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A B S T R A C T

Ultrashort laser pulses are a unique tool to explore the fastest dy-
namics in matter. Remarkably, the shortest laser pulses to date are
produced from the non-linear frequency upconversion phenomenon
of high-order harmonic generation (HHG), which results in the emis-
sion of pulses of attosecond durations. Importantly, such attosecond
pulses can exhibit a very exciting property, the angular momentum,
which presents two different forms, the spin angular momentum (SAM)
and the orbital angular momentum (OAM), and that brings new sce-
narios for the light-matter interactions at the nanometric spatial and
ultrashort temporal scales.

In this thesis work, we develop a compilation of schemes for the
creation of high-order harmonics and attosecond pulses with novel
angular momentum properties by structuring the HHG process through
the characteristics of the driving beams. For that purpose, we first
address the description of the fundamental physical mechanisms
of HHG. In particular, we study the tunnel ionization in molecules,
finding that it is site-specific—its rate depends on the position of the
electronic wavefunction at the ion sites—, due to the extended nature
of the molecules. This characteristic leaves important signatures in the
HHG and photoelectron spectra. Therefore, we provide a recipe for
implementing the site-specificity in the existing strong-field models.

Afterwards, we theoretically predict and describe the creation of
extreme-ultraviolet (XUV) beams with novel angular momentum prop-
erties, which, in most of the cases, are experimentally generated and
characterized by our collaborators from the Kapteyn-Murnane group
in JILA, at the University of Colorado (USA) and from the group of
Prof. M.-Ch. Chen at the Institute of Photonics Technologies of the
Tsing Hua University (Taiwan). To begin with, we demonstrate the
generation, for the first time, of light beams with time-varying OAM, a
property which we denote as the self-torque of light. Importantly, self-
torqued beams arise naturally in the XUV regime from HHG driven by
two time-delayed infrared vortex beams. Under this configuration, the
OAM of the high-order harmonics changes along time in the attosec-
ond time-scale, being the amount of self-torque controlled through
the temporal properties of the driving pulses. Thus, we believe that
self-torqued beams can serve as unprecedented tools for laser-matter
manipulation. In addition, we show how the OAM can serve as an
instrument to manipulate the spectral and divergence properties of
the high-order harmonics. By driving HHG with two vortex beams
with properly selected OAM, we obtain high-order harmonic frequency
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combs with tunable line-spacing and low divergence. Such control is
particularly interesting for XUV/soft-X-ray spectroscopy and imaging.

Moreover, we present several schemes for the ellipticity control of the
high-order harmonics and attosecond pulses. Using the non-collinear
counter-rotating scheme, we extract the scaling of the ellipticity of the
high-order harmonics with that of the driving beams’ and we unveil
the information about the non-perturbative dipole response hidden in
that connection. Also, we show the generation of circularly polarized
vortex beams from HHG driven by a bi-circular vortex field. Interest-
ingly, by properly selecting the OAM of the driving field we can obtain
either circularly polarized attosecond pulses, or high-order harmonics
with low topological charge. Finally, we theoretically demonstrate the
generation of attosecond pulse trains with time-ordered polarization
states by combining two time-delayed bi-circular vortex driving fields.
We believe that the generation of attosecond pulses with controlled
ellipticity can be employed for the study of ultrafast spin dynamics in
chiral molecules or magnetic materials.

R E S U M E N

Los pulsos láser ultracortos son una herramienta única para explorar
las dinámicas más rápidas de la materia. Sorprendentemente, los
pulsos de láser más cortos obtenidos hasta la fecha se producen a partir
del fenómeno no lineal de conversión de frecuencias de generación de
armónicos de orden alto (HHG), que resulta en la emisión de pulsos con
duraciones de attosegundo. Es importante destacar que estos pulsos
de attosegundo pueden exhibir una propiedad muy interesante, el
momento angular, que presenta dos formas diferentes, el momento
angular de espín (SAM) y el momento angular orbital (OAM), y que
abre nuevos escenarios para las interacciones luz-materia a escalas
espaciales nanométricas y temporales ultracortas.

En esta tesis desarrollamos un conjunto de esquemas para la crea-
ción de armónicos de orden alto y pulsos de attosegundo con nuevas
propiedades de momento angular mediante la estructuración del pro-
ceso de HHG a través de las características de los haces incidentes. Para
ese propósito, primero abordamos la descripción de los mecanismos
físicos fundamentales de la HHG. En particular, estudiamos la ioniza-
ción túnel en moléculas, descubriendo que depende de la ubicación
del electrón dentro de la molécula, debido a la naturaleza extendida
de estas. Esta característica deja huellas importantes en los espectros
de HHG y de fotoelectrones. Por lo tanto, hemos desarrollado una
receta para implementar este fenómeno en los modelos de campos
intensos existentes.

A continuación, predecimos y describimos teóricamente la gene-
ración de haces láser en el ultravioleta extremo (XUV) con nuevas
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propiedades de momento angular que, en la mayoría de los casos,
son también creadas y caracterizadas experimentalmente por nuestros
colaboradores del grupo Kapteyn-Murnane en JILA, en la Universidad
de Colorado (EE. UU.), y del grupo del Prof. M.-Ch. Chen del Instituto
de Tecnologías Fotónicas de la Universidad Tsing Hua (Taiwán). Para
empezar, demostramos la generación, por primera vez, de haces de
luz con OAM variable en el tiempo, una propiedad que denominamos
como el auto-torque de la luz. Es importante destacar que los haces
con auto-torque surgen naturalmente en el régimen XUV cuando el
campo incidente para la HHG está formado por dos vórtices infrarro-
jos retardados en el tiempo. Bajo esta configuración, el OAM de los
armónicos de orden alto cambia a lo largo del tiempo en una escala de
tiempo de attosegundos, siendo la cantidad de auto-torque controlada
a través de las propiedades temporales de los pulsos incidentes. Por
lo tanto, creemos que los haces con auto-torque pueden servir como
nuevas herramientas para la manipulación láser-materia. Además,
mostramos cómo el OAM puede servir como instrumento para mani-
pular las propiedades espectrales y de divergencia de los armónicos
de orden alto. Empleando dos vórtices con el contenido adecuado
de OAM como pulsos incidentes, obtenemos peines de frecuencias de
armónicos de orden alto con un espaciado entre líneas espectrales
sintonizable y baja divergencia. Este control es particularmente intere-
sante para espectroscopía y formación de imagen en el XUV o incluso
en los rayos X blandos.

Además, presentamos varios esquemas para el control de la eliptici-
dad de los pulsos de attosegundo y de los armónicos de orden alto.
Utilizando la configuración no colineal contrarrotante, extraemos el
escalado de la elipticidad de los armónicos de orden alto con la de
los haces incidentes y desvelamos la información sobre la respuesta
dipolar oculta en esa conexión. Además, mostramos la generación
de vórtices polarizados circularmente a partir de la HHG usando un
campo incidente bi-circular vorticial. Destacablemente, al seleccionar
correctamente el OAM del campo incidente, podemos obtener, o bien
pulsos de attosegundo polarizados circularmente, o bien armónicos
de orden alto con baja carga topológica. Por último, demostramos
teóricamente la generación de trenes de pulsos de attosegundo con
estados de polarización ordenados temporalmente mediante la combi-
nación de dos campos incidentes bi-circulares vorticiales retardados en
el tiempo. Creemos que la generación de pulsos de attosegundo con
elipticidad controlada se puede emplear para el estudio de la dinámica
ultrarrápida de SAM en moléculas quirales o materiales magnéticos.
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1
I N T R O D U C T I O N

Science allows us to build new knowledge about the world around us
and, afterwards, to apply this information to develop new technologies
that improve our well-being. This acquisition of novel insight often
requires pushing the established limits towards unexplored scales. The
examination of light is an excellent example of how the study of a par-
ticular physical phenomenon can modify our general understanding
of Nature. It may be difficult to find any other phenomenon with such
leading role in the build-up of the foundations of physics. Its investi-
gation has led to the unification of laws in Nature, revealing hidden
connections that have unveiled important paths to new knowledge.
Just to mention a few examples, the incompatibility of the Maxwell
equations and Galileo’s relativity in the description of light gave rise
to the unification of the two areas into special relativity; Young’s ex-
periment, demonstrating the wave behaviour of light, was essential
for the discussion of the wave/particle nature of light and, therefore,
for the flourish of quantum mechanics; and Feynman’s description of
the light-matter interaction at the most fundamental level gave rise to
quantum electrodynamics.

Nowadays, the understanding of light, its properties, and its interac-
tion with matter, is still a source of exciting information. Nevertheless,
light can be also used as a tool to measure, or even trigger, different
phenomena. One of the most notorious tools used to this purpose
is the laser, widely used since its invention in 1960. Laser light is
coherent—i.e. it possesses a spatio-temporal ordered phase—and it
exhibits other exceptional characteristics, such as directionality and
focusability. Most importantly, these properties can be precisely con-
trolled to adjust laser light to different specific functions. Among them,
laser light is a main a tool to investigate phenomena at the shortest
time scales. New laser sources allow, nowadays, to access to the most
fundamental mechanisms in atoms, molecules, or solid systems, which
are governed by dynamic interactions that take place in the attosec-
ond (10−18s) timescale. Attosecond science, therefore, uses pulses of
attosecond durations as ultrashort flashes of laser light to capture
the ultrafast dynamics of the fundamental systems, an information
that remains inaccessible with conventional light sources. Also, these
pulses can be used to control or trigger such dynamics in matter.

Attosecond pulses can be routinely produced from the process
of high-order harmonic generation (HHG) [1, 2]. In a nutshell, HHG

is a well-established method to produce coherent high-frequency
radiation in table-top experiments. It consists in the upconversion
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of intense low-frequency (usually infrared) laser pulses into high-
frequency radiation (up to X-rays), as a result of a highly non-linear,
non-perturbative, light-matter interaction. Interestingly, HHG allows to
obtain attosecond pulses right from the selection of the most energetic
part of the harmonic spectrum, thanks to its phase-locked nature. In
addition, one of the main merits of HHG is that it is a highly coherent
process, so it is able to map properties of the driving field into the high-
frequency radiation. As a consequence, some characteristics of the
infrared laser are translated straightforwardly to the higher-frequency
attosecond pulses. This later aspect prompts an exciting perspective
for attosecond science: the possibility to structure attosecond pulses
with angular momentum.

In mechanics, momentum is defined as a quantitative description
of the motion of a body. The total mechanical momentum can be
expressed as the composition of linear momentum, associated to the
straight translation of the centre of mass, and the angular momentum,
associated to rotations. The angular momentum of a rigid body can
be also split into two parts: the orbital angular momentum (OAM),
that describes the centre of mass orbiting around a focus, and the
spin angular momentum (SAM), associated to the rotation of the body
around itself.

Despite of being an electromagnetic wave, light also possesses mo-
mentum, and, remarkably, it can be transferred to matter. The first
conjecture about the momentum of light was raised by Johannes
Kepler in 1619, when he postulated that the pressure of the sunlight af-
fected the orientation of the tails of the comets, which always pointed
away from the Sun. Two centuries later, Maxwell equations described
the phenomenon of radiation pressure, that, at the beginning of the
20th century, was experimentally measured [3, 4]. Promising recent
technologies, such as laser cooling, are based on the transfer of mo-
mentum from light to matter. Interestingly, as in a rigid body, the
angular momentum of light can also be split into SAM and OAM.

Figure 1: Differences between the SAM (a) and the OAM (b) of light and their
interaction with a small particle. Figure by E-karimi - Own work,
CC BY-SA 3.0.

The SAM of light is related to its polarization, as shown in figure 1a.
Although polarization was first studied in natural light in 1669 using

https://commons.wikimedia.org/w/index.php?curid=16630980
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birefringent materials, only centuries later, in 1909, it was associated
to a manifestation of the angular momentum of light [5]. In 1936, it
was discovered that, like light’s linear momentum, SAM could also be
transferred to matter [6]. As it is widely known, polarization has an
important role in technology (as in the fabrication of liquid-crystal
displays, glasses, etc), as well as in basic sciences, from chemistry to
biology.

The OAM of light is, on the other side, a macroscopic property
associated to vorticity. As a consequence, light beams carrying OAM

are also known as vortex beams. One can imagine a vortex beam as
a "light corkscrew", since its wavefront is twisted, forming an helical
shape around its propagation axis, as depicted in figure 1b. Specifically,
the OAM topological charge characterizes the azimuthal variation of the
beam’s phase in the transverse plane around a singularity. Importantly,
while the SAM is limited to two values, ± h, where  h is the reduced
Planck constant, the OAM can exhibit an infinite number of discrete
values in the form of integer multiples of  h. Furthermore, in contrast
to SAM, the OAM of light was discovered much more recently, in
1992 [7], and it is not yet implemented in our day to day technology.
Nevertheless, interesting applications have been already proposed. For
example, vortex beams have been demonstrated to trap microparticles
and to make them rotate, which offers exciting possibilities in the
field of particle manipulation [8, 9]. In addition, they can be used to
transfer information at a higher rate than conventional light [10]. Also,
other interesting opportunities can be found in phase contrast [11]
and super-resolution microscopies [12], or in quantum information
[13, 14].

Objectives of this thesis and publications

The main aim of this thesis is to explore schemes to develop new
ultrafast laser tools for applications of the angular momentum of light
in attoscience. Such goal requires a precise description of the process
of HHG, and a deep understanding of its characteristics. Particularly,
the proposals within this thesis rely heavily in the above-mentioned
mapping of the infrared driver characteristics to the harmonics, as one
of the properties which is directly translated to the harmonics is the
OAM. This thesis, therefore, contains a wide set of strategies to harvest
the potential of HHG to structure high-frequency laser radiation and
attosecond pulses.

We present theoretical developments, most of them supported by
the experiments from our collaborators, that demonstrate the gen-
eration of coherent extreme-ultraviolet (XUV) light with on-demand
combinations of angular momenta. Remarkably, some of the schemes
allow us to control the ultrafast variation of the angular momenta.
The incentive for generating high-frequency ultrashort pulses with
particular polarization or vorticity configurations is the possibility to
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interact with matter at the nanometric spatial and ultrashort tempo-
ral scales in an unprecedented manner—i.e. to interact with atoms,
electrons, etc, at their natural scales. Thus, we believe that our results
may boost the applications of angular momenta of light into ultrafast
nanotechnology, opening a route with exciting novel perspectives.

This thesis report contains the main objectives and results presented
in our publications:

1. Reference [15]. The fundamental aspects of HHG need to be ad-
dressed in order to accurately describe the characteristics of
the emitted radiation. In this paper, we investigate the spectral
traces of tunnel-ionization from molecular systems, an elemen-
tal feature of HHG. Our results show that the tunnel ionization
is strongly affected by the specific location of the electronic
wavepacket within the molecule, prior to ionization. This leaves
a signature in the harmonic spectrum. Thus, we demonstrate
that the standard picture of tunnel ionization in atoms needs
to be modified to be applied to molecular systems. For this, we
develop an extension of the molecular strong field approxima-
tion (SFA), the site-dependent tunnelling strong field approxi-
mation (SDT-SFA), which can serve as a guide for high-harmonic
spectroscopy applications.

2. Reference [16]. We introduce a new class of light beams that
possess a unique property, associated with the temporal variation
of their OAM: the self-torque of light. We theoretically predict, and
experimentally validate, that a self-torque can be imprinted onto
XUV beams through HHG driven by two time-delayed infrared
pulses with different OAM. The amount of self-torque can be
controlled via the modification of the temporal characteristics
of the driving field. Interestingly, the self-torque imprints an
azimuthal frequency chirp onto the harmonics that enables its
precise experimental characterization.

3. Reference [17]. We demonstrate that the combination of different
OAM modes allows not only for the control of the OAM of the
harmonics, but also for modifications in the spectral content and
divergence properties of the HHG emission. By combining two
infrared pulses with opposite and non-degenerate OAM content,
creating a phased-necklace driving beam, we demonstrate theo-
retically and experimentally the generation of harmonic combs
with tunable line spacing and low divergence.

4. Reference [18]. We show that the incorporation of the OAM in a
bi-circular driving field enables the simultaneous control over
the SAM and OAM of the attosecond pulses emitted from HHG.
This scheme allows for the generation of circularly polarized
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attosecond pulses with tailored OAM, as well as high-order har-
monics with the same topological charge as the driving laser
beam.

5. Reference [19]. We propose the generation of attosecond pulse
trains with time-ordered polarization states through HHG driven
by two time-delayed bi-circular vortex fields. Our theoretical
simulations demonstrate that two spatially separated rings of
harmonics are generated, each with polarization evolving tem-
porally from left-circular to right-circular and vice versa. The
proper choice of the driving pulses’ properties allows for the
custom control of the temporal evolution of the SAM of the pulses
within the train.

Further work carried out during the PhD studies, which will be
only briefly mentioned in this report, is:

1. Reference [20]. The non-collinear counter-rotating driving field
allows for the generation of circularly polarized isolated attosec-
ond pulses. We explore the dependence of the ellipticity of the
harmonics with the ellipticity of the driving beams by contrast-
ing theoretical and experimental results.

2. Reference [21]. Following a similar configuration than that in Ref.
[20], the polarization is used as a degree of freedom to precisely
quantify the complex dipole response of the HHG. We theoreti-
cally support this new experimental high-harmonic ellipsometry
technique.

3. Reference [22]. The bi-circular vortex field from [18] can be de-
scribed as a torus-knot field. The conservation of the torus-knot
angular momentum allows for the derivation of simple rules for
the angular momentum of the harmonics.

On the other hand, the particular methodological contributions of
this thesis work to the results presented in the mentioned publications
can be summarized as:

1. The development of a theoretical SFA model for the computation
of HHG in molecules, including the side-dependent tunneling,
and a numerical tool to extract information from the exact time-
dependent Schrödinger equation (TDSE) calculations.

2. The extension of the thin slab model (TSM) to multiple configura-
tions of the driving fields, such as non-collinear or time-delayed
beams, studying the role of the different parameters of the driv-
ing pulses and of the HHG process itself.
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3. The adjustment of the full-quantum SFA model including propa-
gation, a tool previously developed by the group of the Univer-
sity of Salamanca, to simulate the new schemes for the generation
of XUV/X-ray beams with angular momentum.

4. The extraction of simple mathematical laws that predict the
properties of the harmonics, especially their OAM and SAM.

Organization of the thesis

This thesis is organized in three main topics. First, the investigation
of the HHG fundamentals and, in particular, the description of the
tunnel-ionization picture in molecules [15]. Second, the generation of
high-order harmonics with novel OAM properties, including their im-
plications on the spatial and spectral features of the XUV emission [16,
17]. Third, the production of attosecond pulses with new polarization
properties from the so-called non-collinear counter-rotating driving
field [20, 21] and the bi-circular vortex field [18, 19, 22].

Accordingly, in chapter 2, we will deal with the foundations of HHG

and apply high-harmonic spectroscopy to explore tunnel ionization
in molecules. We shall review the well-known theory of HHG, starting
from the fundamentals of light-matter interactions and the numerical
solution of the TDSE. Then we will approach the subject from the point
of view of the SFA, and review the accuracy of the HHG description
in this framework. Next, we shall derive the semiclassical description
of the harmonic emission process. The chapter will finish with the
application of this knowledge to the study of tunnelling, the first step
in HHG, deriving insight on the role of the proximity of the electron to
the potential barrier from our SDT-SFA model.

Chapter 3 will be devoted to the generation of XUV beams with new
OAM structures. The chapter will begin with an introduction to the
OAM of light. The following section will address the control of the
OAM in HHG, and it will establish the implications of the combination
of several OAM components to drive HHG. The next section will deal
with the generation of harmonic beams with self-torque, a new kind
of coherent beams in which the OAM varies linearly in time. Finally,
we shall present our results on the modifications of the HHG spectrum
through the OAM of the driving field.

Chapter 4 will explore the production of attosecond pulses with
novel polarization states. The first section will introduce state-of-the-
art of the polarization control in HHG. The next section will exploit the
non-collinear counter-rotating driving field to monitor the ellipticity
of the attosecond pulses and to extract the non-perturbative dipole
response. The following section will analyse the possibility of harness-
ing the angular momentum conservation rules to introduce specific
polarization states by combining the OAM and SAM of the driving field.



introduction 7

The last section will be committed to the generation of trains of pulses
with time-ordered polarization states.

Finally, chapter 5 summarizes the main findings and perspectives
of this thesis.





I N T R O D U C C I Ó N

La ciencia nos permite construir nuevos conocimientos sobre el mundo
que nos rodea y, posteriormente, aplicar esta información para desa-
rrollar tecnologías que mejoren nuestro bienestar. Esta adquisición
de nuevos datos a menudo requiere extender los límites establecidos
hacia escalas inexploradas. La investigación de la luz es un ejemplo
destacable de cómo el estudio de un fenómeno físico en particular
puede modificar nuestra visión general de la naturaleza. Es difícil en-
contrar otro fenómeno con un papel tan importante en la construcción
de los fundamentos de la física. Su comprensión ha llevado a la unifi-
cación de leyes de la naturaleza, revelando conexiones ocultas que han
señalado caminos importantes hacia nuevos conocimientos. Solo por
mencionar algunos ejemplos, la incompatibilidad de las ecuaciones de
Maxwell y la relatividad de Galileo en la descripción de la luz llevó a
la unificación de las dos áreas en relatividad especial; el experimento
de Young, que demuestra la comportamiento ondulatorio de la luz, fue
esencial para la discusión de la naturaleza ondulatoria/corpuscular
de la luz y, por tanto, para el florecimiento de la mecánica cuántica; y
la descripción de Feynman de la interacción luz-materia en el nivel
más fundamental dio lugar a la electrodinámica cuántica.

Hoy en día, la comprensión de la luz, sus propiedades y su interac-
ción con la materia, sigue siendo una atractiva fuente de información.
Sin embargo, la luz también se puede utilizar como herramienta para
medir, o incluso desencadenar, fenómenos físicos. Podría decirse que
una de las herramientas más útiles para este propósito es el láser,
inventado en 1960. La luz láser es coherente—es decir, posee una fase
ordenada espaciotemporalmente—y además exhibe otras característi-
cas excepcionales, como la direccionalidad y la capacidad de enfoque.
Es importante destacar que estas propiedades se pueden controlar con
precisión para ajustar la luz láser a diferentes funciones específicas.
Entre ellas, la luz láser es una herramienta principal para investigar
fenómenos en las escalas de tiempo más cortas. Las nuevas fuentes de
luz láser permiten, en la actualidad, acceder a los mecanismos más
fundamentales de los sistemas atómicos, moleculares o sólidos, que
se rigen por interacciones dinámicas que tienen lugar en la escala
de tiempo de los attosegundos (10−18s). La ciencia del attosegundo,
por lo tanto, utiliza pulsos de esta duración como destellos de luz
ultracortos para capturar la dinámica ultrarrápida de sistemas físi-
cos fundamentales, una información que permanece inaccesible con
fuentes de luz convencionales. Además de para medir, estos pulsos
de attosegundo se pueden utilizar para controlar o desencadenar esas
dinámicas ultrarrápidas en la materia.
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Los pulsos de attosegundo se producen de forma rutinaria a partir
del proceso de generación de armónicos de orden alto (HHG) [1, 2].
En pocas palabras, la HHG es un método bien establecido para pro-
ducir radiación coherente de alta frecuencia en experimentos “sobre
mesa”, es decir, que no requieren grandes instalaciones. Consiste en
la conversión de pulsos láser intensos de baja frecuencia (usualmente
infrarrojos) en radiación de alta frecuencia (actualmente hasta los
rayos X), como resultado de una interacción luz-materia altamente no
lineal y no perturbativa. El anclaje de fase de los armónicos inherente
en la HHG permite obtener pulsos de attosegundo a partir de la se-
lección de la parte más energética de los espectros. Además de esto,
otro de los principales méritos de la HHG es que, al ser un proceso
altamente coherente, es capaz de mapear las propiedades del campo
incidente en la radiación de alta frecuencia. Como consecuencia, al-
gunas características del láser infrarrojo se traducen directamente a
los pulsos de attosegundos de alta frecuencia. Este último aspecto da
lugar a una perspectiva emocionante para la ciencia del attosegundo:
la posibilidad de estructurar pulsos de attosegundo con momento
angular.

En mecánica, el momento se define como la descripción cuantita-
tiva del movimiento de un cuerpo. El momento mecánico total se
puede expresar como la composición del momento lineal, asociado
a la traslación rectilínea del centro de masas, y el momento angular,
asociado a las rotaciones. El momento angular de un cuerpo rígido
puede a su vez dividirse en dos partes: el momento angular orbital
(OAM), que describe la órbita del centro de masas alrededor de un
foco, y el momento angular de spin (SAM), asociado a la rotación del
cuerpo alrededor de sí mismo.

A pesar de ser una onda electromagnética, la luz también posee
momento y, sorprendentemente, este puede transferirse a la materia.
La primera conjetura sobre el momento de la luz fue planteada por
Johannes Kepler en 1619, cuando postuló que la presión de la luz solar
afectaba la orientación de las colas de los cometas, que siempre apun-
tan en dirección opuesta al Sol. Dos siglos más tarde, las ecuaciones de
Maxwell proporcionaron una descripción cuantitativa del fenómeno
de la presión de radiación, que, a principios del siglo XX, se midió
experimentalmente [3, 4]. Prometedoras tecnologías recientes, como el
enfriamiento por láser, se basan en la transferencia del momento de la
luz a la materia.

El SAM de la luz se manifiesta como su polarización, tal y como se
muestra en la figura 2a. Aunque la polarización se estudió por primera
vez con luz natural en 1669 utilizando materiales birrefringentes, hasta
siglos más tarde, en 1909, no se asoció con el SAM de la luz [5]. En
1936, se descubrió que, al igual que el momento lineal, el SAM podía
transferirse a la materia [6]. Como es bien sabido, la polarización
tiene un papel importante en la tecnología, como en la fabricación de
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Figure 2: Diferencias entre el momento angular de spin (a) y el momento
angular orbital (b) de la luz y su interacción con una partícula
pequeña. Figura hecha por E-karimi - Own work, CC BY-SA 3.0.

pantallas de cristal líquido, gafas, etc., así como en las ciencias básicas,
desde la química hasta la biología.

El OAM de la luz es, por otro lado, una propiedad macroscópica
asociada a la vorticidad. Por lo tanto, los haces de luz que transportan
OAM también se conocen como vórtices de luz. Uno puede imaginar la
estructura de un vórtice de luz como un "sacacorchos", ya que su frente
de onda se retuerce sobre sí mismo, exhibiendo una forma helicoidal
alrededor de su eje de propagación, como se muestra en la figura
2b. La carga topológica de OAM describe la variación azimutal de la
fase del haz en el plano transversal alrededor de una singularidad.
Es importante destacar que, mientras que el SAM está limitado a dos
valores, ± h, donde  h es la constante de Planck reducida, el OAM puede
exhibir un número infinito de valores en forma de múltiplos enteros
de  h. Por otro lado, a diferencia del SAM, el OAM de la luz se descubrió
recientemente, en 1992 [7], y aún no está implementado en nuestra
tecnología del día a día. Sin embargo, ya se han propuesto aplicaciones
muy interesantes. For ejemplo, se ha demostrado que los vórtices de
luz pueden atrapar micropartículas y hacerlas rotar, lo que ofrece
emocionantes posibilidades en el campo de la manipulación a esta
escala [8, 9]. Además, se pueden utilizar para transferir información a
una tasa mayor que con la luz convencional [10]. Asimismo, se pueden
encontrar otras oportunidades ventajosas en microscopia de contraste
de fase [11] y de alta definición [12], o en la información cuántica [13,
14].

Objetivos de esta tesis y publicaciones

El objetivo principal de esta tesis es explorar diferentes esquemas
para desarrollar nuevas herramientas para aplicaciones del momento
angular de la luz en la attociencia. Dicho objetivo requiere una des-
cripción precisa del proceso de HHG y una comprensión profunda de
sus características. En particular, las propuestas dentro de esta tesis se
basan en gran medida en la posibilidad mencionada anteriormente
de mapear las características del campo de infrarrojos en los armóni-

https://commons.wikimedia.org/w/index.php?curid=16630980
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cos, ya que una de las propiedades que se traduce directamente a
los armónicos es el OAM. Esta tesis, por lo tanto, está motivada por
esta perspectiva y contiene un amplio conjunto de propuestas para
aprovechar el potencial de la HHG para estructurar la radiación de alta
frecuencia y los pulsos de attosegundo.

Presentamos desarrollos teóricos, la mayoría apoyados por los expe-
rimentos de nuestros colaboradores, que demuestran la generación de
luz coherente de frecuencia en el rango del ultravioleta extremo (XUV)
con combinaciones de momentos angulares deseadas. Cabe señalar
que algunos de estos esquemas nos permiten controlar la evolución
ultrarrápida del momento angular. El incentivo para generar pulsos
ultracortos de alta frecuencia con una polarización o un estado de
vorticidad particular es la posibilidad de interactuar con la materia a
escalas espaciales nanométricas y escalas temporales ultracortas de
una manera sin precedentes—es decir, interactuar con átomos, elec-
trones, etc., en sus escalas naturales. Por lo tanto, creemos que nuestros
resultados pueden impulsar las aplicaciones del momento angular de
la luz en el ámbito de la nanotecnología ultrarrápida, abriendo una
ruta con novedosas e interesantes perspectivas.

En esta tesis nos centramos en los principales objetivos y resultados
presentados en las siguientes publicaciones:

1. Referencia [15]. Es necesario abordar los aspectos fundamentales
de la HHG para describir con precisión las características de la
radiación emitida. En este artículo, investigamos las trazas es-
pectrales de la ionización túnel de sistemas moleculares, una
característica fundamental de la HHG. Nuestros resultados mues-
tran que la ionización túnel se ve fuertemente afectada por la
ubicación específica del paquete de ondas electrónico dentro de
una molécula, justo antes de la ionización. Esta dependencia
deja una huella en el espectro de armónicos. Por lo tanto, de-
mostramos que el panorama estándar de la ionización túnel en
átomos debe modificarse para los sistemas moleculares. Para
ello, desarrollamos una extensión de la aproximación de campo
fuerte (SFA) molecular, la aproximación de campo fuerte con
túnel dependiente de la ubicación (SDT-SFA), que puede servir
como guía para aplicaciones de espectroscopia de armónicos de
orden alto.

2. Referencia [16]. Introducimos una nueva clase de haces de luz que
poseen una propiedad única asociada con la variación temporal
de su OAM: el auto-torque. Predecimos teóricamente, y validamos
experimentalmente, que el auto-torque puede imprimirse natu-
ralmente en haces XUV a través de la HHG empleando como haces
incidentes dos pulsos infrarrojos retardados en el tiempo y con
diferente OAM. La cantidad de auto-torque se puede controlar
modificando las características temporales del campo incidente.
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Notablemente, el auto-torque imprime un desplazamiento de
frecuencias azimutal en los armónicos que permite su caracteri-
zación experimental precisa.

3. Referencia [17]. Demostramos que la combinación de diferentes
modos de OAM permite no solo el control del OAM de los ar-
mónicos, sino también modificaciones en el contenido espectral
y las propiedades de divergencia de la emisión. Al combinar dos
pulsos infrarrojos con contenido OAM opuesto y no degenerado,
creando un campo incidente con forma de "collar de cuentas", de-
mostramos teórica y experimentalmente la generación de peines
de armónicos con espaciado sintonizable y baja divergencia.

4. Referencia [18]. Demostramos que la incorporación del OAM en
un campo incidente bi-circular, permite el control simultáneo
sobre el SAM y el OAM de los pulsos de attosegundos emitidos
en la HHG. Este esquema permite la generación de pulsos de
attosegundos polarizados circularmente con OAM a medida, así
como armónicos de orden alto con la misma carga topológica
que el haz incidente.

5. Referencia [19]. Proponemos la generación de trenes de pulsos
de attosegundo con estados de polarización ordenados en el
tiempo a través de la HHG, empleando como haces incidentes dos
vórtices bi-circulares retardados en el tiempo. De esta manera,
se generan dos anillos de armónicos separados espacialmente,
cada uno con una elipticidad que evoluciona temporalmente de
polarización circular levógira a polarización circular dextrógira y
viceversa. La elección adecuada de las propiedades de los pulsos
incidentes permite controlar la evolución temporal del SAM de
los pulsos dentro del tren.

El trabajo adicional realizado durante los estudios de doctorado,
pero solo mencionado brevemente en este informe, consiste en:

1. Referencia [20]. El campo de incidente contrarrotante no colin-
eal permite la generación de pulsos de attosegundo aislados
polarizados circularmente. Exploramos la dependencia de la
elipticidad de los armónicos con la elipticidad de los haces inci-
dentes contrastando los resultados teóricos y experimentales.

2. Referencia [21]. Siguiendo una configuración similar a la de [20],
el grado de libertad de la polarización se usa para cuantificar con
precisión la respuesta dipolar de la HHG. Apoyamos teóricamente
esta nueva técnica experimental de elipsometría de armónicos
de orden alto.

3. Referencia [22]. El campo bi-circular con OAM de [18] se puede
describir como un campo de nudo toroidal. La conservación del
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momento angular de nudo toroidal permite la derivación de
reglas simples para el momento angular de los armónicos.

Por otro lado, las contribuciones metodológicas particulares de esta
tesis a los resultados presentados en las publicaciones mencionadas se
pueden resumir en:

1. El desarrollo de un modelo teórico de SFA para el cálculo de la
HHG en moléculas, incluyendo el túnel dependiente de la ubi-
cación, y de una herramienta numérica para extraer información
de los cálculos exactos de la TDSE.

2. La extensión del modelo de lámina fina (TSM) a múltiples confi-
guraciones de los haces incidentes, como esquemas no colineales
o con retardados temporales, estudiando el papel de los difer-
entes parámetros de los pulsos incidentes y del propio proceso
de HHG.

3. El ajuste del modelo de SFA cuántico incluyendo propagación
(una herramienta previamente desarrollada por el grupo de la
Universidad de Salamanca) para simular los nuevos esquemas
para la generación de haces XUV o de rayos X con momento
angular.

4. La extracción de leyes matemáticas simples que predigan las
propiedades de los armónicos, especialmente su OAM y SAM.

Organización de la tesis

Esta tesis está organizada en tres temas principales. Primero, la
investigación de los fundamentos de la HHG y, en particular, la des-
cripción de la ionización túnel en moléculas [15]. En segundo lugar,
la generación de armónicos de orden alto con propiedades de OAM

novedosas, incluidas sus implicaciones en las características espaciales
y espectrales de la emisión XUV [16, 17]. En tercer lugar, la producción
de pulsos de attosegundos con nuevas propiedades de polarización
a partir del campo contrarrotante no colineal [20, 21], y del campo
bi-circular con OAM [18, 19, 22].

Por consiguiente, esta tesis se organiza de la siguiente manera. En
el capítulo 2, trataremos los fundamentos de la HHG y aplicaremos
la espectroscopia de armónicos de orden alto para explorar la ioniza-
ción túnel en moléculas. Repasaremos la teoría conocida de la HHG,
partiendo de los fundamentos de las interacciones materia-luz y la
solución numérica de la ecuación de Schrödinger dependiente del
tiempo (TDSE). Luego, abordaremos el tema desde el punto de vista
de la SFA y revisaremos la precisión de la descripción de la HHG en
este marco. A continuación, derivaremos la descripción semiclásica
del proceso de emisión de armónicos. El capítulo terminará con la
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aplicación de este conocimiento al estudio de la ionización túnel, el
primer paso en la HHG, obteniendo información sobre el papel de
la proximidad del electrón a la barrera de potencial según nuestro
modelo SDT-SFA.

El capítulo 3 se dedicará a la generación de haces XUV con nuevas
configuraciones de OAM. El capítulo comenzará con una introducción
al OAM de la luz. La siguiente sección abordará el control del OAM en
la HHG y establecerá las implicaciones de la combinación de varios
componentes de OAM en el haz incidente. La siguiente sección se
ocupará de la generación de un nuevo tipo de haz coherente en el
que el OAM varía linealmente en el tiempo. Finalmente, presentaremos
nuestros resultados sobre las modificaciones del espectro de la HHG a
través del OAM del campo incidente.

El capítulo 4 explorará la producción de pulsos de attosegundo
con nuevos estados de polarización. La primera sección introducirá
el estado del arte del control de la polarización en HHG. La sección
posterior explotará el campo contrarrotante no colineal para controlar
la elipticidad de los pulsos de attosegundo y extraer la respuesta dipo-
lar no perturbativa. La siguiente sección analizará la posibilidad de
aprovechar las reglas de conservación del momento angular para in-
troducir estados de polarización específicos mediante la combinación
del OAM y el SAM del campo incidente. La última sección estará dedi-
cada a la generación de trenes de pulsos con estados de polarización
ordenados en el tiempo.

Finalmente, el capítulo 5 resume los principales hallazgos y perspec-
tivas de esta tesis.





2
F U N D A M E N TA L S

In this chapter, we explain the fundamentals of HHG. To this aim,
in section 2.1, we introduce the dynamics that governs HHG from
the classical perspective, including the characteristics of the emitted
radiation. In section 2.2, we describe the quantum and semiclassical
approaches as well as the theoretical models for the harmonic emission.
In section 2.3, we extend these models for the computation of HHG

from macroscopic targets. The methods developed in these sections
will provide us with a full description of the harmonic emission,
from the microscopic to the macroscopic level. In section 2.4, we
show an example of how the details of the spectral emission reveal
fundamental aspects in the dynamics of matter. In particular, we have
carried on a study on spectroscopic evidences of the modification of
the tunnel-ionization probabilities with the distance of the electrons
to the potential barrier. As a result, we shall demonstrate that tunnel
ionization in extended systems, even in simple molecules, departs from
the case of atoms. These modifications, that leave a clear signature
in the high-harmonic spectra, can be observable in experiments of
high-harmonic spectroscopy. Our publication on this subject [15] is
included in the final section, 2.5.

2.1 introduction to high-order harmonic generation

The investigation of ultrafast mechanisms in Nature benefits from the
use of laser pulses with two characteristics: (i) ultrashort duration,
to resolve in time the ultrafast dynamics, and (ii) high frequency, to
access the nanometric scale avoiding the limit imposed by diffraction.
Luckily, these two requirements can be fulfilled simultaneously, as
ultrashort pulses must contain radiation spanning into the XUV or
X-ray regimes in order to reach the attosecond timescale. For that
reason, there has been an important scientific effort towards the de-
velopment of coherent high-frequency light sources during the last
three decades. Among these, HHG-based sources are remarkable, due
to their outstanding degree of coherence, the exquisite control of their
radiation properties, as well as their table-top configuration, making
them available at laboratories worldwide.

Apart from its importance as a source of high-frequency ultrashort
radiation, HHG is also widely used as a spectroscopy tool by itself.
The HHG spectrum encodes signatures of the dynamics and the struc-
ture of the radiating materials [23–25]. Techniques of high-harmonic
spectroscopy have been successful in retrieving information about the
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molecular structure [26], nuclear dynamics [27], energy dispersion in
solids [28], dynamics in strongly correlated systems [29], and orbital
tomography [30].

2.1.1 A non-perturbative phenomenon

HHG is a highly non-linear and non-perturbative frequency upconver-
sion process, that occurs when an intense laser is focused into a target.
Targets are typically gas jets of noble atoms, although molecular gases,
solids or liquids are also employed [31–36]. In general, the non-linear
response of the medium’s polarization density to a sufficiently intense
electric field produces the emission of new frequencies. Conceptually,
this non-linear response can be described using a Taylor series expan-
sion of the polarization density vector P(t) in terms of the electric field
E(t). In its scalar form it is expressed as:

P(t) = ε0

[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t)...

]
, (1)

where the coefficients χ(n) are the nth-order susceptibilities of the
medium and ε0 is the vacuum permittivity constant. If the medium is
centro-symmetrical, only the odd terms in the expansion are different
from zero.

Non-linear optical phenomena require intense or moderately intense
electromagnetic driving fields. Thus, although they were predicted in
1931 by Maria Goeppert-Mayer in her doctoral dissertation [37], their
experimental demonstration was linked to the development of laser
sources 30 years later, which provided light with enough intensity.
Right after the laser invention, two-photon-excited fluorescence was
detected in a europium-doped crystal [38] and, almost simultaneously,
second-harmonic generation was also discovered [39]. Nowadays,
non-linear laser-matter interactions are the basis of laser frequency
conversion schemes.

Non-linear interactions at moderately high intensities are pertur-
bative, which means that the intensity of subsequent harmonic or-
ders decays exponentially. As a consequence, high frequencies ex-
hibit extremely low conversion efficiencies. This behaviour can be
understood in terms of the gradual decrease in the probability of
composing an increasingly large number of photons into a single
high-frequency one. On the other hand, if the driving laser is in-
tense enough (1013 − 1015W/cm2), the force exerted by the laser field
becomes comparable to the binding force of the electrons to mat-
ter, and the perturbative interpretation schematized in Eq. (1) is no
longer valid. In fact, when the laser-matter interaction enters in this
non-perturbative regime, the ionization rate increases and high-order
harmonics emerge efficiently [40]. The development of intense lasers
reached enough intensity to observe extreme non-linear optical phe-
nomena during the 80’s, and non-perturbative HHG from gas targets
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Figure 3: Scheme of HHG in a gas jet driven by an intense infrared (IR),
femtosecond (fs) laser. From the non-perturbative, non-linear laser-
matter interaction, high-order harmonics are emitted.

was first reported at the end of that decade [41, 42]. In figure 3, we
show a basic scheme of HHG in a gas jet.

In contrast to the perturbative case, where the harmonics’ efficiency
decreases monotonously (see figure 4a), the non-perturbative HHG

spectra present a plateau of harmonics, extending towards high fre-
quencies with nearly constant intensity [43], as depicted schematically
in figure 4b. This plateau ends abruptly at a cut-off frequency, after
which the harmonic efficiency decays exponentially. As a result, HHG

provides for efficient sources of coherent radiation extending from
the XUV to the soft-X-rays [44, 45]. In addition, the phase-locked na-

Figure 4: Scheme of the typical harmonic spectra in the perturbative (a) and
non-perturbative (b) regimes. The intensity of the harmonics is
shown in logarithmic scale. In both cases, odd-order harmonics of
the fundamental frequency are emitted from centro-symmetrical
systems. However, in the non-perturbative regime, corresponding
to the HHG process, the spectrum presents a plateau of harmonics
with similar intensity, that ends in the so-called cut-off frequency.

ture of the harmonics at the end of the spectral plateau, implies that,
temporally, they are radiated in the form of pulses of attosecond du-
ration. The generation of trains of attosecond pulses [46–48], or even
isolated pulses [49, 50] is of great interest for ultrafast applications, as
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pump-probe experiments to elucidate attosecond electron dynamics
[51–53].

Nowadays, HHG can be driven in a wide variety of configurations.
Along this thesis, we will primarily consider the standard scenario of
atomic and molecular gas jet targets irradiated with femtosecond driv-
ing fields, with a central wavelength of 800 nm and about 1014W/cm2

peak intensity.

2.1.2 The microscopic description

In atomic or molecular gases, HHG can be described semi-classically
in terms of a three-step process [1, 2]: first, near the maxima of the
driving field, an electronic wavepacket is tunnel-ionized from the
parent atom; in a second step, the electronic wavepacket is accelerated
and, after reversal of the sign of the electric field, it is redirected to
the parent ion; finally, in a third step, upon recollision the electron’s
kinetic energy is released in the form of high-frequency radiation. To
some extent, the atom-field system acts like a nanometric electron-ion
collider, where the three steps finally result in a short pulse of high-
frequency light emitted each half cycle of the driving field, as sketched
in figure 5.

Figure 5: Scheme of the semi-classical three step description of HHG. The
electron is first tunnel-ionized by the external electric field (A), then
it is accelerated (B), and finally it recombines with its parent ion,
emitting XUV radiation (C). Figure extracted from [54].

Let us now highlight some of the specific characteristics of the HHG

process. First, it is important to note that the ionization must take place
within the limits of the tunneling regime. This ensures the injection
of a subcycle electron wavepacket in the continuum, which during
recollision will emit an attosecond pulse. The tunneling condition
implies that, for a given laser frequency, the amplitude of the field must
be restricted to a certain range. This can be explained qualitatively
using classical arguments. Let us consider the simple case of a classical
electron in an atomic Coulombic potential, VC(r), distorted by the
interaction with the external electric field, E(t), linearly polarized
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along the z coordinate. The distorted potential is given by Veff(r, t) =
VC(r) + eE(t)z, where e is the elementary charge (e = |e|).

For an efficient HHG, the electric field must bend the atomic poten-
tial barrier sufficiently to ensure that the electron may tunnel-ionize
before it changes its sign. Let us consider that, initially, the electron
is placed at z = 0 with an energy equal to −IP, IP being the ioniza-
tion potential, as shown schematically in figure 6. After ionization, a
reasonable assumption consists in neglecting the Coulomb potential
and considering that the electron is placed at the exit of the tunneling
barrier, z0 = IP/(eE0), with a total energy of −eE0z0, where E0 is the
amplitude of the external electric field. Assuming that, while tunnel-

Figure 6: Scheme of the simplified tunnel ionization picture, where the
Coulomb potential is neglected. The electronic wavepacket is ini-
tially placed at z = 0 with energy equal to −IP and, afterwards, it
exists the barrier at z0 = IP/(eE0).

ing, the electron’s kinetic energy equals the energy of the bound state
K = −IP, the velocity can be approximated as v =

√
2meK = i

√
2meIP,

where me is the electron mass. According to this picture, the estimated
tunneling time would be:

τt =
z0
v

= −i
γ

2ω0
, (2)

where ω0 is the external field frequency and γ is the so-called Keldysh
parameter [55]:

γ =
ω0
√
2meIP
eE0

=

√
IP
2UP

, (3)

UP = e2E20/(4meω
2
0) being the ponderomotive energy—the mean

kinetic energy of the free electron oscillations during the interaction
with the electromagnetic field. It is important to note that the complex
value of the classical velocity and tunneling time reflect the inabil-
ity of the classical picture to fully describe the quantum nature of
tunneling. Expressing Eq. (2) in terms of the electric field’s period, T ,
the relative tunneling time corresponds to |τt|

T = γ
4π . Therefore, it can

be considered that the electron would tunnel-ionize efficiently if the
magnitude of the tunnel time is much smaller than half of the field
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period, thus, if γ < 1. The main distinction between the tunneling and
multiphoton regimes is, therefore, that in the former the electron’s
injection to the continuum takes place at the attosecond timescale,
while in the later the electron is ionized over the whole laser period.
The tunnel condition, γ < 1, holds for large field amplitudes and/or
low frequencies, as it can be inferred from Eq. (3).

Figure 7: Schematic comparison between the multiphoton ionization (a),
tunnel ionization (b), and barrier suppression (c) regimes.

