy (3.46)-(3.47), as soon as ~, 0 satisfy

the determinant condition given in (3.45).

The second part of the Proposition is immediate form the fact that 2juopug — 3 is invariant
under (3.42). Thus, x2 (&) has pf satisfying

Apy = 2uppy — ph? = 2popz — 45 = ofy — iT() (3.49)
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Corolario 3.19. The subgroup of SL(2,C) that leaves invariant a GCKYV field in canon-

ical form with parameter ug is given by

5 _
AM0:{< 7#0)) 52+u072=1}-
~ 1)

Proof. Insert pu; = 0 and pe = 2 into (3.45).

Corolario 3.20. Given any GCKYV £ as in Proposition 3.18, the set of elements A €
SL(2,C) such that x2(€) takes the canonical form is

ALy —irgy) B0

where Ag is any element of SL(2,C) satisfying (3.45).

Proof. Fix Ag satisfying (3.45). Any other element A; will satisfy (3.45) if and only if

Ay -Aal leaves invariant the column vector (uyg,0,2), 4ug = oy, — i1y, ie. if and
only if Ay - Aj! € Ayr (cf. Corollary 3.19). Thus Ay = Ay, - Ag and the corollary is
immediate by Proposition 3.18. O

Corolario 3.21. Let F be a non-zero skew-symmetric endomorphism in M3 and let
the matriz (F) be defined by F(er) = F7 ey where {er}1—01.23 is an orthonormal basis.
Define {by, by, v,w,ay,ay} so that (F') reads as in (3.43). Define o, pu1, pr2 by means of
(3.37) and let A := O(A), where A is any of the matrices defined in Proposition 3.18.
Then, in the basis €/} := Al jer, the endomorphism F' takes the canonical form (3.6) with

o — iT = 2pop2 — 15

In Proposition 3.8 we showed the existence of the canonical form of F' € SkewEnd(M*!3),
and this motivated the Definition 3.17 of canonical form of GCKVs. However, it is only
in Corollary 3.21 that we have been able to (easily) find the explicit change of basis
that takes F' to its canonical form. This is possible because we are dealing with low
dimensions and the GCKVs take a very simple expression in complex coordinates of the

Riemann sphere, but this is a much more difficult problem in higher dimensions.

We can however easily derive the three-dimensional case as a simple consequence. For
that we consider, as usual, the extension F € SkewEnd(M!?) of F € SkewEnd(M!?)
described before Corollary 3.9. In the basis {eg, 1, 2, €3 := E3}, F has ay =by =w =0,
so the quantities g, p1, g2 defined in (3.37) are real. In order to apply Corollary 3.21
to find the change of orthonormal basis {eg, e1, €2} that brings F into its canonical form
we simply need to impose that e; = es, which amounts to A% = Als = A%3 = 0 and
A% = 1. Tt is easy to show (recall that a, 3 are expressed in terms of 7, § in the matrix

A of Corollary 3.21) that the general solution to the first three equations is vd = 76.



86

The condition A% = 1 is then
1 < < _
500p2 = y0u1 + o = 1.

Multiplying by § and using the determinant condition in (3.45) implies 6 = &, while
multiplying by 7 gives v = 7, and then A% = 1 is just identical to the determinant
condition so no more consequences can be extracted. Thus all parameters «, 3,7, are

real. Summarizing:

Corolario 3.22. Let F be a non-zero skew-symmetric endomorphism of M2 and the
matriz (F) be defined by F(e;) = sz-ej where {e;}i=012 is an orthonormal basis. Define
po = (F'3 — F23)/2, py := —F'9, po := —(F'3 + F?3). For any pair of real numbers
7,6 satisfying 0% — 281 + 272 o = 2, let o := (Spz — yu1)/2 and B := Su1/2 — Yuo.
Then, in the basis €} := A;e;, with

3(@+B2+92+68%) L(-a®+B2—1*+6%) af+76
A= %(*O&Q*ﬂ2+’}/2+52) %(a27182772+62) *OéﬁjL’}/(; ,
avy + Bd —ay + 36 ad + By

the endomorphism F takes the canonical form (3.8) with o = 2uopa — j3.

3.8 Adapted coordinates to a GKCV

So far we have explored the action of the Mobius group on a GCKV and have found that
for any such vector, there exists a set of transformations that brings it into a canonical
form. The perspective so far has been active. We now change the point of view and
exploit the previous results to find coordinate systems in (appropriate subsets of) E?
that rectify a given (and fixed) GKCV &.

Consider E? and fix a non-trivial GCKV field €. Let us select a Cartesian coordinate
system {z,y} and define, as before z = (1/2)(x — iy) and Z = (1/2)(z + iy). When
expressed in the {z,Z} coordinate system & will be £ = &gy for some triple of complex
numbers {u} = {po, 11, t2}. We now view the Mébius transformation as a change of
coordinates. Specifically, given «, 3,7, complex constants satisfying ad — Sy = 1, the

quantity

_az+f
oz 46

and its complex conjugate @ define a coordinate system on R? \ {yz +J = 0}. The
inverse of this coordinate transformation is, obviously,
ow—

—Yyw (0%
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It is well-known that transformations of a manifold can be dually seen as coordinate
changes in suitable restricted coordinate patches. We will refer to (3.50) as a Mdbius
coordinate change. With this point of view, we may express £ in the coordinate system

{w,w} and the duality above implies that £ takes the form

1 S
£ = <u6 + phw + 2u’2w2> D + <u6 + W + 2u’2w2> O
with {uf, 1), ph} given by (3.42) (this can also be checked by direct computation).

We may now take {a, 8,7,0} so that corresponding matrix A satisfies (3.45). It follows

that £ takes the canonical form

1 , 1 . _
¢ = <4 (0 = i) + w2> 0 + (4 (0 +im) + w2> 0.

By Lemma 3.16, the vector &1 defined by &+ := riwy s a GCKV orthogonal to &
everywhere, with the same pointwise norm as ¢ and satisfying [¢, 1] = 0. In particular
¢ and &1 are linearly independent except at points where both vanish identically. As a
consequence, it makes sense to tackle the problem of finding coordinates that rectify &
by trying to determine a coordinate system {vi,ve} (on a suitable subset of R?) such
that

§:8v17 SL:avg-

Assume that we have already transformed into the coordinates {w,w} where £ (and also

¢1) take their canonical forms
1 . ] .
€= <4Qe_2w + w2> 0, + c.c, &= <2Qe_2“9 + iw2> 0, +c.c (3.51)
where we have defined the real constants ) > 0 and 6 € [0,7) by

Ofu} — iT{H} = Qe_%e (3.52)

and where c.c. stands for complex conjugate of the previous term. We are seeking a
coordinate system {(,(} defined by

¢:= % (v1 + iv2)

such that

§—i&t =0
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(this is because d¢ = 9y, — i0y,). Since & — i+ = 2 (3Qe % + w?) 9, the coordinate
change musty satisfy the ODE

¢ 1
dw 92052 + %6721‘9'

This equation can be integrated immediately. The result is

. 0 _AMQ —i
C(w) = Co+ — (w 3 € ) —

In
2VQ w+ i@e‘ie
Z'\/Qe_ie 1 + ezi\/Qe_ie(C_CO)

wWiGiG) = =5 T o g’

(3.53)

where (p is an arbitrary complex constant. These expressions include the case ) = 0 as
a limit. Explicitly

¢(—C= L = S (3.54)

2w 2(¢ - Go)

Since the logarithm is a multivalued complex function, one needs to be careful concerning
the domain and range of this coordinate change. In the {w,@w} plane, the vector field £
vanishes at the two points (cf. (3.51)) w = :l:i@e‘w (which degenerate to the point at
the origin when @ = 0). It is clear that neither of these points will be covered by the
{¢, ¢} coordinate system. The case @ = 0 is very simple because, from (3.54), it is clear
that the {(, (} coordinate system covers the whole {w, @} plane except the origin. Since
the point at infinity in the w-plane is sent to the point (p in the (-plane we conclude that
the {¢,(} coordinate covers the whole Riemann sphere except the single point where &

vanishes.

When @) # 0, the situation is more interesting. The reason in the multivaluedness of
the logarithm. This suggests that the coordinate change may in fact define a larger
manifold that covers the original one. In order to discuss this, let is introduce the

auxiliary function

w — i@e‘w
= -
w -l—i@e‘w

This is a Mobius transformation, so it maps diffeomorphically C U {co} onto itself.
The two zeroes of £ are mapped respectively to the origin and infinity in the 3 vari-
able. Since (3.53) can be written as ¢ — (g = —ie??In(3)/(2v/Q) and In(3) = In 3| +
i(arg(3) + 2mm), m € N, a single value of 3 may be mapped to an infinite number of
points depending on the branch of logarithm one takes. One may decide to restrict the
{¢, (}-domain to be the band B := {¢ € C : Im(2iv/Qe (¢ — (o)) € (0,27)} and then
the coordinate change ((3) defines a diffeomorphism between C\ {3 = (r,0),r > 0} into
B. Let 01 B be the connected component of OB defined by Im(2iv/Qe™ (¢ — ¢)) =0
and 02 B the other component 9, B := {Im(2iy/Qe~ (¢ — (o)) = 27}, then the semi-line
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{3 = r}, with r real and positive and arg(3) € {0, 27}, is mapped to the respective points
Ci(r) = —ie?In(r)/(2y/Q) € 0B and (o(r) = —ie? In(r)/(2v/Q) + e //Q € B.

This shows that these two boundaries are identified by means of the translation defined

by the shift
G o=me? /1/Q.

The topology of the resulting manifold is R x S!. This is in agreement with the fact

that & vanishes at precisely two points of the Riemann sphere, and the complement of

two points on a sphere is indeed a cylinder. The alternative is to let ¢ take values in all

C and consider the inverse map
3(0) = e2iVQe " (¢—Co)

It is clear that this defines an infinite covering of the 3-punctured complex plane C\ {0}.

As described above, the fundamental domain of this covering is the (open) band B

limited by the lines (see Figure 3.1, where we have set (p = 0 for definiteness)

i ,i0
c1<s>=<o+2%;7 scR,

R
CQ(S)ZCoJrﬂvLCt, s eR.

2VQ

The (-complex plane therefore corresponds to the complete unwrapping of the cylinder,

i.e. to its universal covering. In the {¢,(} coordinate system we have
1 L1
=5 (0+0). e =5(0-2),

so & points along the real axis and ¢+ into the imaginary axis. The angle of the bound-
aries 01 B (and 02 B) with the real axis is 5 +6. For generic values of 6 it follows that the
integral lines of ¢ descend to the quotient B (with the boundaries identified as above)
as open lines that asymptote to the two points at infinity along the band (as in Figure
3.2). Observe that these two asymptotic values correspond to 3 = 0 or 3 = oo, which
correspond to the two zeros of £&. Thus, the integral lines of £ start asymptotically at one
of its zeros and approaches asymptotically the other zero. Along the way, the integral
lines circle each zero an infinite number of times (because the projection to the lines
parallel to the real axis descend to the quotient in such a way that they intersect the
boundaries of B an infinite number of times). The only exception to this behaviour
is when 6§ = 7 or when § = 0 (recall that by construction § € [0,7)). In the former
case, the integral lines of &, never leave the fundamental domain. This means that the
curves asymptote to the two zeros of ¢ and they never encircle them along the way. The
case @ = 0 corresponds to the situation when the projection of the integral lines of &

define closed curves on B with the boundaries identified . This is the situation when the
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V2 /r L

vl
21
Ve ; EN:
OB
| v
E T
’ I
L=
Y- B

FIGURE 3.1: Domain of the complex coordinate ( = %(vl +ivy) adapted to & = 0, and
¢t =0,,. The parameters Q and 0 determine the width and tilt of the band respectively.
The factor two in the distance between the boundaries arises because ( = % (vy + iva).

FIGURE 3.2: Integral lines of & (dashed line). The points joint by arrows are identified.
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integral curves of £ in the original {w,w} plane are topological circles (which degenerate

to points at the zeroes of ).

It is interesting to see how the limit @ = 0 is recovered in this setting. The translation
vector that identifies points in the boundary 01 B with points in the boundary 02 B
diverges as () — 0. Thus, the band B becomes larger and larger until it covers the
whole (-plane in the limit. On other words, the (-coordinate is no longer a covering of
the original w-coordinate. In the limit, £ vanishes at only one point in the w-plane (the
origin) which is sent to infinity in the (-coordinates. It is by the process of the band B
becoming wider and wider that the limits at infinity along the band, which correspond
to two points for any non-zero value of (), merge into a single point when Q = 0. The
process also explains in which sense the parameter #, which measures the inclination of
the band B becomes irrelevant in the limit Q = 0, in agreement with the fact that (3.52)

lets 6 take any value when o,y —i7y,) (and hence also @) vanishes.

In all the expressions above we have maintained the additive integration constant (,
instead of setting it to zero as the simplest choice. The reason is that {y can be directly
connected with the freedom one has in performing the coordinate change (3.50) that
brings £ into its canonical form. To understand this we simply note that, from (3.53)

one can check that the following identity holds

iy — (VR G) wl(G;0) — YEesin (VQeG)
»60) — %eie sin (\/Qe_wCO) w(c; 0) + cos (\/@e_wg(]) .

Thus, the relation between w((;0) and w(¢; (o) is a Mdbius transformation defined by

the matrix

cos (\/Qe_w(o) —@e‘w sin (me—i9¢0)
%ew sin (vQe™%¢) cos (vVQe *¢) '

It is immediate to check that, letting y take any value, one runs along the full subgroup
A 1Qe-2i0 defined in Corollary 3.19. Thus, by Corollary 3.20, the freedom in performing
the coordinate change (3.50) that transforms £ into its canonical form can be absorbed
into the additive constant (y, and vice-versa. Having understood this, we will set (; = 0

from now on.

So far we have considered ¢ without referring to any specific metric. We now en-
dow R? coordinated by {z,y} (or {z,Z}) with the following class of metrics. Let
u = {ug,u1,uz,uz} € R4 u # 0, and define

1

1
Ju= an (dz® + dy?) = @zldzdz, (3.55)

u

1
Qy = up + u1 + u2x + uzy + Z(Uo - Ul)(fﬂz +y2)

=up(l 4 22) + ui(1 — 22) + ua(z + 2) + uzi(z — 2).
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The Gauss curvature of g, is K, = ug —u? —ul — u% Since g_, = gu, there is a sign

freedom in u that we must keep in mind. When &, > 0, then it must be that ug # 0 and
the sign freedom may be fixed by the requirement ug > 0. However, this is no longer

possible when &, < 0.

Observe that g {uo Lio=0,uz=0} = JE ‘= 4dzdz. Under a Mdobius coordinate change
2 b b

1 —
—5,1141—*

(3.50), the metric g, takes the form

1
:(272/

u

Ju 4dwdw,
Qu = us(1+ ww) + v (1 — ww) + uh(w + ) + uhi(w — ),

where the constants v’ := {uf, u}, u), u4} are obtained from u = {ug, u1,u2,ug} by the

transformation
aa+ BB +7+ 88 aa -+ -6  —aB-fa—-v5-67 i(aB—pfa+~s—67)
1 aa+ BB — vy — 86 aa — BB — vy + 86 —af —Ba+y5+6y  i(aB — Ba—~5+ &)

2| —(e7+B5+~va++8) —av+B6—~va+dB ad+ By +vB+6a  i(—ad + By — B + da)
i(—oy — B8 +ya+06p) i(—ay+Bo+ya—6B) i(ad+ By —yB—da) ad—pfy—~B+sa

=Ma,B,7,6)

where € := £1. This sign reflects the impossibility (in general) of choosing between u
and —u. One can check that A, g5 = O(A™1)T (3.44) where A is as in (3.41) and
T denotes transpose. It follows that A(a, 3,7,d) defines a morphism of groups between
SL(2,C) and SO™(1,3) and that u transforms as the components of a covector in the
Minkowski spacetime. Also observe that when u is timelike or null (i.e. &, > 0), the

choice ug, ug > 0 selects € = 1.

In order to express the metric in the coordinates {ve,v2} we need to compute the func-
tions ww, w + @ and i(w — @) in terms of these variables. For notational simplicity we

introduce the auxiliary quantities
b1 :=v1cosf + vy sinb, be 1= vg cosf — vy sin b. (3.56)

From (3.53) with (y = 0, a straightforward computation that uses basic trigonometry

yields

Q (cosh (v/Qb2) + cos (v/Qbr))

W= (cosh (v/Qbs) — cos (v/Qb1))’
WD — V@ sin 0 sinh (v/Qbs) — /Q cos O sin (v/Qbr)
cosh (v/Qbz) — cos (vVQb) ;
i(w—w)=— V@Q cos O sinh (v/Qbs) + /Qsinfsin (vQbr) |

cosh (v/Qbs) — cos (v/Qby)

uo

u2

u3
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Since dw = ﬁ—‘gdg‘ = 2(w? + %e_%e)d( , determining the line-element dwdw requires

expressing |w? + Q/4e7%%|? in terms of {v1,v2}. The result is obtained by a direct

computation,

(+37) (#+82) - v

Let us introduce the functions

fy(v1,v9) (cosh (v/Qbz) + cos(1/Qby) )
f-(vi,v9) = é <cosh(\/@b2) — cos(\/ébl)) ,

fa(vi,v9) := \/16 (sin@sinh(\/ébg) - cos&sin(\/abl)) ) (3.57)
fa(vy,vg) := T (cos&smh fbg + sin # sin fbl )

so that we may express

_ I+ _ I . I3
W = —, wtw= -, 1(w—w)=—.
f- f- ( ) f-
All these function admit smooth limits at @ — 0, with corresponding expressions
Frlonu) = 5
+(V1,02) = 2
fa(vi,v2) =
f3(va,v2) =
f-(v1,v2) = (Ul +v3) .

For Q # 0, the functions { f4, f—, fa, f3} are all periodic in the variable by with periodicity
27/4/Q. This corresponds to the fact that the (-plane is a covering of the w-plane, with
the identification defined by the translation ;.

Thus, in the adapted coordinates {vi,vs} where ¢ = 8,, and &+ = 0,,, the metric
go := 4dwdw takes the form

Q2
(cosh (\/652) — cos (\/le))

4 _
9o = fﬁdCdC = 5 (dv% + dv%) .

Hence, the metric g, becomes

1 2 2
Gu = dvy + dv
((uly — ) fr + (uly +uh) fo + uly fo + uh f3)? (dvr 2)

1
= Fior o) (dvi + dv3) . (3.58)

We may now summarize the results obtained so far concerning GCKV.
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Teorema 3.23. Let Ey be the Euclidean plane and {z,y} be Cartesian coordinates. Let
€ be a GCKV in this space and define the complex constants {uo, 1, 2} by means of the
expression of & given by (3.36) in the complex coordinates z = L(z —iy), z = $(z — iy).

Define

a= %(5M2—WH1), B = %5M1—’W07
where v and § are any pair of complex constants satisfying
%(52@ — Y61 + ¥ o = 1.
Then & takes its canonical form (cf. Proposition 3.18)
&= (o +w?) Ou+ (o +2) 0, gty = 2puoz — 11,

in the coordinate system {w,w} defined by w = (az+ B)/(yz+0). Any other coordinate

system {w', @'} where & is in canonical form is related to {w,w} by (cf. Corollary 3.19)

5w — ~'1!
W = 7 Ho

5/2 ! 12 = 1.
’)/,(AJ"—(S/ ’ +M07

In addition, the real coordinates {v1,va} defined by ¢ := v1 + ivy together with (3.53)
and g = Ofuy — Ty = Qe 2 are adapted to & and £+ = iy (cf- Lemma 3.16),
namely & = 0,, and &+ = 9,,. Moreover, the class of metrics (3.55) is written in adapted

coordinates as (3.58).

We mentioned above that the freedom in the coordinate change that brings £ into its
canonical form can be translated into the freedom of a constant shift in the coordinates
{v1,v9}. Given {#1, 0} let b and by by defined exactly by the same expression as (3.56)
but with {vy,va} replaced by {01, 92}. Similarly, we introduce four functions { fo (01, 72),
f—(01,72), fo(D1,92), f3(¥1,2)} by the same definition as (3.57), with {b1, by} replaced

by {b1,b2}. Let us now consider the coordinate change

{ v] = U1 — cos 0f1 + sin 045 (3.59)

Vg = 172 — sin 961 — COS 962

where ¢1 and /5 are constants. Then b; = 51 — {1 and by = 132 — {5 and we may relate
the functions {f} written in terms of {1, @2} with the functions {f}. The result is
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2, 1(Coh + Co) 9 (Coh — Co) —¥Qgi Qg
2f _ &(Coh — Co) 1(Coh + Co) %Si %Sih
fo % (cos0Si — sin 6Sih) — @ (cos 0Si + sin@Sih) cosf@Co —sinfdCoh
f3 I —L_(cos 6Sih + sin 6Si VY@ (cos 0Sih — sin 6Si sinfCo  cosHCoh
V1,02 VaQ 4
1 0 0 0 2f. 2f
1 2f 2f_
0 0 0 ol cwene | -, (3.60)
0 0 cosf sinf fi f
0 0 —sinf cosf fg fg

where for notational simplicity we have introduced Co = cos(y/Qf1), Coh = cosh(v/Qf3), Si =
sin(y/Qf1), Sih = sinh(y/Q¥2). If we compare W ({1, ¢3) and T ()2, A3, €) we see that the

matrices are identical after setting

Ay = \/1@ sin(v/Qf1), 3= \}@sinh(\/@@), ey/1 — QA2 = cos(1/Qty). (3.61)

Of course this does not happen by chance. We have seen before that the shift in  corre-
sponds to the subgroup of Mobius transformation that leaves the canonical form of £ in-
variant. By the relationship between GCKV and skew-symmetric endomorphism in M3
described in Section 3.6 (se also subsection 2.2.1), this M&bius subgroup corresponds to
the set of orthochronous Lorentz transformations that leave the skew-symmetric endo-
morphism invariant, and this is precisely the group {7 (A2, A3,€)}. With the choice we
have made of the shift constants (3.59), the relationship between the parameters {¢1, {2}
and {Ag, A3} take the remarkably simple form given by (3.61). Note that the map
(1,02) — (A2, A3,€) is again a covering. If we let ¢y be periodic with periodicity %,
the map is a bijection. Observe that, to make the comparison work, we have inserted a
factor 2 in front of fi in the column vector (3.60). The reason is easy to understand.
The constants {u), u}, u5, us} in the conformal factor Q in the metric gu define a Lorentz
covector of length —uf? +u} 2 +uh? +uf? = —(uf +u)) (uh — uf) +ub? +ub?. This means
that, viewed as vectors in a Lorentz space, the basis { f, f—, fo, f3} is semi-null, but with
scalar product (fi, f-) = % However, the transformation law 7 (A2, A3, €) was written
in a semi-null basis {/, k, ea, e3} with normalization (¢, k) = —2, which is precisely the
normalization of the basis {2fy,2f_, fa, f3}.

Having obtained the transformation law for {fy, f_, f2, f3} it follows immediately that
under the coordinate transformation (3.59), the metric g, becomes
1 - -
Gu = - - - — (dv% + dv%)
((ﬂo — ) f+ + (o + W) f- +d2fi + ﬂsfz)




96

where the constants {ug, U1, Uz, U3} are given by

! (o — ) b (uy )

1/~ ~ 1. /

5 (uo +uy 5 (uy +u

2 ( g ) — G(W(El,fg))T 2 ( 0 , 1)
?13 ué

(the reason for the sign € is the same as discussed before).

3.9 Applications

3.9.1 Killing vectors of g,

Our aim is to determine under which conditions € is a Killing vector of the metric g,,. We
will address the question by analyzing the situation in the adapted coordinates. Since
& = 0y,, € will be a Killing vector of g, if and only if the function Q satisfies 81)1@ =0.
It is straightforward to check that

Durfi = (cos(26) 1, + sin(26) fs).

61)1 f— = _f27
Ouuts = 2 + D eos(20)].

Oy, f3 = %sin(%)f_,

which imply

0y, Q= — 2ubfy + % (cos(20)uy + sin(260)us) f—

+ (g cos(20)u_ — 2u’+> fo+ %sin(?ﬁ)uLfg,

where we have set u/, := %(ug +u}). The functions {f4, f—, f2, f3} are linearly indepen-
dent, so this derivative will vanish if and only if each coefficient vanishes. If @) sin(260) # 0,
it is immediate that the only solution is u/, = u’ = u) = u§ = 0, which is not possible
for a metric g,. Thus, a necessary condition for £ to be a Killing vector of (any) g, is
that the invariant (see (3.52)) oy,) — ity be real (i.e. 7y,; = 0). When Q # 0, the
condition sin(260) = 0 is 6 € {0, T} (recall that 6 € [0,7) by construction). To cover all
cases at once we set cos) = ¢ and sin ) = 1 — ¢, with €2 = é. Then cos(26) = 2¢ — 1 (this

choice is also valid when @) = 0 because 6 can be fixed to any value). Then

0, =0 <= (u_,u,uyul) =35 (1,Q(2€—1),0,0> +59(0,0,0,1), s1,82 € R.
4 ———

w2

w1
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The Lorentzian norm of this vector is —4u/,u’ + uh? 4+ uj? = —(2¢ — 1)Qs? + s3. Under
the constant shift given by #1, {5, the two-dimensional vector space spanned by w; and

wo remains invariant, and the vector sjwy + sqws transforms to S1ws + Sows with

52

> :€< écosh(v/Qlz) + cos(vVQU)(1 =€) - (sinh(vQla)é +sin(vQl1)(1 - €)) ) ( $1
VQ (sinh(v/Qls)é — sin(y/Ql)(1 — €)) ¢ cosh(v/Ql2) + cos(v/Ql1)(1 — &)

This transformation leaves the norm —(2¢é —1)Qs? + s2 invariant (as it must) and defines
a group which is one-dimensional when @ # 0 and two-dimensional when @ = 0. Thus,
when transforming the vector u into the original coordinate system {z,z} we may ignore
the action of the invariance group that leaves the canonical form of £ invariant provided
we let u take all non-zero values in the vector space span{wi, w2} . We may summarize

the result in the following theorem.

Teorema 3.24. Given a non-identically zero GCKV & in two-dimensional Fuclidean
space and let {u} = {po, p1, p2} be the set of parameters such that & = &g,y in the
coordinate system {z,Z}. Let U C R*\ {0} be defined by the property that for all u € U,
¢ is a Killing vector of the metric g, (defined in (3.55)). Then

o If 2uopa — 2 € R then U = .

o If 2ugus — p2 € R, let 8,7 be any pair of complex numbers satisfying
Lo 2
55 pro — Yop1 + vy po =1

and set o = %((5#2 —yp1) and B = %5;” —vuo. Then u € U if and only if

n s1 (3(2uopz — p3) + 1)
w | gayr | 5 G0k = i) — 1)
u9 0
us 52

where (s1,52) € R?\ {0}, A is the matriz (3.41) and O(A) was defined in (3.44).

Moreover, such g, has constant curvature k, given by

Ky = 57(2u0p2 — 1) — 85

Proof. We only need to check that w; = (1, %(2#0,&2 — 12),0,0), This is an immediate
consequence of the definitions (3.52) and (3.49), which in the case cosf = € and sinf =

1 — ¢ imply

Q (2¢ = 1) = 2uopn — 1.



98

O]

One may wonder why this problem has no been addressed in the original coordinate
system {z,Z}. The Lie derivative of a metric gy := 4¥~2dzdz along uy (given by
(3.36)) is

Leg,y90 = (_25@}(‘1') + W (1 + 1+ p2z + W)) gu.
Thus g,y is a Killing vector of g, if and only if
—260,0 () + Qu (1 + i1 + p2z + f2z) = 0.

The computation gives a polynomial in {z,Z} of degree two. Equating each coefficient

to zero, one finds that the conditions that need to be satisfied can be written in the form

0 —v —az + %9” —ay + %y —up 0
by b
—v 0 —a; — 5 —ay — o5 U1 _ 0 (3.62)
—ag + %ﬂ” az + %’ 0 —w U2 0
—ay + %y ay + %y w 0 ug 0

where we have expressed {u} in terms of its real and imaginary parts by means of (3.37).
Recalling the relationship between GCKV ¢ and skew-symmetric endomorphisms F¢ we
conclude that &g,y is a Killing vector of g, if and only if the non-zero Lorentz vector
(—up,u1,u2,us) lies in the kernel of F¢ (observe that this vector is obtained from the
covector u by raising indices with the Minkowski metric). Being skew-symmetric and
not identically zero, F¢ can only have rank two or four, so in order to admit a non-
trivial kernel, the rank must be two. This corresponds to the condition 7y, = 0 <=
Im(2pop2 — p2) = 0. So, the kernel is two-dimensional, which recovers the statement in
Theorem 3.24 that the set U U{0} is a two-dimensional vector space. Thus, the problem
becomes geometrically very neat in the original coordinate system. However, in Theorem
3.24 we have been able to determine explicitly the vector subspace U U{0} (equivalently
the kernel of Fg, after index raising) in a way that covers all cases at once. It is not
so clear how to achieve the same by a direct attempt of solving (3.62) in such a way
that the solution covers all possible values of {b,,by,v,w,a;,a,} under the restriction

baay — byag + vw = 0 (namely Im(2p0p2 — p15) = 0).

The issue addressed in Theorem 3.24 is to determine for which metrics g, a given GCKV
is Killing. A complementary problem is to fix g, and determine all GCKV which are
Killings of g,. This problem may be approached in the language of skew-symmetric
endomorphisms. A skew-symmetric endomorphism F in M3 of rank two is necessarily
of the form F' = g1 ® g2 — g2 ® g1 where ¢; and g9 are linearly independent Lorentz
vectors and recall that boldface denote the metrically related one-form. A vector u lies

in the kernel of F' if and only if it is orthogonal to q; and g2. Thus, the set of Killing
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vectors of g, is obtained from all skew-symmetric endomorphisms
Fo={F=q®@—-q@eq; span{q,q¢}=u"}.

where ut stands for the set of vectors in the kernel of the covector (ug,ur,us,uz). We
do not attempt to find an explicitly parametrization of all Killing vectors of g, that
covers at once all possible choices of u (this problem does not appear to be simple either

in terms of endomorphisms, or by using canonical forms of §).

3.9.2 Transverse and traceless and Lie constant tensors on E?

As discussed in Chapter 2, the transverse and traceless symmetric 2-covariant tensors,
namely, tensors D,3 = Dg, satisfying (indices are raised with a metric g and V is the

corresponding Levi-Civita connection)
VoD =0  (transverse), D%, =0 (traceless)

play a prominent role in General Relativity, in several circumstances. For example, they
are fundamental for the construction of initial data in spacelike slices with prescribed
regularity at spacelike infinity [37] or black hole initial data [16]. Of particular interest
for us, is the free data at null infinity for A-vacuum spacetimes with positive cosmological
constant (cf. Section 2.4 and references therein). In this setup, an interesting subclass
that arises when the spacetime admits Killing vectors is the subclass of T'T tensors which
satisfy the KID equation [116] (cf. Theorem 2.35). In dimension n, this equation is (cf.
Section 5.2)

—92 .
,CgDaﬁ + nT(dIng)Dag =0

where ¢ is a conformal Killing vector of g and L¢, divy{ stand respectively for the Lie
derivative along & and the divergence of ¢ with respect to g. In dimension n = 2 the
general solution of (local) TT tensors satisfying the KID equation can be explicitly
solved. Although this dimension is not particularly interesting from a physical point
of view, there are several motivations for presenting the result. Firstly, dimensional
reduction is a useful tool in many geometric problems, so it is not unlikely that the case
of dimension two may find applications in higher dimensions. Also, the n = 2 case may
serve as a toy model to address the (much more difficult) problem in higher dimensions.
In addition, the solution we find turns out to admit an interesting generalization in
arbitrary dimension (cf. Section 4.7). And lastly, it is remarkable, that the problem is

so simple in dimension n = 2 that its general solution can be explicitly given.

A key property of the TT conditions and of the KID equations is their conformal co-
variance (cf. Lemma 2.1). Also, if D satisfies the KID equation for g, then Q?~"D

also satisfies the KID equation for 22g. In dimension n = 2 one actually has conformal



100

invariance. Since all two-dimensional metrics are locally conformal to the flat metric,
and we are interested in solving the (more general) local problem, we may assume that
g = 4dzdz. As already mentioned, a vector field £ is conformal of this metric if and only
if ¢ = f(2)0. + f(2)0s. We expand D = D..dz? + Dzdz? + 2D .zdzdz. The condition of
being traceless is D,z = 0 and D real requires Dzz = D,,, With these restrictions, the

transverse equations take the following explicit and simple form
azD% = 07 &zDzz = O,
so D, is a holomorphic function of z. Imposing transverse and traceless as well as the

reality condition, the KID equations read

D.. df
2D,.— =0,
dz + dz

f

which integrates to D,, = %,q € C. Writing ¢ = q1 + iqe, with real q1, g2, we con-
clude that the most general (real) TT tensor that satisfies the KID equation is a linear

combination of (we add the factor 4 for convenience)

1(1 1 i1 1
Dy =~ | —d2* + —dz? Dy = — | —dz* — —dz* .
1 4<f2dz +f2dz), 2 4<f2 z f2dz

These expressions are valid in the coordinate system {z,Z}. We are interested in co-
variant expressions that are valid in any coordinate system, and are explicitly invariant

under conformal transformations. To achieve this, we introduce the vector field
¢hi=i(f0, - fos). (3.63)

This is everywhere orthogonal to £ and has the same norm at every point. If the zeros
of ¢ do not separate the manifold, these two properties define £+ in terms of ¢ uniquely
except for a global sign. If the zeroes of ¢ separate the manifold, ¢ is still uniquely
defined (up to a sign) if one adds the condition that ¢+ is a conformal Killing vector
of g (which (3.63) clearly is). Thus, we may speak of £~ unambiguously (up to global
sign), once & has been fixed. Next we note that, in the {z,Z} coordinate system and

with respect to the metric g := 4dzdz we have

¢ = 2fdz + 2fdz, €12, = gu(£,€) = AfF,
&+ =2ifdz — 2ifdz, &2, = 4fF,

and then we may write

_ L _ Lep
Dy = g (606 0 ).

1
Dy = g (60 € w6t o).
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These expressions are obviously coordinate independent and also conformally invariant.
Thus, D1 and D take this form also for the original metric g. Notice that at the fixed
points of £, i.e. those points where £ vanishes, the general solution D = ¢y D1 + co D5 for
c1,co € R diverges unless ¢; = ¢ = 0. This follows from the fact that the square norm

of D is
DP

1
D =— (24,
af 2|§‘3E( 1 2)

which is regular at the fixed points of £ only if ¢; = ¢o = 0. Summarizing, we have

proved the following theorem.

Teorema 3.25. Let (M, g) be a two-dimensional Riemannian manifold and & a confor-
mal Killing vector of g. Let D be a (real) transverse and traceless symmetric, 2-covariant
tensor that satisfies the KID equation with respect to £&. Then D is a linear combination
(with constants) of

L _ L2
Df T ’§|3 <£®£ 2’€|gg>7
1

—— - 1 1
Des = yapep (evet+etwe),

where £+ is defined as described above and & = g(&,-), €+ = g(&+,-). Moreover, the

only solution reqular at any of the fized points of £ is the zero tensor.

We note that Theorem 3.25 has found interesting applications for gravitational radiation

at null infinity in [51].



Chapter 4

Skew-symmetric endomorphisms
of M "1& CKVFs of S"

In this Chapter we deal with skew-symmetric endomorphisms of Lorentzian vector spaces
of arbitrary dimensions, which we identify with M""*! and its relation with CKVFs of
the n-sphere S™. The contents are essentially a generalization to arbitrary dimension of

many of the results in Chapter 3. They have been published in [95].

In Section 4.1 we rederive a known classification result (e.g. [39]) for skew-symmetric
endomorphisms of d-dimensional Lorentzian vector spaces SkewEnd(M'4~1). Based on
this and with the results of Section 3.2, we give a canonical form in Section 4.2 for
each element in SkewEnd(M"¢~!) depending on a minimal number of parameters. In
Section 4.4, we show that this canonical form is shared by every pair of elements in
SkewEnd(M"4~1) differing by an orthochronous Lorentz transformation, i.e. it defines
the orbits of the orthochronous Lorentz group O"(1,d — 1) under the adjoint action on
its algebra. Using this form, we obtain a useful set of limits in the quotient topology of
SkewEnd(M"“4~1)/O%(1,d.1), which will find application in Chapter 6 for the analysis

of asymptotic intial data.

In the subsequent Sections, we apply the above results to the set of CKVFs of S (with
n > 2). From the relations between SkewEnd(M""*1) and the CKVFs of the sphere S"
given in subsection 2.2.1, a canonical form for CKVFs follows immediately in Section
4.5. This form is used in Section 4.6 to find adapted coordinates to an arbitrary CKVF
that covers all cases at the same time. We do the calculation for even n and obtain
the case of odd n as a consequence. With these coordinates at hand, in Section 4.7
we obtain a wide class of TT-tensors for n = 3 solving the KID equations for two
commuting CKVFs, one of which is axial. The commuting CKVF's are obtained taking
advantage of the structure of the canonical form obtained in Section 4.5. These tensors
provide Cauchy data at conformally flat null infinity .#. Specifically, this class of data

is characterized for generating A > 0-vacuum spacetimes with two-symmetries, one of
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which axial, admitting a conformally flat .#. The class of data is infinite dimensional,
depending on two arbitrary functions of one variable as well as a number of constants.
Moreover, it contains the data for the Kerr-de Sitter spacetime, which we explicitly

identify within.

4.1 Classification of skew-symmetric endomorphisms

Let V be a d dimensional Lorentzian vector space. The first step towards the definition
of canonical form of skew-symmetric endomorphisms of V' in any dimension is the clas-
sification result proven in this Section. The strategy is the decomposition of an arbitray
element F' € SkewEnd (V') into orthogonal sum of spacelike and timelike eigenplanes (cf.
Definition 3.5). The first question we address here is under which conditions such a

plane exists (cf. Proposition 4.5). We start with some preliminary results.

Lemma 4.1. Let V be a Lorentzian vector space and F € SkewEnd(V'). Then there
exist two vectors w,v € V, with w # 0, such that one of the three following exclusive
possibilities hold

(i) w is a null eigenvector of F'.

(i) w is a non-null eigenvector (with zero eigenvalue).

(iii) w =: u,v are orthogonal, spacelike and with the same norm, and define an eigen-

plane of F with non-zero eigenvalue, i.e.
F(u)=w,  F(v)=—pu, peR\{0}.
If, instead, V is Riemannian, only cases (ii) and (iii) can arise.

Proof. From the Jordan block decomposition theorem we know that there is at least
one, possibly complex, eigenvalue s; + sy with eigenvector w + v, that is, F'(w +iv) =

(s1 + is2)(w + iv), or equivalently:

F(w) = sjw — s, (4.1)

F(v) = saw + syv. (4.2)

This system is invariant under the interchange (w,v) — (—v,w), so without loss of

generality we may assume w # 0. The respective scalar products of (4.1) and (4.2) with

w,w) —(w,u) (1) (0
(<w> (w,0) ) () ) (0) -9

w, v yield

S1 <Uv U) + s2 <w7 U> =0

s1(w,w) — so (w,v) =0 }
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Observe that if s1 + iso # 0 the determinant of the matrix must vanish. i.e.

(w,v) ((w,w) + (v,v)) = 0.

Hence, we can distinguish the following possibilities:

(a)

(b)

s1 = 83 = 0. Then w is an eigenvector of F' with vanishing eigenvalue so we fall into

cases (i) or (ii).
s1 +isg # 0. From (w,v) ((w,w) + (v,v)) = 0 we distinguish two cases:

(b.1) (w,v) =0. If s; # 0 then (4.3) forces w and v to be both null and, being also
orthogonal to each other, there is a € R such that v = aw and we fall into case (7).
So, we can assume s; = 0 (and then s # 0). Let p := —s9 and w := w, thus (i)

follows from equations (4.1), (4.2) and Lemma 3.3.

(b.2) (w,v) # 0. Then (w,w) = —(v,v) and the matrix problem (4.3) reduces to
s1 (w,w) — sg (w,v) =0.
In addition, (4.1) and (4.2) imply
(F(w),v) = 51 (w,0) — 52 (0,0) = 51 {w, ) + 52 (w,w) = (F(v), ).

But skew-symmetry requires (F(w),v) = — (F(v),w), so (F(v),w) = 0 and we con-

clude
s1 (w,v) + s2 (w,w) = 0.

Combining with (4.1) yields

(w,w) —(w,v) sty (0
(w,v) (w,w) S9 0/
The determinant of this matrix is non-zero which yields a contradiction with s1+iss #

0. So this case is empty.

To conclude the proof, we must consider the case when the vector space V is Rie-
mannian. The proof is identical except from the fact that all cases involving null

vectors are imposible from the start.