In addition, the field amplitudes for tunnel ionization also have an
upper limit, known as barrier suppression [56]. If the electric field is
too intense, the top of the effective potential barrier lies below the
electron’s ground state energy, and the electronic wavepacket remains
unbound during a longer temporal interval. As a consequence, both
the harmonic generation’s efficiency and the maximum energy of the
photons emitted are reduced drastically [57]. The barrier suppression
limit can be obtained calculating the position where the effective
potential barrier is maximum:

∂Veff(r)
∂z

= 0→ zmax =

√
Kee

E0
, (4)

where Ke is the Coulomb constant. Then, we apply the condition
that the top of the barrier equals the electron’s bound state energy.
Thus, in order to avoid barrier suppression, the electric field am-
plitude must satisfy E0 < Kee

3I2P/4. In figure 7, we show a simple
scheme comparing the three described ionization regimes. For the
most frequent configuration used in this thesis—a driving field with
a central wavelength of 800nm and an argon gas target—, the driv-
ing field’s intensity is limited to a range from 1.3× 1014W/cm2 to
2.6× 1014W/cm2, approximately, to remain in the tunnel ionization
regime.

Let us now address the excursion of the electron after ionization.
Despite the quantum nature of the electronic wavepacket, the Ehrenfest
theorem ensures the description of the mean free electron excursion in
terms of classical trajectories [2, 58]. For this we assume the electron
initially at z = 0 with zero velocity, as the maximum tunnel ionization
probability corresponds to the electron released with zero kinetic
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energy. Also, we will follow the dipole’s approximation, neglecting the
effect of the magnetic field and we will consider the external electric
field as monochromatic and linearly polarized in the z direction:
E(t) = E0 sin (ω0t). Then, Newton’s equation for the free electron
released at t1 leads to the classical electronic dynamics:

z̈(t) =
−eE0
me

sin(ω0t), (5)

ż(t) =
eE0
ω0me

[cos(ω0t) − cos(ω0t1)], (6)

z(t) =
eE0

ω20me
[sin(ω0t) − sin(ω0t1) −ω0(t− t1) cos(ω0t1)]. (7)

Eqs. (6) and (7) show that the electron’s trajectory is composed of a
linear displacement together with a quiver motion at the frequency
of the external field. Note that the trajectory followed by the electron

Figure 8: (a) Electronic trajectories calculated from the classical equations
of motion. The grey-dashed line represents the electric field (in
arbitrary units) and the green line indicates the nucleus position.
Three pairs of short and long trajectories are represented for ener-
gies at recollision of 3.0UP (purple), 2.5UP (dark pink) and 1.5UP
(light pink), whereas the most energetic trajectory, corresponding to
3.17UP at recollision, is represented in blue. (b) Returning kinetic
energy of the electron at the instant of the first recollision. The
green points represent the recollision time, whereas the red points
indicate the ionization time. The blue arrow shows the excursion
time for the most energetic trajectory. Figure extracted from [59].

strongly depends on the instant of ionization, t1. Consequently, not
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all the electron’s paths return to the parent ion. Since the harmonics
are radiated during recollisions, only the returning paths are relevant
for HHG. We show in figure 8a a set of these returning paths. The
slopes of the trajectories at recollision indicate the velocity of the
electron and, therefore, its kinetic energy when returning to the ion,
K(t) = meż

2(t)/2. This recollision energy is depicted in figure 8b as a
function of the ionization and recollision times.

Note from figure 8b that the most energetic trajectory exhibits
a kinetic energy of 3.17UP at the recollision. For the other cases,
the same recollision energy—and, thus, the emission of a specific
harmonic—can be reached by two different trajectories within each
half cycle. Defining the excursion time as the elapsed time between
the ionization and the recombination, the paths whose excursion
time is less than that of the path of maximum recollision energy are
called short trajectories, while those whose excursion time is longer
are denoted as long trajectories. In both cases, the recollision energy is
smaller the more the excursion time differs from the path of maximum
energy.

2.1.3 The harmonic emission.

To illustrate the characteristics of the HHG spectra, we show in fig-
ure 9 the harmonic emission from a xenon gas jet, comparing the
experimental measurement from [42] and the theoretical results from
[60]. Interestingly, the classical description in the previous subsection
allows also to infer the cut-off frequency of the harmonic spectral
plateau. If the released electron exhibits a kinetic energy equal to K
at rescattering and after recombination the electron’s final energy is

Figure 9: Sample of an experimental HHG spectrum from xenon compared
with theoretical calculations. Figure extracted from [60].
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the negative value of the ionization potential, −IP, the energy of the
emitted radiation corresponds to the total energy difference: IP +K.
Thus, the cut-off frequency, ωc, associated to the maximum recollision
energy, can be estimated as [2, 58]:

 hωc = IP + 3.17UP. (8)

Since the ponderomotive energy depends on the amplitude and the
wavelength of the incident field as UP ∝ E20λ20, higher harmonic fre-
quencies can be generated extending the plateau’s cut-off either by
selecting targets with larger ionization potentials, or by employing
driving lasers with higher intensities and/or longer driving wave-
lengths [44, 61, 62]. Note, however, that increasing the ionization
potential decreases the probability of ionization, and therefore larger
intensities would also be needed. Additionally, the quantum nature of
the electron also plays an important role in the HHG efficiency, since,
after ionization, the electronic wavefunction is dispersed during the
electron’s excursion and its probability density decreases accordingly.
In other words, when driven by longer wavelengths, the electron
spends more time in the continuum and, as a consequence, the proba-
bility of recombination will decrease, and the harmonic emission will
be less efficient.

Another characteristic of the harmonic spectra, when radiated by
centro-symmetric systems driven by multicycle pulses, is that only odd
multiples of the driving frequency are present. This condition follows
from the fact that in these systems the dipole response must follow
the sign of the field and, therefore, it is an odd function with respect
to it (see Eq. (1)). This symmetry rule can be broken, for example,
either by considering non-symmetric targets, or by using electric fields
with several frequency components, non-periodic oscillations or time-
varying polarization [49, 63]. Also, for few-cycle laser pulses, the
envelope of the electric field widens the harmonic peaks. In fact,
if just one recollision event takes place along the pulse a so-called
supercontinuum is obtained, i.e., a broad, nearly continuous harmonic
spectrum. Such supercontinuum has applications as a light source for
spectroscopy, and it can sustain single attosecond pulses [64].

Let us now discuss the temporal characteristics of the harmonic
emission. Interestingly, the long and short electronic trajectories give
rise to a different temporal ordering of the emitted harmonics. The
underlying reason is the distribution of the recollision energies in time:
the recollision energy increases with time for the short trajectories and
decreases for the long ones, as it was shown in figure 8. Hence, the
emission corresponding to short trajectories has a positive chirp, since
the lower frequencies, corresponding to less energetic trajectories, are
emitted earlier. On the contrary, long trajectories lead to a harmonic
emission with negative chirp since higher frequencies are emitted
before. This chirp is known as the attochirp and introduces a group
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delay in the harmonic spectral phase [65]. The characterization of the
attochirp allows to identify whether a particular radiation is associated
mainly to short paths or to long paths.

Theoretically, the temporal characteristics of the harmonic emission
can be studied retrieving the spectrogram from the harmonic signal.
These spectrograms, that we denote as time-frequency analysis (TFA),
are based on the Gabor transform. We obtain them from the compu-
tation of the Fourier Transform of selected spectral windows of the
emitted spectrum. In figure 10, we present an example of the TFA of
a harmonic emission, showing the spectral content of the radiation
emitted at different instants of time. The difference between the con-
tribution of the two types of electronic trajectories can be appreciated,
where short trajectories exhibit a yield profile with a positive slope
while the long ones exhibit a yield profile with a negative slope.

Figure 10: TFA of the HHG spectrum emitted from an argon atom interacting
with a laser pulse of 800nm wavelength, 1.53× 1014W/cm2 peak
intensity, sin2 envelope and duration of 8 cycles in total. The
emission corresponding to short and long paths is identified by the
positive and negative slopes of the yield distribution, respectively.
The HHG signal has been obtained from our numerical simulations
based on the TDSE using a 3.5ω0 spectral window.

2.2 computation of high-order harmonic generation

In this section, we explain in a nutshell the theoretical methods used
in this thesis to reproduce and understand the characteristics of HHG.
We will first present the strategy for the exact computation of HHG

from the TDSE and, afterwards, we will use SFA-based models, that
provide also a physical interpretation of the process.
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2.2.1 The time-dependent Schrödinger equation

The interaction of quantum systems with classical laser fields is de-
scribed by the TDSE, in Dirac’s notation, as:

i h
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 , (9)

where H(t) is the Hamiltonian of the interacting system and ψ(t) is
the electronic wavefunction. HHG in atoms and molecules can be well
described in the so-called single active electron approximation (SAE),
where |ψ(t)〉 is a single-electron ket. Additionally, we also consider the
dipole approximation, where the electric field is assumed independent
on the spatial coordinates. This approximation becomes reasonable
when the laser wavelength (∼ µm) is much larger than the dimensions
of the electronic wavefunction (∼ nm). Under these circumstances, the
Hamiltonian exhibits the following form:

H(t) =
p2

2me
+ VC(r) + VF(t), (10)

where VF(t) is the field’s interaction potential and VC(r) is the Coulom-
bic potential.

Let us now select the gauge for the Hamiltonian. In the length gauge,
the interaction potential is described as VF(t) = er E(t) and p is the
kinetic momentum operator. In the velocity gauge, the expression of the
interaction potential is introduced by the relation of the kinetic mo-
mentum, p(t), with the canonical momentum, P: p(t) = P + (e/c)A(t),
where c is the speed of light in vacuum, and A(t) is the vector poten-
tial associated to the external electric field: E(t) = −(1/c)(∂/∂t)A(t).
The Hamiltonian, then, is written as:

H(t) =
[P + (e/c)A(t)]2

2me
+ VC(r)

=
P2

2me
+ VC(r) +

e

mec
A(t) · P +

e2

2mec2
A2(t). (11)

Thus, in the velocity gauge the interaction potential is written as
VF(t) = e

mec
A(t) · P + e2

2mec2
A2(t). Note that the exact TDSE results

are gauge invariant, so depending on the purpose of the calculations
it is customary to select the most suitable gauge. For instance, the
physical interpretation is generally more straightforward using the
length gauge, but the velocity gauge is the best choice for numerical
integrations involving ionized electrons. In this thesis, we employ
the velocity gauge, as it will allow for simpler and faster calculations
under the SFA.

The temporal evolution of the electronic wavepacket is computed by
solving numerically Eq. (9) for the Hamiltonian described in Eq. (11).
For this we use the Crank-Nicolson method [66], a well-known compu-
tational finite difference method used for the numerical resolution of
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partial differential equations. The Crank-Nicolson scheme consists in
a combination of the forward Euler method at the instant t with the
backward Euler method at t+∆t. Applied to Eq. (9):

|ψ(t+∆t/2)〉 ≈
[
1−H(t)

i∆t
 h2

]
|ψ(t)〉 , (12)

|ψ(t+∆t/2)〉 ≈
[
1+H(t+∆t)

i∆t
 h2

]
|ψ(t+∆t)〉 . (13)

Thus, the expression for the numerical calculation of |ψ(t+∆t)〉 is
found by combining Eqs. (12) and (13):

[
1+H(t+∆t)

i∆t
 h2

]
|ψ(t+∆t)〉 =

[
1−H(t)

i∆t
 h2

]
|ψ(t)〉 . (14)

Once we have integrated the TDSE, we compute the spectrum of
the HHG emission. Since the nucleus position is fixed in the temporal
scales of the interaction, the emitted radiation corresponds effectively
to the electron’s dipolar acceleration. The classical non-relativistic
formula for the far-field radiation emitted by a moving charge is [67]:

E(r, t) =
1

c2
n× n× a(t ′)

Rd

∣∣∣∣∣
t ′=t−Rd/c

, (15)

where a(t ′) is the electron acceleration at a advanced time t ′, and n is
the unitary vector pointing from the electron to the detector, separated
by a distance Rd. The instantaneous power radiated by the electron is
calculated from Larmor’s formula:

P(t) =
2

3

e2

c3
|a(t)|2. (16)

Consequently, we can express the spectral power as a function of the
Fourier components of the acceleration:

P(ω) =
4

3

e2

c3
|a(ω)|2. (17)

Although Larmor’s formula is derived for a classical charge, the
acceleration can also be the result of a quantum-mechanical calculation.
In this case, the instantaneous mean value of the acceleration can be
written as the sum of the mean value and the quantum fluctuations:

a(t) = 〈â(t)〉+∆a(t). (18)

However, by considering a set of identical emitting sources, aj(t) =
〈â(t)〉+∆aj(t), the power radiated is

P(t) ∝
∣∣∣∣∣
N∑
j=1

〈â(t)〉+∆aj(t)

∣∣∣∣∣

2

=

N∑
i,j=1

〈â(t)〉2 + 2N
N∑
j=1

〈â(t)〉∆aj(t) +
N∑
i,j=1

∆ai(t)∆aj(t)

= N2| 〈â(t)〉 |2 +
N∑
j=1

[∆ai(t)]2, (19)
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where N is the number of emitters,
∑N
j=1 〈â(t)〉∆aj(t) = 0 and∑N

i,j=1∆ai(t)∆aj(t) =
∑N
j=1[∆ai(t)]2, being

∑N
i 6=j∆aj(t)∆ai(t) = 0.

It is important to note that
∑N
j=1[∆ai(t)]2 is an incoherent term (since

it depends on the quantum fluctuations), while N2| 〈â(t)〉 |2 is the
coherent, and therefore the relevant, term (the quadratic dependence
on N is a signature of the coherency of the emission).

The acceleration mean’s value is calculated by applying the Ehren-
fest theorem to the mean value of the kinetic momentum p:

d

dt
〈p̂〉 =

1

i h
〈[p̂,H]〉+ 〈∂p̂

∂t
〉

=
1

i h
〈[P̂,H]〉+ e

c
〈∂Â(t)

∂t
〉

= − 〈∇VC〉− eE(t), (20)

where we have used the commutation property [P̂,VC] = −i h∇VC.
Thus, we obtain:

〈a(t)〉 = 1

me
〈ψ(t)| (−∇VC) |ψ(t)〉−

e

me
E(t). (21)

Performing the Fourier transform of the mean acceleration, Eq. (21),
we obtain the dipole acceleration spectrum, which is proportional to
the spectral distribution of the harmonic field, as shown in Eq. (17). In
figure 11, we show an example of the HHG spectrum emitted from an
argon atom calculated using the exact integration of the TDSE.

Figure 11: HHG spectrum emitted from an argon atom interacting with a laser
pulse of 800nm wavelength, 1.53× 1014W/cm2 peak intensity
and sin2 envelope with a duration of 8 cycles in total, obtained
from the numerical integration of the TDSE. The TFA of this signal
was shown in figure 10.

2.2.2 The strong field approximation

The exact solution of the TDSE is very demanding computationally for
complex systems. Solving the 3-dimensional TDSE for a single atom or
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molecule is only viable for systems with one or two electrons with the
current computational means. In addition, in order to take into account
the macroscopic effects—which are indispensable, for example, when
working with beams with OAM—one must compute the emission of
a large number of atoms. Therefore, the development of alternative
models is crucial. Among them, the SFA [55, 68, 69] has been an
extensively used approximation to investigate multi-photon ionization
[57] and HHG [70, 71]. First, it reduces greatly the computational time,
allowing to realize macroscopic calculations. Second, it facilitates the
search for links between the harmonic spectral signatures and the
structural properties of the radiating matter system, unveiling details
that would be hidden in the exact TDSE calculations.

The SFA consists on neglecting the Coulomb potential in the elec-
tron’s evolution after ionization. It has demonstrated to reproduce
the main characteristics of the harmonic spectra in atoms [62, 72] and
molecules [26, 73–77], and it has provided insight on electron and
nuclear dynamics [25, 27, 78–80]. In this thesis, we have calculated
most of our theoretical results using a non-semiclassical SFA model
developed in our group [62], that has been previously validated by
comparison against the TDSE results, and experiments.

Let us develop the mathematics for the computation of the HHG

emission under the SFA. First, in order to compute the temporal evo-
lution of the electronic wavefunction, ψ(r, t), from its initial state,
ψ(ri, ti), we define the Green’s function G(r, t; ri, ti) as

ψ(r, t) = i
∫
G(r, t; ri, ti)ψ(ri, ti)dri, (22)

or, in Dirac’s notation,

|ψ(t)〉 = iG(t, ti) |ψ(ti)〉 . (23)

Then, it is convenient to follow the Lippmann-Schwinger procedure,
where the Hamiltonian is separated into two components. In our
case, the first component, whose eigenstates and eigenvalues must be
known, is the atomic or molecular potential, HA = (1/2m)p2 + VC(r).
The second component encompasses the remaining factors of the total
Hamiltonian, Eq. (11), i.e. the interaction with the external electric
field, VF(t). If we denote GA as the Green’s function associated to HA,
the evolution of the total Green’s function can be formally written as

G(t, t0) = GA(t, t0) +
1
 h

∫t
t0

G(t, t1)VF(t1)GA(t1, t0)dt1, (24)

where, for convenience, we have omitted the spatial coordinates. The
SFA is now applied by approximating the complete electron evolution,
G(t, t1), by that of the electron interacting only with the field, GF(t, t1),
associated to the Hamiltonian HF = (1/2m)P2 + VF(t):

G(t, t0) ≈ GA(t, t0) +
1
 h

∫t
t0

GF(t, t1)VF(t1)GA(t1, t0)dt1. (25)
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Physically, this equation can be interpreted as the combination of all
possible stories followed by the electron. The first term corresponds
to the evolution of the atomic electron without the influence of the
external field. The second term corresponds to the summation over the
stories of the atomic electron being released at time t1 and evolving
freely under the interaction with the field afterwards.

Now, the approximated Green’s function, Eq. (25), can be employed
to calculate the temporal evolution of the electronic wavefunction,
|ψ(t)〉. Considering that the initial state is the atomic eigenstate, |φ0〉:

|ψ(t)〉 = iGA(t, t0) |φ0〉+
i
 h

∫t
t0

GF(t, t1)VF(t1)GA(t1, t0) |φ0〉dt1

= |φ0(t)〉+ |δψ(t)〉 , (26)

where |φ0(t)〉 = iGA(t, t0) |φ0〉 is the wavefunction evolving solely
under the influence of the Coulombic potential, while |δψ(t)〉 is the
released wavefunction, which results from the interaction with the
external electric field. The evolution of an atomic electronic state is
expressed as

|φ0(t)〉 = iGA(t, t0) |φ0〉 = e−iε0(t−t0)/ h |φ0〉 , (27)

where ε0 denotes its energy. On the other hand, to follow the proce-
dure, we need the eigenstates of the free electron under the influence
of an electromagnetic field. These are the so-called Volkov waves [81],
|ψP(t)〉 = ei

1
 hS(P,t,t1) |P〉, where |P〉 is an eigenstate of the canonical

momentum operator, and S(P, t, t1) is frequently referred as the action
of the free electron, calculated as

S(P, t, t1) = −
1

2me

∫t
t1

p2(τ)dτ, (28)

p(τ) being the kinetic momentum. Therefore, the Green’s function
corresponding to HF can be written in terms of the Volkov states as

GF(t, t1) = −i

∫
ei
1
 hS(P,t,t1) |P〉 〈P|dP. (29)

Combining Eqs. (26) to (29) we obtain

|δψ(t)〉 =
∫
ψ(P, t) |P〉dP, (30)

where

ψ(P, t) = −
i
 h

∫t
t0

ei
1
 hS(P,t,t1)e−i

ε0
 h (t1−t0)

× 〈P|VF(t1) |φ0〉dt1. (31)

Finally, a set of uncoupled differential equations, one for each mo-
mentum P, is obtained by deriving in time Eq. (31):

d

dt
ψ(P, t) = −

i

2m h
p2(t)ψ(P, t) −

i
 h
e−i

ε0
 h (t−t0) 〈P|VF(t1) |φ0〉 . (32)
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Each of these equations can be integrated numerically using a standard
Runge-Kutta algorithm.

Let us now compute the acceleration of the electronic wavepacket.
By resorting to the decomposition in Eq. (26), the acceleration can be
expressed as

〈a(t)〉 = 〈φ0(t)| a |φ0(t)〉+ 〈δψ(t)| a |δψ(t)〉+ 2<{〈φ0(t)| a |δψ(t)〉}, (33)

where <{x} denotes the real part of x. The first term in the right part
of Eq. (33) is equal to − e

me
E(t), as |φ0〉 is an eigenstate with definite

parity. On the other hand, the second term is the acceleration of the
free electron, which is basically at the same frequency as the driving
field. Therefore, the relevant contribution is the last term since it
represents the acceleration of the dipole between the ionized electron
and the ground state. Then, by applying the Ehrenfest theorem as
described by Eq. (20), the SFA acceleration is:

〈a(t)〉 = 2<
{
1

me
〈φ0(t)| (−∇VC) |δψ(t)〉

}
−

e

me
E(t). (34)

Combining Eqs. (31) and (34) we obtain the explicit expression of the
acceleration:

〈a(t)〉 =
∫
a(P, t)dP, (35)

where

a(P, t) = 2<

[
1

me
〈φ0(t)| (−∇VC) |P〉

×
{
−
i
 h

∫t
t0

ei
1
 hS(P,t,t1)ei

ε0
 h (t−t1) 〈P|VF(t1) |φ0〉dt1

}]
.

(36)

It is worth noticing that some further refinements can improve
the results from the SFA compared to those of the exact TDSE. First,
SFA models fail in reproducing the quantitative amount of released
electronic population. This can be corrected by modifying Eq. (36) as
follows:

〈P|VF(t1) |φ0〉 → 〈P|VF(t1)
CF
rn

|φ0〉 , (37)

where CF is denoted as the Coulomb factor [82] CF = [4|ε0|/(eE0)]
n,

and n = [meZ
2e4/(2 h2|ε0|)]

1/2 is the effective quantum number of
the atomic state (e.g. n = 1 for the fundamental state in the hydro-
gen atom), where Z is the ion charge. Other approaches include also
Coulombic effects upon recombination, that result in a better descrip-
tion of the lower-order harmonics in the plateau [83], which are not a
main concern in this thesis. Finally, the quantitative SFA results can be
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improved by considering the influence of the external field on the fun-
damental state, in the so-called strong field approximation plus (SFA+),
which we will explain in the following subsection.

An extended version of the SFA: the SFA+

The SFA+ correction consists in considering the instantaneous Stark
shift of the bound state during the recollision [62, 84]. In the standard
SFA we assumed that the part of the wavefunction that remained bound
to the atom evolved as a bounded state without the influence of the
external electric field. Under the SFA+ formalism, the recombination
bound state, 〈φ0(t)|, is the combination of a bare state (field free) and a
correction accounting for the field dressing, which is not present in the
standard SFA. As a consequence, the dipole acceleration is composed
of two contributions:

a(t) = ab(t) + ad(t) + c.c., (38)

where ab(t) corresponds to the acceleration of the bare state and ad(t)
is the dressing correction. Thus, Eq. (35) is modified as:

a(t) =

∫
[ab(P, t) + ad(P, t)]dP + c.c. (39)

The bare term is calculated from the SFA while the dressing correction
is calculated as:

ad(P, t) ≈ −
[
1+

P2/(2m h2) − ε0
∆s

]
ab(P, t), (40)

where ∆s is the Stark displacement of the fundamental atomic state
energy under the presence of the external electric field during the
recollision time, which can be approximated [62] as:

∆s ≈ Up +
2 h

ω0δts

√
Up

m

Pz
 h

sin(ω0δts)
Up

2ω0δts
sin(2ω0δts). (41)

The factor Pz in Eq. (41) is a particular momentum of the bound
state that can be estimated as:

Pz = 2
√
mUp

sin(ω0δts)
ω0δts

×
[
1−

√
1−

1

6

(
1+

ε0
Up

+
sin(2ω0δts)
2ω0δts

)(
sin(ω0δts)
ω0δts

)−2
]

,

(42)

where δts is the recollision time lapse. For the most energetic electrons,
it can be approximated to:

δts ≈
3π

2ω0

√
|ε0|

3.17Up
. (43)
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Finally, by combining Eqs. (38) and (40), the correction to the accelera-
tion is obtained:

a(t) = −

∫
dP
P2/(2m h2) − ε0

∆s
ab(P, t) + c.c. (44)

Figure 12: Comparison of the HHG spectra obtained using the SFA+ (green),
the standard SFA (ochre) and the TDSE (blue) models. The target
is an hydrogen atom and the laser field has a 800nm wavelength,
a 1.4× 1014W/cm2 peak intensity and a sin2 envelope with a
duration of 4-cycle pulse in total. The agreement with the TDSE

calculations is improved by the SFA+, especially for the higher-
order harmonics.

As a result of this correction, the quantitative comparison with the
TDSE results improves, especially for the higher-order harmonics, as
shown in figure 12. In addition, the scaling of the harmonic efficiency
with the driving wavelength is correctly described [62].

2.2.3 Semiclassical description: the saddle-point approximation

The so-called saddle-point approximation applied to Eq. (36) provides
for a semiclassical description of HHG in terms of electronic trajectories,
bringing insight on the connection between the quantum and the
classical descriptions of HHG explained in section 2.1. In principle, an
infinite number of quantum paths contribute to HHG. Each quantum
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path contributes with a phase factor equal to the real part of the action
acquired by the electron following the respective path:

S(P, t, t1) =
∫t
t1

{
[P + e

cA(t ′)]2

2me

}
dt ′. (45)

This action introduces very fast oscillations in the dipole phase. Then,
only those momenta for which the action is stationary contribute
effectively to the integrals for the total dipole acceleration in Eqs. (35)
and (36).

Let us now define the electron’s excursion time as τ = t− t1, and
the frequency of each Fourier component of the dipole moment as
ω. The stationary points are solutions of the saddle-point equations,
obtained by equating the derivatives of S(P, t, τ) − IPτ −  hωt with
respect to P, t and τ to zero [71]:

τP +
e

c

∫t
t−τ

A(t ′)dt ′ = 0 (46)

[P + e
cA(t)]2

2me
+ IP =  hω (47)

[P + e
cA(t− τ)]2

2me
+ IP = 0 (48)

We denote the solutions of the saddle-point equations as (τst, tst, Pst).
The physical interpretation of this set of equations is the following:
Eq. (46) is the time integration of the kinetic momentum equaled to
zero, so it describes the return of the electron to its initial position
after the excursion time τ; Eq. (47) reflects the energy conservation in
the photon emission (the energy of the emitted photon is the energy
difference between the electron’s initial and final state); and Eq. (48)
describes the energy conservation in the process of tunneling, at the
ionization time tst1 = tst − τst.

It is important to note that, since IP > 0, Eq. (48) cannot be fulfilled
within the real time domain. Thus, the solutions of the saddle-point
equations for the ionization time are complex, in contrast to the real
times considered in the classical trajectories in Eqs. (5), (6) and (7).
Therefore, the quantum nature of the tunneling is revealed in the
saddle-point solutions.

The imaginary part of the ionization time tst1 is interpreted as the
tunneling time of the under-barrier electron motion [85]—very much
in the same sense that we have discussed in the classical description of
tunneling in section 2.1.2—, whereas the real part of tst1 is interpreted
as the time when the electron exits the potential barrier. Interestingly,
the definition of a complex ionization time leads to a correction to the
classical cut-off law of Eq. (8) [70]:

 hωc = F(IP/UP)IP + 3.17UP (49)
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where F(IP/Up) is a function that takes values in the range between
1.24 and 1.32.

Many experimental efforts have been made in the recent years to
determine the value of the tunneling time. Among them, the attoclock
technique has allowed to experimentally measure the tunneling time
of the electron with attosecond resolution. Although initial measure-
ments reported vanishingly small tunneling times [86], finer exper-
iments suggested the existence of a tunneling delay [87]. However,
theoretical calculations have indicated that the tunneling time value
is compatible with zero in the hydrogen atom, and that Coulombic
effects can be responsible for the measured non-zero values [88].

2.2.4 The dipole phase

The phase of the high-order harmonics can be extracted from the solu-
tions of the saddle-point Eqs. (46), (47) and (48). For a monochromatic
driving field, it reads as [71]:

Φrq =
1
 h
Sq(Pst,r, tst,r, τst,r) −

1
 h
τst,rIPτ

st,r − qω0t
st,r
q , (50)

where r denotes the type of trajectory, short or long and q is the
harmonic order. The first term of Eq. (50) corresponds to the phase
acquired by the electronic wavepacket during its excursion, also known
as intrinsic phase [89]. Thus, it is the part of the harmonic phase that
accounts for the non-perturbative response. Let us denote the non-
perturbative dipole phase as ξrq:

ξrq =
1
 h
Sq(Pst,r, tst,r, τst,r). (51)

The second and third terms of Eq. (50) can be interpreted as time
delays resulting from the mapping of the phase of the fundamental
beam into the harmonics.

Interestingly, figure 13 shows that the dipole phase of the harmonics
in the spectral plateau, varies approximately linearly with the driving
beam intensity, a tendency that has been corroborated experimen-
tally [90]. Importantly, this dependency of the dipole phase on the
intensity is found in the non-perturbative term. Indeed, considering
a monochromatic vector potential polarized along the z coordinate,
A(t) = −(E0ω0/c) cos (ω0t)ez, ξrq can be approximated as [71]:

ξrq ≈ −
1
 h

∫t
t1

[ p2z
2me

+UP − 2pz

√
UP
me

cos(ω0t ′)

+ UP cos(2ω0t ′)
]
dt ′ ≈ −

1
 h
UPτ

st,r
q = αrqI. (52)

Note that we have considered the following assumptions: (i) the ap-
proximated excursion time for short trajectories is T/2 while for the
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Figure 13: Variation of the dipole phase with the laser intensity. The dipole
phase is calculated from the saddle-point equations for different
driving field intensities for short (solid blue) and long (dashed
orange) trajectories. In both cases, the dipole phase variation with
intensity is approximately linear.

long ones it is T , and (ii) the tunnel ionization takes place at the field
maximum, therefore, pstz ≈ 0. Note that, in the final expression, I de-
notes the intensity of the laser field and αrq is a parameter dependent
on the harmonic order, the laser field properties and the trajectory
type. We will use this approximated description for the construction
of our macroscopic model, the TSM (see subsection 2.3.3).

It is important to note that the parameter αrq can be extracted from
the saddle-point equations but, alternatively, it can be calculated from
the classical equations of motion: the dipole phase is obtained by
integrating the curve of the emitted frequency along the return time,
and then, αrq is calculated as the derivative of the dipole phase along
the local intensity.

On the other hand, another method, developed by the Group of
Prof. A. L’Huillier at the Attogroup at Lund University, provides a
general analytical expression to calculate the dipole phase [48]. This
method consists in approximating the classical curves as piecewise
straight lines, as depicted in figure 14.

Then, the dipole phase is obtained by integrating these lines and, as
a result, it has a parabolic shape:

Φrq(ρ,φ, zt) = Φr(IP) + tpr(ωq − IP) +
2γr

I(ρ,φ, zt)
(ωq − IP)

2

2
, (53)
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Figure 14: Harmonic frequency as a function of the recombination time for
two different driving field intensities, calculated from the classical
short (blue) and long (red) trajectories. The indicated return times
are the following: tts,t` are the return times for the short and
long electron trajectories leading to the threshold frequency Ωp
(corresponding to IP); tc is the return time for the trajectory
leading to the cut-off frequency Ωc; tpr and tcr (r = s, `) are
return times obtained by approximatingΩ(t) as piecewise straight
lines. Figure extracted from [91].

where Φr(IP) is a constant, tpr is the recombination time of the tra-
jectory with an energy equal to IP and γr is a parameter, calculated
as γr = (tcr − tpr)πc

2me/(3.17αFSλ2), being αFS the fine structure
constant and tcr the recombination time of the trajectory with an
energy corresponding to the cut-off frequency. This method allows to
compute the dipole phase in a very straightforward manner.

Figure 15: Dipole phase of the short trajectories calculated from the αI para-
metrization (red), where α is obtained from the classical classical
equations of motion, and from Eq. (53) (yellow). The two models
present very similar values of the dipole phase for the two differ-
ent driving field peak intensities, except for an almost constant
offset.
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In figure 15, we show a comparison between two different dipole
phase calculations: from the whole classical equations of motion
parametrized as αI (red) and from Eq. (53) (yellow). In general, the α
and γ parametrizations present very similar values of the dipole phase
for the two driving field peak intensities, except for a small offset.

The role of the dipole phase

The dipole phase is a magnitude with a crucial role in multiple
aspects of HHG. It depends on the harmonic order, the local phase
and intensity of the driving field and the kind of trajectory—short or
long—followed by the electron. Therefore, it is strongly related to the
physics of the HHG process.

In addition, the dipole phase substantially influences the spectral
and spatial distribution of the harmonic phase in the target and,
as a consequence, it alters the pulse duration [65], spectrum [92],
or wavefront [91, 93] of the attosecond pulses. Important spectral
characteristics of the emitted radiation are described by the dipole
phase, as its chirp and spectral bandwidth.

It is important to note that, since the femtosecond pulses used
to drive HHG exhibit an intensity profile that varies along time, the
dependency of the non-perturbative dipole phase on the intensity
implies that the phase of the harmonics would be different at each
recombination events. This introduces a negative chirp in each emitted
harmonic, which has signatures in the total detected spectrum: the
individual harmonics have a broader spectral content, where their
higher frequencies are emitted at the beginning of the pulse, while
their lower frequencies are emitted at the end [94]. This effect can be
explained from the concept of instantaneous frequency: the derivative
of the phase with respect to time. We denote as ϕ ′q(t) the phase terms
depending on time. The dipole phase introduces a time-dependent
phase, αrqI(t), so the instantaneous frequency, ωinst, is shifted from
the central harmonic frequency, ωq = qω0, by that term:

ϕ ′q(t) = ωqt+α
r
qI(t)→ ωinst =

∂ϕ ′q(t)

∂t
= ωq +α

r
q

∂I(t)

∂t
. (54)

The variation in time of this frequency shift (∂
2ϕ ′q(t)

∂t2
= αq

∂2I(t)
∂t2

< 0)
is the so-called femtochirp.

Furthermore, since the dipole phase corresponding to each kind
of trajectory is different, the HHG spectrum can present signatures
of the interference of the emission from the two different trajectories
[95]. Thus, the HHG spectrum is modulated not only by the number
of emissions but also by the interference between different quantum
paths.

Finally, the dipole phase also strongly influences the divergence and
focusing properties of the emission: the harmonic field corresponding
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to the short trajectories is approximately collimated, while that from
the long trajectories is very divergent [96].

It is worth noticing that the experimental characterization of the
dipole phase is very challenging. Techniques such as the Reconstruc-
tion of Attosecond Bursts by Interference of Two-Photon Transition,
also known as RABBITT, allow to extract the relative phase between
different harmonics [47], but the measurement of the absolute phase
remains complicated. The most commonly used strategies involve
spectroscopic methods—based on the spectral modulation of HHG as
a function of the driving laser intensity, resulting from the interfer-
ence between short and long trajectories [95]—, and interferometric
techniques—based on the use of two separated HHG sources interfer-
ing with each other [97].

2.3 macroscopic calculations

Although the fundamental physics in HHG belongs to the microscopic
level, this description alone is not sufficient to reproduce all the char-
acteristics of the harmonic radiation from the macroscopic targets, i.e.,
as it is detected in an experiment. For this, the contributions of all the
single emitters in the gas target must be added up coherently.

2.3.1 Phase-matching effects

For the nearly monochromatic field, of constant intensity profile, the
phase of a specific harmonic at generation can be decomposed into
three terms, see Eq. (50). Nonetheless, for the macroscopic perspective
it is convenient to (i) neglect the global phase term 1

 hIPτ
st,r
q (since it

does not depend on the local phase of the driving field) and (ii) rewrite
the term qω0t

st,r
q according to the perturbation theory: the total phase

of the driving beam, Φ(ρ,φ, z), is translated into the harmonics as
qΦ(ρ,φ, z). Hence, the phase of the harmonics can be generalized as:

ϕrq(ρ,φ, z) = qΦ(ρ,φ, z) +αrqI(ρ,φ, z). (55)

Consequently, in macroscopic targets each elementary radiator emits
harmonics according to the local configuration of the driving field.
Therefore, the total emission will be the interfering superposition
of the contributions of the elementary radiators [98, 99]. Thus, the
optimal signal is obtained when the phases of these radiators are
matched for constructive interference.

To understand better this phenomenon, let us consider the on-axis
radiation from a one-dimensional target. The phase of the q-th order
harmonic emitted at z = z0 is denoted as ϕrq(z0), and it propagates
to a point z as ϕrq(z0) + kq(z− z0). Since the phase of the harmonic
generated at a point z is ϕrq(z), the phase difference between the
propagating field and the generated one is ∆ϕ = ϕrq(z) −ϕ

r
q(z0) −
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kq(z− z0). Then, according to Eq. (55), the phase-mismatch number
corresponds to:

∆krq =
d∆ϕrq

dz
=
dϕrq(z)

dz
− kq = qk1 +α

r
q

dI(z)

dz
− kq, (56)

where k1 = dΦ
dz is the wavenumber of the driving field. The phase-

mismatch number allows for the definition of the minimum distance
between two atoms whose emitted radiation interferes destructively, i.e.
the longitudinal coherence length, Lrcoh = π/∆krq, as shown in figure
16. The optimal phase-matching condition is fulfilled if ∆krq ≈ 0, and
thus, Lrcoh ≈∞.

Figure 16: Scheme of the one-dimensional phase-matching of the harmonic
radiation generated at different atomic positions. The coherence
length corresponds to the separation of the two atoms whose
emitted radiation interferes destructively. Modified version of a
figure extracted from [59].

Typically, the phase-mismatch number is expressed in terms of four
contributions:

∆kq = ∆kneutralq +∆kfreeq +∆kgeomq +∆kdipq , (57)

where the different terms refer to the phase mismatch due to the
neutral atom dispersion (∆kneutralq ), the dispersion due to the free
electrons (∆kfreeq ), the geometry of the fundamental field (∆kgeomq )
and the non-perturbative term of the dipole phase (∆kdip,r

q ), which de-
pends on the quantum path r. Therefore, the optimal phase-matching
condition can be pursued in different manners, depending on factors
such as the gas geometry and pressure, or the laser focusing and
intensity.

The effect of the neutral atom and free electron dispersion is more
relevant for thicker gases at higher pressures. The neutral atom dis-
persion is induced by the bound-bound transitions in the gas atoms,
while the free electron’s mismatch is introduced by the inhomoge-
neous ionization caused by the driving field. Both effects produce a
change on the gas refractive index, which affects the propagation of
the pulse [59].
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The spatial characteristics of the driving mode and harmonic beams,
on the other hand, are responsible for the term ∆k

geom
q . Typically,

laser beams exhibit near Gaussian spatial profiles (see figure 17), that
are described by:

E(ρ, z;k0) = E0
w0
w(z)

exp
(
−

ρ2

w2(z)

)

× exp
[
ik0z+ i

k0ρ
2

2R(z)
− iΦG(z)

]
, (58)

where k0 = 2π/λ0, w(z) = w0
√
1+ (z/zR)2 with w0 being the

waist of the beam and zR = k0w
2
0/2 being the Rayleigh range,

R(z) = z
[
1+ (zR/z)

2
]

is the phase-front curvature radius and
ΦG(z) = arctan(z/zR) is the Gouy phase. The Gouy phase strongly
depends on z and, thus, it constitutes a relevant source of phase-
mismatch.

Figure 17: Scheme of the Gaussian beam width, w(z), as a function of z
where w0 is the beam waist, b is the depth of focus, zR is the
Rayleigh range and Θ is the total angular spread. Figure by DrBob
- Gaussianbeam.png, CC BY-SA 3.0.

In addition, the dependency of the non-perturbative dipole phase
on the driving field’s intensity, which changes along z, introduces
an additional mismatch effect, ∆kdip,r

q = αrq
dI(z)
dz , which strongly

depends on the type of trajectory.
Another important macroscopic effect connected with the non-

perturbative dipole phase is the variation of the harmonic phase
with the intensity profile along the transverse plane—also known as
transverse phase-matching [100]. For thin gas jets and loose focusing
geometries, the harmonic phase varies mainly due to the curvature of
the driving beam’s wavefront and the non-perturbative dipole phase
variation associated with the intensity profile, es described by Eq. (55).
The combination of these two effects determines the total variation of
the harmonic phase along the transverse plane. Thus, the harmonic
signal is strongly influenced by how the two effects match [59, 91].
For example, if the gas jet is placed before the laser focus, they can
basically compensate each other, which optimizes the harmonic signal

https://commons.wikimedia.org/w/index.php?curid=6002103
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[101]. This effect is depicted in figure 18, where we show the two
phase contributions at different positions along the propagation axis
of the incident Gaussian beam. At a certain z position, they can essen-
tially compensate each other, which results in brighter, less divergent
harmonics. It is important to note that as a result of the trend of the
two phase contributions, different harmonics will focus at different
positions [91].

Figure 18: Representation of the two contributions to the harmonic wavefront,
the mapping of the driving field (black) and the non-perturbative
dipole phase (green), at different generation positions (z). The
vertical thin dashed lines indicate the position where the two
contributions compensate each other for the short trajectory (blue)
and the driving beam focus (black). Modified version of a figure
extracted from [91].

Finally, it is interesting to highlight the role of the dipole phase in
the propagation of the harmonics, which can create chromatic aberra-
tions [91], but also allows to optimize the HHG configuration to, for
example, increase the intensity of the harmonic beam by reducing its
divergence along propagation or to separate short and long trajectory
contributions [102, 103].

2.3.2 Computation of high-order harmonic generation from a macroscopic
target

Some of the calculations carried out in this thesis have been performed
employing the propagation model described in [104]. This macroscopic
model takes into account the phase-matching of the harmonics gen-
erated in the gas jet. Basically, first the emission of each elementary
radiator, atom or molecule, is computed using full quantum SFA+

calculations—i.e., without performing the saddle-point approxima-
tion. Then, the electromagnetic propagator is obtained by solving the
Maxwell equations for a point-like source in vacuum, assuming that
the high-order harmonics are weakly perturbed by the neutrals’ sus-
ceptibility (a reasonable assumption in partially ionized low-pressure
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gases). For the j-th charge placed at the point rj in the target, the
contribution to the harmonic field in the far field is [67]:

Eji(rd, t) =
qj

c2|rd − rj(0)|
sd × {sd × aj[t− |rd − rj(0)|/c]}, (59)

where aj is the charge’s acceleration and sd is the unitary vector
pointing to a virtual detector located at rd, as depicted in figure 19.

Figure 19: Scheme of the method to compute the propagation of the high-
order harmonics. The target is discretized into elementary radi-
ators, each placed at a coordinate rj. The radiation is detected
at a distance |rd| from the center of the target. At each far-field
detector the field contributions emitted by the different radiators
are added in a temporal array. Figure extracted from [59].

In addition, the absorption of the harmonics during their propa-
gation through the gas is included in the model through Beer’s law,
though this is only relevant for thick, high-density targets, which are
out of the scope of this thesis.

2.3.3 The thin slab model

Since the transverse phase-matching is the most important macro-
scopic effect for thin targets, we can picture the problem by consider-
ing and infinitely thin slab as the source of harmonic radiation [105–
107].

The TSM has two main ingredients:

1. The harmonic emission of the elementary radiators is calculated
using a simple expression reproducing the basic laws of HHG

obtained from the TDSE and SFA.

2. The elementary radiators are assumed to be placed in a plane
slab with zero thickness transverse to the propagation axis of the
driving field. The far-field radiation is calculated propagating the
harmonic field at the slab according to the Fraunhofer diffraction
integral. The geometry and the corresponding spatial coordinates
are represented in figure 20.
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Figure 20: Scheme of the TSM coordinates for the near-field plane (ρ,φ) and
the far-field plane (β,ϕ). The harmonics are generated in an in-
finitely thin gas jet placed at zt and, afterwards, they propagate
towards the far-field plane, placed at a distance z, where they are
detected.

Let us now address the first point by deriving a simplified computa-
tion of the harmonic field from an elementary radiator. We denote the
driving field at the slab as U(ρ,φ, zt) and its phase as Φ(ρ,φ, zt). The
amplitude and phase of the non-perturbative harmonics—those that
conform the plateau—are calculated from the amplitude and phase
of the driving field, following the general perturbative formulation,
but extended to the non-perturbative case. First, in the perturbative
case the amplitude of the q-th order harmonic is proportional to the
q-th power of the driver’s amplitude, |U(ρ,φ, zt)|q. In contrast, in
the non-perturbative case the amplitude scales with a lower power,
p < q, which is approximately constant along the plateau, therefore,
|U(ρ,φ, zt)|p [108]. Second, the non-perturbative dipole phase follows
the parametrization in Eq. (55). Therefore, the harmonic emission
placed at position (ρ,φ, zt) of the gas slab can be expressed as

Aq(ρ,φ) ∝ |U(ρ,φ, zt)|
peiqΦ(ρ,φ,zt)eiα

r
qI(ρ,φ,zt). (60)

Then, we compute the far-field emission from the thin layer using
the Fraunhofer diffraction integral of the harmonic emission at the gas
slab:

Uq(ϕ,β, z) = −iq
e
i 2πzλ0 e

iπz tan2 ϕ
λ0

zλ0

∫∞
0

∫2π
0

Aq(ρ,φ)

× e
−i 2πλ0

qρ(sinβ tanϕ sinφ+cosβ tanϕ cosφ)
ρdρdφ, (61)

where (ϕ,β, z) are the far-field coordinates, being β the divergence
angle, ϕ the azimuth, and z the position of the detector, that must
satisfy the Fresnel number’s condition NF =

qρ2

zλ0
� 1 (see figure 20).

It is worth noting that the non-perturbative nature of the HHG process
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substantially influences the characteristics of the harmonics through
both p and αrq.

The TSM has demonstrated to be a very useful tool to disentangle
and simplify complex processes in macroscopic HHG [16, 20, 105,
106]. Note that, although we have presented it in its scalar form
here, the TSM can be also expressed in a vector form, which has
allowed us to apply it to more complex polarization distributions
[20, 21]. The main advantages of the TSM are that (i) its numerical
implementation is very simple and the calculations are very fast and
not computationally demanding but, more importantly, (ii) it allows
us to modify and, therefore, to study the role of the different non-
perturbative parameters.

2.4 high-order harmonic spectroscopy of tunnel ion-
ization in molecules

In this section, we shall present our theoretical approach to high-
harmonic spectroscopy in small molecules. For that purpose, we will
study the details of the tunnel ionization process in molecules. In
particular, we will demonstrate that the electron localization in the
molecule, i.e. its distance to the tunnel barrier, is a relevant aspect
to take into account in the SFA to reproduce both the quantitative
and qualitative structure of the harmonic spectrum calculated from
the TDSE. For this, we introduce a reformulation of the molecular
tunnel ionization in the SFA description of HHG that accounts for the
inner spatial molecular structure. In the subsection 2.4.1, we present
our theoretical model for molecular HHG, the SDT-SFA. Then, in the
subsection 2.4.2, we show how the electron’s position in the molecule
affects the HHG spectrum and how this improves the agreement with
the TDSE simulations. Further information about this work is presented
in section 2.5, where we include our publication [15].

2.4.1 The site-dependent tunneling theory

The HHG spectrum encodes information of the molecular structure
[26], as well as its nuclear [25] and electronic dynamics [78]. This
information can be unraveled using high-harmonic spectroscopy and
time-resolved attosecond spectroscopy techniques. Interestingly, the
molecular orbital matrix elements are mapped into the HHG spectrum,
which allows for the reconstruction of the molecular geometry and
orbital structure. Therefore, the quality of the retrieval of the molecular
features relies crucially in the fairness of the theoretical description
used to model the HHG process.

The SFA has successfully demonstrated to reproduce the main charac-
teristics of the harmonic spectra in molecules [30, 73, 76]. Nevertheless,
its description of tunnel ionization, which constitutes a fundamental
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first step in the process of HHG, is based in a rather strong assump-
tion: the SFA neglects the actual shape of the potential barrier. As a
consequence, it describes the ionization from each molecular site on
an equal footing. However, the internal potential barriers are usually
lower, or even absent, for most of the realistic potential shapes. Thus,
part of the electron wavefunction is effectively separated from the
edge of the tunnel ionization barrier.

In this section, we show that the tunnel ionization is affected by the
extended nature of the molecular orbital, since the ionization prob-
ability depends on the electron’s occupation of a specific molecular
site. For this, we will consider as a target the hydrogen molecular
ion, H+

2 , driven by a linearly polarized laser field oriented parallel to
the molecular axis. The exact TDSE calculations are affordable for this
simple case and they will serve as a benchmark for our results.

Standard molecular SFA

Let us derive the molecular SFA, which we will denote as standard
strong field approximation (s-SFA) for distinction. The atomic SFA pre-
sented in section 2.2.2 is here extended to the H+

2 molecule by incor-
porating two aspects: (i) the molecular orbital, and (ii) the energy shift
of the maximum of the potential barrier.

The ground state of H+
2 is a symmetric orbital that can be described

in terms of atomic orbitals centered at the molecular ion sites, oriented
along the z coordinate. Thus, the time-dependent molecular orbital
can be expressed as:

φ0(r, t) = Ce−iε0(t−t0)/ h
[
χ0

(
r −

R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
, (62)

where ε0 is the ground state binding energy and χ0(r) is a localized
wavepacket, that we shall describe as a linear combination of Gaussian
orbitals [109]. R is the internuclear distance, and C is the normalization
factor. Applying the translation operator to the different molecular ion
sites [110], Eq. (62) can be rewritten as

|φ0(t)〉 = C
(
e−

i
 h p̂
′
z(t)

R
2 + e

i
 h p̂
′
z(t)

R
2

)
|χ0(t)〉, (63)

where p ′(t) can be interpreted as the kinetic momentum of the rec-
olliding electron, as seen from the bottom of the molecular potential
well [26]. Thus, it is calculated as p ′z(t) = sign {pz(t)}

√
p2z(t) + 2m|ε0|,

where pz(t) is the kinetic momentum of the recolliding electron right
outside the molecular well.

The extension of the molecular potential displaces the tunnel barrier
along the coordinate of the molecule axis, as depicted in figure 21. The
dipole interaction E · z is therefore greater and the maximum of the
height of the potential barrier decreases with respect to the atomic case.
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Figure 21: Scheme of the dipole energy shift of the potential barrier’s maxi-
mum due to extended nature of the molecule. An atomic potential
(blue) is displaced a distance R/2 from the origin (purple), while
interacting with an external field (red). As a consequence of the
displacement, the height of the barrier (green) seen by the elec-
tronic wavepacket (with ionization energy in black) is lowered in
an amount of E(t1)R/2.

The correction associated to the dipole energy shift of the barrier’s
maximum is incorporated into the transition matrix element as:

η(P, t1) =
[
WADK[ε(R/2, t1)]
WADK(ε0)

]1/2
〈P|CF
rn

|χ0〉. (64)

where ε(R/2, t1) = ε0 − e|E(t1)|R/2 is the ionization potential as seen
from the top of the barrier at the ionization time t1 and WADK is the
Ammosov-Delone-Krainov ionization rate [85]. This later quantity is
calculated as

wADK(ε) =

(
2e

n∗

)2n∗
1

2πn∗
(2`+ 1)(`+ |m|)!
2|m||m|!(`− |m|)!

|ε|

[
3E0

π(2|ε|)3/2

]1/2

×
[
2

E0
(2|ε|)3/2

]2n∗−|m|−1

e
−
(
2(2|ε|)3/2

3E0

)
, (65)

where e is the Euler number, m y ` are the quantum numbers of the
considered state (both null in this case), and

n∗(ε) =
Ze2

 h

√
me

2|ε|
, (66)

Z being the charge of the ionic core (Z = 2 for H+
2 ).
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These two features lead to the following expression for the molecular
dipole acceleration (i.e., the molecular version of Eqs. (35) and (36)):

〈a(t)〉 = 2<

[ ∫
P2/2me − ε0

∆s

1

me
〈χ0(t)| (−∇VC) |P〉 |Fs

[
p′z(t)

]
|2

×
{
−
i
 h

∫t
t0

ei
1
 hS(P,t,t1)e−i

ε0
 h (t1−t0)VF(P, t1)η(P, t1)dt1

}
dP

]
,

(67)

where (P2/2me − ε0)/∆s accounts for the SFA+ correction and we
denote

Fs[p ′(t)] = C
[
e
i
 hp
′
z(t)

R
2 + e−

i
 hp
′
z(t)

R
2

]
(68)

as the standard molecular form factor.

Site-dependent tunneling SFA

Eq. (67) indicates that the ionization probability from each localized
wavepacket, χ0(r − R/2ez) and χ0(r + R/2ez), is equal at every instant
of time. However, these wavefuncions are not separated by internal
potential barriers. Thus, each of them is located at a different distance
from the molecular potential barrier formed by the external field at
the left or right side of the molecule. Let us compute the difference in
ionzation probability caused by this distinct separation to the barrier—
i.e., the site-specific ionization probability.

In figure 22a, we show a wavepacket centered at zc, and placed at
the left of a potential barrier V(z) whose edges are denoted as zb (left)
and zf (right). Such wavepacket exhibits a tunnel transmission rate of

P(zc, zb) =
|χ0(zf)|

2

|χ0(zc)|2
=WWKB

|χ0(zb)|
2

|χ0(zc)|2
, (69)

where WWKB is the WKB rate of tunneling for a particle located at zb
[111],

WWKB = e
− 2

 h

∫zf
zb

√
2m[V(z ′)−ε0]dz

′
, (70)

ε0 being the energy of the wavepacket. Thus, Eq. (69) can be inter-
preted as the tunneling rate multiplied by the relative probability of
the particle being at the edge of the barrier to that of being at the
ion site. Importantly, therefore, the tunnel transmission rate of the
wavepacket decreases with the distance from its ion site to the edge of
the barrier, as the electron probability at the barrier’s edge decreases
accordingly.

Hence, we define a new quantity,

T(zc, zb) =
[
P(zc, zb)
P(zb, zb)

]1/2
=

|χ0(zb)|

|χ0(zc)|
, (71)
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Figure 22: Scheme of the tunneling of the wavepacket Ψ(z, t) (red), with
energy ε0 (dashed blue), through a potential barrier, V(z) (solid
blue), whose edges are placed at zb and zf. The tunneling of a
distant wavepacket centered at zc (a) exhibits a lower rate than
that centered at the edge of the barrier (b).

that describes the ratio between the tunneling rates for an electron
placed at the ion site zc (figure 22a) and that for an electron located at
the edge of the barrier (figure 22b).

Let us incorporate this site-specificity information into the standard
molecular SFA theory for the H+

2 molecule. In this case, the barrier’s
edge location, zb, corresponds approximately to −R/2 for a positive
field and to R/2 for a negative field. The molecular form factor de-
scribed in Eq. (68) is now redefined as

F±SDT
[
p′z(t)

]
= T

(
−
R

2
,±R
2

)
e
i
 hp
′
z(t)

R
2 + T

(
R

2
,±R
2

)
e−

i
 hp
′
z(t)

R
2 . (72)

The positive index corresponds to ionization through a potential bar-
rier located at the right side of the molecule, while the negative index
corresponds to a barrier at the left.

Thus, the dipole acceleration described in Eq. (67) is modified by
introducing the site-specific form factor:

〈a(t)〉 = 2<

[ ∫
P2/2me − ε0

∆s

1

me
〈χ0(t)| (−∇VC) |P〉 |FSDT

[
p′z(t)

]
|2

×
{
−
i
 h

∫t
t0

ei
1
 hS(P,t,t1)e−i

ε0
 h (t1−t0)VF(P, t1)η(P, t1)dt1

}
dP

]
,

(73)

where we have employed the following property: |FSDT |2 = |F+
SDT |

2 =

|F−
SDT |

2. Thus, Eq. (73) expresses the computation of the dipole accel-
eration in our SDT-SFA model.
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2.4.2 Spectral analysis of tunnel ionization in extended targets

Since tunnel ionization is the first step of HHG, it may be expected that
the signatures of the site-dependent tunneling should be found in the
HHG spectrum. Previous works have reported the so-called structural
minimum in the HHG spectrum, whose position is a signature of
the internuclear distance or the alignment of the molecule [26]. This
minimum can be described as the result of the destructive interference
between two radiating point sources located at the ion positions in the
molecule. The destructive interference condition is calculated as:

R cos θ = (2m+ 1)λ/2, (74)

where m is an integer, θ is the angle between the molecular axis and
the laser polarization direction and λ is the wavelength of the emitted
radiation. For our configuration (R = 2 a.u., θ = 0), λ corresponds to
the 21-st order harmonic. Note that this condition does not depend
on the laser parameters, but exclusively on the molecule structural
properties.

Figure 23: Comparison of the HHG spectra from H+
2 calculated using the

exact TDSE (dashed blue), the standard SFA (dotted red) and the
SDT-SFA (solid green). The molecule is aligned along the polar-
ization direction of the laser, which has a 800nm wavelength,
4-cycles duration in total, sin2 envelope and 3.5× 1014W/cm2
peak intensity. The inset shows a scheme of the molecular profile
in the site-dependent tunnel-ionization picture: the atomic orbital
placed next to the barrier exhibits a higher tunneling rate.

Interestingly, the exact TDSE calculations show that depth of this
minimum is strongly attenuated when the molecule is at the equi-
librium internuclear distance and it is placed parallel to the laser
polarization [26, 112]. In contrast, the standard SFA calculations (see
Eq. (67)) show a rather profound minimum [113]. However, our site-
dependent correction significantly improves the comparison between
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the TDSE and SFA results. In figure 23, we show that the SDT-SFA (green
solid line) achieves a level of agreement with the TDSE (blue dashed
line) simulations comparable to the atomic case. The laser parameters
used in the simulations are I0 = 3.5× 1014W/cm2 peak intensity,
λ0 = 800nm wavelength and 4-cycles duration in total.

In order to discard rescattering effects as the origin of the discrep-
ancy between the TDSE and the s-SFA, we also calculated the photoelec-
tron spectra emitted from the H+

2 molecule under the same conditions
as in the HHG simulations. In figure 24, we show that the photoelectron
spectrum from the s-SFA also exhibits deep structural minima, arising
from the interference of the emission from the electronic wavepack-
ets initially placed at each ion site. The demise of these minima in
the TDSE photoelectron emission supports the tunnel ionization as a
relevant effect.

Figure 24: Photoelectron spectra from the H+
2 molecule calculated using

the TDSE (a), the standard SFA (b) and the SDT-SFA (c) models for
the same laser parameters and molecular configuration as those
of figure 23. The grey arrows in panel (b) indicate the presence
of structural minima, which are not evidenced in the TDSE and
SDT-SFA spectra. The sign in the kinetic energy axis indicates the
direction—left (minus) or right (plus)—of the ionized wavepacket.

Interestingly, our macroscopic calculations show that the site-
specificity tunneling signatures are not obscured by propagation
effects [15]. Thus, we expect the implications of the site-specificity
to be found in experimental HHG in molecules. Further results and
information about the theoretical methods can be found in our
publication [15], presented in section 2.5.1.

Let us finally remark that, in the following chapters of this thesis,
we have considered atomic targets. The extension of these studies to
molecular targets can be of great interest because, for example, their
non-centro-symmetrical structure may affect the angular momentum
properties of the emitted harmonics [33, 114]. Therefore, we believe
that the extension of SFA models to molecular targets is of special
interest for HHG studies involving SAM or OAM.
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2.5 publication

To conclude this chapter, we include the full text of the article where
the site-specific molecular tunnel-ionization is developed under the
title "Site-specific tunnel-ionization in high harmonic generation in
molecules" [15], extending the information in section 2.4. According to
the requirements of the University of Salamanca, we also incorporate
an abstract in Spanish.
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2.5.1 Site-specific tunnel-ionization in high harmonic generation in
molecules

Resumen

Los pulsos láser ultracortos y coherentes nos permiten estudiar las
dinámicas nucleares [25] y electrónicas [78], así como las estructuras
moleculares [26], con la mejor resolución temporal y espacial hasta
el momento. Uno de los procesos más relevantes inducidos por los
pulsos láser ultracortos y coherentes es la generación de armónicos
de orden alto (HHG), puesto que su espectro codifica información
sobre la estructura y la dinámica del objeto en el que tiene lugar.
Esta información se puede decodificar utilizando técnicas como la
espectroscopia de armónicos altos, donde la calidad de la recuperación
de las características moleculares se basa habitualmente en la exactitud
de los modelos teóricos utilizados para describir el proceso de la HHG.

En este trabajo [15], exploramos una parte clave de la HHG: la ioni-
zación túnel. En particular, demostramos que el proceso de ionización
túnel en moléculas se ve fuertemente afectado por el lugar específico
que ocupa el paquete de ondas electrónico en la molécula antes de la
ionización, debido a que la naturaleza extendida del potencial molecu-
lar implica que parte del orbital molecular está separado del borde de
la barrera de ionización. Por lo tanto, encontramos que la descripción
estándar de la ionización túnel debe modificarse para los sistemas
moleculares.

Para recuperar la información sobre la ionización túnel contenida
en el espectro armónicos de orden alto, hemos implementado numéri-
camente un modelo basado en la aproximación de campo fuerte (SFA).
Nuestros resultados muestran que tanto los espectros de armónicos de
orden alto como los de fotoelectrones indican que la tasa de ionización
túnel es mayor para la parte del orbital molecular situada junto a la
barrera potencial. Para tener en cuenta este efecto, hemos desarrollado
una extensión de la SFA molecular estándar, la SFA con ionización
túnel dependiente del sitio (SDT-SFA). Concretamente, introducimos
un factor de forma molecular modificado en la SFA standard. Este
factor de forma mejora significativamente la concordancia entre los
modelos de SFA y los cálculos exactos obtenidos a partir de la ecuación
de Schrödinger dependiente del tiempo, y, además, se puede calcular
fácilmente, independientemente de la complejidad de la geometría
molecular.

Finalmente, es importante destacar que este efecto distorsiona el
mapeo de las características de los orbitales moleculares en el espectro
de armónicos, por lo que es necesario tener en cuenta el grado de de-
formación debido a la ionización túnel dependiente de la posición para
la correcta recuperación experimental de los orbitales moleculares.
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Abstract
We demonstrate that the standard picture of strong-field tunnel-ionization from molecules should
be reformulated. The extended nature of the molecular potential implies the separation of some of
the molecular sites from the edge of the ionization barrier. We show that the dependence of the
tunnel probability with the distance to the barrier is translated into the ionized wavepacket,
modifying substantially the high-order harmonic emission. The introduction of the dependence of
tunnel ionization with the molecular site significantly improves the theoretical description of
high-order harmonic generation in molecules, which is used as a cornerstone in high-harmonic
spectroscopy and attosecond imaging.

1. Introduction

High-order harmonic generation (HHG) is an extreme non-linear process induced by intense fields. In
atomic or molecular gases, it can be described as a three-step process [1, 2]: first, near the maxima of the
driving field’s amplitude, an electronic wavepacket is tunnel-ionized from the parent atom; in the second
step, the electronic wavepacket is accelerated and, after reversal of the sign of the electric field, it is
redirected to the parent ion; finally, upon recollision, the electron’s kinetic energy is emitted in the form of
high-frequency radiation. The harmonic spectra encode information of the target structure and dynamics,
that can be disentangled using high-harmonic spectroscopy (HHS) and time resolved attosecond
spectroscopy techniques [3]. These procedures have been successful in retrieving the information from the
HHG spectra about molecular structure [4–6], nuclear dynamics [7], molecular orbitals [8, 9], energy
dispersion in solids [10], dynamics in strongly correlated systems [11], tunneling times [12], and orbital
tomography [13–15].

The study of molecular systems interacting with strong laser fields has a main tool in computationally
solving the time-dependent Schrödinger equation (TDSE). The detailed physics, however, is frequently
hidden by the complexity of the processes involved. To this end, approximated models are needed to
describe the problem in terms of fundamental physical mechanisms. Among them, those based in the
strong-field approximation (SFA) [16–18] allow to establish a link between the harmonic spectral
signatures and the structural details of the radiating matter system. The SFA has successfully demonstrated
to reproduce the main characteristics of the harmonic spectra in atoms [19–21], and molecules [13,
22–26], and their electron and nuclear dynamics [7, 27–31].

A key ingredient in HHS is the mapping of the molecular orbital matrix elements into the harmonic
spectrum and phase, as predicted from the SFA. This relation allows for the reconstruction of the molecular
geometry, as well as the molecular orbital structure. The quality of the retrieval of the molecular features
relies, therefore, on the fairness of the SFA in describing the HHG process. The first step of HHG is the
tunnel ionization, which constitutes a fundamental process in strong-field interactions and has been
extensively studied in atoms [16, 32–34] and extended to molecules [35–39] in the SFA. Notably, the SFA

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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neglects the shape of the molecular potential barrier at ionization, thus, describing the ionization from each
molecular site on equal foot. However, for the actual potential shapes, the elimination of the ion potential
barriers inside the molecule leads to extended molecular orbitals, where part of the electron wavefunction is
effectively separated from the edge of the tunnel ionization barrier. Recently, Liu and Liu have suggested
treating the ionization from each atomic site differently, though by considering different effective barrier
widths [39]. Finally, Labeye et al have studied the implications of the internal molecular barrier in the
semiclassical description of HHG from molecules [40].

In this work, we demonstrate that the standard tunnel ionization picture has to be revised in the
molecular case. As we will show, the tunnel ionization probability is affected by the separation of part of the
electronic wavefunction from the potential barrier, introducing a molecular-site specificity in the electron
ionization. As tunnel ionization is a key ingredient in HHG, the signature of its site-specificity is evidenced
in the details of the high-order harmonic and photoelectron spectra. The total ionization rates, as given by
the molecular Ammosov–Delone–Krainov theory [35] and the weak-field asymptotic theory [37], are little
affected. As a practical consequence, the orbital information encoded in the harmonic spectrum is
substantially distorted from the prediction of the standard SFA models. We, however, show that the proper
description of electron tunneling from molecular orbitals can be incorporated into these existing models
with the introduction of a modified molecular form factor. The consequences of this study are two-fold: on
the one side, it modifies the interpretation of the harmonic signal in HHS, since the retrieved orbital is not
a raw image of the actual molecular wavefunction; on the other side, it demonstrates that the HHG
spectrum shows well-resolved signatures of the tunnel-ionization site-specificity. Finally, our
considerations lead to a derivation of a molecular SFA HHG model with quantitative
accuracy.

The article is organized as follows. First, we describe our theoretical approach to the site-depending
tunneling ionization and its incorporation in the strong field approximation formalism. Second, we present
the results for HHG and photoelectrum spectra obtained from our model compared to those from the exact
TDSE calculations, and finally we conclude.

2. Theoretical approach to site-dependent tunnel ionization in molecules

We consider as the subject of study the hydrogen molecular ion (H+
2 ) in a linearly polarized laser field, since

the exact TDSE calculations are affordable for this simple case [41]. The molecule is assumed to lie parallel
to the polarization direction, a feasible scenario after using laser alignment techniques [42]. We also neglect
nuclei dynamics, which is reasonable for time scales of few femtoseconds [43]. We consider an 800 nm
wavelength laser pulse described as E(t) = E0 sin2

(
πt/τ

)
sin (ω0t), ω0 being the laser carrier frequency,

τ = 10.67 fs, which leads to 3.88 fs full-width at half maximum (FWHM) in intensity, and a peak intensity
of 3.5 × 1014 W cm−2. The Hamiltonian governing the
interaction is

H (t, r) =
p2(t)

2m
+ VM(r), (1)

where m is the electron mass, and

VM (r) = − q2

√
ρ2 + (z + R/2)2

− q2

√
ρ2 + (z − R/2)2

(2)

is the Coulomb potential in cylindrical coordinates (q is the electron charge, and R is the internuclear
distance). p is the kinetic momentum operator, p = −i�∇ − (q/c)A(t)ez, A(t) being the vector potential of
the laser field, polarized in the z direction. As shown in appendix A, the ground-state of H+

2 is a symmetric
orbital that can be described in terms of atomic orbitals centered at the molecular ion sites, as

φ0(r) = C

[
χ0

(
r − R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
, (3)

where χ0(r) is a localized wavepacket, described as a linear combination of Gaussian orbitals [44, 45],
and C is the normalization factor. The harmonic spectrum is calculated from the Fourier transform of the
mean dipole acceleration along the z axis, az(t) = 〈âz〉 = 〈−(1/m)∂VM/∂z〉. The TDSE is integrated using
the Crank–Nicholson algorithm in the finite differences scheme.

2
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Figure 1. Scheme of the influence of the molecular profile in the site-dependent tunnel picture. The purple line shows the
effective molecular potential (Coulombic potential deformed by the external field). The localized-atomic orbitals composing the
groundstate and ionized wavefunctions are depicted in blue and orange. The total molecular orbital is indicated by the dashed
green line.

Molecular HHG can be described using an extension of the atomic SFA models. We use the SFA +
approach, which provides a quantitative accurate reproduction of the harmonic spectra in atoms [21]. The
extension to molecules leads to the following expression for the dipole acceleration (see appendix A):

az(t) = − i

�

∫

P
α+(P)〈χ0|âz|P〉|Fs[p′(t)]|2 ×

∫ t

t0

ei 1
� S(P,t,t1)e−i

ε0
� (t1−t)VF(P, t1) × η(P, t1)dt1dP, (4)

where ε0 is the bound state energy, η(P, t1) is the transition matrix element (see equation (A15) in

appendix A) and Fs[p′(t)] = C
[

e
i
� p′

z(t) R
2 + e− i

� p′
z(t) R

2

]
is the molecular form factor, arising from the

application of the translation operator to the different molecular ion sites [46]. P is the electron’s canonical
momentum, S(P, t, t1) is the ionized electron’s action, |P〉 are free-electron wavefunctions [47] and
VF(P, t) = −(q/mc)A(t) · P + (q2/2mc2)A2(t). We shall refer to equation (4) using the form factor Fs[p′(t)]
as the standard SFA (s-SFA). According to reference [4], p′ is interpreted as the kinetic momentum of the
recolliding electron, as seen from the bottom of the molecular potential well, i.e.
p′

z(t) = sign {pz(t)}
√

p2
z (t) + 2mIP, pz(t) being the kinetic momentum of the recolliding electron outside

the molecular well, and IP being the bound-state ionization energy. This description has been validated by
exact calculations using Coulomb–Volkov wavefunctions [48]. Finally, the term α+(P) = (P2/2m − ε0)/Δs

in equation (4) is a prefactor necessary to describe the harmonic yield with quantitative accuracy [21],
being Δs the ground-level Stark shift at the instant of recollision. As it is well-known, the form factor
Fs[p′(t)] in equation (4) is responsible for the interference pattern in the harmonic spectrum, dubbed as
structural minimum [4].

2.1. Introduction of the site-depending tunneling
As pointed out above, a main assumption in SFA is to neglect the form of the Coulomb potential upon
ionization and, therefore, it oversimplifies the nature of the tunnel barrier [33]. In figure 1 the molecular
potential is depicted showing that the inner potential barrier is nonexistent. As a consequence, one of the
wavepackets χ0 in equation (3) is effectively separated from the outer tunneling barrier, reducing its
ionization probability. According to the derivation in appendix B, the SFA description of molecular
ionization should be modified to include this site-dependent tunnel probability. To incorporate it, we
reformulate the decomposition of the molecular orbital, equation (3), as

φ0(r) = C

[
T

(
R

2
, ±R

2

)
χ0

(
r − R

2
ez

)
+ T

(
−R

2
, ±R

2

)
χ0

(
r +

R

2
ez

)]
, (5)

where T(zc, zb) is the ratio between the tunnel amplitude probability of the wavepacket placed at the zc

molecular site, P(zc, zb)1/2, to the amplitude probability near the zb edge of the potential barrier, P(zb, zb)1/2.
The positive (negative) sign of zb corresponds to ionization through a barrier located at the right (left) side
of the molecule. According to appendix B,

T(zc, zb) =

[
P(zc, zb)

P(zb, zb)

]1/2

=
|χ0(zb)|
|χ0(zc)|

. (6)

T(zc, zb) in equation (5) modulates the SFA ionization, so that the wavepackets that are located further away
from the barrier have less probability to be ionized, as depicted schematically in figure 1.

3
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Thus, due to this different probability of tunneling, the wavepackets ionized from each molecular site
have a different amplitude. The site-specific tunnel probability, T(zc, zb), can be included in equation (4)
redefining the s-SFA form factor, Fs, as a new site-dependent tunneling (SDT) version. This new form
factor not only accounts for the application of the translation operator but also for the consequences of
site-dependent tunneling in the ionized wavepacket:

F±
SDT

[
p′

z(t)
]

= C

[
T

(
−R

2
, ±R

2

)
e

i
� p′

z(t) R
2 + T

(
R

2
, ±R

2

)
e− i

� p′
z(t) R

2

]
. (7)

Note, however, that the modulus of the F±
SDT form factor is the same regardless the position ±R/2 of the

barrier. We can, therefore, drop the superindices (±) when substituting Fs by FSDT in equation (4). After
this substitution, we shall refer to equation (4) as the site-dependent tunneling SFA (SDT-SFA).

The interpretation of the site-depending tunneling is probabilistic, as given in appendix B, right after
equation (B6). Basically, equation (B5) is the compound probability of two independent events: (i) the
particle being located at the edge of the barrier and (ii) the tunnel ionization of a particle in contact with
the internal edge of the barrier. The final probability is the product of the probabilities these two events.
The compound event appears intrinsically in the TDSE calculations, but it is not well described within the
strong field approximation models, as they neglect the shape of the potential, and, therefore the
information of the location of the inner edge of the tunneling barrier.

3. Signatures of the site-dependent tunnel-ionization in H+
2

In this section, we show the comparison between the HHG spectra obtained from the TDSE, the standard
SFA and the site-dependent tunneling SFA using the form factor FSDT in equation (7). Second, we show the
comparison of the HHG spectra calculated from the s-SFA, the SDT-SFA and the TDSE, for different laser
parameters and different molecular internuclear distances, showing a much better agreement of SDT-SFA
with the TDSE. Next, we extract FSDT form factor directly from the TDSE calculation, and compare it with
equation (7), showing that the TDSE results are consistent with our interpretation. Afterwards, we present
results where macroscopic propagation in a molecular target is taken into account, demonstrating that the
spectral signature of the site-dependent tunneling is resilient to propagation. Finally, we show the suitability
of the SDT-SFA in the photoelectron spectrum emitted in H+

2 .

3.1. High harmonic spectra: single-molecule response
Figure 2(a) shows the quantitative comparison between the HHG spectrum obtained with the exact TDSE
(blue), the s-SFA (red), and the SDT-SFA (green) as raw data (no rescaling is done). The spectra show the
typical feature of non-perturbative harmonic generation: a plateau followed by a cut-off. The s-SFA shows a
qualitative recovery of the harmonics close to the cut-off (though, one order of magnitude quantitative
error), but a serious qualitative and quantitative departure (up to four orders of magnitude) in the plateau,
most evident for harmonic orders below the 45th. These trends are also present in calculations for different
laser parameters, as it will be shown below. In contrast, this clear departure is not found in HHG from
atoms. To illustrate this, we show in figure 2(b) the same comparison as figure 2(a) but for the helium
atom, with an ionization potential similar to H+

2 . The helium case corresponds to equation (4), replacing
Fs[p′(t)] by the atomic form factor, which is equal to one, and substituting the matrix elements and orbital
energies accordingly. Figure 2(b) shows that the agreement between atomic SFA and TDSE is excellent even
for harmonics well into the cutoff (in this case, for harmonic orders above the 30th). The departure of the
SFA description for the lowest frequencies (below 30th harmonic in this case) is a known artifact of the
strong field approximation. Thus, while the SFA offers an accurate description of HHG in atoms, it
substantially fails to describe HHG in H+

2 . Such departure reveals that some relevant information is missing
in the s-SFA formulation, equation (4).

The presence of the sharp minimum in the s-SFA spectra has been reported before [49, 50], and it
corresponds to the molecular structural minimum mentioned above. For H+

2 at equilibrium internuclear
distance, interacting with an 800 nm-wavelength laser pulse, the structural minimum is centered at the
22nd harmonic, extending up to the 49th harmonic (as found when imposing the condition λdB = 4R/3,
where λdB is the deBroglie wavelength of the recombining electron). However, in contrast to the s-SFA
results, the exact integration of the TDSE shown in figure 2(a) shows a weak trace of this interference. This
attenuation of the structural minimum in H+

2 at the equilibrium internuclear distance, parallel to the laser
polarization, has been also evidenced in previous works [4, 6, 50]. On the other hand, it is also known that

4
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Figure 2. (a) HHG spectra of the H+
2 molecule aligned along the polarization direction of the laser (800 nm, 3.88 fs FWHM,

I = 3.5 × 1014 W cm−2) for the equilibrium internuclear distance (1 Å). The SDT-SFA results (green) adjust to the exact TDSE
(blue), while the standard s-SFA (red) exhibits a deep geometrical minimum at q = 22. (b) HHG spectra of the atom of helium
for the same laser parameters. In the case of atoms, the SFA approach (red) gives an accurate quantitative reproduction of the
exact TDSE (blue) for harmonics above 30th. Both panels show raw data since no rescaling has been done.

the minimum shows up for tilted molecular orientations [6, 25], where the projection of the molecular axis
onto the field polarization results into an effective internuclear distance smaller than the equilibrium one.
We will later show results of the TDSE for such case, where the structural minimum is clearly
observed.

The comparisons of the results of SDT-SFA with s-SFA and the exact TDSE are shown in figure 2(a). In
agreement with the TDSE, the SDT-SFA spectrum shows a weaker signature of the structural minimum.
Remarkably, also the overall correspondence of SDT-SFA with the TDSE—both quantitative and
qualitative—is substantially improved in comparison with the s-SFA. It should be reminded that the
departure at the lowest part of the spectral plateau (harmonic orders <30th) is also found in the atomic
case (figure 2(b)). As discussed before, it reflects a fundamental inaccuracy of the SFA approach, not
connected to the atomic or molecular nature of the species.

We validate the SDT-SFA model for different laser parameters and internuclear distances. First, in
figure 3 we present the HHG spectra considering different laser peak intensities and wavelengths. As a
general conclusion, the SDT-SFA (green lines) reproduces very satisfactorily the exact TDSE results (blue
lines).

On the other hand, tilted molecules present an effective internuclear distance smaller than the
equilibrium one: Reff = Req cos θ. Under such configurations the ratio of the tunnel probability of a distant
wavepacket (equation (6)) increases, and the structural minimum shows up. Thus, we have chosen a smaller
internuclear distance in order to study the capability of the SDT-SFA to reproduce the well-known
structural minimum [4] in a configuration where it is evidenced. In figure 4 we present the HHG spectra
and its corresponding time–frequency analysis for a different internuclear distance, R = 0.6Å, which would
correspond to a rotation of θ = 53◦. The minimum appears in the TDSE spectrum at the harmonic order
q = 61, approximately. While the standard SFA fails in predicting the minimum’s depth, the SDT-SFA
provides a better approach. Note that the time–frequency description of the SDT-SFA has also a better
coincidence with the TDSE results. As pointed out before, the departures for harmonic orders below 30th
are a consequence of the SFA, also present in the atomic case (figure 2(b)).

3.2. Extraction of the form factor from the harmonic spectra
A strong evidence of site-specificity in molecular tunnel ionization can be found directly from the exact
TDSE using high-harmonic spectroscopy techniques to retrieve the form factor from the TDSE and
compare it with our SDT proposal, equation (7). For that purpose, we follow the same philosophy used in
tomographic studies and we compare the HHG molecular emission to that from an atom with similar
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Figure 3. HHG spectra from the H+
2 molecule at the internuclear distance of equilibrium, obtained through the exact TDSE

(blue), s-SFA (red) and the SDT-SFA (green) for different laser peak intensities (3.88 fs FWHM, 800 nm): (a)
I = 2.19 × 1014 W cm−2, (b) I = 4.92 × 1014 W cm−2, and different laser wavelengths (3.88 fs FWHM, I = 3.42 × 1014 W cm−2):
(c) 1220 nm, (d) 560 nm.

Figure 4. (a) HHG spectra from the H+
2 molecule for a smaller internuclear distance (R = 0.6 Å, 800 nm, 3.88 fs FWHM,

I = 1.11 × 1015 W cm−2) for the exact TDSE (blue), the s-SFA (red) and the SDT-SFA (green). The time–frequency analysis of
these spectra are shown at (b), (c) and (d), respectively. In this case the structural minimum (located at q = 61, as pointed out by
the gray arrows) emerges in the TDSE but its depth is again in better agreement with the one of the SDT-SFA.
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Figure 5. Time–frequency analysis of the HHG emission from the H+
2 molecule (a) and the helium atom (b) for the same

parameters as in figure 2(c) The form factor extracted from the TDSE calculations, FTDSE, following equation (8) (blue) for the
selected region within the white dashed lines in panels (a) and (b), is compared to the form factors from s-SFA, Fs, (red) and
SDT-SFA, FSDT, (green).

ionization potential. Figures 5(a) and (b) show the time–frequency analysis corresponding to the TDSE
harmonic spectra of figures 2(a) and (b), for H+

2 and He respectively. These maps reveal that each harmonic
in the plateau is emitted in a discrete series of bursts, corresponding to the rescattering of the different
electron trajectories, the well-known short and long trajectories [19, 51]. We have selected the harmonic
emission corresponding to a single rescattering event emitted from the short trajectories during a half-cycle
of the driving field (as indicated with white dashed circles in figures 5(a) and (b)) and calculated the
associated spectral amplitudes for both species: az,He(ω) and az,H+

2
(ω). Then, the form factor can be

retrieved as
|FTDSE(ω)|2 � az,H+

2
(ω)/az,He(ω). (8)

This assumption follows from the SFA saddle point method, which applied to the integrals in equation (4)
leads to a simple identification of the harmonic spectral amplitudes and the quasiclassical electron
trajectories [19]. After the saddle-point analysis, the Fourier transform of equation (4) can be cast into a
simple expression [52]:

az(ω) ∝
∑

st

|FTDSE(p′
st)|2 ξ(Pst , tst , t1,st)η(Pst), (9)

where η includes the terms containing the electronic wavefunctions, χ0, and ξ includes the remaining
terms, except the form factor FTDSE, which is to be determined from the TDSE. The summation in
equation (9) extends over all saddle points, st, each representing a recolliding electron trajectory responsible
of the harmonic emission at frequency ω = p′2

st /2m�. Each rescattering corresponds to a term in the
summation in equation (9), therefore, in selecting a single rescattering event from the TDSE
time–frequency maps, we are isolating a single term in the summation. Thus, in this case, equation (8)
follows directly from equation (9).

Figure 5(c) shows the comparison of the form factor extracted from the TDSE, FTDSE, using
equation (8), against the s-SFA form factor, Fs, and the modified SDT-SFA version, FSDT. The excellent
agreement between FSDT and FTDSE strongly supports equation (7) and, therefore, our interpretation of
distant tunneling as well as molecular site-dependent ionization. We note that evidences of the
site-dependent ionization due to the distant tunneling may also be found implicity in photoionization
studies where electron localization leads to an asymmetric molecular dissociation [53–55].
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Figure 6. HHG spectra from macroscopic propagation calculated using the SDT-SFA (a) and s-SFA (b) for the same parameters
as those of figure 2 qualitatively compared to the single-molecule case. The distinction between the two models survives upon
propagation. For both cases, the relative yield between the spectra of the single-molecule and the macroscopic propagation is
arbitrary.

Figure 7. Photoelectron spectra from the H+
2 molecule obtained using the TDSE (a), the standard SFA (b) and the SDT-SFA (c)

models. The laser parameters and molecular configuration are the same as those of figure 2. The gray arrows in panel (b) indicate
the presence of structural minima, which are not evidenced in the TDSE and SDT-SFA calculations. We have added a sign to the
kinetic energy axis, according to the direction left (minus) or right (plus) of the ionized wavepacket.

3.3. Signature of the site-dependent tunnel-ionization in the propagated high-harmonic signal
We introduce the macroscopic picture in order to gain insight about the survival of the features of the
single-molecule spectrum in an experimental situation. It is known that macrosocopic phase-matching can
strongly influence the HHG spectrum measured in an experiment [56, 57]. In previous works, the
experimental HHG spectrum has been used to retrieve the molecular orbital using tomographic techniques
[13]. Therefore, it is important to know if the SDT features of the single-molecule HHG spectrum are also
found in the macroscopic picture.

The macroscopic simulation of HHG in H+
2 is based on the electromagnetic field propagator [58], in

which we discretize the target (molecular gas jet) into elementary radiators. The dipole acceleration of each
elementary source is computed using the SFA models described by equations (A21) and (B10). We assume
that the harmonic radiation propagates with the vacuum phase velocity, which is a reasonable assumption
for high-order harmonics. The low-density molecular gas jet, flowing along the perpendicular direction to
the beam propagation is modelled as a Gaussian distribution of 200 μm at full width half maximum, and
with a peak pressure of 5 torr. The driver field has a Gaussian profile with a beam waist at the focus
position of 120 μm. All molecules are assumed to be oriented parallel to the polarization
direction.

In figure 6, we show a qualitative comparison between the single-molecule and macroscopic HHG
spectra for the SDT-SFA and the s-SFA models. The main features of the single-molecule spectrum
calculated using both models are conserved in the macroscopic case and, although the shape of SDT-SFA
spectra suffers modifications upon macroscopic propagation, it remains clearly distinct from the s-SFA
results. Our results show that the main properties of the single-molecule HHG spectrum shown in figure 2
survive after macroscopic propagation.

3.4. Signatures of the site-dependent tunnel-ionization in the photoelectron spectra
In this section, we calculate the photoelectron spectra from the H+

2 molecule along the z coordinate,
|δΨ(Pz)|2, after the interaction with the pulse. In figure 7, we present the photoelectron spectra calculated
from the TDSE (a), standard SFA (b) and SDT-SFA (c) models. We show that, while the SDT-SFA spectrum
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exhibits a better agreement with the TDSE spectrum, the standard SFA spectrum presents two deep minima
[59]. The origin of those minima is the interference of the ionization from each atomic orbital. The
SDT-SFA, on the other hand, includes the side-dependency of the ionization, which sharply decreases the
structural interference.

Note that, in order to obtain the photoelectron spectrum from the TDSE, we have filtered the
fundamental state from the final wavefunction. As a result, an artificial minimum at the lowest kinetic
energies appears in the spectrum.

4. Conclusions

In conclusion, we have demonstrated that the standard picture of tunnel ionization needs to be modified
for the non-atomic case. Our exact computations of the TDSE in H+

2 reveal that wavepacket portions
located at the ion sites separated from the barrier ionize with lower probability. We propose a corrected
molecular form factor to implement into the existing strong-field models. The new form factor agrees
extremely well with the one extracted from the exact TDSE solution, and it improves both the HHG and
photoelectron spectra. In addition, the signatures of the site-dependent tunneling are present in the HHG
spectra for different laser parameters and molecular internuclear distances. We show that those spectral
signatures are also present when the macroscopic phase-matching is taken into account. We believe that the
implementation of the site-dependent corrections in the retrieval algorithms will improve substantially the
accuracy of high-harmonic spectroscopy measurements, as well as tomographic orbital image
reconstruction.
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Appendix A. Standard SFA description of molecular HHG

In this appendix, we present the standard (s-SFA) description of molecular high-order harmonic generation
(HHG) within the strong-field approximation (SFA).

The interaction of a one-electron system with electromagnetic radiation, in the dipole approximation, is
governed by the Hamiltonian

H(t) =
p2

2m
+ VC(r) + VF(P, t), (A1)

where VC(r) is the Coulombic potential and VF(P, t) = −(q/mc)A(t) · P + (q2/2mc2)A2(t), being A(t) the
vector potential of the laser field, P the canonical momentum and m and q the mass and the charge of the
electron, respectively.

The standard SFA approach is based in the assumption that, once ionized, the electron dynamics is
governed by the field interaction, neglecting the effect of the ion Coulombic potential. The SFA propagator
is written as [18]

GSFA(t, t0) = G0(t, t0) +
1

�

∫ t

t0

GF(t, t1)VF(t1)G0(t1, t0)dt1, (A2)

where G0 is the propagator of the non-interacting Hamiltonian, H0 = p2

2m + VC(r), and GF is the propagator

of the free electron in the electromagnetic field, described by HF(t) = p2

2m + VF(t). Within SFA, the
electron’s wavefunction is given by |ψ(t)〉 = iGSFA(t, t0)|φ0〉, with |φ0〉 an initial bound-state of the system.
We can split the wavefunction into two terms, |ψ(t)〉 = |φ0(t)〉 + |δψ(t)〉, with |φ0(t)〉 = iG0(t, t0)|φ0〉 the
bound electron evolving in the absence of the field, and

|δψ(t)〉 =
i

�

∫ t

t0

GF(t, t1)VF(t1)G0(t1, t0)|φ0〉dt1 (A3)
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the electron in the continum. Defining ε0 as the bound-state energy, we have G0(t1, t0)|φ0〉 =

−ie−iε0(t1−t0)/�|φ0〉. For the electron in the continuum, we resort to the Volkov basis [47]:

|P(t)〉 = ei 1
� S(P,t,t0)|P〉, with S(P, t, t0) is the action defined as S(P, t, t0) = − 1

2m

∫ t
t0

p2(τ)dτ , with
p(t) = P − (q/c)A(t), the kinetic momentum. Accordingly, the free electron propagator can be expressed in

the Volkov basis as GF(t, t1) = −i
∫

ei 1
� S(P,t,t1)|P〉〈P|dP. Using these definitions in (A3) the ionized electron

wavefunction in momentum space reads as

δψ(P, t) = 〈P|δψ(t)〉 = − i

�

∫ t

t0

ei 1
� S(P,t,t1)e−iε0(t1−t0)/�VF(P, t1)η(P)dt1, (A4)

where η(P) is the transition matrix element

η(P) = 〈P|CF

rn
|φ0〉, (A5)

where the factor CF/rn is a Coulomb correction [33] that improves the quantitative accuracy of the SFA
description [21, 60], with CF = [4|ε0|/(|q|E0)]2 and n =

(
Zq2/�

)√
m/2|ε0|, Z being the charge of the

atomic or ionic core (Z = 1 for the hydrogen atom and Z = 2 for H+
2 ).

The coherent radiation spectrum is proportional to the Fourier transform of the mean acceleration.
Since we are interested only in high-harmonics, we compute the complex acceleration amplitude as [21]

〈a(t)〉 =

∫
p2/2m − ε0

Δs
a(P, t)dP, (A6)

with
a(P, t) = (1/m)〈φ0(t)|(−∇VC)|P〉δψ(P, t) (A7)

being the contribution of each Volkov wave to the total acceleration. The prefactor of the integrand in (A6)
accounts for the boundstate dressing at the instant of recollision, necessary to describe the harmonic yield
with quantitative accuracy, ε0 being the energy of the bound orbital and Δs the Stark shift at the instant of
recollision [21, 61]. This formulation has been previously applied to atoms successfully, and an example is
shown in figure 2(b).

Let us now introduce the extension of this SFA description to molecules, named as standard SFA
(s-SFA) in this paper. We describe the molecular hydrogen ion ground state as a linear combination of
atomic orbitals (LCAO), with two centers at ±R/2, R = 2 a.u being the internuclear distance. The LCAO
are described with a 6-311G Pople basis, and determined from a variational calculation. For the case of H+

2

we have three basis in each molecular site, Ri defined as

Φ1s(r) = 0.025 4938 gs(33.865 0000, r) + 0.190 3730 gs(5.094 7900, r) + 0.852 1610 gs(1.158 7900, r)

Φ2s(r) = 1.000 0000 gs(0.325 8400, r)

Φ3s(r) = 1.000 0000 gs(0.102 7410, r) (A8)

being gs(α, r) = (2α/π)3/4e−αr2
. By using Hartree–Fock, the molecular orbital for the ground state is found

to be:

φ0(r, t = 0) = C

[
χ0

(
r − R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
, (A9)

where C is the normalization factor and

χ0 (r) = 0.1937 Φ1s(r) + 0.3990 Φ2s(r) + 0.0484 Φ3s(r). (A10)

Thus, the time-dependent molecular orbital can be expressed as

φ0(r, t) = Ce−iε0(t−t0)/�
[
χ0

(
r − R

2
ez

)
+ χ0

(
r +

R

2
ez

)]
→ |φ0(t)〉 = C

(
e− i

� p̂′
z(t) R

2 + e
i
� p̂′

z(t) R
2

)
|χ0(t)〉,

(A11)
where |χ0(t)〉 = e−iε0(t−t0)/�|χ0〉 and the binding energy is calculated to be ε0 = −29.65 eV (−1.09 a.u.).
Consequently, the ionized wavefunction can be written as

|δΨ(t)〉 = C

(
e− i

� p̂′
z(t) R

2 + e
i
� p̂′

z(t) R
2

)
|δψ (t)〉, (A12)
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Figure 8. Scheme of the dipole energy shift of the potential barrier’s maximum due to the molecular configuration. An atomic
potential (blue) is displaced R/2 from the origin (purple) under the presence of an external field (red). As a consequence, the
height of the potential barrier (green) seen by the electronic wavepacket (whose ionization potential is depicted in black)
decreases in an amount of E(t1)R/2.

where p̂′
z(t) is the projection of the kinetic momentum operator, as seen from the molecular well (see

below). The expression for |δψ(t)〉 in equation (A4) should be corrected to take into account the dipole
energy shift of the barrier’s maximum, as the molecule is an extended object. For a symmetric aligned
molecule of length R, the change in the barrier height affects the ionization probability by a fraction
WADK[ε(R/2, t1)]/WADK(ε0), where ε(R/2, t1) = ε0 − q|E(t1)|R/2 is the ionization potential as seen from
the top of the barrier at the ionization time t1 (see figure 8). WADK is the Ammosov–Delone–Krainov the
ionization rate [34]

W ADK(ε) =

(
2e

n∗

)2n∗
1

2πn∗
(2� + 1)(� + |m|)!
2|m||m|!(� − |m|)! |ε|

[
3E0

π(2|ε|)3/2

]1/2

×
[

2

E0
(2|ε|)3/2

]2n∗−|m|−1

e
−

(
2(2|ε|)3/2

3E0

)

,

(A13)
where e is the Euler number, m and � are the quantum numbers of the atomic orbital, E0 is the amplitude of
the electric field and

n∗(ε) =
Zq2

�

√
m

2|ε| . (A14)

We implement this correction including the probability ratio into the bound-to-continuum amplitude
probability, thus, redefining η in equation (A4) as

η(P, t1) =

[
WADK[ε(R/2, t1)]

WADK(ε0)

]1/2

〈P|CF

rn
|χ0〉, (A15)

where R is the equilibrium internuclear distance (R = 1.055 Å = 2 a.u.).
Equations (A7), (A11) and (A12), lead to the following expression for the dipole acceleration for the H+

2

molecule,

a(P, t) =
C2

m
〈χ0(t)|

(
e

i
� p̂′

z(t) R
2 + e− i

� p̂′
z(t) R

2

)
(−∇VM)|P〉〈P|

(
e− i

� p̂′
z(t) R

2 + e
i
� p̂′

z(t) R
2

)
|δψ(t)〉, (A16)

VM where is the Coulomb molecular potential. For H+
2 , VM can be written as a superposition of the

hydrogen potential at the ionic sites, VM(r) = VC

(
r − R

2 ez

)
+ VC

(
r + R

2 ez

)
. The dipole acceleration a(P, t),

therefore, results from the added contributions of eight different physical paths (see figure 9). Naming
{α, β, γ} the sign of the displacements (+1 for right and −1 for left) of the recombination wavefunction
χ0(r − αR/2), the rescattering potential VC

(
r − βR/2

)
, and the ionizing wavefunction χ0(r − γR/2),

respectively, we rewrite (A16) as the sum over the different paths a(P, t) =
∑

α,β,γaα,β,γ(P, t), where

aαβγ(P, t) =
C2

m
〈χ0(t)|

{
e

i
� p̂′

zα
R
2

[
−∇VC

(
r − β

R

2
ez

)]
|P〉〈P|e− i

� p̂′
zγ

R
2

}
|δψ(t)〉. (A17)
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Figure 9. Scheme of the main different paths followed by the electronic wavepacket contributing to the HHG spectrum. The
atomic orbitals are depicted in blue and the scattering with the Coulombic potential is depicted in purple. The γ index refers to
the atomic orbital from which the electronic wavepacket is ionized, the β index refers to the atomic potential responsible of the
rescattering and the α index refers to the atomic orbital where the wavepacket recombines. The four main paths (a), (b), (c) and
(d), are represented by the red arrows.