O]

Observacin 4.2. One may wonder why the lemma includes the possibility of having

a spacelike eigenplane (case (iii)), but not a timelike eigenplane. The reason is that

invariant timelike planes, which are indeed possible, fall into case (i) by Lemma 3.4,

because e = v are null eigenvectors.
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In the case of Riemmanian signature, Lemma 4.1 can be reduced to the following single

statement:

Corolario 4.3. Let V be Riemannian of dimension d and F' € SkewEnd(V). Ifd =1

then ' =0 and if d > 2 then there exist two orthogonal and unit vectors u,v satisfying

F(u) = po, F(v) = —pu, weR (4.4)

Proof. The case d = 1 is trivial, so let us assume d > 2. By the last statement of
Lemma 4.1 either there exists an eigenvector w with zero eigenvalue or the pair {u, v}
claimed in the corollary exists. In the former case, we consider the vector subspace
w™. Its dimension is at least one and F restricts to this space so again either the pair
{u,v} exists or there is e € w' satisfying F(e) = 0. But then {w, e} are orthogonal and
non-zero. Normalizing we find a pair {u,v} that satisfies (4.4) with pu =0, O

Lemma 4.1 lists a set of cases, one of which must always occur. However, we now show
that, if the dimension is sufficiently high, case (i) of that lemma implies one of the other

two:

Lemma 4.4. Let F' € SkewEnd(V'), with V' Lorentzian of dimension at least four. If
F has a null eigenvector, then it also has either a spacelike eigenvector or a spacelike

etgenplane.

Proof. Let k € V be a null eigenvector of F. The space A := k- C V is a null hyperplane
and F restricts to A. On this space we define the standard equivalence relation vy ~ vq
iff vyg —v; = ak, a € R. The quotient A/ ~ (which has dimension at least two) inherits
a positive definite metric g and F' also descends to the quotient. More precisely, if we
denote the equivalence class of any v € A by U, then for any v € A/ ~ and any v € T the
expression F(T) = F(v) is well-defined (i.e. independent of the choice of representative

v) and hence defines an endomorphism F' of A/ ~ which, moreover, satisfies
(F(v1),72)g = (o1, F(02))g-

In other words F is a skew-symmetric endomorphism in the Riemannian vector space
A/ ~. By Corollary 4.3 (here we use that the dimension of A/ ~ is at least two) there

exists a pair of orthogonal and g-unit vectors {e7, ez} satisfying

F(er) = aes, F(e3) = —ae1, acR.

Select representatives e; € €1 and eg € €3. In terms of F', the condition (4.1) and the

fact that k is eigenvector require the existence of constants o, a, Ay and Ao such that

F(k) = ok, F(e1) = aea + Ak, F(e2) = —aey + A2k.
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Whenever a? 4+ 02 # 0 the vectors

1
U:=e; — 72(11/\24-0)\1)19, vi= @—km(a)\l —oX)k

a’?+o a

satisfy F'(u) = av and F(v) = —au. Since u and v are spacelike, unit and orthogonal to
each other the claim of the proposition follows (with 1 = a). If 0 = a = 0, then either
A1 = A2 = 0 and then {eq,es} are directly the vectors {u, v} claimed in the proposition
(with © = 0), or at least one of the As (say A2) is not zero. Then e := e; — %eg is a
spacelike eigenvector of F'. O

Now we have all the ingredients to show one of the main results of this section, that
will eventually allow us to classify skew-symmetric endomorphisms of Lorentzian vector

spaces.

Proposicin 4.5. Let V' be a Lorentzian vector space of dimension at least five and

F € SkewEnd(V'). Then, there exists a spacelike eigenplane.

Proof. We examine each one of the three possibilities described in Lemma 4.1. Case

(7i7) yields the result trivially, so we can assume that F' has an eigenvector w.

If we are in case (i7), the vector w is either spacelike or timelike. If it is timelike we
consider the Riemannian space w' where F restricts. We may apply Corollary 4.3 (note
that w* has dimension at least four) and conclude that the vectors {u,v} exist. So it
remains to consider the case when z is spacelike and F' admits no timelike eigenvectors.
We restrict to w' which is Lorentzian and of dimension at least four. Applying again
Lemma 4.1, either there exists a spacelike eigenplane, or a second eigenvector y € w=,
which can only be spacelike or null. If y is spacelike, {u := w, v := y} span a spacelike
eigenplane with p = 0. If y is null, we may apply Lemma 4.4 to F |, to conclude that
either a spacelike eigenplane exists, or there is a spacelike eigenvector e € w™, so the

pair {u := e, v := w} satisfies (3.2) with g = 0. This concludes the proof of case (7).

In case (i), i.e. when there is a null eigenvector w we can apply Lemma 4.4 and conclude
that either {u,v} exist, or there is a spacelike eigenvector e € V', in which case we are

into case (i7), already solved. This completes the proof.

O

We have now all the necessary ingredients to give a complete classification of skew-
symmetric endomorphisms of Lorentzian vector spaces. In the next result, we identify
Lorentzian (sub)spaces of d-dimension with the Minkowski space M4~1. Also, for any

real number = € R, [z] € Z denotes its integer part.

Teorema 4.6 (Classification of skew-symmetric endomorphisms in Lorentzian spaces).
Let F € SkewEnd(V) with V' Lorentzian of dimension d > 2. Then V has a set of
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[951] — 1 mutually orthogonal spacelike eigenplanes {IL;}, i =1,--- ,[%51] — 1, so that V

admits one of the following decompositions into direct sum of F-invariant subspaces:

a) If d even V=M"3 @Ilas @ --- ® Il and either F |yp.3= 0 or otherwise one of the
2

following cases holds:

a.1) F |yps has a spacelike eigenvector e orthogonal to a null eigenvector with van-

ishing eigenvalue and then M3 = M'2 @ span{e}.

a.2) F |yns has a spacelike eigenplane Ma—2> (as well as a timelike eigenplane M1
2
orthogonal to Ma—2 ) and then M3 = M @ Ty .
2 2

b) If d odd V =M"2 @ Ilas @ --- ®II; and either F |yp2= 0 or otherwise one of the
2

following cases holds:

b.1) F |ypn2 has a spacelike eigenvector e and then M2 = MY @ span{e}.
b.2) F |yn2 timelike eigenvector t and then M3 = span{t} ® 41 .
2

b.3) F |yp2 has a null eigenvector with vanishing eigenvalue.

Proof. The proof is a simple combination of the previous results. First, if d > 5, we can
apply Proposition 4.5 to obtain the first spacelike eigenplane I1y. Then 1'[1l is Lorentzian
of dimension d — 2. If d — 2 > 5, we can apply again Proposition 4.5 to obtain a second

eigenplane IIs. Continuing with this process, depending on d, two things can happen:

a) If d even, we get % (: [%] - 1) spacelike eigenplanes, until we eventually reach
a Lorentzian vector subspace of dimension four, M3, where Proposition 4.5 cannot
be applied. In M3, either F |yn,3= 0 or otherwise cases a.1) and a.2) follow from

Remark 3.11, cases 2 and 1 respectively.

b) If d odd, we get d%?’ (: [%] - 1) spacelike eigenplanes, until we reach a Lorentzian
vector subspace of dimension three, M2, In M2, either F' |yp2= 0 or by Remark
3.12 there exists a unique eigenvector o with vanishing eigenvalue. If ¢ null, case b.3)
follows. If it is spacelike e := ¢, F' restricts to et = M ¢ M"2 and b.1) follows. If ¢
timelike, the same argument applies with ¢ := ¢ and ¢t € M"? defines the remaining

spacelike plane ITa-1.
2

4.2 Canonical form for skew-symmetric endomorphisms

Our aim here is to extend the results in Proposition 3.8 and Corollary 3.9 to arbitrary
dimensions. To do that, we will employ the classification Theorem 4.6 derived in Sec-

tion 4.1, from which it immediately follows a decomposition of any F' € SkewEnd(V)
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into direct sum of skew-symmetric endomorphisms of the subspaces that F' restricts to,

namely
(4541
F=Flyus @ Fly,  ifdeven, (4.5)
=1
[454]-1
F=Flp. @ Fly, ifdodd, (4.6)
=1

where II; are spacelike eigenplanes. In what follows, we will denote

pi=[(d—1)/2] - 1.

Notice that the blocks F|yus and Flyu2. may also admit different subdecompositions
depending on the case, but our purpose is to remain as unified as possible, so we leave
this part unaltered. It will be convenient for the remainder to give a name to the
decompositions (4.5) and (4.6):

Definicin 4.7. Let F' € SkewEnd(V') non-zero for V' Lorentzian d-dimensional. Then, a
decomposition of the form (4.5) or (4.6) is called block form of F. A basis that realizes

a block form is called block form basis.

Writing F' in block form form allows us to work with F' as a sum of skew-symmetric
endomorphisms of riemmanian two-planes plus one skew-symmetric endomorphism of
a three or four dimensional Lorentzian vector space. For the latter we will employ the
canonical forms in Proposition 3.8 and Corollary 3.9, and for the former, it is immediate

that in every (suitably oriented) orthonormal basis of II;

F|g,= (O _“"), 0<p€R. (4.7)
pi 0
Having defined a canonical form for four, three and two dimensional endomorphisms (i.e.
matrices (3.6), (3.8) and (4.7) respectively), the idea is to extend this result to arbitrary
dimensions finding a systematic way to construct a block form (4.5), (4.6) such that
each of the blocks are in canonical form. This is not immediate, firstly, because the
block form does not require the blocks F|yus or Flyu2 to be non-zero and secondly,
because, unlike in the four and three dimensional cases, the parameters o, 7 of the four
and three dimensional blocks cannot be invariantly defined as, for example, traces of
or determinant of F'. The first of these concerns is easily solved by suitably choosing a

block form:

Lemma 4.8. Let F' € SkewEnd (V') be non-zero for V- Lorentzian of dimension d. Then
there exists a block form (4.5) and (4.6) such that F|yns and F|yp2 are non-zero and

they either contain no spacelike eigenplanes or they contain one with largest eigenvalue
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(among all spacelike eigenplanes of F'). In addition, the rest of spacelike eigenplanes 11;
are sorted by decreasing value of M?; pe. pt > pd > > MZ.

Proof. 1f ker F' is degenerate, it must correspond with cases a.1) (d even) or b.3) (d odd)
of Theorem 4.6. Hence, in any block form the blocks F|y;1.s and F'|yu 2 are non-zero and
they do not contain any spacelike eigenplane, as claimed in the lemma. So let us assume
that ker F' is non-degenerate or zero, which discards cases a.1) and b.3) of Theorem 4.6.

In all possible cases, any block form admits the following splitting in

F’Mlﬁ = F|r[t @ F|HS ) F|M1,2 = F| } S F|UL ) (4-8)

span{v

with I1, IT; spacelike and timelike eigenplanes with (possibly zero) respective eigenvalues
s and ju, v a timelike or spacelike eigenvector (in ker F') and v+ € M2 an eigenplane
with opposite causal character than v. If v is spacelike, then either F| . is non-zero,
in which case F|y,2 # 0 and clearly contains no spacelike eigenplanes (which is one of
the possibilities in the lemma), or F|,. = 0 and then F|y;. = 0, so we can rearrange
the decomposition (4.8) using some timelike vector v’ € v instead of v, i.e. Flype =

F|span{v/}
vt € M2 is a spacelike eigenplane. Let II,, be a spacelike eigenplane of F' with largest

@ F|,.. Hence, in the case of d odd, we may assume that v is timelike and

eigenvalue p among Il (d even) or vt (d odd) and IIy, - - - ,II,. Then, switching Flp,
or Fly by Fly, we construct
Flypsi= Flg, ® Flg,,  Flpe= F|

span{v} ® F’HH :

The resulting matrix is still in block form and has non-zero blocks F' |y1.s, F |y
containing a spacelike eigenplane with largest eigenvalue, which is the other possibility
in the lemma. The last claim follows by simply rearranging the remaining spacelike

eigenplanes II; by decreasing order of ,u?. O

With a skew-symmetric endomorphism F' in the block form given in Lemma 4.8 we can
take each one of the blocks to its respective canonical form. Let us denote Fyr 1= Flyu.3
(if d even), Fyy := Flyp. (if d odd) and F),, := F|, when written in the canonical forms
(3.6), (3.8) and (4.7) respectively. Consequently

F=Fr@PF, (deven), F=FDF, (dodd), (4.9)

where, notice, each of the blocks is written in an orthonormal basis of the corresponding
subspace, which moreover is future directed if the subspace is Lorentzian, i.e. M3 or
M%2 (cf. Proposition 3.8 and Corollary 3.9). Hence, the form given in (4.9) corresponds

to a future directed, orthonormal basis of M 4—1,

Our aim now is to give an invariant definition of o, 7, u;. A possible way to do this is

through the eigenvalues of F2. One may wonder why not to use directly the eigenvalues
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of F'. One reason is that since we are interested in real Lorentzian vector spaces V
(although, for practical reasons, we may rely on the complexification V¢ for some proofs),
it is more consistent to give our canonical form in terms of real quantities, while the
eigenvalues of F' may be complex. In addition, the canonical form will require to sort

them in some way, for which using real numbers is better suited.

The characteristic polynomial of F' is known (e.g. [100]) to possess the following parity:
Pr(x) = (—1)d'PF(—:L‘). (4.10)
Thus, a simple calculation relates the characteristic polynomials of F' and F?

Pr2(z) = det(z Idg — F?) = det (v Idg — F) det (vz Idg + F)

4.11
= (-1)*Pr(VE)Pp(—Vz) = (PF(\/!E))2a Ay

V& being any of the square roots of x in C and Id, the d x d identity matrix. We can

extract some conclusions from (4.11):

Lemma 4.9. Let F' € SkewEnd(V') for V' Lorentzian of dimension d. Then the non-zero
eigenvalues of F? have even multiplicity mq and the zero eigenvalue has multilplicity mo
with the parity of d. In addition, F possesses p, (resp. exaclty one) spacelike (resp.
timelike) eigenplanes with eigenvalue p # 0 if and only if F? has a negative (resp.
positive) non-zero eigenvalue —u? (resp. p?) with multiplicity my = 2p, (resp. evactly
two).

Proof. Tt is an immediate consequence of equation (4.11) that non-zero eigenvalues of
F? must have even multiplicity m,. Moreover, since the sum of all multiplicites adds

up to the dimension d, the multiplicity of the zero mg has the parity of d.

Combining Lemma 3.3 and equation (4.11), F' has a spacelike eigenplane II with non-
zero eigenvalue p if and only if F? has a negative double! eigenvalue —p?. If d < 4,
there cannot be any other spacelike eigenplanes in IT', so applying the same argument
to Flg. € SkewEnd(II1), the multiplicity m, of —u? must be m, = 2. If d > 4 and

2 is an eigenvalue of (F|y.)? with multiplicity m, — 2, thus F has a

mg > 4, then —p
second spacelike eigenplane with eigenvalue  in II'. Repeating this argument, F2 has
a negative eigenvalue —pu? with multilplicity m, if and only if F has p, = m,/2 spacelike

eigenplanes with eigenvalue p.

Finally, by Lemma 3.4 and equation (4.11), F' has a timelike eigenplane II with non-
zero eigenvalue g if and only if F? has a positive double eigenvalue p?. Obviously, the
maximum number of timelike eigenplanes that F' can have is one. Thus, F|;. cannot
have timelike eigenplanes and hence (F|;.)? has no additional positive eigenvalues.

Consequently, the multiplicity of u? is exactly two.

We adopt the convention that a root with multiplicity m > 2 is also double
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O]

Taking into account Lemma 4.9, we will employ the eigenvalues of —F? rather than
those of F?, so we assign positive eigenvalues of F? with spacelike eigenplanes and
negative eigenvalues to timelike eigenplanes. This amounts to employ the roots of the

characteristic polynomial Pr2(—x).

We now discuss how to invariantly define the parameters o, 7, u; for d even and o, y;
for d odd. The result of the argument is formalized below in Definition 4.10. Recall
that the characteristic polynomial of a direct sum of two or more endomorphisms is the
product of their individual characteristic polynomials, in particular, the characteristic
polynomial of —F? equals to the product of the characteristic polynomials of —F2_ or
—F2 times those of each —Fii (cf. equation (4.9)). Let us define:

Ppz(—1)

1/2
. ) (d odd), (4.12)

Qpe(x) := (Ppa(—2))Y?  (deven),  Qpa(z):= (
Starting with d even, from formula (4.9) it is immediate that p? are double roots of
Ppa(—2?), which by Lemma 4.8 satisfy pu2 > --- > ,u]% > 0. On the other hand, let u; :=

(=0 + p)/2 and ips == i\/(0 + p)/2 with p := Vo2 + 72 > 0, that by Remark 3.11, are
roots of Pr,_(x), thus roots of Pr(z) . By equation (4.11), —u?, u? are double roots of
Prz2(—x). Theset {—puf, p2, 43, -, p2} are in total p+2 = [(d—1)/2]+1 = d/2 elements,
each of which is a double root of Pgz2(—x). In other words, {—u?,p?, pf, - ,,uf,} is
the set of all roots of the polynomial?> Qp2(x). If ker F is degenerate, then ker F,, is
degenerate and by Remark 3.11 it must happen p; = pus = 0. Hence p2 > p3 > - -,ug >
p2 = —pu? = 0. Otherwise, also by Remark 3.11, F,, contains a spacelike eigenplane
with eigenvalue pg (which by Lemma 4.8 is the largest) as well as a timelike eigenplane

with eigenvalue yi;. In this case p? > pu? > --‘uf, > 0> —pi.

We next discuss o, y; for d odd. Again, from (4.9) we have that 7 are double roots of
Pp2(—2?), which by Lemma 4.8 also satisfy p? > --- > M;% > 0. By Remark 3.12, \/o is a
root of Pr_(x), thus a root of Pr(z), so by formula (4.11), o is a double root of Pp2(—z).
Also, Pp2(—x) has at least one zero root and hence, Pr2(—z)/x is a polynomial with
d — 1 roots (counting multiplicity). Then, the set {0, /ﬁ, cee ,uf,} are all double roots
of Pp2(—x)/x, which are p+ 1 = [(d — 1)/2] = (d — 1)/2 elements. Therefore Qg2 as
defined in (4.12) is also a polynomial and {0, p3, ,,u%} is the set of all its roots. If
ker F' is timelike, then ker F}; is timelike, which happens if and only if ¢ > 0 (cf. Remark
3.12) and also F, has a spacelike eigenplane with eigenvalue \/m , that by Lemma 4.8
is the largest eigenvalue among spacelike eigenplanes. Thus o > u3 > --- > ,u;. In the

case ker F' not timelike, the inequalities become ,u% > > ,u% >0>o0.

2Qp2(z) is a polynomial because all the roots of Pp2(—z) are double.
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Summarizing, the paramaters o, 7, u; correspond to the set of all roots of Q2 sorted in
a certain order fully determined by the causal character of ker F'. This allows us to put

forward the following definition:

Definicin 4.10. Let Roots (Qp2) denote the set of roots of Qp2(x) repeated as many

times as their multiplicity. Then

a) If d odd, {o;puf,--- ,u]%} := Roots (Qp2) sorted by o > 2 > .- > ,u,}z, if ker F' is

timelike, where in this case necessarily ¢ > 0, and ,ulz) > (0 > o otherwise.

b) If d even, {—pui,p3; 113, -, pp} := Roots (Qp2) sorted by pi > --- > > > ui =
—p? = 0 if ker F is degenerate and pu? > p2 > ... > M;% > 0 > —p? otherwise,
where either p2 or pu? are non-zero. In addition, in any case, we also define o :=

13— i, = 2l

Observacin 4.11. In the d even case the parameters o, T are useful because they allow
one to give a unique unambiguous canonical form for every element in SkewEnd(V'),
which naturally recovers the canonical form for d odd when T = 0. However, observe
that the sets {o, 7,3, ,Mg} and {—p2, u2;p2, - - ,,u?,} are equivalent. It is useful to
keep both definitions in mind because, depending on the application, we may use one or

another.

In addition, we also summarize the results concerning the canonical form in the following

Theorem:

Teorema 4.12. Let F' € SkewEnd (V') non-zero, with V' Lorentzian of dimension d > 3
and p :=[(d—1)/2]—1. Then there exists an orthonormal, future oriented basis such that
F is given (4.9) where For := F |yns, Fy := F |yp2, Fy, = F |, are given by (3.6),
(3.8), (4.7) respectively and o, T, p; are given in Definition 4.10. In particular, Fy., F,
are non-zero and they either do not contain a spacelike eigenplane or they contain one
with mazimal eigenvalue (among all spacelike eigenplanes of F') and the eigenvalues p;

are sorted by u3 > pu3 > ---,u?,.

Definicin 4.13. For any F' € SkewEnd(V'), for V' Lorentzian d-dimensional, the form
of F' given in Theorem 4.12 is called canonical form and the basis realizing it is called

canonical basis.

The first and obvious reason why the canonical form is useful is that it allows one to
work with all elements F' € SkewEnd(V') at once. The fact that we can give a canonical
form for every element without splitting into cases is a great strenght, since we can
perform a general analysis just in terms of the parameters that define the canonical form.
Moreover, as we will show in Section 4.4, this form is the same for all the elements in the
orbit generated by the adjoint action of the orthochronous Lorentz group Ot (1,d — 1).

Thus, the canonical form is specially suited for problems with O (1,d — 1) invariance



113

(or covariance) which, as we have discussed in Chapter 2, is directly related to certain

conformally covariant problems in general relativity.

We finish this section with two corollaries that will be useful later. The first one is trivial

from the canonical form (4.9)

Corolario 4.14. The characteristic polynomial of F € SkewEnd(V') is

p
Pr(z) = (2 — pd)(2? + p2) H (2% + u?)  (d even),
i=1
, (4.13)
Pr(z) =22’ + o H:c +u?)  (d odd),
=1

where —2u? =0 — o2+ 12, 2% == 0 + Vo2 +72.

The second gives a formula for the rank of F'. We base our proof in the canonical form
(4.9) because it is straightforward. However, we remark that this corollary can also be

regarded as a consequence of Theorem 4.6.

Corolario 4.15. Let F € SkewEnd(V), with V' Lorentzian of dimension d and mg the

multiplicity of the zero eigenvalue. Then, only of the following exclusive cases hold:

a) ker F' is non-degenerate or zero if and only if rank F' = d — my.

b) ker F' is degenerate if and only if mg > 2 and rank F = d — mg + 2.

Proof. Consider F' in canonical form (4.9) and let £ € N be the number of parameters
u; that vanish. For d even we have dimker ' = 2k + dimker F,.. On the one hand,
ker F' degenerate implies ker F,; degenerate, which by Remark 3.11 happens if and only
if o = 7 = 0 and in addition dimker F,, = 2. Therefore dimker F' = 2k + 2 and by
(4.13), mo = 2k +4 (> 2). Thus rank F = d — dimker F = d — mg + 2. On the other
hand, ker F' non-degenerate if at most one of o or 7 vanish. If 7 # 0 (so that us # 0 and
e # 0), dimker F,,, = 0 and mg = 2k = dimker F'. Consequently rank F' = d — mg. If
7 =0 (and o # 0, so that exactly one of ps, p; vanish), by Remark 3.11 dim ker Fi,; = 2
and by (4.13) mg = 2k + 2. Hence dimker F' = 2k + 2 and rank F' = d — my.

For d odd, we have dimker F' = 2k + dim ker F,, = 2k + 1, because dimker F,, = 1 (cf.
Remark 3.12). ker F' is degenerate if and only if ker F,, is degenerate, which by Remark
3.12 occurs if and only if 0 = 0. Hence, by equation (4.13), mg = 2k + 3 (> 2) and
rank F = d — dimker F = d — mg + 2. For the ker F' non-degenerate case, ¢ # 0 and
also by (4.13) mg = 2k + 1 = dimker F'. Therefore rank F' = d — my.
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4.3 Simple endomorphisms

In this Section we derive some results which will be useful for the analysis of CKVFs

carried out in Section 4.5.

By simple skew-symmetric endomorphism we mean a G € SkewEnd(V) satisfying rank G =
2. As usual e = (e,-) is the one-form obtained by lowering index to a vector e € V.

Then, a simple skew-symmetric endomorphism can be always written as
G=e@Qu—-—v®e

for two linearly independent vectors e,v € V and its action on any vector w € V' is
G(w) = (v,w) e — (e, w) v.

Since the two-fom associated to a simple endomorphism is G = e A v, it follows from
elementary algebra that two simple skew-symmetric endomorphisms G =e®@v —v® e
and G’ = ¢ ® v/ — v’ ® €’ are proportional if and only if span{e,v} = span{e’,v'}. This

freedom in the pair {e,v} defining G' can be used to choose them orthogonal.

Lemma 4.16. Let G € SkewEnd(V') be simple. Then there exist two non-zero orthogo-

nal vectors e,v € V' such that G = e®@ v — v ® e with v spacelike.

Proof. By definition G = éRv—v®e for two linearly indepedent vectors é,v € V. If one
of them is non-null, we set @ := v and decompose V = span{v} @ v*. Thus é = av + e
with a € R and e € v' and G takes the form G = (av+e)@v—v®(av+e) = eRV—v®e,
as claimed. If € and © are both null, consider V = span{é} & (€)¢ (we use © because this
direct sum is not by orthogonal spaces) where (€)€ is a spacelike complement of span{é}.
Then we can write o = aé+v’, with a € R and v’ € é° non-null. Thus G = é®v' —v' ®e,
with v’ non-null and we fall into the previous case. Allin all, G = e ® v — v ® e with
e, v orthogonal. Consequently, either one of the vectors is spacelike or both are null and

proportional which would imply G = 0, against our hypothesis rank G = 2. ]

The decomposition G = e ® v — v ® e is not unique even with the restriction of v being
spacelike unit and orthogonal to e. One can easily show that the remaining freedom is
given by the transformation ¢’ = ae — b (e, e) v, v' = be + av with a,b € R restricted to
a® +b? (e,e) = 1. Nevertheless, the square norm (€/,€’) is invariant under this change,

so the following definition makes sense:

Definicin 4.17. Let G € SkewEnd(V) be simple, with G = e®@v —v®e, e,v € V
orthogonal with v spacelike unit. Then G is said to be spacelike, timelike or null if
the vector e is spacelike, timelike or null respectively. In the non-null case, G is called

spacelike (resp. timelike) unit whenever (e,e) = +1 (resp. (e,e) = —1).
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By Lemma 4.16, it is immediate that Definition 4.17 comprises any possible simple

endomorphism (up to a multiplicative factor).

We next obtain the necessary and sufficient conditions for a simple endomorphism G to
commute with a given F' € SkewEnd (V). We first make the simple observation that the
composition of a one-form e and a skew-symmetric endomorphism F' satisfies (simply

apply for sides to any w € V)
eoF'=—F(e),

where we denote F'(e) := (F(e),-). An immediate consequence is that for any pair of
vectors e,v € V and F' € SkewEnd (V') it holds

Fo(e®wv)=F(e)®v, (e®@v)oF =—-e® F(v). (4.14)

The following commutation result will be used later.

Lemma 4.18. Let F,G € SkewEnd(V) with G =e® v — v ® e simple and e,v € V as
in Definition 4.17. Then [F,G]| = 0 if and only if there exist u € R such that:

F(e) = (e, e) pv, F(v) = —pe. (4.15)

Proof. The commutator is

[F,G]=FoG—-GoF=Fo(eQu—-v®e)—(e®v—-—v®e)oF
=Fle)@v—-—F(v)®e+e® F(v) —v® F(e), (4.16)

where we have used (4.14). The “if” part is obtained by direct calculation inserting
(4.15) in (4.16). To prove the “only if” part, the condition [F,G] = 0 requires the two
endomorphisms F(e) @ v — v ® F(e) and F(v) ® e — e ® F(v) to be equal. One such
endomorphism is either identically zero or simple. This implies that span{F(e),v} and
span{e, F'(v)} are either both one dimensional or both two-dimensional and equal. In
the first case, F(v) = —pe and F'(e) = awv for p,a« € R, which are determined by skew-
symmetry to satisfy a = pu (e, e), so the lemma follows. The second case is empty, for it
is necessary that v = ae + bF (v) with a,b € R, which implies (v,v) = (ae + bF(v),v) =
b(F(v),v) = 0, against the hypothesis of v being spacelike. O

Corolario 4.19. Let G, G’ € SkewEnd(V) be simple, spacelike and linearly independent.
Let {e,v}, {€/,v'} be orthogonal spacelike vectors such that G = e @ v — v ® e and
G' = @v —v'®e'. Then [G,G'] =0 if and only if {e,v,e',v'} are mutually orthogonal.

Proof. By the previous lemma [G,G’] = 0 if and only if there exist u € R such that

G(e) = (', v)ye—(,e)v =/, G = (V,v)e— (v, e)v=—pe. (4.17)
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If i # 0, then span{e,v} = span{e’,v'} and G and G’ are proportional, against hypoth-
esis. Thus, = 0 and by (4.17) the set {e,v,€’,v'} is mutually orthogonal. O

4.4 O*(1,d — 1)-classes

In this section we use the canonical form of Section 4.2 to characterize skew-symmetric
endomorphisms of V' under the adjoint action of the orthochronous Lorentz group
O™ (1,d — 1). Recall that this is the subgroup of O(1,d — 1) preserving time orien-
tation. The corresponding classes of skew-symmetric endomorphisms are also known
as the adjoint orbits or conjugacy classes and we denote them by [F|o+ for a given
element F' € SkewEnd(V). The characterization of these orbits by a set of independent
invariants is known and it can be found in [100] in terms of two-forms, or in [26] where
a decomposition into so-called indecomposable types is shown to characterize the con-
jugacy classes. What we do here is, first, to give an alternative way to characterize the
orbits [F]p+ by a convenient set of invariants and second, to show that the canonical
form is the same for every element in a given orbit. This makes the canonical form

specially useful as a tool for problems with O(1,d — 1) invariance.

Observacin 4.20. We formulate this section in terms of the orthochronous component
OT(1,d — 1) because of its relation with conformal transformations of the sphere S2
(see Section 2.2.1), but note that the orbits of the full group O(1,d — 1) are exactly the
same as those of O%(1,d —1). Recall that the time-reversing component O~ (1,d — 1) is
one-to-one with O (1,d —1). We can map elements A= € O~ (1,d — 1) to elements in
AT €eOt(1,d—1) by e.g. AT := A~ Ao, where Ag = —1dy. Then

AFF(AY) ™ = A AgFAg(A™) L = A" F(A™) 2,

which clearly imples that the orbits generated by the full group O(1,d — 1) coincide with
the orbits generated by the subgroup O+ (1,d — 1).

A consequence of equation (4.10) is that the characteristic polynomial of F' € SkewEnd (V)

must have the form

q
Pr(x) =z + Z cprd=?, (4.18)
b=1
where we have introduced q := [%] The coeflicients ¢, can be obtained using the Fadeev-

LeVerrier algorithm, summarized by the following matrix determinant [65]:
Tr F 2b—1 0 -0

Tr F2 TTF 20—2

Tr F2b-1 Ty 202 1
T F22 Ty p2-1 ... ... Tv F
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Since the traces of odd powers vanish by skew-symmetry, the coefficients ¢; depend on

the entries of F' only through the traces of the squared powers of F"

1
Ip:= ST (F?%), b=1,---,q.

The traces I, are obviously invariant under the adjoint action (cf. Section 3.5) of
O*(1,d — 1) and so are the coefficients c,. Another invariant that plays an impor-
tant role in the classification of conjugacy classes is the rank of F'. Since this is always
even, we denote it by

rank F = 2r,

and clearly r < ¢. From now we say rank parameter to refer to r. In the following

proposition we show that this set of invariants actually identifies the canonical form.

Proposicin 4.21. Let FF € SkewEnd(V'), for V' Lorentzian of dimension d. Then
the invariants {cp,r} and {¢y,7} of F and F respectively are equal if and only if their

canonical forms given by Theorem 4.12 are the same.

Proof. The “if” part (<) is trivial, because the invariants ¢, are independent on the
basis, so they can be calculated in a canonical basis. Hence, same canonical form implies
same invariants. For the “only if” part (=), we notice that if the coefficients ¢, and
¢, of Pr and Pz are equal, so are their characterisic polynomials, the multiplicities
of their zero eigenvalue and the polynomials Q> and Qz, (equation (4.12)). Since
rank F = rankF' , Corollary 4.15 implies that ker F' and ker F must have the same causal
character. The canonical form only depends on the roots Qp2 and the causal character
of ker F' through Definition 4.10. Thus, F' and F must have the same canonical form. [

We now characterize the classes [F|p+ in terms of the same invariants given in Proposi-
tion 4.21. As mentioned above, this result is known [100], but we give here an alternative

and very simple proof based on our canonical form:

Teorema 4.22. [100] Let F,F e SkewEnd(V'), for V' Lorentzian of dimension d. Then
their invariants {cy,r} and {G,7} are the same if and only if F and F are O (1,d—1)-

related.

Proof. The if (<) part is immediate, since it is trivial from their definitions that the
quantities {¢p, 7} are Lorentz invariant. To prove the “only if” (=), by Proposition 4.21,
F and F have the same canonical form in canonical bases B and B respectively. By
definition (cf. Theorem 4.12), these bases are unit, future oriented and orthonormal.
Thus, the transformation taking B to B transforms F into F' and both must be O*(1,d—
1)-related.
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Theorem 4.22 establishes the necessary and sufficient conditions for two endomorphisms
to be O"(1,d—1)-related. Combining this result with Proposition 4.21, we find that the
canonical form (hence the parameters o, ji? or o, 7, 1?) totally define the equivalence class
of skew-symmetric endomorphisms up to Ot (1,d — 1) transformations. Moreover, we
emphasize that this form is the same for every equivalence class, unlike other canonical
(or normal) forms based on the classification of SkewEnd(V'), such as the one in [39],
where they seek irreducibility of the blocks, so they must give two different forms to

cover every case.

Next, we discuss some facts about the coefficients of the characteristic polynomial, also
stated in [100], where the proof is only indicated, and which can now be easily proven

using the canonical form.

Lemma 4.23. Let F' € SkewEnd(V) be non-zero and let 2r = rank F. Then ¢, >
0, ¢, =0, ¢ <0 if and only if ker F' is timelike, null or spacelike (or zero) respectively.

Moreover, if r < q, cq = cq—1 = -+ = ¢r41 = 0.

Proof. Taking into account that the parities of d and mg are equal (Lemma 4.9), ¢ —

[Mo] = [4] — [Mo] = 9210 g6 equation (4.18) can be rewritten
a—[mo/?] 5
—[mo .
PF($) — ™Mo (l,ljdfmo + Z Cbl,dfmonb) — ™Mo (xdfmo + Z Cb.rdimOin), (419)
b=1 b=1

where we have explicitly substituted all zero coefficients by extracting the common factor
20, thus the remaining coefficients ¢, # 0 for b=1,--- | (d—mg)/2. By Corollary 4.15,
ker F' is degenerate if and only if 2r = d — mg + 2 and mgp > 2, so the sum in (4.19)
runs up to (d —mg)/2 = r — 1, which means ¢, = ¢,11 = --- = ¢4 = 0, as stated in the
lemma. Also by Corollary 4.15, ker F' non-degenerate if and only if 2r = d —mg. In this
case, the sum in (4.19) runs up to (d — mg)/2 = r, hence ¢, # 0 and if r < ¢, the next
coefficients vanish ¢,11 = ¢,42 = --- = ¢4 = 0. In addition ¢, is the independent term
in the polynomial in parentheses. Let w1, --- , u) be all the non-zero parameters among
the {u;} of the canonical form of F' given in (4.9). By equation (4.13), ¢, can be written
for d odd:

2 2
Cr = OpT 1)

Then, the sign of ¢ determines the sign of ¢, and, by Remark 3.12, also the causal
character of ker F;, hence, the causal character of ker F' in accordance with the stament

of the lemma. For d even, also from (4.13) we have

7_2

CT:_ZN%"'M§\<O (7—7&0)7 Cr:O—:U'%"':Ug\ (T:O)v

where the expression for 7 = 0 follows because in this case either p; or us (or both)
vanish, hence either ¢, = p2u?- - ,u?\ or ¢, = —piu3- - ui and o equals p? in the first
situation and —p? in the second. By Remark 3.11, when 7 # 0 we have ker F,, = {0} and
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hence ker F is always spacelike or zero and when 7 = 0, the causal character of ker F,
(and that of ker F') is determined by the sign of ¢ in accordance with the statement of

the lemma.
O

Observacin 4.24. A converse version of Lemma 4.23 also holds, in the sense that the
number v of last vanishing coefficients restricts the allowed rank parameters r. Let v be
defined by v = 0 if c; # 0 and, otherwise, by the largest natural number satisfying cq =
Cq—1 = -+ Cq—p41 = 0. By equation (4.19) it follows v = [mg /2], and since the dimension
d and mg have the same parity (cf. Lemma 4.9), d —mqo = 2[d/2] — 2[mo/2] = 2(q — v)
which in particular shows that v determines mqg uniquely. If mg > 2, by Corollary
4.15 the rank parameter admits two possibilities r = {q —v,q — v + 1}, each of which
determined by the causal character of ker F'. If mg < 2, also by Corollary 4.15 the ker F'
degenerate case cannot occur and r = (q — v) is uniquely determined. In particular, if
d =4, r is always determined by c1, ca, because r = 2 happens if and only if v =0 and

otherwise r =1 (unless F' is identically zero, in which case r =0).

4.4.1 Structure of SkewEnd(V)/O*(1,d — 1)

By Theorem 4.22, the g-tuple (c1,- - ,¢q) corresponding to the coefficients of the char-
acteristic polynomial of a skew-symmetric endomorphism, does not suffice to determine
a point in the quotient space SkewEnd(V)/O%(1,d — 1), since generically two ranks
are possible (dimensions three and four are an exception). As dicussed in Remark
4.24, for a number v of last vanishing coefficients ¢, the allowed rank parameters are
re{q—v,gq—v+1}, and r = ¢ — v + 1 is only possible provided my > 2 (in partic-
ular, when ¢, # 0 then necessarily 7 = ¢). One says that there is a degeneracy for the
value of the rank at certain points in the space of coefficients ¢,. In the submanifold
{cg =+ = cq—v41 = 0,¢q— # 0}, the possible rank parameters are r € {g—v,q—v+1}.
When a boundary point where the number of last vanishing coefficients increases by ex-
actly one is approached, the rank parameter may remain equal to ¢ — v or jump to
g — v — 1 (note that while the coefficients ¢; are continuous functions of F, the rank
is only lower semicontinuous, e.g. [91]). As we shall see in this section, this behaviour
gives rise to special limit points in the space of parameters defining the canonical form

(i.e. the space of conjugacy classes).

Recall that the space of skew-symmetric endomorphism SkewEnd(M4~1) (being a
finite dimensional vector space) carries a canonical topology (see e.g. [35]). The quotient
space inherits a natural topology, called “quotient topology” which is the finest one that
makes the projection a continuous map. In this topology it is sufficient for a sequence of
points s; to have a limit s that there is a sequence of endomorphisms F; converging to
F with F; belonging to the class s; and F belonging to the class s. Therefore, the limits

below constructed with explicit endomorphisms F' € SkewEnd(V), also provide limits



120

of SkewEnd(V)/O"(1,d — 1) in the quotient topology. This allows to single out some
special limits (cf. Remark 4.25 below) which will be useful for the analysis of initial data
in Chapter 6.

Let us start by locating these special limit points using the canonical form. Degeneracies
can only occur in dimensions d = 5 or larger because in dimension three the rank is two
for any non-trivial F' and in dimension four the rank is uniquely determined by the
invariants (cf. Remark 4.24). We thus consider first the case d = 5 and then extend
to all values d > 5. In d = 5 the space of parameters A defining the [F]o+ classes is
(Figure 4.1 )

A:={(o,p*) ERxR" |0 >p?if 0 >0}.

Consider a [F]p+ in the region
Ry = {o>u*>0}
and let I be a representative of [F]o+ in a canonical basis B = {er},_ ... 4, that is
0 0 -1+¢
1 0 —pu
=l 0 0 s e ) (420)
142 142 0 :

Let us define the functions Cy(x) :=
B’ = {€’} is well defined in R:

+ 7. Then, the following change of basis to

8]

ey = C (1) (C1(Vo)eo + C-(Va)er) — C—(p)es, ey = —e3,
) = —C_(n) (C+(Vo)eo + C_(Vo)er) + Cy(pes, ey = —ea. (4.21)
ey = C_(Vo)eo + C1(Vo)er

By direct calculation, F' is written in basis B’ as

0 0 -1+

F= 0 0 ——% @( 0 _ﬁ>. (4.22)
I ve o
The basis B’ is non-canonical because u? < 0. However, if we vary the parameters so
that © — 0 (keeping ¢ unchanged), the matrix (4.22) becomes canonical (i.e. of the
form (4.9)) in the limit and the class [lim, 0 F]o+ is given by l; = (0,0). On the other
hand, F' in canonical form (4.20) also admits a limit x4 — 0, which is also canonical
and whose representative [lim,_,o F]o+ is given by lp = (0,0). Both limits are defined
by the same sequence of points, because the transformation (4.21) is invertible in R..
However this sequence has two different limit points. As a consequence, the space of
canonical matrices, and therefore the quotient space SkewEnd(V)/O*(1,d — 1), inherits

a non-Hausdorff topology.
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Something similar happens in the region
R_:={o<0,pu>0}.