Our calculations show that the main contributions come from terms with α = β, meaning that the
scattering on a potential site is most probably followed by a recombination to the same site’s bound
wavefunction. Thus, using

− ∇VC

(
r − β

R

2
ez

)
= e− i

� p̂′
zβ

R
2 (−∇VC (r)) e

i
� p̂′

zβ
R
2 (A18)

we can approximate equation (A17) to

aβγ(P, t) � C2

m
〈χ0(t)| [−∇VC (r)] |P〉e

i
� p′

z(β−γ) R
2 〈P|δψ(t)〉. (A19)

For a free electron p′(t) = p(t) = P − (q/c)A(t), with A(t) the electromagnetic vector potential. In
molecules, however, p′(t) describes the kinetic momentum of the free electron at the instant of
recombination, t, as seen from the molecular sites, so it includes the acceleration by the potential well, i.e.
(1/2m)p′2(t) = (1/2m)p2(t) + IP , IP being the molecular ionization potential. Therefore
p′

z(t) = sign{pz(t)}
√

p2(t) + 2mIP [48]. This correction to the free electron’s kinetic momentum is found
necessary to recover the correct position of the molecular structural minimum in the harmonic spectrum
[4]. Summing over all the relevant paths, the acceleration a(P,t) can be written as

a(P, t) =
1

m
|Fs

[
p′

z(t)
]
|2〈χ0(t)|(−∇VC)|P〉δψ(P, t), (A20)

where Fs

[
p′

z(t)
]

= C(e
i
� p′

z(t) R
2 + e− i

� p′
z(t) R

2 ) is the molecular form-factor. Substituting in equation (A6), we
finally obtain the total acceleration

〈a(t)〉 =

∫
p2/2m − ε0

Δs

1

m
〈χ0(t)|(−∇VC)|P〉|Fs

[
p′

z(t)
]
|2

×
{

− i

�

∫ t

t0

ei 1
� S(P,t,t1)e−i

ε0
� (t1−t0)VF(P, t1)η(P, t1)dt1

}
dP. (A21)

Appendix B. Tunnel of a distant wavepacket

In this appendix, we compute the tunnel probability of a wavepacket located at a finite distance from the
barrier’s edge. In a description using localized atomic orbitals (LAO), the molecular orbital is decomposed
into a basis of wavepackets, each centered at a different ion site. In molecules at equilibrium nuclear
distances, these localized wavefunctions are generally not separated by internal potential barriers, therefore
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Figure 10. Scheme of the tunneling of a distant wavepacket. The wavefunction χ(z, t) (red) is centered at zc and its energy is ε0,
while the blue triangle is the potential barrier V(z) whose edges are placed at zb and zf.

dwelling in a multi-ion Coulomb potential well. The presence of a strong field modulates the molecular
potential, forming an external potential barrier, that separates the bound orbitals from the continuum. The
extended nature of the molecular well, therefore, results in some of the LAO positioned at finite, non zero,
distances from the edge of the barrier (see figure 1 in the main text).

Let us consider a stationary wavepacket with energy ε0 centered at the coordinate zc, at the left of a
potential barrier V(z). The barrier’s edges zb and zf are defined so that V(z) = 0 if z < zb, and V(z) > ε0 if
zb < z < zf (see figure 10).

We express the wavepacket as a planewave decomposition, χ(z, t) = e−iε0t/�χ0(z), with

χ0(z) =

∫ ∞

−∞
g̃(p)eiS(p,z)/�eip(z−zc)/�dp �

∫ ∞

−∞
g̃(p)eiSWKB(z)/�e−ipzc/�dp, (B1)

where we have defined SWKB(z) =
∫ z

−∞
√

2m [ε − V(z′)]dz′ as the semiclassical approximation (� → 0) to
the planewave phase S(p, z) + pz, according to the 0th-order WKB approximation [62]. Note that it is
crucial to preserve the localized nature of the wavepacket, therefore the 0th order WKB approximation is
used at the level of the individual planewaves composing it, rather that to the total wavefunction. We can
rewrite equation (B1) as

χ(z, t) = e−iε0t/�eiSWKB(z)/�
∫ ∞

−∞
g̃(p)e−ipzc/�dp. (B2)

Defining S WKB(zb) as the semiclassical approximation to S(p, zb) + pzb, equation (B2) can be approximated
by

χ0(z) � ei[SWKB(z)−SWKB(zb)]/�
∫ ∞

−∞
g̃(p)eiS(p,zb)eip(zb−zc)/�dp (B3)

= ei[SWKB(z)−SWKB(zb)]/�χ0(zb). (B4)

The tunnel transmission probability of the particle located at the wavepacket’s mean position zc, is therefore
given by

P(zc, zb) =
|χ0(zf )|2
|χ0(zc)|2

= W WKB
|χ0(zb)|2
|χ0(zc)|2

, (B5)

where WWKB corresponds to the WKB probability of tunneling of a particle located at the left edge of the
barrier [62],

WWKB = e− 2
�

∫ zf
zb

√
2m[V(z′)−ε0]dz′

. (B6)

Therefore, equation (B5) can be interpreted as the probability of tunneling times the probability of the
particle being near the edge of the barrier. The quotient in equation (B5) shows that the tunnel probability
is reduced when the wavepacket’s center is at a distance zb − zc from the edge of the barrier. We define the
ratio of the tunnel amplitude probability of a distant wavepacket to the amplitude probability of the particle
being at the barrier’s edge is given by

T(zc, zb) =

[
P(zc, zb)

P(zb, zb)

]1/2

=
|χ0(zb)|
|χ0(zc)|

. (B7)

In the case of the H+
2 molecule, the wavepackets χ0 are atomic orbitals localized at the molecular ion

sites, zc = ±R/2, where R is the internuclear distance. The coordinate of the barrier’s edge, zb, corresponds
approximately to −R/2 (R/2) for a positive (negative) field amplitude. To introduce the site-dependent
probabilities in the SFA formalism it is sufficient to redefine the molecular form factor, Fs

[
p′

z(t)
]
, in the
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s-SFA formula (A21) as

F±
SDT

[
p′

z(t)
]

= T

(
−R

2
, ±R

2

)
e

i
� p′

z(t) R
2 + T

(
R

2
, ±R

2

)
e− i

� p′
z(t) R

2 , (B8)

where the positive (negative) index corresponds to ionization through a barrier at the right (left) side of the
molecule. Note however that the modulus of the form factor is the same, regardless the right/left position of
the barrier, and therefore we can drop the superindex,

|FSDT

[
p′

z(t)
]
|2 = |F+

SDT

[
p′

z(t)
]
|2 = |F−

SDT

[
p′

z(t)
]
|2. (B9)

Therefore equation (A21) finally becomes

〈a(t)〉 =

∫
p′/2m − ε0

Δs

1

m
〈χ0|(−∇VC)|P〉|FSDT

[
p′

z(t)
]
|2 ei

ε0
� (t−t0)

×
{

− i

�

∫ t

t0

ei 1
� S(P,t,t1)e−i

ε0
� (t1−t0)VF(P, t1)〈P|CF

rn
|χ0〉dt1

}
dP. (B10)

The new form factor, FSDT, defines the difference between the standard SFA (s-SFA) and the
site-dependent-tunneling SFA (SDT-SFA) proposed in this work.
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3
H I G H - O R D E R H A R M O N I C S W I T H N O V E L O R B I TA L
A N G U L A R M O M E N T U M P R O P E RT I E S

The generation of OAM beams in the XUV and X-ray spectral regimes
is motivated by the possibility of extending the current applications
of vortex beams to the nanometric scale, especially in microscopy
and spectroscopy [115–119]. In this chapter, we will explore different
schemes to structure HHG with driving vortex beams for the genera-
tion of XUV harmonics with novel OAM and spatial properties. First,
in section 3.1, we shall present the fundamentals of the OAM of light.
In section 3.2, we will show the generation of XUV vortex fields from
HHG, considering also the combination of several infrared vortices
as the driving beam, providing a richer and more complex scenario.
Then, in section 3.3, we will demonstrate the generation of XUV beams
with time-varying OAM, which we have denoted as self-torqued beams.
Afterwards, in section 3.4, we shall present how by properly selecting
the OAM of two driving vortex beams, we have an unprecedented
control of the frequency spacing of the HHG spectrum and the diver-
gence of the harmonic emission. Finally, in section 3.5, we include our
publications [16, 17], as additional information on the topics discussed
in sections 3.3 and 3.4.

3.1 introduction to the orbital angular momentum of

light

In chapter 1, we introduced light beams carrying OAM, also known as
vortex beams, which present a twisted phase and donut-like intensity
profiles around the phase point-singularity. Vortex beams are typically
produced in the optical and infrared regimes using spiral-phase plates
[120], q-plates [121], or holographic techniques [122]. Additionally,
the different OAM modes can be efficiently sorted [123, 124]. However,
these optical elements become highly inefficient for imprinting OAM to
XUV or X-ray light [125], because they are nearly transparent in those
frequency regimes. As alternatives, XUV or X-ray beams carrying OAM

can be generated via HHG or particle accelerators [118, 126]. In this
thesis we will focus in this former method.

The spatial structure of the vortex beams follows from the solution
of the paraxial wave equation, imposing cylindrical symmetry [127].
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Figure 25: Representation of different Laguerre-Gauss modes at the focal
plane for a beam waist of w0 = 2 cm. The transverse intensity
profiles (left column) exhibit ring shapes whose radii increase with
`. The number of non-axial radial nodes is determined by p, while
the transverse phase rotation along the azimuthal coordinate is
dictated by ` (right column).

They are represented as Laguerre-Gaussian modes propagating in the
z-direction and with transverse coordinates ρ (radius) and φ (azimuth):

LG`,p(ρ,φ, z;k0) = E0
w0
w(z)

(√
2ρ

w(z)

)|`|
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|`|
p

(
2ρ2
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where k0 = 2π/λ0 (λ0 is the wavelength of the beam), w0 is the beam
waist, w(z) = w0
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2
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is the phase-front radius, ΦG(z) =
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−(2p+ |`|+ 1) arctan(z/zR) is the Gouy phase, and L|`|p (x) is the asso-
ciated Laguerre polynomial. The index ` = 0,±1,±2, . . . corresponds
to the topological charge—which describes the number of 2π phase
shifts along the azimuthal coordinate—while the index p = 0, 1, 2, . . .
is the number of non-axial radial nodes of the mode. Note that the
OAM associated to a topological charge ` is  h`. In figure 25, we show
some examples of the intensity and phase transverse profiles at z = 0
corresponding to different Laguerre-Gauss modes.

3.2 generation of extreme-ultraviolet vortex beams

Our strategy for the generation of high-frequency vortex beams arises
from the mapping capability of the HHG process, where some of the
OAM properties of the driving vortices are translated to the harmonic
field. In particular, as a general rule, the harmonics generated by a
vortex beam are "born" as vortex beams.

3.2.1 Single-mode harmonic vortex beams

The first experimental generation of XUV vortex beams by driving HHG

with an infrared vortex beam was carried out in 2012 [128]. This first
demonstration reported that the harmonics were emitted with the
same topological charge as that of the driving vortex beam (` = 1).
Shortly after it was predicted theoretically [129], and later confirmed
experimentally [130, 131], that harmonic vortices should exhibit an
OAM whose topological charge follows the simple conservation rule:

`q = q`IR, (76)

where `IR is the charge of the driving beam. This law is easily un-
derstood in terms of photon composition rules: the conservation of
energy, ωq = qω0, suggests that q photons are converted into a single
one and, consequently, Eq. (76) must be satisfied for the conservation
of the total OAM.

In figure 26, we show the intensity, phase and OAM content of the
21-st order harmonic, proving Eq. (76). It is important to note that the
OAM content of the harmonics is extracted by performing the Fourier
transform of the harmonic field along the azimuthal coordinate, since
the azimuthal coordinate and ` are conjugate variables, and integrating
along the divergence angle. This provides us with an OAM spectrum
that represents the intensity of each of the OAM components in a beam.

Interestingly, Eq. (76) can also be extracted from the phase of the
harmonics (see section 2.3). Since the harmonics exhibit a phase term
equal to q times the phase of the driving field, the qth harmonic order
will exhibit a phase term that depends on the azimuthal coordinate φ
as q`IRφ, which implies an OAM of `q = q`IR.
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Figure 26: Generation of the 21-st order harmonic vortex beam by an infrared
driving beam (` = 1, λ0 = 800nm, w0 = 30µm and peak intensity
I0 = 1.4× 1014W/cm2). The far-field harmonic transverse inten-
sity (a) and phase (b) profiles are obtained from full-quantum
SFA simulations including propagation. The OAM spectrum (c),
that confirms Eq. (76), is computed by performing the Fourier
transform of the harmonic field along the azimuthal coordinate.
Figure adapted from [129].

Note that, for a single-mode vortex, the non-perturbative dipole
phase does not affect the OAM conversion of the resulting harmon-
ics, as the intensity profile of the driving beam is constant along the
azimuthal coordinate. However, when HHG is driven by a combina-
tion of vortex modes, it becomes relevant [106], as we will explain in
section 3.2.2. In contrast, the non-perturbative dipole phase has an
important role in the radial structure of the XUV harmonic vortices,
since the radial variation of the intensity modifies the quantum path
interferences. In fact, the result of the coherent addition of the contri-
butions of the short and long trajectories is also greatly influenced by
the relative position of the target with respect to the beam focus, in
analogy to the case of a Gaussian beam mentioned in section 2.3.1. As
a result, it is even possible to spatially separate the two contributions
in rings with different divergences [105, 107]. It is interesting to note
that, theoretically, the contribution from short and long trajectories
can be disentangled using the TSM. For example, in figure 27, we show
the results of the 19-th order harmonic generated by a driving beam
with ` = 1. The intensity profile is composed of a brighter ring which
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Figure 27: Intensity profiles of the 19-th order harmonic generated by an
infrared driving beam (` = 1, λ0 = 800nm, w0 = 30µm, zR =

3.5mm and peak intensity I0 = 1.4× 1014W/cm2) as a function
of the gas jet position with respect to the beam focus (zt), obtained
using the TSM. The total emission is composed of short and long
trajectory contributions (a), where the short trajectories present
a bright single ring (b) and long ones show several weaker rings
(c). The two contributions are essentially spatially separated at
zt = −3mm.

originates from the short trajectories, and several weaker rings that
originate from the long ones. The combination of the two contributions
results in different interference patterns for different gas jet positions
with respect to the driving beam focus.

Finally, it is worth to conclude this subsection by mentioning other
additional properties of harmonic vortex beams analyzed during the
last few years. For example, it turns out that the OAM of the XUV vortex
beams can be controlled by combining two non-collinear driving
beams [132, 133]. In addition, XUV beams with fractional OAM can
be obtained using conical refraction driving beams [134]. Also, it has
been demonstrated that the radial index of the Laguerre-Gaussian
beams is affected by the HHG process [135]. Lastly, let us mention that
single-mode XUV vortex beams can also be generated using schemes
involving solid targets [136] or underdense plasmas [137].
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3.2.2 Multi-mode harmonic vortex beams

In this subsection, we introduce the possibility of generating XUV

harmonic vortices with multiple OAM contributions. Such harmonic
beams are obtained when HHG is driven by a combination of two
infrared vortex beams with the same frequency and linear polarization,
but different topological charges [106].

Before analyzing the properties of these harmonic beams, we shall
derive the OAM selection rules that govern this scenario. Let us con-
sider the total driving field as the superposition of two vortex beams
with spatial complex amplitudes U1(ρ)ei`1φ and U2(ρ)ei`2φ at z = 0,
where the gas jet is placed. We shall consider that both vortex beams ex-
hibit the same peak intensity and their waists are selected so their rings
of maximum intensity overlap at ρ = ρmax: U2(ρmax) = U1(ρmax) =
U0. Thus, the driving field’s complex amplitude at ρ = ρmax can be
written as

U(φ) = U0

(
ei`1φ + ei`2φ

)

= 2U0 cos
(`1 − `2

2
φ
)
ei
`1+`2
2 φ

=
∣∣∣2U0 cos

(`1 − `2
2

φ
)∣∣∣ei

`1+`2
2 φSign

{
cos
(`1 − `2

2
φ
)}

.

(77)

According to the TSM description presented in section 2.3.3, the
harmonic field associated to the r (short or long) quantum path can
be expressed as:

Arq(φ) =

[
2U0 cos

(`1 − `2
2

φ
)]p

eiq
`1+`2
2 φeiα

r
qI0 cos2

(
`1−`2
2 φ

)
, (78)

where we have considered that the sign of the cosine factor fulfills

Sign
{

cos
(
`1−`2
2 φ

)q−p}
= 1—because q is an odd integer and p ≈ 3—

and I0 = 4U20. Let us now extract the OAM contributions from each
factor in Eq. (78). The second term is the most relevant because it
describes the most intense OAM contribution, which is also at the
center of the OAM distribution. Note that it is a perturbative phase
term, which contributes to the OAM content as q(`1 + `2)/2. The other
two factors, on the other hand, can be interpreted as scattering terms
that redistribute the OAM, describing photon annihilation channels
different from that of the main contribution—i.e. the absorption of
more `1 photons at the expense of `2 photons, or vice versa. In partic-
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ular, the first factor, which describes the amplitude modulation, can
be expressed as a binomial distribution:
[
2U0 cos

(`1 − `2
2

φ
)]p

= U
p
0

(
ei
`1−`2
2 φ + ei

`2−`1
2 φ

)p

= U
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0
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(
p
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ei j
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2 φei(p−j)

`2−`1
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= U
p
0
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j=0

(
p

j

)
ei`1(j−

p
2 )φei`2(

p
2−j)φ.

(79)

Thus, this contribution to the OAM content of the q-th order harmonic
field is `1(j− p/2) + `2(p/2− j), where j ranges from zero to p. On
the other hand, the third factor in Eq. (78) derives from the non-
perturbative dipole phase. Its contribution to the OAM content can be
calculated by expanding it in a series of OAM components:

eiα
r
qI0 cos2

(
`1−`2
2 φ

)
= eiα

r
qI0/2

∑
m

imJm[αrqI0/2]e
im(`2−`1)φ, (80)

where the amplitudes of the Bessel functions decay drastically for
|m| > αrqI0/2. Therefore, the contribution of this term to the OAM of
the q-th order harmonic is equal to m(`2 − `1), m being an integer
number limited by the quantity αrqI0/2. Thus, it is an OAM scattering
term, analogous to that of Eq. (79), describing the absorption of m
units of `2 photons at the expenses of m units of `1 photons, so the
effect of both scattering terms is to broad the OAM distribution. Note,
however, that the contribution of Eq. (80) depends on the driving field
intensity and OAM content, as well as on the harmonic order and the
quantum path. Remarkably, as αshortq < α

long
q , the OAM spectrum

of the long trajectories contribution is broader than that of the short
trajectories.

Therefore, using Eqs. (79) and (80) in (78), the OAM content of the
q-th order harmonic is

`q = (j− p/2)`1 + (p/2− j)`2 + q(`1 + `2)/2+m(`2 − `1)

= (j− p/2+ q/2)`1 + (p/2− j+ q/2)`2 +m(`2 − `1), (81)

with j ∈ (0,p) and |m| < αrqI0/2. Let us rewrite this expression in a
more compact form by introducing the quantity n = p/2− j+ q/2.
Thus, finally, the OAM of the q-th order harmonic generated by a
combination of two Laguerre-Gauss modes with `1 and `2 is given by

`q = (q−n)`1 +n`2 +m(`2 − `1). (82)

Interestingly, the term (q− n)`1 + n`2 can be understood in per-
turbative arguments as different OAM channels distinguished by the
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number n that lead to the generation of the same harmonic, where n
represents the number of photons absorbed from the infrared vortex
beam `2 and q− n is the remaining number of photons, which are
absorbed from the infrared vortex beam `1. Note, however, that the ef-
ficiency associated to each channel n is related to the non-perturbative
nature of the process through the power p < q, being the relevant con-
tributions limited to a range from (q− p)/2 to (q+ p)/2. On the other
hand, the term m(`2 − `1) is a purely non-perturbative contribution
leading to a redistribution of the OAM around the main values.

The prediction from Eq. (82) is confirmed by our numerical simu-
lations of HHG driven by multi-mode vortex beams using the TSM as
well as the full-quantum SFA, including propagation, models described
in section 2.3. We consider a driving field composed of two Laguerre-
Gauss modes with topological charges of `1 = 1 and `2 = 2, and
waists of w1 = 30µm and w2 = 21.4µm, respectively, so their rings
of maximum intensity overlap at ρ = 30/

√
2µm. Their wavelength is

λ0 = 800nm, and the total peak intensity is 1.4× 1014W/cm2. In fig-
ure 28a, we show a scheme of the TSM configuration for the generation
XUV harmonic vortices from an argon gas jet under these conditions.
The transverse intensity and phase profiles of each vortex beam that
interfere to compose the total driving field, which exhibits a crescent
shape, are shown in figure 28b.

Figure 28: (a) Scheme of HHG driven by a combination of two vortex beams.
(b) The driving beam is composed of two Laguerre-Gauss modes
with `1 = 1 and `2 = 2, respectively (left panel). The combination
of the two modes results in an intensity profile with a crescent
shape (right panel).
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Our results predict that the presence of a combination of OAM in
the driving field implies that each harmonic does not exhibit a single
OAM component (as it was shown in figure 26c), but a broader OAM

spectrum. Importantly, the TSM allows us to distinguish the different
perturbative and non-perturbative contributions, as presented in figure
29 for the 21-st order harmonic. Panel (a) shows the topological charge
without the influence of the non-perturbative dipole phase in the
perturbative (p = q) and non-perturbative (p < q) regimes; panels (b)
and (c) represent the decomposition of the OAM in several channels
discerned by the value of n; and, finally, panel (d) shows the total `21
content, in good agreement with Eq. (82).

Figure 29: Spatially integrated OAM spectrum of the 21-st order harmonic
vortex, obtained with the TSM using (a) the perturbative q-th
power (dark blue) and the non-perturbative p-th power (light
blue) without non-perturbative dipole phase (α21 = 0); (b), (c) the
non-perturbative scenario for the channels n = 10 and n = 11,
respectively, from the short (purple) and long (green) trajectories
contributions; and (d) all the non-perturbative channel contribu-
tions. The arrows indicate the OAM interval predicted by Eq. (82)
for the short (purple) and long (green) trajectory contributions.
The driving beams parameters are described in the text.

It is important to note that the comparison of panels (a) and (d) re-
veals that the non-perturbative nature of the HHG process modifies the
OAM content under this configuration. In contrast to the single-vortex
driving field, where the OAM conservation rule can be explained from
perturbation theory, the combination of several vortex driving beams
brings a new scenario. On the one side, the p-th scaling power is
smaller than the q-th’s, which narrows the width of the main OAM
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channels, by limiting the n values in Eq. (82), compared to that the one
expected for the perturbative case (p = q). On the other side, the inten-
sity pattern of the combined driving field presents now modulations
along the azimuthal coordinate, which result in a further redistribution
of the harmonic’s OAM content through the non-perturbative phase
term (third term in Eq. (82)). Thus, although the non-perturbative
exponent p < q narrows the harmonic OAM distribution, the intensity
dependent dipole phase introduces the opposite effect: it extends the
extremes of the OAM distribution. As expected from Eq. (82), this latter
contribution has an especially relevant role for long trajectories.

Interestingly, as a collateral result, our simulations also show that
the OAM spectrum of the harmonics is a sensitive probe the presence
of OAM impurities in the driving vortex beam in an experiment. Our
publication with the results, mathematical derivations, and additional
information about this work are can be found in [106].

3.3 time-varying orbital angular momentum

An interesting aspect of the configuration presented in the previ-
ous section is that the most intense OAM contribution in Eq. (82) is
`q = q(`1 + `2)/2. However, this condition is only satisfied if both
driving vortex beams have the same peak intensity, which was the
case considered through that section. In a more general case, the OAM

content of the harmonics will depend on the amplitude ratio between
the two driving vortex beams. Thus, by changing their relative am-
plitude, the main OAM channel of the harmonics can be tuned. This
finding paved for us the route towards the study of the generation of
harmonics exhibiting time-varying OAM.

In this section, therefore, we introduce a new class of light beams
that possess a unique property associated with a temporal variation of
their OAM: the self-torque of light. As we will demonstrate, such beams
naturally emerge from HHG driven by two time-delayed infrared vortex
beams carrying different OAM. Under this configuration, the high-
order harmonics exhibit a time-dependent OAM, and, thus, we define
the self-torque of light as:

 hξ =  h
d`(t)

dt
, (83)

where  h`(t) describes the inherent OAM variation along a light pulse.
It is important to note that the self-torque does not refer to the ability

of light to exert photo-mechanical torques by transferring its OAM [138,
139]. On the contrary, the time-dependent OAM is an inherent property
of the light beam propagating in free space, without the interaction
with any external agent. Remarkably, a self-torque can also be found
in other physical systems that can self-induce a temporal variation
of their angular momentum. However, up to now it has not been
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realized that light could possess self-torque. Although trains of non-
overlapping pulses with different OAM have been reported [140], there
is no evidence of pulses with time-dependent OAM in any spectral
regime, previous to this thesis.

3.3.1 Derivation of the self-torque of light

Let us calculate the OAM of the XUV beams generated from two time-
delayed infrared vortex beams, following a similar procedure to that
described in section 3.2.2. Since in this case the two driving vortex
beams do not completely overlap in time, Eq. (77) should be modified
as

U(φ, t) = U1(t)ei`1φ +U2(t)e
i`2φ. (84)

Now, we rewrite this equation by defining the quantity U0(t) =

U1(t) +U2(t) and the ratio η(t) = U2(t)/U0(t):

U(φ, t) = U0(t)
[
(1− η(t))ei`1φ + η(t)ei`2φ

]

= U0(t)e
i(`1+`2)φ/2

×
[

cos
(`1 − `2)φ

2
+ i
(
1− 2η(t)

)
sin

(`1 − `2)φ

2

]
.

(85)

We can extract the phase of this expression by factorizing the driving
field as U(φ, t) = |U(φ, t)|iϕ(φ,t), where

ϕ(φ, t) = arctan
{
[1− 2η(t)] tan

(`1 − `2)φ

2

}
+

(`1 + `2)φ

2

≈ [1− 2η(t)]
(`1 − `2)φ

2
+

(`1 + `2)φ

2
= {[1− η(t)]`1 + η(t)`2}φ, (86)

considering that η(t) evolves approximately linearly in time.
For the calculation of the q-th order harmonic field, we resort to the

TSM description (see section 2.3.3):

Aq(φ, t) = |U(φ, t)|peiqϕ(φ,t) =
[
|U(φ, t)|eiϕ(φ,t)]pei(q−p)ϕ(φ,t)

= Up(φ, t)ei(q−p)ϕ(φ,t). (87)

Note that, in contrast to Eq. (60), the effects of the non-perturbative
term of the dipole phase are now not included, because we restrict
our calculation to the main OAM components.

We now insert the driving field’s expression from Eq. (85) into Eq.
(87) and we expand the binomial expression to the p-th power:

Aq(φ, t) = U0(t)
p
[
(1− η̄(t))ei`1φ + η̄(t)ei`2φ

]p
ei(q−p)ϕ(φ,t)

= U0(t)
p
[ p∑
j=0

(
p

j

)
(1− η̄(t))jeij`1φη̄(t)(p−j)ei(p−j)`2φ

]

× ei(q−p)ϕ(φ,t). (88)
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Note that η̄(t) is the average of η(t) over the short-trajectories excur-
sion time (approximately half a cycle). Then, we include the expression
of the phase ϕ(φ, t) from Eq. (86) to obtain the harmonic field:

Aq(φ, t) = U0(t)
p
[ p∑
j=0

(
p

j

)
(1− η̄(t))jei j`1φη̄(t)(p−j)ei(p−j)`2φ

]

× ei(q−p){[1−η̄(t)]`1+η̄(t)`2}φ. (89)

We extract the OAM from this expression by considering two sepa-
rated terms: the sum over j and the last exponential term. The former
term can be understood as the statistical binomial distribution of se-
lecting a total of p photons by combining photons of two different
kinds, `1 and `2, assuming that each `1 photon joins with a probability
P`1 = 1− η̄(t) and each `2 photon with a probability P`2 = η̄(t). Let
us calculate its mean OAM as:

〈`q(t)〉 =

p∑
j=0

(
p

j

)
P
j
`1
P
(p−j)
`2

[j`1 + (p− j)`2]

= (`1 − `2)

p∑
j=0

(
p

j

)
P
j
`1
P
(p−j)
`2

j+ p`2

p∑
j=0

(
p

j

)
P
j
`1
P
(p−j)
`2

= p{[1− η̄(t)]`1 + η̄(t)`2}. (90)

where we have used the following relations:
∑p
j=0

(
p
j

)
P
j
`1
P
(p−j)
`2

= 1

and
∑p
j=0

(
p
j

)
P
j
`1
P
(p−j)
`2

j = pP`1 . Thus, the total mean OAM from Eq.
(89) is calculated as:

¯̀
q(t) = 〈`q(t)〉+ (q− p){[1− η̄(t)]`1 + η̄(t)`2}

= q{[1− η̄(t)]`1 + η̄(t)`2}. (91)

Finally, by including Eq. (91) in Eq. (83) we obtain the self-torque of
the emitted harmonics:

 hξq =
 hd¯̀

q(t)

dt
=  hq(`2 − `1)

dη̄(t)

dt
≈  hq(`2 − `1)/τd. (92)

where τd is the time delay between the two infrared driving vortex
beams. The approximation dη̄(t)

dt ≈ 1/τd is a reasonable assumption
under the condition τd ≈ tFWHM, where tFWHM is the full-width
half maximum (FWHM) of the duration of each of the infrared vortex
pulses. Indeed, this is the optimal time delay for the generation of
the self-torqued XUV beams, since in this case all the OAM states are
generated with similar efficiency (see section 3.5.1).

Eq. (92) shows that the HHG process imprints a continuous temporal
OAM variation into the XUV beams. In addition, the self-torque depends
not only on the harmonic order, but also on the driving beams OAM

and temporal properties, which allows us to control the amount of
self-torque of each harmonic beam.
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Lastly, the instantaneous width of the OAM distribution is calculated
as:

σ`q =
√
〈`2q(t)〉− [〈`q(t)〉]2 = |`2 − `1|

√
pη̄[1− η̄(t)], (93)

as demonstrated in the Supplemental information of [16]. Note that
the non-perturbative nature of HHG (p < q) strongly reduces the value
of σ`q . In the perturbative case (p = q), the uncertainty on the OAM

would be larger and the self-torque would be ill-defined. Thus, HHG

allows to obtain well-defined values of self-torque.

3.3.2 Main results

In figure 30a, we show the scheme for the generation of self-torqued
XUV beams, where two time-delayed driving vortex beams with `1
and `2, respectively, are directed into an argon gas jet. In figure 30b,
on the other hand, we present the numerical results from our full-
quantum SFA model including propagation (see section 2.3.2). The
OAM of the selected harmonic (the 17-th order) varies along time,
presenting all the intermediate OAM states. The green curves represent
the predictions from Eqs. (91) and (93), which are in good agreement
with the quantum simulations.

Figure 30: (a) Scheme for the creation of self-torqued XUV pulses via HHG

driven by two infrared vortex beams carrying `1 and `2, respec-
tively, and with a variable time delay, td. (b) Time-varying OAM

of the 17-th order harmonic when HHG is driven by 10 fs FWHM

drivers delayed by 10 fs. The color background shows the full-
quantum simulations results, whereas `17 (solid green lines) is
the mean OAM, whose slope is the self-torque (ξ17 = 1.32 fs−1),
and σ`17 is the width of the OAM content (dashed-green lines),
calculated from Eqs. (91) and (93), respectively.

Interestingly, a relevant property of self-torqued beams is that they
present an azimuthal frequency chirp because the temporal variation
of the OAM introduces a time-dependent phase in the harmonics. The
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harmonic instantaneous frequency, which is calculated as the time
derivative of the total harmonic phase, Φq(φ, t), is:

ωinstq (φ) =
dΦq(φ, t)

dt
= ωq +

d`q(t)

dt
φ = ωq + ξqφ (94)

Therefore, the harmonic frequency-chirp along the azimuthal coordi-
nate is equal to the amount of self-torque of each individual harmonic.
Luckily, this unequivocal relation between the self-torque and the
azimuthal frequency chirp allows us to quantify the self-torque of
the XUV beams by an experimental measurement of the azimuthal
distribution of the HHG spectrum.

The experimental production and measurement of the self-torqued
beams has been carried out by our collaborators from the Kapteyn-
Murnane group in JILA, at the University of Colorado, in Boulder
(USA). The details of the experimental methods can be found in section
3.5.1. In figure 31, we present the comparison between the theoretical
and the experimental results of the azimuthal frequency chirp of
the harmonics induced by the self-torque, where the driving pulses
parameters were chosen to mimic the experimental ones (τ = 52 fs,
τd = 50.4 fs, I0 = 1.4 × 1014W/cm2, λ0 = 800nm, w1 = 30µm,
w2 = 21.4µm). Note that the self-torque of each harmonic order is
different, as predicted by Eq. (92).

Figure 31: Theoretical (a) and experimental (b) spatial HHG spectrum along
the azimuthal coordinate. The self-torque of light imprints an
azimuthal frequency chirp, which is different for each harmonic, as
indicated by the grey dashed lines, obtained from Eq. (94), whose
slope is displayed in panel (a). The driving pulses parameters
were chosen to mimic the experimental ones (tFWHM = 52 fs,
τd = 50.4 fs, I0 = 1.4× 1014W/cm2, λ0 = 800nm, w1 = 30µm,
w2 = 21.4µm).

Additionally, we demonstrate our control over the self-torque value
by varying the time delay in figure 32, where the self-torque increases
almost linearly with the time delay. The excellent agreement between
our theory and experiments confirms the creation of XUV self-torqued
beams.
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Figure 32: Simulated (dashed line) and experimental (solid line) self-torque
versus the time delay between the two infrared drivers for the 17-
th (a) and 23-rd (b) order harmonics. The black line indicates the
theoretical prediction by Eq. (92) and the shaded region depicts
the experimental uncertainty in the retrieved self-torque. The
simulation parameters are the same as those of figure 31, but
considering a wide range of time delays.

In conclusion, we have demonstrated the generation and character-
ization of self-torqued XUV beams. Our work not only presents and
confirms an inherently new property of light beams, but also offers a
path for the study of systems with time-varying OAM. Noticeably, a
subsequent work has reported the generation of optical pulses with
time-varying OAM from time-modulated metasurfaces [141], and it has
also been recently proposed the generation of ultrafast self-torqued
beams by a superposition of multiple tailored vortex pulses [142]. Fi-
nally, we believe that thanks to their ultrafast nature, XUV self-torqued
beams can be extraordinary tools for laser-matter manipulation on
attosecond time and nanometric spatial scales.

Further information and results of this work can be found in our
publication [16], included in section 3.5.1.

3.4 harmonic combs with tunable line-spacing

Up to now we have studied how we can control the OAM proper-
ties of the high-order harmonics via the OAM of the driving beam.
In this section, we will demonstrate that the temporal and spectral
properties of the high-order harmonics can also be controlled by prop-
erly selecting the OAM of the driving field. Note that, usually, the
frequency content emitted from HHG is controlled by changing the
wavelength of the driving laser or by using frequency-selective optics
or monochromators. However, the manipulation of the frequency of
the XUV beams emitted from HHG is still challenging and demands
very efficient monochromators in the XUV and soft-X-ray regions.
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In particular, here we will demonstrate how we can generate har-
monic combs with tunable line-spacing, by taking advantage of the
OAM selection rules and therefore imprinting the desired frequency
line-spacing directly onto the HHG light. Remarkably, we also demon-
strate that such harmonic combs exhibit lower divergence than stan-
dard Gaussian-driven harmonics. Our experimental collaborators have
corroborated such frequency control in the XUV regime. Note, more-
over, that our theoretical simulations predict that such control can be
extended towards soft-X-ray frequencies.

3.4.1 Physical mechanisms behind the harmonic line-spacing control via
the orbital angular momentum of the driving beams

As shown in figure 33a, typically, the HHG radiation consists of bursts
emitted every half cycle of the driving field, thus with a time delay of
∆τ = T/2 (T being the driving field period). Accordingly, the harmonic
comb spacing is ∆ω = 2π/∆τ = π/T = 2ω0. Interestingly, the line
spacing would be customized by modifying the number of bursts per
cycle of the incident field, as shown in figure 33b. This possibility is
difficult to achieve microscopically, but it turns to be feasible from the
macroscopic perspective. For that purpose, we consider a driving beam
composed of two infrared linearly polarized vortex beams carrying
`1 = |`1| and `2 = −|`2|, respectively, with |`1| < |`2|, and with no time
delay between them. Such driving beam has a transverse distribution
that can be interpreted as a phased necklace, as schematically depicted
in figure 33c. Thus, upon HHG, the gas target behaves as a phased
antenna array of N = |`1|+ |`2| lobes, where each lobe’s harmonic
emission takes place at a delayed time determined by the relative
phase shift, as it is demonstrated in our publication [17], included
in section 3.5.2. The minimum phase shift between different lobes is
given by

∆ϕmin =
π

ξ1 + ξ2
, (95)

where ξi = Ll.c.m/|`i|, Ll.c.m being the least common multiple of |`1|
and |`2|. Thus, the time delay between two successive emissions is

∆τ =
∆ϕmin
ω0

=
T

2(ξ1 + ξ2)
. (96)

Let us now focus on the harmonic radiation that is detected on
axis. The on-axis harmonic yield at the far-field is the result of the
coherent addition of the emission from all the lobes. Since the optical
path from each of the lobes to the axis is the same, ∆τ is also the time
delay between the harmonic bursts detected at the on-axis far-field.
Therefore, in such case, the harmonic line spacing is:

∆ω = 2(ξ1 + ξ2)ω0, (97)
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Figure 33: (a) TFA of the harmonic emission calculated on-axis corresponding
to HHG in helium driven by a standard Gaussian beam (λ0 =

800nm). (b) Same as (a) but using a phased-necklace driving
beam. The radiation bursts exhibit a higher cadence. (c) Scheme of
the generation of high-order harmonic combs via HHG driven by
a phased-necklace beam. Two infrared linearly polarized vortex
beams carrying `1 = 2 and `2 = −3 are combined forming a
phased-necklace beam, where the phase colors correspond to
those of the dashed lines in panel (b). The harmonic emission
interferes in the far-field to create a strong low-divergence on-axis
yield (represented for the 25-th order harmonic in the figure),
whose spectrum is a frequency comb with a spacing that depends
on the OAM of the driving fields.

and only the harmonic orders satisfying

q = (2m+ 1)(ξ1 + ξ2), (98)

will be emitted, where m is an integer number. Taking into account
that, due to inversion symmetry, the harmonic orders must be odd,
Eq. (98) is restricted to the OAM combinations of the driving beam that
result in odd values for ξ1 + ξ2.

From the OAM point of view, note that the on-axis detected yield
corresponds to harmonics with `q = 0. However, the harmonics that
present an on-axis yield also exhibit an off-axis weaker emission,
corresponding to additional non-zero OAM components, that can be
calculated using Eq. (82). On the other hand, the harmonics that
do not fulfil Eq. (98) are detected completely off-axis, which means
that they solely exhibit non-zero OAM values. In addition, note that
we have found that the on-axis yield can be optimized by properly
selecting the amplitude ratio between the |`1| and −|`2| components
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(see section 3.5.2). It is also worth mentioning that, although the
generation of necklace-shaped high-order harmonics have been very
recently proposed theoretically [143], here we demonstrate, for the
first time, the important implications on the frequency content and
divergence of the harmonic combs.

3.4.2 Main results

In figure 34, we show the results of our full-quantum SFA simulations
including propagation (see section 2.3.2) corresponding to HHG in a
helium gas jet. In contrast to the standard Gaussian-driven HHG spec-
tra (grey solid lines), the line spacing is modified when HHG is driven
by the phased necklace beam. In the inset of the figure, we represent
the predicted line-spacing depending on the OAM components of the
driving field given by Eq. (97).

Figure 34: XUV harmonic combs with tunable line spacing. Simulated on-axis
spectra of HHG in helium (λ0 = 800nm) for different OAM combi-
nations in the driving beam: `1 = 1, `2 = −2 (blue); `1 = 2, `2 = −3

(green); `1 = 3, `2 = −4 (yellow); and `1 = 4, `2 = −5 (red). The
laser pulses exhibit a total peak intensity of 6.9× 1014W/cm2 and
are modeled with a trapezoidal envelope with 26.7 fs of constant
amplitude. The harmonic line-spacing is compared to that from
a standard Gaussian-driving beam (grey lines). The inset shows
a scheme of the line-spacing predicted by Eq. (97) depending on
the OAM content of the driving field, which is in good agreement
with the results from the simulations. The color scale represents
the line spacing, being 6ω0 (blue), 10ω0 (green), 14ω0 (yellow)
and 18ω0 (red).

Another relevant characteristic of the on-axis yield is its low diver-
gence compared to that in HHG driven by a Gaussian beam, showing
a needle-like intensity profile. By selecting the `q = 0 component,
the FWHM divergence angle of the intensity distribution is calculated
using the Fraunhofer integral as:

∆βFWHMq = 2.25
λ0
2πqR

(99)
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where R is the radius of maximum intensity of the necklace driving
beam (see section 3.5.2). Notably, the divergence decreases with the
harmonic order, in contrast to the case of Gaussian-driven harmonics,
where it generally increases [91, 93]. In figure 35, we compare the
divergence of the harmonics from a standard Gaussian-driving beam
and the on-axis yield from our phased-necklace beam. Our numerical
simulations show the decrease of the divergence in the latter case, in
accordance with the prediction from Eq. (99).

Figure 35: Simulation results of the FWHM divergence of the high-order har-
monics for different OAM driving combinations—in good agree-
ment with the estimation given by Eq. (99) (orange dashed line)—
and for a Gaussian driving beam where the gas jet is placed at
different positions relative to the focus. The top insets show the
divergence profile of the 27th and 45th harmonics (the solid lines
represent the `q = 0 contribution while dashed ones indicate the
total) and for the Gaussian beam, when the gas jet is placed at the
focus. The simulation parameters are those of figure 34.

Finally, the experimental validation of the predicted harmonic
combs, performed by our colleagues from the Kapteyn-Murnane group
in JILA, at the University of Colorado in Boulder, is presented in figure
36. The good agreement between the theoretical and experimental re-
sults confirms the generation of XUV harmonic combs with controlled
line-spacing and low divergence. Note that the efficiency of the har-
monics generated from the necklace-shaped driving beam is similar
to that of the standard Gaussian-driven case.

Interestingly, these harmonic combs with tunable line-spacing and
low divergence can be extended towards the X-ray regime by using
driving beams with longer wavelengths, allowing for the generation of
structured X-ray light for probing and imaging the fastest correlated
charge and spin dynamics in molecules, nanoparticles and materials.
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Figure 36: Experimental confirmation of the generation of XUV harmonic
combs with tunable line-spacing and low divergence. (a) Theo-
retical (green) and experimental (orange) high-order harmonic
combs detected on axis, emitted from an argon gas jet driven by
a phased-necklace beam carrying `1 = 1 and `2 = −2 and with
wavelength λ0 = 790nm. (b) Divergence of the 15-th (left) and
21-st (right) order harmonics in the phased-necklace-driven case
(blue) compared to the equivalent Gaussian (grey) from the simu-
lations (solid lines) and experimental (dashed lines) results. The
vertical blue line indicates half of the FWHM of the divergence of
the on-axis yield.

Further information and results about this work can be found in
[17], included in section 3.5.2.

3.5 publications

In this section, we include the full text of the two articles explained in
sections 3.3 and 3.4 about structuring HHG with the OAM of the driving
beams. The first one, included in section 3.5.1, details the methods and
results corresponding to the generation of self-torqued beams, under
the title "Generation of extreme-ultraviolet beams with time-varying
orbital angular momentum" [16]. The second one, included in section
3.5.2, contains the full information and results about the generation of
frequency combs with controlled line-spacing via the OAM, which has
been submitted for publication under the title "Necklace-structured
high harmonic generation for low-divergence, soft-X-ray harmonic
combs with tunable line spacing" [17]. In order to comply with the
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regulations of the University of Salamanca, before each article we
include an abstract in Spanish.
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3.5.1 Generation of extreme-ultraviolet beams with time-varying orbital
angular momentum

Resumen

Los haces de luz que poseen momento angular orbital (OAM) [7],
también conocidos como vórtices de luz, son muy prometedores en
cuanto a aplicaciones en muchos campos, como comunicaciones ópti-
cas, microscopía, óptica cuántica, información cuántica o manipulación
de micropartículas [144]. En este trabajo presentamos una nueva clase
de haces de luz que poseen una propiedad única asociada con una
variación temporal de su OAM: el auto-torque de la luz [16], una carac-
terística que hasta ahora no se había ni propuesto ni demostrado en
ningún régimen espectral. Concretamente, definimos el auto-torque
de la luz como la derivada del OAM respecto al tiempo, en analogía
con los sistemas mecánicos que se autoinducen una variación de su
momento angular.

En este trabajo, predecimos teóricamente y validamos experimental-
mente la producción de haces de frecuencia ultravioleta extrema (XUV)
con auto-torque a través del proceso no lineal extremo de generación
de armónicos de orden alto (HHG). Al incidir con dos pulsos infrarro-
jos retardados en el tiempo con diferente OAM sobre un chorro de gas,
los pulsos de frecuencia XUV que surgen del proceso de HHG tienen
un OAM que varía en el tiempo. Esta distribución de OAM es continua
(donde están presentes todos los componentes de OAM intermedios) y
varía en una escala de tiempos de attosegundos.

Por otro lado, el auto-torque de la luz imprime un ordenado de fre-
cuencias a lo largo de la coordenada azimutal en el plano transversal a
su propagación, lo cual permite medir su magnitud de manera precisa.
El excelente acuerdo entre nuestras simulaciones y la caracterización
experimental (llevada a cabo por nuestros colaboradores del grupo
Kapteyn-Murnane en JILA en la Universidad de Colorado) confirma
la creación de haces de frecuencia XUV con auto-torque. Además, es
importante destacar que las propiedades de los pulsos incidentes (du-
ración y retardo en el tiempo) proporcionan un control exquisito sobre
la cantidad de auto-torque impreso en un pulso de luz.

Finalmente, esta nueva clase de haces puede servir como una nueva
herramienta para obtener imágenes de excitaciones magnéticas y
topológicas, para provocar la excitación selectiva de materia cuán-
tica o para la nanomanipulación en escalas de tiempo y longitud sin
precedentes.
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INTRODUCTION: Light beams carry both en-
ergy andmomentum, which can exert a small
but detectable pressure on objects they illumi-
nate. In 1992, it was realized that light can also
possess orbital angularmomentum(OAM)when
the spatial shape of the beam of light rotates (or
twists) around its own axis. Although not visible
to the naked eye, the presence of OAM can be
revealed when the light beam interacts with
matter. OAM beams are enabling new applica-
tions in optical communications, microscopy,
quantum optics, and microparticle manipula-
tion. To date, however, all OAM beams—also

known as vortex beams—have been static; that
is, the OAM does not vary in time. Here we
introduce and experimentally validate a new
property of light beams, manifested as a time-
varying OAM along the light pulse; we term
this property the self-torque of light.

RATIONALE: Although self-torque is found in
diverse physical systems (e.g., electrodynamics
and general relativity), to date itwasnot realized
that light could possess such a property, where
no external forces are involved. Self-torque is
an inherent property of light, distinguished from

the mechanical torque exerted on matter by
static-OAM beams. Extreme-ultraviolet (EUV)
self-torqued beams naturally arise when the
extreme nonlinear process of high harmonic gen-
eration (HHG) is driven by two ultrafast laser
pulses with different OAM and time delayed
with respect to each other. HHG imprints a
time-varying OAM along the EUV pulses, where
all subsequent OAM components are physically
present. In the future, this new class of dynamic-
OAM beams could be used for manipulating
the fastest magnetic, topological, molecular, and
quantum excitations at the nanoscale.

RESULTS: Self-torqued beams are naturally
produced byHHG, a process in which an ultra-
fast laser pulse is coherently upconverted into the
EUVand x-ray regions of the spectrum.Bydriving

the HHG process with two
time-delayed, infrared vor-
tex pulses possessing dif-
ferent OAM, ‘1 and ‘2, the
generated high harmonics
emerge as EUV beams
with a self-torque, ℏxq ≃
ℏqð‘2� ‘1Þ=td, thatdepends

on the properties of the driving fields—that is,
their OAMcontent and their relative time delay
(td)—and on the harmonic order (q). Notably, the
self-torque of light also manifests as a frequency
chirp along their azimuthal coordinate, which
enables its experimental characterization. This
ultrafast, continuous, temporal OAM variation
that spans fromq‘1 toq‘2 ismuch smaller than
the driving laser pulse duration and changes on
femtosecond (10−15 s) andeven subfemtosecond
time scales for high values of self-torque. The
presence of self-torque in the experimentally
generated EUV beams is confirmed by measur-
ing their azimuthal frequency chirp, which is
controlled by adjusting the time delay between
the driving pulses. In addition, if driven by few-
cycle pulses, the large amount of frequency chirp
results in a supercontinuum EUV spectrum.

CONCLUSION:Wehave theoretically predicted
and experimentally generated light beamswith
a new property that we call the self-torque of
light, where theOAMcontent varies extremely
rapidly in time, along the pulse itself. This in-
herent property of light opens additional routes
for creating structured light beams. In addition,
because the OAM value is changing on femto-
second time scales, atwavelengthsmuch shorter
than those of visible light, self-torqued HHG
beams can be extraordinary tools for laser-
matter manipulation on attosecond time and
nanometer spatial scales.▪
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Generation of EUV beams with self-torque. (A) Two time-delayed, femtosecond infrared
(IR) pulses with different OAM are focused into a gas target to produce self-torqued EUV
beams through HHG. The distinctive signature of self-torqued beams is their time-dependent
OAM, as shown in (B) for the 17th harmonic (47 nm, with self-torque x17 = 1.32 fs−1). (C) The
self-torque imprints an azimuthal frequency chirp, which enables its experimental
measurement.
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Chen-Ting Liao2, Julio San Román1, David E. Couch2, Allison Liu2,
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Light fields carrying orbital angular momentum (OAM) provide powerful capabilities for
applications in optical communications, microscopy, quantum optics, and microparticle
manipulation.We introduce a property of light beams, manifested as a temporal OAM variation
along a pulse: the self-torque of light. Although self-torque is found in diverse physical systems
(i.e., electrodynamics and general relativity), it was not realized that light could possess such a
property.We demonstrate that extreme-ultraviolet self-torqued beams arise in high-harmonic
generation driven by time-delayed pulses with different OAM.We monitor the self-torque of
extreme-ultraviolet beams through their azimuthal frequency chirp.This class of dynamic-OAM
beams provides the ability for controlling magnetic, topological, and quantum excitations and
for manipulating molecules and nanostructures on their natural time and length scales.

S
tructured light is critical for a host of ap-
plications in imaging and spectroscopy, as
well as for enhancing our ability to opti-
cally manipulate macro- to nanoscale ob-
jects such as particles, molecules, atoms,

and electrons. The distinctive phase and inten-
sity properties of structured light beams achieved
by exploiting the angular momentum of light
have garnered renewed interest in optical manip-
ulation and control (1). One of the most relevant
structured light beams are those carrying orbital
angular momentum (OAM), also known as vortex
beams (2). The OAM of light manifests from a
spatially dependent wavefront rotation of the
light beam, which is characterized by the phase
winding number, or topological charge, ‘. OAM
beams have been harnessed for applications in
diverse fields (3) such as laser communication
(4, 5), phase-contrast (6, 7) and superresolution
microscopy (8), kinematic micromanipulation (9),
quantum information (10), and lithography (10).
Spurred by these exciting technologies, a paral-
leled interest in the ability to control andmanipu-
late the OAM of ultrafast light pulses has also

emerged, resulting in numerous techniques that
can imprint OAMdirectly onto an arbitrary wave-
form. Diffractive and refractive optics (e.g.,
q-plates, spiral-phase plates, and holographic
techniques) (11–13) can impart OAM onto waves
from radio, to optical, and even x-ray (14) fre-
quencies, and recent advances in high harmonic
generation (HHG) have produced attosecond
extreme-ultraviolet (EUV) pulses with designer
OAM (15–28).
One of the most exciting capabilities enabled

by OAM beams is their ability to exert photo-
mechanical torques (2, 29, 30). Whereas the
linear momentum of light can be employed to
control and manipulate microscopic objects via
the gradient and scattering forces associatedwith
its intensity profile, optically induced torque
manifests from angular momentum transfer be-
tween an object and a light field. This enables
fundamental capabilities in advanced classical
and quantum optical control and manipulation
techniques, such as optical tweezers, lattices, and
centrifuges (9, 31–34), allowing for the realiza-
tion of molecular and micromechanical rotors,
single-particle trafficking, and fundamental studies
of atomic motion in liquids and Bose-Einstein
condensates (35, 36).
We theoretically predict and experimentally

validate the generation of light beams that carry
time-dependent OAM, thus presenting a self-
torque. This inherent property of structured light,
the self-torque, ℏx, is defined as ℏx ¼ ℏd‘ðtÞ=dt ,
where ℏ‘ðtÞ is the time-dependent OAM con-
tent of the light pulse. After being generated, the
time-dependent OAM remains as a structural
property of the light beam propagating in free

space, where no interaction with external agents
is present. Thus, the term self-torque refers to
the inherent angular acceleration of the light
beam, in an analogy with other physical systems
that possess a self-induced time variation of the
angular momentum—such as the radiation reac-
tion of charged particles (37) or gravitational
self-fields (38). Although OAM is well understood
as a spatial property of light beams, to date, light
pulses with time-dependent OAM have not been
proposed or observed. We demonstrate that the
self-torque arises as a necessary consequence
of angular momentum conservation during the
extreme nonlinear optical process of HHG. In
HHG, the interaction of an intense field with an
atom or molecule leads to the ionization of an
electronic wave packet, which acquires energy
from the laser field before being driven back
to its parent ion, emitting a high-frequency
photon upon recollision (39, 40). The emitted
harmonic radiation can extend from the EUV to
the soft x-ray regime if the emissions from many
atoms add together in phase (41–44). The result-
ing comb of fully coherent harmonics of the
driving field in turn yields trains of phase-locked
attosecond pulses (45, 46).
Self-torqued light beams naturally emerge when

HHG is driven by two time-delayed infrared (IR)
pulses that differ by one unit of OAM (Fig. 1). The
dynamical process of HHG makes it possible to
imprint a continuous time-varying OAM, where
all OAM components are present—thus creating
self-torqued EUV beams. Intuitively, these exotic
pulses can be understood as being composed of
time-ordered photons carrying consecutively in-
creasing OAM.
The self-torque of light translates to an azi-

muthal frequency chirp (i.e., a spectral shift
along the azimuthal coordinate) on the radia-
tion emission—and vice versa, which allows us to
quantify the self-torque by an experimental mea-
surement of the azimuthal frequency chirp. In
addition, the degree of self-torque of EUV har-
monic beams can be precisely controlled through
the time delay and pulse duration of the driving,
IR laser pulses. The generation of light beams
with self-torque opens up a route for the investi-
gation of systems with time-varying OAM that
spontaneously appear in nature (47) as macro-
scopic dynamical vortices or—owing to the high
frequency of the beams—microscopic ultrafast
systems. For example, because short-wavelength
light can capture the fastest dynamics in mate-
rials (48, 49), self-torqued EUV beams can be
expected to be used for imaging magnetic and
topological excitations, launching selective and
chiral excitation of quantummatter (50), imprint-
ing OAM centrifuges (32), switching superposi-
tions of adiabatic charge migration in aromatic
or biological molecules (51, 52), or manipulating
the OAM dichroism of nanostructures (53) on
attosecond time scales.

Theory underlying the self-torque
of light

To create light beams with self-torque, we drive
the HHG process with two linearly polarized IR
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pulses exhibiting the same frequency content
(centered atw0 ¼ 2pc=l0), butwith differentOAM,
‘1 and ‘2 , where j‘1 � ‘2j ¼ 1 . The two laser
pulses are separated by a variable time delay, td,
which is on the order of the individual pulse
widths (Fig. 1A) [see also supplementary text
section S1 in (54)]. These two collinear IR vortex
beams are then focused into an atomic gas tar-
get, such that the transverse intensity distri-
bution of the two drivers exhibits maximum
overlap. We model the HHG process using full
quantum simulations in the strong-field ap-
proximation (SFA) that include propagation via
the electromagnetic field propagator (55), a
method that was used in several previous cal-
culations of HHG involving structured pulses
(16, 18, 20, 21, 26, 28, 44, 56). We consider the
driving vortex pulses possessing ‘1 and ‘2 , de-
scribed by a sin2 envelope with t = 10 fs full
width at half-maximum (FWHM) in intensity,
centered at l0 = 800 nm, and delayed by td = t =
10 fs (see materials and methods for further
details). Figure 1A shows a schematic of the
temporal envelopes of each pulse (red), as well
as their superposition (blue). Figure 1C shows
the time-dependent OAM of the 17th harmonic
obtained from our simulations (color scale),
whereas in Fig. 1B the spatial intensity distri-
bution of the 17th harmonic is sketched at three
instants of time during the emission process.
To extract the temporal variation of the OAM,
we first select the HHG spectrum in the fre-
quency range ðq� 1Þw0 to ðqþ 1Þw0 (where q is
the harmonic order to explore, being q = 17 in
Fig. 1), and then we perform a Fourier transform
along the azimuthal coordinate (20) at each time
instant along the harmonic pulse. Notably, the

temporal variation of the OAM ismonotonic and
continuous, spanning over an entire octave of
consecutive topological charges—i.e., it includes
all OAM components from q‘1 ¼ 17 to q‘2 ¼ 34.
The nature of self-torqued beams can be un-

derstood through a simple theoretical analysis.
Previous works in OAM-HHG have demonstrated
that an IR vortex beam can be coherently con-
verted into high-frequency vortex beams (15–28).
When HHG is driven by a single, linearly polar-
ized, IR vortex beam with integer topological
charge, ‘1, the OAM of the qth-order harmonic
follows a simple scaling rule, ‘q ¼ q‘1 (16, 17).
This scaling reflects the nature of OAM conser-
vation in HHG, where q IR-photons combine
to produce the qth-order harmonic. If HHG is
driven by the combination of two collinear and
temporally overlapped IR vortices with differ-
ent OAM, ‘1 and ‘2 , each harmonic order will
span over a wide OAM spectrum, given by ‘q ¼
n1‘1 þ n2‘2 (20), where n1 and n2 are the num-
ber of photons absorbed from each driver
ðn1 þ n2 ¼ q;whose total must be odd due to
parity restrictionsÞ. Each channel, ðn1;n2Þ, is
weighted according to a binomial distribution,
associated with the different combinations of
absorbing n1 photons with ‘1 and n2 photons
with ‘2 . The effect of the harmonic intrinsic
phase in the OAM spectrum, also explored in
(20), is second order, and negligible for the re-
sults presented here.
In this work, we consider the HHG fields that

can be produced by two IR laser vortex pulses
separated by some time delay. The superposition
of the delayed envelopes turns into a temporal
dependence in the relative weights of the driving
fields—thus introducing time as an additional

parameter. To show how this influences the
OAM structure of the EUV harmonics, we con-
sider two time-delayed, collinear, linearly polar-
ized, IR driving pulses with different OAM, ‘1
and ‘2 . We denote, in cylindrical coordinates
ðr; f; zÞ, the complex amplitudes of the driving
fields at the focus position (z = 0) as U1ðr; f; tÞ
and U2ðr; f; tÞ. For simplicity, we consider the
field amplitudes at the ring of maximum inten-
sity at the target—where the HHG efficiency is
highest—and the resulting field can be written as
Uðf; tÞ ¼ U0ðtÞf½1� hðtÞ�ei‘1f þ hðtÞei‘2fg,where
U0ðtÞ ¼ U1ðtÞ þ U2ðtÞ and hðtÞ ¼ U2ðtÞ=U0ðtÞ
is the relative amplitude of the second beam.
According to the strong-field description of HHG,
the amplitude of the qth-order harmonic, Aqðf; tÞ,
scales nonperturbatively with that of the driving
laser, with an exponent p < q [p ≃ 4 for our laser
parameters (20)], whereas the qth-order harmonic
phase is considered to be q times that of the
driver (see supplementary text section S1 for the
complete derivation); thus

Aqðf; tÞºUp
0 ðtÞ

� Pp
r¼0

p
r

� �
ð1� �hðtÞÞreir‘1f�hðp�rÞðtÞeiðp�rÞ‘2f

� �

� eiðq�pÞ½ð1��hðtÞÞ‘1þ�hðtÞ‘2 �f ð1Þ

where r is an integer and �hðtÞ is the average of
hðt) over the time it takes the ionized electron
to complete the rescattering trajectory that con-
tributes to the generation of a particular har-
monic. For this average, we have considered the
so-called short trajectories (57, 58), whose excur-
sion time can be approximated to half a cycle.
The contribution of long trajectories to the OAM
content is two orders of magnitude weaker than
that of the short ones (20). The summation in
Eq. 1 is carried over p different OAM channels,
eachweighted by a binomial distribution in accord-
ance with the combinatory nature of the HHG
up-conversion process. Parity conservation in
HHG demands that the total number of photons
absorbed from each driving field, n1 þ n2 , must
be odd, which implies that to generate all inter-
mediate OAM states between q‘1 and q‘2 , the
OAM of the drivers must differ by one unit, i.e.,
j‘1 � ‘2j =1. The mean OAM of the qth-order
harmonic at any instant of time along the har-
monic pulse is given by [see (54)]

�‘qðtÞ ¼ q
h
1� �hðtÞð Þ‘1 þ �hðtÞ‘2

i
ð2Þ

and the width of the OAM distribution is

s‘q ¼ j‘2 � ‘1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�hðtÞ

�
1� �hðtÞ

�r
ð3Þ

In analogy with mechanical systems, we char-
acterize the time-varying OAM spectrum of the
qth-order harmonic via the self-torque

xq ¼ d�‘qðtÞ=dt ð4Þ

As the OAM of light is defined as ℏ‘, the self-
torque is given by ℏx. For simplicity we factor
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Fig. 1. Generation of EUV beams with self-torque. (A) Two time-delayed, collinear IR pulses
with the same wavelength (800 nm), but different OAM values, are focused into an argon gas target
(HHG medium) to produce harmonic beams with self-torque. The spatial profile of the complete,
time-integrated, HHG beam from full quantum simulations is shown on the EUV CCD. (B) Predicted
evolution of the intensity profile of the 17th harmonic at three instants in time during the emission
process. (C) Temporal evolution of the OAM of the 17th harmonic, for two driving pulses with the

same duration t ¼ 10 fs, at a relative time delay of td ¼ t. The average OAM, �‘17 (solid green), and
the width of the OAM distribution, s‘17 (distance between the solid and dashed-green lines), are
obtained from Eqs. 2 and 3. The self-torque associated with this pulse, x17 = 1.32 fs−1, is obtained
from the slope of the smooth and continuous time-dependent OAM.
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out ℏ and denote the self-torque by x, in units
of fs−1. It is worth mentioning that s‘q de-
pends weakly on the harmonic order, as the
parameter p remains almost constant along the
nonperturbative spectral plateau. The nonper-
turbative nature of the HHG process reduces
the number of available channels to generate
the qth-order harmonic from q (perturbative)
to p~4 (nonperturbative). As typically p << q,
�‘qðtÞ appears as a well-defined quantity whose
relative error, s‘q=�‘q; decreases as the harmonic
order increases. Thus, �‘qðtÞ approaches the clas-
sical behavior, i.e., its relative uncertainty tends
to 0 in the limit of large harmonic orders, con-
verging to perfectly defined intermediate OAM
states.
In Fig. 1C, we show the temporal evolution of

the mean OAM of the 17th harmonic, �‘17 (solid-
green line), and its OAM width, s‘17 (dashed-
green lines). In this case, where td = t, we can
approximate the self-torque as constant over
the OAM span:

xq e qð‘2 � ‘1Þ=td ð5Þ

which provides a straightforward route for con-
trolling the self-torque through the OAM of the
driving pulses and their temporal properties. The
example shown in Fig. 1C corresponds to a self-
torque of x17 ¼ 1:32 fs�1 , which implies an atto-
second variation of the OAM. Equation 5 is valid
only if td ≃ t, and if this condition is relaxed, the
self-torque must be calculated from the defini-
tion given by Eq. 4. Actually, td ¼ t is a partic-
ularly interesting case, as it corresponds to the
time delay where the weight of all intermediate
OAM states is more uniform over all the OAM
span (see fig. S1 for the time-dependent OAM for
different time delays, showing a consistently
excellent agreement between the full quantum
simulations and the OAM content predicted by
Eqs. 2 and 3).
It is important to stress that even though the

mean OAM value at each instant of time may be
a noninteger, the nature of self-torqued beams
is different from that of the well-known frac-
tional OAM beams (21, 59–61). In particular, the
mere superposition of two time-delayed vor-
tex beams—carrying ‘i ¼ q‘1 and ‘f ¼ q‘2 units
of OAM, respectively—does not contain a self-
torque. Although it does lead to a temporal
variation of the average OAM similar to that in
Eq. 2, it does not contain physical intermediate
OAM states, i.e., photons with OAM other than
‘i and ‘f . Self-torqued beams, by contrast, con-
tain all intermediate OAM states, which are
time-ordered along the pulse (see Fig. 1C).
In addition, the width of the instantaneous

OAM distribution of self-torqued beams (Eq. 3)
is much narrower than that of the mere super-
position of two time-delayed OAM beams—
which in the case of ‘i ¼ q ‘1 and ‘f ¼ q ‘2 is
s‘q ¼ qj‘2 � ‘1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðtÞð1� hðtÞÞp

. This is a result
of the nonperturbative behavior of HHG, which
enables the creation of well-defined intermed-
iate OAM states in a self-torqued beam. In Movie 1
(and in figs. S3 and S4) we further evidence the

distinctions in the temporal evolution of the
OAM content and phase and intensity profiles
between self-torqued beams and themere super-
position of two time-delayed OAM beams. In the
latter case, the phase and intensity profiles
remain q-fold symmetric, whereas in self-
torqued beams, the q-fold symmetry is broken.
This breakdown in rotational symmetry is man-
ifested in both the intensity distribution and the
corresponding phase profiles of the self-torqued
beams. Whereas the intensity distribution ex-
hibits a characteristic “crescent” shape due to
the coherent combination of vortex beams with
subsequent OAM charges (‘i þ ‘iþ1, as previously
shown in Fig. 1), the associated phase profiles
show the continuous appearance of new vortex
singularities along a single row. In other words, a
self-torqued beam can be understood as a topo-
logical structure where new vortices emerge one
at a time.
It is of paramount relevance to evidence the

physical nature of the self-torqued beams by
temporally characterizing the intermediate OAM
states, ‘qðtkÞ, with q‘1 < ‘qðtkÞ < q‘2. Assuming
a beam with constant self-toque xq, the compo-
nent of the qth-order harmonic carrying an OAM
of ‘qðtkÞ will appear at the time tk ¼ ‘qðtkÞ�q‘1

xq
after the peak amplitude of the first driving
pulse, exhibiting a temporal width, according

to Eq. 3, of Dtk ¼ s‘q
xq

¼ t
ffiffiffiffiffiffiffiffiffiffiffiffi
p�hð1��hÞ

p
q ≪ t . There-

fore, a self-torqued pulse can be thought of as
a pulse with a time-dependent OAM, with a
temporal OAM variation much smaller than
the width of the driving pulses, reaching the
attosecond time scale for sufficiently high values
of self-torques. This allows us to stress the dif-
ference between self-torqued beams and a train
of nonoverlapping pulses with different OAM
(62). Finally, in analogy to polarization gating
techniques (63), self-torqued EUV beams open

the possibility of subfemtosecond OAM-gating
techniques, providing a high degree of tempo-
ral control over laser-matter interactions involv-
ing OAM.

The azimuthal frequency chirp of
self-torqued beams

A direct consequence of self-torque is the pres-
ence of an azimuthal frequency chirp in the light
beam. As the phase term associated with a time-
dependent OAM is given by ‘qðtÞf, the instant-
aneous frequency of the qth-order harmonic—
given by the temporal variation of the harmonic
phase, ϕqðt; fÞ—is shifted by the self-torque as

wqðt; fÞ ¼
dϕqðt; fÞ

dt
¼ wq þ d‘qðtÞ

dt
f ≈ wq þ xqf

ð6Þ
Therefore, the harmonics experience an azi-

muthal frequency chirp whose slope is the self-
torque. Although wqðt; fÞ in Eq. 6 is a continuous
function of fð�p ≤ f < pÞ, the null intensity re-
gion in the crescent profile of the beam (see inset
in Fig. 2A) avoids the frequency discontinuity.
However, further studies on this region of “struc-
tured darkness” (61) could be beneficial for a
thorough fundamental understanding of self-
torqued beams.
We present in Fig. 2 the HHG spectrum along

the azimuthal coordinate obtained in our full
quantum simulations for driving pulses of t ¼
10 fs and time delays of (A) td ¼ t ¼ 10 fs and
(B) td ¼ �t ¼ �10 fs, respectively. The intensity
crescent shape of the whole HHG beam is shown
in the inset of Fig. 2A. Both spectra reflect the
presence of an azimuthal chirp that depends on
the harmonic order, and thus, an associated self-
torque, whose sign depends on td. The full quan-
tum simulations are in perfect agreement with
the analytical estimation given by Eq. 6 (gray
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Movie 1. Comparison
between the temporal
evolution of phase,
intensity, and OAM
content of self-torqued
beams and two delayed
vortex beams.Temporal
evolution of the phase
(left column), intensity
(central column), and
OAM distribution along
the divergence (right col-
umn) of a self-torqued
beam (top) and a combi-
nation of two time-
delayed vortex beams.
The self-torqued beam
(top) corresponds to the
11th harmonic generated
through HHG (‘1 ¼ 1,
‘2 ¼ 2, t ¼ 10 fs, td ¼ 10 fs,
l1 ¼ l2 ¼ 800 nm) calculated using the thin slab model (see supplementary text section S2),
whereas the vortex combination (bottom) corresponds to two time-delayed vortex beams (‘1 ¼ 11,
‘2 ¼ 22, t ¼ 10 fs, td ¼ 10 fs, l1 ¼ l2 ¼ 800 nm).
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dashed lines). This result shows that the spectral
bandwidth of the harmonics can be precisely
controlled via the temporal and OAM properties
of the driving pulses. Moreover, it provides a
direct, experimentally measurable parameter to
extract the self-torque, without measuring the
OAM of each harmonic at each instant of time
with subfemtosecond resolution, which is cur-
rently unfeasible. This reasoning implies that a
beamwith azimuthal frequency chirp would also
exhibit self-torque. Up to now, however, HHG
beams have only been driven either by spatially
chirped pulses [such as the so-called “attosecond
lighthouse” technique (64, 65)], or angularly
chirped pulses through simultaneous spatial
and temporal focusing, which (in theory) yield
spatially chirped harmonics (66). However, to
the best of our knowledge, azimuthal chirp—
and thus, self-torque—has not been imprinted

into EUV harmonics or in any other spectral
regime.

Experimental confirmation of the
self-torque of EUV beams

Light beams possessing a self-torque were exper-
imentally generated by driving the HHG pro-
cess in argon gas using two collinear, IR vortex
beams with topological charges ‘1= 1 and ‘2= 2
that are derived from a high-power, ultrafast re-
generative amplifier (Fig. 3A). Briefly (see mate-
rials and methods for full details), the two vortex
beams are spatiotemporally overlapped to yield
a mixed OAM driving mode, which is then di-
rected onto a supersonic expansion of argon gas
to generate self-torqued EUV beams (q= 13 to 23,
~20 to 36 eV). The presence of self-torque in the
emitted high harmonics is confirmed by using a
cylindrical mirror–flat-grating EUV spectrometer

that serves to transform the self-torque-induced
azimuthal chirp into a spatial chirp, which is
then spectrally resolved as the (1D) focusing har-
monic beam is dispersed (Fig. 3B). This simulta-
neous mapping of the azimuthal frequency chirp
and high-harmonic comb to the same spectral
axis is achieved by aligning the intensity crescent
of the EUV beam [see materials and methods
and (54)] such that its intensity-weighted center
of mass (COM) is orthogonal to the mutually
parallel focusing and dispersion axes of the EUV
spectrometer. In this configuration, the azimuthal
frequency chirp is mapped to a linear spatial
chirp by the cylindrical mirror, and this resulting
spatial chirp in each harmonic is then resolved
by the grating. The resulting spatial-spectral dis-
tribution is then imaged via a high–pixel density,
EUV charge-coupled device (CCD) camera, which
allows for the simultaneous measurement of
the azimuthal angular extent of the self-torqued
beams (54) and the induced azimuthal frequency
chirp with a high precision. High-resolutionHHG
spectra are collected as a function of time delay
between the driving pulses by scanning the rela-
tive time delay between the two beams in two-
cycle increments (i.e., 5.272 fs), which ensures
that the HHG beam remains aligned to the spec-
trometer at each experimentally sampled time
delay. Such exquisite control (fig. S6) allows us
to simultaneously measure both the self-torque-
induced frequency chirp of the HHG beams and
the azimuthal angular range over a large range of
relative time delays.
Figure 4 shows the comparison between ex-

perimental and theoretical results. Panels (A)
and (B) show the experimental and theoretical
spatial profile of the high harmonic beams, re-
spectively. The crescent shape of the measured
spatial profile already gives a clear indication
of the presence of all intermediate OAM con-
tributions from q‘1 to q‘2, and thus, of the crea-
tion of self-torqued beams. Panels (C) to (F) show
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Fig. 2. Azimuthal frequency chirp of self-torqued beams. Simulated spatial HHG spectrum
along the azimuthal coordinate ðfÞ when the time delay between the driving pulses is (A) 10 fs
and (B) −10 fs. The self-torque of light imprints an azimuthal frequency chirp, which is different
for each harmonic, as indicated by the gray dashed lines (obtained from Eq. 6). The azimuthal fre-
quency chirp serves as a direct measurement of the self-torque of each harmonic beam. The inset
of (A) shows the intensity profile of the HHG beam, as well as the definition of the azimuth, f.

Fig. 3. Experimental scheme for generating and measuring light beams with a self-torque. (A) Two time-delayed, collinear IR pulses with the same
wavelength (790 nm), but different OAM values, are focused into an argon gas target to produce harmonic beams with self-torque. (B) An EUV
spectrometer, composed of a cylindrical mirror and flat-grating pair, collapses the HHG beam in the vertical dimension (lab frame y axis), while preserving
spatial information, and thus the azimuthal extent in the transverse dimension (lab frame x axis). (Lower-right inset) The cylindrical mirror effectively
maps the azimuthal frequency chirp into a spatial chirp along the lab frame x axis (i), which is then dispersed by the grating (ii).
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the azimuthal chirp of the high harmonics for
time delays of td = 50.4 (C and D) and −50.4 fs
(E and F), respectively. The different slope of
the azimuthal chirp, and the excellent agree-
ment with the analytical theory given by Eq. 6
(gray dashed lines), and the full quantum sim-
ulations, confirm the presence of self-torque in
the retrieved harmonic beams. Driving pulses of
t ¼ 52 fs have been used in our full quantum sim-
ulations to mimic the experimental parameters.
In Fig. 5, we plot the experimental (solid lines)

and theoretical (dashed lines) self-torques ob-
tained for the 17th (A), 19th (B), 21st (C), and
23rd (D) harmonics as a function of the time
delay between the IR drivers, for the same pa-
rameters as in Fig. 4. As the time delay is varied,
so too is the degree of azimuthal frequency chirp
across the entire harmonic spectrum (according
to Eqs. 2 and 6), verifying the dynamical build-up
of OAM in the self-torqued beams. The self-
torque is extracted from themeasured azimuthal
spectral shift (see Fig. 4F) and the azimuthal
extent of the HHG beam [see (54) for details],
using Eq. 6. The excellent agreement and, es-
pecially, the overall trend, unequivocally dem-
onstrate the presence of a temporally evolving
OAM content and, thus, a self-torque, in all the
EUV harmonics generated.

Self-torque versus time duration and
EUV supercontinuum generation

EUV beams with self-torque can be generated
and controlled via the properties of the driving
IR vortex beams, with optimal self-torque pro-
duced when the laser pulse separation is equal to
their duration (i.e., td ¼ t), where all intermed-
iate OAM contributions appear with a similar
weight (fig. S1). To illustrate this concept, Fig. 6A
shows the simulated self-torque obtained for dif-
ferent IR driving pulse durations.
In particular, if driven by few-cycle pulses, the

self-torque—and thus the azimuthal chirp—is
high, with large amounts of OAM building up on
an attosecond time scale (Fig. 6B, where t ¼ 4 fs).
If the torque is high enough, the harmonic fre-
quency comb sweeps along the azimuth, encap-
sulating all the intermediate frequencies between
the teeth of the harmonic comb. Thus, the fre-
quency chirp of time-dependent OAM beams
not only is useful to measure the self-torque but
also represents an approach to obtain an EUV
supercontinuum, as shown in the right inset of
Fig. 6B. This allows for the creation of a very
precise, azimuthally tunable frequency comb in
the EUV and a supercontinuum spectrum that is
complementary, yet distinct, from that of other
approaches (67–69).

Conclusions

We have demonstrated that light beams with
time-dependent OAM can be created, thus carry-
ing optical self-torque. This property spans the
applications of structured light beams (1) by ad-
ding a new degree of freedom, the self-torque,
and thus introducing a new route to control
light-matter interactions. In particular, ultrafast,
short-wavelength, high harmonic beams with
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Fig. 4. Azimuthal frequency chirp and experimental measurement of the self-torque of EUV
beams. (A and B) Experimental and theoretical spatial intensities of the HHG beams, after passing
through an Al filter, comprising harmonics q = 13 to 23. (C to F) Spatial HHG spectrum along the
azimuthal coordinate ðfÞ from experiment [(C) and (E)] and quantum simulations [(D) and (F)],
when the time delay between the driving pulses is [(C) and (D)] 50.4 fs and [(E) and (F)] −50.4 fs.
The self-torque of light imprints an azimuthal frequency chirp, which is different for each
harmonic, as indicated by the gray dashed lines (obtained from Eq. 6). (G and H) Theoretical
and experimental harmonic lineouts obtained at f = –0.8 rad (green), f = 0.0 rad (yellow), and f =
0.8 rad (blue) for td= 50.4 fs.The azimuthal frequency chirp serves as a direct measurement of the
self-torque of each harmonic beam. Differences in mode size of the theoretical and experimental EUV
beam are due to slight differences in the fundamental beam mode sizes (see materials and methods).
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self-torque can be naturally produced by taking
advantage of the conservation laws inherent to
extreme nonlinear optics. This capability can yield
distinctively structured light beams that can de-
liver optical torque on the natural time and

length scales of charge and spin ordering, e.g.,
femtosecond and nanometer. Finally, the self-
torque of light imprints an azimuthal frequency
chirp, which allows a way to experimentally
measure and control it. Moreover, if the self-

torque is high enough, the harmonic frequency
comb sweeps smoothly along the azimuth, and
if integrated, a high-frequency supercontinuum
is obtained, thus presenting exciting perspectives
in EUV and ultrafast spectroscopies of angular
momentum dynamics.

Materials and methods
Theoretical approach for full quantum
simulations describing the self-torque
of OAM high harmonic beams

To calculate the HHG driven by two time-delayed
OAM pulses, we use a theoretical method that
computes both the full quantum single-atom
HHG response and subsequent propagation (55).
The propagation is based on the electromagnetic
field propagator, in which we discretize the tar-
get (gas jet) into elementary radiators (55). The
dipole acceleration of each elementary source is
computed using the full quantumSFA, instead of
solving directly the time-dependent Schrödinger
equation, yielding a performance gain in com-
putational time when computing HHG over the
entire target (55). At the microscopic single-atom
level, and for the parameters considered in this
work, the spatial phase of the electric field can be
well approximated as homogeneous in the vici-
nity of the atom where the wave packet dynam-
ics take place. We assume that the harmonic
radiation propagates with the vacuum phase
velocity, which is a reasonable assumption for
high-order harmonics. Propagation effects in
the fundamental field, such as the production
of free charges, the refractive index of the neu-
trals, and the group velocity walk-off, as well as
absorption in the propagation of the harmonics,
are taken into account. Although we account for
the time-dependent nonlinear phase shifts in the
driving fields, nonlinear spatial effects are not
taken into account.We consider two vortex beams
with ‘1 ¼ 1 and ‘2 ¼ 2, whose spatial structure
is represented by a Laguerre-Gaussian beam [see
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Fig. 5. Experimental confirmation of the self-torque of light in EUV beams. Self-torques
obtained as a function of the time delay between the IR laser drivers for the 17th (A), 19th (B), 21st
(C), and 23rd (D) harmonics. The experimental data are shown in solid-color lines, the results from
full quantum simulations in dashed lines, and the analytical estimation given by Eq. 2 in solid black
lines. The shaded regions depict the experimental uncertainty in the retrieved self-torque for each
harmonic order, which themselves comprise the standard “one sigma” deviation of the measured
self-torque (i.e., 68% of the measured self-torque values will fall within this uncertainty range).

Fig. 6. Manifestation of self-torque for EUV supercontinuum generation. (A) Self-torque as a function of pulse duration for the 17th and 23rd harmonics,
for time delays equal to their pulse duration. Solid lines are calculated from Eq. 2, and the squares correspond to results from full quantum simulations.
(B) Spatiospectral HHG distributions when driven by two 800-nm, 4-fs pulses with ‘1=1 and ‘2=2, delayed by 4 fs with respect to each other.The optical
self-torque imprints an azimuthal frequency chirp, which is different for each harmonic order, as indicated by the gray dashed lines (obtained from Eqs. 5 and 6).
The right panel shows the HHG yield at p/2 rad (blue line, and white vertical dashed line in B) and the spatially integrated supercontinuum (red line).
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eq. S13 in (54)]. The laser pulses are modeled
with a sin2 envelopewhose FWHM in intensity is
t , and centered at 800 nm in wavelength. The
amplitudes of the two fields are chosen to obtain
the same peak intensity (1:4� 1014 W/cm2) at fo-
cus for each driver at the radii ofmaximum super-
position (i.e., the brightest intensity rings overlap
spatially). The driving beam waists are chosen to
overlap at the focal plane (beingw1 ¼ 30:0mmfor
‘1, and w2 ¼ w1=

ffiffiffi
2

p ¼ 21:4 mm for ‘2) where a
10-mm-wide Ar gas jet flows along the direction
perpendicular to the beam propagation, with a
peak pressure of 667 Pa (5 torr). The low thick-
ness of the gas jet is due to computational time
limitations; however, on the basis of our previous
results of OAM-HHG (18), we do not foresee any
fundamental deviationwhen considering thicker
gas jets closer to the experimental jet used in this
work (a diameter of 150 mm).

Experimental setup for the generation
and characterization of self-torqued
EUV beams

The generation of self-torquedhigh-harmonics is
achieved by impinging a pair of collinear, lin-
early polarized, nondegenerate IR-vortex beams
onto a supersonic expansion of argon gas. The
IR vortex beams (with topological charges of
‘1 ¼ 1; ‘2 ¼ 2) are derived from a high-power,
ultrafast regenerative amplifier (790 nm, 40 fs,
9 mJ, 1 kHz, KMLabs Wyvern HE). The near full
output of the amplifier is sent into a frequency-
degenerate Mach-Zehndertype interferometer,
which separates and later recombines the two
driving pulses to form the dual-vortex IR driver.
In each spatially separated arm of the interfer-
ometer, a combination of half-waveplates, faceted
spiral phase plates (16 steps per phase ramp,
HoloOr), and independent focusing lenses result
in each beam possessing linear polarization, non-
degenerate topological charges, and similarly
sized intensity rings at focus. Independent irises
in each beam path allow for fine tuning of the
transverse mode size at focus and are used to
match the size of themaximum-intensity ring for
each driver. Using this strategy, the two driving
beams possessed a full diameter of the intensity
of ∼65 mm—corresponding to waists sizes ofw‘1

≈45 mm andw‘2 ≈ 33 mm (70). The driving laser
modes themselves, both individually and com-
bined, are characterized by amodified Gerchberg-
Saxton phase retrieval algorithm, which solves
for the phase of a propagating light beam and
allows extraction of the OAM content of the IR
vortices (see supplementary text section S4), thus
ensuring high-quality vortex beams for driving the
HHGprocess (movie S1). Thismodified Gerchberg-
Saxton method acquires and retrieves OAM
content much faster than our previous charac-
terization method using ptychography (71), but
it is limited to nonmultiplexed (i.e., single-color)
beams. A high-precision, high-accuracy, and high-
repeatability delay stage (Newport, XMS-160S) is
used to control the relative time delay between
the two driving pulses, with subfemtosecond pre-
cision. The pulses are recombined at the output
of the interferometer using a low-dispersionbeam-

splitter and then directed onto the supersonic
expansion of argon gas in a vacuum chamber.
We take extreme care to ensure that the two
arms experience similar dispersion by using
the same thickness and design of optics in each
arm of the interferometer, which helps to reduce
effects from carrier-to-envelope phase variation
in the separate beam paths, while also ensur-
ing similar pulse widths. Finally, the use of a
frequency-degenerate Mach-Zehnder interfer-
ometer results in a 50% intensity loss of each
driver when combined at the interferometer’s
exit; however, this configuration proved ideal to
minimize pulse dispersion, while also allowing
for independent control of the polarization and
topological charge of the driving beams.
Self-torqued high harmonics are generated via

the HHG up-conversion process, then dispersed
in 1D via a cylindrical mirror–flat-grating EUV
spectrometer and finally collected by a CCD
camera (Andor Newton 940). A 200-nm-thick
aluminum filter blocks the residual driving light
before entering the spectrometer—while passing
harmonics over its transmission range, ~17 to
72 eV—and all harmonic spectra are corrected for
the transmission of the EUV beamline. To align
the resulting HHG crescent to the spectrometer,
we exploit the natural physics of time-delayed
OAM beams. When two vortex beams with ‘1= 1
and ‘2 = 2 are superposed, such that their
amplitudes and intensity rings are equal, the
resulting intensity distribution exhibits a char-
acteristic crescent shape. The azimuthal orien-
tation of the COM of the intensity crescent can
be controlled via a relative phase delay between
the two single-mode OAM drivers, such that a
full-cycle phase delay (i.e., 2.635 fs for the 790-nm
pulses used here) returns the intensity crescent
to its initial position. By carefully adjusting the
time delay between the two single-mode IR
vortex beams, we can control the alignment of
the intensity crescent of the driving beam [see
(54)], and so to the resulting crescent-shaped
harmonic beam (because, to first order, the
HHG beam profile mimics the intensity distri-
bution of the driving beam). Once the harmonic
beam is aligned to the spectrometer, the rel-
ative phase delay between the driving beams is
scanned in two-cycle increments (i.e., 5.272 fs),
which ensures that theHHGbeam remains aligned
to the spectrometer at each experimentally sam-
pled time delay. Such exquisite control (see fig.
S6) allows us to simultaneously measure both
the self-torque-induced frequency chirp of the
HHG beam and the azimuthal angular range
(see supplementary text section S7) with a high
resolution.
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3.5.2 Necklace-structured high harmonic generation for low-divergence,
soft-X-ray harmonic combs with tunable line spacing

Resumen

Las nuevas fuentes de luz de rayos X coherentes son fundamentales
para el avance de la nanotecnología, ya que permiten descubrir nueva
física fundamental, así como manipular las propiedades electrónicas,
magnéticas y de transporte de los materiales. Entre ellas, la generación
de armónicos de orden alto (HHG) proporciona capacidades únicas
para controlar las propiedades de la luz de longitud de onda corta
como la duración del pulso, la polarización, la amplitud y la fase.

En este trabajo [17], demostramos teórica y experimentalmente una
técnica para controlar el contenido espectral y la divergencia de los
pulsos de luz emitidos en la HHG, cuyas frecuencias están en el rango
del ultravioleta extremo o incluso en los rayos X blandos. Para ello,
combinamos dos pulsos infrarrojos con contenido de momento angular
orbital (OAM) opuesto y no degenerado para crear un haz infrarrojo
cuyo perfil transversal tiene forma de “collar de cuentas” con fase.
Este haz incide sobre un chorro de gas dando lugar al proceso de
HHG en el cual se emiten peines de frecuencias de armónicos de orden
alto cuyo espaciado podemos regular. Concretamente, la conservación
del OAM nos permite ajustar el espaciado entre líneas de los peines
de armónicos de orden alto. Además, la emisión de la HHG en eje
tiene una divergencia muy baja, por debajo de la obtenida cuando se
utilizan haces incidentes Gaussianos, y que disminuye aún más con el
orden armónico.

Este trabajo proporciona un nuevo grado de libertad para el diseño
de peines de armónicos, particularmente en el régimen de rayos X,
donde las opciones disponibles son muy limitadas. En particular, estos
haces de armónicos pueden dar lugar a sondas más sensibles para
estudiar las dinámicas de carga y espín ultrarrápidas en moléculas,
nanopartículas y materiales.
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Abstract 

The extreme nonlinear optical process of high-harmonic generation (HHG) makes it possible to 

map the properties of a laser beam onto a radiating electron wavefunction, and in turn, onto the 

emitted x-ray light. Bright HHG beams typically emerge from a longitudinal phased distribution 

of atomic-scale quantum antennae. Here, we form a transverse necklace-shaped phased array 

of HHG emitters, where orbital angular momentum conservation allows us to tune the line spacing 

and divergence properties of extreme-ultraviolet and soft X-ray high harmonic combs. The on-axis 

HHG emission has extremely low divergence, well below that obtained when using Gaussian 

driving beams, which further decreases with harmonic order. This work provides a new degree of 

freedom for the design of harmonic combs – particularly in the soft X-ray regime, where very 

limited options are available. Such harmonic beams can enable more sensitive probes of the fastest 

correlated charge and spin dynamics in molecules, nanoparticles and materials. 
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Introduction 

A new generation of coherent x-ray sources are opening up a new understanding of the fastest 

coupled charge, spin and phonon interactions and transport in materials (1-5). X-ray sources such 

as free electron lasers (6, 7) and high-harmonic generation (HHG) (8-14) can produce coherent 

light from the extreme-ultraviolet (EUV) to the soft X-ray (SXR) region. Moreover, in the case of 

HHG sources, they are perfectly synchronized to the driving laser, to sub-femtosecond precision, 

and present high temporal coherence. In HHG, an atom undergoes strong field ionization in an 

intense femtosecond laser field. The liberated electron is then accelerated in the laser field before 

recombining with the parent ion, which results in the emission of higher-order harmonics. In the 

microscopic quantum picture, the driving laser creates a nanoscale dipole antenna in each atom, 

which radiates high harmonics of the fundamental laser field. This short wavelength radiation can 

be manipulated at the single atom level or at the macroscopic phase-matching level by structuring 

the intensity, frequency content, polarization and orbital angular momentum (OAM) of the driving 

laser field (15-21). 

 Currently, control of the frequency content of the HHG light source – a key property for many 

advanced applications – is gained by changing the wavelength of the driving laser or by using 

frequency-selective optics or monochromators. By tuning the driving laser wavelength from the 

mid- and near-infrared to the ultraviolet, the HHG spectrum can be tuned from a bright coherent 

supercontinuum to a set of narrow-band (22, 23). Bright high-order harmonics extending into the 

keV region, well beyond the water window, can be obtained by using mid-infrared driving fields 

(22, 24-30). Narrow spectral peaks into the SXR region can be achieved by driving harmonics with 

UV lasers, although the low ponderomotive energy (~λ2) necessitates the use of extremely high 

laser intensities (23). The manipulation of the frequency and the divergence of these HHG beams 

is still challenging and demands very efficient monochromators and good focusing optics in the 

EUV and SXR regions. An appealing alternative is to instead imprint the desired properties directly 

onto the HHG light, by tailoring the driving laser and taking advantage of selection rules. Recent 
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works have demonstrated the relevance of non-perturbative dynamics underlying HHG in 

rephasing the wavefront to achieve good divergence profiles (31, 32), which can lead to focusing 

of harmonic beams without additional optics. However, it is still not possible to achieve 

general/full control over the frequency content and divergence properties of HHG radiation, to 

tailor the HHG illumination for applications.  