Let F be a representative in canonical form of a point [F]o+ in this region. Then, F' has
a timelike eigenplane II; with eigenvalue \/W (cf. Remark 3.12), a spacelike eigenvector
e as well as a spacelike eigenplane Il with eigenvalue p. Thus V' = II; @ span{e} @ I,
and there exist a (non-canonical) basis B’ adapted to this decomposition, into which F'

takes the form

(4.23)

=) (07)

F= o] 0 o0 .
O 0 0 K

Keeping p unchanged, expression (4.23) has a limit o — 0, which has a spacelike eigen-
plane II, of eigenvalue p and it is identically zero on II*+ . Hence, ker F is timelike and
using Definition 4.10, the canonical form of this limit lim,_,o F is given by ¢’ = pu? and
p' = 0. Thus [lim,_,0 F]p+ is represented by the point lo = (12,0). On the other hand,
in a canonical basis (4.20), F' also admits a limit ¢ — 0, whose class [limy,—o F|o+ is

obviously represented by the point /1 = (0, 1?).

12

R_ Ry
I

o

FIGURE 4.1: Representation of SkewEnd(V)/O%(1,4) in the subspace A C R%. The
shadowed region s not included.

The same reasoning can be carried out to arbitrary odd dimension. First, define the
regions

ROV ={o>pd> 2p2>0} and RV :={o<0,4}> - >u2>0}

and also the limit regions

R ={o=04f 223> 0} and RYVi={o>pf > 240 > =0}

Consider representatives F; and F_ (in canonical form) of points (oF, ()2, , (M;)Z)

(d,0) (d,0)

and (07, (7 )%+, (1,)?) in the regions R and R respectively. Then F

has a spacelike eigenplane I} with eigenvalue p; as well as a timelike eigenvector

e and spacelike eigenplane II;” with eigenvalue voT. Restricting to the subspace
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W+ = span{e™} @ II} ® IIJ we can repeat the procedure followed for the five di-
mensional case and conclude that [limug _o F4] has simultaneously limits at the points
d;1 d,0
(o, ()2, (- )%,0) € RYY and (0,(uf)% -+, (15)%) € RE'Y. Analogously
F_ has a spacelike eigenplane IIJ with eigenvalue p,,; as well as spacelike eigenvector
e~ and timelike eigenplane IT'; with eigenvalue /|oc—|. Restricting to the subspace
W~ =1I; @span{e” } @ II',, the above arguments for the five dimensional case show
that [lim,- o F_] has simultaneous limits on the points ((u,, )%, (u7)?,- -, (/JL;A)Q, 0) €
Rf’l) and (0, (uy)?, -+, (u,)?) € R(()d’o). Thus the regions Rf’o) and R\ limit simul-
taneously with Rﬁf’l) and Rgd’o) as i1, and o tend to zero respectively. Indeed, the same

ideas can be applied again to Rf’l) and

R(:Ll) = {O’<0,M% ERRE ZMIQ)—l >M12):0}7
so that they also limit simultaneously, as u,—1 and o go to zero respectively, with
d,1
R(() )= {J:(),M% > "'Z,Uz—l >MZ:0}

and
d,2
RYD = (o> 0,8 > >4, > ud = p2=0}.

This same stucture generalizes to any number of last-vanishing u? parameters. Namely,
the regions with m last-vanishing parameters p, = --- = pp_m41 = 0 and non-zero
o, limit simultaneous the region with m last-vanishing parameters and ¢ = 0 and the

region m last-vanishing parameters and o > 0 (cf. Remark 4.25 below).

For the even dimensional case (with d > 6), notice that as long as dimker ' > 2,
which happens if 7 =0 or ,u% = 0, the restriction F|,., where e is any spacelike vector
e € ker F', is equivalent to the odd dimensional case. Hence, the previous reasoning for
odd dimensions also applies for even dimensions if 7 = 0 or ,u]% = 0. For later use, it is
convenient to discuss the d even case using parameters {—pu?, u%; u2,- - ,ug}. To start

with, assume d = 6, where there are only three parameters {—u?, u2, u?}. The region
RV = {2 = 0,42 > p* > 0}

contains sequences assuming simultaneously limits in

R(()d’o) = {—,u? =u2=0,p> ()} and Rgfl’l) = {—,ut2 =0,u2>p? = 0}.
These sequences can be constructed as limits u? — 0, analogous to the n odd case above.

In a similar way
d,1
R = {2 < 0,42 > p® =0}

contains sequences with limits in R(()d’o) and Rf’l) simultaneously. These sequences can
be constructed as limits —u? — 0, analogous to the limits ¢ — 0 for the n odd case

above.
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On the other hand in the region
d,0
RUD = {—p2 < 0,12 > i > 0},

one can trivially construct a sequence limiting Rifl’o) (as —u? — 0) as well as a sequence

limiting R as u2 — 0). Therefore all the above are also limits® of R

R(dvo)

. Moreover,
does not assume degenerate limits beyond those above described. This is because
it is fact that det F' = —pZu2u?, so if —u?, u2, i # 0, then rank F' = 6. Thus, taking only
one of these parameters to zero must lead necessarily to a region in which rank F' = 4,
which can only be either Rf’l) or R@’l), whose limits have already been discussed. Also
observe that there cannot be a degenerate limit within two regions with same rank, as

the coefficients and the rank determine uniquely the equivalence class.

The generalization to higher even dimensions is straightforward from the d = 6 case by

an argument similar to the d odd case. Let d > 6 be even and define
d,0
ROV = (2 <0,p2 >4 > - > 2 > 0}

An endomorphism F € SkewEnd(V') such that [Flo+ € R admits one timelike
eigenplane II; and two spacelike eigenplanes Ilg, II, of eigenvalues p; and pg and u,
respectively. Then, W = II; @ Il @ II,, is a Lorentzian vector space of dimension 6, so

the restriction F|;, admits the same structure of limits than in the d = 6 case above.
(d,0)

Namely, in the total space V, the region R limits trivially with
d,0
RED = (i = 0,2 >y > - > p2 > 0}

and this assumes simultaneous limits at

X
B
=

|

—~—
=
no
|
=
=
[\
\Y
=
=D
vV

'Z/’Lp—1>/'LZ:0}7
d,0
RSO = {2 =12 = 0,43 > - > 2 > 0}

Combining all the above arguments, a similar structure of limits extends to the regions
with any number m of last-vanishing parameters ,uf, =...= ug_m +1=0and {—p2, 12}
(cf. Remark 4.25 below).

The following remark summarizes the above discussion.

Observacin 4.25. For d odd, consider the space

ACH) =L (g3, ) eRPFY g > pd > > 2 with o > 0}

(o pid, ) € R 4 > o> i > 0> 0}

3The regions R(f’o) and R“Y are clearly in the closure of R(ii’O), as both can be attained from

sequences in R'“?. Thus the sequences in Rf’o) and R'“") have limits in the closure of R
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and for d even

Aleven) = {(—pf, 2, p, - ) € RPF2 |
pe>pg > > pp > 0> —pf, with pf oor g # 0}
(s 2o s i) €RPP2 | pf > o> 2 > 0= i = — i},
where {o, p2, - - ,ug} and {—p?, p2 u3, - ,u;} are the parameters in Definition 4.10. As
a consequence of Proposition 4.21, these parameters are unique for every orbit [F]o+ €

SkewEnd(V)/O*(1,d — 1). Thus A and Al give a good parametrization of
SkewEnd(V)/O%(1,d — 1).

Define the subsets of A4

d,

R{™ = {(U,Mi-'wuﬁ)ev‘l(‘)dd) !UZM?2"'>Nz2>—m+1:"':“12>:0}’
d,

R {(J,u%,--',MZ)EA(Odd) !0<07M%Z"'>M;2;—m+1:"':%23:0}7
d,

RE™ = ({0 ) € A 5 =083 5 s = =i =0},

and of Aleven)

R{™

{—u?,,ug,,u%, T 7'“]27) € A(even) |
— =0, 2 ] = >y gy ==y, =0}
R(d,m) — {(7/@’/@,#%7 L. a/~512>) c A(even) |

—p <0, 2> pd > >l ==l =0},
da
Ré ™ = {(_Nga ,Ug) :U’%v T 7//4;2)) € A(even) |
The notation Rgd’m) generalizes to any dimension as follows: d is the dimension of V., m

is the number of last-vanishing parameters {12} and € € {0, 4} gives the causal character
of ker F': 0 if degenerate, + if timelike and — if spacelike or zero. We note that € is also
given by the sign of o in the odd case and closely related to the sign structure of the first

two entries {—u?, u2} of the point s € A when d is even.
In Aledd) every sequence in Rf’m) and every sequence in R

Rf’mﬂ) it also has a limit at Réd’m) and viceversa. Similarly, in A" | every sequence

(d,m) which has limit at

n Rf’m) and every sequence in R(,d’m) which has limit at R(f’mﬂ) it also has a limit

d .
at R((] ) and viceversa.

We conclude this subsection with the following result, stated it in a separate proposition
because it will be explicitly required for the analysis in Chapter 6.

Proposicin 4.26. For d odd, Rgfl’o) and R'4Y

(d,0)

are open in the quotient topology. More-

over there exists sequences in R taking limit at every point A(Odd)\Rf’O).
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For d even, R(_d’o)
R(4:0)

is open in the quotient topology. Moreover there exists sequences in

taking limit at every point AV (i.e. R is dense in the quotient topology).

(d,0) (d,0)

Proof. We first prove openness of RS:I’O) and R for d odd and RY
F € SkewEnd(MY4~1), [F]p+ € SkewEnd(M>4~1)/O%(1,d — 1) its class in the quotient

and 7 the canonical projection map 7 : F' — [F|p+. The independent term of the

for d even. Let

characteristic polynomial is an invariant of the class [F]o+. Let ¢;—, be the function
that maps F' into the independent term of its characteristic polynomial c4—, (F). This
map is clearly continuous. Let also [c,—,] be the induced map in the quotient, i.e. the
map satisfying c,—, = [¢4—y] o m. Then [¢,—,] is also continuous (e.g. [147]). Moreover
from (4.13), if d even, ¢4, (F) = —pip2pi-- - p2 and, if d odd, cq—(F) = opf--- 2.
Thus when n is odd Rgf’o) and R™? are open in SkewEnd(M'“4=1)/O*(1,d—1) as they

are the preimage by [c,—,] of the open intervals (0, 00) and (—o0,0) respectively. When

n is even RT’O) is also open because it is the preimage of the open interval (0, c0).

On the other hand, for d odd, by the discussion above, one can construct sequences

in R(fl’o) assuming limit any point in R(f’l) and R((]d’o). Moreover, it is immediate to

construct sequences in Rf’l) and Réd’o) with limits into any point in any of the regions
7 with

. In addition, Rgf’o) is open and has
empty intersection with R(,d’o). Thus, all regions except R(f’o) are accessible as limits of

R,

Rf’mﬂ) and R(()d’m) respectively. Similarly,(there is a trivial sequence in R
d,m)

limit into any point in any of the regions R

(d,0)

Similarly, for d even, by the discussion above, one can construct sequences in R with
(d,0)

limit at R} and R(()d’o). The rest of the argument is analogous to the d odd case. [

4.5 Conformal Killing vector fields

One interesting application of our previous results is based on the relation between skew-
symmetric endomorphisms and the set of conformal CKVFs of the n-sphere, CKill(S"),
and its local representation in E", CKill(E"), discussed in subsection 2.2.1. Our aim in
this section is to provide a canonical form for all elements in CKill(E™). Therefore, all
the previous results will be applied for dimension d = n + 2 with n > 2. Restricting to
the set of global CKVF's, some of the following results also apply for n = 2 (cf. Remarks
2.16 and 3.14). However, this case has been already addressed in detail in Chapter 3, so

we shall restrict here to n > 2, and only make some remarks on the n = 2 case.

We start by making an observation on the construction in subsection 2.2.1, which will
allow us to choose suitable Minkowskian coordinates in M»"*! in exchange of keeping

conformal freedom in the metric of E™.

Observacin 4.27. The freedom of choosing a representative for S™ as well as the point N

and the projection stereographic plane (discussed in subsection 2.2.1), can be also seen in
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a more “passive” picture. Consider two different sets of Minkowskian coordinates {x'}
and {x''} related by a OF(1,n + 1) transformation A, x' = Al j27. Using Theorem
2.11, we obtain two different embeddings i,i : E" — MY gssociated to {x'} and
{21} respectively, for which i(E") = {20 = 2! = 1,24%! = ¢4} and /(E") = {20 =
2t = 1,27 = /AY | as well as two associated maps €,€'. Let F' € SkewEnd(M'™+1),
defined by (2.26) with parameters {v,at, b4, wAg} and {/, a4, b4, W'AB} in the bases

{0,1} and {01} respectively. Then, F' can be associated to two vector fields

1
&r = (b + vy + (apy” )yt - §(yByB)aA — wAByB)ayA,

g = (0 + VYA + (alpy )y - %(yﬁsy’B)a’A — " py") 0 a,
which are equal in the following sense. If we transform the representative '™ = {2/0 =
13N {x’lx’[ = 0} with A, we obtain a new representative of the projective cone which in
coordinates x! is precisely S = {2° = 1} N {x;2’ = 0}. Abusing the notation, the map
¢a = Sty o Ao Sty is such that pa.(&) = Ep. Then, considering i(E™) and i'(E") as
respresentations of the same space in two different global charts (y*,R™) and (y'4,R™),
ba can be seen as a change of coordinates y* = (éa(y'))?, with the property that the

Euclidean metric in coordinates {y'4} transforms as
gr = Sapdydy’® = Q*(y)dapdy”dy”®

for a locally smooth (recall that the conformal transformations have generalically two
singularities, cf. subsection 2.2.1) positive function 2. In other words, changing to
different Minkowskian coordinates in MY+ induces a change of coordinates in E™ in
such a way that the form (2.27) of the map & is preserved. Notice that a similar result
holds if we change the point w.r.t. which we take the stereographic projection, because
any two N, N’ € S™ must be related by a SO(n) C O*(1,n+ 1) transformation.

Therefore, for the rest of this section, we will often adapt our choice of Minkowskian
coordinates {xI } of M+ to simplify the problem at hand. With this choice, it comes a
corresponding set of Cartesian coordinates {yA} of E” such that £ is given by equation
(2.27) and the Euclidean metric is gr = Q(y)%d4 pdy?dy®. Which coordinates are
adequate obviously depends on the problem. For example, from the block form (4.5)
and (4.6) of skew-symmetric endomorphisms, consider each of the blocks F|y,3 Flyp.2 as
endomorphisms of M+ extended as the zero map in (M"3)+ and (M"2?)" respectively,
and similarly for each F |Hi' If we denote by & Flyn3 & Fly.2 and & Fly, the corresponding

images by &, one readily gets following decomposition:

p p
€r = Eppus + D Epy,, (neven),  Ep=Ep,+ ) Ery  (nodd),  (4.24)
=1 i=1



127

where in terms of n, p is given by

p= {”‘2”] 1 (4.25)

(recall that the dimension of the Minkowski space where F' is defined is d = n + 2, cf.
Theorem 2.11). The explicit form of each of the terms in (4.24) is direct from (2.28).
Namely, the terms {p| ,, and {p| ,, are given by (2.27) with vanishing parameters
at, b, wAp for A,B >3 and A, B > 2 respectively, and each fF\n,- is proportional to a
vector field of the form

n:=y"0,8, — y"°0,a, (4.26)

with Ay, By € {1, ,n} such that Ay # By. More specifically, gF‘Hi = u;n;, where 7; is
given by equation (4.26) with By = Ag+ 1 and Ay = 2i if n even while Ag =2i+1if n
odd. Vector fields of the form (4.26) will play an important role in the following analysis.
They have the form of axial Killing vector fields, although in general they are CKVF's
because of the conformal factor in gp = Q(y)264pdy?dy®. From the discussion in
Remark 4.27, it follows that there exists a conformal transformation ¢ € ConfLoc(E™)
such that ¢} := ¢%(9E) = dapdy?dy®. Then by the properties of the Lie derivative it

is immediate

0= LyoA(98) = Loy, (m)9E-

In other words, 7 is an axial Killing vector of ¢f; and ¢a.(n) is an axial Killing vector

of gg. Thus, we define:

Definicin 4.28. A CKVF of an Euclidean metric gg, 1, is said to be a conformally
axial Killing vector field (CAKVF) if and only if the exist a ¢p € ConfLoc(E™) such
that ¢a«(n) is an axial Killing vector field of gp. Equivalently, n is a CAKVF if and
only if it is an axial Killing vector field of ¢} (¢9E).

Observacin 4.29. Using Theorem 2.11, it is immediate to verify that a CKVF is a

CAKVF if and only if it is the image under & of a simple unit spacelike endomorphism
G.

Notice that the terms in (4.24) form a commutative subset of CKill (E™). This is an
immediate consequence of the fact that £ is a Lie algebra antihomomorphism (cf. The-
orem 2.11) and the blocks Flyn. (resp. Flyns) and F|p. are pairwise commuting. In

addition, a straightforward calculation shows that they form an orthogonal set

ge(&m) =0,  gp(min) =0  (i#j)

where 5 = €F|M13 for n even and E = §F‘M1’2 for n odd. In fact, as we show next,
orthogonality of two CKVF's implies commutativity provided one of them is a CAKVF.
If both are CAKVF, then orthogonality turns out to be equivalent to commutativity.

Lemma 4.30. Let n,n' be non-proportional CAKVFs and £ a CKVFE. Then [n,n'] =0

if and only if there exist Cartesian coordinates such that n = y"*Qaynfg — y"*38yn72 and
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€r,n =0 if ge({r,n) = 0.

Proof. Let G,G" € SkewEnd(M>"*1) be such that £(G) = n, £(G') = 1'. Since G and
G’ are simple, spacelike and unit (cf. Remark 4.29), we can write G = e®v —v ® e and
G’ = ®@v' —v' ®¢€ for spacelike, unit vectors {e, ¢/, v,v'}, such that 0 = (e, v) = (¢/,v).
By Corollary 4.19, it follows that [G,G'] = 0 if and only if {e,e’,v,v'} are mutually
orthogonal. Let us take Cartesian coordinates of M!"*! such that e = Opn—2,v =
Oyn-1,€ = Oyn,v' = Opnr1. Then, in the associated coordinates {yA} of E™ it follows
n = y”_28yn73 — y"_?’@ynfz and ' = y”_lﬁyn — y"Oyn—1. This proves the first part of
the lemma. From this result, it is trivial that [n, 7] = 0 implies gg(n,n’) = 0.

To prove that gg(n,{r) = 0 implies [n,£r] = 0 (which in particular establishes the
converse gr(n,1n) = 0 = [n,7'] = 0 for CAKVFSs), let us take coordinates {yA} such
that 7 = 3" '9yn — y"dyn—1. Then, writing {r as a general CKVF (2.27), we obtain by

direct calculation:

B
- - YyBY _ _
gE(T/»SF) = Q2 (y”bn 1_ yn lbn o T(anyn 1 an lyn)

+ wn—lByByn _ wnByByn—l) = 0.

Therefore a”,a” 1, b", b" 1 w"p, w" ' must vanish. This implies that the associated
endomorphisms G and F' to n and £ adopt a block structure from which it easily follows
that [G, F] = 0 and hence [, {F] = 0. O

Definicin 4.31. Let £ € CKill (E"). Then a decomposed form of {p is £ = §+
>-P | pin; for an orthogonal subset {5, n; }, where n; are CAKVFs, y; € Rfori =1,--- | p.
A set of Cartesian coordinates {yA} such that n; = y™i Oyait1 — yAi“'l@yAi, for A; = 2i

for n odd and A; = 2i + 1 for n even, is called a set of decomposed coordinates.

Observacin 4.32. Observe that the E is a CKVF. By Lemma 4.30 and its proof, the
parameters {v,a,b,w} defining E i a set of decomposed coordinates must all vanish
except possibly {v,al,a%, bt b2 wly = —w?} when n is even or {v,al,bl} when n is
odd. This means that there is a skew-symmetric endomorphism F which restricts to
M3 € MY (n even) or M2 € MY (n odd) and vanishes identically on their respective
orthogonal complements such that §~: §- We will exploit this fact in an essential way

below.

With the definition of decomposed form of CKVFs, we can reformulate Theorem 4.6 in
terms of CKVFs.

Proposicin 4.33. Let {p € CKill(E"). Then there exist an orthogonal set {n;}7_,
of CAKVFs such that [{p,m] = 0. For every such a set {nj}jj?:l and i € {1,--- ,p}
there ezist p; € R such that gg(ni, )i = ge(&r,mi). In addition, with the definition
E:: &r — Y im; the expression &g = E+ > win; provides a decomposed form of &p.
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Proof. The existence of p commuting CAKVFs is a direct consequence of decompositions
(4.5) and (4.6) of the associated skew-symmetric endomorphism F', for n even and odd
respectively. Indeed, for each such decomposition of F', it follows a set of p CAKVFs
commuting with {r. Let us denote {n;} any such set. Each 7, is associated to a simple,
spacelike unit endomorphism G; that commutes with F. By Lemma 4.18, G; defines
a spacelike eigenplane II; of F'. The orthogonality of any two such eigenplanes Il;, II;,
i # j is a consequence of Corollary 4.19 because [G;,G;] = 0. In other words, given
a set of p CAKVFs commuting with £r, we have a block form of F', thus, defining
{ = &p — Y pimi, it is immediate that &p = §+ > uin; is a decomposed form with
9 (M, mi) ki = ge(§F, mi)- O

The next step now is to give a definition of canonical form for CKVFs, which we induce

from the canonical form of the associated skew-symmetric endomorphism.

Definicin 4.34. A CKVF £f is in canonical form if it is the image of a skew-symmetric
endomorphism F' in canonical form, i.e. {p = E + > pim; such that §~ is given, in a
Cartesian set of coordinates {yA} denoted canonical coordinates, by the parameters
al =1, bl =0/2, a2 =0, b> = 7/2 if n even and a! = 1, b! = ¢/2 if n odd (the
non-specified parameters all vanish) and 7; are CAKVFs 7; = y* Oyai+1 — yAiH@yAi,
A; = 2i for n odd and A; = 2i + 1 for n even, and where o, 7, u; are given by Definition

4.10.

for

Given a CKVF &, the existence of a canonical form and canonical coordinates is guar-
anteed by Theorem 4.12. By Theorem 2.11, the conformal class [{r] of a CKVF &p is
equivalent to the equivalence class [F]o+ of F' under the adjoint action of O*(1,n+ 1),
and this is determined by the canonical form of F' (cf. Theorem 4.22). Therefore the
parameters {o, 7, u?} (equivalently {—uZ, u2, u?}) for n even and {o, pu?} for n odd de-

termine a unique conformal class of CKVF's of E”.

In the following Theorem, we summarize the algorithm to determine the conformal class
of CKVFs in locally conformally flat manifolds. This will be applied in the forthcoming
Chapters 5 and 6

Teorema 4.35. Let {p € CKill (E™), with E™ endowed with a flat metric yg and Carte-
sian coordinates {yA}ZZ‘:l. Contruct the skew-symmetric endomorphism F correspond-
ing to &g according to Theorem 2.11 and consider the parameters {o, T, ,uf} (equivalently
{—p2, 12, 12}) if n even and {o,u?} if n odd in Definition 4.10. Then the conformal
class [€Fp] is uniquely determined by these parameters. Moreover, the structure of limits
in Remark 4.25 applies for CKill(E™)/ConfLoc(E™).

Observacin 4.36. Obuviously, although this quotient is naturally constructed for con-
formal classes of CKVFs of E", i.e. CKill(E)"/ConfLoc(E™), by Proposition 2.18, this
has a one-to-one correspondence with the global conformal classes in the sphere, namely

CKill(S™)/Conf(S™).
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Observacin 4.37. Theorem 4.35 also applies to the n = 2 case for equivalence classes
generated by global CKVFs up to conformal transformations of E? globally extendable
in the sphere (see Remark 2.16), namely, the Mobius and affine transformations. It is

interesting to stress this because no analogous result has been given in Chapter 3.

Given a canonical form ép = E + > pim; the set of vectors {E, 7;} are pairwise commuting
and linearly independent. As we will next prove, in the case of odd dimension this set is
a maximal (linearly independent) pairwise commuting set of CKVFs commuting with £
(i.e. it is not contained in a larger set of linearly independent vectors commuting one to
another and with £). In the case of even dimension it is not maximal. By Remark 4.32, E
equals g(y, al,a?,b', b2, w), where the right-hand side denotes a CKVF of the form (4.26)
whose parameters vanish, except possibly {v,al, a2 b!,b? w := w's}. As also mentioned
in the Remark, the corresponding skew-symmetric endomorphism F satisfying £z = 3
can be understood as an element F € SkewEnd(M?), with M3 = span{eg, e1, €2, €3},
that is identically zero in (ML?’)L. Then, we may apply the results in Chapter 3 to this
block. Namely, fix the orientation in M!3 so that the basis {eg, e, e, e3} is positively

oriented. The Hodge star maps two-forms into two-forms. This defines a natural map

x : SkewEnd(M>3) —  SkewEnd(M'?),

F —s F*

From standard properties of two-forms, (see Section 3.4) it follows that F* commutes
with F. We may extend F* to an endomorphism on MY"*! that vanishes identically
on (M'3)L) just as F. Tt is clear that the commutation property is preserved by this

extension. The image of F* under ¢ is the vector field

5* = <g(1/7 al)a2ablab2’w))* = é‘(_("‘}73“27 _a‘17 _b27b1’ V)’

which by construction commutes with §~ In the case that E is the first element in a
decomposed form &g = §~ + > pim;, it is immediately true that E* also commutes with all
of the CAKVFs n;. Hence, {{N’, E*, n;} is a pairwise commuting set, all of them commuting

with €. This set can be proven to be maximal:

Proposicin 4.38. Let & = E+Z win; be a CKVF in canonical form. Ifn is odd, {E, n;i}
18 a mazimal linearly independent pairwise commuting set of elements that commute with
Ep. If n is even, {5, E*, n:} is a maximal linearly independent pairwise commuting set of

elements that commute with g .

Proof. Suppose that there is an additional CKVF ¢ commuting with each element in
{E, n;} if n odd or {E, £, n;} if n even (in either case ¢’ clearly commutes with £z also).
Since it commutes with each 7;, by Proposition 4.33, it admits a decomposed form
¢ = E’ + 3P, pini, where §~’ is a CKVF orthogonal to each 7; and which must verify
[E’ , 5] = 0. Equivalently, their associated endomorphisms satisfy F’ € C (ﬁ ), where C (ﬁ)
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denotes the centralizer of F', i.e. the set of all skew-symmetric endomorphisms that
commute with F. From the results in Section 3.4, C(F |yn.2) = span{F |pp.2} when
n is odd and C(F |yps) = span{F |yps, F* [yps} when n is even. Here, F* is the
skew-symmetric endomorphim associated with §~* and we restrict to M® because the
action of the endomorphisms is identically zero in (M"3)+. Thus E’ = ag, a €R, ifn
odd and 5’ = bg—i— cg*, b,c € R if n even.

4.6 Adapted coordinates

In the previous Section we obtained a canonical form for each CKVF of the Euclidean
space based on the canonical form of skew-symmetric endomorphisms in Section 4.2. As
an application, we consider in this section the problem of adapting coordinates in E™ to
a given CKVF &p. The use of the canonical form will allow us to solve the problem for
every possible £ essentially in one go. Actually it will suffice to consider the case of even
dimension n and assume that at least one of the parameters o, 7 in the canonical form of
&r is non-zero. The case where both ¢ and 7 vanish will be obtained as a limit (and we
will check that this limit does solve the required equations). The case of odd dimension
n wil be obtained from the even dimensional one by exploiting the property that E?m+!
can be viewed as a hyperplane of E2"*2 in such a way that the given CKVF ¢f in E27+!
extends conveniently to E?™*2. Restricting the adapted coordinates already obtained
in the even dimensional case to the appropriate hyperplane we will be able to infer the
odd dimensional case. Recall that we are restricting to n > 2, so here we shall assume
n > 4.

4.6.1 Calculation of the adapted coordinates

We start by integrating the PDEs which yield adapted coordinates to an arbitrary CKVF
in the case of even n. Consider E" endowed with a CKVF &p. First of all, we adapt the
Cartesian coordinates of E™ so that {r takes its canonical form and we fix the metric
of E™ to take the explictly flat form in these coordinates. We further assume (for the
moment) that n is even. For notational reasons it is convenient to rename the canonical
2tL gy g 202

the even case case p = n/2 —1 (see (4.25)). By Proposition 4.33, £ can be decomposed

coordinates? as z; :=y', 2 :=y? and x; ;== y fori=1,---,p, where in
as a sum of CKVFs E and 7n; and, additionally one can construct canonically yet another
CKVF £*. This collection of CKVFs defines a maximal commutative set. Moreover, {r;}
are all mutually orthogonal and perpendicular to E and E*. It is therefore most natural

to try and find coordinates adapted simultaneously to the whole family {E, E*, n;}. This

“The fact that we tag the coordinates {21, 22, i, %:} with lower indices has no particular meaning. Tt
is simply to avoid a notational clash of upper indices and powers that will appear later
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will lead a (collection of) coordinate systems where the components of { are simply
constants. From here one can immediately find coordinates that rectify g, if necessary.
It is important to emphasize that selecting the whole set {E, E*, n;} to adapt coordinates
provides enough restrictions so that the coordinate change(s) can be fully determined.
Imposing the much weaker condition that the system of coordinates rectifies only £p is
just a too poor condition to solve the problem. This is an interesting example where the

structure of the canonical decomposition of {r (or of F') is exploited in full.

By Theorem 2.11, the explicit form of {5, §~*, 7;} in the canonical coordinates is

s o 1[4 2 - 2 2 T .
£ = (2 + 3 (zl — 25 — z;(rcZ +yi) | | 0s + (5 + zlzz) 0, + 21 Z (202, + YiOy,)

=1
(4.27)
o~ T a g 1 2 2 L 2 2 a 2 a 8
§ ——<§+Z122> 21t 5 52— A —;(1‘1‘ + ;) 2 —Z2;($i i+ YiOy,)

i = $z'3yi - yiami-

We are seeking coordinates {¢i,t2, ¢;,v;} adapted to these vector fields, i.e. such that

L= E, O, = 5*, 0y, = mi. It is clear that if {t1,%2, ¢s,v;} is an adapted coordinate
system, so it is {t; — to1(v),t2 — to,2(v), ¢i — ¢0,i(v), v;} for arbitrary functions tg 1 (v),
to,2(v) and ¢g,(v), where v = (vy,--- ,vp). This will be used to simplify the process of

integration. This freedom, may be restored at the end if so desired. Hence from & = O,

0z1 o 1 P 0zy T

o, 2 2 ( —% - ;w +u;) ) o g tam (429)

gfll - A g?ll = 21Yi, (4.29)
from &* = O,

gz B %_% (Zg_z%_izp;(x?+yi2)> ; gz :_%—2’122, (4.30)

?)Z A giﬁ = —22Yi, (4.31)

and from 7; = O

azl—(] 822_0 8a:i__' 8yi_ ‘
ad: do; ag v o¢ "

(4.32)

The additional p coordinates v;, will appear through functions of integration. It is
interesting to observe that, had we allowed n to be n = 2, and restricting oneself to
global CKVFs, it is clear that the structure of the equations would have been different.

This is because there are no {x;,y;}, which implies that the process of integration in this
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case would require a different route. In any case, as we have already seen in Chapter 3,

for the case n = 2 the complex structure of S? can be exploited to simplify the problem.

We may start by integrating (4.32). The first pair gives z; = z1(t1,t2,v), 22 = 22(t1, t2,v),

so that the second pair becomes a harmonic oscillator in z;, y;, whose solution is

z; = pi(t1,ta,v) cos(di — ¢oi(t1, t2,v)), Yi = pi(t1, t2,v) sin(d; — ¢oi(t1, t2,v)),
(4.33)
where p; and ¢g; are arbitrary functions (depending only on the variables indicated)

and p; is not identically zero.

Inserting (4.33) in any of equations (4.29) and (4.31) and equating terms multiplying
sin(¢; + ¢o,i) and cos(¢; + ¢o,;) yields:
1 dp; 1 0p; 0o, 0o,

= — s frd — R frd 07 fr O'
“ pi Ot1 = pi Ota ot1 Oty

Thus, ¢o; is a function only of v, which may be absorbed on the coordinate ¢; as

discussed above. The two first equations imply

10pi _ 10p;  10pi _ 19p;
piOti  p;j Oti’  p; Ots  pj Ots

pi = G;(v)p(t1,t2,v),

p P
for arbitrary (non-zero) functions &; and p. Defining p? := > p? = (Z df) p* we can
i=1 i=1
write A
A Q€
Pi = QP = —F——pP = Q;p,
P 52

j=1 %

where ; 1= Gie/ />0, djz, with €2 = 1, form a set of arbitrary (non-zero) functions of

P
v such that Y a? = 1. The function p satisfies
i=1

_16p  _ 10p (4.34)

21_;371’ ? p Oty

Inserting (4.34) in equations (4.28) and (4.30), with the change of variable U = p~ 1,
we obtain after some algebra the following covariant system of PDEs (indices a,b = 1,2
refer to {t1,t2})

1
Vol = Uy + 55 (1 + VU VU) gat (4.35)

with

1
A= 5(—adt% + adt% + 27dt1dta), g:= dt% + dt%7

and where V is the Levi-Civita covariant derivative of g.



134

Lemma 4.39. Up to shifts t; — t; —to.1(v) and t; — t1 —to1(v), the general solution

of (4.35) with either o or T non-zero is given by

6 .
U= e (Bcosh(ty) — acos(t)) with B =1/a2 + p? + p? (4.36)

where a is a function of integration (depending on v), €& = 1 and ty = ity + psta,
t_ := pgto—psty, with ps, py given by (3.9). The solution (4.36) admits a limitc =7 =0
(i.e. px = ps = 0) provided o > 0, which is
o €
lim U =e-(t3+t3) + —. 4.37
vty 62(1+ 2)+2a (4.37)
Up to shifts t1 — t1 — to,1(v) and ta — ta — to2(v), this function is the general solution
of (4.35) foro =1 =0.

Proof. The coordinates t,,t_ defined in the lemma diagonalize A and g simultaneously
and yield

1
A= 5(dti —dt?), ¢ 5 (e +de?).

RN
From this and equation (4.35) it follows that 9?U/dt 1 0t_ = 0 or, equivalently, U(t,,t_) =
Uy(ty) + U—(t-). Substracting the {¢4,¢4} and {¢t_,¢_} components of (4.35) one ob-
tains

Py d*U- d’U, d’U_

—U=U+U. = S Uy, =S40 =
a2z w7 e T

for an arbitrary separation function a(v). The general solution is clearly
Uy = —a+ acosh(ty) + bsinh(t_) U_ =a+ ccos(t— — 9), (4.38)

where a, b, c,d are also functions of v. Since a drops out in U = Uy + U_ we may set
a =0 w.l.o.g. Inserting (4.38) in (any of) the diagonal terms of (4.35) and one simply

gets
1 2

2 _ 2
a” —b" = +c
p3 +

Hence |a| > |b| and we may use the freedom of translating ¢4 by a function of v to write

Uy = acosh(ty) (i.e. b = 0). A similar translation in ¢_ sets 6 = 0. Rescaling the

functions a,c as a = (p2 + p2)~1B8 and ¢ = —(p2 + p?) Lo we get
U=U_+U_= % cosh(ty) — %cos(t,), B2 =24l 4 a? (4.39)
s + Hy s + i

It is obvious that sign(U) = sign(/3). Thus taking 3 as the positive root § = \/a? + u2 + 2
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and adding a multiplicative sign € in (4.39), we obtain (4.36). To evaluate the conver-

gence as both o, 7 tend to zero, or equivalently s, us — 0, consider the series expansion
2 2 2
Hs + 1 (ust2 + puet1)
IBCOSh(t+) = <|Oé| + 82|a| : + Oﬁfﬁ%#s) <1 + sf + Olgi)vﬂs 9

(peta — pstr)? 4
NCLETE)

acos(t_) =a—

(4)

where o,,,,,, denotes a sum of homogeneous polynomials in z, ;s starting at order four,

whose coeficients may depend on t1,ts and a. Then, the expansion of U is

€ |olps + auf o
U= ( al —a)(l + tite) + 5 t
,Ug‘i‘ﬂ% (‘ ‘ )( HsHtll 2) 9 2
lalpf +ap? o | pa e |
t )
+ 5 T+ 2ol + 04,

It is clear that lim,, ,, 0 ofﬁ),us /(42 + p?) = 0 and the rest of the equation converges if
and only if @ > 0 in which case the limit is (4.37). An easy calculation shows that this
limit is (up to shifts in ¢1,¢2) is the general solution of (4.35) when o,7 = 0. O

Having the general general solution (4.36) of (4.35) we can give the expression of the

adapted coordinates

10U 1| apssin(t_) — S sinh(ty)
- = 4.40
4T ok ‘ U w3+ uf ’ (440
10U 1| apgsin(t_) + Bus sinh(ty)
_ lou _ |1 441
2T Uon ‘U P2+ pg ’ 4
v = Geos(or),  yi= T sin(6), (4.42)

where no sign of « is in principle assumed®, except for the case ps = iy = 0, where U must
be understood as the limit (with o > 0) (4.37) and 2y = —U 20U /0ty, zo = U~10U/Ots.
This coincides with the limit of the RHS expressions (4.40), (4.41), which is

—20%t 202ty

= —F5 5 o5 > 29— —————F——F5_. 4.43
1+ a2(2 +12) 2T 1+ a2+ 82) (4.43)

21
From equations (4.40), (4.41) and (4.42) it is obvious that the sign € is not relevant in the
definition of the adapted coordinates. This is because the two branches e = 1 and ¢ = —1
correspond to U > 0 and U < 0 respectively, which in terms of the adapted coordinates,
is equivalent to a rotation of 7 in the ¢; angles. Hence, w.l.o.g. we consider ¢ = 1,
i.e. U > 0. Also notice that the dependence on the variables v; appears through the
functions a; and a, with >°F_ o = 1. The set {a;,a} define p independent arbitrary

5The domain of definition of o will be later restricted under the condition that the adapted coordinates
define a one to one map.
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functions of the variables v;, so it is natural to use as coordinates {a;, a} themselves,

provided they are restricted to satisfy > 7, a? =1.

4.6.2 Region covered by the adapted coordinates

We now calculate the region of E™ covered by the adapted coordinates. It is clear that
in no case this region can include neither the zeros of the vector fields §~ and E* and 7;
nor the points where these p 4+ 2 vectors are linearly dependent. We therefore start by
locating those points. Denoting the loci of the zeros of E and §~* and 7; by Z(g), Z(g)*

and Z(n;) respectively, a simple calculation gives

({22 =03zt + Y03+ 4) = i — 2} if o =0), (4.45)

These expressions are valid for every value of ug, iy and imply that in the case ps =
e =0, Z(&) = Z(&) = {ﬂ?zl {z; = y; =0} } N{z1 = 22 = 0}, which is contained in
each Z(n;) = {x; = y; = 0}.

On the other hand, since {¢,7;} is an orthogonal set of CKVFs (cf. Lemma 4.30), they
are pointwise linearly independent at all points where they do not vanish. Similarly,
{g*,m} is also an orthogonal set, so linear independence is guaranteed away from the
zero set. Away from this set, the set of vectors {g, g*, n;} is linearly dependent only at
points where E and E* are proportional to each other with a non-zero proportionality
factor, E: ag*, a # 0. One easily checks that, away from Z(g) and Z(g*), the set of
point where { — ag* vanishes is empty except when p 75~0, 1t 7~é 0 and a = % It turns
out to be useful to determine the set of points where ;& — p:&* = 0 when at least one
of {us, pt} is non-zero. We call this set Z (usg — utg*), and a straightforward analysis

gives

(
{psz1 = —peza}

p
L N3 + 1)z + 2 2o (2F + 7)) = (3 + ud)pz} if ps # 0,
Z(ps€ — ") = =1 (4.46)
{usz1 = =22}

p
N{(u? + p?)23 + p? Zl(fc?ﬂLyi) (12 + ppd}  if e #0.
1=
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Obviously, the two expressions are equivalent when both ps and p; are non-zero. The
interest of this set is that it happens to always contain Z(£) and Z(£*). This, together
with the fact that when pus = py = 0 these sets are contained in the axes Z(1;) will allow

us to ignore them altogether.

Lemma 4.40. Assume that at least one of {ps, e} is non-zero. Then Z(£), Z(£*) C
Z(Msé‘ - ,U/tf*)'

Proof. Consider first g, iy # 0. Then at Z(,usg— ,utg*)ﬂ{ ﬂ§:1 {z; =y; =0} } we have
that z; = +us and zo = Fus which establishes Z(€), Z(£*) C Z(us& — &™) in this case.
When p; = 0, pus # 0, by definition of the respective sets we have Z(g) = Z(usg— utg*).
Moreover, directly from (4.45) one finds

_ p
Z2(€) = ({zj=y; =0} N{z = 0,2 = £},
j=1

which (cf. the first expression in (4.46)) is clearly contained in Z(ps€ — ). An

analogous argument applies in the case p; # 0, ps = 0. O

Let us define the following auxiliary coordinates

A Hs21 + [i22 L HsZ2 — [t21 L o
24 = N Z_ = y ZTi = Ty, Yi ‘= Yi-

i1 (@ + u7) (@ +7)

Except for the case s = py = 0 (which will be analyzed later) the coordinates {24, 2, &;, 9; }
obviously cover ]R”\{ ﬂ?zl{xj =y = O}} In terms of the adapted coordinates, they

read

Q; Q;

Zy = asin(t_), 2_ = (@sinh(t4) ;= ﬁl cos(¢;), Ui = ﬁz sin(¢g;).  (4.47)
Let us analyze the points where (4.47) fails to be a change of coordinates and hence
restrict the domain of definition of {«,t_,t1, a4, ¢;}. The first thing to notice is that a
change of sign in the coordinate «; is equivalent to a rotation of angle 7 in the coordinate
¢;. Moreover, at points where o; = 0, i.e. the axis of n;, the coordinate ¢; is completely
degenerate, which obviously excludes U§:1 {z; = y; = 0} from the region covered by the
adapted coordinates. To avoid duplications, we must restrict «; € (0,1) and ¢ € [—m,7)
or alternatively o; € (—1,1)\{0} and ¢; € [0, 7). We choose the former for definiteness.

The hypersurface {« = const, t_ = const, t; = const} is an n — 3 dimensional sphere of
radius U~!, namely {_ = const, 2y = const} N {>"?_;(2? 4+ y?) = U~2 = const}. This
gives a straightforward splitting of R™\{0,—2}, with 0,2 := {(V/_;{z; = y; = 0}}, into
R? x (R"2\{0,,_2}), where R"~2\{0,,_»} is foliated by n — 3 dimensional spheres. The
set Z(usé — uE*) respects this foliation, so it descends to R2 x RT (the last factor is

the radius of the n — 3 sphere). To avoid extra notation we also use Z(,usg— utg*) to
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denote this quotient set. We next show that the adapted coordinates actually cover the
largest possible domain, namely R™ \ {Z (s — pe*) U U= {zj = y; = 0}}. From the

previous discussion, this is a consequence of the following result.

Lemma 4.41. Assume that at least one of {us, e} is not zero. Then. the transforma-

tion

(34,22, U) : R x [-m,7) x R —  (R% x RY) \Z(us€ — ju*)

.. (4.48)
(ty,t—,a) — (24,2-,U).

is a diffeomorphism.

Proof. The determinant of the jacobian of (4.48) reads

‘ 6(24-7 2—7 U)

Aty t_, ) ‘ = ab.

Since U is strictly positive (cf. (4.36) and recall that we chose ¢ = 1 w.l.o.g.), the
conflictive points are « = 0. To calculate the locus {& = 0} we obtain the inverse
transformation of « in terms of U, Zy,2_ by solving (4.36) and the first two in (4.47).

The result is, after a straightforward computation,

1 o 1/2
W(zi + 82— UP(p2 + pf)* + (13 + uf))2) . (449)
s t

a=+ (zﬁ +
It follows that a = 0 is equivalent to 2, = 0 and 22 + p2 + p? = U%(p2 + p?)?. When
translated into the original coordinates{z1, 22, z;, y;} this set is precisely Z (usg - ,utg*).
Also, from (4.49) it is obvious that « is multivalued, which also implies that {_ is
multivalued after substituting o as a function of 2,,2_, U in the first equation in (4.47)°.
We solve this issue by restricting « to be strictly positive and let ¢_ take values in
[—7, ). O

We have shown that the adapted coordinates cover all R™ except U§:1 Zmj)uUZ (,usg -
1:&*) . The domain of definition of the coordinates ¢1,to depends on py and us, because
—m < t_ = pte — ust; < w. This defines a band B(us, pt) := {—7 < t— = ity —
wst1 < w}, whose width and tilt is determined by o, 7 through ps, us (see Figure 4.2).
Nevertheless, the coordinate change is well defined for all values of t; and t2 and involves
only periodic functions of ¢t_. Thus, we can extend the domain of definition of t1,¢s to
all of R2. This defines a covering of the original space R™\ ( ?:1 Z(n;j) U Z(ps€ — 1))
which unwraps completely the orbits of £ and £*. It is not the universal covering because
it does not unwrap the orbits of the axial vectors. This result is a generalization to higher

dimensions of the covering dicussed in detail in Chapter 3.

5This was already evident by observing that a change of sing in « is cancelled by a rotation of 7 in
t_
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The limit case ps = g = 0 (that is ¢ = 7 = 0) corresponds with a band of infinite
width, i.e. B(us, Mt) = R?. In this case, the adapted coordinates also cover the largest
possible set R"\( 1 Z2(nj))- Recall that in this case the only points where {§ £, 7}
is not a linearly 1ndependent set is the union of Z(€), Z(¢*), and Z(n;) and we have
already seen that in this case Z(£) = Z(€*) € Z(i;), for i = 1,--- ,p. This limit case is
the same result that we would have obtained, had we performed a direct analysis using
U as given by (4.37).

tl A

FIGURE 4.2: Band B(us, it) where the coordinates t1,ty are defined. The tilt is given
by 6 = arctan (“t) and the width w is 27/ if ue # 0, 27/ ps if e = 0, ps # 0 and
w — 00 if g = pg = 0.

4.6.3 Conformally flat metrics in adapted coordinates

Once we have determined the adapted coordinates and the region they cover, we may

proceed to calculate the expression of the Euclidean metric

p
gp = dz} +dz3 + Z (dz? +dy?) . (4.50)
i=1

P
in adapted coordinates. We start with the term (dw? + dyf), which is straightforward

=1

P Cdv? 1 ¢ 2dU [ &
Zl d:c —i—dyl =i + = e Zl (da? + a?dqﬁg)‘z:g:la%:l -7 ;aidai
AU 1

= W + W")gnfm (451)
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where in the last equality we used _?_; a;dey; = 0, which follows from >_?_; a? = 1 and

we have defined ,

Ygn—3 1= Z (da? + a%dgf)?) |Zf:1 21 (4.52)
i=1

The notation is justified because the right-hand side corresponds to the standard unit
metric on S"73. This follows because Y 7_, (da? + a%dgﬁ%) is obviously flat and the re-
striction y %_; a? = 1 defines a unit sphere. We emphasize, however that the notation
~vsn—3 refers to the quadratic form above, not to the spherical metric in any other coor-
dinate system. Observe also that dU in (4.51) should be understood as a short name for
the explicit differential of U in terms of dt;,dts, da. Using (4.50) and (4.51), we have

_ (91, (92, L (UY
It =\ ot ot,) Ui\t )
which after an explicit calculation reduces to

o +
ity = Uz

Notice that gie, = 956, 8),s guats = gu(E*, &) and gy, 1, = gr(€,€*). From the expres-
sions in Cartesian coordinates it is straightforward to show

~ = ~ = o

o p
98(6,6) = gp(€7,€") — 0 > (a7 +4}) = 96(€".6) — 73
=1

p

95(6,8) = 2> (@l + ) = 55

P
where we have used U=2 = > (22 + y?) (see (4.42)). Thus
i=1

B o o+ T psp
Gtote = Gtit; T m = Uz Gty = oU2 ~ U2

The remaining terms are rather long to calculate. With the aid of a computer algebra

91\> [(9»\? 1 [oU\® 1
f’w:<aa> *(m) *m(aa) P

821 82:1 82’2 822 1 BU 8U
gatlzaiaaitl‘i‘aiaaitl—i‘maiaaitl: s

82’1 821 82:2 82’2 1 6U 8U
gatQZ%%‘i‘%%—Fm%%:

system one gets

Notice that no terms in do;, d¢; appear but those in ~vgn-3, since neither U nor z1, 2o

depend on «;, ¢;. Putting all these results together we obtain the following expression:
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Lemma 4.42. In adapted coordinates {t1,ta2, o, a;, ¢;}, the Fuclidean metric gg takes
the form

1 daQ
g = g (02 + 08+ (@2 + )08+ Budnndta + 00
o + s + My

U2
(4.53)

We would like to stress the simplicity of this result. Except in the conformal factor, the
metric does not depend in t; and to (so, both fN and 5* are Killing vectors of U%gg).
The dependence in the coordinate o and the conformal class constants {ps, p¢} is also
extremely simple. Even more, the fact that all dependence in {«;, ¢;} arises only in
ysn-s allows us to use any other coordinate system on the unit sphere S?~3. Any
such coordinate system is still adapted to E and E* but (in general) no longer to {n;}.
This enlargement to partially adapted coordinates is an interesting consequence of the

foliation of R™ by (n — 3)-spheres described above.

4.6.4 0Odd dimensional case and Adapted Coordinates Theorem

We now work out the odd n case. As already discussed, we will base the analysis on the
even dimensional case by restricting to a suitable a hyperplane. The underlying reason

why this is possible is given in the following lemma.

Lemma 4.43. Fiz n > 3 odd. Let &g be a CKVF of E™ in canonical form and let
{z1,2i,yi} be canonical coordinates. Consider the embedding E™ — E"+1 where E" is
identified with the hyperplane {z2 = 0}, for a Cartesian coordinate zo of E"*1. Then &p
extends to a CKVF of E™1 with the same values of o, ju; and 7 = 0.

Proof. By Remark 4.32 and Theorem 2.11, the expression of {r in the canonical coor-

dinates {z1,x;,y;} is

p p

1 P
§r = (; + ) (Z% - 2(3312 + yf))) 9z + 21 Z (i0z, + yi0y,) + ZM‘ (zi0y; — Yi0a;)

=1 =1 i=1

p
E+ ) i
=1

S
Define £}, on E"*1 in Cartesian coordinates {z1, 22, ;, yi } by & = &'+ D" pi (2:0y, — viOx,)
i=1

where E’ is given by (4.27) with 7 = 0. It is clear that this vector is a CKVF of E"*!
written in canonical form, that it is tangent to the hyperplane zo = 0 and that it agrees
with £F on this submanifold. O

Consequently, introducing adapted coordinates for the extended CKVF and restricting

to {z2 = 0} will provide adapted coordinates for {r. The restriction will obviously reduce
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the domain of definition of the adapted coordinates {¢1,t2, a, a;, ¢;} to a hypersurface.
It is straightforward from equation (4.41) and the second equation in (4.43) that for the
three cases 0 > 0, 0 = 0 or o < 0, the hyperplane {z2 = 0} corresponds to {t2 = 0}. It
follows that the remaining coordinates {t1, o, oy, ¢;} are adapted to E and all n;. Their
domain of definition is t; € R, a € RT, a; € (0,1), ¢; € [, ) and the coordinate
change is given by (4.40) (or the first in (4.43)) together with (4.42) after setting 7 =0

and to = 0. Depending on the sign of ¢ one gets for z;

—1 asin(y/at1)

T o 7>0
1 \/msinh( lolt1)
2 = 1 <0 (4.54)
U~ o] ’ ’
ot v =0
|Uo‘04 15 g =
where
1 1
Ut :==(Va2+ o — acos(yoty)), U™ := —(vVa?—occosh(v—ot1) — ),
o —0
1 1
UO = §(O‘t% + a)a
and for all three cases
Q; o .
T = Uze cos(di),  yi= #ﬁ sin(¢;), (4.55)

where we write U€ for the function U, U~ or U according with sign of o.

The range of variation of {¢1, a, v, ¢; } was inferred before from the corresponding range
of variation of {t1, %2, a, a;, ¢;} in E"*1. It may happen, however, that when we restrict
to the hyperplane {z2 = 0}, the range gets enlarged and additional points get covered
by the adapted coordinate system. The underlying reason is that, in effect, we are no
longer adapting coordinates to E’ *, so the points on zo = 0 where this vector is linearly

dependent to E’ (or zero) are no longer problematic. When 7 = 0, one has
(ns = Vo, wm=0) ifo>0, (s =0, w=+/|o]) ifo<0.

We may ignore the case o = 0 because Z(£') = Z(£*). It follows from (4.44) and (4.46)
that

M=

ﬂ?ﬂ{l‘j:yjzo}ﬁ{zlzﬂ: |a|} ifo<0
{z1:O}ﬁ{

— p
220 | {2+ @+ ) = ol if o < 0.

=1

2@ (z2 4+ y2) = J} ifo>0

20=0

M=

(:E?+yi2):cr} ifo>0
1

i

Z(,usg, - ,utg/*)
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When o > 0, the two sets are the same and no extension of the coordinates {t1, o, a;, ¢; }
is possible. However, when o < 0, the set Z(Msg’ — ,utg’*)\ZFO is strictly larger than
Z(g)|Z2:0. From expressions (4.54) and (4.55) one checks that Z(u& — utg’*)|22:0\
Z(€")|29—0 corresponds exactly to the value a = 0 and that Z(£) = Z(&)|.,—o is at the
limit ¢; — 4oo. Thus, a priori there is the possibility that the adapted coordinates
{t1, o, aj, ¢;} can be extended regularly to « = 0 when o < 0. It follows directly from
(4.54) that this is indeed the case (observe that, to the contrary, the limit o — 0 in
(4.54) is singular when ¢ > 0, in agreement with the previous discussion). Thus, the
range of definition of « is [0,00) when o < 0. The conclusion is that, irrespectively of
the value of o, the adapted coordinates {t1, , o, ¢;} cover the largest possible domain

of E™, namely all points where {N is non-zero away from the axes of {n;}.

To obtain the Euclidean metric in E” for n odd in adapted coordinates we simply restrict
(4.53) (with n — n + 1) to the hypersurface to = 0, and get

1 2 (1 €)|C | 2 dCM2
¢ —_— dt n— 4-
9k ([76)2 <<a 92 1 2 | | ysSn=2 |, ( 56)

where e = —1,0, 1 respectively if 0 < 0,0 = 0,0 > 0.

Observacin 4.44. The three odd dimensional cases can be unified into one. The func-
tion U° coincides with the limits of Ut and U~ when o — 0. Howewver, the analytical
continuation of UT to negative values of o does not directly yield U~. To solve this we

introduce the function

Wi(y) = e (\/ y2 4+ o — ycos (ﬁtl)) ,

g

which is analytic in o and takes real values for real . We observe that UT (o = y) =
Wi(y) foro >0, Ua=y) =Wi(y) (6 =0) and U (a = +/42 +0) = Wi(y) (o <
0). This suggests introducing the coordinate change a =y for o > 0 and a = ++/y? + o
for o < 0. From the domain of «, it follows that y takes values in y > 0 when o > 0
and y > +/—oc when o < 0. In terms of y, the three metrics metric g¢ take the unified

form

1 dy? >
€ 2 142

E= 575 dey + + Ysn— .
g Wi (y)? (y "y to s

The function W1 is the analytic continuation of U™ to negative values of o. We could
have started with U~ and continued analytically to positive values of o. Instead of
repeating the argument, we simply introduce a new variable z defined by y = /22

with range of variation z > \/o for o > 0 and z > 0 for o < 0. The metric takes the

— 0

(also unified and even more symmetric) form

dz?

g %(z—\/zz—acos(ﬁt1)>.

€ 1 2 2

+ 78n—2> , Wa(z) =
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The function Wa(z) is again analytic in o, takes real values on the real line, and now
it extends U~. More specifically, U= (a = 2) = Wa(z) (0 < 0), U(a = 2) = Wa(2)
(0=0) and Ut (o =22 —0) =Wa(z) (0 >0).

Remark 4.44 allows us to work with all the odd dimensional cases at once, which will
be useful for Section 4.7. However, this unified form does not arise naturally when the
odd dimensional case is viewed as a consequence of the n+ 1 even dimensional case. So,
leaving aside this remark for Section 4.7, we summarize the results of this section in the

following Theorem.

Teorema 4.45. Given a CKVF &p of E™, with n > 4 even, in canonical form {p =
§+ P wini, the coordinates ty,t2, ¢iy o, i, for i =1,---p and Y F_; a? =1, defined

by
1 8U 1 8U (67

(o7
_5871’ 22 = 5672 T; = *COS(@)a Yi = ﬁsm(@)

Z1 =

with
U— Va2 + p? + p2 cosh(pety + pste) — cvcos(pta — psty)
= 2 2
:UJt =+ /’Ls

)

which admits a limit lim,,_,, .o U = %(t%%—t%)—i—i, furnish adapted coordinates to € = O,

g* = O, M = Og,, which cover the mazimal possible domain, namely E”\( ?:1 Z(n;) U
Z(ps€ — utg*)> for t1,ta € Bus, ut), ¢; € [—m,7), a; € (0,1) and o € RT. Moreover,

the metric gg, which is flat in canonical Cartesian coordinates, is given by

1

= (02 + u?)at} + (a? + u2)d + 2upudtrdty

gE

da? - 2 | 219
e Y el el ) (157

If n > 3 is odd and & is in canonical form, & = E+ S | wini, the coordinates
{t1, i, a, ;} adapted to €= Oy, mi = Oy, are given by the case of n+1 (even) dimensions,
for 7 = 0 restricted to to = 0 (which defines the embedding E™ = {29 = 0} C E"*!) and
cover again the mazimal possible domain, given by E™\ (U?:1 Z(n;) U Z(g)) fort; € R,
¢i € [-m,7), a; € (0,1) and « € RT when o > 0 and o € RT U {0} when o < 0.
Moreover, the metric gg, which is flat in canonical Cartesian coordinates, is given by
the pull-back of (4.57) at ta = 0 after setting T = 0. Explicitly gg is, depending on the
sign of o, given by (4.56) with ygn-2 as in (4.52).

4.7 TT-Tensors

The adapted coordinates derived in Section 4.6 provide a useful tool to solve geometric
equations involving CKVFs. In this section we give an example of this in the context

of A-vacuum spacetimes admitting a smooth null conformal infinity in the n = 3 case.
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Our aim is to give a simple yet interesting application of the formalism developed in the
previous sections. We stress that the methods that we employ here can also be used in

the higher dimensional case (with a considerable amount of extra work).

Consider a Riemannian 3-manifold endowed with a conformally flat metric g and let &
be an arbitrary CKVF of g with its canonical form £ = §~ + 1. We shall use the KID
equation (cf. Theorem 2.35) to obtain the most general TT tensor D satisfying (2.55)
for both é and 7, so we obtain the asymptotic data which generates a spacetime with
two commuting symmetries, one of which is axial. As we shall also justify (cf. Remark
4.50) the requirement of one of these symmetries being axial is not very restrictive and
the data corresponding of all spacetimes with two commuting symmetries (with none of

them necessarily axial) can be obtained straightforwardly.

A CKVF satisfying (2.55) will be called KID vector for short. An important property of
KID vectors is that they form a Lie subalgebra of CKVFs, i.e. if £, & are KIDs for a given
TT tensor D, then [¢,¢'] is also a KID for D. The problem of obtaining all TT-tensors
with generality for a given conformal structure is hard, even in the conformally flat case
(see e.g. [16], [145]). Our approach is not completely general as we impose additional
equations but is relevant to study spacetimes with symmetries. Also, n = 3 corresponds
to the physical case of four spacetime dimensions and the class of solutions we obtain
necessarily contains the Kerr-de Sitter family of spacetimes, which is one of our main
interests in this thesis. Our strategy is to take an arbitrary CKVF &, derive its canonical
form &g = §~ + un, adapt coordinates to E and 7 and impose the KID equations’ to 5
and 7.

The problem simplifies notably in the conformal gauge to g := (U 6)2955 because both
5 and 17 become Killing vector fields. From Remark 4.44, we may treat all cases o <

0, 0 =0, o > 0 at the same time by using the form of the metric

dz2

22—

9= + (2= o)A’ +d¢?,  £=0d,  n=20, (4.58)

We remark that even though we solve the problem by fixing the coordinates and con-
formal gauge, we shall write the final result in fully covariant form (cf. Theorem 4.47
below). Also notice that, assuming that we have coordinates adapted to two orthogo-
nal CKVFs 0,04, and knowing that these vectors are orthogonal, the vanishing of the
Cotton tensor reduces to an ODE in z (in the conformal gauge where 0y, 0, are Killing

vectors and ggs = 1) which yields a metric of the form of (4.58).

In the conformal gauge of g, the condition that a TT-tensor D satisfies KID equations
for both §~ and 7 (which is equivalent to imposing that £ and 7 are KID vectors) is trivial

In higher dimensions one could impose the KID equations, for g and each 7; still yielding a tractable
problem. One can also enlarge the class by supressing some of the KIDs. Obviously, the less KID
equations one imposes the more difficult the problem becomes.
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in the adapted coordinates obtained in the previous section:
LD =9,p4 =0,  £,D =9,D" =0.

Thus, DAP are only functions of z. The transversality condition is also quite simple in

adapted coordinates:

dDZZ DZZ 9 "
o <z2 — +(2*=0)D" ) =0, (4.59)
dD# 2z
D* =0 4.60
dz 22—0 (4.60)
dD*®
=0 4.61
7=, (461)
while the traceless condition imposes
DZZ
gapD?P = —— 4+ (2> — o)D" + D% = 0. (4.62)
22—

There are no equations for D® so D' = h(z) with h(z) an arbitrary function. The

general solution of equations (4.60) and (4.61) is obtained at once and reads

K
22— g’

D* = D = K, Ki, K> € R.
For equations (4.59) and (4.62), we let D** =: f(z) be an arbitrary function and obtain

the remaining components

B S A |

D% = .
zdy’ 2(22—0)dz  (22—0)2

Summarizing

Lemma 4.46. In the three-dimensional conformally flat class [g], let & be a CKVE.
Decompose £ in canonical form £ = §+ un and fix the conformal gauge so that g is
given by (4.58). Then the most general symmetric TT-tensor D satifying the KID equa-
tions for & and n simultaneously is, in adapted coordinates {z,t, ¢}, a combination (with

constants) of the following tensors

_ S S R S _Ldf
Df = f82®8z+<z(zz_0) Ep (Z2—0)2>8t®8t Zdz8¢,®8¢,
Dy, := h(0; ® 0y + 0y ® 0y),
1
ngx = m(@z®at+at®az),

Dy = 0. ® 0y + 8¢ ® 0,

where f and h are arbitrary functions of z.
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Having obtained the general solution in a particular gauge, our next aim is to give a
(diffeomorphism and conformal) covariant form of the generators in Lemma 4.46. From
[99, 100], we know that, for any CKV ¢ of any n-dimensional metric g (not necessarily
conformally flat) the following tensors are TT w.r.t. to g and satisfy the KID equation
with respect to &.

1 €13
% T (5 ven ngg’j) ,

where | - |, denotes the norm w.r.t. g. Thus, we can rewrite Dy as

Dy = (_2(22_0)1/2f+(2’2—0)3/2df> DE_ < 2f _+_1df) D,,.

z dz 22 —0 zdz

We now restore the conformal gauge freedom by considering the metric § = Q?¢g and
D = Dy/Q5 (cf. Lemma 2.1), for any (positive) conformal factor Q. Since the tensors
Dg, D,, are already conformal and diffeomorphism covariant, we must impose their mul-
tiplicative factors in Dy to be conformal and diffeomorphism invariant. With the gauge

freedom restored, the norms of the CKVFs now are
Elg=vVz2 -0, Inlg=Q.

Then, considering f =: \/Xf(X) as function of the conformal invariant quantity X =
|a§/|n|§ = /22 — 0, one can directly cast ﬁf in the following form:

~ d [ f(X) 1 d ~
x4 4 L4 re3)0
Dr=%*"3x <X3/2 Pe~oax (X / (X)) Dy,
which is a conformal and diffeomorphism covariant expression. Notice that the expres-

sion is symmetric under the interchange {N <+ 1 because the coefficient of D,, expressed

in the variable Y = X~! is identical in form to the coefficient of Dg.
For the tensor Dj, 1= Dy, /2, redifining h =: ﬁ|g]_5/2, it is immediate to write

~

h ~ ~
= (ERn+nef), (4.63)
i1

:Dﬁ:

g

which is obviously conformal and diffeomorphism covariant if and only if h is conformal
invariant, e.g. considering h= E(X) Observe that the form (4.63) already appeared in

Theorem 3.25 for T'T tensors in dimension two satisfying the KID equation.

For the remaining tensors lA?g = Dz /9 and Dy, :=D /Q%, we define a conformal
X £x X X

class of vector fields y, which in the original gauge coincides with x := d,. This vector

is divergence-free Vx4 = 0, and this equation is conformally invariant provided the

conformal weight of x is —3 (i.e. for § = Q2g, the corresponding vector is ¥ = Q7 3x).
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We therefore impose this conformal behaviour® of x. The direction of x is fixed by
orthogonality to 5 and 7. The combination of norms that has this conformal weight and
recovers the appropriate expression in the gauge of Lemma 4.46 is [x|5 := ‘ag_ 1]77\?;2
(note that the orthogonality and norm conditions fix x uniquely up to an irrelevant sign

in any gauge). Thus, we may write

1
Dz (x®£+£®x) Dpx=1m(x®@n+n®x),
Ex ‘ §|2 In|2
g
which are conformally covariant expressions (this explains the notation we have used for
D;  and D, , which up to now may have seemed awkward). Therefore, we get to the

&x
final result:

Teorema 4.47. Let & be a CKVE of the class of three dimensional conformally flat
metrics and let £ = 5~+ un a canonical form. For each conformal gauge, let us define a
vector field x with norm |x|5 := \§|A1|77]A , orthogonal to f and n. Then, any TT-tensor
satisfying the KID equations (2.55) for § and 1 is a combination (with constants) of the

following tensors:

~=X— b d s -
Pt <X3/2> PeT (X f(X)> Dn, Dy = n ‘5/2| G E®n+n®E),

1
Déx |£|2(X®£+£®X) Dﬂ,X_W(X(@n‘i’U@X)
g

for arbitrary functions f and h of X = ]ag/]n\g.

Observacin 4.48. The vector field x defined in this Theorem is divergence-free. This
property would have been difficult to guess (and even to prove) in the original Cartesian

coordinate system.

Observacin 4.49. A corollary of this theorem is that the general solution of the A-
vacuum Finstein field equation in four dimensions with a smooth conformally flat null
infinity and admitting an azial symmetric and a second commuting Killing vector can
be parametrized by two functions of one variable and two constants. Recall that in the
A =0 case, the general asympotically flat stationary and azially symmetric solution of
the Einstein field equations can be parametrized (in a neighbourhood of spacelike infinity,
by two numerable sets of mass and angular multipole moments (satisfying appropriate
convergence properties), see [2], [18], [27] for details. There is an intriguing parallelism
between the two situations, at least at the level of crude counting of degrees of freedom.
This suggests that maybe in the A > 0 case it is possible to define a set of multipole-

type moments that characterizes de data at null infinity (and hence the spacetime), at

8This choice may appear somewhat ad hoc at this point. However, the condition of vanishing di-
vergence appears naturaly when studying (for more general metrics) under which conditions a tensor
EQW + W ® € is a TT tensor satisfying the KID equation for £&. We leave this general analysis for a
future work.
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least in the case of a conformally flat null infinity. For example, the contraction of an
arbitrary TT tensor D with of any CKVF gives a conserved current [9, 10]. In particular
Do‘ggﬁ and Do‘ﬁnﬁ integrated over the surface S = {t = const.} give finite conserved
charges (under suitable assumptions on f' and iz), which one could attempt relate to
energy and/or angular momenta. We shall comment on this again in Chapter 5. This

is an interesting problem, but beyond the scope of this thesis.

Observacin 4.50. [t is natural to ask whether Theorem /.47 is general for TT-tensors
admitting two commuting KIDs, ;5, n, without the condition of n being conformally axial.
In Appendiz C' of [100] one can explicitly find, for an arbitrary CKVF &, the set C(&) of
elements that commute with £&. Then, from a case by case analysis, one concludes that
except in one special situation, for any linearly independent pair £,&', with £ € C(§) it
is the case that there is a CAKVF n € C(§) such that span{&,n} = span{&,&'}. Thus,
all these cases are covered by Theorem 4.47. The exceptional case is when &,& are
conformal to translations. It is immediate to solve the TT and KID equations for such

a case directly in Cartesian coordinates.

The solution given in Theorem 4.47 provides a large class of initial data, which we know
must contain the so-called Kerr-de Sitter-like class with conformally flat .# (cf. [100]
and Chapter 6 for precise definition and properties of this class), which in turn contains
the Kerr-de Sitter family of spacetimes. It is interesting to identify this class within
the general solution given in Theorem 4.47. The characterizing property of the Kerr-
de Sitter-like class in the conformally flat case is D = D(§) for some CKVF ¢, where
moreover, only the conformal class of & matters to determine the family associated to

the data. Decomposing canonically £ = g + un, a straightforward computation yields

X5 #2 MX5/2
De = (X2 +M2)5/2D§~+ (X2 +u2)5/2D77 T (X2 4_'u2)5/2DE:17

which comparing with Theorem 4.47 yields the following corollary:

Corolario 4.51. The Kerr-de Sitter-like class with conformally flat .% is determined by
the TT-tensor Dggs = ﬁf + ﬁﬁ with

1 X3/2 . X5/2

f 3 (X2 + p2)3/2 M(XQ + p2)5/2

It is also of interest to identify the the Kerr-de Sitter family. To that aim we combine
the results in [100] to those in the present chapter to show that this family corresponds
to 0 < 0. The classification of conformal classes of £ in [100] is done in terms of the
invariants ¢ = —¢; and k= —cg together with the rank parameter r, where c¢; and ¢y are
the coefficients of the characteristic polynomial of the skew-symmetric endomorphism
F associated to £&. In terms of these objects, it is shown in [100] that the Kerr-de Sitter
family corresponds to either §; = {E >0, ce Rand r =2}, or S = {% =0, ¢> 0 and
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r = 1}, the latter defining the Schwarzschild-de Sitter family. It is immediate to verify
that, since (cf. Corollary 4.14) k=—ou?<0andc= —o—pu2, then S; = {0 <0,u# 0}
and So = {0 < 0, = 0} (the condition p # 0 implies r = 2 and p = 0 implies r = 1).
Thus, in terms of the classification developed in this chapter, the Kerr-de Sitter family
corresponds to o < 0. It is interesting that in the present scheme we no longer need
to specify the rank parameter to identify the Kerr-de Sitter family (unlike in [100]) and
that the whole family is represented by an open domain. These results will be recovered
and extended to arbitrary dimensions in Chapter 5. We emphazise that the dependence
in o in the solutions given in Theorem 4.47 and Corollary 4.51 is implicit through the

norm of E



Chapter 5

Free data at .¥ and
characterization of Kerr-de Sitter

in all dimensions

In this chapter we deal with higher dimensional asymptotic initial value problems of
general relativity with non-zero cosmological constant. The contents of this chapter are
in the preprint [96] which has been submitted for publication and is currently under

referee assessment.

In Section 5.1 we study the relation between the Weyl tensor and the n-th order coeffi-
cient of the FG expansion in the conformally flat .# case. In order to remain as general
as possible, some of our results are derived for Poincaré and FPG metrics (cf. subsection
2.3.2). We start, by giving two identities for the Weyl tensor, which are specially useful
here and in Chapter 6. We believe that they may be of independent interest in general
relativity. Then in subsection 5.1.1, in the conformally flat .# case, from the n-th order
coefficient, we extract a TT term g,,) which coincides, up to a constant, with the electric
part of the rescaled Weyl tensor at .#, D. We do this in such a way that a boundary
metric v and g,y are equivalent to v and the full coefficient g(,), thus providing a geo-
metric characterization of the initial data. In the case A < 0 and Lorentzian signature, it
was known [82] that conformal flatness at .# is sufficient for D and g, to agree up to a
universal constant. We recover and extend this result to general signature and any sign
of non-zero A. Moreover, we explore whether conformal flatness of .# is also necessary
and link this to the validity of long-standing open conjecture that no non-trivial purely
magnetic A-vacuum spacetimes exist. In addition we study the non-conformally flat .#
case. In this situation, the electric part of rescaled Weyl tensor is in general divergent
at .#, so we determine a quantity constructed from an auxiliary metric which can be

used to retrieve g(,) from the electric part of the rescaled Weyl tensor.
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In Sections 5.2 and 5.3 we concentrate in the A > 0 case and Lorentzian signature. In
Section 5.2 we obtain a KID equation, analogous to the one in Theorem 2.35, which is
a necessary and sufficient condition for analytic data at .# to generate spacetimes with
symmetries in all dimensions. In addition, the analysis on the data of the FG expansion
is used in Section 5.3 to find a geometric characterization of the Kerr-de Sitter metrics
in all dimensions in terms of its geometric data at null infinity. The validity of this
characterization in even dimension relies on the fact that the data obtained are analytic,

so that existence and uniqueness is guaranteed (cf. Theorem 2.39).

5.1 Formulae for the Weyl tensor

Before starting our analysis on the initial data in the FG expansion, we begin by stating
and proving some useful results which help to calculating the electric part of the rescaled
Weyl tensor. Recall that for a conformal extension g = 02§, we denote V. =T,
and T+ = ¢gMT,. In the first part of this chapter, we shall work with the following

components of the Weyl tensor, for which calculations are more natural.

Definicin 5.1. For every metric § and conformal extension g = 27, the T-electric

part of the Weyl tensor is given by the following contraction of the Weyl tensor

(Cr)ij 1= CP s T, TV

Note that this definition is only slighlty different from the standard definition of the
electric part of the Weyl tensor (cf. Definition 2.32). For our purposes, it is more
convenient to use the definition above, which of course only differs from the standard
one by a factor. Moreover, for geodesic conformal extensions, the proportionality is just
a constant, namely C'| = A~'Cp provided T and u point into the same direction. If, in

addition, the metric is ACC (cf. Section 2.2) the rescaled Weyl tensors always satisfy
(701 o= A"HQPTCr) |s, (5.1)

whenever these quantities are finite. Hence, by adding the constant factor A we can use

interchangeably the electric and T-electric parts of the Weyl tensors at .#.

Lemma 5.2. Let g be a conformally extendable Einstein metric with A # 0 and g = Q%g
a geodesic conformal extension. Then, in Gaussian coordinates {Q, 2}, the T-electric
part of the Weyl tensor reads

2

A 1 1
(Cr)i; =5 <2aﬂgikgklaﬂglj + g 0i — 35229@') : (5.2)

where gq is the metric induced by g on the leaves {Q = const.}.



153

Proof. Inserting (A.2) and (A.5) in equation (A.3) of Appendix A yields

~ A A
Q*(Rr)ap = N0qAap + Az — qAas = 5 (TaTs + Aas) - (5.3)

Since g is Einstein with cosmological constant A # 0

Ruauﬁ = C,uazzﬁ + 2)\§M[V§ﬂ]a7
we can relate Ry and the T-electric part of the Weyl tensors,
(CT)ag = CrawgT'T" = Q*ClansTHT",

by

(Rr)ap =

(CT)aﬁ ) ()\gaﬂ + TaTﬂ)
0?2 04 )

Combining (5.3) and (5.4) gives

A
(Cr)ag = AAas + Al — 5Aaﬁ,

which yields (5.2) after writting A,3 in terms of the metric by means of expression
(A.4). O

Observacin 5.3. Note that equation (5.2) implies that Cp is always O(QY). In particular,
i dimensiton n = 3 it is always the case that

3)\2

(Q'Cr) |o= —59)

which recovers the well-known result by Friedrich [58] that for positive A the electric part
of the rescaled Weyl tensor corresponds to the free data specifiable at 7.

Assume that g satisfies the hypothesis of Lemma 5.2 and that its FG expansion is of the

form

(n—1)/2
G~ Z 9(28)923 + Qntly
s=0
with n odd and [ at least C? up to an including {2 = 0}. Equation (5.2) implies that its
T-electric Weyl tensor Cp only has even powers of Q up to and including Q"1 (higher
order terms may be even and odd). As a consequence, the tensor 02"Cr splits as a

sum of divergent terms at 2 = 0 plus a regular part which vanishes at 2 = 0.

We now present a general result concerning the Weyl tensors of two general metrics
related by
g=30+Q"q (5.5)
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for a natural number m > 2, where ¢ is a symmetric tensor and all three tensors g, g
and ¢ are at least C? in a neighbourhood including {Q = 0}. No further assumptions
besides minimal regularity conditions are imposed on g or g, such as being Einstein or
FPG. The result holds therefore in full generality and has potentially a wide range of

applications.

Lemma 5.4. Let n > 3 and g, § be (n + 1)-dimensional metrics related by (5.5), for
m > 2, with g,§,q and Q at least C? in a neighbourhood of {Q = 0}. Assume that V2
is nowhere null at Q = 0. Then their Weyl tensors satisfy the following equation

R n—2 . .
CFrop = cH voB — K, (Q) — 1(u“u[atg],, +tH [au/g}uy)
e (9 0 o -
+— —(1 )’(h“[atmv +1" hgp) +o(Q77F) (5.6)

with
Kpn(Q) = m(m — 1)Qm2F?,

and where VQ = Fu, for g(u,u) = € = %1, hag is the projector orthogonal to wu, all
indices are raised and lowered with g, tog = qu.h*oh” g while t and fag are its trace and

traceless part respectively.

Proof. First notice that the covariant metrics g# and §* (associated to g and § respec-

tively) must be related by a similar formula
g =g +am,

for a contravariant two-tensor I (also C? near {Q = 0}, just as g, gf), because the
presence of any term of order Q" m/ < m, would imply terms of order Q™ in gfg
which could not be cancelled. As mentioned in Chapter 2, when using indices, we will
omit the # in the metrics and write upper indices. Also, indices in objects with hats are

moved with the metric § and its inverse and indices of unhatted tensors are moved with

g.
Recall the definition of the Weyl tensor (2.10) and define

2 2R
(5M[O¢Rﬁ}u - gl/[aRMW) + n(n — 1)6u[o¢g,3]1/'

A“,,aﬂ = -1

Using the relation of Riemann tensors (2.5) for ¢t) = g and ¢(® = § and (2.10) we find

C“yaﬂ = é“ya6+Buya5+Auya5—Au vaB with B‘uyag = QV[QS“fB]V—FSUMWsumU

where S is the difference of connections tensor (2.4). We also define B,3 = B*,,3 and
B = gO‘BBa/g so that

Rop— Rap = Bap, RV — Ry =Blg+ Q71" R, R—R=B+Q "M R,
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With these definitions we expand A, .3

2 . . 2 .
H — (2 _ 5 e 4 Beuoa "
A vaf — n_1 (5 [aR,B]V gy[aR B]) + n(n — 1)R(5 [« 98]y T ((5 [aB,B]V
g m a ’ a B 2m 1 o
~utaB"s) ~ " (Guia ool + aialt's + aiaB"s) — "o Rl )
2B . 20 Ao A A )
e s G ey (l Ryo0"10dg + (R + B)au[aqﬁ]y)
202m A
_Ztr jAo i
+ n(n _ 1)l R)\O—(S [CYQB]IM
so defining
G“yaﬁ = —— (5M[QB5]V - gy[aB“m —Qm (gu[aRmJlHO’ + qy[aﬁﬂ + qu[aBu5]>
n—1 Bl

2B 2Qm

_02m » ou JUREN Ao 1 TN
Q QV[aRﬁ]Ul ) + n(n — 1)5 [@9B)v + n(n — 1) (l Rs0 [@98]v

2m

n(n —1)

+(R+ 3)5“[aqﬁ]u) + 1M Ry 6" 0q3),-
gives
Auuaﬁ = AH vof + G'uuaﬁy

from which
C“l,ag :Cuyaﬁ—i-Bu,,a/g—l-G”,jaﬂ. (5.7)

We now analyze the behaviour near {2 = 0} of the tensors B and G. Using formula
(2.4) (with g@® = § =g — Q™q ) we have
Q ~ m M ym—1
Sl/aﬁ = g;qu aff = _FEQ (UVQQB — Uaqpr — uﬁ’QOa/)
Qm

- 7 (VVQQ,B - Vaq,BV - VBQQV)

m _ m m—
= —FEQ’" 1 (UpGap — Uaqy — UBGar) + O(2™) = O(Q 1).

On the other hand

m

— Vu(Vigap

A m(m — 1 _
VuSvap = —F2¥Qm 2'LLM (UpGap — UaqBy — UBGar) — 5

2

m—1
2
+ Fu,u (VVQaB - anﬁu - V,BQO[V) >

_ _F2m(m— 1)
2

- VaCI,Bu - VBQCW) —m (v,u (F (UVQaﬁ — Uaqpry — u,BQOzV))

Qm_2uu (UVQaﬁ — UaqBy — U,B(Iaz/) + O(Qm_l)
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thus

Vusyaﬁ _ Vu(flwgmﬁ) _ Vﬂ((gau o Qm[mj)@aaﬁ) _ gUVquaaﬁ + O(Qm—l)

(m—1)

m — v v v —
= _F? 5 Qm QUH (u dap — Uaq’ g — ugq a) +0(Qm 1).

Therefore, the leading order terms of B are

B“,/ag = QV[OCSMB]V + O(QQm_Q)
= —m(m — 1)F2Qm2 (wuaqg) + q“[aumuy) + 0™ = 0oQm2).

Next, we calculate the leading order terms of D. Notice that since § is C? at {Q = 0},

its Ricci tensor is well-defined. Moreover B and all its traces are O(2™~2). Thus

2
n—1

2B

b =
G vap n(n —1)

(0"1aBgyy — GujaB"g) + g +O(Q™).