 The emerging field of ultrafast structured light is providing exciting techniques for enhancing 

laser-matter interactions for applications (33). In particular, exploitation of the OAM is opening 

up unexpected avenues for controlling the properties of high-harmonic fields as they are being 

generated. OAM manifests itself as a variation of the beam’s spatial phase along its transverse 

profile, and it is characterized by its topological charge, ℓ, or number of 2π phase twists along the 

azimuthal coordinate (34, 35). Since the first experiments in 2012 (36), OAM-driven HHG has 

proven to be a powerful tool for shaping the spatial properties of higher order harmonics—

including the topological charge, intensity distribution (37-42), and polarization properties (20, 

43). OAM can also be used to control the temporal shape of HHG—through the generation of 

helical attosecond pulses (37,39) or high harmonics with an OAM that increases during the pulse, 

which is a unique capability of HHG light (21). Although the ability to control the temporal shape 

implies an ability to also control the spectral shape, to date OAM has not been yet exploited to 

tailor the spectral content in HHG.  

In this work, we are able to control the spectral and divergence properties of HHG by driving 

it with optimally phased necklace laser beams – a class of ring-shaped beams with azimuthally 

modulated amplitude and phase, resulting from the interference of multiple OAM modes. Our 

theoretical and experimental results show that by driving HHG with these structured beams, we 

generate a transverse phased array of HHG sources which emit a bright and adjustable harmonic 

comb along the optical axis. OAM selection rules and transverse phase-matching conditions allow 

us to tune the spectral spacing and divergence properties of these harmonics. Significantly, the on-

axis HHG emission has extremely low divergence, which is not only lower than that obtained with 
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standard Gaussian beams, but the scaling behavior with the harmonic order is also reversed –– 

such that higher-order harmonics exhibit progressively lower divergences (see Fig. 1). Our 

simulations demonstrate that these properties extend into the water window SXR regime, when 

driven by mid-IR necklace beams. This work provides a new degree of freedom for the design of 

harmonic combs – particularly in the SXR regime, where very limited options are available.  

  
Figure 1 | Tunable, low-divergence high harmonic combs via necklace-driven HHG. a Two linearly polarized 
vortex beams carrying OAM of ℓ1=2 and ℓ2=-3 are overlapped to create a necklace-structured intensity and phase 
profile, and focused into He/Ar gas to drive HHG. The intensity lobes at the necklace focal plane represent a phased 
array of EUV/SXR emitters which interfere on-axis to form a comb of harmonics with a spacing dependent on the 
OAM of the driving fields. The harmonic intensity profile shows a strong emission on-axis (detailed in the figure for 
the 25th harmonic). b Time-frequency analysis of the simulated on-axis harmonic comb for Gaussian and necklace 
(ℓ1=2, ℓ2=-3) driven HHG in He at 800 nm. The dashed-color lines indicate the corresponding phase from panel a for 
each emission event. c HHG spectrum for the case of necklace-driven and Gaussian-driven HHG simulated in panel 
b. The harmonic spacing, ∆ω=10ω0, (15.5 eV), in the necklace-driven on-axis HHG spectrum is a result of OAM 
conservation, and is tunable by varying the OAM content of the driving laser (upper panel). The on-axis harmonics 
are emitted with a divergence which is significantly reduced compared to that of Gaussian-driven HHG, and decreases 
with increasing harmonic order (bottom panel). 
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Tailoring the high-harmonic line spacing through necklace-driven HHG 

Necklace beams can be generated and maintained through self-focusing in nonlinear media (44, 

45), or by creating them utilizing either spatial light modulators (46) or specially tailored 

diffractive optical elements (47, 48). Here, we form necklace beams with a distinctive phase 

structure by spatiotemporally overlapping two femtosecond laser pulses with identical duration, 

wavelength, and polarization, but opposite and non-degenerate OAM (ℓ1=|ℓ1|, ℓ2=-|ℓ2|). The 

composite electric field exhibits a modulated intensity necklace structure, with evenly-spaced 

lobes of similar amplitude arranged at a constant distance from the optical axis, and with a relative 

phase shift between neighboring lobes. Figure 1a shows the intensity-modulated phase profile at 

the focus resulting from the superposition of two vortex beams with ℓ1=2, ℓ2=-3, as well as the 

far-field spatial intensity distribution of a given harmonic order (the 25th). Remarkably, even 

though the driving field contains a singularity and hence has zero intensity at all points along the 

optical axis, we observe numerically and experimentally that a subset of harmonic orders develops 

a bright on-axis maximum upon propagation. We further find that by using different combinations 

of OAM beams to synthesize the necklace driver, this subset can be varied, allowing us to tune the 

line spacing of the harmonic comb emitted on the optical axis without altering the driving laser 

wavelength. 

This surprising result can be understood by viewing the combined dual-vortex source as an 

EUV/SXR phased antenna array. The composition of OAM beams creates a necklace-structured 

electric field containing N = |ℓ1| +|ℓ2| lobes equidistant from the optical axis/origin, where the 

relative phase offset of the fundamental field across the nth lobe is constant and equal to 

(2πn|ℓ1|)/(|ℓ1| +|ℓ2|) (see Supplemental Material). Treating each lobe as a radiator of the qth order 

harmonic which is coherent with the driving laser, the total field at a point 𝑟𝑟𝑓𝑓���⃗  away from the 

source plane is the sum of fields propagated from all the lobes in the necklace, and can be 

approximated by  
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𝐸𝐸𝑞𝑞(𝑟𝑟𝑓𝑓���⃗ , 𝑡𝑡) ∝ ∑ 𝑒𝑒𝑖𝑖(𝑞𝑞𝜔𝜔0𝑡𝑡+𝑞𝑞𝑘𝑘0𝑑𝑑𝑛𝑛+2𝜋𝜋𝜋𝜋
𝑞𝑞|ℓ1|

|ℓ1|+|ℓ2|) 𝑁𝑁−1
𝜋𝜋=0   [1] 

The second phase term 𝑞𝑞𝑘𝑘0𝑑𝑑𝜋𝜋 describes the phase accumulated by the qth harmonic propagating 

a distance 𝑑𝑑𝜋𝜋 = |𝑟𝑟𝑓𝑓���⃗ − 𝑟𝑟0,𝜋𝜋������⃗ | from the nth lobe to the observation point. Let us now consider the 

harmonic emission that is emitted on-axis. For all points lying along the optical axis, these 𝑑𝑑𝜋𝜋 =

𝑑𝑑 are equal. Thus, the propagation amounts to a constant phase shift (independent of n), which 

we can omit without loss of generality. The final phase term can be simplified by reordering the 

terms in the summation, yielding (see Supplemental Material) 

𝐸𝐸𝑞𝑞(𝑟𝑟𝑜𝑜𝜋𝜋−𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎, 𝑡𝑡) ∝ 𝑒𝑒𝑖𝑖𝑞𝑞𝜔𝜔0𝑡𝑡 ∑ 𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋
𝑞𝑞

𝜉𝜉1+𝜉𝜉2𝑁𝑁−1
𝜋𝜋=0   [2] 

where we have introduced 𝜉𝜉1=Llcm/|ℓ1| and 𝜉𝜉2=Llcm/|ℓ2|, Llcm being the least common multiple of 

|ℓ1| and |ℓ2|. From the above equation, we can observe that for harmonics where the quantity 

𝑞𝑞/(𝜉𝜉1 + 𝜉𝜉2) is an integer, the emission from all lobes arrives in phase, resulting in a maximum on 

axis, while for all other harmonics the contributions sum to zero. In other words, for certain 

harmonic orders, the necklace emitters are transversely phase-matched by the high-harmonic 

upconversion process to interfere constructively on the optical axis. Taking into account the 

additional constraint that q must be odd due to inversion symmetry results in an HHG comb with 

line spacing equal to  

∆ω=2(𝜉𝜉1+𝜉𝜉2)ω0   [3]. 

The temporal counterpart of this modified line spacing manifests in the periodicity of harmonic 

emission recorded on the optical axis. In Fig. 1b we perform a time-frequency analysis of the on-

axis harmonic signal extracted from our simulation results in He at 800 nm (see theoretical 

methods below). We compare the harmonic emission driven by a standard Gaussian beam against 

that driven by a necklace beam with OAM content ℓ1=2, ℓ2=-3. For the Gaussian driving beam, 

harmonics are emitted every half period of the driving field, showing a periodicity of ∆t=T0/2 

(where T0=2π/ω0 is the optical cycle associated to the central frequency of the driving field), which 
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physically corresponds to the cadence of the ionization-rescattering mechanism leading to HHG. 

This structure corresponds to a harmonic frequency comb composed of odd harmonics, with 

spacing ∆ω=2ω0 (see Fig. 1c). However, for the combined ℓ1=2, ℓ2=-3 OAM driving field, 

harmonic events are observed on-axis 10 times—i.e. 2( 𝜉𝜉 1+ 𝜉𝜉 2)—per period of the driving 

frequency, reflecting the coherent addition of the 5—𝜉𝜉1+𝜉𝜉2—unique HHG emitters in the necklace. 

As a consequence, the on-axis harmonic emission shows a periodicity of ∆t=T0/10 —

∆t=T0/2(𝜉𝜉1+𝜉𝜉2)—corresponding to a harmonic frequency comb with the line spacing given by Eq. 

(3). We emphasize that this is accomplished without altering the wavelength of the driving laser 

nor the microscopic dynamics. The spectral changes arise purely as a result of the macroscopic 

arrangement of the phased emitters. 

A deeper understanding of the modified harmonic comb spacing can be gained by invoking 

the selection rules resulting from OAM conservation. HHG driven by two spatiotemporally 

overlapped OAM pulses leads to the generation of a comb of harmonics with several, non-trivial, 

OAM contributions (40). In particular, neglecting the intrinsic or dipole phase contributions (40), 

the q-th order harmonic order has allowed OAM channels given by ℓq =nℓ1 +(q-n)ℓ2, where n is a 

positive integer representing the number of photons of the ℓ1 driver. If we apply this conservation 

rule to our scheme where the two drivers have opposite, non-degenerate OAM, i.e. ℓ1=|ℓ1| and ℓ2=-

|ℓ2|, we can readily observe that high-order harmonics emitted on-axis, i.e. with ℓq=0, are generated 

if n|ℓ1|=(q-n)|ℓ2|. In order to extract the allowed harmonics that fulfill this condition, and thus the 

content of the harmonic comb emitted on-axis, we again denote Llcm as the least common multiple 

of |ℓ1| and |ℓ2|, which fulfills ηLlcm=n|ℓ1|=(q-n)|ℓ2|, η being an integer. Retaining the definitions of 

𝜉𝜉1 and 𝜉𝜉2, the harmonic orders emitted with ℓq=0 must fulfill q = η(𝜉𝜉1+ 𝜉𝜉2). Taking into account 

that q must be odd due to the inversion symmetry, η must be odd, and the high-order harmonics 

that are emitted on-axis are 

ωq=(2m+1)(𝜉𝜉1+𝜉𝜉2)ω0,      [4] 

where m=0,1,2…, again leading to the line spacing rule given by Eq. (3).  

110 harmonics with novel orbital angular momentum properties



 8 

The line spacing ∆ω, is shown in Fig. 2a. in terms of |ℓ1| and |ℓ2|. We see that the appearance 

of on-axis harmonics with modified spectral spacing is a necessary consequence of a fundamental 

conservation law for OAM in HHG, as the OAM content of the driver determines which harmonic 

wavelengths have an allowed ℓq=0 channel. This interpretation naturally implies that the intensity 

ratio between the driving beams can be chosen to optimize the ℓq=0 (on axis) contribution (see 

Supplemental Material). Note that those harmonics that are not emitted on-axis possess non-zero 

OAM, and though they are present in the HHG beam, they present a singularity at the center.  

To verify these predictions, we performed full quantum HHG simulations including 

propagation using the electromagnetic field propagator (49) (see Methods), a method that was used 

in several previous calculations of HHG involving OAM (20, 21, 37, 40, 43). In Figs. 2b and 2c 

we present the on-axis HHG spectra driven in He with 800 nm and 2 µm wavelength driving fields, 

respectively, and for different drivers’ OAM combinations: ℓ1=1, ℓ2=-2 (blue); ℓ1=2, ℓ2=-3 (green); 

ℓ1=3, ℓ2=-4 (yellow); and ℓ1=4, ℓ2=-5 (red). In Fig. 2b we also show the spectra obtained with a 

standard Gaussian beam driver (grey). The simulation results clearly show the versatility of this 

technique to modify the frequency content of the harmonic combs, whose line spacing can be 

properly varied through the choice of the drivers’ OAM, from 2ω0 to 18ω0 for the cases presented 

in Fig. 2.   
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Figure 2 | Harmonic frequency combs with tunable line spacing controllable through the drivers’ OAM content. 
a Representation of the line spacing allowed by the selection rules for different values of |ℓ1| and |ℓ2|. The color scale 
represents the line spacing, being 6ω0 (blue), 10ω0 (green), 14ω0 (yellow) and 18ω0 (red). b, c Simulation results of 
the high harmonic spectra obtained in He for b 800 nm and c 2 µm wavelength drivers respectively, for the driver’s 
OAM combinations: ℓ1=1, ℓ2=-2 (blue); ℓ1=2, ℓ2=-3 (green); ℓ1=3, ℓ2=-4 (yellow); and ℓ1=4, ℓ2=-5 (red). The line 
spacing corresponds to that predicted in panel a. The driving beam waists of the different OAM modes are chosen to 
overlap at the radius (30/√2 µ𝑚𝑚) of maximum intensity (6.9 × 1014 W/cm2 for 800 nm, and 5 × 1014 W/cm2 for 2 
µm) at the focal plane. The laser pulses are modeled with a trapezoidal envelope with 26.7 fs of constant amplitude.  

 

 By using mid-infrared drivers, this technique can be exploited to customize harmonic combs 

extending into the SXR—as depicted in Fig. 2c, where photon energies of up to 640 eV are reached 

using 2 µm wavelength. This is particularly promising in a regime where, driven by long-

wavelength Gaussian beams, neighboring harmonic orders tend to merge into a near or true 

supercontinuum (22, 23), necessitating the use of lossy dispersive optics for spectroscopic 

applications. In contrast, these simulation results demonstrate that, using necklace-driven HHG, 

the discrete and tunable peak structure can be preserved up to the SXR when driven by mid-IR 

wavelengths. Note that the intensity ratio between the two driving pulses has been adjusted 

independently for each OAM combination, in order to optimize the ℓq=0 contribution (see 

Supplemental Material). In addition, the driving beam waists of the different OAM modes are 

chosen so their rings of maximum intensity overlap at ρ1=30/√2=21.21 µm at the focal plane (see 
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Methods), corresponding to the ring of maximum intensity of a vortex beam with ℓ=1 with w0=30 

µm, used as a reference. 

To experimentally confirm the predicted spectral properties of this unique EUV light source, 

we use a Mach-Zehnder interferometer to synthesize the necklace-structured driver from two 

OAM laser beams with identical wavelength 𝜆𝜆=790 nm and distinct topological charges of ℓ1=1, 

ℓ2=-2 (see Methods). The component beams are overlapped in time and space, and focused into an 

argon gas jet to drive HHG. The spectrum and shape of the emitted harmonics are then analyzed 

via a 2D imaging spectrometer consisting of a toroidal mirror and flat grating. As the on-axis HHG 

beam component is predicted to develop through propagation away from the source, we place an 

EUV charge-coupled device (CCD) camera slightly behind the focal plane of the toroidal mirror. 

The measured spatio-spectral images thus simultaneously record the harmonic photon energies 

and individual far field spatial profiles.  

 The measured spatial intensity profile of each of the high-order harmonics presents a structure 

with a symmetry similar to that of the driving necklace beam, in agreement with the results from 

our theoretical simulations (see Fig. 3). In this OAM combination, the predicted line spacing of 

the on-axis harmonic comb is ∆ω=6ω0, (9.5 eV) and the highest measurable harmonic orders 

allowed by the selection rule given by Eq. (2) are the 15th (23.5 eV) and the 21st (33.0 eV). This is 

supported by the intensity profiles shown in Fig. 3, where the central bright spot in the 15th and 

the 21st harmonics indicates a strong on-axis (ℓ=0) component. In contrast, all other observed 

harmonic orders exhibit a central null, i.e., they only possess non-zero OAM contributions which 

lead to off-axis emission profiles. In order to confirm that these features indeed constitute the 

predicted harmonic combs with on-demand line spacing, we insert a small circular aperture into 

the HHG beam prior to the spectrometer. We observe that the harmonics with on-axis components 

are cleanly transmitted through the aperture, while other harmonic orders are strongly suppressed. 

In the Supplemental Material, experimental results for another phased-necklace driver (ℓ1=2, ℓ2=-
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3) further support the predicted line spacing of the on-axis harmonic combs. 

 

 
Figure 3 | Experimental and theoretical high harmonic combs in Ar gas using a pair of 790-nm OAM driving 
lasers with opposite parity (ℓ1 = 1 and ℓ2 = −2). The intensity spatial structure for the 15th (H15) to 21st (H21) 
harmonics are shown for a theory and b experiment. On-axis emission is allowed for H15 and H21 as a result of OAM 
selection rules and transverse phase matching conditions. Thus, the on-axis component is transmitted for H15 and 
H21, while H17 and H19 are blocked (insets in a & b). c Simulated (top) and experimental (bottom) HHG spectra of 
necklace-driven on-axis emission. By measuring the spectrum along a line in the dispersion plane which intersects the 
optical axis for all orders, we find that the line spacing of the transmitted harmonics, ∆ω=6ω0, (9.5 eV), is consistent 
with that predicted by OAM conservation laws. Small HHG signals experimentally observed at other harmonic orders 
are due to leak-through of the components carrying higher topological charges, and could be further suppressed by 
using a smaller aperture. The difference in the ratio H15/H21 is due to slightly different cutoff energies between 
simulation and experiment.  
 

Generation of low-divergence high-order harmonics via necklace-driven HHG 

In addition to their spectral content, the divergence of the high harmonic combs is also crucial for 

applications in x-ray spectroscopy and imaging. In our scheme, the on-axis harmonics with on-

demand line spacing are generated with a remarkably low divergence, compared to that obtained 

from standard Gaussian driving laser beams. This is a consequence of the generation mechanism, 

in which the on-axis beam, not present in the source plane, arises from the constructive interference 
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of multiple phased-shifted radiators arranged with circular symmetry about the optical axis. Figure 

4a shows the simulation results of the spatial intensity profile (top) and OAM content (bottom) of 

the 27th harmonic generated in He at 800 nm for two different OAM combinations: ℓ1=1, ℓ2=-2 

(left) and ℓ1=4, ℓ2=-5 (right). It can be observed that most of the harmonic intensity is contained 

near the beam axis, corresponding to the ℓ27=0 contribution. This is a result of the intensity ratio 

of the component OAM beams, which has been selected to optimize the channel for on-axis 

harmonic emission (see Supplemental), such that the surrounding OAM contributions are naturally 

suppressed (see OAM spectra in the bottom-panels of Fig. 4a). This needle-like beam naturally 

separates from the driving laser, which has zero on-axis intensity, and can be easily isolated 

through a pinhole for direct use in an experiment. 

 
Figure 4 | Low divergence of the OAM-driven harmonic frequency combs. a Simulation results of the spatial 
intensity profile (top) and OAM content (bottom) of the 27th harmonic generated in He for ℓ1=1, ℓ2=-2 (left) and ℓ1=4, 
ℓ2=-5 (right) driving fields. The OAM spectra are obtained from the azimuthal Fourier transform at each divergence 
angle. b Simulation results of the Full width at half maximum (FWHM) divergence of the high-order harmonics for 
different OAM driving combinations (color dots)—with the gas jet placed at the focus position—, and for a Gaussian 
driving beam where the gas jet is placed at different positions relative to the focus. The orange dashed line indicates 
the estimation given by Eq. (5). The top insets show the divergence profile of two sample harmonics (27th and 45th) 
for different OAM driving combinations (showing the ℓq=0 contribution in solid and the total one in dashed line) and 
for a Gaussian beam where the gas jet is placed at the focus position. Simulation parameters correspond to those of 
Fig. 2b.  

In order to show the low divergence of the ℓq=0 harmonic beam, we present in Fig. 4b the 

divergence of the high-order harmonics driven by the opposite non-degenerate OAM combination 

(corresponding to those of Fig. 2b), compared to that of the harmonics driven by a Gaussian beam. 
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We have chosen a beam waist of 30 µm for the Gaussian beam, as a reasonable comparison against 

the OAM combination scheme, where the necklace ring presents a radius of 30/√2 µm. The insets 

show the divergence profile of two sample harmonics (27th and 45th) driven by different drivers’ 

OAM combinations (the solid lines show the ℓ=0 contribution of each harmonic, whereas the 

dashed lines show the sum of all the OAM contributions), and by a Gaussian beam. Note that the 

intensity yield of the on-axis emission is comparable to the yield obtained with a Gaussian beam. 

The bottom panel shows the divergence calculated as the full width at half maximum (FWHM) for 

different drivers’ OAM combinations (dots and dashed lines) —with the gas jet placed at the focus 

position—and for a Gaussian beam placed at different positions relative to the gas jet (solid grey 

lines).  

It is worth noticing that Gaussian-driven high-order harmonics, counterintuitively, exhibit a 

divergence that in general increases with the harmonic order (31, 32). In such cases, the divergence 

of the central intensity peak of the q-th-harmonic scales as βq~ λq/Dq, Dq being the size of the near-

field target area in which the driving field is intense enough to generate that particular harmonic. 

The fact that Dq decreases with the harmonic order faster than λq results in an increasing divergence 

with the harmonic order, as can be observed in Fig. 4b. Remarkably, due to the use of an optimized 

OAM-driving laser combination, we are able to reverse this behavior. When considering the 

opposite non-degenerate OAM driving field, the divergence of the ℓq=0 intensity peak of the q-th-

harmonic scales as 

Δ𝛽𝛽𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2.25 𝜆𝜆0
2𝜋𝜋𝑞𝑞𝜋𝜋

   [5] 

R being the radius of the necklace driving structure (see Supplemental Material). The result is that 

higher-order harmonics can be generated with progressively lower divergence, as R is constant for 

all harmonic orders. Note also that this behavior does not depend on the choice of ℓ1 and ℓ2, but on 

the size of the resulting necklace structure, which, for the cases presented in Fig. 4b, presents the 

same size. As a consequence, similar driving schemes without OAM, such as a Gaussian-necklace 
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driver or a continuous-ring driver, would also result in on-axis high-order harmonics with 

progressively lower divergence. Note however that our phased-necklace driver is composed on a 

combination of Laguerre-Gaussian modes, whose propagation behaviour is regular, and which 

allow us to control the on-axis harmonic content as described in the previous section. 

 We experimentally validate the predicted divergence behavior of the HHG frequency combs 

for Ar at 790 nm in Fig. 5. Taking an angular integration centered about the optical axis for the 

necklace-driven HHG, and considering the imaging condition of the spectrometer, we measure the 

divergence of the on-axis, Bessel-like lobe. We then compare these divergence values to those 

obtained with an equivalent Gaussian driver. In order to make as direct a comparison as possible, 

we match the beam waist parameter (lens focal length), focal position, gas pressure, and peak 

intensity between the two cases, resulting in HHG spectra with similar spectral envelopes and 

cutoff photon energies.  
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Figure 5 | Ar-driven harmonic divergences. a Theoretical (Th.) and experimental (Exp.) comparison of the intensity 
spatial profiles for the 790-nm Gaussian-driven and necklace-driven (ℓ1 = 1 and ℓ2 = −2) in Ar gas. The white dashed 
circles indicate the on-axis emission of the 15th (H15) and 21st (H21) for both theory and experiment. We applied an 
angular integration radially to these profiles to extract the divergences. b Angularly integrated radial profiles for H15 
and H21 for the on-axis emission, necklace-driven case compared to the equivalent Gaussian. The vertical blue line 
and double-headed arrow indicate half of the full width at half maximum (FWHM) of the dual-vortex, necklace-driven 
profile. The intensities of the theoretically predicted on-axis divergence are rescaled for H15 and H21, respectively, 
to match the intensities of the experimental profiles. c Theoretical (Eq. 5) and measured FWHM for necklace-driven 
on-axis emission profile indicate a decrease in the divergence with increasing harmonic order. This is in contrast to 
Gaussian-driven HHG, where divergence increases at higher harmonic orders.  

From these spectra, we make several observations. First, it is clear that the central lobe of the 

necklace-driven harmonics with on-axis components has a significantly lower divergence than that 

achievable with the equivalent Gaussian driver. Furthermore, we observe a clear decrease in the 

divergence of the 21st harmonic relative to the 15th harmonic, whereas the Gaussian harmonics, as 

expected, actually increase in divergence over the same energy range. Both the divergence values 

and trend quantitatively agree with our simulations, as well as the prediction given by Eq. (5). 

Finally, we note that both our numerical and experimental results show that the on-axis harmonics 
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are nearly equal in peak brightness to their Gaussian counterparts, indicating that the frequency 

selectivity and low divergence achieved in this scheme do not come at the cost of reduced flux at 

those frequencies. Note that the brightness of the on-axis harmonics can be controlled through the 

intensity ratio between the drivers (see Supplemental Material).  

Discussion 

Our results present a significant advance for applications that require highly coherent EUV/SXR 

beams with customizable properties. By changing only the OAM content and radius of the 

necklace driving field, one can adjust on-demand the line spacing and divergence behavior of the 

emitted high-harmonic combs in order to tailor the light source for a particular application. 

Necklace-driven HHG thus enables dramatic control over the HHG spectra without altering the 

wavelength of the driving laser. The spectral control instead arises as a result of OAM conservation 

and macroscopic transverse phase-matching conditions—the microscopic HHG physics remains 

unchanged, thus avoiding tradeoffs in cutoff energy or conversion efficiency. The ability to adjust 

the spacing between harmonic orders enhances the flexibility of HHG light sources for a variety 

of applications, particularly in the SXR region, when driven by mid-IR lasers.   

In addition to the potential advantages of the unique spectral properties, the needle-like 

divergence behavior of the harmonics generated in our scheme may enable a simplification of 

selected imaging and spectroscopy experiments by removing the need for either refocusing optics 

or methods to eliminate the driving laser beam. Instead, the on-axis contribution of the OAM 

harmonics could be selected through a pinhole spatial filter, transmitting the full on-axis 

EUV/SXR flux while blocking the driving laser. This is particularly true at shorter wavelengths 

due to the unique divergence scaling – since the divergence decreases monotonically with 

increasing photon energy. This result is especially relevant for HHG driven by mid-infrared lasers, 

where harmonics up to the 1000th can be obtained (see Fig. 2c), for a 2 µm driving laser, extending 

well into the SXR region. We do not foresee any fundamental restriction to applying this technique 
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to even longer driving wavelengths (22, 50), making it possible to tailor very high-order discrete 

harmonics with extremely low divergence. 

Conclusion 

In conclusion, we have presented a new technique for the generation of EUV and SXR harmonic 

combs with a line spacing that is controlled through the OAM makeup of infrared necklace driving 

laser beams. The emitted harmonics exhibit remarkably low divergence which further decreases 

with the harmonic order, in contrast to standard HHG driven by a Gaussian beam. Our theoretical 

simulations are corroborated by our experimental results, which demonstrate both the frequency 

control and divergence behaviour of the generated harmonic combs. Our work will facilitate a 

variety of applications which require high beam quality and spectroscopic precision, such as 

tabletop SXR-ARPES or resonant magnetic scattering. The ability to adjust and maintain 

separation between adjacent harmonic orders is also likely to be beneficial for hyperspectral 

coherent diffractive imaging techniques (51, 52), particularly in the SXR region. The low 

divergence and high beam quality enable these experiments to be carried out with simplified setups 

and enhanced flux throughput. Thus, we believe necklace-driven HHG will become a powerful 

tool for tabletop EUV/SXR spectroscopy and imaging, as well as measurements of ultrafast charge 

and spin dynamics at the nanoscale. 

 

Methods 

Theoretical simulations of HHG driven by a combination of OAM beams. We use a theoretical 
method that computes both the full quantum single-atom HHG response and subsequent 
propagation (49), thus taking into account phase-matching of the high-order harmonics generated 
in the gas jet. On one hand, the quantum single-atom response is reproduced by calculating the 
dipole acceleration  through the full quantum extended strong field approximation—without 
performing the saddle-point approximation—, which presents an excellent qualitative and 
quantitative agreement against the time dependent Schrödinger equation. Such approximation 
allows us to achieve substantial computational time gain when computing macroscopic HHG over 
the entire gas jet. On the other hand, harmonic propagation and phase-matching is computed 
through the electromagnetic field propagator (49). We discretize the target (gas jet) into elementary 
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radiators, assuming that the emitted harmonic radiation propagates with the vacuum phase 
velocity. In the present simulations, we have assumed an infinitely thin gas jet, flowing along the 
perpendicular direction to the beam propagation, with a peak pressure of 667 Pa (5 torr). We note 
that such 2D assumption for the gas target—performed due to computational time limitations— is 
a reasonable assumption for low density gas jets, based on previous theoretical and experimental 
results (20, 21). Thus, we do not foresee fundamental deviations if thicker gas jets, closer to the 
experimental one (150 µm in diameter) are considered. 
 
The spatial structure of the driving beams is represented as a Laguerre-Gaussian beam propagating 
in the z-direction, with wavelength 𝜆𝜆0, (𝑘𝑘0 = 2𝜋𝜋/𝜆𝜆0), given by  

𝐿𝐿𝐿𝐿ℓ,𝑝𝑝 (𝜌𝜌,𝜃𝜃, 𝑧𝑧; 𝑘𝑘0) = 𝐸𝐸0
𝑤𝑤0
𝑤𝑤(𝑧𝑧)�

√2𝜌𝜌
𝑤𝑤(𝑧𝑧)�

|ℓ|

𝐿𝐿𝑝𝑝
|ℓ| �

2𝜌𝜌2

𝑤𝑤2(𝑧𝑧)�                                      

× exp �− 𝜌𝜌2

𝑤𝑤2(𝑧𝑧)� exp �𝑖𝑖ℓ𝜃𝜃 + 𝑖𝑖 𝑘𝑘0𝜌𝜌
2

2𝜋𝜋(𝑧𝑧) + 𝑖𝑖𝜙𝜙𝐺𝐺(𝑧𝑧)�                 [2], 

where 𝑤𝑤(𝑧𝑧) = 𝑤𝑤0�1 + (𝑧𝑧/𝑧𝑧0)2 is the beam waist (𝑤𝑤0 being the beam waist at focus and 𝑧𝑧0 =
𝜋𝜋𝑤𝑤02/𝜆𝜆0  the Rayleigh range), 𝑅𝑅(𝑧𝑧) = 𝑧𝑧[1 + (𝑧𝑧0/𝑧𝑧)2]  is the phase-front radius, ϕ𝐺𝐺(𝑧𝑧) =

−(2𝑝𝑝 + |ℓ| + 1)arctan (𝑧𝑧/𝑧𝑧0)  is the Gouy phase, and 𝐿𝐿𝑝𝑝
|ℓ|(𝑥𝑥)  are the associated Laguerre 

polynomials. ℓ =0,±1, ,±2,… and p=0,1,2…correspond to the topological charge and the number 
of nonaxial radial nodes of the mode, respectively. In this work we will not consider beams with 
radial nodes, and thus p=0. The driving beam waists (w0) of the different ℓ modes are chosen to 
overlap at the focal plane, which corresponds to w0, w0/√2, w0/√3, w0/2 and w0/√5 for ℓ =±1,±2, 
±3, ±4, ±5 respectively. In particular, we have considered w0 =30 µm. Finally, the laser pulses are 
modeled with a trapezoidal envelope. In the simulations performed in Ar and He with 800 nm 
central wavelength, the envelope consists of three cycles of sin2 turn-on, ten cycles of constant 
amplitude—26.7 fs—, and three cycles of sin2 turn-off. In the simulations performed in He with 2 
µm central wavelength, the pulse duration is reduced due to computational time restrictions, and 
the envelope consists of two cycles of sin2 turn-on, four cycles of constant amplitude—26.7 fs—, 
and two cycles of sin2 turn-off. The amplitudes (E0) of the driving pulses are chosen to obtain a 
maximum peak intensity at focus at the radii of maximum superposition (w0/√2) of 1.7×1014 
W/cm2 for Ar, 6.9×1014 W/cm2 for He at 800 nm, and 5×1014 W/cm2 for He at 2 µm. Note that 
the intensity ratio for each LG combination has been chosen to optimize the harmonic radiation 
emitted around the beam axis (see Supplemental Material). 
 
Experimental generation. Necklace-beam driven high-harmonics are generated by focusing a 
pair of collinear, linearly polarized IR-vortex beams (with topological charges of ℓ1=1, ℓ2=-2) into 
a supersonic expansion of argon gas. The dual-vortex driver is synthesized from the output of a 
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high-power, ultrafast regenerative amplifier (790 nm, 40 fs, 8 mJ, 1 kHz, KMLabs Wyvern HE) 
passed through a frequency degenerate Mach-Zehnder interferometer. In each arm of the 
interferometer, independent spiral phase plates (16 steps per phase ramp, HoloOr), and focusing 
lenses (f1=40cm, f-2=30cm) result in each beam possessing identical (linear) polarization, distinct 
topological charges, and similarly sized spatial profiles at focus. Independent irises allow for fine 
tuning of the transverse mode size at the focal plane, and are used to overlap the maximum-
intensity ring of the two component beams. The ring of maximum intensity of the two driving 
beams was matched at a radius of ∼32 μm (see Supplemental Material). Half-waveplate/polarizer 
pairs are used to independently adjust the pulse energy in each arm in order to optimize the on-
axis intensity. For the data presented in this manuscript, the pulse energies are set to E1=480μJ and 
E2=290μJ. The combined necklace driver is characterized by a modified Gerchberg-Saxton phase 
retrieval algorithm, which solves for the spatial phase of the composite electric field and allows 
confirmation of the desired OAM content of the driving IR field, while additionally confirming 
the high stability of the interferometer setup (see Supplemental). The two component pulses 
experience approximately equal dispersion throughout each arm of the interferometer, and are 
confirmed through FROG measurements to have equal pulse widths τ ≈ 57 fs. A high-precision, 
high-stability translation stage (Newport, XMS-160S) is used to synchronize the two pulses in 
time. The beams are recombined at the output of the interferometer and focused into the supersonic 
expansion of argon from a circular gas jet (150μm diameter). The generated high harmonics, which 
range in photon energy from 20-35 eV, are transmitted through a 200-nm-thick aluminum filter 
(Luxel), which serves to block the residual IR driver. A removable circular pinhole (200 μm 
diameter) is placed on the optical axis at a distance of 60cm from the generation region, in order 
to spatially filter for the on-axis frequency comb. The transmitted harmonics are subsequently 
focused by a toroidal mirror (feff = 27cm) and dispersed by a plane ruled EUV grating (1200 
grooves/mm, Richardson) at an incidence angle 𝜽𝜽𝒊𝒊𝒊𝒊𝒊𝒊 ≈ 𝟒𝟒𝟒𝟒°. The high incidence angle is chosen 
to balance the dispersion and imaging quality of the spectrometer. An EUV CCD camera (Andor 
Newton 940) is placed behind the toroidal focal plane so as to image the far field (20 cm from the 
gas jet) of the dispersed harmonics with a magnification of 1.67. These parameters are used to 
calculate the divergence of the produced harmonics. A 100nm titanium filter (Lebow) with an 
absorption edge prior to the 21st harmonic (33 eV) is used to verify the photon energies of the 
harmonics exhibiting on-axis intensity. 
 
 
Data Availability 
The datasets and analysis routines utilized to prepare the data presented in this manuscript are 
available, free of charge, from the corresponding author under reasonable request. 
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4
AT T O S E C O N D P U L S E S W I T H N O V E L
P O L A R I Z AT I O N S TAT E S

Controlling the SAM or polarization state of XUV/X-ray pulses opens
the route to new exciting capabilities. For example, ultrafast chiral light
beams, such as circularly polarized beams, are particularly important
in the study of chiral molecules, making it possible to discriminate
between enantiomers and to resolve their dynamics [145–147]. How-
ever, although the generation and characterization of light beams with
certain polarization states can be routinely performed in the visible or
longer wavelength regimes using polarizers, it becomes much more
challenging in the XUV/X-ray regimes, where standard polarizers are
highly inefficient.

In the last decade, high-frequency beams with controlled polariza-
tion have been generated using different set-ups, as accelerator based
light sources, such as synchrotrons or X-ray free electron lasers, and
HHG. On the one hand, the former techniques have demonstrated to
provide bright X-ray pulses with controlled polarization [148], with
minimum durations of tens of femtoseconds [149]. On the other hand,
several works have demonstrated that proper configurations of HHG al-
low for the generation of high-order harmonics and attosecond pulses
with controlled polarization in table-top set-ups. The generation of
XUV beams with novel polarization states through HHG often follows
a similar strategy to that of XUV vortex beams: the incident infrared
laser beam is designed to transmit certain SAM properties to the high-
order harmonics. However, in contrast to the case of OAM, it turns
our that a single circularly polarized driving beam does not lead to
the generation of circularly polarized harmonics. Thus, more complex
strategies have been developed in the past years to circumvent this
problem.

In this chapter, we show different HHG schemes for the control of
the polarization of high-order harmonics and attosecond pulses. First,
in section 4.1, we summarize the main state-of-the-art strategies for
polarization control in HHG. Then, in section 4.2, we introduce the
non-collinear counter-rotating scheme, as a configuration in which the
ellipticity of the harmonics can be tuned. Interestingly, we demonstrate
that this capability can be used to characterize the non-perturbative
dipole response during HHG. In section 4.3, we employ the bi-circular
vortex field for the generation of attosecond pulses with simultane-
ously controlled SAM and OAM. In section 4.4, we propose a scheme
for the generation of attosecond pulse trains with time-ordered polar-
ization states from HHG driven by two time-delayed bi-circular vortex
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fields. Finally, in section 4.5, we include the full text of our publications
[18, 19], as additional information on the topics discussed in sections
4.3 and 4.4.

4.1 state-of-the-art of polarization control in high-
order harmonic generation

HHG is typically driven by linearly polarized lasers, which constrains
the electron dynamics to a one dimension. As a consequence, the
emitted harmonics are also linearly polarized. Generating high-order
harmonics with high ellipticity is not straightforward, since the effi-
ciency of HHG decreases greatly with the ellipticity of the driving field,
as shown in figure 37. The reason of this decrease is that, for increasing
ellipticities of the driving field the electronic wavepacket is driven far
away from its parent ion, which diminishes its recollision probability
[150–152]. A first approach to convert the linear polarization of the
harmonics into circular polarization consists in using multiple reflec-
tions on surfaces with different complex reflectivities for the S and P
polarization [153]. However, this method is also very inefficient.

Figure 37: High-order harmonics produced in neon as a function of the
ellipticity of the driving field (for a peak intensity of 1015W/cm2

and wavelength of 825nm). The number of photons corresponding
to each harmonic is normalized. Figure extracted from [150].

Luckily, several schemes have been developed in the last decades
to circumvent this problem, either by structuring the driving field
or by selecting different targets. Elliptically polarized high-order har-
monics have been produced employing strategies based on the use of
non-symmetric targets—such as molecules or solids—[33, 114, 154],
resonant HHG of an elliptical laser pulse [155] or combinations of lin-
early polarized drivers with different frequencies [156, 157]. Also, the
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use of two HHG sources can provide harmonics with spatially varying
ellipticity [158, 159]. On the other hand, purely circularly polarized
harmonics can be generated from schemes based on non-collinear
counter-rotating driving beams with the same color [20, 160, 161] and
two-color, counter-rotating, circularly polarized laser fields (the so-
called bi-circular driving) [162–167]. These two last methods, however,
differ in the characteristics of the generated attosecond pulses. On the
one side, the non-collinear counter-rotating driving produces circularly
polarized attosecond pulses, since the left circular polarized (LCP) and
right circular polarized (RCP) harmonics are spatially separated in the
far-field. On the other side, in the bi-circular scheme the RCP and LCP

harmonics spatially overlap and, as a result, the attosecond pulses are
linearly polarized. Nevertheless, the bi-circular field provides harmon-
ics with brightness and energies comparable to single-color linearly
polarized HHG, so in this thesis we approach these two schemes. First,
we show how to exploit the ellipticity control and how to retrieve
information about the dipole response using the non-collinear counter-
rotating driving field (section 4.2). Second, we study how to modify
the bi-circular HHG scheme to generate circularly polarized attosecond
pulses (section 4.3). Finally, since all the mentioned strategies provide
attosecond pulse trains with approximately constant ellipticity along
the train, we also propose a method for the generation of trains of
pulses with consecutive, time-ordered, polarization states using the
bi-circular driving field (section 4.4).

4.2 the non-collinear counter-rotating scheme

This scheme is based on a convenient combination of the HHG emis-
sion at different points in the target, by using a driving field whose
macroscopic structure presents a non-homogeneous polarization in the
transverse plane. To do so, two circularly polarized counter-rotating
laser beams are arranged in a non-collinear configuration, as shown in
figure 38a [160]. Let us consider the non-collinear angle as the angle
between the propagation axis of each beam and the horizontal axis. In
the target plane, the combination of the two circularly polarized driv-
ing beams results in linear polarization, which allows for the efficient
generation of linearly polarized harmonics. However, the tilt angle of
the local polarization of the driving field rotates along the horizontal
axis, due to the different temporal delay between the two drivers at
different spatial positions. Thus, at the target plane, the harmonics are
generated linearly polarized, but with a spatially varying tilt angle, as
shown in figure 38c. Importantly, the propagation direction of each
harmonic follows from the addition of the driving pulse wavevectors,
leading to two off-axis harmonic beams, as depicted in figure 38b.

In the far-field, the harmonic radiation results from the coherent
superposition of the linearly polarized harmonics generated at differ-
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ent positions in the target plane. The rotation of the polarization tilt
at the target, together with the different propagation distance from
each local emitter to the detector—which introduces a temporal delay
between the different rotated linear polarization components—, results
in a circularly polarized harmonic signal in the far-field. Thus, the

Figure 38: (a) Scheme of HHG driven by a non-collinear counter-rotating
beam. Two counter-rotating circularly polarized femtosecond laser
pulses are focused into the gas to produce both RCP and LCP XUV

beams. (b) The propagation direction of each harmonic follows
the simple vector addition of the wavevectors of the driving pulse.
(c) The driving field in the target plane exhibits linear polarization
rotating as a function of the transverse position, which is trans-
lated to the harmonics. In the far-field the coherent addition of
the rotating polarization results in circular polarization. Figure
extracted from [160].

spatial distribution of the harmonics in the far field consists in two
XUV beams exhibiting circular polarization and opposite helicity.

Note that within each XUV beam, the individual harmonics are de-
tected at a slightly different position along the horizontal coordinate.
This can be understood in terms of the linear momentum conserva-
tion, taking into account that each harmonic is generated from the
absorption of a different number of photons from each driving beam
(see figure 38b). On the other hand, since all the harmonics within
each beam exhibit the same helicity, the composition of the harmonic
signal corresponds to circularly polarized attosecond pulses.

It is worth mentioning that, under this configuration, the efficiency
of the attosecond pulses is limited by three different constrains: the
transverse temporal walk-off, the driving field’s overlapping area
within the target, and the overlap of the harmonics in the far field.
These two latter aspects can be optimized by using smaller non-
collinear angles, while, on the other hand, it has been demonstrated
theoretically that the effect of the spatial walk-off can be reduced by
introducing an angular chirp in the driving beams [161].
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4.2.1 Ellipticity control

Here we demonstrate the possibility of the generation of isolated
attosecond pulses with controlled polarization states using the non-
collinear counter-rotating scheme. The detailed information about this
work can be found in our publication [20], included in the Appendix
A.1. The experiments were carried out by our collaborators in the
group of Prof. M.-Ch. Chen at the Institute of Photonics Technologies
of the National Tsing Hua University (Taiwan).

The isolated attosecond pulses with tunable ellipticity are ob-
tained by using few-cycle infrared counter-rotating driving fields, as
schematically depicted in figure 39. A time delay between the driving
pulses allows to reduce the number of attosecond pulses, similar to a
polarization-gating technique [161]. Interestingly, by simultaneously
modifying the ellipticity of the two driving pulses (both always
exhibiting the same absolute ellipticity but with opposite helicity), we
can control the amplitude and phase of the distribution of the linearly
polarized harmonic emissions at the focal plane. As a consequence,
we can modify the polarization state of the XUV beams—and, thus,
that of the attosecond pulses—, from circular through elliptical to
linear polarization, without a loss of conversion efficiency.

Figure 39: Representation of the experimental set-up for generating isolated
high-order harmonic pulses using a non-collinear counter-rotating
few-cycle driving field. The driving pulses have a duration of 3.6 fs
each and the time delay between them is 1.8 fs (λ0 = 800nm). The
ellipticity of the harmonics is controlled through the ellipticity of
the individual driving pulses. CM, chirped mirror; QWP, quarter-
wave plate; PM, off-axis parabolic mirror. The insets show the
polarization of the driving field at the focal plane.

The experimental and theoretical results from our macroscopic
SFA and TSM models (explained in section 2.3) allow us to extract
the harmonic’s ellipticity and tilt angle as a function of the driving
fields’ ellipticity, as shown in figure 40a. Interestingly, the TSM results
show that the non-perturbative characteristics of the HHG—i.e. the
non-perturbative dipole phase and the amplitude scaling power—,
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Figure 40: (a) Tilt angle—with respect to the driving beams’ polarization
major axis—(top) and ellipticity (bottom) of the XUV beams as a
function of the driving beams’ ellipticity obtained from the experi-
mental measurements (blue circles for RCP harmonics and green
circles for LCP harmonics), our SFA model including propagation
(blue stars for RCP harmonics and green stars for LCP harmonics),
and our TSM model (pink crosses including the non-perturbative
dipole phase and orange crosses neglecting it). (b)–(d) Temporal
evolution of the RCP (blue) and LCP (green) attosecond pulses com-
puted for different driving beams’ ellipticities: 1.0 (b), 0.9 (c), and
0.8 (d).

play a crucial role in the resulting harmonic ellipticity. The reason
for this is that the total driving field at the focal plane exhibits a
spatially varying intensity with modulations along the horizontal axis
for non-circularly polarized driving fields, which is translated into the
spatial distribution of the dipole phase and amplitude. In particular,
the non-perturbative parameters determine the dependency of the
harmonic field with the local intensity, thus shaping the harmonic
near field structure and, ultimately, dictating the far-field ellipticity
of the harmonics. Our numerical simulations show that, under the
configuration depicted in figure 39, isolated attosecond pulses with
controlled polarization are generated, as presented in figures 40b-d.