If w is non-null, i.e. € # 0, it is useful to decompose ¢ in terms parallel and orthogonal
to u, i.e.

dap = Uuqup + 2uoVgy + tap, with "V, =0, u't,, =0.
Similarly, the following decomposition of the metric holds

Jap = €UqUg + hog, (5.8)

which defines h,g as the projector orthogonal to w. In terms of these quantities

B*ap = —m(m — 1)Q" 2 F? (wuats), + tHauguy) + o™ (5.9)
and

Bg, = Btg,, = —%m(m — D)2 F2(etg, + tugu,) + O(Q™ 1)

B=DB",= —%m(m — D)™ 2F?(2et) + O(Q™ 1)

where t = gaﬂtaﬁ = h“ﬁtag. In consequence,

n—1

G'“Vaﬁ = —m(m — I)Qm_2F2 X ( (Eéu[atﬁ]y + téu[auﬁ]uy — Eﬁy[atuﬂ] — tu“gy[auﬂ])

2et . m—
+ méu[agﬁ]u) +o(m (5.10)
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From (5.8) one has
ga/g = €UqUB + haﬂ + O(Qm), 5046 = euo‘u5 + hag,
so that (5.10) reads

G"yap = —m(m — DO 2F2x

-1
(n 1 (U’UU[atﬁ]V + Ghu[atﬁ]y + th”[auﬁ]ul, + t“[auﬁ]ul, + Gt“[ahmy

2t
+ tu“U[ahB]l,) + 772(” — 1)
= —m(m — 1)Q™ 2F?x

(wugahgy, + W ugu + chahg, ) ) +O(@")

-1 n—2
(== (wujatigy + *faugns) - b = 1) (W tiaha + W jaug )

€ t t m—
(W oty = Wby + tahgy, = ~hiahg,) ) + 0@, (5.11)

n—1

Denote the traceless part of t,5 by

. t
tag = tap — ghaﬁ.

Also, notice that the lower order terms of all expression are O(Q™ 1) = o(Q™2) for
m > 2. Hence, combining (5.7), (5.9) and (5.11) gives equation (5.6).

O

Lemma 5.4 has an interesting application in the context of data at .#. Consider a FGP
metric g and a geodesic conformal extension g = 92§ and assume that either n is odd
or that the obstruction tensor is identically zero if n is even. The FG expansion of this
metric allows one to decompose g = g+ "¢ where § is a metric containing all the terms
of the expansion of order strictly lower than n (and possibly also higher order terms,
but not the term at order n). The rest of terms are collected in Q"q. By construction
all these objects are C*>° up to and including €2 = 0 (here we use the assumption that
the obstruction tensor vanishes in the even case). Hence all the hypothesis of Lemma
5.4 holds with m = n. From equation (5.6), the T-electric part of the Weyl tensors of g
and of § are related by

(CT)z'j = (éT)ij — Qn72A2n(n — 2)toij + O(QniZ), (5.12)

It follows immediately from the FG expansion and the definition of £ in Lemma 5.4 that
Eij|ﬂ=0 =tf(9g(n)), where tf denotes the trace-free part. Note that taking the trace-free
part is unnecessary when n is odd because g, is always trace-free in that case. The
tensor (C7);; is in general O(1) in Q, so Q>~"(Cr);; will generically contain [(n — 1)/2)]

divergent terms, and the same divergent terms must appear in QZ_”(CT)U because of
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(5.12). Substracting the divergent terms we get
(927(Cr)ij = 27(Cr)ig ) L = =\Pnln = 2)tF (giay). (5.13)

which provides a general formula for the free data in terms of the electric parts of the
Weyl tensors of g and ¢ at .#. In the case of n odd more can be said because, as justified
below Lemma 5.2, the regular part of (CA’T)U vanishes at .# and (5.13) establishes that
9(n) arises as the value of (Cr);; at .# once all its divergent terms have been substracted.
This last statement is not true in the n even case with zero obstruction tensor, since

Q?7"(Cr);j may contain regular non-zero terms.

In the next subsection we will prove that in arbitrary dimension and for conformally flat
A, (C’T)ij vanishes so the T-electric part of the rescaled Weyl tensor of g actually encodes
the trace-free part tf(g(,)). In the non-conformally flat case Q2 "Cp is generically
divergent and (5.13) gives a prescription to remove the divergent terms to retrieve the
trace-free part. In the context of AdS/CFT correspondence a useful method to remove
divergent terms is by means of the so-called renormalization techniques. One method
[117, 118, 139] involves decomposing objects in terms of a basis of eigenfunctions of
a dilation operator. It would be interesting to analyze whether this method has any
relationship with (5.13), or whether it can be used to be make the removal of divergent

quantities more explicit.

5.1.1 Free data and the Weyl tensor

The aim of this subsection is to determine the role that the electric part of the rescaled
Weyl tensor plays in the FG expansion coefficients, with particular interest in the con-
formally flat .# case. We will use formula (5.2) to relate the electric part of the rescaled
Weyl tensor to the n-th order coefficient g(,) of the FG expansion. We start with some
preliminary results about umbilical submanifolds (also called totally umbilic). Recall

that a nowhere null submanifold ¥ C M is umbilical if its second fundamental form is
Kij = (),

for a smooth function f of ¥ and v the induced metric. This property is well-known to

be invariant under conformal scalings of total space metric.

Lemma 5.5. Let n > 2. Every nowhere null umbilical hypersurface (¥,7) of a confor-

mally flat (n + 1)-manifold (M, §), where 7 is induced by g, is conformally flat.

Proof. For n = 2 the result is immediate as every 2-surface is locally conformally flat, so
let us assume n > 3. Since umbilical submanifolds remain umbilical w.r.t. to the whole

conformal class of the metrics and § is conformally flat, then (X,~) is umbilical w.r.t.
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the flat metric gp = w?g. In this gauge, the Gauss equation (2.17) and its trace by 7
yield

R()iju = —e(KaKjx — KieKj1) = —€(Yavik — Yikvj1) K>
R(7); = —e(K3 — KKj;) = —e(1 — n)s*y;,

where K;; = x7;; is the second fundamental form, for x € R constant as a consequence
of the Codazzi equation and the fact that the ambient metric gg is flat, and Kfj =
Y KK, K =47 K;j, € = §(u,u) with u the unit normal to ¥. The Schouten tensor

of ~y is

1 R(v) K

P(v)ij = —— (R(’Y)ij - 2(n_1)%j> = €5

Thus for n = 3 we can calculate the Cotton tensor

Y (Vijk = ViP(v)i; = ViP(y)i = 0,
and for n > 4 the Weyl tensor (cf. (2.11)) is

C()ijkr = R(Y)ijrr — i P (V) j1 + Vi P (V)a + vaP(v)jk — v P(7)ix = 0.

By the standard characterization of locally conformally flat metrics by the vanishing of
the Cotton (n = 3) or Weyl (n > 4) tensors, the result follows. O

The following results are stated imposing the minimal conditions of differentiability
required near .#. We remark that for the cases of our interest, namely FGP metrics,

these conditions are always satisfied.

Lemma 5.6. Let g and g be metrics related by g = g + Q™q, where Q is a defining
function of ¥ = {Q = 0} and g,§ and q are C' in a neighbourhood of ¥2. Then if m > 2,

> is umbilical w.r.t. g if and only if it is umbilical w.r.t. §.

Proof. The metrics induced by g and g at X are the same. Assume that ¥ is nowhere
null. Thus, the property of being umbilical is preserved if the covariant derivatives Vu
and Vu w.r.t. the Levi Civita connections of g and ¢ respectively of the normal unit
(which is the same for g and §) covector u € (TX)* coincide at ¥. The covariant
associated metric g* is gf = g% + Q™1 for | a contravariant tensor O(1) in Q (cf. proof of
Lemma 5.4). Then, the Christoffel symbols are

Th g = (@ QDM (Oa(g+2"0) 50 +05(9+ Q" D) aw =0, (§+2™q)ap) = Th s +O(Q™ 1),

from which it follows Vu [g= Vu |y if m > 2. O

Our interest in umbilical submanifolds is because of the (well-known) fact that .# is um-

bilical for Poincaré or FGP metrics. This results follows immediately from the Einstein
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equations at .#, and will be the base for an interesting decompostion that we will derive

later in this section (cf. Proposition 5.11).

Lemma 5.7. Let g be a Poincaré or FGP metric for & = (X, [y]). Then .# is umbilical.

Proof. For a geodesic conformal extension g = 2g, the relation between the Ricci
tensors of g and g is given by (2.8) with V,QV#Q = —X (c¢f. Lemma 2.9). This
expression is not defined at 2 = 0, but it is when multiplied by 2. Rearranging terms
this gives

QRup + (0 — 1)V VR + gV, VP2 = Q(Rap — MGags), (5.14)
where we have used g = Q27 in the RHS. Since g is a Poincaré or FGP metric, the RHS
vanishes at .#. This also implies that g,g is at least C? at #, so R,p is defined at
#. In addition writing V. = ])\]1/ 2uq, where v is the unit normal of the hypesurfaces
Yo = {Q = const.}, then V;V;Q | s= |)\|1/2K,;j, where Kj; is the second fundamental
form of .#. Thus, equation (5.14) gives at .%

(n— D)AY2Ky; + fri; =0, with  f:=V,ViQ |, .

O

For concreteness, in the remainder of this Section, we state and prove our results in
the case of positive cosmological constant and Lorentzian signature. However, they also
hold with slight modifications for arbitrary signature and non-vanishing cosmological

constant (see Remark 5.9 for the specific correspondence).

We start by giving the general form of the FG expansion of the de Sitter spacetime. We
refer the reader to [140] for a similar proof in the case of A < 0. Also, see a discussion

of general case in [43] (in terms of Fefferman-Graham ambient metrics).

Lemma 5.8. For every Riemmanian conformally flat boundary metric v of dimension
n > 3 and positive cosmological constant X\, let g be the spacetime metric defined by
d0? P 1 P2

792 + 7794

\ (5.15)

where P is the Schouten tensor of v and (PQ)U = Pz-l’yklPlj. Then Gqg := Q" 2g is locally

isometric to the de Sitter metric.

Proof. De Sitter spacetime is ACC and its boundary metric v is (by Lemmas 5.7 and
5.5) necessarily conformally flat. Moreover, given the freedom in scaling any conformal
extension by an arbitrary positive function, any conformally flat metric is (locally) a
boundary metric for the de Sitter space. In addition, as a consequence of this fact
and Lemma 2.10 we have that for any conformally flat metric v, there exists a local

coordinate system of de Sitter near null infinity such that the metric is in normal form
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with respect to . The core of the proof is to verify that this ACC metric in normal

form w.r.t any such conformally flat  takes the explicit form (5.15).

Therefore, consider a conformally flat boundary metric v for a geodesic conformal ex-
tension of de Sitter g. Since de Sitter metric is also conformally flat, it follows that the
T-electric part of the Weyl tensor Cp = 0. Using formula (5.2) we obtain the coefficients

of the FG expansion, which give the normal form of g w.r.t. 7. Let us put (5.2) in matrix

notation
C—)\Z 1, ,1.+1. S .1 ,1.+1. (5.16)
T = B 9 Q9q 9Q QQQ g | = ga = B Qdq 90 QQQ .
where a dot denotes derivative w.r.t. 2. First we calculate
A R R R S 2, _1.
0a(909q 92) = §0gq 9o — 999q 999q 9o + 9ogq do = q0da 9o (5.17)
where we have used dn(gq, D= -390 ! 9090 ! for the first equality and expression of jo in

(5.16) for the second equality. Then, taking two derivatives in Q of (5.16) gives

(a4 3 . .
9o 90 = 5909 9o (5.18)
Thus, taking one more derivative in €2 of (5.18) and combining with (5.17) gives ('*)5(25) go =
0 and hence all higher derivates also vanish. Expression (5.18) evaluated at 2 = 0 gives

the expressions for the coefficients (note 85(?) g lo=0= Kklga))

1 -1
9@y = 19(2)7 9(2)-

The coefficient g(3) can be directly calculated from the recursive relations for the FG
expansion and it always coincides, up to a constant, with the Schouten tensor of the

boundary metric (cf. Corollary A.5)

At ) R P
942) = n—9 <RZC(7) - 20}%7) = N

Having calculated the only non-zero coefficients gy and g4), it is straightforward to
verify that the FG expansion of de Sitter takes the form (5.15).

We have shown that for any choice of conformally flat v, there exists a de Sitter metric
gas and a choice of conformal factor 2 with associated Gaussian coordinates such that,
defining g as in (5.15), we have Q7 2g = ggs5. Moreover, the metric (5.15) satisfies all
the properties stated in Theorem 2.30 with the choice h = 0 if n # 4 and h = P?/(2))?
if n = 4 (the latter can be straightforwardly verified from the expressions for a and b
in Appendix A). Recall that we are assuming n > 3 and that the obstruction tensor
vanishes identically when ~ is conformally flat. Now the lemma follows as a consequence

of the uniqueness part of the FG expansion stated in Theorem 2.30. O



162

Observacin 5.9. The result generalizes to arbitrary signature and arbitrary sign of A
(see [5, 139] for a discussion on the relation between A positive and negative cases), by
changing v to a conformally flat metric of signature (ny,n_) and g to conformal to a
metric of constant curvature (instead of conformal to de Sitter) and signature (n4 +
L,no) if A\ >0 or (ny,n_+1) if A <0. Taking this into account, Proposition 5.11 and

Theorem 5.1/ below easily extend to arbitrary signature and arbitrary sign of \.

Observacin 5.10. The proof of Lemma 5.8 shows that the condition Cr = 0 suffices
to obtain a metric of the form (5.15) with v in an arbitrary conformal class. The
spacetimes satisfying this condition are the so-called “purely magnetic” and they have
a long tradition in general relativity (e.g. [15] and references therein). The purely
magnetic condition implies restrictive integrability conditions which lead to a conjecture
[103] that no Einstein spacetimes exist in the n = 3 case, besides the spaces of constant
curvature. Although no general proof has been found so far, the conjecture has been
established in restricted cases such as Petrov type D, and this not only in dimension
four, but in arbitrary dimensions [79]. The explicit form (5.15) that the metric must
take whenever Ct = 0 gives an avenue to analyze the conjecture in the case of metrics

admitting a conformal compactification.

Before proving Theorem 5.14, we state and prove an auxiliary result (Proposition 5.11)
which is of independent interest since it provides (when combined with Lemma 5.4)
a useful decomposition for calculating leading order terms of the Weyl tensor. This
will be exploited in the calculation of initial data of spacetimes which admit a smooth
conformally flat .# (cf. Corollary 5.17).

Proposicin 5.11. Assumen > 3. Let g be a FGP metric with A positive for a Rieman-
nian conformal manifold % = (X,[v]). Then & is locally conformally flat if and only if

any geodesic conformal extension g = Q%g, admits the following decomposition
g=3+Q"q (5.19)

where § is conformally isometric to de Sitter and §, q¢ and Q are at least C' in a

neighbourhood of {Q = 0}.

Proof. .# is umbilical w.r.t. g and if g admits the decomposition (5.19), by Lemma 5.6
& is also umbilical w.r.t. §. Since § is conformally flat, Lemma 5.5 implies that .# is

also conformally flat. This proves the proposition in one direction.

The converse follows by considering the FGP metric in normal form constructed from a

representative v in the conformal structure of .#. By assumption, v is conformally flat.

The terms up to order n are uniquely generated by 7 (cf. 2.29). Thus, by Lemma 5.8
dQ?

P 1 P?
g:—T+7+XQQ+ZFQ4+Q”q:zg—i-Q"q,
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where ¢ is locally conformally isometric to de Sitter and g, ¢ and €2 are smooth at 2 =0

by construction. ]

Now observe that for any set of initial data (v, g(,)), one can always add a TT term
9(n) 0 g(n) 80 that (7v,g(m) + Jgen)) gives a new set of initial data. On the other hand,
decomposition (5.19) in the conformally flat .7 case reads

dQ? P, 1P, .
Therefore, if n # 4 and n > 3, then g(,) = g(n) and if n = 4, then gy = guy + gw),
where g4 is the term of order four in (5.15). This forces g(,) to be TT, because it is
immediate from Lemma 5.8 that de Sitter is given by data (v,0) for n # 4 and n > 3
and by (7,9 (4)) if n = 4. Therefore, in the conformally flat .7 case we can always extract
the T'T term g(,).

Definicin 5.12. For a FGP metric admitting a conformally flat .#, the term g, is
called free part of g(,).

Observacin 5.13. Note that a pair (7, en)) is equivalent to (v, gwm))-

We stress that it would be interesting to give a definition of free part in the general case.
This may facilitate a geometric definition of the n-th order coefficient, but also it would
help to clearly establish a conformal equivalence of the asymptotic data in the n even

case (see the discussion previous to Theorem 2.39).

We may now extend to the case of arbitrary A the relation between the electric part
of the rescalled Weyl tensor and the coefficient g(,) obtained in [82] for the negative
A case. We observe that this extension could be inferred from the general results in
[139]. However, our argument is fully conformally covariant and follows directly from

the general identity in Lemma 5.4.

Teorema 5.14. Assume n > 3 and let g be a FGP metric with A positive for a Rie-
mannian conformal manifold 9 = (¥, [y]). Then, if 7 is conformally flat, ), the free
part of the n-th order coefficient of the FG expansion, coincides, up to a constant, with
the T-electric part of the rescaled Weyl tensor at &
A2 9
—?n(n — 2)&(1@) = "Cr ’j .

Proof. By Proposition 5.11, admitting a smooth conformally flat .# amounts to ad-
mitting a decomposition of the form (5.19). Then, by Lemma 5.8, the associated FG
expansion has the form

d0? dQ?

P 1 P2
9:*T+QQ:*7+’Y+*Q2+*f

4 ne = 5 n
3 3 4)\29 + Q"gn) + g+ Q"q,
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where g | s= () and § is conformal to de Sitter. Using the formula (5.6) of Lemma 5.4
with m = n and putting 7' = |A|'/?u, with u unit normal, one obtains

A2 . . _
(CT)a,B = —?n(n — 2)ta59n 2 + O(Qn 2)

and the Theorem follows.

O]

Observacin 5.15. Although this theorem concentrates on the electric part of the Weyl
tensor, its proof (which is based on Lemma 5.4) actually establishes that the full Weyl
tensor decays at & as Q2. In [112], the authors analyze the asymptotic behaviour along
null godesics of vacuum solutions with non-zero cosmological constant. Letting r be an
affine parameter along the geodesics and assuming a priori that suitable components of
the Weyl tensor decay at infinity faster than r=2 the authors prove a certain peeling
behaviour of the Weyl tensor, with the fastest components decaying like v~ ("2 and the
slowest as r®>~™. It is clear that there is a connection between the two results. It would
be interesting to establish and analyze this connection, which hopefully would lead to a

weakening of the a priori decay rate assumed in [112].

Observacin 5.16. [t is also interesting to comment on the necessary and sufficient
conditions for g,y and Q2~"Cr | s to be the same in the case of Einstein metrics. Just
like in the proof of Lemma 5.8, if Cr has a zero of order m > 3, we can apply formula
(5.2) and find

0590 = O("%) (5.20)

and all coefficients of the FG expansion vanish up to order g(y 2). If, like in the con-
formally flat case, C has a zero of order n—2 , its leading order term determines ).
If n is odd, we can construct (cf. Theorem 2.39) two solutions of the A > 0 Einstein
field equations G and g in a neighbourhood of {Q = 0}, the first one corresponding to
the data (%,7,0) and the second to the data (X,7, g(,)) where v belongs to an arbitrary
conformal class. By the F'G expansion we also have g = §+82"q with ¢ = g,y +O(). As
a consequence of (5.20), the metric § is of the form (5.15) with ~y in the given conformal
class. Then, from equation (5.2) it follows that § is purely magnetic. The converse is
also true, namely, if g = g+ Q"q, with § a purely magnetic Einstein spacetime and both
4, q and Q2 are C? near {Q = 0}, the electric part of the rescaled Weyl tensor at .# and
Jn) coincide (up to a constant) provided n > 2. The proof involves simply taking the
T-electric part in (5.6).

This proves that, for Einstein metrics with positive A, of dimension n+ 1 > 4 and
admitting a conformal compactification, g,y and Crt | s coincide up to a constant if and
only if g = g + Q"q, where § is a purely magnetic spacetime Einstein with non-zero
cosmological constant. However, as mentioned in Remark 5.10, it is not clear (and not
an easy question) whether purely magnetic Einstein spacetimes are locally isometric to

de Sitter or anti-de Sitter spacetimes.
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Note that Theorem 5.14 has been proven for metrics of all dimensions n > 3 and arbitrary
signature. An interesting Corollary arises when applying this to the case of A > 0
Finstein metrics of Lorentzian signature and odd n, because the coefficients of the FG
expansion v and g, determine initial data at .# which characterize the spacetime metric
(cf. Theorem 2.39). In a similar manner, notice that if n is even and the data (v, g¢,))
are analytic with v Riemannian (see also Theorem 2.39), the convergence of the FG
expansion holds in general for any sign of A. Thus, we obtain a characterization result

also for this case.

Corolario 5.17. Let n > 3 be odd. Then for every asymptotic data (X,7,g(m)) of
Einstein’s vacuum equations with A > 0 and v conformally flat, the free part g, is up
to a constant, the electric part of the rescaled Weyl tensor at & of the corresponding
spacetime. Similarly, if n > 4 is even, the same statement holds for every analytic data

(3,7, 9(n)), with v Riemannian and for any sign of non-zero A.

5.2 KID for analytic metrics

In this section we prove a result (cf. Theorem 5.18) that determines, in the analytic
case, the necessary and sufficient conditions for initial data at .# so that the correspond-
ing spacetime metric it generates admits a local isometry. The proof relies in the FG
expansion of FGP metrics. Theorem 5.18 below is a generalization to higher dimensions
(but restricted to the analytic case) of a known result [116] (cf. Theorem 2.35) in di-
mension n = 3. We focus in the analytic data case, as we shall require convergence of
the FG expansion (cf. subsection 2.4.2) in the proof of the theorem. Also, we impose
the obstruction tensor to vanish for simplicity and because all cases we shall later deal
with satisfy this condition. However, we discuss at the end of this Section the non-zero

obstruction case.

Teorema 5.18. Let ¥ be n dimensional withn > 3 and let (%, 7, g(n)) be asymptotic data
in the analytic class, with v Riemannian and if n even O = 0. Then, the corresponding
spacetime admits a Killing vector field if and only if there exist a CKVF £ of .7 satisfying
the following Killing initial data (KID) equation

n

— 2div7(§)g(n) =0. (5.21)

Legm +—

Proof. Showing that (5.21) is necessary is proved by direct calculation as follows. Let
X Dbe a Killing vector field of g so that

X@Q 1

0:£X§:£X(Q_29) =2 03 g+ 02

Lxg.
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It follows that on Int(M), X is a conformal Killing vector of g with a specific right-hand

side, namely

divy X
n—+1

,ngag = Van —f—VBXa =2

9o, X(Q) divg X. (5.22)

TS
The following argument [58] shows that X must be extendable to .#. The terms Lxgogs
of (5.22) imply a linear, homogeneous symmetric hyperbolic system of propagation equa-
tions for X. Thus, putting initial data corresponding to X sufficiently close to .# gen-
erates a solution whose domain of dependence must reach .# (and possibly beyond if
the manifold is extendable across .#). Hence X must admit a smooth extension on .#,
which vanishes near .# only if X | = 0. The rest of equations Lxg;; are also satisfied

at .Z by continuity so the extension is a CKVF.

Then, from the second of equations (5.22), it follows that X (2) = 0 when Q = 0, thus
X is tangent to .#, so we denote £ := X | ». Putting ¢ in normal form g = —% + g0
it easily follows that I'y; = I'j;. In consequence, expanding divyX and evaluating at 54

yields

divgX |5 = 0a(X(Q)) |.» +0;¢" +T; |5 &

div,¢  (5.23)

L. . . n+1
:n_‘_llegX‘y—}—le»yf = divgX |s= -

where we have used the second equation in (5.22). In addition, the normal form gives

the following tangent components of the first equation in (5.22):

2 .
Lxgo = 1d1VngQ.

n —+

Evaluating this expression at .# and taking into account (5.23) shows that £ is a CKVF
of v. Also, using the FG expansion of gq we have the following expansion of £Lxgq:

[:XgQ = X(Q)@Qgg + ﬁx"}/ + QQEXg(Q) + -+ Q”ﬁXg(n) + .-

Q ) "
e 1(d1VgX)3QgQ +Lxv+ QQEXQ(Q) +o QLX)+ (5.24)
Therefore
1 .
Lxy+QLxgo) + -+ Q" Lxgp) + - = " (divgX)(2g90 — Q0aga).  (5.25)

Equating n-th order terms and evaluating at . yields (5.21) after substituting divy X |~
as in (5.23).

To prove sufficiency, let us first choose the conformal gauge where £ is a Killing vector

field of 4/ = w?y. Thus, the corresponding KID equation for gzn) becomes:

Leg(ny = 0. (5.26)
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The remainder of the proof in this gauge, so we drop all the primes. By Lemma 2.10
there exist a geodesic extension which recovers the representative v at .#. In addition,
there exists a unique vector field X, extended from & at .#, which satisfies [T, X] = 0.

This is obvious in geodesic Gaussian coordinates {€, z'}, because
[T, X]* = —-X0qpX* =0,

with initial conditions X |g—g= 0 and X* |g—g= &’ has a unique solution X = 0 and
X% = ¢ We now prove that X is a Killing vector field of the physical metric § provided
that (5.26) holds.

Consider the normal form metric g = —g +gq. Since LxdQ = d(X(Q2)) = 0, it follows
that Lxg = Lx(gqa). Using the FG expansion of go we have

If g is analytic, the value of the coefficients Lxg(,) determine Lxg in a neighbourhood
of .#. These are

05 (Lxga) la—o= Le (@({)99 19:0) = r1Leg(r)-

We want to show that all these quantities are identically zero, for which we exploit the
Feffeman-Graham recursive construction (cf. Appendix A). The fundamental equation
that determines recursively the coefficients of the FG expansion takes the form (cf.
Lemma A.3)

(n =7 —=1)gpa1) + (Tryga1)) 7 = FOY (5.27)
where we denote )
(r—1) ._ r (r—1) _ _+  pr=1)
= et rr il

which by Lemma A.3 is a sum of terms containing products of coefficients up to order
r —1 and tangential derivatives thereof, up to second order. We now prove by induction

that the Lie derivative of all cofficients vanish provided equation (5.26) is satisfied.

First, the Lie derivative of (5.27), given that £ is a Killing of ~, yields
(n =7 = 1)Legrin) + (TrrLegin) v = LeF .

Assume by hypothesis that the Lie derivative L¢ of all the coefficients up to a certain
order r is zero (for the moment we do not assume neither » < n nor » > n). The Lie
derivative L¢F (r=1) i3 a sum where each terms is multiplied by either Legs)y, Ledigs)
or L£0;0jg(s) , with s < 7 — 1. Since § commutes with 7" = —Adq, we can locally
adapt coordinates to both vector fields, namely £ = 0;, so that in these coordinates

Le0igsy = 0iLeg(sy and Le0;0;9(5) = 0i0jLeg(s)- Thus each term in Eg]:(r_l) contains a
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Lie derivative L¢g(s) with s < r—1, or a tangential derivative thereof up to second order.
Thus by the induction hypothesis L¢ F (r=1) = 0. Therefore, it follows that Legre1) =0

The induction hypothesis can be assumed for r < n — 1 because it is true for the first
term L¢y = 0 and we have equations for the succesive terms. For r = n — 1 the
fundamental equation does not determine the term g(,) any longer (this is the reason
why this terms is free-data in the FG expansion), so the induction hypothesis cannot go
further in principle. But since we are imposing the condition L¢g(,) = 0, the induction
hypothesis can be extended to any value of r. Therefore, all the derivatives Leg(, 1)
vanish, so if g is analytic L¢g = 0. 0

In short, the argument behind the proof of Theorem 5.18 relies on the well-known fact
that the recursive relations that determine the coefficients of the FG expansion can be
cast in a covariant form, so that ultimately all terms can be expressed in terms of =,
its curvature tensor, g(,) and covariant derivatives thereof. Then the Lie derivative of
any coefficient must be zero provided that L¢y = Leg(,) = 0. The case with non-zero
obstruction tensor, and hence involving logarithmic terms is likely to admit an analogous
proof. However, the recursive equations equivalent to (5.27) are not so explicit, because
taking derivatives of order higher than n yields an expression which mixes up coeflicients
of the regular part g(,) and logarithmic terms O, ) of the expansion. These expressions
are notably more involved (see e.g. [129]). If one showed that every coefficient Oy, )
admits a covariant form which only involves geometric objects constructed from v, g,
and its covariant derivatives, a similar argument as in the proof above would establish
that equation (5.21) is also sufficient for the spacetime to admit a Killing vector field
in the case of analytic data with non-vanishing O. It is hard to imagine that this is
not the case, and in fact the result should follow from the expressions in [129], but the
details need to be worked out. On the other hand, the necessity of (5.21) is true in
general and the argument is totally analogous to the one presented above except that
equations (5.24) and (5.25) contain also logarithmic terms. We will not discuss this case
any further since for the rest of this thesis we shall focus on conformally flat .# (hence

O =0). We plan to come back to this issue in a future work.

5.3 Characterization of generalized Kerr-de Sitter metrics

In this section, we will apply the results obtained in the previous sections to find a
characterization of the higher dimensional Kerr-de Sitter metrics. These were firstly
formulated in five dimensions in [77] and latter extended to arbitrary dimensions in
[70]. Recall that, as mentioned in the introduction of this thesis, the higher dimensional
Kerr-de Sitter metrics in [70] were constructed using heuristical arguments. Our char-
acterization here proves that it is indeed a natural extension of Kerr-de Sitter in four

spacetime dimensions. We first prove that these metrics admit a smooth conformally flat
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#. Then we combine with Theorem 5.14 to determine their initial data at .#, which is
straightforwardly computable from equation (5.6). The data corresponding to Kerr-de
Sitter in all dimensions are analytic. Therefore, by Theorem 2.39, the identification of
their data provide a characterization of the metric also in the case of n even. Hence, we

perform the analysis simultaneously for n even and odd.

Like in the four dimensional case, the generalized Kerr-de Sitter metrics are (n + 1)-

dimensional Kerr-Schild type metrics. Namely, they admit the following form
J=Gss+tHkok

with ggs the de Sitter metric, k is a null (w.r.t. to both g and gyg) field of 1-forms
and H is a smooth function. In order to unify the n odd and n even cases in one single

expression, we define the following parameters

SHED )

where note, p = ¢ if n odd and p+1 = ¢ if n even. The explicit expression of the Kerr-de
Sitter metrics will be given using the so-called “spheroidal coordinates” {r, ai}fill (see

[70] for their detailed construction), with the redefinition p := r—1.

Strictly speaking,
they do not quite define a coordinate system because the «; functions are constrainted

to satisfy

However, it is safe to abuse the language and still call {«;} coordinates. To complete
{p, i} to full spacetime coordinates we include {p, t, {o; }'*], {#:}9_,}. The a;s and ¢;s
are related to polar and azimuthal angles of the sphere respectively and they take values
in0<ao<land0<¢; <2rfori=1,---,¢q and (only when n odd) —1 < a4 < 1.
Associated to each ¢; there is one rotation parameter a; € R. For notational reasons,
it is useful to define a trivial parameter a,y1 = 0 in the case of n odd. The remaining
pand ¢ lie in 0 < p < A/2 and t € R. The domain of definition of p can be extended
(across the Killing horizon) to p > A/2, but this is unnecessary in this work since we

are interested in regions near p = 0.

In addition, as we will work with the conformally extended metric g = p?g, we directly
write down the expresions of the following quantities, which admit a smooth extension
to p =0,
g= ,02§dSa H = PQﬁv ko = Ea (5.28)
and
g=0+HEkRE. (5.29)

We provide below the expression of k, (as opposed to k%) because the metrically asso-

ciated vector field k¢ = go‘ﬁkg is no longer the same as ke = ”gv"‘ﬂiclg. In order for the
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reader to compare with the original publication [70], we remark that the expressions

given there are for the “physical” objects ggs, ﬁ,%, using the coordinates r := p~! and
denoting u; := «; instead.
Let us now introduce the functions
+ 2 p+1 a2 p+1
i 2=y — O:= ]+ p2a?). 5.30
T At L | (S

Note that it is thanks to having introduced the spurious quantity a,;1 = 0 that these
expressions take a unified form in the n odd and n even cases. The explicit form of the

objects in (5.28) in the case of generalized Kerr-de Sitter are

A 1+ 12
G=—W(p?—Ndi® + /\dp + Opqdal,, + Z pA 5 (do? + aZde?)
2
A (14 p2a?) aiday
n ’ Z (1+p?a3) - , (5.31)
W(p? =) pot 1+ Aa;
= q
k=Wdt — —— Z (5.32)
2M
H = H:p , MEeR. (5.33)

The term ¢, , only appears when ¢ = p, i.e. when n is odd. In the case of even n, all

terms multiplying J, , simply go away.
The function H = O(p"™) and k ® k = O(1). Therefore g decomposes as

. H
g=9g+p"q, with q:p—nk(@k:O(l)‘

Let v be the metric induced at ¥ = {p = 0} by g. By Lemma 2.10, we can define
a geodesic conformal factor Q such that {2 = 0} = ¥ and which induces the same
metric v at ¥. Hence Q = O(p) and therefore H = O(Q") and ¢ = O(1) (in Q). So by
Proposition 5.11 it follows that the generalized Kerr-de Sitter metrics in all dimensions
admit a conformally flat .#. This can be also verified by explicit calculation. From

(5.31), the induced metric at {p = 0} has the following expression

2

1
da + a2dq§2 1 [ o;doy;
AWdt? + 6, ,d — . 5.34
Y= +pq04p+1+z v W ;1—1—)\@? (5.34)
It is useful to define new coordinates
~2 1 O[Z2

@i '_Wl—i-)\a%’
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which from (5.30) are restricted to satisfy 71! a2 = 1. Since also Y 71! a? = 1, this

i =

allows us to express W (given in (5.30)) in terms of the tilde coordinates

1
1+ P AR

(5.35)

A direct calculation shows that the metric (5.34) expressed with a;s takes the form

q
y= W(/\dt2 + 0pgdaly + > (da? + afdgb?)) [ (5.36)
=1

A explicilty flat representative of the conformal class of v can be obtained using the

coordinates
T = eﬁt&i cos ¢; Yi = eﬁt&i sing;, 1=1,---,q (5.37)
together with z := e‘&t&pﬂ if n odd, which are Cartesian for the following flat metric
eV 2 - 2 2

i=1

This form will be used below to determine the conformal class of a conformal Killing

vector £ which we introduce next. Let us denote the projection of k£ onto . by
§a = (ka =+ (kfﬁuﬁ)ua) %

with uo = Vap/|Vp|y the unit timelike normal to .#. Explicitly

q

E=wdt - aio d¢-—W(dt—zq:~2 dgb-) (5.39)
- 1+ Aa? o i:104iaz ks ‘

1=

where (as already used in Chapter 3) in index-free notation we use boldface to distinguish
the metrically associated one-form & = (¢, -) from the CKVF ¢ of .#. The latter is,
using (5.36),

1 q
§= Xat - Z a;0y, , (5.40)
i1

and in Cartesian coordinates (5.37) of v takes the form

q

1 ~
T
where we have introduced

q
§ = 0pq0. + inaxi + i 0y, , 0 = 0y, — YiOy,. (5.42)
i=1
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The vector 5 is a homothety of v and each 7; is a rotation of this metric. Consequently,
& is a CKVF of ~.

The T-electric part of the rescaled Weyl tensor can be obtained at once from Lemma 5.4
using Q = p and m = n, because by definition (t | s)ag = (H/p") |7 €aép and £ | 4 is its
trace-free part. Note also that H/p" | = 2M. Moreover, by formula (5.1), the electric
part at ., D, differs by a constant factor A™! from the T-electric part at .#. Thus
_ _ 1 o
Dap = A" H(p?"CF sV upVYp) |5 = —gAn(n = 2)tag |.#
€13

Since, by equation (5.35) above,

q
P =w(t+ ata?) =+
k A i=1 Y A

D can be cast as

M -2
D = kD, with k:= — n(nn )
A2
and )
1 [3
€5+ < n

Observacin 5.19. Following the notation in [100], observe that the primary object
defining D¢ is actually a vector field &, while in the RHS of (5.43) there appears the
one-form € = y(§,-), obtained by lowering the index of & with the metric v w.r.t. which
D¢ is TT. This notation generalizes to any CKVF & and metric v' w.r.t. which D¢ is
TT. This will be useful in order to prove conformal properties of D¢ which depend only
on & (cf. Lemma 5.21).

Summarizing, we have proven the following result.

Proposicin 5.20. The asymptotic data corresponding to the (n + 1)-dimensional gen-
eralized Kerr-de Sitter metrics is given by the class of conformally flat metrics and the
class of TT tensors determined by (5.43), where £ is the vector field by (5.40) when the

metric y is written in the coordinates where (5.36) holds.

Now suppose that we let ¢ to be any CKVF of 7. By direct calculation one shows
that the corresponding D¢ is still TT w.r.t.y (see the proof in [99] for n = 3, which
readily generalizes to arbitrary n). The spacetimes corresponding to the class of data
obtained in this way constitute a natural extension to arbitrary dimensions of the so-
called Kerr-de Sitter-like class with conformally flat .7, first defined for n = 3 in [100]
and [99]. The details of this class of spacetimes is precisely the main subject of Chapter
6. What is remarkable from the class of data of the form (X,v,xD¢) with ~ locally
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conformally flat is that, by conformal invariance of data, suitably restricting to a subset
of ¥ (cf. Remark 2.37), it turns out that the corresponding spacetime depends only
on the conformal class of £. Thus, by identifying the conformal class of (5.40) we will

obtain a complete geometrical characterization of Kerr-de Sitter in all dimensions.

Lemma 5.21. For asymptotic data (3,7, kD¢) and any trasformation ¢ € ConfLoc(X,7),
the following equivalence of data holds

(2,7, 6Dg,¢) =~ (2, ¢, ¢*(kDy,¢)) = (X, wy,w? "kDg) ~ (%, 7, kD), (5.44)

where the tensor Dy, ¢ is given by (5.43) with the notation of Remark 5.19.

Proof. The first equivalence in (5.44) is a consequence of the diffeomorphism equivalence
of data and the last one a consequence of the conformal equivalence of data (cf. [100]),
so we must verify the equality in the expression. Denote the one-form ¢, (&) := (¢4, -).

Then, on the one hand we have for every vector field X € T

(6"6:(€))(X) = (64(6)) (9:X) = 1(B:E, 6.X) = wPy(€, X) = wP€(X)
that is §*(¢.(€)) = w?€. Morcover [6,(€)l, = v/7(6:E, 6,€) = wlé|,. Thus

1
NG >"+2

— w7n+2 (E ®€ . @ > — w27”D§.
\§|”+2

¢* (Dy,(e)) = <¢*<¢*<£>®¢*<£>> W* Ol S g )

O]

We now come back to Kerr-de Sitter and identify the conformal class of (5.40). Following
the results in Chapter 4, a direct way to do that is to write £ in any Cartesian coordinate
system for any flat representative g in the conformal class of metrics. One then finds
its associated skew-symmetric endomorphism (cf. Theorem 2.11 and Remark 2.12) in
ML+ By calculating the parameters {—pu?, u2, u?} if n even or {o, u?} if n odd,
according to Definition 4.10, the conformal class of £ is directly obtained (cf. Theorem
4.35).

We have already obtained a flat representative vg and have introduced corresponding
Cartesian coordinates (5.38) . We have also obtained the explicit form of £ in these
coordinates, namely (5.41) and (5.42). Denote the Cartesian coordinates in (5.37) by
{Xya_y ={z{ziyi}l }if nodd and {X}"_; = {24, v}, if n even. From equations
(5.41), (5.42) the parameters of £ written as in (2.27) are v = A"%/2, a = b4 = 0 and
521

WAB = 2ai52i[A p) for n odd and wap = 2ai52i_1[1452i3] for n even. Thus, from
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equation (2.26) it is immediate

/ P
F(§)=<_)\?1/2 - 12) @( ), if n is odd

=1

0 —AT1/2 0 —a; . .
F) = ( 1 0 ) 16:? ( I ) , if n is even,

where recall, this block form is adapted to the following orthogonal decomposition of

MU+ as a sum of F-invariant subspaces

D p+1
M =TI, @ span{es} @ II;,  (n odd), M = 1, @ II;, (n even),
i=1 =
where II; = span{eg,e1} for both cases and II; = span{egit1,e2i+2} for n odd and
I1; = span{eg;, 2,41} for n even. Any timelike or null vector v € MU+ must have
non-zero projection onto Il;, so it may be written v = v; + vg, with 0 # v; € Iy, vs €
(I1;)*. Hence F(&)(v) = F(&)(ve) + F(€)(vs), where from the block form it follows that
0 # F(¢)(ve) € Iy and F(€)(vs) € ()", thus F(§)(v) = F(&)(ve) + F(€)(vs) # 0.