4.2.2 Characterization of the non-perturbative dipole response

As mentioned in section 2.2.4, the experimental characterization of
the non-perturbative response, especially of the dipole phase, is very
challenging. In this subsection, we present a scheme for the charac-
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terization of the non-perturbative response in HHG by measuring the
harmonic polarization state in the non-collinear geometry. We have
already seen in figure 40a the crucial role of the non-perturbative
dipole phase to determine the harmonic ellipticity (see the comparison
between the pink and orange crosses, where the dipole phase is and is
not included in the TSM calculations, respectively). Now we have de-
veloped an ellipsometry technique that fully resolves the polarization
state—helicity, ellipticity, tilt angle, and degree of polarization—for
each high-harmonic order, simultaneously. These experiments have
been also carried out by our collaborators from the group of Prof.
M.-Ch. Chen at the Institute of Photonics Technologies of the National
Tsing Hua University (Taiwan). Further details about this work can be
found in our publication [21], included in the Appendix A.2.

Figure 41: Dipole response information extracted from high harmonic ellip-
sometry for three different gas species: argon (green), krypton
(blue), and xenon (red). (a) Power scaling (which we have pre-
viously denoted as p) as a function of the harmonic order. The
green stars represent the calculated scaling power in argon ob-
tained from SFA calculations. (b) αq coefficient corresponding to
short trajectories as a function of the harmonic order. The light
strips indicate the calculations from a semiclassical model [98]
for the 70% and 80% of the experimental average peak intensity.
The use of a reduced intensity in our simulations is attributed to
inhomogeneities at the experimental focus.

Our results show that the ellipticity of the harmonics, εXUV , scales
with the driving fields’ ellipticity, εIR, as εXUV ∝ εσIR, where σ varies
with the harmonic order and the gaseous species. The ellipsometric
retrieval reveals that σ depends on the amplitude scaling power, p,
and the dipole phase coefficient, αrq (see section 2.2.4), which change
substantially with the harmonic order and the atomic element.
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Let us briefly explain how the ellipsometry technique works. First,
the ellipticity and tilt angle of each harmonic is experimentally mea-
sured as a function of the driving fields’ ellipticity. From these mea-
surements, we calculate the amplitude ratio and the phase difference
between the two linearly polarized orthogonal components of the
harmonic electric field. Finally, a genetic algorithm is used to find
the non-perturbative parameters that lead to the far-field harmonics.
In this later step, we use the TSM to obtain the harmonic near-field—
which is described as a function of the known driving field and the
unknown non-perturbative parameters—and then to compute the far-
field harmonics (as indicated by Eqs. (60) and (61)). Note that the
retrieved scaling parameter p and dipole phase coefficient αrq show
good agreement with the classical results, as shown in figure 41 for
short trajectories and three different gas species.

4.3 simultaneous control of orbital and spin angular

momentum

In this section, we shall present a different method for the control
of the polarization state of the attosecond pulses. We will show that,
interestingly, the SAM and OAM of the high-order harmonics can be
simultaneously controlled by driving HHG with a bi-circular vortex
field. We will demonstrate, theoretically and experimentally, that this
ability allows for an unprecedented control over the OAM and over the
divergence of the XUV beams. As a result, by properly selecting the
OAM of the driving field we can control the polarization state of the
attosecond pulses, from linear to circular, or we can generate circularly
polarized XUV beams with the same OAM content as the driving beam.
Such structured beams can serve as an alternative tool for the study
of novel ultrafast phenomena of spin/charge dynamics in magnetic
materials or chiral molecular systems, as well as of spatially resolved
circular dichroism, or even skyrmionic spectroscopy.

4.3.1 The standard bi-circular driving

Let us first explain the characteristics of the standard bi-circular driv-
ing. The bi-circular field was theoretically proposed in the 90’s to gen-
erate circularly polarized harmonics [162, 163]. However, this was not
experimentally realized until 2014 [165, 166]. This technique consists
in the combination of two collinear beams with different frequencies
and counter-rotating circular polarization. Since they have different
frequencies, their combination results in a complex Lissajous polar-
ization structure [164]. Typically, the bi-circular field consists in a
fundamental frequency and its second harmonic, and the resulting
structure corresponds to a trefoil shape, as shown in figure 42.
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Figure 42: The bi-circular field: combination of a RCP infrared driver (red
arrows) with its LCP second harmonic (blue arrows) at equal in-
tensities, which results in a trefoil-shaped electric field (purple
curve). Modified version of a figure extracted from [168].

Under such configuration, the electronic wavepacket follows a tra-
jectory that is not restricted to one dimension but, remarkably, it still
recollides efficiently with the parent ion. It is important to note that,
in contrast to the non-collinear counter-rotating scheme discussed in
the previous section, in the bi-circular scheme the physics that leads to
the generation of circularly polarized harmonics resides at the micro-
scopic level: the electric field has a complex polarization structure at
each point of the target that results in the local emission of circularly
polarized harmonics. Interestingly, since the field is dichromatic, the
emitted spectrum is not composed of odd harmonics as in regular
HHG. Besides, as the electric field exhibits a different symmetry, it
drives three recombination events within a fundamental field period,
and the polarization direction of the harmonics is rotated 120 degrees
between successive emissions.

The energy selection rules in this case can be more easily described
in terms of the number of driving photons that are annihilated in the
HHG process. Let us consider a bi-circular field with frequencies ω1
and ω2 = 2ω1, and with σ1 and σ2 the spin of each frequency com-
ponent (σ2 = −σ1, since they have opposite helicity). Note that σ = 1

corresponds to right-circular polarization, while σ = −1 corresponds
to left-circular polarization. The energy conservation for a particular
harmonic satisfies:

ωq = qω1 = n1ω1 +n2ω2 (100)
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where n1 and n2 are integer numbers representing the number of
photons annihilated from each driver. On the other hand, SAM conser-
vation,

σq = n1σ1 +n2σ2 = ±1, (101)

results in the following condition:

n2 = n1 − σqσ1. (102)

Thus, the photon composition of Eq. (100) is restricted to:

ωq = n1(ω1 +ω2) − σqσ1ω2 = (3n1 − 2σqσ1)ω1, (103)

where σqσ1 = ±1.

Figure 43: (a) Representation of the HHG spectrum when driven by a bi-
circular field (ω2 = 2ω1,σ1 = −1,σ2 = 1). It is composed of pairs
of RCP and LCP high-order harmonics separated by a missing one.
(b) Under this configuration, the attosecond pulses exhibit linear
polarization, with a tilt-angle rotation of 120 degrees from pulse
to pulse.

As a result, the HHG spectrum consists of pairs of harmonics with
opposite circular polarization states, separated by a missing harmonic,
as represented in figure 43a. The absence of each third harmonic can
be used as an indicator of the degree of circularity of the harmonics.
Conversely, the ellipticity of the harmonics can be manipulated by
varying the driving fields’ ellipticity [165], while small variations of
the attosecond pulses polarization can be achieved by changing and
intensity ratio between the driving fields [169].
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Finally, figure 43b shows that the attosecond pulses, which result
from the spectral integration over harmonics with opposite circular
polarization, exhibit linear polarization, with a tilt-angle rotation of
120 degrees from burst to burst [170].

4.3.2 Generation of harmonics with spin and orbital angular momentum

In contrast to the non-collinear scheme explained in section 4.2, where
the efficiency of the harmonics is limited by the macroscopic con-
figuration, the bi-circular field allows for the generation of bright
circularly polarized harmonics [166]. Yet, each attosecond pulse is
linearly polarized. In this subsection, we introduce OAM into the bi-
circular scheme, aiming for the possibility of producing attosecond
pulses with circular polarization states. The experiments have been
carried out by our collaborators in the Kapteyn-Murnane group in
JILA, at the University of Colorado in Boulder (USA). The details of
the experimental methods and further information about this work
can be found in our publication [18], included in section 4.5.1.

Figure 44: Scheme of HHG driven by a bi-circular vortex field. In the experi-
ment, circularly polarized beams of opposite helicity are passed
through spiral phase plates (SPPs) producing circularly polarized
vortex beams (top-left inset). The XUV beams emitted from an ar-
gon gas jet are collected via a cylindrical mirror-grating pair (EUV
grating) and into a XUV camera (EUV CCD). The panels at the de-
tectors (right) show the experimental harmonics obtained for two
different OAM configurations of the driving beams: `1 = 1, `2 = −1

(up-right panel), and `1 = −2, `2 = 1 (down-right panel).
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In figure 44, we show a scheme of HHG driven by a bi-circular vortex
field. Here, both driving beams conforming the bi-circular field exhibit
OAM content, `1 and `2, respectively. As in the standard bi-circular
field, the resulting HHG spectrum is composed of pairs of circularly
polarized harmonics with opposite helicity. However, the high-order
harmonics are now also vortex beams. Notably, the choice of `1 and
`2 determines the OAM content of the harmonics and, as result, their
spatial properties.

Let us now derive the selection rules for the OAM of the harmonics.
In this case, the general OAM conservation rule, Eq. (82), is expressed
as:

`q = n1`1 +n2`2, (104)

where n1 and n2 are the number of photons annihilated from each
of the driving beams. Note that the non-perturbative dipole phase
contributions in Eq. (82) are not present in Eq. (104) because in this
case the driving field’s intensity distribution does not present an
azimuthal variation. Applying the SAM and energy conservation rules
in Eqs. (103) and (102), n1 and n2 are rewritten as:

n1 =
1

3
(q+ 2σqσ1), (105)

n2 =
1

3
(q− σqσ1). (106)

Thus, combining Eqs. (104), (105), and (106), we obtain the selection
rule for the OAM of the harmonics which, importantly, depends on
their particular SAM:

`q =
q+ σqσ1

3
(`1 + `2) − σqσ1`2. (107)

Note that, in contrast to the more general OAM rule—Eq. (104)—where
each harmonic exhibits a broad OAM content corresponding to the
different (n1,n2) absorption channels, in the bi-circular case—Eq.
(107)—the OAM of each harmonic is restricted to one single allowed
value due to the SAM conservation. Thus, the SAM and OAM of the
harmonics generated from the bi-circular vortex driving are inherently
entwined.

An interesting particular case is the driver’s OAM combination sat-
isfying `1 = −`2, since Eq. (107) is reduced to `q = −σqσ1`2. In this
case, the harmonics are generated with the same OAM as the driving
field. In particular, the RCP harmonics exhibit the same OAM as the
RCP component of the driving field, while the LCP harmonics exhibit
the same OAM as the LCP component. To illustrate this effect, in figure
45 we show the results for the generation of harmonics with `q = ±1
from the bi-circular vortex driving beam carrying `1 = 1 and `2 = −1

(λ1 = 800 nm,ω2 = 2ω1,σ1 = −1,σ2 = 1). Note again that the ab-
sence of each third harmonic is an indication of an almost perfect
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circular polarization in the pairs of counter-rotating harmonics. In
addition, the good agreement between the theoretical (figure 45a) and
the experimental (figure 45b) beam profiles proves the restriction of
the OAM of the harmonics by the SAM conservation rules, in Eq. (107).
Moreover, the uniform intensity profile of the harmonics discards any

Figure 45: Simulated (a) and experimental (b) circularly polarized high-
harmonic vortex beams with low OAM charge generated by a
degenerate, complementary bi-circular field (`1 = 1, `2 = −1). (c)
The full-quantum theoretical simulations show that the OAM of
each harmonic is the same as that of the driving pulse with its
same helicity. The driving pulses used in the quantum simulations
mimic the experimental field with the following parameters: wave-
lengths of λ1 = 800nm and λ2 = 400nm, respectively, waists of
w1 = w2 = 30µm, trapezoidal envelopes with 16 fs of constant
amplitude and a total peak intensity of I0 = 2× 1014W/cm2.
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possibility of a superposition of different OAM values, ensuring that
the harmonics are pure vortices.

It is also important to stress that, while the high-order harmonics
from vortex drivers are typically produced with high OAM values,
following Eq. (76), the bi-circular scheme allows to obtain high-order
harmonics with low OAM. The generation of XUV beams with low OAM

is interesting for the simplification of their light-matter interactions
and detection geometries. To date, such beams have been previously
demonstrated using non-collinear schemes [132, 133], while, here, we
have demonstrated their generation from a collinear configuration (see
figure 45c).

4.3.3 Attosecond pulses with customized polarization states.

Remarkably, our control over the OAM of the harmonics allows us
also to manipulate the divergence of the RCP and LCP harmonics
separately and, as a result, the polarization state of the resulting
attosecond pulses. Let us calculate the divergence of the harmonics
using a simplified version of the TSM (see section 2.3.3), where we
approximate the intensity profile of the driving vortex field to an
infinitely thin ring at the radius of maximum intensity. Under these
circumstances, the far-field distribution of the q-th order harmonic as
a function of the divergence angle, β, satisfies [18]:

Uq(β) ∝ J|`q|
(2π
λ1
qrmax tan (β)

)
, (108)

where Jn(x) is the Bessel function of order n and rmax is the radius of
the driving field’s ring. Importantly, for given values of rmax and λ1,
the maximum of the Bessel function is proportional to the ratio |`q|/q.
Hence, the relation between the order and the argument of the Bessel
function unequivocally determines the divergence of the harmonic.

In the typical single-mode OAM driving case, where the OAM scales
linearly with the harmonic order (see Eq. (76) in section 3.2.1), the
divergence of the harmonics is proportional to |`q|/q = |`IR|, and, thus,
all the harmonics exhibit a similar ring diameter [129, 131]. In contrast,
Eq. (107) shows that, in the bi-circular vortex driving scenario, |`q|
follows a more involved rule. The divergence of each harmonic is now
proportional to:

|`q|

q
=
∣∣∣1
3
(`1 + `2) +

σqσ1(2`1 − `2)

3q

∣∣∣. (109)

This expression allows us to obtain the difference in divergence be-
tween the RCP and LCP harmonics (see 4.5.1 and [18]):

∆β ∝ |`q|

q
−

|`q−1|

q− 1
∝ (`2 − 2`1)

|`1 + `2|

`1 + `2
(110)
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Figure 46: (a) Theoretical estimation of the divergence difference between
the RCP and LCP harmonics as a function of the OAM of the bi-
circular vortex field. (b) Theoretical high-order harmonics from
HHG driven by a bi-circular vortex field carrying `1 = −2, `2 = 1.
The LCP and RCP vortices exhibit significantly different divergence.
(c) Experimental high-order harmonics for the same configuration
as in (b). (d) The far-field HHG beam (left) presents a dual intensity
ring structure where the inner ring is RCP and the outer ring is
LCP, as confirmed by a spatially resolved XUV magnetic circular
dichroism measurement (right). The driving field parameters are
the same as those in figure 45 but with w1 = 21.4µm.
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In figure 46a, we depict the value of ∆β for different combinations
of `1 and `2. Notably, by properly selecting the OAM of the driving
beams, the RCP and LCP harmonics can be spatially separated. In figure
46b, we show the results from the theoretical simulations using our
full-quantum SFA model including propagation for HHG in an argon
gas jet (see section 2.3.2), for the `1 = −2, `2 = 1 combination. The LCP

harmonics exhibit a larger divergence than the RCP harmonics because
their OAM is higher. These results are confirmed by the experimental
measurements, shown in figure 46c, where RCP and LCP harmonics
present a clear spatial separation. Indeed, the total XUV beam exhibits
two distinct rings (see the left panel of figure 46d), the inner ring
presenting right circular polarization and the outer ring presenting left
circular polarization, as confirmed by the measurement of spatially
resolved XUV magnetic circular dichroism (see the right panel of figure
46d).

Figure 47: Theoretical (a) and experimental (b) spectral integration of the
harmonic signal as a function of the divergence angle for the
configuration of figure 46. The total RCP (blue) and LCP (green)
beams are separated, introducing a spatially varying ellipticity
(red), which results in a spatial variation of the polarization of the
attosecond pulses trains from RCP (c, 1.4 mrad), to linear (d, 2.1
mrad), to LCP (e, 2.6 mrad).

The spatial isolation between the RCP and LCP harmonics has an
important consequence: the attosecond pulses associated to each ring
are circularly polarized. In figure 47a, we show our theoretical sim-
ulations of the total yield of the RCP and LCP harmonics along the
divergence, as well as the spectrally integrated ellipticity. Figure 47b,
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on the other hand, presents its experimental confirmation. Finally, by
performing the Fourier transform of the theoretical harmonic emission,
we obtain the attosecond pulse trains at different divergence angles,
with polarization states that range from right-circular (47c), to linear
(47d), and, lastly, to left-circular (47e).

4.3.4 The torus-knot conservation law

In this final subsection, we show that the conservation rules for the
SAM and OAM in the HHG driven by the bi-circular vortex field can be
derived resorting to the symmetries of the driving field, a work in col-
laboration with our colleagues from the group of Prof. M. Lewenstein
at ICFO in Barcelona (Spain) [22]. In other words, we will show how
the individual symmetries associated with these conservation laws
can be composed to create new non-trivial ones.

In figure 48, we present a scheme of the bi-circular vortex field
where the rotation symmetry of the trefoil polarization structure is
evidenced: a displacement along the azimuthal coordinate implies
a rotation of the polarization structure. Thus, the bi-circular vortex

Figure 48: Torus-knot beam from the combination of an infrared RCP beam
and its LCP second harmonic, both carrying ` = 1. Tracking one
lobe over an azimuthal loop around the beam axis (black dots)
produces a 120◦ rotation, as well as a time delay within each trefoil
(arrows).

field has the topology of a torus-knot: the trefoil tips trace out a
knotted curve embedded on the surface of a torus [171]. Therefore, it
is invariant under coordinated rotations, which combine a rotation of
the spatial dependence by an angle θwith a rotation of the polarization
by a fraction of that angle γθ, where γ is the coordination parameter.
The generator of this coordinated rotation is the torus-knot angular
momentum [171], defined as:

jγ = `+ γσ, (111)
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thus, linking the SAM and OAM of the driving field through the γ
parameter. If we consider that σ1 = 1 and σ2 = −1, the two fre-
quency components of the driving field exhibit a torus-knot angular
momentum of j(1)γ = `1 + γ and j

(2)
γ = `2 − γ, respectively, where

γ = (`2 − 2`1)/3 [22].
Importantly, for centro-symmetric targets, the topology of the driv-

ing field is transmitted to the harmonic emission, and, as a conse-
quence, the generator of the coordinated rotation is conserved. Indeed,
we have demonstrated that the torus-knot angular momentum is con-
served in HHG [22], following a simple linear scaling law,

j
(q)
γ = qj

(1)
γ , (112)

analogous to the OAM scaling for pure vortices (Eq. (76) in section
3.2.1).

Figure 49: Simulated RCP (red) and LCP (blue) high-order harmonics from
HHG driven by a bi-circular vortex beam (`1 = `2 = 1, σ1 =

1, σ2 = −1, so γ = −1/3). We compare the OAM (a) and torus-knot
angular momentum, TKAM (b) as a function of the harmonic order.
Note that the torus-knot angular momentum spectrum is equal
to the OAM charge shifted by γ times the individual harmonic
SAM. The conservation of the torus-knot angular momentum is
demonstrated by the linear trend (dashed grey line) in (b).

This conservation law is demonstrated in figure 49, where we com-
pare the OAM and the torus-knot angular momentum of the harmonics
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obtained from our numerical simulations. We show that the torus-knot
angular momentum scales linearly with the harmonic order.

Therefore, while the OAM selection rule can be explained using
a photon-composition approach, as explained in section 4.3.2, the
spectrum scales linearly with j

(q)
γ , therefore it can be understood

easier via the torus-knot angular momentum conservation law. Further
information about this work can be found in our publication [22],
included in the Appendix A.3.

4.4 evolution of the polarization state along the at-
tosecond pulse train

In this section, we introduce a technique that allows to produce trains
of attosecond pulses with a progressive variation of their ellipticity.
These time-ordered polarization structures are generated by driving
HHG with two time-delayed bi-circular vortex fields. Similarly to the
time-ordered OAM [16] presented in section 3.3, this structured light
beam adds a new degree of freedom, the time-ordered polarization,
to the existing techniques for ultrafast control and measurement. For
example, trains of attosecond pulses with sequential ellipticity offer a
new stroboscopic utensil for the study of ultrafast dynamics in chiral
systems, pump-probe experiments with polarization-varying states,
or time-dependent polarization X-ray magnetic circular dichroism.

4.4.1 Scheme for the generation of attosecond pulse trains with time-ordered
ellipticities

In section 4.3.3, we showed that the bi-circular vortex field allows us
not only to generate circularly polarized harmonic vortex beams, but
also to control the polarization state of the attosecond pulse trains
by properly selecting the OAM of the driving beams [18]. This con-
figuration allows the spatial separation of the high-order harmonics
with opposite helicity in the far-field into a double ring profile, as
shown in figure 50a, where the difference in divergence between the
LCP and RCP harmonics is given by Eq. (110). In particular, from that
expression we can infer that the divergence separation between RCP

and LCP harmonics is maximized if

`2 = −`1 ± 1, (113)

being `1 as high as possible (it is usually limited by the experimental
conditions). If we consider the following driving field parameters:
λ1 = 800 nm,ω2 = 2ω1,σ1 = −1,σ2 = 1, Eq. (110) shows that, if
|`1| > |`2|, the far-field outer ring corresponds to the LCP harmonics.
On the contrary, if |`2| > |`1|, the outer ring corresponds to the RCP

harmonics. Thus, the OAM content of the driving field determines the
helicity of each of the harmonic rings.
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From the temporal point of view, the attosecond pulse trains with
LCP or RCP states are obtained by selecting the high-order harmonics at
each of the rings. For the following, it is important to note that the po-
larization state along the attosecond pulse trains is time-independent
in this case. Thus, the ellipticity remains as a constant variable along
the attosecond pulse trains. To the best of our knowledge, this is
also the case in the rest of techniques involving the generation of
attosecond pulses with controlled polarization. Note, however, that a
recent work has reported that high-order harmonics generated from
ultrashort bi-circular driving fields present a polarization state that
slightly changes along the course of the harmonic pulse [172].

Here we present a technique to generate trains of attosecond pulses
presenting a time-ordered SAM. The temporal progression is intro-
duced by driving HHG with two time-delayed bi-circular vortex beams
with different OAM content. Let us denote each of the bi-circular vor-
tex beams as A and B. The most convenient choice of OAM satisfies
Eq. (113) for each of the driving beams, together with `B1 = −`A2

Figure 50: (a) Scheme of HHG driven by a bi-circular vortex field (with ω1,
`1, LCP and ω2 = 2ω1, `2, RCP). The HHG spectrum is composed
of pairs of circularly polarized harmonics with opposite helicity,
which can be separated in divergence in the far-field by properly
selecting the OAM combination in the driving field. (b) Generation
scheme of attosecond pulse trains with time-ordered polarization
states. In this case, the driving beam is composed of two time-
delayed bi-circular vortex fields, A and B, where, for this example,
we have chosen |`A1 | > |`A2 | and |`B1 | < |`B2 |. As a consequence, in
the outer (inner) ring, the polarization of the attosecond pulses,
changes monotonously from pulse to pulse.
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and `B2 = −`A1 . Under this configuration, the harmonics produced
by the beam B diverge as two separated rings with the opposite he-
licity than the corresponding rings generated by the driving A, as
depicted schematically in figure 50b. The temporal delay between the
two bi-circular vortex beams, td, causes the temporal variation of the
ellipticity of the harmonics, from LCP to RCP in the outer ring, and
vice versa in the inner ring. As a consequence, the attosecond pulse
trains at each ring exhibit a gradual change in the polarization state
from pulse to pulse.

4.4.2 Results from the numerical simulations

We have performed simulations of HHG in an argon gas jet using our
full-quantum SFA model including propagation (see section 2.3.2). In
figure 51, we present the results of the simulations when considering
`A1 = 3, `A2 = −2, `B1 = 2, `B2 = −3 and a duration of each driver of
τ = 7.7 fs in FWHM in intensity. The time delay between beams A and

Figure 51: (a) Total intensity profile corresponding to the XUV beam ob-
tained with two time-delayed bi-circular vortex field carrying
`A1 = 3, `A2 = −2 and `B1 = 2, `B2 = −3, respectively, at two dif-
ferent instants of time: at the beginning of the second driving
pulse (left) and at the end of the first driving pulse (right). (b)-(c)
Envelope (purple), ellipticity (green), and tilt angle (orange) of
the attosecond pulse trains as a function of time corresponding
to the outer (b) and inner (c) rings. We model the driving pulses
with a sin2 envelope (τ = td = 7.7 fs FWHM), with central wave-
lengths of λ1 = 800nm and λ2 = 400nm, waists of w = 30µm

for ` = ±2 and w = 24.54µm for ` = ±3, and a peak intensity of
1.4× 1014W/cm2 each.

B is chosen to be the same as the width of the pulses, td = τ, which
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is the optimal in order to obtain a smooth and constant variation of
the ellipticity along the train (in analogy to the optimal generation of
the time-varying OAM [16]). In figure 51a, we show that the spectrally
integrated HHG beam exhibits two isolated rings, where the helicity is
exchanged along time.

The polarization state of the attosecond pulse trains can be de-
scribed by the time-dependent Stokes parameters [173]. From these,
we calculate the time-dependent ellipticity as

ε(t) = tan
[
0.5 arctan

(
S3(t)/

√
S22(t) + S

2
1(t)

)]
. (114)

For the complete characterization of the polarization state we also
compute the time-dependent tilt angle of the ellipse’s major axis,
calculated as

θ(t) = 0.5 arctan
[
S2(t)/S1(t)

]
. (115)

The temporal evolution of the ellipticity and tilt angle along the

Figure 52: Envelope (purple), ellipticity (green) and tilt angle (orange) of the
attosecond pulse trains obtained using two time-delayed few-cycle
bi-circular vortex driving beams, carrying `A1 = 2, `A2 = −1 and
`B1 = 1, `B2 = −2, respectively, corresponding to the intermediate
divergence angle (a) and the inner ring (c). In panels (b) and (d)
we show the respective temporal evolutions of the electric field.
The driving pulses’ parameters are the same as those in figure
51 but with τ = td = 1.9 fs FWHM and waists of w = 30µm for
` = ±1 and w = 21.4µm for ` = ±2.

attosecond pulse train is shown in the lower panels for the outer
(figure 51b) and inner (figure 51c) rings, respectively. Note that in
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these rings the ellipticity decreases (outer ring) or increases (inner
ring) almost linearly along the pulse train.

In addition, our simulations show that the ultrafast evolution of the
polarization state along the pulse train can be controlled via the OAM,
pulse duration, and time delay of the driving fields. In figure 52, we
present our numerical simulations for a different OAM combination,
`A1 = 2, `A2 = −1, `B1 = 1, `B2 = −2, and shorter driving beams, τ = td =

1.9 fs (FWHM), for the inner ring and the divergence angle between the
two rings. The intermediate divergence angle illustrates the possibility
of obtaining a polarization evolution from linear to highly elliptical.
Note also that the variation of the ellipticity is faster, since we are
using shorter driving pulses.

Further information and results of this work can be found in our
publication [19] included in section 4.5.2.

4.5 publications

To finalize this chapter, we include the full text of the two articles
explained in sections 4.3 and 4.4. The first one, included in section
4.5.1, details the methods and results from the bi-circular vortex driv-
ing, under the title "Controlling the polarization and vortex charge
of attosecond high-harmonic beams via simultaneous spin–orbit mo-
mentum conservation" [18]. The second one, included in section 4.5.2,
addresses the generation of time-ordered polarization states, under
the title "Trains of attosecond pulses structured with time-ordered
polarization states" [19]. Before each article we include an abstract in
Spanish.
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4.5.1 Controlling the polarization and vortex charge of attosecond high-
harmonic beams via simultaneous spin–orbit momentum conservation

Resumen

Los pulsos ultracortos con momento angular abren la puerta a
interesantes posibilidades de control de la respuesta electrónica pri-
maria en la materia. Este momento angular se presenta en dos formas
diferentes: el momento angular de espín (SAM) [6], relacionado con la
polarización, y el momento angular orbital (OAM) [7], asociado a la
vorticidad del perfil espacial de la fase del haz. Si bien el momento
angular se puede transferir de forma rutinaria a haces visibles/in-
frarrojos, esta transferencia no es trivial en los regímenes de rayos
X y ultravioleta extremo (XUV). Afortunadamente, la generación de
armónicos de orden alto (HHG) ha emergido como un mecanismo
robusto para imprimir OAM y SAM en el régimen XUV, mediante la
conversión no lineal de frecuencias de un pulso láser incidente infrar-
rojo. Este método proporciona pulsos de attosegundo estructurados
con propiedades de momento angular controladas.

Basándonos en el proceso de HHG, en esta publicación [18], pre-
sentamos, por primera vez, la generación de haces XUV coherentes
y pulsos de attosegundo con control total y simultáneo tanto de su
OAM como de su SAM. Para ello, utilizamos como haz incidente un
campo dicromático, contrarrotante y con OAM (conocido como campo
bi-circular vorticial). Nuestros resultados teóricos, apoyados por los ex-
perimentos de nuestros colaboradores, muestran que la conservación
simultánea del OAM y del SAM introduce un acoplamiento entre ellos,
de manera que el OAM de los armónicos está restringido por su SAM.
Como consecuencia, seleccionando apropiadamente el OAM y el SAM

del campo incidente, podemos controlar la divergencia de los vórtices
armónicos polarizados circularmente. Gracias a ello, podemos generar
vórtices XUV con polarización circular pura levógira o dextrógira es-
pacialmente aislados, lo cual nos permite controlar la polarización
de los pulsos de attosegundo emitidos, de lineal a circular. Además,
podemos producir vórtices XUV con carga de OAM alta o baja. Este
aspecto es destacable ya que en esquemas colineales se esperaba que la
carga topológica aumentara siempre con el orden armónico, pero, con
este método podemos producir armónicos de orden alto polarizados
circularmente con la misma carga topológica que el campo incidente.

Finalmente, estos haces pueden extenderse al rango de los rayos X,
posibilitando interesantes aplicaciones en manipulación de molécu-
las quirales o materiales espintrónicos, así como en microscopía o
formación de imagen.
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Since the pioneering studies of Beth1 and Allen et al.2, it has 
been well known that propagating light waves, under the par-
axial approximation, can possess two distinct forms of angular 

momenta—spin and orbital angular momentum (SAM and OAM, 
respectively). Although similar in nature, the distinction between 
the SAM and OAM of light is straightforward when one consid-
ers an interaction picture: the SAM of light is mediated through 
anisotropic interactions, whereas the OAM of light is associated 
with inhomogeneity in a physical system3. This powerful decou-
pling allows for the independent manipulation and measurement 
of either the SAM or OAM of a single light field4–6, and enables 
many applications7, including optical sensing and communication8, 
molecular detection9, kinematic micromanipulation10 and photonic 
momentum control11.

Initially, applications exploiting optical SAM or OAM interac-
tions were largely limited to macroscopic systems using visible light. 
These limitations stemmed from the challenges in producing and 
controlling coherent, short-wavelength light beyond the ultraviolet 
(UV). Fortunately, recent advances in high-harmonic generation 
(HHG) have bridged this photonic gap, allowing for the straight-
forward generation of coherent, subfemtosecond radiation in the 
extreme UV (EUV), with controllable SAM or OAM properties12–27. 
These advanced light sources have opened up the possibility of 
monitoring and manipulating the SAM and OAM of light–mat-
ter interactions on the atomic scale, with the potential of extend-
ing quantum optical/logical metrologies, optical manipulation and 
chiral spectroscopies to the nanometre spatial and subfemtosecond 
temporal scales.

Fundamentally, these exciting capabilities are enabled by the 
quantum physics of the high-harmonic upconversion process28,29.  

In HHG, an electron wavepacket in an atomic, molecular or material  
system is liberated by an intense laser field, which then accelerates 
the free electron wavepacket. The oscillatory nature of the laser field 
can drive the wavepacket back to the parent ion and, on recollision, 
the acquired kinetic energy is released in the form of high-order 
harmonics, which can span deep into the EUV and soft X-ray spec-
tral regions30–34. It is this field-driven nature of HHG that provides 
an opportunity for mapping the properties of near-infrared laser 
light, in particular SAM and OAM, to short-wavelength radiation. 
Indeed, recent experimental demonstrations of independent control 
of SAM13,18,35,36 or OAM21,24,37 in the EUV via HHG have propelled 
the topic of optical angular momentum control and measurement 
to the forefront of attosecond science.

Here, we present a significant advance in producing EUV beams 
with designer angular momenta (that is, helicity and twist) by gen-
erating high-order harmonics—and attosecond pulses—possessing 
controllable spin and orbital angular momenta. By driving the HHG 
process with a bichromatic, counter-rotating vortex beam (that is, 
a bicircular vortex beam), we uncover and subsequently harness, a 
novel form of simultaneous SAM–OAM momentum conservation. 
We exploit this simultaneous conservation to produce spatially iso-
lated vortex beams of opposite SAM through proper selection of the 
angular momenta of the bicircular vortex driver, which allows us 
to control the polarization state of attosecond EUV vortex beams 
in the time domain; from linear to purely circularly polarized. This 
unique SAM–OAM control also makes it possible to generate highly 
elliptically polarized high-harmonic OAM beams with control-
lable topological charge. In particular, apart from generating highly 
charged vortex beams with designer OAM, we generate harmonic 
beams of highly circular polarization with the same, low, topological 

Controlling the polarization and vortex charge 
of attosecond high-harmonic beams via 
simultaneous spin–orbit momentum conservation
Kevin M. Dorney   1*, Laura Rego2, Nathan J. Brooks1, Julio San Román   2, Chen-Ting Liao   1, 
Jennifer L. Ellis1, Dmitriy Zusin1, Christian Gentry1, Quynh L. Nguyen1, Justin M.  Shaw3, Antonio Picón   2,4,  
Luis Plaja2, Henry C. Kapteyn1, Margaret M. Murnane1 and Carlos Hernández-García   2*

Optical interactions are governed by both spin and angular momentum conservation laws, which serve as a tool for controlling 
light–matter interactions or elucidating electron dynamics and structure of complex systems. Here, we uncover a form of simul-
taneous spin and orbital angular momentum conservation and show, theoretically and experimentally, that this phenomenon 
allows for unprecedented control over the divergence and polarization of extreme-ultraviolet vortex beams. High harmonics 
with spin and orbital angular momenta are produced, opening a novel regime of angular momentum conservation that allows 
for manipulation of the polarization of attosecond pulses—from linear to circular—and for the generation of circularly polarized 
vortices with tailored orbital angular momentum, including harmonic vortices with the same topological charge as the driving 
laser beam. Our work paves the way to ultrafast studies of chiral systems using high-harmonic beams with designer spin and 
orbital angular momentum.
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charge—equal to the co-rotating component of the bicircular vor-
tex driving laser field. Our work opens a route to perform ultrafast 
studies of angular momentum exchange and interactions at EUV/X-
ray wavelengths, with the potential for nanometre spatial and sub-
femtosecond temporal resolution.

Results
Generation of high-harmonic beams with SAM and OAM. The 
generation of SAM–OAM EUV vortex beams is depicted in Fig. 1.  
A bichromatic Mach–Zehnder interferometer is used to produce 
two collinear, vortex laser beams with opposite helicities derived 
from the fundamental (frequency ω1, spin σ1 =  − 1, left-circular 
polarization, LCP, and topological charge ℓ1) and frequency-doubled 
(ω2 =  2ω1, σ1 =  + 1, right-circular polarization, RCP, ℓ2) output of an 
ultrafast Ti:sapphire amplifier (see Methods and Supplementary 
Section 1). These beams are then combined, spatially and tempo-
rally, to yield a bicircular vortex beam that drives HHG in a super-
sonic expansion of Ar gas. The emitted harmonics are collected via 
an EUV spectrometer consisting of a cylindrical mirror-flat grating 
spectrometer and an EUV charge coupled device (CCD) camera (see 
Methods). As a reference for these experiments, we have performed 
full quantum HHG simulations including propagation using the 
electromagnetic field propagator38, a method that was used in sev-
eral previous calculations of HHG involving either SAM17,18,32,35,39,40 
or OAM20,23,26,27,41 (see Methods and Supplementary Section 2).

As a first demonstration of this novel, simultaneous SAM–OAM 
conservation in HHG, we drive the SAM–OAM HHG process with 
a bicircular vortex laser field with ℓ1 =  1 and ℓ2 =  1. In this configu-
ration, a high-harmonic spectrum consisting of doublets of EUV 
vortex beams is generated, where the harmonics in each doublet pos-
sess the same topological charge, but opposite helicities (Fig. 2a,b).  
Most notably, the strong suppression of every third harmonic 
order confirms that the same SAM conservation rules are upheld 

in SAM–OAM HHG as in traditional bicircular HHG42,43. SAM 
conservation, σ σ σ= +n nq 1 1 2 2, together with the parity constraints, 
implies that the number of photons absorbed from each of the driv-
ers (n1, n2) to generate the qth order harmonic must differ by one: 

σ σ= −n n q2 1 1. Taking into account photon energy conservation, 
ω ω ω= +q n n1 1 1 2 2, the resulting HHG spectrum consists of pairs of 

adjacent harmonics with opposite circular polarization, and a third, 
missing harmonic, whose suppression indicates a high circularity of 
the SAM–OAM EUV beams. This is confirmed by EUV magnetic 
circular dichroism (EUV MCD) measurements on an Fe0.75Co0.25 
film (Fig. 2d and Methods). Unfortunately, a quantitative value of 
the harmonic ellipticity cannot be obtained at this time, as MCD-
derived ellipticities require a comparison with existing synchrotron 
data and such experimental data does not exist for this energy range. 
However, a comparison with extrapolated synchrotron data from 
resonant MCD measurements of Fe films15 allows us to confirm that 
the SAM–OAM HHG harmonics are highly elliptically polarized. 
In short, the strong non-resonant EUV MCD signal, suppression of 
spin-forbidden harmonic orders, and the excellent agreement with 
the theoretical simulations verifies the near-circular polarization of 
the SAM–OAM EUV vortex beams (see below). We note that depo-
larization effects are unlikely in this geometry, as the MCD sample 
is placed far from the generating region, yet a strong MCD signal is 
still observed.

The simultaneous conservation of SAM and parity in SAM–
OAM HHG also restricts the allowed OAM values for each har-
monic44. If both beams are linearly polarized, the topological charge 
of the qth order harmonic driven by a bichromatic laser field is 
given by a simple OAM conservation rule ℓ ℓ ℓ= +n nq 1 1 2 2 (ref. 23). 
Each harmonic can, therefore, exhibit several OAM contributions 
depending on the number of photons absorbed from each driver23. 
Note that non-perturbative OAM contributions23 do not appear in 
our SAM–OAM HHG scheme since the intensity distribution at 
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Fig. 1 | Bicircular HHG in the presence of simultaneous SAM–oAM conservation (SAM–oAM HHG). a, In the experiment, circularly polarized beams of 
opposite helicity are passed through independent spiral phase plates (SPPs) producing high-purity circularly polarized OAM vortex beams (top-left inset). 
These beams are spatiotemporally overlapped in a supersonic expansion of Ar gas, yielding a bicircular SAM–OAM vortex beam that drives the HHG 
process. The SAM–OAM EUV beams are collected via a cylindrical mirror-grating pair (cylindrical mirror omitted for clarity) and an EUV camera.  
The detectors show experimental EUV OAM beam profiles collected in the far field, ~8 cm beyond the flat-field focal plane of the spectrometer. In this 
scheme, the detectors show experimental SAM–OAM HHG for both complementary (ℓ ℓ= = −1, 11 2 ) and non-degenerate (ℓ ℓ= − =2, 11 2 ) configurations 
of the bicircular vortex driver. When driven with complementary OAM beams, OAM harmonics are generated with a low OAM charge, equal to the 
components of the bicircular vortex (top-right inset). If a non-degenerate vortex driver is employed for the SAM–OAM HHG process, EUV vortices of 
high-OAM charge and opposite helicity exhibit significantly different OAM charges, which results in RCP and LCP harmonics being spatially separated  
in the far field (bottom-right inset).
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focus does not vary azimuthally, as also observed in non-collinear 
bichromatic OAM HHG24,25. However, combining the above-men-
tioned SAM and OAM conservation rules in bicircular SAM–OAM 
HHG, the topological charge of the qth order harmonic satisfies

ℓ
σ σ

ℓ ℓ σ σ ℓ=
+

+ −
q 2

3
( ) (1)q

q
q

1
1 2 1 2

where SAM conservation restricts ℓq to a single value. The prod-
ucts σ ℓ2,1 1,2 show that the SAM and OAM of the bicircular vortex 
driver are inherently entwined via the HHG process, which con-
nects the SAM and OAM of the harmonics to those of the driv-
ing beams. This manifests as an entirely new form of simultaneous 
conservation of SAM and OAM, where the OAM (ℓq) and SAM (σq)  
of each harmonic vortex can be controlled via the interplay of the 
SAM (σ σ,1 2) and the OAM (ℓ ℓ,1 2) of the drivers. At this point we 
would like to remark that the SAM and OAM of the harmonics are 
controlled via simultaneous conservation of these quantities during 
the HHG process, and that SAM and OAM are not converted from 
one another as in more traditional SAM–OAM coupling observed 
in subwavelength and non-paraxial optical regimes45.

The effects of simultaneous SAM–OAM conservation are read-
ily evident by comparing the theoretical (Fig. 2a) and experimental  
(Fig. 2b) SAM–OAM EUV spectra. In such a configuration, 
(ℓ ℓ= = 11 2 ), the OAM conservation rule, equation (1), reads as 
ℓ σ σ= + ∕q(2 ) 3q q 1 . This implies that each pair of adjacent harmonics 

exhibits the same OAM, as can be seen in Fig. 2c, where the OAM is 
calculated by performing a Fourier transform along the azimuthal 
coordinate for each frequency component23. This method of deter-
mining the OAM content is ideally suited for arbitrary, structured 
beams possessing OAM as it does not rely on decomposition into a 
particular basis set and is thus more general than methods employ-
ing modal decomposition. We note that each harmonic in the 
SAM–OAM EUV spectrum has a uniform azimuthal intensity pro-
file and little radial mode character, indicating similar modal con-
tent between the experimental and theoretical SAM–OAM HHG. 
Moreover, the excellent agreement of the beam profiles between 
the experiment and theory also suggests a highly elliptical polar-
ization of the harmonics; if depolarization effects were present, the 
SAM-dependent OAM selection rules would be relaxed, leading to 
a superposition of topological charges in each harmonic and conse-
quently nonuniform SAM–OAM HHG beam profiles23. Although 
the OAM of the experimental harmonics was not measured in this 
work, the points mentioned above strongly suggest a similar modal 
content as that obtained in the theoretical spectra. Taken together, 
the generated SAM–OAM EUV vortex beams possess both a high 
modal purity as well as near-circular polarization.

Polarization control of attosecond EUV pulses through simulta-
neous SAM–OAM conservation. In the past decade, there has been 
an explosion of interest in controlling the spin polarization of atto-
second EUV waveforms, as full polarization control would allow for 

26 30 32 34 36

Photon energy (eV)

Theory

Experiment

8

4

0

–4

–8D
iv

er
ge

nc
e 

an
gl

e 
(m

ra
d)

5

0

–5D
iv

er
ge

nc
e 

an
gl

e 
(m

ra
d)

26 30 32 34 36

Photon energy (eV)

H16 H17 H19 H20 H22 H23

H16 H17 H19 H20

0 1.00.5Intensity
(a.u.)

28

28

a

b

1 = 1 2 = 1 RCP LCP

24 26 28 30 32 34

0.10

0.05

0

–0.05

–0.10

E
U

V
 M

C
D

 asym
m

etry (%
)

Photon energy (eV)

H22 H23

13 14 15 16 17 18 19 20 21 22 23

Harmonic order

6
7
8
9

10
11
12
13
14
15
16
17
18

T
op

ol
og

ic
al

 c
ha

rg
e 

 q log[Intensity (a.u.)]

0

–2.0

–1.0

–0.5

–1.5

Theoretical prediction

Experimental characterization

LCP RCP

13 =  14 = 9

16 =  17 = 11

19 =  20 = 13

22 =  23 = 15

c

d
1 = 1 2 = 1

Fig. 2 | Experimental generation and theoretical confirmation of SAM–oAM EuV vortices in the presence of simultaneous SAM–oAM conservation.  
a, Full quantum simulation results showing spectrally dispersed SAM–OAM harmonics driven by a bicircular vortex driving beam (σ1 =  − 1, σ2 =  + 1, ℓ1 =  1,  
ℓ2 =  1). b, Spatio-spectral measurement of SAM–OAM EUV vortex beams produced via HHG from the same configuration of the bicircular driver, exhibiting 
a clean mode with a clear singularity on axis, a single bright intensity ring and strong suppression of every spin-forbidden (that is, every third) harmonic 
order. Further calculations (not shown) indicate that the different divergences between the theory (a) and experimental (b) results are due to slightly 
different driving-beam waists. c, Calculated topological charge of the LCP (green) and RCP (blue) harmonic vortices confirms that the presence of 
simultaneous SAM–OAM conservation results in neighbouring harmonics possessing a similar OAM spectrum. The OAM is calculated through a Fourier 
transform along the azimuthal coordinate for each RCP and LCP frequency component. d, EUV MCD measurement of a 20-nm-thick Fe0.75Co0.25 film 
confirms the near-circular polarization of the generated SAM–OAM EUV vortices. Note that inhomogeneity in the EUV MCD signal for each harmonic is 
the result of slight pointing fluctuations and changes in the sample structure for the different magnetizations of the Fe0.75Co0.25 film.
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the possibility of custom-tailored harmonic beams for attosecond, 
nanometric chiral spectroscopies and metrologies. As such, a wide 
variety of experimental12–18,32,35,36,40 and theoretical41,46–48 schemes 
have been investigated to control the SAM of EUV high harmonics. 
Here we show that the interplay of SAM–OAM conservation inher-
ent to SAM–OAM HHG opens a route to control the polarization 
of attosecond pulses.

In traditional bicircular HHG driven by collinear pulses with a 
Gaussian spatial profile, RCP and LCP harmonics spatially overlap 
in the far field, yielding attosecond bursts with a rotating, linear 
polarization in the time domain39,43,46,48,49. This is largely the result 
of the similar propagation properties between RCP and LCP har-
monics, as the divergence of a light field does not typically depend 
on its SAM. Fortunately, recent advances in bicircular HHG have 
shown that elliptically polarized attosecond pulse trains (APTs)35,36, 
spatially isolated APTs15 and isolated attosecond pulses18 of opposite 
helicity can be generated and the ellipticity can be fully tuned by 
the parameters of the visible driving lasers. Although elegant, these 
methodologies are only capable of controlling either the SAM or 
the divergence of the EUV harmonics, instead of both simultane-
ously. However, the simultaneous conservation of SAM and OAM 
in bicircular SAM–OAM HHG, together with the OAM-dependent 
divergence inherent to vortex beams, allow us to circumvent these 
limitations and simultaneously control the divergence of EUV light 
and the polarization of the underlying APTs.