Therefore, ker F'(£) is always spacelike or cero. It is straightforward to compute the
polynomial Qp2(x) in (4.12)

q
Qp2(x) = (x+ \) Hx—a
=1

where we may order the indices 7, so that the rotation parameters a; appear in decreasing
order a? > .-+ > ag. Hence, by Definition 4.10 we identify the parameters o := —A~!

and p? := a? for n odd and —pu? := —\71, p? :=af and p? := a?H for n even. Therefore:

Teorema 5.22. Let giqs be a metric of the generalized Kerr-de Sitter family of metrics
in all dimensions, namely given by (5.29) and (5.31), (5.32), (5.33), with cosmological
constant \ and q rotation parameters a; sorted by a2 > --- > ag. Then Grqs 1S uniquely
characterized by the class of initial data (3,7, D¢), where vy is conformally flat and Dg¢
is a TT tensor of v of the form (5.43), where & is a CKVF of v whose conformal class

is uniquely determined by the parameters {o = —\71 u? = a3,--- ,u]% = af,} if n odd
and {~uf =~ 2 = adi it = a3, a2 = a2} ifm is even.

We conclude this chapter by comparing our results with previous literature in the A < 0
case. The metrics in [70] admit both signs of A, so one also has the family of Kerr-anti de
Sitter metrics in all dimensions. The boundary metric « for this case is given by (6.43),
which is now Lorentzian. The electric part of the rescaled Weyl tensor is D = x|y D,
where £y is obtained from s above by simply replacing A — |A|, and D¢ is (5.43), with
¢ given by (5.40). These data characterize the spacetime asymptotically.

One of the main focus on the Kerr-anti de Sitter metrics has been to study conserved

quantities at infinity. There are various notions of conserved charges (see the references
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in [82], where the different definitions are compared), but all of them depend on a CKVF
¢ of .#. Thus, associated to each £ one defines a conserved charge Q(&). This provides
a useful method to defined mass in this context. There is no complete agreement as to
which CKVF at infinity should be used to define mass. See for instance the n = 4 cases
in [119] and [69] or higher dimensional cases in [38]. From our analysis, in the Kerr-anti
de Sitter case the boundary data itself singles out a privileged CKVF, and it is most
natural to use this CKVF to define the mass. It turns out that this CKVF agrees with
the choice made in [119] for completely different reasons. It would be worth to investigate

whether there is a deeper reason for this, perhaps in the context of holography.



Chapter 6

Classification of Kerr-de
Sitter-like class with conformally

flat .# in all dimensions

The present is the final chapter of this thesis before the conclusions. Here, we shall
employ many of the results derived in the thesis so far. The contents of this chapter

have been sent to the ArXiv [97] and will be submitted for publication soon.

Firstly, we shall extend the definition of the Kerr-de Sitter-like class (given in [100]
in four spacetime dimensions) to arbitrary (n + 1)-dimensions. We do this in Section
6.1 through a generalization of the Kerr-de Sitter family data in Section 5.3 (note the
difference between class a family, specified in Remark 6.2). In Section 6.1 we also define
the Kerr-Schild-de Sitter spacetimes as “almost all” (cf. Remark 6.4 below) Kerr-Schild
type spacetimes which solve the A > 0 vacuum field equations and admit a smooth
conformally flat .#. Our main result proves that the Kerr-de Sitter-like class is the
same as the Kerr-Schild-de Sitter spacetimes. For that, in Section 6.2 we prove, via
direct calculation of the asymptotic data, the inclusion of the Kerr-Schild-de Sitter
spacetimes in the Kerr-de Sitter-like class. Section 6.3 establishes the inverse inclusion
by resconstructing all metrics which realize data in the Kerr-de Sitter-like class and

explicitly proving that they are Kerr-Schild-de Sitter.

As already mentioned, this chapter employs many of the previous results in this thesis.
First, the analysis of data in the FG formalism in Chapter 5 is essential to give a defini-
tion of the Kerr-de Sitter-like class, because the geometric definition of the asymptotic
data is required. Moreover, the results on conformal classes of CKVF's in Chapter 4,
which in turn are an extension of the results in Chapter 3, are of fundamental impor-
tance for the characterization of each one of the spacetimes inside the Kerr-de Sitter-like

class. Moreover, the structure of limits of the conformal classes of CKVFs in Remark
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4.25 of subsection 4.4.1 is the core of the structure of limits of spacetimes within the
Kerr-de Sitter-like class.

6.1 Kerr-de Sitter-like class & Kerr-Schild-de Sitter space-

times in all dimensions

In Chapter 5 we derived a geometric characterization of the initial data at .# of the Kerr-
de Sitter family of metrics in all dimensions (see Theorem 5.22). Recall, that all data of
the form (3, v, kD¢), with (X,~) conformally flat and D¢ given by (5.43) with £ a CKVF
of v and k a real constant, were proven to be uniquely determined by the conformal class
of ¢ (cf. Lemma 5.21). As mentioned in Chapter 5, this allows one to define a whole
class of spacetimes in all dimensions. Actually, this was first described for the n = 3
case in [100] and named Kerr-de Sitter-like class of spacetimes with conformally flat
. In [100], the class is defined as the set of spacetimes solving the vacuum Einstein
equations with positive cosmological constant, admitting a smooth conformally flat' .#
as well as a Killing vector field ¢, whose associated Mars-Simon tensor vanishes. This
definition implies initial data at .# of the form (3, v, kD¢), whith £ is the restriction to
& of the Killing vector field (. As no analogous to the Mars-Simon tensor is known in
higher dimension, the extension of the definition of the Kerr-de Sitter-like class requires a
different approach, and by the above discussion (and also mentioned in the introduction
of this thesis), an obvious possibility is to give the definition directly in terms of its
initial data (X,v, kDg).

Definicin 6.1. The Kerr-de Sitter-like class of spacetimes with conformally flat
& are conformally extendable metrics solving the Einstein vacuum field equations with
positive cosmological constant, characterized by data (X,~,kDy¢), with v conformally
flat and where D¢ is given by (5.43) with £ a CKVF of v and & a real constant.

Observacin 6.2. In order to clarify the terminology, the word class is used to denote
a collection of families of spacetimes, a family being a set of metrics, depending on a
number of parameters and sharing certain properties. For example, the Kerr-de Sitter-
like class with conformally flat % and n = 3 contains [100]: the Kerr-de Sitter family,
the Kottler families, a limit case of Kerr-de Sitter with infinite rotation parameter [101]
and the Wick-rotated-Kerr-de Sitter spacetime [88]. In this Chapter we shall extend the

definition of these families to higher dimensions.

The main purpose of this chapter, is to prove that the Kerr-de Sitter-like class with
conformally flat .# contains exactly all Kerr-Schild type spacetimes, solution of the A > 0
vacuum Einstein equations and sharing .# with its background metric. In particular this

requires that, as the background metric is de Sitter, .# is conformally flat. Since we shall

'The non-conformally flat n = 3 case is defined in [99]
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not deal with non-conformally flat cases, we shall simply refer to the ”Kerr-de Sitter-like

class“. Recall that the Kerr-Schild spacetimes (with positive A) are of the form
G=0is +HEkDk (6.1)

where gyg is de Sitter, k is a field of lightlike one-forms (both w.r.t. ggs and g) and H
is a smooth function. It is convenient to give a name to the set of spacetimes we shall

be dealing with.

Definicin 6.3. The Kerr-Schild-de Sitter spacetimes are of the form (6.1), solve the
A > 0 vacuum Einstein equations and admit a smooth conformally flat .# such that for

some conformal extension g = Q%¢, the tensor O2Hk ® k vanishes at 7.

Observacin 6.4. Notice that asking the metric g to share % with gqs, implies more than
simply g to have a conformally flat .. In particular, consider a conformal extension such
that v = Q2§ » is conformally flat and assume that V45 := Q%gys|s and (QQQF];: ® E)\y
are well-defined. Since vqs is conformally flat, one could naively think that v = 45 +
(2HEk ® k)| implies (B2Hk ® k)|, = 0, which would then imply the condition on
O*Hk ® k assumed in Definition 6.3. However, there is still room, in principle, for
conformally flat metrics of the form vas+HoyRy with Ho # 0, y # 0. A simple example
is any conformally flat graph in o flat n-dimensional space endowed with Cartesian
coordinates {x'}, i.e. a hypersurface defined by x™ = f(x'), such that the induced metric
happens to be conformally flat. The induced metric takes precisely the form vs = ygn-1+
y®vy, for a flat (n — 1)-dimensional metric ygn—1 and y := df (as an explicit example

one can take a hemisphere).

Thus, it may be possible that a Kerr-Schild metric, solving the A > 0 vaccum FEinstein
equations and admitting a smooth conformally flat # has a term PHER k surviving at
S . It would be interesting to settle whether any A > 0-vacuum solution of this type can

exist.

With the above definitions 6.1 and 6.3 we can now state the main result of this chapter:

Teorema 6.5. A spacetime belongs to the Kerr-de Sitter-like class if and only if it is
Kerr-Schild-de Sitter.

The proof of Theorem 6.5 involves two steps, which respectively we address in sections
6.2 and 6.3 of this chapter. In Section 6.2 we consider Kerr-Schild-de Sitter metrics
and compute their initial data, which by Corollary 5.17, correspond to the conformal
geometry of (conformally flat) .# and the electric part of the rescaled Weyl tensor D.
The tensor D is easily seen to have the form D = kD¢, with k € R and D¢ given by
(6.3) with £ the projection of k onto .#. The main task of this section is to prove that
¢ is a CKVF of .#. This is a consequence of the Kerr-Schild-de Sitter spacetimes being
algebraically special (cf. Proposition 6.9). This proves that every Kerr-Schild-de Sitter

spacetime is contained in the Kerr-de Sitter-like class.
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The reverse inclusion is proven in Section 6.3. To do that we generate every spacetime in
the Kerr-de Sitter-like class by taking advantage of the topological structure of the space
of conformal classes of CKVFs. By Lemma 5.21, one conformal class corresponds exactly
to one spacetime in the class. Moreover, from the well-posedness of the Cauchy problem,
limiting classes in the quotient space of CKVFs will generate limiting spacetimes. All
the metrics one obtains are summarized in the next theorem. In order to simplify the
statement, we modify slightly the notation with respect to Section 6.3: all primes and

hats are dropped and all rotation parameters are denoted by a;.

Teorema 6.6. Let be (M, g) be an (n+1)-dimensional manifold and set p := [“5L] —1,
and q == [%] Consider the functions W and = of table 6.1 and apy1 obtained from the
implicit equation in table 6.1, for a collection of real parameters {ai}z?+1 with apy1 =0
if n odd or in case b). Then, in the coordinates {p,t, {ai}f;rll, {¢:i}L |} taking values in
¢i € 10,2m) and the mazimal domain where W and = are positive and oy is real, every
Kerr-Schild-de Sitter metric

L o " 2Mpn—2
g =gqs + Hk Q k, must have H = — )
EI (1 + P2az2)

k as given in table 6.1 and the de Sitter metric gqs in the corresponding following form:

M e R,

a) Kerr-de Sitter family,

(P* =) o = dp? dag )
dt” + — +0pg—5—
2 2\ p2 P2
q 2 2 2 2
Zl—FP% 2, 2.0y, (PP —A)dW
+ — pQ (dal + a; d(z)z ) + )\WpQ 1 .

gas = —W

b) {a; — oo}-limit-Kerr-de Sitter,
Aoy = dp? ap . dog 14
~ p+1 2 =4dp p+15%g pra; 2
gds = dt —5 + 0pt1, do? + a2de?
P Apr T2 ; o 2

62 2 2do‘p-i-l
+ + 1 do a;da; | .
(A p2a2 P PP Z

=1

c.1) Wick-rotated-Kerr-de Sitter for n even,

1 dw?
W p? 4

~ AW 2fidi 1+ p2a? 9
Jas = pdt N +Z > (da? + a2dg?) —

c.2) Wick-rotated-Kerr-de Sitter for n odd,

2
A
(P + )dt2—

gas =W =
p2 p2 + )\ pQ p2



180

Case Constraint on {a;} w = k
p+1 2y .2 p+1 2 P 12 o = 1 2
a) >ici (L4 Agi)a; =1 Doin O Z 110202 Y wdt — pz_/\dp — > aja;de;
i=1 i=1
P _ P
b) o+ Aafaf =1 oz, oz + Z 1+p a2 o | Wdt+ 5dp — 21 a;a2de;
1=
p+1 Aa2 = q
C'l) Zfill )\a?a? =1 Zerl ; Z 1+ZQ 2042 idp - Z bia?d¢i
i=1 i=1
Plo1-a = ]
c.2) | app — i (1=Adf)af =1 | ajy =30 0] | apy — Z 1+p2a2042 Wdt + Z=xdp + .Z:laia?d(bi
1=

TABLE 6.1: Functions defining the Kerr-Schild-de Sitter families.

Before starting with the proof of Theorem 6.5 we shall give a refinement of Proposition
5.11 of Chapter 5. This refinement (given below in Proposition 6.7) is relevant here
because the Kerr-Schild structure of the metrics entails a decomposition very similar,
but not quite the same, as the one given in Proposition 5.11. For the sake of simplicity,
we restrict ourselves to conformally extendable Einstein metrics g for A positive and a

geodesic conformal extension g = Q%g.

First, we give a refinement of the decomposition in Proposition 5.11 for FGP metrics
with conformally flat .#, which follows from the next discussion. Lemma 5.8 gives the
FG expansion of metrics conformally isometric to de Sitter, but from property 2 of
Lemma 2.29, it also determines the terms up to order n of the FG expansion of any
metric admitting a smooth conformally flat .#. Consequently, for any such metric, the
terms generated exclusively by the boundary metric v stop at fourth order. This implies
that for n = 3, a conformally flat v generates a term of order n + 1 = 4 , which is
not only independent on the n-th (i.e. third) order one by property 1 of Lemma 2.29,
but actually must take the form g4 = P?/(4)\?) by Lemma 5.8. On the other hand,
for n > 3, the n +1 > 4 order term only depends on v by property 2 of Lemma 2.29.
Hence, by Lemma 5.8 it must be zero. That is, if g is an Einstein metric admitting a
smooth conformally flat .#, then for every geodesic conformal extension g = 027, the

FG expansion yields the following decomposition

9=9+Q, (6.2)

where g is of the form (5.15) (thus conformally isometric to de Sitter) and @ is both
O(9") and has no term of order Q"*! (when n = 3 this term exists in g but it is included
in g).

On the other hand, by Proposition 5.11 for conformally extendable metrics admitting a

decomposition of the form
g=9+Q, (6.3)

with § conformally isometric to de Sitter and Q = O(Q™), then . is conformally flat.

One must be careful with the fact that g being conformally isometric to de Sitter does
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not mean that it takes the form (5.15) for the conformal factor € which is geodesic
for g. Indeed, g does admit an expansion of the form (5.15) for some conformal fac-
tor () geodesic w.r.t. g, but in general this conformal factor is different to 2. Thus,
decomposition (6.2) is a very particular decomposition for metrics admitting a smooth
conformally flat .#, while decomposition (6.3) is a sufficient condition for g to admit a
conformally flat .#. Obviously, a metric which can be decomposed as in (6.3) can also
be decomposed as in (6.2), but these decompositions do not in general coincide. Indeed,

in general g # g.

Both decompositions (6.2) and (6.3) will be used in this section, so we summarize the

above discussion in the following Proposition:

Proposicin 6.7. Let g be an n > 3 dimensional conformally extendable A-vacuum

FEinstein, with A > 0 and let g = Qg be a geodesic conformal extension. Then

a) If 7 is conformally flat, then g admits a decomposition of the form (6.2) with g
of the form (5.15) and Q = O(Q") with no terms in Q1.

b) If g admits a decomposition of the form (6.3), with g conformally isometric to de
Sitter and Q = O(Q"), then & is conformally flat.

Observacin 6.8. As mentioned in subsection 5.1.1, note that by construction, the lead-
ing order term of Q in decomposition (6.2) is precisely d(n), the free part of the n-th
order coefficient. Recall that this equals ge,) if n odd or if n > 4 even. For n = 4
9(4) = Gy + G4y, with gy = P?/4 (cf. equation (5.15)).

6.2 Kerr-Schild-de Sitter C Kerr-de Sitter-like class

In this section we prove the inclusion of the Kerr-Schild-de Sitter spacetimes in the
Kerr-de Sitter-like class. This is done by direct calculation of the data at spacelike .# of
the Kerr-Schild-de Sitter spacetimes and by showing that the vector field & at .# that
arises in the expression of Dy is in fact a CKVF of .

A key ingredient for this result is that all vacuum Kerr-Schild spacetimes are alge-
braically special in the Petrov classification. This was proven with Minkowski back-
ground in [113] and with (Anti-)de Sitter background in [107]. Recall that the Petrov
classification is an algebraic classification of the Weyl tensor based on the vanishing of
the components with certain boost weight, as we summarize next. In the case of arbi-
trary dimension this classification was developed in [33, 34, 104, 111] to which we refer
for further details (see also the review [114]). Consider a null frame of vectors {k, 1, m) }

fori=1,---,n— 1 (whose indices are raised/lowered with g), i.e. a frame satisfying

ko =1Plo = g =0,  kla=-1,  @iga = 0. (6.4)
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This frame maintains its properties (6.4) under the following set of boost transformations
~ ~ ~ i _ _
Kl=bk,  U=0b7" iy =me),

for every real non-zero parameter b. Thus, the components of the Weyl tensor C' ex-
pressed in this frame have “boost weight” depending on the number of contractions with
%, [ and T?L(i). Namely, 4+1 for each contraction with E; —1 for each one with lN, and 0
for each one with m ;. From the symmetries of the Weyl tensor, the maximum boost
weight of a component is +2 and the minimum is —2. The classification proceeds by
looking for vectors k such that the highest boost weight components vanish. One such k
(when it exists) is called a Weyl aligned null direction (WAND) and if the components
of boost weight 1 or lower also vanish, k is called a multiple WAND. A spacetime which
admits a multiple WAND is said to be algebraically special.

It turns out [107] that all A > 0-vacuum Kerr-Schild spacetimes are algebraically special.

Hence, for this section, the following result will be key:

Proposicin 6.9 ([107]). Kerr-Schild-de Sitter spacetimes (6.1) are algebraically special,
with k a multiple WAND satisfying

Chroapk" KMy = Chausk K IM{) = Chupk My miy i, = 0,

for a suitable null frame {%,ZN, m}. Moreover, k is geodesic, so after rescaling if neces-
sary, it satisfies

k*Vakg = 0. (6.5)

We shall assume for now on that k has been scaled so that (6.5) holds.

Let g be a Kerr-Schild-de Sitter spacetime and consider a geodesic conformal extension

g = Q%7. Then, the conformal metric and its associated contravariant metric g% are
Jas = VG =Gag + Hha ks, g% = Q7P =50 —HE L, (6.6)

where § = Q%G49, H = O2H and k, = k, is a field of one-forms whose metrically
associated vector field k% by ¢ has components k% = go‘ﬂkg = Q_2§QBE5 = Q_Q%O‘,
where k“ is the vector field metrically associated to %a by g. Moreover, remind the
notation T, = V,Q, TH = g'"T, and u denotes the unit normal along T'. We also recall
the well-known property that k, is geodesic w.r.t. g if and only if %a is geodesic w.r.t.

g. Indeed (see the change of connections tensor (2.6))
KOV ok = k°Vakg — Q" o5k %k, = k*Vokg = Q2K V,kg. (6.7)

Thus combining equation (6.7) with Proposition 6.9, & must be geodesic w.r.t. g. In
addition, the conformal invariance of the Weyl tensor implies that k is a multiple WAND
for the Weyl tensor of g if and only if it is a WAND for the Weyl tensor of g. That is,
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by Proposition 6.9 and the above discussion, k, is also a geodesic multiple WAND for
g. In what follows, it will be useful to decompose k in tangent and normal components

to a timelike unit vector u. Specifically, given one such u, we write
ko = s(ua + Ya), (6.8)

which defines both the scalar s and the spacelike unit vector y perpendicular to u. Except
in the trivial case that the Kerr-Schild metric is identical to the backgroud metric, it
is clear that Hk ® k cannot be identically zero. We let U be a domain of the physical
spacetime M where this quantity is not zero. We are only interested in the case where U
intersects .# as otherwise the free-data g, is identically zero, and the Kerr-Schild metric
would be identical to the background metric in some neighbourhood of .#. Since k is
geodesic, affinely parametrized and nowhere zero in (U, g), it must extend smoothly and
nowhere zero to # N QU. This is because g-null geodesics starting sufficiently close to
# with non-zero tangent reach .# (smoothly). Since the tangent vector to the geodesic
cannot vanish anywhere along the curve, we conclude that the covector k is nowhere
zero in .# N OU. From now on we shall work on the manifold with boundary U so that

its infinity (still called .#) is such that k is nowhere vanishing there.

In the next lemma, we summarize the important properties of k w.r.t. to the conformal

metric g

Lemma 6.10. Let g be a Kerr-Schild-de Sitter metric and let g = Q2§ be a conformal
extension. Assume that g is not identically equal to the background metric in some
neighbourhood of .%. Then, after restricting M if necessary, k extends smoothly and

nowhere zero to . and it is both geodesic affinely parametrized w.r.t. to g
E*Vokg =0
and a multiple WAND with

Craawsk" K mym? = Caysh K 1°m) = Cpapshmmiymi, =0,

for a suitable null frame {k,l,m;} for g.

The Kerr-Schild ansatz gives a decomposition for the metrics (6.6) similar to the one
in (6.3), where, however, @ = Hk ® k is in principle not necessarily O(2"). We now
prove that Definition 6.3 forces that necessarily H = O(2"). In the following, we use
the same name for a geometric object and its restriction to .# (we let the context clarify

the meaning). This applies in particular to the vector y.

Lemma 6.11. Let g be a Kerr-Schild de Sitter spacetime and consider a geodesic con-

formal extension g = Q%G as in (6.6), inducing a (conformally flat) metric v at &.
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Then, H = O(Q™) and the electric part of the rescaled Weyl tensor at & is

1
Dog=F (yayﬁ - n'Yaﬂ) , (6.9)

where the function F at & is given by (Q "Hs?)|, = _W{Q)'

Proof. By definition 6.3, H = Q*H must be O(Q™) with m > 1. Assume first that
m = 1. By property 2 of Lemma 2.29 the FG expansion of g = —dQ%/\ + gq is
even up to order n, where gq is given by (2.34) if n odd or (2.35) if n even (with
vanishing logarithmic terms because v is conformally flat, cf. Theorem 2.22). Then,
using the Kerr-Schild form g = g + Hk ® k and expanding g and Hk ® k in Q, the
non-zero terms of order € of the tangent-tangent (i.e. tangent to Yo = {Q = const.})
components of g must cancel out those of Hk ® k. To expand g in powers of €2, consider
a geodesic conformal factor? Q for g, which induces the same boundary metric v at
7 = {Q =0} = {Q = 0}. The existence of such conformal factor follows by Lemma
2.10 and it must satisfy 2 = (AZw, with w|, = 1. By Lemma 5.8, the FG expansion of
g, in Gaussian coordinates {Q, 7%} adapted to the foliation g = {Q = const.}, is given

by (5.15) - ;
sy oo 1E o

I=75 T e TYTRE T R

where P is the Schouten tensor of v. In order to compare with the expansion of gq,

(6.10)

one has to relate the conformal factors, but also the tangent directions. First, as g|» =
gl.s = 7 we can choose tangent coordinates satisfying z° = 2% + Q2%, for a collection of
functions {2} (still depending on €2). We use now, as shown before, that the vectors dg

and Jg are proportional at .#

8Q|Q:0 = (69318@ + 8{2@) 8@‘920

= (Zi + Qaﬂzi) 9%ilg=o + (w + Qaﬁw) aﬁ‘a:o = Q‘Q:O'

Thus z'|g_, = 0 s0 2/ = O(Q) and Z' = z' + O(Q?). This implies that when ~ (which
recall is extended off .# as independent of € in the Gaussian coordinates {2,z'}) is
written in coordinates !, it does not add tangent-tangent terms (dz’da’) of order €
and obviously neither they do the rest of terms in gg in (6.10), because O = Quw. On
the other hand, d0? is

dQ? = (wdQ + Qdw)? = w?dQ + Q2dw? + 2QdQdw

and the only tangent-tangent terms can only appear in Q2dw?, thus starting (at least)

at order Q2. Therefore the expansion of g in the conformal factor © does not have first

2Notice that § = QQ%S, where gl,5 is locally de Sitter, isometric to the original one gas, but not
equal.
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order terms, so neither it does Hk ® k because the FG expansion of g does not have such

a term. This implies that m > 2.

Let us expand H as
2F

"= " An(n —2)

(s72[)Q™ + o(Q™),

and note that s that does not vanish anywhere (because k has this property). By Lemma

5.4, the electric part of the Weyl tensor is straightforwardly calculated
_ . w m—2 m—2
CL=F(y®y—"—go | Q""" +0o(Q") (6.11)

where we have used that g is conformally flat, so that C = 0, and V(2 is geodesic, thus
F?2 = ), and ¢ = —1 (cf. Lemma 2.9). Now applying Theorem 5.14, scaling (6.11) by
027" and evaluating at Q = 0 must give the free part of the n-th order coefficient of
the FG expansion, so m > n. But m > n gives g(,) = 0, which by uniqueness of the
FG expansion would imply that g is equal to its background metric, against hypothesis.
Thus m = n and the lemma follows after scaling (6.11) by Q2~" and evaluating at
. O

In conclusion, the initial data for Kerr-Schild-de Sitter spacetimes are a conformally flat
class of metrics [y] and a TT tensor of the form (6.9). The function F cannot be identi-
cally zero at .# (as otherwise g would equal its background metric in a neighbourhood
of .#). After restricting M further we may therefore assume that F is nowhere zero at
# and we may reparametrize it as F =: k/f", with f everywhere positive and x € R is
a constant that carries the sign of F. For later convenience we do not normalize k to be
+1, which means that we keep an arbitrary (positive) scaling freedom in f. Then, the

TT tensor D of Lemma 6.11 can be written as

1 f?
D= ,‘QD& (Di)aﬁ = W <§a€B - n7a5> s (612)

with &, := fy.. Our next aim is to prove that £ it must be a CKVF of .#. The strategy
is to rewrite the conditions of being CKVF in terms of equations for f and y and then

show that they are satisfied as a consequence of k£ being a WAND.

Recall the following standard decomposition of the covariant derivative of a unit vector

field y, in terms parallel and orthogonal to itself
() hag (1),
va’y Ys = Yalp + Ha,B + EL + Wafs L= VO:Y Yy (613)

where V() the Levi-civita connection of 7, ag is a covector, hag = Yas — Yayp (the
“projector” onto (span{y})) and Il,s symmetric traceless and w,s skew-symmetric,
ie.

o) = Hag, I1*, =0, Wiap] = Wag,
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satisfying
Y Uap =y hap =y wap =0,  y“aa =0.

In what follows, it will be useful to express the metric v as

YaB = Ya¥yg + hag-

Lemma 6.12. Let £€% = fy®, with y¢ unit, be a vector field of a Riemannian n-manifold
(X,v) and consider the decomposition of vﬁﬁ)y@ as in (6.13). Then & is a CKVF of v if

and only if the following equations are satisfied

fL

n—1

Vgﬂf = Yo — faa, Haﬂ = 0. (6.14)

Proof. We rewrite the conformal Killing equation
Ve, + V¢, = 2ytign
a S B Sa ok Yap

in terms of the kinematical quantities above. Since

Vs + VP8 = (VO Fys + (VS Pya+ F(VDys + V) ya)

2hq,
= (V9 Dws + (V5 Do + f (yaaﬂ T yptat 2lop o —51L>

and
2 2
“VE s = ~ (Vi f + FL) (YaYs + has),

¢ is a CKVF if and only if

(V8 00+ (V5 i+ 7 (ot + s + 2y + 2222 1)
=2 (VD S+ FL)ays + has) (6.15)
One contraction with y® gives
WV s + VT + fag = (VG f + FLyys (6.16)
and a second contraction with y?
P+ = 2Ly = v =T )

Inserting (6.17) in (6.16) gives the first of equation (6.14). Projecting (6.15) with h®,h¥,

gives

Py 2
2f <HW + 1L) = W'V L+ L)

n —
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which is equivalent to I = 0 after using (6.17). This proves the result in one direction.
The converse follows immediately because (6.16) is identically satisfied when (6.14) hold.
O

Coming back to the data corresponding to Kerr-Schild de Sitter metrics, we prove that
the first equation in (6.14) is satisfied just by imposing D to be TT. The argument for

the second equation is more subtle and will be addressed right after.

Lemma 6.13. Let g be a Kerr-Schild de Sitter metric and g = Q%4 a geodesic conformal
extension. Then
(S
V' f = Yo — faa. (6.18)
n—1

Proof. Consider D¢ = f~" (y ® y — (1/n)7), which by Lemma 6.11 is, up to a constant,
the electric part of the rescaled Weyl tensor of g. Since g is Einstein and « locally
conformally flat, then D¢ must be TT (because it coincides with the n-th order coefficient

of the FG expansion, cf. Theorem 5.14) and the vanishing of its divergence gives by (6.13)

O)(Dg ) n | eg®) AT
Vo (De) 5 = ~fart (¥Va fys——— | + n (Lys + ag) = 0. (6.19)
Contracting with y° one has
v JIE
@ n—1

and inserting back into (6.19) we get (6.18). This condition, which is precisely the first
in (6.14), is not only necessary for (6.19) but also sufficient. O

We next show that II,g = 0. First notice that Kq, the second fundamental form of the

leaves Yo = {Q = const.}, can be written

1
Ko = 5(Luga) = ——5—(20g¢) + - + nQ" gy + ),

where £, denotes the Lie derivative w.r.t. the unit vector u®d, = A /2V2Qo, =

—A'/28q. This tensor appears in the Codazzi equation (2.18)
(Vi(Ka)ij = Vi(Ka)r;) = R jiwty, (6.20)

where i, j, k denote tangent directions to . The strategy consists in analyzing the

Q"1 order terms of the following components of the Codazzi equation
(Vo(Ka)pa — Va(Ka)va) B0\ 5y = Raypuh® \hP oy, (6.21)

where we extend h away from .# as the projector orthogonal to y and w, i.e. h :=

g+u®u—y®y. The proof that II,3 = 0 consists in two main steps. Firstly, we prove
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that the Q! order term of the LHS of (6.21) only involves the free part J(n)- This,
by Theorem 5.14, coincides up to a constant with the electric part of the rescaled by
tensor, which in turn, by Lemma 6.11, is given by equation (6.12). From these facts it
follows that the LHS of (6.21) is (up to a non-zero factor) II,3. The second step consist
in analyzing the RHS of (6.21). From the algebraically special condition, it follows that
the symmetric part of its Q"' order term is pure trace. Since I1,p is traceless,it follows
Haﬁ =0.

Before carrying out this program, we derive some identities that will be required for the
rest of this section. Consider a conformally extendable Einstein metric § and let g = Q%g
be a geodesic conformal extension. As before let v be unit normal along V) and i, j, k
denote orthogonal directions to span{u} (in Gaussian coordinates {£2,z'}). Then, from

the definition of (2.10), a straightforward calculation gives
f e 2 1
RF jipuy = CHjiguy, — mgj[kRi]uu :

On the other hand, since g is Einstein and  geodesic, from (2.8) follows

n—1 v,V

= — o V3 — g, .22
Raﬁ 0 \4 vﬁ Jap Q (6 )
Hence
-1 -1
Ryt = —x~128 q (Vv Vi = —A—W%—QW(V“QWQ) =0
and
R“jiku# = C“jikuu. (6.23)
In particular
RF o5,y BN 5 = CF oty B AP . (6.24)

Lemma 6.14. Let ggs be the metric of de Sitter, § = Q?gqs a geodesic conformal
extension and Kq the second fundamental form on the leaves Yo = {Q = const.}.
Then, the Codazzi equation (6.20) is

Proof. The lemma follows by simply applying the Codazzi equation (6.20) to g together
with identity (6.23), where the Weyl tensor vanishes because g is conformally flat. [

Proposicin 6.15. Let g be an Einstein metric admitting a smooth conformally flat 7,
g = Q27 a geodesic conformal extension and Kq the second fundamental form on the
leaves ¥ = {Q = const.}. Then the leading order term of the LHS of the Codazzi
equation (6.20) is

)\1/2 . ) .
_T(n -1t (V;(J) (Ieny)ij — VZ(-W) (g(n))kj) ,
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where v is extended off F as independent of Q and V) denotes its Levi-Civita connec-

tion.

Proof. Consider the decomposition a) of Proposition 6.7, g = g+ @ with g = —dQ?/\ +
Jq, conformal to de Sitter. Since g*? Va2Vl = =\, the conformal factor 2 is geodesic
for both g and g. On the other hand, the second fundamental forms Kq and Kq,
respectively induced by ¢ and g on Xq, are related by

—\/2 _\l/2 AL/2

Ko=— daga = 5 da(go +Q) = Ka — T(” — )" g + O(Q"H),

where we have used that by construction @ = Q"g,) + O(Q"2). For every tensor Ty,
tangent to Mg, it follows that its covariant derivatives w.r.t. V and V satisfy (we use

that the coordinates are Gaussian with respect to g)
ViTij = VT — S'%iTi; — S'; Ta
where the tangent components of S, given by (2.1) for gV = g and ¢@ = 7, satisfy

1 — — — 1 _ _ _
Sk = §glm (Vigim + Vigkm — Vigri) = §glm (ViQim + ViQrm — VmQpi) = O(Q").

Thus VT;; = ﬁk’ﬁj + O(Q™). In particular, for Kq

_ AL/2 )
Vi(Kq)ij = Vi(Ka)ij — T(n — D" 'Vi(gm))ij + O(Q")
o )\1/2
= Vi(Kq)ij — T(n — D" Vi(gm))ij + O(Q™),

and the LHS of the Codazzi equation (6.20) for Kq is

Vi(Ka)ij — Vi(Ka)kj = Vi(Kq)ij — Vi(KQ)k;

)\1/2 - ) ) .
- T(n — D" (Vilgmy)is — Vildm)rs) +0O(QM)
/2 1 , . n

= _T(n — D" (Vi(Gmy)is — Vildm)rg) +0O(Q7),

where the second equality is a consequence of Lemma 6.14. Now, since gg = v+ O(Q?),
the covariant derivatives V,(gn))ij and V;(gen))r; are, to lowest order in €2, V(W)k(é(n))zj
and V(V)Z(Q(n))k] O

Therefore, for the particular case of Kerr-Schild-de Sitter metrics and the components

of the Codazzi equation in (6.21) we obtain:
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Corolario 6.16. The Q"' order term of the LHS of (6.21) is, up to a non-zero constant,

equal to the following tensor

(LHS)ro = — -1,

Proof. From Proposition 6.15, the term of order Q™! of (6.21) only involves derivatives
of g(n). By Theorem 5.14, g, is up to a constant the electric part of the rescaled
Weyl tensor, which by Lemma 6.11, is given by expression (6.12). Hence, substituting
YaB = Ya¥ys+hap, the (n—1)-th order of the LHS of (6.21) is (up to a non-zero constant)

v v y yOé h’ (0%
Yy (Vl(/,Y)(Df)B v(v)(DE)Va) = fn-‘rly v( )f <y6ya - ﬂT - fL)

1
(aﬁya + aqyp) + Fori V(ﬁ )ny - 7V27)ya

f” fm

Inserting the decomposition (6.13) and using the first equation in (6.14)

» n fL [n-—1 hga
v (V9 (De)sa = V5 (Dehve) =~ ot =5 ( e = ) i (#3110 F ayp)

n fL n—1 1 L
_ o — = (Y300 + ga + ——hpa + Wga
+fn+1( ys — fag)——y fn(yﬁa +1ga + —— hga + wga)

1
=~ ((n = 2)agya + Hga + wga) -

Contracting both indices with A and symmetrizing yields the following tensor

1
(LHS) s := 1" (V) (Dg) gor — vg” (De)va)h® 3B’y = _FHAU

O

In the remainder of this section, we ellaborate the RHS of (6.21). Applying identity
(6.24) it follows

(RHS)U)\ = Ruayﬁuyyuha()\hﬂo-) = C”gﬂauyy“ho‘()\hﬁa). (625)

Now we use the algebraic special condition to prove that the Q"' order components
of the Weyl tensor in (6.25) are pure trace. Recall the decomposition (6.8) of k. One
can then define | = 25 !(u — y) such that [,k* = —1 and complete to a null frame

{k,l,m@}. Then, h is the projector onto span{m;}. Thus, contracting C*,,5 with
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kuk”h“(Ahﬂg) gives by Proposition 6.9

0 = C¥aupkuk” B (\hP 5
= 0= (C"avpupt’ + C oy’ + 20" @puipyupy”) h* (b’ o)
<~ 20”(a|y|5)uyyuhQ(Ah’BU) = _CuaVBuMuyhaAhﬁo' — Cuaygyuyyha/\hﬁg.

In addition
Jaf = —UaUB + Yoy + hoeﬁ,

and the traceless property of the Weyl tensor gives

0= C#auﬁ = —C’“a,,guuu” + C“al,gyuy” + C“ayghuu

— C‘ua,,gyuyy = C“al,guuuy — C‘uw,ghyu.
Therefore
20" (a1 p) U Y h* (\B oy = —2C" 0, pu RO \WP 5 + CF oy gh” BB 5. (6.26)

The first term in the RHS of (6.26) only involves the electric part of the Weyl tensor.
Using the previous results we next prove that, at order Q"~!, it can only contain trace

terms.

Lemma 6.17. Let g be a conformally extendable metric admitting a smooth conformally
flat .#. Then, for every geodesic conformal extension g = Q2g, the electric part of Weyl
tensor w.r.t. the normal vector C| has no terms in Q"~'. Moreover, if § is Kerr-
Schild-de Sitter, the possible terms of order Q™1 added by contracting twice with h, i.e.
(CL)aph®\h? s, are pure trace.

Proof. First consider g = —dQ? + gq in normal form w.r.t. a boundary metric ~. Since

~v is conformally flat, we can decompose gq as in statement a) of Proposition 6.7
go=9go+Q

where g = —dQ? + g, is conformally isometric to de Sitter, g, is given by (5.15) and
Q = O(Q") contains no terms of order Q"1 We now insert this decomposition into
formula (5.2), which we write in terms of the electric part of the Weyl tensor C'} (cf.

equation 5.1), which for simplicity we write using matrix notation as

A1, 4. 1, ..
(CL) = 9 (2 09q 90 + 599 — 99) . (6.27)

where " stands for derivative in 2 and note, g, ! must decompose as

9o =0g +V
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with V' = O(2"), because g, L9 equals the identity and terms of order m < n in V
could not be cancelled out. We compute the terms in (6.27). Firstly

909 90 = Ja9q ' Ga + Jada @ + Qug'Ja + Qg Q
= Jadq Ja + Jodg @ + Qg To + Q75,'Q
+GaVia +3aVQ + QVia + QVQ,
and second
1, S T 1 O-0
Adding them and taking into account that

A 1. _ . 1. = -
5 <2QQQQIQQ + Q0 QQ) =C. =0

where (C'1) is the electric part of the Weyl tensor of g, we are left with

2

(€)= (070" @ + Q70 o + Q7' Q + FaVi + 70V Q + QViig + QVQ)

2
1 . .. 1 . .. "
+ @ -Q=g5@-Q+0@". (6.28)

Since @ does not contain terms of order Q"1 then (6.28) does not contain terms of

order Q*~1. This proves the first part of the lemma.

Combining this fact with equation (6.12), we can write the leading order of C'} and its

tail order terms as

2
(CL)(X,B = Qn_2 f:+2 <§a£ﬁ - J;’)ﬁﬁ) + O(Qn)a

where v must be understood as the leading order term of gq, i.e. the extension of 7| »
to the spacetime as a tensor independent of ) and similarly with £&. Contracting this
expression twice with h gives

9k 1

n fm

We cannot exclude that the presence of h,g in this expression introduces terms of order

(CL)agh® b, = —Q"~ hu + O(Q™).

Q"1 but if present, they are clearly trace terms, as claimed in the Lemma. O



193

We next look for a similar result for the components of the Weyl tensor C* g,o h” ,h* N o)
which arise in (6.26). From the definition (2.10) one has

CF o gh” Wh®\hP 5, = R* 50", \hP

2 2R o
+ (_ (5“[VRB]05 - ga[VR'u\B]) + ’I’L(’I’L—l)éﬂ[l}gﬁ]a) h ,uh )\hﬂa

n—1
= RFoph” Wh\hP,
n—3 7R'ul/hyu n—2

Ragh®\hP, R) hy,
n—1 " +< n—1 Jrn(n—l) ) A

which using (6.22) gives

o VsQ
CF g Wh®\hP 5 = R* o 5hY Wh\RP 5 + (n — 3)%% N

n—3V,VkQ R, n—2
n—1 Q n—1 n(n—1

)R> hro.  (6.29)

The term containing h® ,\hBUVaV5Q will be left unaltered as it will cancel out after
expanding the rest of terms. Our next aim is to analyze the components of the Riemann
tensor RFq,gh” h* (zh®s), and relate them to the same components of the Riemann

tensor of g:

Lemma 6.18. The Riemann tensors of g and g satisfy

~

RM RO WY hOARP . = RFo,sh? B RO \RP,

— 2HROTRY WO ARE 5 (V1 ke Vagkig) + Vinks Viaks) -

avf

Proof. We apply the formula for the difference of Riemann tensors (2.2) with ¢() =g
and ¢ = g¢. Setting g = § + Hk ® k, the tensor S reads

1
Stag = —i/g\’w (Va(Hkgk,) + Vg(Hkok,) — Vo, (Hkokp)) . (6.30)

Hence,
S oh? By = —%’Hk:”h”yho‘ A Vika + Vak,)
and since (recall that £ is null geodesic k*V kg = K"V gk, = 0)
k"hP, S g, = —%k“hﬁgngﬁ(%k”kf) + Vo (Hkgk,) — Vo (Hkkg)) = 0,

it follows
25" 0 S" g1 Py h* AR 5 = 0.
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On the other hand
1

ViSag == 5 Vi@ (Va(Mhsks) + Vs(Hhaks) = Vr(Hkaks)),
1
= 39"V (Va(Hksks) + Vo(Hhaks) = Vr(Hhaks)).  (631)

The first three terms in (6.31) vanish when contracted with h%\h?, because, taking into

account (6.6) and that k is null geodesic,

1_
5 Vud"" (Va(Mhgkr) +Vs(Hkaks) = Vr(Hhaks)) h*\h°5

1 1
= 5 V(MK )by (Vaks + Vska) ho\hB, = 5#/&(%1&)@ (Vaks + Vgka) R¥\hP 5 = 0.

We calculate the contraction of the last three terms in (6.31) with A four times. The

expansion of each term gives

e LhY WP 5GPV Y o (Hkgkr) = ROTRY B AW o H (Ve Vaks + Vi ksVaks)
he L hY WP G GHTV N g (Hk o k) = BOTRY B AR o H (V ke V gha + VikaViks)
e hY WO ARP s GH TN NV - (Hko k) = ROTRY AW o H (V ko Vioks + Vo ksVrka) -

Then, rearraging terms,
0 v pa 0TV P
20° 0"k AhﬂaV[VS“B]a = —2Hh°"h" h N (V[V|k[TVQ]k|ﬁ] + V[,,kﬁ]v[akﬂ) )

and the Lemma follows from the identity (2.2). O

Specifically for our purposes, Lemma 6.18 yields
RFoyph yh®\hPy = R* | ohY ih® %5 +0(Q™), (6.32)

so we do not have to take into account the tail order terms. To calculate R* o ﬂh” uwh® N
we use the definition of the Weyl tensor (2.10), which for g vanishes, and contractions

with h give:

E'u‘yh’/‘u n — 2
n—1  nn-1)

E'LL auﬂh’uuha)\hﬁo = Ziigﬁaﬁha)\hﬂa - <—

; fe) hro.  (6.33)

We finally relate the term }?iagho‘ \hP, with the same components of the Ricci tensor of

de Sitter. To do that, we use equation (2.8), substituting g by g and g by ggs

vV, VHEQ . nas o
“Q + Gap gz ViV Q. (6.34)

n—1

Rop — RY = — VaV5Q = Gas
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We may now use that ggs is Einstein to cancel out terms, but 2 is geodesic w.r.t. to g,
which means

n

/g\aﬁ 02 /LQ%MQ = Ja (g“” + ’Hk;likl’) §MQ§VQ

= _Angaﬁ% + :docﬁ%?{kukyv#gv”g

n52

= —Angis + a3 g™t (6.35)

where we have used that ¢g"'V,QV, Q= -\ and s = —A_l/Qk“VuQ. Now, since the de
Sitter metric is Einstein, equation (6.34) with (6.35) gives

n—1

A S & V. VFQ  ns?
Ragh®shPy = 2 (Vo VsQ)h P, + <— AL ”‘2%) he.

Q Q AQ
The tensor 604%59 can be related with V,V 3} using the difference of connections
VaVsQ = Vo VsQ — S5V,
with the tensor S given in (6.30) and
SH0gh®ohP ;= %Hkygﬂ”(vakﬁ + Vka)h*\hP 5, = O(Q").

Thus

<

n—1

o) a pf
Rogh™\h" 5 )

(VaVs)he\hP, + (—

so that from equation (6.33) it follows

n—3

R! gh? uh® (\h® gy = —T(vavﬁmh%hﬁa
_n—3§u§“ﬂ n— 3 ns? ]?E’ﬁ,h”u_ n—2 7\
n—1 Q n— 102 n—1 nn-1) A
+0(Q"). (6.36)

Combining equation (6.36) and (6.32) and putting the result back in (6.29) , we have

proven

n—3V,V*Q  RF,RY n—2
Howph’ Wh\h 5 = K e
CFavgh”uh) (n—l Q n—1 n(n—l)R
n—3 §M§“Q f%“,,h”u n—2 ~ n-—3ns?
_ _ hyy
n—1 + n—1 nn-1) +71—1)\(227-[ A
+0(Q") (6.37)

which is pure trace plus terms of order n. Now the following result is straightforward
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Proposicin 6.19. Let § be a Kerr-Schild-de Sitter metric and g = Q%¢ a geodesic
conformal extension, with v = g|.» conformally flat by definition. Then the electric part

of the rescaled Weyl tensor is

K €13
Daﬁ = fn+2 £a§B - 770:6

where f is a function of & defined by (X "H)| s, = % and £ = fy is a CKVF of
~v. Thus, the Kerr-Schild-de Sitter metrics are in the Kerr-de Sitter-like class.

Proof. By Lemma 6.11, we only have to prove that & is a CKVF of v. The RHS of
the Codazzi equation (6.21) is given by (6.25). Combining equation (6.26), Lemma 6.17
and equation (6.37), the non-zero terms of order Q"1 of C¥(a|v|pyu” Yy, are pure trace.
Thus, the traceless part of (6.25) is identically zero. By Corollary 6.16 this is precisely
0 = Il,p up to a multiplicative constant. Now the Proposition follows from Lemma 6.12
and Lemma 6.13. 0

Observacin 6.20. Throughout this section we restricted & to the set of points where
H (and k) are not zero, because we assumed that k/f™ = F # 0 to write down (6.12)
(i.e. we assume that f does not diverge). Now, we know that the vector § is a CKVF
of S, hence this vector is smooth everywhere. The set of points where it vanishes (i.e.
where f =0) must be removed from .# as soon as the constant k in the data D = kD¢

is mot zero because the tensor D¢ is certainly singular at points where { vanishes.

6.3 Kerr-Schild-de Sitter D Kerr-de Sitter-like class

In this section we will prove the converse inclusion than in Section 6.2, namely, that
every spacetime in the Kerr-de Sitter-like class is Kerr-Schild-de Sitter. Our strategy is
to explicitly construct every Kerr-de Sitter-like spacetime in Kerr-Schild form. To do
that, we take advantage of the property that the data in the Kerr-de Sitter-like class
depends solely on the conformal class of the CKVF ¢ (Lemma 5.21) and a mutiplicative
constant. Since the initial value problem is well-posed and each spacetime with data
(2,7, kD¢) is uniquely determined by x and the conformal class of £, we can infer all
limits of spacetimes from the limits of data, which in turn are consequence of limits of
conformal classes of CKVFs. The quotient space of conformal classes of CKVFs was
studied in detail in Chapter 4.

6.3.1 Kerr-de Sitter and its limits at .

The explicit form of the metrics in the full Kerr-de Sitter-like class will be obtained

via either limits or analytic extensions of the Kerr-de Sitter family of metrics in all
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dimensions in [70]. The conformally extendable version of this family of metrics was
given Section 5.3, i.e. the metrics g = Q2?§ were given, where g solves the A-vacuum
field equations and g is smoothly extendable to {2 = 0}. Recall that in Section 5.3
some modifications w.r.t. to the original publication [70] were introduced which we keep
here because they make our analysis more direct. Namely, as the limits will be inferred
from its data at .#, it is convenient to give the metrics in coordinates such that, in
the conformally extended space, the conformal factor vanishes at a finite value of the
coordinates. Here, as we are interested in the calculation of limits of physical metrics,
we shall use the physical version of the metrics § = Q272g. We will also absorb some
constants depending on the rotation parameters into the coordinates. This will allow us
to perform several limits at once. Moreover, we give the metric already in Kerr-Schild
form (6.1). This will be useful to show that the limits also belong to the Kerr-Schild-de

Sitter class.

We remark, just like in Section 5.3, that in the following, when using index-free notation,
the boldface font shall be used to distinguish a the metrically associated one-form £ =
~v(&,-) to a CKVF & of 7.

Recall that the conformally extendable Kerr-de Sitter metric in Kerr-Schild form is given
by

I=0is+HkRkK
where ggg, k and H are the physical version of (5.31), (5.32) and (5.33) respectively,
directly obtainable by (5.28). In the following, it will be convenient to rewrite these

terms using the coordinates

@ p+1 p+1
~ i 2 2\ 22
= = ¢ = 14+ Xaf)a; =1 6.38
QG (1 + )\&?)1/2 ; o ;( az)az ( )
so that the functions W, = and II in (5.30) are
p+1 p+1 2 p+1
R — 1+ da? .
i=1 i=1 i j=1
and
~ (=X .o, EZ dp? daz
gis = —W-—5—dt" + —5 + 6,
p? pr—Xpr P p2
a 2 2 2 2
L+pai o o9y (p7—A)dW
—— (da; “do; — 6.40
—i—; 2 ( a; + & ¢l)+ N ( )
- = g
k=Wdt — —— ~dp = > aialdg;, (6.41)
pm = i=1
~  2Mp"
H="L MecR (6.42)

=’
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where for (6.40) we have used the differential of (6.38)

p+1 p+1 p+1 Fli%
> (14 2a))didd; =0 = Y Aaldudd; = — Y duddy = -
=1 =1 =1
ptl (1+p2a2) a;doy ? pHl ?
i) Qg% 2,2\ 4.dés
— (; v ) = (; (1+ p°aj) Oédeéz)

(A=A aw?
U A 4

Recall the initial data (2,7, kD¢) of the Kerr-de Sitter family calculated in Chapter 5,

which in hatted {&;} coordinates, = is

q 2
~ . . . 1 dW
Y =9ds |s= AW dt? + 5p,qd0‘;2>+1 + z; (da? + a%dgf)?) W 4
=
and the conformal Killing vector £ is exactly the same
1 q
=10~ ; i, (6.43)

Recall also that, after a suitable reordering of the rotational parameters {a;}, the con-
formal class of ¢ is determined by the parameters {o = —A71, ,u? = a?} for n odd and
{—pi = -X"1 p?2 =a},p? = al} for n even (cf. Theorem 4.35). Observe that A
is one of the parameters which determines the conformal class of £&. This is a priori
fixed by the Einstein equations, so it is not a freely specifiable parameter of the metric.
However, under scalings of &, ¢ is also scaled with the same factor. From the structure
of D¢ in (6.12), we have the freedom of scaling £ and leave the data kD¢ unaltered if we
absorb the inverse (squared) scaling factor in x, which is essentially the mass parameter

of Kerr-de Sitter, therefore freely specifiable. In this way, we may cover the full domain
(n+2,m)

defining the family RIH20), Obviously any point in any region R is also covered

by considering the cases with m vanishing rotation parameters.

From Lemma 5.21, each metric in the Kerr-de Sitter-like class is determined by the pa-
rameter k and the conformal class of £. Thus, for a fixed value of x, one can associate ex-
actly one metric in the Kerr-de Sitter-like class to each point in CKill(E")/ConfLoc(E").
Moreover, the limits of regions in CKill(E™)/ConfLoc(E™), must induce limits of data
(3,7, kD¢) which in turn, from the well-posedness of the Cauchy problem, also induce
limit of spacetimes corresponding to such data. In this way, we can endow the space
of metrics in the Kerr-de Sitter-like class with the topology of CKill(E")/ConfLoc(E™).

Now, from the above discussion and Proposition 4.26, it follows

Proposicin 6.21. The conformal class of the Kerr-de Sitter family with m vanishing
(n+2,m)

rotation parameters belongs to the region R with o := =\~ and ,u? = a? forn

odd and —pi = —\71, p? := af and pf = a?,, for n even. Thus, the Kerr-de Sitter
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family of metrics with all non-zero rotation parameters covers the whole 7?,(_n+2’0). For

n even, Kerr-de Sitter family data and its limits cover all data in the Kerr-de Sitter-like

class.

In the rest of this section, we will construct all spacetime metrics in the Kerr-de Sitter-
like class taking advantage of the topological structure given in subsection 4.4.1, in
particular in Proposition 4.26 and Remark 4.25. By these results all points in all regions
{R (n+2,m) R(n+2 ™) R("+2 m)} (recall that d = n + 2 now) are attainable as limits of

sequences in R(nﬁ 0), except the region R(nH 9 Wwhen n is odd. Thus, the metrics
corresponding to such data cannot be obtained as a limit of the Kerr-de Sitter family.

This family will be obtained by analytic extension of Kerr-de Sitter.

Observacin 6.22. For data (X,v,kD¢) in the Kerr-de Sitter-like class the conformal
class of & will be obtained always following the procedure of Theorem 4.35, as we did
in Section 5.3 for the Kerr-de Sitter family. For the n even cases we shall give the
conformal class of & in terms of the parameters {—pu3, u2, u?} because they are directly

related with the “rotation parameters” of Kerr-de Sitter and its limit metrics.

The spacetime limits will be inferred from limits of data as follows. Start with data
corresponding to Kerr-de Sitter (E v, kDg¢) in R(”+ m) , and consider the uniparametric
set of equivalent data (3, ¢ := (727, ("?kDg) for a constant parameter ¢ € R. Scaling

the following quantities as

Mei= M, &i=(E &=l ) =CT¢

we have
Cn_QK‘Dé — _)\_Tn n‘<§n|n+2) Cn 2 <£ ® S ‘§|'Y >
n 2 19 \
=-A7 n(gn|n+2) (SC ® ‘ C) :

Thus, we obtain the uniparametric family of data (3, ¢, /@CD&), where k¢ is given by

Men(n —2)
—

K¢ = —

N3

As we shall describe, after a suitable rescaling of the coordinates and the rotation pa-
rameters, the data (2,7, Iﬁng() admits regular limits as ¢ — 0, which are no longer

equivalent to the original family, but are still in the Kerr-de Sitter-like class.

By Lemma 5.21, the limit data are uniquely determined by the limit mass M’ :=
lim¢_,o M, and the conformal class of £ := lim¢_,0&. In all cases, the scaling of the

rotation parameters will be of the form

a; = Cilblﬁ
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where we still allow b; to smoothly depend on (. For the CKVF itself, in the following

subsections we distinguish the limits of the vector field

q
& =¢ (iat - Zc—lbia@)
i=1

as ( — 0 into two types, depending on whether or not the parameter ( is absorbed in the
t coordinate by means of the change t = (t'. The limits performed with the coordinate
t’ will be proven to correspond to the region R[()n+2’m). The limits with the ¢ coordinate
unchanged will only be calculated in the n even case and will be proven to lie in the

R(f”’m), where m is given by the number of vanishing b;. The reason why we

region
calculate them only for n even is because only in this case we may attain every point
in every region RS[LH’m) from R"+20) (cf. Proposition 4.26). For the n odd case we
need to perform an analytic extension to obtain the spacetimes with data in RS:IH’m).
For any limit data at .#, there is one corresponding spacetime, which from the well-
possedness of the Cauchy problem, must be a limit of Kerr-de Sitter. In general, these
limit spacetimes are obtained with the same changes than those performed at .# plus

the redefinition p’ = (p, as we shall also explicitly demonstrate.

Observacin 6.23. In all the situations, the term gqs takes a well-defined limit inde-
pendently of the term H ko k. Morever, we will show that, in all cases, ggs and its
derivatives up to second order depend continuously on (. Consequently, the Riemann

tensor of the limit metric g\, = lim¢_,o gas is the limit of the Riemann tensor of g, i.e.

R/aﬁ;w = %IL% Roa,é’;w =A %g% ((gdS)a,u(gdS),BV - (gdS)oax(gdS)ﬁu) (6'44)
=A ((%S)au(%s)ﬁu - (%S)W(%S)ﬁu) :

Thus background limit metric is still Finstein of constant curvature, therefore locally

isometric to de Sitter.

As already mentioned, in the n even case all spacetimes in the Kerr-de Sitter-like class
are limits of the Kerr-de Sitter family. In the n odd case, the spacetimes corresponding
to the set RT“’O) will be constructed by analytic continuation, and the rest of them as
limits of Kerr-de Sitter. For given data, the corresponding spacetimes will be assigned
to a family depending on the region RE"”’””‘) to which the defining CKVF at .# belongs.
In analogy with the n = 3 case [100], these families will be called generalized {a; — co}-
limit Kerr-de Sitter if ¢ lies in R(()n+2’m) (extending the definition [101]), or generalized

Wick-rotated Kerr-de Sitter if € lies in R(f“’mH) (also by analogy with [100]).

6.3.2 Limits n-even

We start by determining all limits of Kerr-de Sitter family in the n even case. In

principle the limits can be performed in multiple ways. However, by the classification of
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conformal classes of CKVF described above it suffices to exhibit one limit for each case.
To obtain the spacetimes whose CKVF class at .# lies in RTH’m), we will assume that
the starting family has all its rotation parameters different from zero, i.e. that it belongs
to the region R(_TLJFQ’O). Similarly, to obtain those whose CKVF class lies in Rgn+2’m) we
shall start from Kerr-de Sitter with exactly one rotation parameter equal to zero, i.e.
whose CKVF is in ,R/(_n—&-2,1). Obviously, all spacetimes in R(_’Hg’m) are simply obtained
by setting m rotation parameters a; to zero, so there is no need to explicitly calculate

any limit.

6.3.2.1 Generalized Wick-rotated

In this subsection we shall not absorb ¢ in the coordinate t. As mentioned in subsection
6.3.1, we will obtain in this way all spacetimes whose corresponding CKVF at .# lies in
R(f”’m). We will call these Wick-rotated-Kerr-de Sitter family of spacetimes because in
the n odd case (cf. subsection 6.3.3.1) they will actually be obtained by a Wick-rotation

of Kerr-de Sitter.

We start with a metric in the Kerr-de Sitter family, with every rotation parameter being

non-zero and apply the redefinitions
p=<p, & =CBi  ay=Cb;, M= M'¢".

Observe that if any of the rotation parameters were zero, say a; = 0, then the scaling
of &; = (B; would not be allowed because (6.38) would imply that 3; is divergent in the
limit ¢ — 0. The parameters b; are still allowed to depend smoothly® on ¢, so that their
limit at ¢ may take the value zero. For notational simplicity we shall not include the
dependence on (. In particular, the limit at ¢ — 0 will still be called b;. The context

will make clear the intended meaning.

In the limit ¢ — 0, by (6.38) the coordinates {f;} satisfy

p+1

OB =1,
=1

thus, at least one b; must be non-zero. Note that if all were zero, the limit vector field
¢ = lim¢_,0 & would be identically zero, and we would at best fall outside the Kerr-de

Sitter-like class.

3Sufficient differentiability is necessary in order to make sure that the background metric is de Sitter
in the limit. W.l.o.g. we can assumme smooth dependence on ( as we only want to allow vanishing
values in the limit.
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The function W goes to zero as (2 while = and II take finite and smooth limits (cf.

(6.39)). We therefore introduce the following limit quantities

p+1 p+1 b2 32 g

W= lim (W = 20 Ei=limE=Y o I =1lim = |[1+,2%).
Jim ¢ ;ﬁz, im 2} 7 lim Fl( +07b])

On the other hand, by (6.41), the terms of k in dp and d¢; tend to zero with ¢, while

the term in dt goes with (2. Hence we set

K= lim ¢~ 1k—— szﬂ de,

¢—0

and the redefinition of mass M’ = ("M absorbs the zero of k @ k and that of P2 =
¢"2p' in H k®k (cf. (6.42)). Thus, the limit metric has the Kerr-Schild form

_ ¥ - . - 2M/ m—2
J = +HF ok, H = %, M eR (6.45)

with

- AW/ = dp'? 1+p’2b2 1 dw”?
/ 2 2
Ghs = de? — = 72 +; pe (dB? + BPde?) — g (646)

One can easily check that the original de Sitter metric g4s in (6.40), written in primed
coordinates is C? in (. Hence, by the above argument g/;¢ (cf. (6.44)), the limit metric
(6.46), is (locally) isometric to de Sitter.

Consider the conformal extension ¢’ = p?¢’. The boundary metric induced by ¢’ coin-

cides with the one induced by ¢/,¢, which is

1 dw’?

q
I 12~ . ! 142 2 2 2
Y =0 Gusle = WAt + D (A + 57deT) — 1 —

=1

As gys is locally isometric to de Sitter, v/ must be locally conformally flat.

To calculate the electric part of the rescaled Weyl tensor, we use formula (5.6), after

which it follows
Im—2 |£/|2
D=p""Cily=-nn-2)M' | @€ ~ )
where ¢ is the projection of k" onto %

q q
=Y bifidgs = == bidy,.
=1
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This is obviously a (conformal) Killing vector field of «’. Therefore, the metric (6.45)
is in the Kerr-de Sitter-like class. To calculate the conformal class of £, we find an
explicitly flat representative in [/]. It is a matter of direct computation to check that

the coordinate change®

VIt VIt

e e

NG B3; cos ¢, Yi N B; sin ¢,

€T, =

brings the metric 4’ into the form

/ w’ : 2 2
v = GQﬁtZ(dxi +dy7) .
i=1

Hence vg := eQ\F)‘tW_ly is flat and ¢’ is in Cartesian coordinates {z;, y; }:

q
¢ == bi(z:0y, — yi0a,).
i=1
Thus, £ is the sum of generators of rotations within ¢ different orthogonal planes. Its
corresponding skew-symmetric endomorphism of M1 with respect to an orthogonal

unit basis {eq }"F] with ey timelike, can be directly calculated from (2.26):
a=0

F(5)=<8 8)@(2 _Ob">. (6.47)

i=1

The orthogonal sum of two-dimensional blocks is adapted to the decomposition
q
Ml,?’L‘i’l — HO @ Hz
i=1

where Iy = span{eg, e1} and II; = span{eg;, €211} are F-invariant planes. The causal
character of ker F'(€) is evidently timelike because ey € ker F/(§) and the polynomial Q2
in Definition 4.12 is also straightforwardly computable from the block form (6.47)

q

Qpz(z) = H(l’ - b).

=1

Then, permuting the indices ¢ so that the rotation parameters b? appear in decreasing
order b3 > ... > bg, and applying Theorem 4.35, the conformal class of £ is defined by
the parameters

{_N?ZO,Mgzb%;M%:b%’... 7#1272172}-

In consequence, for b;s taking arbitrary values, this family covers every point in every
region RS:HFZ’m) of the quotient CKill(E™)/ConfLoc(E™), where m is the number of

4This and the following Cartesian coordinates in this section are inspired from the Kerr-de Sitter
case in equation (5.37).
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vanishing b;s.

6.3.2.2 Generalized {a; — oco}-limit Kerr-de Sitter.

In this subsection we perform the limits that cover the regions R(n+2 m)
CKill(E™)/ConfLoc(E™). In this case, the limits are achieved by absorbing ¢ in the ¢

coordinate, i.e. defining ¢’ = ("¢, so that the limit vector field & = lim¢ o & has a

of the quotient

non-zero term in dy. It turns out that these limits lie in the Kerr-de Sitter-like class
provided that the Kerr-de Sitter metric from which they are calculated have one rotation
parameter vanishing. Otherwise the limit of the boundary metric is degenerate. Thus we
will assume that a; = 0. We name the limit spacetimes obtained in this way {a; — co}-
limit-Kerr-de Sitter because the conformal class that characterizes them is similar to the
n = 3 case [101].

Consider the de Sitter metric (6.40) with the change of coordinates
ngp,’ t:<tla gbq:C@v dZZC/B’L (7': 17 7p))

where note that the coordinate ¢, and the angles ¢; (¢ = 1,...,p) remain unaltered. In

addition, let us redefine the parameters
M=M¢, a=C' (i=1,--,p).

By (6.38), the coordinates {f;, &4} satisfy in the limit ¢ — O:
p
a2+ AbB7 =1. (6.48)
i=1

The limits of W, = and II are obtained immediately from (6.39) respectively. They are

p p 2
b2
II' =limII = 140262 W' =limW = = = 1lim = = 42 E: 2.
o j:l( ) 5o =T Yt 1+p’2b25

In addition from (6.42) and (6.41) and the redefinitions above it follows

e~ ~ ~ oM

17 AR T _ m—2 /

WK o = lim Mk ok = o (Wdt+ = - E:bﬁdgbl).
=7

=k
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Before taking the limit, we rewrite the de Sitter metric (6.40) in the new coordinates

and separate the terms multiplying dé,

_ (C2pl2 _ )\) ) = dp/2 1 5 59 )
gds = —WTdt/ NN A (dag 4 ag¢*do?)
2
1+ ,0/2b2 (C2p/2 ~N (.. P
+ Z (487 + 6267) + g | adda + € S BidB | . (6.49)
=1
with )
2 2
. - + )\b
W=a;+> B, E= +Z<

1+ p’%z

Only the terms involving dé, are troublesome in the limit ¢ — 0. Let us gather them

to get

2
1oy (=N (. . av
I(aq) = p/2<2 daq + W C“qu‘q +¢ Zﬂzd/@z

i=1

1 2,2 )42

_ L (14 L N e
(2p2 AW q

<<2P/2—/\) 4 - ’ 24 14 &
+ NV ¢ (; ﬁidﬁi) + 2¢%q,déy, (; Bidﬂi)

Writting W in coordinates {f;, &4}, the term in ddg takes the limit
1 2,02 _ &2 2 2) 4 (2,242
hm 1+(Cp ) dA lm C ( 16) CIO 2qu2
C—)O <2 /2 )\W q C—)O <'2 /2)\(()[2 + CQ i:1 /BZ ) q

2
+ 1[3,
A p

while the limit of the last two terms is direct
N e L :
%{%W ¢ ;ﬁidﬁi + 2¢7agddy gﬁidﬁi
2da
=~ (Z @d@) :

Thus, the limit ¢ — 0 of (6.49) is

2 2
Ap P i=1

2 d
+<A+ p,2125> 2 2/205(1 (Zﬂzdﬂz),

A2 = 42 A2 d P2 /272
N ='d a-dd 1+ b
Ghs = p/; a2 - = T § : pp L (B} + B7de7)
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where we have already substituted W’ = &2. From the argument above (cf. (6.44)) g/
is locally isometric to de Sitter. Thus, we have all the ingredients to build up the limit
Kerr-Schild metric, namely

. QM/p/n—Q

glzgtlis—’_ﬁ/’]y@f];/; lew, M'GR

We now calculate the asymptotic structure and verify that indeed, these spacetimes

correspond to the regions R(()n+2 ™) in the space of orbits. The boundary metric is

p
Y =0, = Aa2dt? + 62d7 + > (A7 + BRde?)
=1

(Z 52) e % (Z Bz-dﬁz) . (6.50)

q

As usual, the TT tensor Dy is directly calculated with equation (5.6)
m—2 ‘5,’2
D=p""2C|ly=- nn-2)M" | ¢ - ;
where ¢’ is the projection of k¥’ onto .
¢ =gt — Zbﬁ?d@ = &= —aﬂ Zb 0y

=1

To calculate the conformal class of &', we look for a flat representative in [y/] written in

Cartesian cordinates. It turns out to be useful to scale the coordinates {3;}!_; as

gi=2
Qq
Replacing 5; = Eio}q and dj; = &ngi + Biddq in equation (6.50), all terms in dé, cancel

out and we are left with the expression
p o~ o~
Y = a2 ()\dt’z +dP?+ ) (dﬁ? + ﬁ§d¢$>> .
i=1

This determines a ﬂat representative yg 1= OAFny’ where by (6.48), &, is written explictly
in terms of {3} as 42 = (14+A Y0, b237) 1. Theset {1 := A\/2t/, & x; := B; cos ¢y, y; ==

B} sin ¢; } define Cartesmn coordinates for 4/, into which vector field £ reads

1 p
gl = maT - Z bz(xza ylazz)
=1

i.e. is the sum of translation along the coordinate 7 plus the sum of p independent

orthogonal rotations. Its correspoding skew-symmetric endomorphism of Mb"*1! is by
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(2.26)
0 0 Aéi; 0
F(¢) = AE/Q Ag” - 02 8 g? ( ; _Obi ) (6.51)
0 0 0 0
in an orthogonal unit basis {e, Zi(l] with eg timelike. Similar to subsection 6.3.2.1, the

direct sum (6.51) is adapted to the decomposition
P
Mt = MY P,
i=1

where M!3 = span{eg, e1, €2, e3} and II; = span{eg(i+1), €2(i+1)+1) are F-invariant sub-
spaces. The causal character of ker F(¢) is determined by the causal character of
ker F'(§')|yp.3, because every non-spacelike vector v € ker F'(¢') must have non-zero pro-
jection vy € MM with vy € ker F(&)|pp.s. It is immediate to calculate ker FI(&')|ys =
span{eg — e, e3}, where eg — €1 is a null vector in ker F/(£’), thus ker F(£') is degenerate.

The polynomial Q2 in Definition 4.12 is by direct calculation

P
Q2 = H(I —b?).

=1

This, by Theorem 4.35, gives the parameters for the conformal class of &

{—pi =0,p2=0;p3 =07, , 2 =02},

. . o . 2
This collection of conformal classes covers every point in every region R[()"Jr ’m), where

m is the number of zero b; parameters.

6.3.3 Limits n-odd

One major difference between the n odd and even cases is that, only when n is even the
region R@H’O) (namely the portion corresponding to Kerr-de Sitter with none of the
rotation parameters vanishing) admits limit in the whole of CKill(E")/ConfLoc(E™) (cf.
Proposition 4.26). This is what allowed us to construct all spacetimes in the Kerr-de

Sitter-like class directly as limits of Kerr-de Sitter in subsection 6.3.2. In the n odd case,
(n+2,0)

no sequence in R takes limit at RTH’O) and viceversa, because they are disjoint
and open subspaces by Proposition 4.26. In subsection 6.3.3.1 we deal with this issue
by constructing, using analytic continuation of Kerr-de Sitter, the set spacetimes whose
CKVF class corresponds to RTH’O). To do this, we define a Wick rotation in arbitrary
n + 1 even dimensions (generalizing the transformation in [88]). We name the resulting

family Wick-rotated-Kerr-de Sitter, in analogy with the n = 3 case in [100]. From
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these, all spacetimes in Rfﬁ’m) can be obtained easily. Subection 6.3.3.2 is devoted to

finding the spacetimes whose CKVF class corresponds to RénJrQ’m). These are obtained

by performing limits to Kerr-de Sitter, similar to those in subsection 6.3.2.2.

6.3.3.1 Generalized Wick-rotated

Let now n be odd and let us consider the Kerr-de Sitter metric with none of the rotation
parameters a; equal to zero. The generalization of the Wick rotation is given by the

following complex coordinate transformation
t:Zt,, p22p,7 dl :Zﬁu i = 17 y D, (652)
with ¢/, o/, B; € R, and the redefinition of parameters

n+1

a; = _2b27 M = (_1) 2

iM', M eR.

Note that the only the first p &; coordinates have been “rotated”. Introducing 3,41 :=

Gpi1, (6.38) gives:
P

2 =) (=298 =1

=1

By performing the Wick rotation (6.52), the functions W, = in and II in (6.39) are now
redefined

/ 2 . 2 =/ 2 - 1_)‘612 2 ! a 1212
W= BB =B ) et =] ). (65)
=1

2321710
—1+p b; e
The spacetime metric is given by
_ _ . . - oM’ m—2
7 =ghs+HE F, ’H’:% M eR
with
- 2
g/ — W/ (p/2 + A) dt/2 o ‘:', dpl2 _ dﬁp""l
as p/Q p/2 FEDY p’2 p/2
P 1272 2 2
L+ 070 2, 2oy, (PPHA) AW
ds: 24?2 6.54
+; p/2 ( BZ +BZ ¢Z)+ )\W’p’2 4 ’ ( )

~ - = P
P i=1

The domain of definition of the coordinates is ¢/, p’ € R, and the ¢; € [0,27) are still
angles. Moreover, ﬁg 11 >0, and {Bi}r_, are restricted to a sufficiently small neighbour-
hood of {8; = 0}Y_; so that W', =" are positive (see (6.53)). With this restriction of the

coordinates, vanishing values of the b; parameters are allowed.
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The signature is not necessarily preserved after a Wick rotation, so we still need to prove
that the Wick-rotated Kerr-de Sitter metrics are Lorentzian. They are obviously A > 0-
vacuum Einstein because we have only performed a (complex) change of coordinates.
From the Einstein equations and positivity of the cosmological constant, it follows that
the boundary metric is positive definite if and only if the spacetime metric is Lorentzian
in a neighbourhood of .#. In addition, note that the boundary metric induced by ¢’
is the same as the one induced by g,g. Moreover, glq is clearly Einstein of constant
curvature. Thus, proving that ' is positive definite, in turn, also proves that g/g is

Lorentzian and therefore locally isometric to de Sitter.

The metric induced at .# is, directly from (6.54),

/ / 2 2 2 1 dWQ
v = W'Adt”? — dg +1+Z dB? + B2de?) + — (6.55)
=1
The explicitly conformally flat form is obtained under the change of coordinates
5= i 1 4l (6.56)
1 T W/1/27 1= b 7p * *
Observe that by redefining all the p + 1 coordinates we now have
P _ P
W' =By =y B =W (B — ZB = G- Bi=1 (6.57)
i=1 =1
and
p o~
WB2 =52, =1 +Z —A)BT =1+ W'Y (11— Ab7)B;
=1

:>le

1+3F, )‘512512

Inserting the coordinate change (6.56) into (6.55) gives
~ p ~ o~
N =W ()\dt’2 — B+ (dﬂ? + ﬂ?dqﬁ?)) .
i=1
From this expression it already follows that 4/ is Riemannian, because the restriction of

7' to the hypersurfaces {t' = const.} is clearly the standard metric of the hyperboloid
(cf. (6.57)). More specifically, let us introduce the parametrization

P
Bp+1 = coshx, Bi = vy;sinhy, i=1,---,p, with nyzl,

so that
v =W ()\dt'2 + dx? + sinh? 'ygn_z) ,
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where
P

Ysn—2 1= Z (dVi2 + Vqub?) |Zf:1 vi=1

i=1

is an (n — 2)-dimensional spherical metric. Finally, defining the coordinates

sin v/ At/ v; cos ¢; sinh x v; sin ¢; sinh x
T cos VA + coshx’ e cos VA + coshx’ i cos V' + cosh x
fort=1,---,p, one has
1 ! 2 - 2 2
e W'(cos VAt + (zoshX)z7 =dz"+ ZZ; (da7 + dy7)

Thus g is a flat representative yg € [y/] and {z, z;, y;} are Cartesian coordinates of vg.

We continue by calculating the electric part of the rescaled Weyl tensor at .#. As usual,

the expression follows from formula (5.6). We give it first in coordinates {t', o/, 5;, ¢i} :
/m—2 |£/|2
Dé/:p CJ_’]Z—)\TL(TL—2) 5@5 5
where ¢’ is the projection of k' onto .

p q
1
€ =Wal =Y bde — € =100 =D bids,
=1

i=1

To express ¢’ in Cartesian coordinates {z, {z;, y;};_,}, firstly observe

ot! (cos VA + cosh x)2

PP (2 3ete).

i=1

2 2 (cosVAt' 4 coshx)?

0z _\fcosft(cosft + cosh x) + sin? vV At/ \5\<1 1 1—|—cosﬁt’coshx)

and it is also straightforward that

8.%‘1' 0 4
ot = \/XZJI‘M y fZ?/z

Then

0z SN dy;
Op = 5 0+ ; ((%axi + at%)

= Q <1+z2—zp:(x2+y-2)> 0 —l—ﬁzzp:(:r-a .+ yi0y,)
9 7 1 z 1Ty 1YYq

i=1 =1
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and on the other hand

00 = GO0+ 50y, = 50, — D
Therefore
p p p p
€= 2f <1+z ;(l’?—i—yz )6 +ﬁ; 20, + YiOy,) — ;b(xza — 4O,

(6.58)
Denoting the coordinates as {X4}%_, := {z,{zi,ui}}_,}, ¢ is a CKVF with a? =
FANTL/2 pA = a4 /2, plus a sum of orthogonal rotations with parameters b;. The asso-
ciated skew-symmetric endomorphism of M1 is directly computable from expression
(6.58) and (2.26)

0 0 -2
Fe=[ o 0w @0t (6.59)
o 3aTl2 512 04 i\ bi 0
4 4

F () is referred to an orthogonal unit basis {e,}"T5 with ey timelike and as in the

previous sections the direct sum (6.59) is adapted to the decomposition
p
Ml’n+1 — M1,2 @ Hl

where M2 = span{eg, e1,e2} and II; = span{eg; 1, ea(i+1)} are F-invariant subspaces.
The causal character of ker F'(§) is straightforwardly determined by checking that v :=
5ep + 3e; is timelike and that it belongs to ker F'(§). Thus ker F'(€) is timelike.

On the other hand, the polynomial Q2 in Definition 4.12 is

1 P P
Qpz(z) = (z — X)H(ﬂc -0 =@ -5
i=1 i=0
where for the last equality we have set b3 := 1/\. Now let {gi}g‘?:o the parameters b;
sorted in decreasing order 32 R EIQJ Then by Theorem 4.35, the conformal class of &
is given by {0 = bo, p? = b%, . ’/‘127 = 32} Note that the value of one of the parameters
(n+2, m)

is1/ VA, so it is a priori fixed. To cover the whole space of parameters RY we

must consider the scaling freedom of £, just like we explained in the case of Kerr—de

Sitter. Taking this into account, this family of metrics covers every point in all the

(n+2,m) .

regions R in the space of conformal classes.
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6.3.3.2 Generalized {a; — co}-limit Kerr-de Sitter.

In this subsection we calculate the remaining family of metrics which completes the
Kerr-de Sitter-like class for n odd, i.e. those corresponding to the regions R(()nJrQ’m) in
the space of conformal classes. Analogously to the case of n even (cf. subsection 6.3.2.2),
these are called generalized {a; — oco}-limit Kerr-de Sitter, also extending the definition

in [101].

Contrary to the n even case, if n is odd we obtain a good limit from Kerr-de Sitter with
none of the rotation parameters initially vanishing. The reason is that having only p non-
vanishing rotation parameters a; = (7'b; (i = 1,--- ,p) (recall that a,+1 = 0 was defined
for notational reasons) the function W remains finite in the limit lim¢ o W = oz% 4 if
we scale the first p coordinates &; = (3;. Thus, v, = ¢ 2~ and & both admit a finite
limit ¢ — 0, as soon as the coordinate ¢ is rescaled to t = (t’' (see subsection 6.3.2.2 for

comparison).

Consider the de Sitter metric (6.40) with the change of coordinates
p=Cp, t=(t, a; = (B (i=1,---,p), (6.60)
where notice that d,1 has not been scaled. Also consider the redefinition of parameters
M= M'¢C", ai=Ct  (i=1,---,p). (6.61)

Unlike in the n even case, no ¢ angle is associated to dy,11, so there is no need the rescale
any of the ¢; coordinates. All calculations are analogous to those in subsection 6.3.2.2,

so we provide here less detail.

First, the scaled coordinates {;}}_, and éy41 satisfy when ¢ — 0

p
oy + > A6 =1.

=1

The functions W, = and II (cf. (6.39)) take the limit

W = lim W = &2 2 = lim 2 := 42 +§p: AV I = ﬁ(1+p'262~)
(=0 p+1> o p+1 gt 1+10/2b22’ i J

The limit of the term H k ® k present no difficulties since the scalings defined in (6.60)

and (6.61) compensate each other so that no divergences appear. Then

! El p 2
2 (W’dt' +Sde =) biﬁfd@) .
=1

~~ o~ ~ ~ 2M
HE @F =limHER k= ——
=\ =’

="H' -
=k’
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For the de Sitter background (6.40) a computation analogous to the case of n even shows

that the terms in dép41 do not diverge. In fact, the limit of de Sitter as ¢ — 0 is

Ad2 = d 2 14+ /2b2
~) +1 92 = 4P P 2 2
Jas = plsz == 2 H(d57 + 57do)
i=1
Zp 1,62 ~ 2 da +1
+<)\+ 24 dP+1 /2 dp Zﬁldﬁl )
P p+1
The limit metric is thus
_ _ - - . 2MI m—2
J=gs+HF K, H=""L 0 Mer

H/:‘/

In addition, g/, must be locally isometric to de Sitter, because the metric ggg is C? in

¢ (up to and including ¢ = 0) when written in the primed coordinates.

We next analyze the asymptotic structure. First, the boundary metric

I \A2 PR 2 242 - 2 ddQ do‘pﬂ
7 = a2 de? + 37 (A82 + p2de?) + [ D6 3 Zﬁzdﬁz :
i=1

i=1 Api1 Qpt1

which is explicitly conformally flat in coordinates

/féi:Aﬁi ) /L:]-a)p
Qp+1
because
p o~ o~
v =2 [A?+ Y (dﬁf + deqb,?) .
i=1
This also determines a flat representative vgp = d;flfy’ with Cartesian coordinates

(1= V', z; := B cos by, yi := Bisin ¢y}

The electric part of the rescaled Weyl tensor D follows from equation (5.6)
2 If’l2
Dg = p"*Ci |y = —An(n —2)M ¢t - ,
where

P p
. 1
g =al,dt = bBldg; = ¢ = o — > bids,
i=1

i=1

which in Cartesian coordinates is simply

1 p
g/ — maT — Z bl(wla %812)
i=1
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Letting {X4}"_, := {7, {zs,v:}}_,}, the skew-symmetric endomorphism of M1 as-
sociated to £ is by (2.26)

0 0 AT
Zie | A0 b
F(§) = 0 0 -2 ' (6.62)
D ’ 162
2 2 0

referred to an orthogonal unit basis {e, }?L with ey timelike. The direct sum (6.62) is
a=0

adapted to the decomposition
D
Ml,n+1 — M1,2 Hl
i=1

where M2 = span{eg, e1,e2} and II; = span{es;1, ea(i+1)} are F-invariant subspaces.
For analogous reasons than in the n even case, ker F/(¢') is degenerate. The polynomial
Qpe2 in Definition 4.12 is

P
QF2 = I’H(-ﬁ - b7,2)a
i=1
and by Theorem 4.35, the parameters determining the conformal class of ¢’ are

{UZO;M%:b%f" uu;zo:b]z?}

. o . 2
Hence, this set of conformal classes covers every point in every region R(()nJr m),



Chapter 7

Conclusions and outlook

In this thesis I have studied the asymptotic initial value problem of general relativity
in all dimensions with positive cosmological constant. To do that, several tools related
to conformal geometry have been developed. Highlights among them are the study of
CKVFs of locally conformally flat metrics and their classes up to conformal transforma-
tions, as well as the initial data in the Fefferman-Graham formalism. These tools have
been applied to obtain characterizations of Kerr-de Sitter and related spacetimes. We
now discuss the main conclusions of the this work and also the points which are left

open for a future study.

In Chapter 3 we have studied the skew-symmetric endomorphisms of M3 and M2
as well as the global CKVFs of S?. Firstly we have derived a unified canonical form
for every skew-symmetric endomorphisms in M3 depending on just two parameters
o,7 (cf. Proposition 3.8). As a corollary, simply by setting 7 = 0 a canonical form
for SkewEnd(M'?) is obtained (cf. Corollary 3.9). Both canonical forms posses an
invariance group, which has been calculated and analyzed along with its generators. As
mentioned in Chapter 3, another notion of ”canonical form” in the context of two-forms
is also commonly found in the literature. This, however, requires a separation into two

different cases, namely
Fy =ae ANw + bu A, F,=kAw, a,b eR, (7.1)

were {e,w,u,v} are orthogonal one-forms unit with e timelike, and k null orthogonal
to v. A remarkable feature of the unified canonical form that we obtain is that, when
translated to two-forms and by taking an adequate limit 0,7 — 0 a two-form of the
type Fy (with a,b # 0) in (7.1) may take as limit a two-form of the type F. This,
which in the canonical form (3.6) is obvious, is not apparent the form (7.1). Besides
the applications that we have given and shall be discussed next, this unified form has
potential interest in other areas, such as the study of the electromagnetic field tensor in

special or general theory of relativity.
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The second part of Chapter 3 is devoted to the study of CKVFs of S2. It is worth
highlighting that we distinguish the global CKVFS of the 2-sphere from the rest. Most
of our results hold specifically for global CKVFs, which are the generators of the global
diffeomorphisms of S?, although the results in subsection 3.9.2 apply for a general CK-
VFs. We have first discussed some generalities on global CKVFs and global conformal
transformations. Then, in Section 3.7 we have obtained a canonical form for the global
CKVFs of S?, induced from the one for SkewEnd(M"3). In the first place, this allowed
us to explicitly obtain adapted coordinates which fit every global CKVF ¢ of the sphere.
With these coordinates, we have calculated a class of metrics of constant curvature for
which ¢ is a Killing vector field. In addition, in Theorem 3.25 we have found the class
of all Lie-constant TT tensors w.r.t to a general CKVF (i.e. non necessarily global) &.
The solution has been given in covariant form in using second CKVF &+, canonically
obtainable from £. This has found interesting applications in radiation at null infinity
[51].

In Chapter 4 we have extended the main points analyzed in Chapter 3 to arbitrary
d dimension. Firstly, we have given a new and very direct proof of a known clas-
sification result for SkewEnd(M"?~1) in Theorem 4.6, using only elementary algebra
methods. Then we have generalized the canonical form of skew-symmetric endomor-
phisms to arbitrary dimension d (cf. Theorem 4.12). Using this canonical form, we
have studied the structure of the quotient space SkewEnd(Mb4~1)/O%(1,d —1). Tt is
remarkable that the canonical form gives a good representation of this quotient. In
SkewEnd(M"4=1)/O*(1,d — 1), we have constructed sequences which have two simul-
taneous limit points in the quotient topology. In other words, we have shown that the
quotient topology is non-Hausdorff. In addition, we have proven that, for even d dimen-
(@0) - SkewEnd(M"4~1)/O*(1,d—1) (see Remark 4.25) is open in the
quotient topology and moreover its closure exhausts SkewEnd(M4~1)/O*(1,d — 1) (as
proven in Proposition 4.26). On the contrary, for d odd dimension both R(Lj’o) and R(E’O)
are open, and the closure of RO exhausts (SkewEnd(M"4=1)/O*(1,d — 1))\735:[’0).
This structure finds an important application in the last Chapter of this thesis. We will

sion the region R

come back to this later.

In the second part of Chapter 4, we apply the results obtained for skew-symmetric
endomorphisms to the set of CKVFs of S”. Firstly, we have obtained a classification
result in Theorem 4.33, analogous to that for SkewEnd(M»"*!). We have derived a
canonical form for every CKVF ¢ (cf. Definition 4.34), which moreover, determines the
conformal class [¢] (cf. Theorem 4.35). An interesting property of the canonical form is
that it always gives a maximal set of pairwise commuting linearly independent CKVF's
{€,&%,n;} for n even and {&,n;} for n odd, where 7; are in the conformal class of the
generators of rotations, which we have defined as conformally axial Killing vector fields
(CAKVFs).
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In order to obtain the canonical form &, one calculates first a flat representative vg of the
class of locally conformally flat metrics and Cartesian coordinates for it. Then, it is easy
to associate a skew-symmetric endomorphism in M'"*! whose canonical parameters
{—p2, 12, 12} for n even and {—o, u?} for n odd in Definition 4.10 are straighforwardly
obtainable. However, finding explicitly a flat representative and corresponding Cartesian
coordinates may not be an easy problem in many cases. It would therefore be of interest
to have a completely covariant method to determine the conformal class of £&. This
turns out to be possible. The underlying idea is, roughly speaking, that the CKVF is
determined by its value and certain derivatives at a unique point. This method has not
been included in this thesis because it is very recent and not yet written up. We expect

to make it available very soon.

In Section 4.6 we obtain and study a set of coordinates adapted to an arbitary CKVF &,
for which the canonical form of CKVFs is essential. It is remarkable that all calculations
in this section are carried for n even in just one go and the n odd case is obtained
by a suitable particularization. The results are summarized in Theorem 4.45. As an
application of the adapted coordinates, we have calculated all TT tensors in n = 3
which solve the KID equation for two commuting CKVFs {;5, n}, with  conformally
axial. Both vector fields {E, n} arise from the canonical form £ = 5 + 1. We emphasize
that the final form of this class of T'T tensors is given in diffeomorphism and conformal

covariant form in Theorem 4.47.

Several things should be stressed about the class of T'T tensors above. Firstly, it is an
infinite dimensional class containing the data of Kerr-de Sitter, which have explicitly
identified. As we mentioned in the main text, by comparison with results for stationary
axi-symmetric spacetimes in the A = 0 case [2, 18, 27], one could conjecture that a
set of momenta, related to mass and angular momentum, could be derived from these
data. Several proposals of conserved quantities can be found in the high energy physics
literature, with focus in A < 0 case (see e.g. [9, 10] and also [82] and references therein),
which perhaps could be applicable to this setting. In addition, the two KID wvectors
{5, 7} generate two commuting symmetries, with 1 being associated to an axial symme-
try. We have justified that the class of T'T tensors we get contains all data corresponding
to spacetimes with (at least) two commuting symmetries, except for one case. The re-
maining case is the class of TT tensors with two independent KID vectors {£1,&2} that
are conformal to translations. This class can be readily calculated in Cartesian coor-
dinates adapted to both translations, so that we may easily obtain the complete set of
initial data at spacelike conformal flat infinity, for spacetimes admitting two commut-
ing symmetries. We note that although the integration of the remaining case is direct
in Cartesian coordinates, giving a covariant form is not so straighforward and requires

further analysis.

In Chapter 5 we have addressed the higher dimensional Cauchy problem of general

relativity. We recall that the spacetime dimension is n 4+ 1 so the dimension of .# is n.
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In this and the next Chapter, the Fefferman-Graham formalism plays an important role.

In Section 5.1, we have derived two useful formulas for the Weyl tensor. The first one
gives a formula for the T-electric part of the Weyl tensor of an Einstein metric, with T’
the gradient of a geodesic conformal factor. The second one relates, to leading order,
the Weyl tensors of two conformally extendable metrics g = § + ¢, with m > 2 and
Q) positive at least C2. Both formulas are very useful in the Fefferman-Graham setting,
and we have given several applications of them in this thesis. One is the calculation
of the FG expansion of the de Sitter metrics for n > 3, which easily generalizes to all
Einstein metrics of constant curvature of any signature and any sign of A. This extends
previous results [140] in the A < 0 case of Lorentzian signature. Another application,
in Proposition 5.11, is a decomposition of FGP metrics admitting a smooth conformally
flat .#. This decomposition allows us to extract a well-defined free TT part g, from
the n-th order coefficient of the FG expansion g(,) of every FGP metric admitting a
smooth conformally flat .#. By an straighforward combination of the above results,
we have proven in Theorem 5.14 that g, agrees, up to an explicit constant, with the
electric part of the rescaled Weyl tensor at .#. Our analysis extends previous results
[82], restricted to negative A and Lorentzian signature, to any non-zero A and arbitrary

signature.

It is worth at this point to discuss in a general setting the problem of how to extract the
free (TT) part g,y from the n-th order coefficient g(,) and relate this to the conformal
equivalence of data (see discussion above Theorem 2.39). For n odd g, is always TT
so we can set in general g(,) = g(,)- In this case, under conformal scalings of the metric
v = w?y, the corresponding TT tensor is gén) = w2*"g(n). For n even one should find
a way to extract the trace and divergence terms from g(,). For a fixed, but arbitrary,
conformal class of the boundary metric ~y, this could be achieved by canonically selecting
“background” data (7, 7,)), in such a way that for any other set of initial data (7, g(n)),
we define the free part by () := g(n) — G(n)- Observe that the trace and divergence of
9(n) and g, only depend on ~, thus g(n) 1s T'T. Once the background data are selected,
all data are (7,9 + Gn)) so they are equivalent to the pair (7, g(n)). For the free
part, the expected conformal equivalence of data is given by the class (w27,w2_”§(n))
for every smooth positive function w of 3. In the conformally flat + case, the obvious
choice for background data are those corresponding to de Sitter spacetime, and this is
what we have used throughout. Observe that in this case, the conformal transformation
of the free part g(,) follows directly from Theorem 5.14 and confirms the expectation
above that ¢, is conformally covariant of weight 2 —n. However, it is not clear how
this same idea could be extended when v belongs to an arbitrary conformal class. This

is an interesting problem that would deserve further investigation.

We have also discussed in the n odd case, where existence and uniqueness is guaranteed,
under which conditions the conformal flatness of . is sufficient for g(,) to coincide,

up to a constant, with the electric part of the rescaled Weyl tensor at .#. We have
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linked this to a conjecture [103] (see also [15, 79]) which asserts that purely magnetic
spacetimes, i.e. with zero electric part C; = 0, do not exist beyond the conformally
flat case. We have found that provided that the conjecture is true, the electric part of
the rescaled Weyl tensor at .# and g, coincide if and only if .# is conformally flat.
Another reason to believe that this relation between electric part of the rescaled and g,
is very exceptional is that the former is generally divergent at .#, as we have justified
in Chapter 5.

In connection with the behaviour at infinity of the electric part of the Weyl tensor, we
have already mentioned the results in [112] where the peeling of the Weyl tensor in ar-
bitrary dimensions is established under the assumption that certain Weyl components,
namely those of highest boost weight, decay faster than »—2. It is an interesting prob-
lem to establish a connection between the two results. The idea is to determine the
minimal decay rate under which one can guaranteee that a smooth conformal compact-
ification with conformally flat .# exists. This may lead to an interesting weakening of

the hypothesis in [112] that imply the peeling behaviour.

A core result of Chapter 5 is the KID equation that we have derived in Theorem 5.18.
This is a natural generalization to higher dimensions of the KID equation of the four
spacetime dimensional case by Paetz [116]. We have proven that this equation gives a
sufficient condition for the Cauchy development of analytic asymptotic data with zero
obstruction tensor to admit a Killing vector field. Nevertheless, we have argued that the
proof extends in the non-zero obstruction tensor and analytic data case, provided that
the logarithmic coefficients Oy, ) in the FG expansion can be generated by a recursive
formula dependending only on 7, g(,) and covariant derivatives of them. This should
follow from the FG equations, but requires further analysis. In addition, we have also
proven that our KID equation is necessary also in the non-analytic case. Sufficiency, is
much more difficult to establish in the general case and is left open for a future work.
We can, however, conjecture that the KID equation in Theorem 5.18 extends to the

general case.

Chapter 5 concludes with Theorem 5.22, which gives a geometric characterization of
the Kerr-de Sitter family of spacetimes in all dimension by direct calculation of their
asymptotic initial data. These data have been proven to be a conformally flat manifold

(2,7) and a free term g, of the form x D¢, where

n

1 2
Pe= fe (5 oen |s|w) 2

is TT tensor with & a CKVF of v. We stress the simplicity of this TT tensor. We have
proven that for any data of the form (X,~, kD¢), with (3, ) locally conformally flat and
& a CKVF of v, the conformal class of & and the constant x characterize the resulting
spacetime. Hence, the results of Chapter 4 on conformal clases of CKVFs are key in

this characterization theorem.
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The final chapter of this thesis, Chapter 6, is devoted to the definition and character-
ization of the so-called Kerr-de Sitter-like class with conformally flat .#. This class is
defined via extension of the asymptotic data obtained in Chapter 5 for Kerr-de Sitter.
Namely, fixing the initial manifold (¥,~) to be conformally flat, the CKVF ¢ tensor kD¢
is allowed to belong to an arbitrary conformal class. As already mentioned, only the
conformal class of & matters to determine the evolving spacetime. This is an extension
of the Kerr-de Sitter-like class with conformally flat .# in [100] for n = 3, which in turn
is a particular case of the Kerr-de Sitter-like class in [99], where the conformal flatness
of .# is not required. Since our extension only applies for the conformally flat .#, this

will be implicit in the remainder when referring to the Kerr-de Sitter-like class.

We have defined the Kerr-Schild-de Sitter spacetimes as conformally extendable, A-
positive-vacuum Kerr-Schild type spacetimes, such that for every conformal factor {2
the term Q2H k ® k vanishes at .#. Note that in particular they admit a smooth
conformally flat .#. We have also observed that being Kerr-Schild and admitting a
smooth conformally flat .# may not be sufficient for being Kerr-Schild-de Sitter, but we

expect few exceptions, if any at all. It would be interesting to answer this question.

We have proven that, in all dimensions, every Kerr-Schild-de Sitter spacetime belongs
to the Kerr-de Sitter-like class and viceversa. Moreover, we have explicitly constructed
all these metrics (see Theorem 6.6 for the full list). The proof involves two steps. First,
in Section 6.2 we have proven that the asymptotic data of the Kerr-Schild-de Sitter
spacetimes belongs to the Kerr-de Sitter-like class. By direct calculation of the initial
data of a generic Kerr-Schild-de Sitter spacetime in the Fefferman-Graham picture, we
obtain data (3, v, kD¢) with (X,~) conformally flat and D¢ of the form (7.2), and we
prove that £ is a CKVF of v, for which the fact [107] that all A-vacuum Kerr-Schild

spacetimes are algebraically special is of great relevance.

For the converse inclusion we exploit the structure of SkewEnd(M'"1)/O%(1,n + 1)
developed in Chapter 4. Recall that this space is equivalent to the space of conformal
classes of CKVFs (for locally conformally flat n-manifolds). From limits of conformal
classes of CKVF's, we obtain limits of data of the form (3, v, kD¢), which in turn, must
correspond to limiting spacetimes because of the well-posedness of the Cauchy problem.
As a consequence, in the n even case, all spacetimes in the Kerr-de Sitter-like class
are limits of the Kerr-de Sitter family. This is because the data for the latter families
cover the region RIT2O) of SkewEnd(M!"*1)/O*(1,n + 1), which we have proven in
Proposition 4.26 to be dense in the quotient topology (only if n is even). The n odd
case is similar, with the exception of the so-called Wick-rotated-Kerr-de Sitter family
with none of the rotation parameters vanishing. These correspond to data in the region
RS:L+2’O) of conformal classes and therefore cannot be obtained as limits of the Kerr-de
Sitter family (cf. Proposition 4.26). They have been obtained by analytic extension (i.e.
through a Wick rotation) of Kerr-de Sitter.
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It is worth here to make a link with the results in [19]. In this paper, the authors
characterize all algebraically special spacetimes, with non-degenerate optical matrix,
in dimesion five (i.e. n = 4) as the Kerr-de Sitter family or a limit of it. We have
obtained a proof, to be presented in a future work, that the spacetimes they obtain
exhaust the Kerr-de Sitter-like class. To do that, we use the covariant characterization
of conformal classes mentioned above in this chapter, because from the expressions in [19]
it is hard to obtain an explicitly flat conformal representative at .# written in Cartesian
coordinates. Our results endow the Kerr-de Sitter-like class with conformally flat .#
with a structure of limits which helps to understand why the limits performed in [19]
were of relevance. Moreover, our methods extend to arbitrary dimension, although the
n even and n odd cases have remarkable differences. It would be interesting to study
whether the characterization in [19] extends to higher even dimensions, namely, if the
algebraic type and the non-degeneracy of the optical matrix characterize the Kerr-de
Sitter-like class. In addition, one interesting difference between both approaches is that

in [19] the conformal extendability is not imposed.

We notice that the Kerr-de Sitter-like class has other interesting properties which, for the
sake of brevity, have not been included in this thesis. Let us conclude this chapter with
a brief description of them. The spacetimes in the Kerr-de Sitter-like class whose (non-
trivial) data lie in the regions with maximal number of vanishing rotation parameters,
n+1,p—1
—e

namely R with € € {4, 0}, can be shown to correspond to the so-called generalized

Kottler spacetimes in all dimensions. This is the class of metrics

2M dr? r2
_ (. N2 =M 2, 4w
9= <6 Ar Tn_2> dt” + g2 _ 2 + b\ Ges

rn—2

where g, is a n—1 dimensional metric of constant curvature e. What is remarkable is that
they are limits of Kerr-de Sitter in every dimension. In particular, this implies that in
the physical n = 3 case, Kerr-de Sitter has three limits which, despite its similar form,
are qualitatively different. For instance, for positive M only Schwarzschild-de Sitter
(e = 1) includes a static region. The ¢ = —1 case corresponds, in the space of conformal
classes, to a point with (o > 0,u? = 0). This is one of the degenerate limits studied
in subsection 4.4.1, i.e. the sequences in the region (¢ < 0, 1% > 0) (corresponding to
Kerr-de Sitter) with limit at (¢ > 0,2 = 0) have also limit at (¢/ = 0,u? = o). The
latter corresponds to a metric in the a — oo-limit-Kerr-de Sitter, given first in [101],
and also here in Chapter 6. In other words, there exists a sequence of metrics in the
Kerr-de Sitter family which limits simultaneously with a Kottler metric with e = —1

and a metric in the a — oo-limit-Kerr-de Sitter.

Another interesting property follows by an straighforward application of the KID equa-
tion in Theorem 5.18 to the set of data in the Kerr-de Sitter-like class. As proven in
[99] for n = 3 and data in the Kerr-de Sitter-like class (X, v, kDg¢), any other CKVF ¢’
satisfies the KID equation if and only if it commutes with £. This fact easily extends to

arbitrary n with the KID equation in Theorem 5.18. In other words, C(&), the centralizer
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of the CKVF ¢, gives the number of independent symmetries of the corresponding space-
time in the Kerr-de Sitter-like class. The centralizer can in turn be obtained through

the centralizer of the corresponding skew-symmetric endomorphism C(F'(£)).

All the above properties of the Kerr-de Sitter-like class and their consequences, e.g.
concerning the number and properties of Killing vectors for spacetimes in the class
depending on the defining conformal class, are under current investigation and will be

subject of a future work.



Appendix A

Fefferman-Graham Equations

In order to derive the Fefferman-Graham (FG) recursive equations, we need to set some
identities first. Let g be a FGP metric A > 0 and ¢ = Q2§ a geodesic conformal
extension. Recall that we defined T, = V) and its g-metrically associated vector field
T = gO‘BTB. In this Appendix we derive all expressions assuming A > 0. The A < 0
case is slightly different, but the procedure is analogous. The FG equations in this case

can be found in e.g. [5].
Let us introduce the contraction of the Riemann tensors of g and g with T twice
(Rt)as = RuavgT'T", (Rr) 5 = RuausT'T" (A1)

and define
(A)os = VaTp, (A%),4:= VaT"V,Tp.

Firstly, observe that A is symmetric. Since T' is geodesic,

(RT)aﬁ = TV(—VVVﬁTa + V5VZ,TO[)
= —VrVaTa+ VaViTa — VTV, T = —VpAas — A2 (A.2)

The difference of tensors Ry and Ry in (A.1) is straightforward from expression (2.7).
Notice that the first index in E“a,,g is lowered with g,, and that T,,T7" = —\ since T is

geodesic for g. Hence, formula (2.7) when contracted with THTY is

~ A A
(Rr)ap — Q*(Rr)ap = qlest 2 (ToTs + Agap) - (A.3)

Now, from (2.32), in Gaussian coordinates {£2,z'} we have

T = —M\0q.

223
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Also, denoting gq = dagq, A is in these coordinates,

0 gOO by by .
Aap = VaTp = —Log = "-00gap = 50090 = —5 90 (A.4)

and its covariant derivative w.r.t. T
VrAag = ~A00Aas + A (ThoAus + ThyAay )

with

1 1 1
Iy, = ig;w (0a9ar + Oagor — Ovgoa) = ig’“’aggw, _ _XAMO“

So in consequence

VrA = —\dgA —2A% (A.5)

The tensor A is related to the second fundamental form of the leaves Y. by a constant
factor A = \/2K. Then, the Gauss identity (2.17) gives

1 AL .
Riji = RE;QZ + X(AikAjl — AuAj) = RE?,QZ + Z(gikgjl — Gi9jk), (A.6)

where R;;j; are the space components of the Riemann tensor of g and RZ(.;)IQZ the Riemann

tensor of gg. The Ricci tensor of g is

1

3 (R1)ap + 9" Raigj,

Raﬁ = g'lWRa,uﬁz/ = -

so that the contraction of (A.6) with g** reads

1 @ A A
Rj + X(RT)jl =R, - 519
where H = gJAij/A = *%gjgij, 932-1 =g kgz‘lgkj and Rz(j)

From (A.2), (A.4) and (A.5) one gets

is the Ricci tensor of ¢(®).

- A A%
(RT)ij = —(VTAZ']‘ + A?j) = /\Aij + QA?J- — A?j = —?gij + ZQEJ
Therefore )\ ) )
Rji — 5911 = Rﬁ, ) SHi— 5 it (A7)

Finally, we relate the tangent components of the Ricci tensors of g and g in terms of the

above quantities. First
VaVoQ = gV, T5 = ¢¥V,Tj = \H

and from (2.8) it follows (recall that ¢, g are metrics in an (n+ 1)-dimensional manifold)

n—1_. 1
Rij = =5 Mij —

20) )\Hgl-j + Rij — )\nﬁw
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Inserting this into (A.7) and multiplying by % yields

.. . 2 . ) ) 2 ~
—Qjao+ (n—1)go — 2Hgg = <)\R2C(gﬂ) — Hga — g3 — )\G> ,

where G | denotes the tangent components of

Gag = Rag - )\ngag.

In addition, we shall need the trace of equation (A.2)
gaﬁ(RT)aﬂ = _VT(ga/BAa,B) - gaﬁAiﬁ-

Since T is geodesic, A,g has only tangent components and
Vr(g°° Anp) = —Aa(g” Aij) = —\*H.

The term (Rr)ap9*° can be obtained from (A.3)
2 2

A A ~ A ~
“0Aap + ozn+ Rrr = 5 H + Gr,

ap .

where Rpp = QQgO‘B(}NET)aB = §°‘5(}~2T)a5 is the normal-normal component of the Ricci
tensor, éT = éagTo‘T % is the normal-normal component of the tensor é, and we have
used that —\/Q? = GosTT”. Hence, writing gaﬂAiﬁ =: |AJ%, the trace of (A.2) gives
the following expression

N(QH — H) = Q|A]? + QG

The last equation that we require is the trace of the Codazzi identity (2.18), namely

O g — v Ak,

; ik (o (2 Q
T Ruijrg™ = g™ (VS A — ViV Aij) = 2V
The LHS of this equation is
. 1 ~
T'Ryijrg™ = TF Runjpg®™ + XT“RuajBTaTﬁ = R,;T" = G,;T"

where the last equality follows form (2.8). In index-free notation the term in the RHS
will be denoted éT”. Therefore

divg, A — AMdH = —éTH

Summarizing,

Definicin A.1. The Fefferman-Graham equations are

—Qgo + (n —1)go — 2Hgao = QL, (A.8)
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where
2 . e 2~
L := < Ric(ga) — Hga — (92)”" — <G,
A A
and
N(QH - H) = QAP+ QGr,  divg,A — MH = —Grpy. (A.9)

Next, we use expressions (A.8) and (A.9) to obtain the recursive relations that generate
the coefficients in (2.34) and (2.35). For simplicity, we will assume that for the n even
case O = 0, although some remarks will be made concerning the O # 0 case. By
definition of Poincaré metric, the tensor G vanishes to all orders at .# , therefore we

simply omit it during the calculations, since in the end everything will be evaluated at

.

To calculate the coefficients of the expansion, we take derivatives in © of (A.8) and
evaluate at {Q2 = 0}. First, evaluating (A.9) and (A.8) at 2 = 0 it follows

Hlo==0 o =g =0.

For rt" order derivatives we use the generalized Leibniz rule, namely, for every two

smooth functions f1, fo

r

Onlfif2) =Y (2) O 1 O fo-

s=0

Recall that g,y denote the coefficients in the FG expansions (cf. (2.34) and (2.35)). In a

similar manner, we denote gﬁ(r) the rt" order coefficient of the corresponding expansion

for the inverse metric gg. Also, observe that the coefficients and the derivatives of gq

at = 0 are related by
9590la=o = 7'9(r)-

Lemma A.2. The coefficients gﬁ(T) can be written in terms of the coefficients g(s) up to

order s = r with s # r — 1. In particular 9?1) =0.
Proof. Taking the rt" order derivative in Q of g/ g;, = 67}, and evaluating at Q = 0

T ..

.. ij
3%, (97 9ik) | qeg = D1 (ggr,s)) 9syik =0, (A.10)

s=0

shows that the r*" order coefficient g?r) can be obtained as a combination of coefficients
9g(s) up to order r and g?s) up to order r — 2. The term g?r_l) does not appear because
it is multiplied by g(1), which is zero. Inductively, this implies that g?m can be written
in terms of coefficients g(,) up to order r. In addition, for r =1 it follows that g(ﬁl) =0,

SO g?r) does not depend on g(,_1). O
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It follows easily from the generalized Leibniz rule that
a6(Qf) = Q05 f +ray .

Using this, the r-th order derivative of (A.8) at =0 is

(r+n—r—=1)g441) —2 Z H(T s)g(s) = L1 (A.11)

with H®) = 04H |o=o and L) = 04L |o=o. Since H = —%gijgij, we may apply the

Leibniz rule again to compute H("~*)

s 1 r—s
HO) = =3 (= 9+ DGy, (A.12)
t=0
Isolating the term involving the highest order coefficient g(,,1) we have

T

r! r—s (T‘+'1)! fij r! r—1
Z_g o= S)!H( Yg(s) = B 9()9(r+1)i9(0) — 57’( ,
where
r—1 » r r—s
’P(ril) = Z(t + 1)gﬁ(i,,t)g(t+1)ijg(o) + Z Z(t + 1) u(r Ss— t)g(tJrl)Z'jg(s)' (Al?’)
t=0 s=1t=0

Then, writing g() = v and g(ﬁo) = ¥, expression (A.11) is easily arranged to

1 r—1 r r—1
(n -r-—= 1)g(7'+1) + (Tr'Yg(T+1)) v + ?P( ) = (7" + 1)' ( )

Since every term in (A.13) containing either g(,) or ggr) is multiplied by either g or
9?1)’ it follows by Lemma A.2 that P~ can be written in terms of coefficients 9is) 0

to order s <7r —1.

On the other hand, consider

r— r— 2
rlr=1 — ot <

S Riclgn) ~ Hin — (i0)?

Q=0

The term 0f, 1ch (90 ‘Q _, Obviously contains only coefficients g(s) up to order s <r—1

and tangential derivatives of them. The term 86_1 (Hga)|q— can be cast as

r—1

95 ' (Hga) la—o _Z[:) T—l—s)' s—i—l)?—l( *S)Q(S“)
L (A.14)

—1r—1-
(7“ .
= Z Z (t+1(s+1) gﬁ(r 1-s—1)9(t+1);;9(s+1)-
s=0 t=0

S
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Terms involving g, or g(ﬁT) arise only for the values s =0, t =r—lands=r—1, t =0.
In each case, the product also involves g1y or 9?1)' So, no such terms survive and by
Lemma A.2, (A.14) only depends on coefficients g(5) up to order s < r — 1. The same
holds for 66_1 g?ﬂQ:O, because
-1 . 1. kl -
36 9%|Q:0 286 (Girg glj) 0—0
and applying the Leibniz rule yields a similar expression to (A.14) with the indices

contracted in a different way. Thus:
Lemma A.3. Forn odd and n even with zero obstruction tensor, the r-th order deriva-
tive of equation (A.8) at Q =0 has the form

1 _ r _
(n -r-= 1)9(7“—}-1) + (Tr’Yg(r+1)) v+ 773(71 D= [’( 2 (A'15)

r+1 (r+1)!

where PU=Y and LY depend on previous coefficients 9(s) and their tangential deriva-

tives up to second order with s <r — 1.

Observacin A.4. In the n even case with non-zero obstruction tensor, the same analysis
shows that Lemma A.3 holds for r +1 < n, because all logarithmic terms are multiplied
by a factor Q"% Thus, the presence of logarithmic terms do not affect the derivatives

of (A.8) of order r <m — 1.
In the main text we shall need the explicit form of (A.15) when » = 1. We write the
result as a Corollary.

Corolario A.5. For any boundary metric v of dimension n > 2, the second order

coefficient of the FG expansion is, up to a constant, the Schouten tensor of y:

-1 ca
g = 2 (ietr) = 52101 ) — xtsenca) (216

Proof. We set r =1 in (A.15) and use that £ = (2/\)Ric(y) and P(O) = 0. Thus

1.
(n = 2)g(2) + (Trrg2)) ¥ = 5 fie(y)-

Taking trace with v, expression (A.16) follows at once. O

We now use the formula derived in Lemma A.3 to show that the expansion is even up

to order n.

Proposicin A.6. To all orders strictly smaller than n, the expansions (2.34) and (2.35)
are even. For n odd, there may be odd and even terms of order r > n, while for n even,
if O = 0, the expansion remains even to infinite order. Moreover, all terms of even

order r < n are solely generated from -y.
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Proof. We proceed by induction. Assume that up to an odd order r — 1, all previous
odd order terms vanish, including » — 1. We show that this induction hypothesis and

(A.15) implies g(,41) = 0.

First note that r is even. The first sum in (A.13) vanishes because g1y = 0 unless ¢
odd, but then g(,_4 = 0. For a similar reason, the second sum in (A.13) also vanishes
and therefore P~ = 0. The same kind of argument applies to 95 '(Hga) |a=o= 0
(cf. (A.14)). Also, 95 1(43) |a=o= 0, because as already noted above, its expression is
just (A.14) with the indices contracted in a different way.

For the derivative of the Ricci tensor, first note that this tensor involves quadratic terms
in the Christoffel symbols Fﬁanék and tangential derivatives of them 8;F§k. The latter
yield, when taking the derivative 9}, ' Ric(ga) |a=o,
-1 ‘ —1pi
g (8ll“§-k) o (86 F;k)

‘Q:O = }Q:O

and the former
Lros—1
r—1 l 3 _ o r—s—11l s 1%
% (qu jk)‘ﬂzo - 2) ( s ) (89 FmQ&Qij)‘Q:O

Observe that both expressions have a derivative of odd order (lower or equal to r — 1)
in Q of a Christoffel symbol. Thus, we evaluate (86/ ;k> 00 for ¥’ <r —1 odd. The

Christoffel symbols are a combination of contractions of g% y.gy,,. Hence

/

9% (97 Ogim) la=o="Y T’!g?i‘f,s)akg(s)zm, (A.17)
5=0

which vanishes because g?ff,‘_s) = 0 unless s is odd, but then Okg()mm = 0. Thus
agfle'c(gQ) lo=0= 0 and the induction hypothesis implies g,y = 0. Since g1y = 0,
the induction hypothesis holds as long as (A.15) provides an equation for the term g(,41).
Namely, if n is odd, they hold to any order strictly smaller than n. If n is even and

O =0, it goes on for all values of r.

By Lemma A.3, the coefficient g, is generated by previous ones up to order 7 —2. Since
all orders strictly smaller than n are even, it follows that all coefficients g(,) with r <n

are exclusively generated by g(g). 1.e. 7. O

Summarizing, the main argument in the proof of Proposition A.6 is to inductively apply
equation (A.15) to, first, establish the vanishing of odd order coefficients up to a certain
order, and then, establish the dependence only on 7 of the even (lower than n) order
coefficients. The inductive argument applies to a coefficient as long as (A.15) provides
a recursive expression for it, and this fails at the level » = n irrespectively of the parity

of n. This is the reason why evenness does not extend beyond g, for n odd. For the
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same reason, the dependence only on on v of the non-zero even coeflicients g,y does
no longer apply for » > n when n is even. The absence of an equation (A.15) for g,
implies an indeterminacy for this term. However, this term is not totally independent
of 7. As we show in the next lemma, its trace and divergence are constrainted by v as

a consequence of equations (A.9).

Lemma A.7. The trace and divergence of g, satisfy
Trfyg(n) = a, divyg(n) =b,

where a =0, b =0 forn odd and a is a scalar and b a one-form determined by v for n

even.

Proof.
Trace of g)

Taking the r** order derivative in the first of equations (A.9) and evaluating at Q = 0
yields
A2(r— H® —r (142 Y =0

where (JA|?)("—1) = g5 |A?|,_,- Expanding the terms, we have on the one hand that

by (A.12) )
1=

, r+1)! 7! i
) = _( 2 ) Try (g(r’-‘rl)) ) Z(S + 1)9?,},8)9(5—&-1)72]" (A18)
5=0
In order to calculate |A|? note
D A AN
A = gt gl Ay = —Sg™ " Dagir = 50097 = 547
2 2 2
hence |A]? = —(A\?/4)§" §;; and
22 r-1 .
(AP = =T =11 (= 8)(s + VgL 951y
s=0
Then
r r—1 r—1
N = HO —r (JA2) Y = 22E 2 )T (g4y)
r—1 i
— A2 5 r! Z(s + 1)9?733_5)9(3“)2';‘
s=0
! r—1 B
+ AQZ z_[:)(r —s)(s+ 1)9?;]_5)9(54-1)1']'
r — 1 T" r—1 ﬁ
= )2 (r + D!Tr, (g(r+1)) + )\25 Z Krsg(ij_s)g(s+1)ij =0

s=0
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where ) N
K. - (r—s)(s+ )—(r—l)(s+1):(8+ )( —r—s).
2 2
Rearranging terms, we obtain
(7“2 - 1)Tr g(r-i—l) ZKTSQ (r—s)9(s+1)ij (A.19)
Equation (A.19) for r + 1 = n(> 2) becomes
Tr’y (g(n) Z (n—1) sg(n 1—s) 9(s+1)ij = & (AQO)

For n odd, all coefficients of odd order lower than n vanish. Since r = n — 1 is even,
g(ﬁ:]_ 9 vanishes unless s even, but this makes s +1 odd and g(541);; = 0. Thus for n odd
we conclude from (A.20) that Tr,g(,) = 0. For n even this does no longer holds, because
fig

(r—s
necessarily vanish. In this case a is generated by 7, because (A.19) contains terms up to

the non-zero terms g ) (r =n—1o0dd and s odd) multiply terms 9(s+1)ij that do not

order n— 2 (those with of order n— 1 are zero), which only depend on v (cf. Proposition
A.6).

Duwvergence of g(n)

For this proof we use the second of equations (A.9)
divg,A — AdH = 0.

We write the divergence of A with indices (recall that, in the Gaussian coordinates we
are using, VEQ)AM = V,;A%)
divg, A7 = V;AY = §;AY 4+ T4 AM 1 17, ATk,

Taking the r*" order derivative at = 0 we obtain, for the first term

T i A 7,
0 Aoy = Sr+ 110,

and for the second and the third

<

2 <F§kAkj)‘ (Z) (s + 1)1 05" (Th) | ogufin

0

©
Il

A
Q=0 2 =
A
o A [T ; ;
r J o pik _ A ' T—sTJ ‘ fiik
%0 (FZkA )‘Q:O 2 (s) (s+ 1)t (aQ F”‘“) a=o J(s+1)
A
2

(r+ 1! iy 09(r+1) +AS,
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where
12/
r—s (T kj
Sy = 3 Z (3) (s+1)! 0 ( zk‘) ‘Q:O g?sil), (A.21)
s=0
r—1
= 1 ar—s (1 flik
S2:= 3 2% (S> (s +1)! 057 (T, ]QZO gk . (A.22)
Hence

. A .
O, (divgg A)lg_g = 5(r+ 1)ldiv,gf ;) + AS1 + ASo.

On the other hand, the 7™ order derivative of dH at = 0 is simply dH (") because the

diferential is taken in the submanifold Y. Therefore

(r+1)!

divygf,,p) = —S1 — S5+ dH). (A.23)

For n odd, set r = n — 1 (thus r even). The terms g(ﬁiﬁl) in (A.21) and (A.22) are
zero unless s is odd, hence r — s is odd and lower or equal than n — 2. Thus, all
the derivatives 0% (sz) ’Q:o in (A.21) and (A.22) have ' odd. As noted above, the
Christoffel symbols are a combination of contractions of g% kg, hence formula (A.17)
gives 6{{ (ka> ‘Q:O = 0 and therefore S; = Sy = 0. For dX( Y, we look at equation
(A.18). We have already proven that the trace of g,y vanishes. The remaining terms in
(A.18) also vanish: the terms with s even because g,1);; is zero, the terms with s odd,

because g?;{ 5 = 0 as r — s is odd. Therefore

divwg?n) =0.

Now, to relate g?n) and g,y we use formula (A.10) with = n. Since n is odd, the only
term survivings in the sum are the first and the last ones,

Gk + 77 gk =0 = g8 = —1*gmur*

and therefore divvg(ﬁn) = 0 if and only if div,g,) = 0.

For n even, the above argument does not apply because r = n—1 is odd. Thus the RHS
of (A.23) does not vanish in general. Looking at (A.21), (A.22) and (A.18) it follows
that b := divvggn) depends on coefficients of order up to n — 2 and tangent derivatives
thereof. Hence, divﬂ,g(ﬁn) is generated by 7. The same conclusion follows for div,g(,) by

an immediate application of Lemma A.2. O

Combining the results in this appendix, we may now show how the FG expansions are
generated, under the assumption that O = 0 if n even. The zero-th order coefficient
v must be prescribed. This generates all coefficients g,y with r < n. If n is even, v

also generates restrictions to the order n, so that given any g, satisfying them, one



233

can always add freely a TT term g(,), so that g, = In) + J(n) keeps satisfying all
the equations. The generation of coefficients keeps going on recursively from g(,), so
only even terms arise. For n odd, the recursive relations only restrict the term of order
n to be TT. Thus the n-th order term is a freely prescribable TT tensor g,y = §gn)-
Similarly, the generation of coefficients keeps going on recursively from g(,), but it is no
longer even. This is obvious at order n because of the presence of g, itself, and also
true at higher order where further odd terms will generically appear. This is because
the argument above proving evenness to a certain order relies on the vanishing of all
previous odd order coefficients. In the case g(,) = 0, the expansion is even to infinite

order also for n odd.
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