To show the power of this concept, we consider HHG driven 
by a single-mode OAM driver. It is known that the divergence of 
a harmonic beam decreases with the harmonic order, while the 
divergence of a vortex beam increases with its topological charge. 
Therefore, for a single-mode OAM driver, the simple OAM conser-
vation rule, ℓ ℓ= q ,q 1  results in a HHG spectrum where all harmonics 
are emitted with a similar divergence20–22,41. In the case of bicircular 
SAM–OAM HHG, the restricted selection rules resulting from the 
mixing of SAM and OAM can be exploited to control the diver-
gence of the harmonics and, for example, to yield spatially isolated 
vortex beams of pure RCP and LCP polarization, something that is 
not possible with either linear OAM HHG or collinear, bicircular 
HHG with Gaussian drivers. This point is illustrated below, where 
we employ a simple theoretical analysis based on Fraunhofer dif-
fraction that predicts the divergence difference between the RCP 
and LCP harmonics ( βΔ ) as a function of the OAMs of the bicircu-
lar vortex driver (see Supplementary Section 4) as

β ℓ ℓ
ℓ ℓ
ℓ ℓ

Δ ∝ −
∣ + ∣

+
( 2 ) (2)1 2

1 2

1 2

where βΔ = 0 if ℓ ℓ+ = 01 2 , and we are assuming ω2/ω1 =  2. In  
Fig. 3a, we plot the relative values of β∣Δ ∣  as a function of ℓ1 and 
ℓ2. The divergence difference between RCP and LCP harmonics 
depends strongly on the choice of ℓ1 and ℓ2, and as a general trend, 
the greatest differences in divergence correspond to large differ-
ences in the OAMs of the drivers. Thus, it is the OAM-dependent 
divergence, combined with the simultaneous angular momentum 
selection rules induced by the bicircular OAM driver, that gives 
control over the spatial distribution of RCP and LCP harmonics in 
the EUV vortex beam, and as a consequence, over the polarization 
of the attosecond pulses.

To further illustrate this point, we return to the case of ℓ ℓ= = 11 2 ,  
presented in Fig. 2 (orange dashed circle in Fig. 3a). The RCP and 
LCP vortices exhibit similar divergences and thus spatially over-
lap, yielding linearly polarized APTs in the time domain. However, 
closer inspection of the divergence analysis shows that spatial sepa-
ration of RCP and LCP components of the EUV beams is achieved 
when the OAMs of the drivers are complementary, but different 
in magnitude. To demonstrate this unique capability, we drive the 
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Fig. 3 | Separation of EuV high-harmonic vortex beams with opposite 
circularities through the oAM of the bicircular vortex driver. a, Theoretical 
estimation for the divergence difference between the RCP and LCP harmonics 
(∣ ∣βΔ ) as a function of the OAM of the constituents of the bicircular vortex 
field. The dashed circles correspond to configurations of the bicircular vortex 
drive used to generate the experimental SAM–OAM EUV harmonics (orange 
dashed circle shows OAM case with ℓ ℓ= = 11 2  in Fig. 2, purple dashed circle 
shows OAM case with ℓ ℓ= − =2, 11 2 , and yellow dashed line shows the case 
for opposite OAMs of the driving fields, see main text for details). b, A full 
quantum simulation, including propagation, shows that when SAM–OAM 
HHG is driven with a bicircular OAM driver of ℓ ℓ= − =2, 11 2 , the RCP and 
LCP vortices exhibit significantly different divergence, resulting in spatially 
separated RCP and LCP beams in the far field. Further calculations (not 
shown) indicate that differences in the theoretical and experimental spectra 
are due to slightly different driving beam parameters. c, A spatio-spectral 
measurement of SAM–OAM EUV harmonics under the same configuration 
of the bicircular vortex driver as in b, which confirms the OAM-dependent 
divergence control afforded by SAM–OAM HHG. d, This control results in a 
dual intensity ring structure in the far field of the HHG beams (left, dashed 
circle highlights the intensity null between the vortices), where the inner, 
RCP beam is entirely contained by the LCP vortex beam, as confirmed by 
a spatially resolved EUV MCD measurement (right). The inhomogeneity 
observed in the EUV MCD-retrieved beam profiles is the result of slight 
fluctuations in beam pointing, microstructuring of the MCD sample, and 
attenuation of low-intensity regions of the beam.
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HHG process with a non-degenerate, complementary, bicircular 
OAM driver (ℓ ℓ= − =2, 11 2 , purple dashed circle in Fig. 3a). The 
theoretical and experimental SAM–OAM HHG spectra (Fig. 3b,c) 

clearly confirm the ramifications of SAM–OAM conservation on 
controlling the divergence of the EUV vortices; RCP vortex har-
monics are entirely contained by their LCP counterparts, resulting 
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in a double-ring structure in the far field (Fig. 3d, left). The near-
circular polarization of the double-ring vortex beam is confirmed 
by EUV MCD measurements, which reveal two distinct intensity 
rings of opposite helicity (Fig. 3d, right).

The effects of the OAM-dependent divergence control in SAM–
OAM HHG—and thus the OAM-based control over the polariza-
tion of the attosecond pulses—can be more clearly demonstrated 
by performing a spectral integration across the SAM–OAM HHG 
spectra. Returning to a degenerate configuration of the driv-
ing field (ℓ ℓ= =1, 11 2 ), the RCP and LCP harmonics both exhibit 
similar divergences, as well as comparable spectral intensities 
(Fig. 4a,b). If we define the ellipticity of the attosecond pulses as 
ε = − ∕ +I I I I( ) ( )RCP LCP RCP LCP , where IRCP and ILCP are the intensi-
ties of the RCP and LCP harmonics, the spatial overlap of the RCP 
and LCP components of the theoretical SAM–OAM HHG spec-
trum results in attosecond pulses with predominate linear polariza-
tion in the time domain (Fig. 4c–e). Given the excellent agreement 
between the theoretical and experimental spectra and spectrally 
integrated signals, it is highly likely that the experimental harmon-
ics possess similar ellipticities, and thus we expect a similar polar-
ization of the experimental APTs. However, our experimental and 
theoretical SAM–OAM HHG spectra show that this symmetry can 
be broken by employing a complementary, non-degenerate vor-
tex driver (for example, ℓ ℓ= − =2, 11 2 ). In this configuration, the 
oppositely polarized vortex beams experience large enough diver-
gences to be spatially isolated (Fig. 4f,g). As such, the ellipticity of 
the attosecond pulses evolves all the way from near right circular 
(ε ≈ 1), to linear (ε = 0), to near left circular (ε ≈ −1) across the EUV 
beam profile (Fig. 4h–j). Therefore, by properly modifying the 
OAM of the driving fields, we can spatially control the ellipticity 
of the attosecond pulses and this degree of control becomes even 

greater as the difference in OAM of the bicircular driver increases, 
where pure circular attosecond pulses (ε = ±1) can be obtained (see 
Supplementary Section 4).

High-harmonic vortices with circular polarization and identi-
cal low-charge OAM. Since the first experiments of HHG driven 
by OAM beams19, there has been significant interest in controlling 
the OAM content of the high harmonics, as well as generating har-
monic vortices with a low topological charge24,25. Such a desire is 
rather pragmatic: many OAM light–matter interactions depend on 
the topological charge of the optical vortex beam, and lower topo-
logical charges inherently lead to less complex interactions and 
detection geometries. Unfortunately, the simple OAM conservation 
law governing HHG driven by single OAM beams, ℓ ℓ= qq 1, implies 
that high-order harmonic OAM beams emerge with highly charged 
OAM20–23,39,50. Recently, this limitation was overcome by employ-
ing a non-collinear scheme24,25, resulting in linearly polarized EUV 
vortex beams with low OAM charge. Here we demonstrate that the 
simultaneous conservation of SAM and OAM in bicircular SAM–
OAM HHG can yield high harmonics not only with high topologi-
cal charge (as shown in the previous sections), but also with the 
same OAM as the driving field, without the complications induced 
by a non-collinear geometry.

When the OAM of the drivers fulfil ℓ ℓ= −1 2, equation (1) trans-
forms into ℓ σ σ ℓ= −q q 1 2, which indicates that all RCP (LCP) harmon-
ics exhibit the same topological charge as the RCP (LCP) driving 
field (see Supplementary Section 4). This implies that the divergence 
decreases linearly with the harmonic order and that RCP and LCP 
harmonics exhibit similar divergence ( βΔ ≈ 0, yellow dashed line in  
Fig. 3a). As a final demonstration of the control afforded by the  
conservation rules in SAM–OAM HHG, in Fig. 5a,b we present the 
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theoretical and experimental HHG spectra generated by a bicircular 
driver of complementary topological charge (ℓ ℓ= = −1, 11 2 ). Most 
notably, the divergence decreases with the harmonic order, which is a 
clear indication of the equal OAM of the harmonics, as shorter-wave-
length harmonics have a lower divergence given the same topologi-
cal charge. This fact is further corroborated by considering the highly 
circular polarization of the EUV beams. If the harmonics were not 
circularly polarized, the lack of SAM conservation would result in the 
generation of highly divergent, highly charged OAM HHG beams, as 
implied by the simple OAM conservation rule ℓ ℓ ℓ= +n nq 1 1 2 2(ref. 23). 
However, our SAM–OAM HHG scheme demands SAM conserva-
tion, which results in LCP harmonics emitted with ℓ ℓ= = 1LCP 1 , and 
RCP harmonics with ℓ ℓ= = −1RCP 2  (Fig. 5c). The physical manifesta-
tion of this effect is a decrease in the angular diameter of the SAM–
OAM harmonics as a function of harmonic energy, which is captured 
in both experiment and theory (Fig. 5d). Although the angular diver-
gence of the experimental harmonics within each doublet show an 
opposite behaviour with respect to the theoretical spectra (a result of 
slight differences in beam parameters between the experiment and 
simulations), the general trend is clearly observed. Taken together, 
our observations demonstrate the power of SAM–OAM HHG for 
complete control of the angular momentum of attosecond, structured 
EUV beams carrying OAM.

Discussion
Despite the fact that many light–matter interactions can possess 
independent SAM and OAM conservation laws, the simultaneous 
conservation of both quantities has rarely been utilized to control 
the light–matter interaction, particularly in HHG. Here, we have 
shown that the simultaneous SAM–OAM conservation in highly 
nonlinear and intense field interactions can be used as a powerful 
tool for controlling the upconversion process, and producing HHG 
beams with designer SAM and OAM. By constructing a bicircular 
vortex driving beam with varying topological charges of the con-
stituent waveforms, we showed that SAM–OAM HHG entwines 
the angular momentum conservation rules, yielding unprecedented 
and exquisite control of the SAM, OAM and the divergence of EUV 
light fields.

To demonstrate the potential of the simultaneous SAM–OAM 
conservation in this regime, we experimentally demonstrated three 
distinct mixing cases where (1) circularly polarized high-harmonic 
vortex beams are generated with a similar divergence, and thus sim-
ilar propagation properties regardless of spin polarization or photon 
energy; (2) spatially isolated harmonic vortex beams are produced, 
allowing spatial tuning of the polarization of attosecond pulses—
linear, elliptical or pure RCP/LCP—which enables spatially resolved 
dichroism measurements or isolation of an EUV vortex beam of 
pure RCP or LCP polarization; and (3) EUV harmonic vortex beams 
with topological charge equal to, and thus controlled by, the OAM 
of the driving lasers. These results significantly extend the degree 
of the control over short-wavelength radiation via manipulation of 
visible driving lasers. Perhaps most importantly, our results dem-
onstrate the simultaneous optical spin–orbit angular momentum 
conservation as a gateway to an entirely new set of applications and 
fundamental investigations. These exciting applications are enabled 
by the short wavelength of high harmonics, which allows these 
designer SAM–OAM beams to be focused to scale lengths com-
parable to nanostructured and molecular systems, facilitating new 
nanometric spectroscopies and opportunities for nanoscale optical 
manipulation. Aside from these capabilities, we also add a degree 
of freedom, the OAM, to the recent experiments that uncovered 
ultrafast spin/charge dynamics in magnetic materials51–54 and the 
ultrafast study of chiral molecular systems9,55. One could also envi-
sion the possibility for skyrmionic spectroscopies56,57, or for taking 
advantage of SAM–OAM selection rules in photoionization/photo-
emission experiments58,59, all of which do not necessarily demand 

nanometre-scale focusing conditions. Finally, circularly polar-
ized short-wavelength OAM beams also open up new scenarios in  
spatially resolved circular dichroism spectroscopies (as demon-
strated in this work), and even the possibility of performing SAM 
and/or OAM dichroism X-ray absorption measurements, which 
allows for decoupling the effects of orbital and spin contributions 
to energy transport60.

Note added in proof: We note that while this work was under 
review, a theoretical work44 was published describing the selection 
rules in SAM–OAM HHG.
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Methods
Experimental generation of SAM–OAM high-harmonic vortices. To generate 
EUV SAM–OAM vortex beams, we utilized a modified version of the collinear, 
bichromatic scheme typically used in bicircular HHG. The full output of a 
regenerative Ti:sapphire amplifier (785 nm, 9 mJ, 1 kHz, KMLabs Wyvern HE) 
is passed into a Mach–Zhender-type interferometer with a branching ratio of 
70/30. The more intense of the two arms contains a 200-μ m-thick beta-barium 
borate crystal, which generates the second harmonic field at ~392 nm. Achromatic 
waveplates (λ/2 and λ/4) are placed in each arm to independently control the 
polarization of each component, resulting in LCP (785 nm, ω1, σ1 =  − 1) and RCP 
(392 nm, ω2, σ2 =  + 1) beams. A multifaceted spiral phase plate (SPP, HoloOr, 
16-steps per phase wrap) is placed in each arm of the interferometer to control the 
topological charge of the visible vortex wavefront, and different SPPs and  
their orientations are utilized to generate vortex beams with charges of ℓ1 =  ± 1,  
± 2 and ℓ2 =  ± 1. The purity of the vortex mode and the relative sign of the OAM 
of each beam is characterized by a combination of a beam profiling camera and a 
cylindrical lens (see Supplementary Section 1). The two arms are then recombined 
via a dichroic mirror and spatiotemporal overlap is achieved via a delay stage and 
independent convex lenses in each arm; generating a bicircular, vortex driving 
beam. In the experiment, and also in the theoretical simulations (see below), the 
input beam parameters are carefully adjusted so that the ring of maximum intensity 
of each driver is spatially overlapped just before the gas jet (see Supplementary 
Section 1). The combined focus of the bicircular driver is placed just before the exit 
of a supersonic expansion of Ar gas to drive the HHG process. The generated high 
harmonics are collected via a 1D +  1D (spatio-spectral) spectrometer consisting 
of a gold-coated cylindrical mirror and a flat grating. The resulting spectrum is 
recorded with an EUV CCD array (Andor, Newton) at either the flat-field focal 
plane of the spectrometer (spectral measurements), or at a far field, ~8 cm beyond 
this focal plane (EUV vortex profile measurements), which measure both the 
spectrum and spatial mode of the SAM–OAM harmonics, respectfully.

EUV MCD measurements of SAM–OAM HHG ellipticity. One of the most 
straightforward ways to determine the helicity of EUV radiation is by exploiting 
the dichroic absorption of different helicities of light in a suitable chiral material. 
In this work, we employed EUV MCD measurements to quantify the relative 
helicity of high harmonics in our SAM–OAM HHG spectra. In EUV MCD, the 
transmission of RCP and LCP light is slightly different depending on the magnetic 
moment of a uniformly magnetized film, and the relative (and sometimes absolute) 
degree of polarization can be determined by measuring the absorption spectrum 
under different macroscopic magnetizations of the thin magnetic film. In this 
work, a 20-nm-thick Fe0.75Co0.25 alloy film (capped with a double bilayer consisting 
of 3 nm each of Cu/Ta) was deposited onto a 200 nm Al metal foil and served as 
the magnetic sample for the EUV MCD measurements. The MCD asymmetry 
was measured by applying a moderate magnetic field (~15 mT) to the film from 
an external electromagnet. The film was then oriented at 45° with respect to the 
SAM–OAM beam propagation direction to maximize the MCD effect in this 

geometry. For the spectrally dispersed measurements in Fig. 2, the absorption 
spectrum of the Fe0.75Co0.25 film was recorded for 10 s, then the magnetization of 
the film was switched via the electromagnet, and another absorption spectrum 
was recorded for another 10 s. This procedure was repeated for 90 paired 
measurements, giving a total exposure time of 30 min. For the spatially resolved 
EUV MCD measurements, a total of 120 absorption spectra were taken for each 
magnetization direction, yielding a total exposure time of 40 min.

Full quantum SAM–OAM HHG simulations including propagation. To 
simulate bicircular SAM–OAM HHG, we employed a theoretical method that 
computes both the full quantum single-atom HHG response and subsequent 
propagation38. The propagation is based on the electromagnetic field propagator, 
in which we discretize the target (gas jet) into elementary radiators38. The dipole 
acceleration of each elementary source is computed using the full quantum 
strong field approximation, instead of solving directly the time-dependent 
Schrödinger equation, yielding a performance gain in computational time when 
computing HHG over the entire target38. We assume that the harmonic radiation 
propagates with the vacuum phase velocity, which is a reasonable assumption for 
high-order harmonics. Propagation effects in the fundamental field, such as the 
production of free charges, the refractive index of the neutrals, the group velocity 
walk-off, as well as absorption in the propagation of the harmonics, are taken 
into account. Note that although we account for the time-dependent nonlinear 
phase shifts in the driving fields, nonlinear spatial effects are not taken into 
account. The spatial structure of the vortex beams considered in our simulations 
is represented as a Laguerre–Gaussian beam propagating in the z direction (see 
Supplementary Section 1 for further details). The laser pulses are modelled with 
a trapezoidal envelope with two cycles of linear turn-on, six cycles of constant 
amplitude—16 fs—and two cycles of linear turn-off (in cycles of the ω1 field, of 
800 nm in wavelength). The amplitudes (E0) of the two fields—ω1 of 800 nm and ω2 
of 400 nm in wavelength—are chosen to obtain the same peak intensity at focus for 
each driver at the radii of maximum superposition (that is, the brightest intensity 
rings overlap spatially), yielding a total intensity of ×2 1014 W cm−2. The driving-
beam waists are chosen to overlap at the focal plane and the beam waists for the 
different cases ℓ = ± =w1, 300  µ m, for ℓ = ± = .w2, 21 40  µ m and for ℓ = ± =w4, 150
µ m (see Supplementary Section 4). The gas jet, flowing along the perpendicular 
direction to the beam propagation is modelled as a Gaussian distribution of 10 µ 
m at full width half maximum, and with a peak pressure of 667 Pa (5 torr). The low 
thickness of the gas jet is due to computational time limitations; however, based on 
our previous results of OAM HHG39, we do not foresee any fundamental deviation 
when considering thicker gas jets closer to the experimental jet employed in this 
work (a diameter of 150 µ m).

Data availability
The datasets and analysis routines utilized to prepare the data presented in this 
manuscript are available, free of charge, from the corresponding authors under 
reasonable request.
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4.5.2 Trains of attosecond pulses structured with time-ordered polarization
states

Resumen

Los pulsos de attosegundo de frecuencia en el ultravioleta extremo
(XUV), que se generan de forma rutinaria mediante la generación de
armónicos de orden alto (HHG) a partir de pulsos láser infrarrojos
incidentes, sirven como herramientas para capturar las dinámicas más
rápidas de la materia. Uno de los objetivos principales al respecto en
las últimas décadas, ha sido la generación de pulsos de attosegundo
estructurados, siendo ampliamente explorada la manipulación de su
momento angular de espín (SAM), o polarización [165, 166]. En par-
ticular, se han generado experimentalmente pulsos de attosegundo
polarizados circularmente, usando un campo dicromático contrar-
rotante con momento angular orbital (OAM) como campo incidente
[18]. Sin embargo, hasta donde sabemos, el control de la secuencia de
estados de polarización a lo largo del tren de pulsos de attosegundo
ha permanecido inexplorado.

En este trabajo presentamos una técnica que permite producir trenes
de pulsos de attosegundo con una variación progresiva de su elip-
ticidad [19]. El estado de polarización de los pulsos de attosegun-
dos cambia de pulso a pulso de manera ordenada, evolucionando,
por ejemplo, de polarización circular levógira a polarización circu-
lar dextrógira, o viceversa. Estos trenes de pulsos de attosegundo
estructurados se generan utilizando como campo incidente dos pulsos
contrarrotantes dicromáticos retardados en el tiempo con un contenido
de OAM apropiado. Además, nuestras simulaciones muestran que la
evolución ultrarrápida del estado de polarización a lo largo del tren se
puede controlar mediante el OAM, la duración y el retardo temporal
de los pulsos incidentes.

De manera similar a la reciente introducción del OAM ordenado en
el tiempo [16], esta fuente de luz estructurada en el XUV introduce
un nuevo grado de libertad, la polarización ordenada en el tiempo, a
las técnicas existentes para la medición y el control ultrarrápido en la
nanoescala. Por ejemplo, estos trenes de pulsos de attosegundo con
elipticidad secuencial ofrecen una nueva herramienta estroboscópica
para el estudio de la dinámica ultrarrápida en sistemas quirales, expe-
rimentos de bombeo-prueba (pump-probe) con estados de polarización
variable o dicroísmo circular magnético de polarización dependiente
del tiempo.
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Ultrafast laser pulses generated at the attosecond timescale
represent a unique tool to explore the fastest dynamics in
matter. An accurate control of their properties, such as
polarization, is fundamental to shape three-dimensional
laser-driven dynamics. We introduce a technique to gen-
erate attosecond pulse trains whose polarization state
varies from pulse to pulse. This is accomplished by driving
high-harmonic generation with two time-delayed bichro-
matic counter-rotating fields with proper orbital angular
momentum (OAM) content. Our simulations show that
the evolution of the polarization state along the train can be
controlled via OAM, pulse duration, and time delay of the
driving fields. We, thus, introduce an additional control into
structured attosecond pulses that provides an alternative
route to explore ultrafast dynamics with potential appli-
cations in chiral and magnetic materials. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.404402

The most fundamental mechanisms in atoms, molecules, or
solid systems are governed by dynamic interactions occurring
at the attosecond timescale. The quest of obtaining light pulses
at such short timescales, in order to drive, prove, and observe
such dynamics, has driven the scientific community’s efforts
towards the development of coherent high-frequency light
sources during the last two decades. As a consequence of the
uncertainty principle, ultrashort pulses must contain coherent
radiation spanning into the extreme-ultraviolet (XUV) or x-ray
regimes in order to reach the sub-femtosecond timescale. While
recently it has been shown that high-energy sub-femtosecond
pulses can be obtained from free-electron lasers, highly coherent
light bursts emitted at the attosecond timescale can be obtained
through high-order harmonic generation (HHG). Shortly after
the first demonstration of the comb of high-order harmonics
driven by intense lasers [1,2], Farkas and Tóth theoretically
forewarned of their characteristic sub-femtosecond duration
[3]. Since its experimental confirmation by several groups in the
early 2000s [4,5], HHG stands as the most robust tool not only
to generate pulses down to few tens of attoseconds, but also to
gain control on the properties of XUV radiation with unprec-
edented accuracy. Attosecond pulse trains provide extraordinary

possibilities as quantum stroboscopes [6] for the time-control
electron dynamics and the imaging of the electron’s quantum
state.

The success of HHG to produce attosecond pulses resides in
its extraordinary coherence. At the microscopic level, the process
is well understood from a semiclassical approach [7]. First, the
driving laser field ionizes an electronic wavepacket, which is
subsequently steered away from its parent ion. When the driv-
ing field reverses its sign, the wavepacket is driven back to the
parent ion. Upon recombination, the kinetic energy acquired
during the wavepacket excursion is released as high-order har-
monics of the driving laser. This sub-femtosecond process is
repeated at each half-cycle of the driving pulse, thus leading to
the generation of a train of attosecond pulses.

One of the properties of HHG attosecond pulses whose con-
trol has been elusive for many years is spin angular momentum
(SAM), associated with polarization. The generation of high
harmonics and attosecond pulses with different polarization
states is of great interest as a tool to probe the fastest spin dynam-
ics in materials, and to uncover fundamental understanding on
spin scattering and transport on attosecond timescales. Until
recently, the dynamics leading to HHG were restricted along the
direction of the linear polarization of the driving field, thus lim-
iting the harmonic photons to linearly polarized states. If driven
elliptically, the recombination probability diminishes, drasti-
cally reducing the yield of the high-order harmonic emission
[8]. Fortunately, different techniques have recently exploited
the extremely coherent nature of HHG to generate high-order
harmonics—and attosecond pulses—with polarization states
from linear to circular [9]. The use of non-symmetric targets,
such as molecules or solids [10,11], or the use of proper combi-
nations of linearly polarized drivers with different frequencies
[12] enable the generation of elliptically polarized harmonics.
Other approaches made use of proper macroscopic configura-
tions, such as the use of non-collinear counter-rotating driving
beams with the same color [13]—which allowed for the produc-
tion of circularly polarized attosecond pulses for the first time
[14,15]—or the combination of two HHG sources [16,17].

The first technique that allowed the generation of circularly
polarized high-order harmonics used a driving field composed
of two-color, counter-rotating, circularly polarized laser fields—
the so-called bi-circular driver [18–20], which can present
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high ionization and recombination rates [21]. This technique
stands nowadays as an efficient method to generate circularly
polarized harmonics with brightness and energies comparable
to single-color linearly polarized HHG [22,23]. The primary
spectral feature of bi-circular HHG is the generation of pairs of
circularly polarized harmonics with opposite helicity—right
circular (RCP) and left-circular (LCP)—due to SAM conser-
vation. The generation of both LCP and RCP harmonics from
bi-circular HHG driving results in the emission of linearly
polarized attosecond trains of pulses, where the polarization tilt
angle rotates from pulse to pulse.

Recently, the introduction of orbital angular momentum
(OAM) in the driving pulses, has allowed us to not only to
generate circularly polarized harmonic vortex beams, but also
to control the polarization of the attosecond pulse trains in
the bi-circular scheme [24]. However, up to now, SAM—or
the polarization state— has been introduced at the attosec-
ond timescale as a time-independent variable. To the best
of our knowledge, there is no proposal—nor experimental
demonstration— yet to produce attosecond pulse trains with
controlled, well resolved, time-ordered polarization. We note,
however, that some recent works have reported the generation of
high harmonics whose polarization state slightly changes along
the course of the pulse as a result of the highly nonlinear nature
of HHG [11,25].

In this Letter, we introduce a technique to generate trains of
attosecond pulses with different—and controlled—polarization
states from pulse to pulse, thus presenting time-ordered SAM
along the pulse train. The control knob lies on the proper choice
of the combination of two time-delayed bi-circular driving
fields, with different OAM content. Very recently, HHG has
been proven to introduce time-dependent OAM into a light
beam, denoted as self-torque [26]. In this work, we demonstrate
that driving HHG with two time-delayed bi-circular vortex
beams with properly chosen OAM content results in trains of
attosecond pulses of the SAM state changing sequentially from
pulse to pulse. Similar schemes that make use of time-delayed
pulses with different SAM, instead of OAM, are now widely
used, such as the polarization gating technique [27].

It is already known that introducing OAM in bi-circular
driving results in high-order harmonics with opposite helicity,
that can be spatially separated in the far-field into a double ring
profile [24], as we schematically illustrate in Fig. 1(a). If we
consider an OAM bi-circular field composed of two pulses with
fundamental (ω1) and doubled frequency (ω2 = 2ω1), counter-
rotating (σ1 =−1 LCP, σ2 = 1 RCP) and with topological
charge—or OAM content—of `1 and `2, respectively, the dif-
ference in divergence in the far-field between the LCP and RCP
harmonics is given by 1β ∝ (2`1 − `2)|`1 + `2|/(`1 + `2)

[24]. As a general trend, the spatial separation between the LCP
and RCP harmonic rings increases for larger differences between
`1 and `2, if `1 and `2 have opposite signs. The outer (inner)
ring—with larger (smaller) divergence— exhibits the same
helicity as that of the driving pulse with higher (lower) |`|. For
the convention adopted in this work, if |`1|> |`2|, the far-field
outer ring is composed of LCP harmonics, whereas if `2|> |`1|,
it is composed of RCP harmonics, as illustrated in Fig. 1(a).
From the temporal point of view, by selecting the high-order
harmonics emitted at each of the rings, attosecond pulse trains
with LCP or RCP states are generated with a time-independent
polarization state.

Fig. 1. (a) Scheme of polarization control of HHG driven by
an OAM bi-circular field (ω1, `1, LCP; 2ω1, `2, RCP). The HHG
spectrum is composed of pairs of circularly polarized harmon-
ics with opposite helicity, separated in divergence in the far-field.
(b) Generation scheme of trains of attosecond pulses with time-ordered
polarization states. In this case, HHG is driven by two time-delayed
OAM bi-circular fields, A and B , where, for this example, we have
chosen |`A

1 |> |`
A
2 | and |`B

1 |< |`
B
2 |. As a consequence, in the outer

(inner) ring, the polarization of the harmonics—and the attosecond
pulses—varies continuously in time from LCP (RCP) to RCP (LCP),
as shown schematically in the right panel.

In order to introduce a temporal dependency into the polari-
zation state of the attosecond pulses within the train, we drive
HHG with a combination of two time-delayed OAM bi-
circular beams with opposite topological charges [see Fig. 1(b)].
If we denote each of the OAM bi-circular beams as A and B , we
require an OAM combination of |`A

1 | = |`
B
2 | and |`B

1 | = |`
A
2 |,

maintaining `1 and `2 with opposite signs, as mentioned before.
The temporal delay between the two OAM bi-circular beams,
td , causes the emitted high-order harmonics in each of the rings
to evolve from LCP (RCP) to RCP (LCP), as depicted schemati-
cally in Fig. 1(b). For this figure, we have selected |`A

1 |> |`
A
2 |

and |`B
1 |< |`

B
2 |, and, thus, the polarization state of the emitted

attosecond pulse trains will evolve from LCP (RCP) to RCP
(LCP) at the outer (inner) harmonic ring. The pace of SAM
changes can be controlled through the OAM of the driving
pulses and their temporal properties (pulse duration and time
delay).

We have performed simulations of macroscopic HHG in an
argon gas jet, including propagation. Our calculations combine
the strong-field approximation with the electromagnetic-
field propagator [28]. This theoretical approach successfully
describes the macroscopic HHG in several configurations
involving SAM and/or OAM [13–16,24,26]. We model the
driving pulses with a sin2 envelope, with central wavelengths of
800 nm (400 nm) for the ω1 (2ω1) driver and a peak intensity
of 1.4× 1014 W/cm2 each. The spatial structure of the laser
beams is represented as a Laguerre–Gaussian beam propagating
in the z direction, with topological charge ` and radial nodes
index p . The beam waist, w0, of each laser beam is chosen so
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Fig. 2. (a) Spatial intensity profile of the HHG beam obtained with
an OAM bi-circular field with `A

1 = 3, `A
2 =−2 (and, thus, `B

1 = 2,
`B

2 =−3). The helicity of the inner and outer rings changes along
time. In panels (b) and (c), we show the HHG spectrum of the outer
and inner rings, whereas in panels (d) and (e) we show the correspond-
ing attosecond pulse train envelopes (purple), ellipticity (green), and
tilt angle (orange).

that the different OAM modes overlap at the rings of maximum
intensity.

In Fig. 2, we present the results of the simulations when
considering `A

1 = 3, `A
2 =−2 (and thus `B

1 = 2, `B
2 =−3),

all of them with p = 0. The pulse duration of each driver is
7.7 fs in full width at half-maximum (FWHM) in intensity, and
the temporal delay between the A and B drivers is td = 7.7 fs.
The waist of the driving beams, w0, is 30 µm for `=±2 and
24.54 µm for `=±3. Looking at the spatial intensity pro-
file of the HHG beam in Fig. 2(a), integrated over harmonic
orders above the 10th, we distinguish two spatial rings. In
Figs. 2(b) and 2(c), we show the far-field HHG spectrum of
the outer ring (detected at 1.6 mrad) and that at the inner ring
(detected at 0.6 mrad), respectively. In both HHG spectra, we
can already distinguish the pairs of LCP (red line) and RCP
(blue line) harmonics, a well-known result of SAM conserva-
tion in HHG driven by the bi-circular field [22]. Note that we
observe a frequency shift in the harmonics, which is induced
by the pulse envelope through the time-dependent variation
of the intrinsic phase. Computing the inverse Fourier trans-
form of the HHG spectra above the 10th harmonic order, we
can retrieve the attosecond pulse trains shown in purple in
Figs. 2(d) and 2(e), for the outer and inner rings, respectively.
The polarization state of the attosecond pulse trains can be
monitored through the temporal evolution of the Stokes param-
eters [29]. The time-dependent ellipticity can be thus described
as ε(t)= tan

[
0.5 arctan(S3(t)/

√
S2

1(t)+ S2
2(t))

]
, while the

time-dependent tilt angle is θ(t)= 0.5 arctan[S2(t)/S1(t)].
In Figs. 2(d) and 2(e), we show the time-dependent ellipticity,

ε(t), in green and the time-dependent tilt, θ(t), in orange for
the outer and inner rings, together with the attosecond pulse
train envelope in purple—which corresponds to the Stokes
parameter S0(t). We can see how the polarization state of the
attosecond pulses evolves from LCP (RCP) to RCP (LCP)
along the train for the outer (inner) spatial ring. The tilt angle

exhibits a rotation from pulse to pulse and also within each
individual pulse. When driven by a single bichromatic counter-
rotating field, the tilt angle is known to rotate 120 deg from
pulse to pulse. In contrast, in this scenario, the rotation is more
complicated due to the overlap of the two time-delayed fields.
The structure of the trains remains almost invariant within a
divergence angle width of 0.5 mrad, approximately. Finally, we
note that the time-dependent degree of polarization, defined as

P (t)=
√

S2
1(t)+ S2

2(t)+ S2
3(t)/S0(t), is constant and equal

to one for all of the cases presented in this work, as expected from
the coherence of the HHG process.

To have a better insight into the origin of the temporal struc-
ture of the attosecond pulse trains, we present in Fig. 3 the
time-frequency analysis for the two cases depicted in Fig. 2.
At the outer ring (left column), the LCP harmonics dominate
at the front part of the pulse train, whereas RCP harmonics
dominate at the rear part of the pulse. This behavior is reversed
at the inner ring (right column). Note that the temporal delay
between the OAM bi-circular drivers A and B is chosen to be
equal to the FWHM of the driving pulses in order to obtain a
homogeneous and linear variation of the ellipticity over time.
A different choice of the time delay can be used to customize
the temporal variation of the ellipticity of the attosecond pulse
train. Analogously, the choice of the driving pulse lengths, and
their OAM, allows for a custom control of the time-dependent
polarization structure of the attosecond pulse train. To show
the versatility of this technique, we have performed simula-
tions with few-cycle driving laser pulses and a different OAM
combination. In Fig. 4, we present the simulation results when
considering Laguerre–Gauss beams with `A

1 = 2, `A
2 =−1

(and, thus, `B
1 = 1, `B

2 =−2), all of them with p = 0. The
driving pulse length is 1.9 fs FWHM, and the temporal delay
between the A and B drivers is td = 1.9 fs. The waist of the
driving beams is w0 = 30 µm for `=±1 and w0 = 21.4 µm
for `=±2. Now, the number of attosecond pulses in the train
is reduced—as expected—, and, thus, the variation rate of
the ellipticity in time increases. In this case, we present the
attosecond pulse train emitted at an intermediate divergence
angle (detected at 1.7 mrad) in order to illustrate the possibil-
ity of obtaining a polarization evolution from linear to highly
elliptical, in contrast to the elliptical-to-elliptical polarization
variation in the outer and inner rings. On the other hand, the

Fig. 3. Time-frequency analysis for RCP (first row) and LCP
(second row) projections of the harmonic emission at the outer (left
column) and inner (right column) rings, depicted in Fig. 2. The outer
(inner) ring LCP (RCP) harmonics precede temporally the RCP (LCP)
ones. The spectral width of the Gaussian mask used to perform the
time-frequency analysis isω1.
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Fig. 4. Attosecond pulses—envelope (purple), ellipticity (green),
and tilt angle (orange)—obtained with a few-cycle OAM bi-circular
field with `A

1 = 2, `A
2 =−1 (and, thus, `B

1 = 1, `B
2 =−2) for an

intermediate divergence angle (top) and inner ring (bottom) emission.
The two-dimensional (2D) evolution of the attosecond electric fields is
depicted in the right column.

inner ring consists of two elliptically polarized attosecond pulses
with opposite helicities (detected at 1 mrad).

In conclusion, we have presented a scheme for the generation
of attosecond pulse trains with time-ordered polarization states.
By driving HHG with two time-delayed OAM bi-circular driv-
ers, two spatially separated rings of harmonics are generated,
each with polarization evolving from LCP to RCP and vice
versa. The proper choice of the OAM, pulse length, and time
delay of the driving pulses allows for custom control over the
temporal evolution of the SAM of the pulses within the train.

We, thus, introduce a novel structured ultrafast light source
by adding a new degree of freedom, time-ordered SAM, or
polarization into the quantum stroboscope scheme. Similarly,
time-ordered OAM—or self-torque—was introduced recently
into the family of structured light beams thanks to HHG
[26]. By adding this temporal dependency into the SAM of
attosecond EUV beams, this work opens the route towards new
probing scenarios—such as the study of ultrafast dynamics in
chiral systems, pump–probe experiments with polarization
varying states, or time-dependent polarization x-ray magnetic
circular dichroism—that provide an alternative route to probe
the ultrafast dynamics of matter systems at the nanoscale.
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5
C O N C L U S I O N S

This thesis presents a collection of schemes for the generation high-
order harmonics and attosecond pulses with novel angular momentum
properties by structuring HHG through the characteristics of the driv-
ing beams. Additionally, we have studied the fundamentals of HHG

and, in particular, the tunnel-ionization. From our research work we
can derive the following main conclusions:

1. The tunnel ionization in molecules is site-specific: the ionization
rate deeply depends on the position of the electronic wavefunc-
tion at the ion sites, decreasing with its distance to the edge of
the molecular potential barrier. Importantly, both the HHG and
photoelectron spectra present signatures of the site-dependent
tunnel ionization, since it distorts the mapping of the molecular
orbitals into the ionized electron.

2. XUV beams with ultrafast-time-varying OAM are produced from
HHG driven by two time-delayed vortex beams. The OAM content
of the high-order harmonics is well-defined and varies contin-
uously and extremely rapidly in time along the beam itself, a
quality that, to the best of our knowledge, has not been reported
in any spectral regime. Noticeably, this novel property, that we
denote as self-torque, imprints an azimuthal frequency chirp
on the high-order harmonics, which allows for its experimental
measurement. The amount of self-torque can be controlled by
modifying the temporal properties—duration and time delay—
of the driving fields.

3. High-order harmonic combs with tunable spectral line-spacing
can be obtained from HHG driven by a phased-necklace driving
beam, which is composed by two vortex beams. Remarkably, the
OAM content of the phased-necklace driving beam determines
the line-spacing of the XUV/soft-X-ray frequency combs. Addi-
tionally, such combs exhibit a low divergence, which decreases
with the harmonic order, in contrast to that of the high-order
harmonics generated from HHG driven by a standard Gaussian
beam.

4. Isolated attosecond pulses with controlled ellipticity can be gen-
erated from HHG driven by a non-collinear counter-rotating field.
Such control is achieved by properly modifying the ellipticity of
the driving pulses. Noticeably, the scaling of the ellipticity of the
high-order harmonics with that of the driving beams is strongly
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influenced by the non-perturbative dipole response. We intro-
duce an ellipsometry technique to retrieve the non-perturbative
amplitude scaling power and dipole phase from experimental
polarization measurements.

5. Circularly polarized XUV vortex beams are generated from HHG

driven by a bi-circular vortex field. The simultaneous conserva-
tion of SAM and OAM entwines both quantities, and, as a result,
the OAM of the harmonics depends on its particular SAM. In-
terestingly, this allows for the generation of XUV beams with
unprecedented properties by properly selecting the OAM content
of the driving field: (i) RCP and LCP high-order harmonics can
be spatially separated, so circularly polarized attosecond pulses
are synthesized, and (ii) high-order harmonics can be generated
with the same topological charge than that of the driving beams.
Additionally, the selection rules that govern this configuration
can be described as the conservation of the torus-knot angular
momentum in HHG.

6. Attosecond pulse trains with time-ordered polarization states
from pulse to pulse can be generated from HHG driven by two
time-delayed bi-circular fields carrying properly selected OAM.
The evolution of the ellipticity along the attosecond pulse train
is controlled through the driving field temporal properties and
OAM.

From the methodological point of view, the novel tools developed
in this thesis are the following:

1. We have incorporated the site-dependent tunnelling into the SFA

by introducing a modified molecular form factor. Our SDT-SFA

model improves substantially the agreement between the stan-
dard molecular SFA models and the exact TDSE calculations.

2. We have developed a numerical tool for the extraction of the
molecular form factor from the TFA of the HHG emission for the
confirmation of the site-dependent tunnel-ionization.

3. We have extended the TSM to new configurations: (i) the combi-
nation of several time-delayed vortex driving beams for the gen-
eration of XUV self-torqued beams; (ii) the non-collinear counter-
rotating scheme for the generation of isolated attosecond pulses
with controlled ellipticity and the non-perturbative dipole re-
sponse characterization; and (iii) the bi-circular vortex driving
field for the generation of circularly polarized attosecond pulses
with OAM, as well as time-ordered polarization states along the
attosecond pulse train.

In conclusion, in this thesis we have presented several strategies
for structuring HHG with the angular momentum of light, a topic
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at the forefront of the ultrafast research. As a first step, we have
investigated the description of the fundamental characteristics and
physical mechanisms of HHG. In this sense, we believe that we have
contributed to a better understanding of tunnel ionization, providing
the procedural implementation in the present modelling framework,
which could be applied to high-harmonic spectroscopy techniques. In
the future, our SDT-SFA model could be extended to the study of HHG

in larger molecules and/or using structured driving beams.
Then, as the main contribution of this thesis, we have demonstrated

the generation of XUV beams with novel angular momentum proper-
ties, which could serve henceforth as tools for laser-matter manipula-
tion on attosecond time and nanometric spatial scales. In particular, in
contrast to the static-OAM light-based technologies, our work opens a
new regime of dynamic-OAM light-based optical control, that could
potentially be used to image magnetic and topological excitations
with time-dependent OAM, to launch selective excitation of quantum
matter, or to manipulate molecules and nanostructures on their natu-
ral time and length scales. Furthermore, we have demonstrated that
driving beams with proper OAM content can also be employed for the
control of the spectral and spatial properties of the high-order harmon-
ics, providing diverse frequency combs for tabletop XUV/soft-X-ray
spectroscopy and imaging.

Finally, the generation of attosecond pulses with controlled ellip-
ticity can serve to study chiral molecules or magnetic materials. Par-
ticularly, we foresee that the experimental generation of attosecond
pulse trains with time-ordered polarization states could be an inter-
esting future step towards the study of time-dependent chirality or
polarization X-ray magnetic circular dichroism.





C O N C L U S I O N E S

Esta tesis presenta una colección de esquemas para la generación
de armónicos de orden alto y pulsos de attosegundo con nuevas
propiedades de momento angular mediante la estructuración del
proceso de HHG a través de las características de los haces incidentes.
Además, hemos estudiado los fundamentos de la HHG y, en particular,
la ionización túnel. De nuestro trabajo de investigación podemos
derivar las siguientes conclusiones principales:

1. La ionización túnel en las moléculas es dependiente de la ubi-
cación de los electrones en ellas: la tasa de ionización depende en
gran medida de la posición de la función de onda electrónica en
los iones, disminuyendo con su distancia al borde de la barrera
de potencial molecular. Es importante destacar que tanto los
espectros de HHG como los de fotoelectrones presentan huellas
de la ionización túnel dependiente de la ubicación, ya que esta
distorsiona el mapeo de los orbitales moleculares en el electrón
ionizado.

2. Obtenemos haces XUV con un OAM que varía ultrarrápidamente
en el tiempo a partir de la HHG usando como campo incidente
dos vórtices retardados en el tiempo. El contenido de OAM de
los armónicos de orden alto está bien definido y varía de forma
continua y extremadamente rápida en el tiempo a lo largo del
haz, una cualidad que, hasta donde sabemos, no ha sido descrita
anteriormente en ningún régimen espectral. Cabe destacar que
esta nueva propiedad, que denominamos auto-torque, imprime
un ordenamiento de frecuencias azimutal en los armónicos de or-
den alto, lo cual permite su medición experimental. La cantidad
de auto-torque se puede controlar modificando las propiedades
temporales (duración y retardo) de los pulsos incidentes.

3. Generamos peines de armónicos de orden alto con espaciado
espectral sintonizable a partir de la HHG usando como campo in-
cidente un haz tipo “collar de cuentas” con fase, que se construye
a partir de la combinación de dos vórtices de luz. Sorprenden-
temente, el contenido de OAM del haz incidente determina el
espaciado entre líneas de los peines de alta frecuencia. Además,
estos haces exhiben una divergencia baja, que disminuye con
el orden armónico, en contraste con la de los armónicos de or-
den alto generados a partir de HHG usando un haz Gaussiano
estándar.

4. Demostramos la generación de pulsos de attosegundo aislados
con elipticidad controlada a partir de la HHG usando un campo
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contrarrotante no colineal. Dicho control se logra modificando
adecuadamente la elipticidad de los pulsos incidentes. Cabe
destacar que el escalado de la elipticidad de los armónicos de
orden alto con la de los haces incidentes está fuertemente in-
fluenciado por la respuesta dipolar no perturbativa. Por tanto,
tanto la potencia de escalado de la amplitud como la fase dipo-
lar no perturbativas pueden recuperarse a partir de mediciones
experimentales de polarización.

5. Obtenemos vórtices XUV polarizados circularmente a partir de
la HHG usando un campo bi-circular con OAM como haz inci-
dente. La conservación simultánea del SAM y el OAM entrelaza
ambas cantidades y, como resultado, el OAM de los armónicos
depende de su SAM particular. Destacablemente, esto permite
la generación de haces XUV con propiedades sin precedentes,
seleccionando apropiadamente el contenido de OAM del campo
incidente: (i) los armónicos de orden alto con polarización dex-
trógira y levógira pueden ser separados espacialmente, lo que
lleva a la generación de pulsos de attosegundo polarizados cir-
cularmente, y (ii) se pueden generar armónicos de orden alto
con la misma carga topológica que la de los haces incidentes.
Además, las reglas de selección que gobiernan esta configuración
se pueden describir como la conservación del momento angular
de nudo toroidal en la HHG.

6. Proponemos la generación de trenes de pulsos de attosegundo
con estados de polarización ordenados en el tiempo de pulso a
pulso a partir de la HHG usando como haz incidente dos campos
bi-circulares retardados en el tiempo con un OAM seleccionado
adecuadamente. La evolución de la elipticidad a lo largo del tren
de pulsos de attosegundo se controla mediante las propiedades
temporales y el OAM del campo incidente.

Desde el punto de vista metodológico, las nuevas herramientas
desarrolladas en esta tesis son las siguientes:

1. Hemos incorporado el efecto de la ionización tunel dependiente
de la ubicación del electrón en la SFA mediante la modificación
del factor de forma molecular. Nuestro modelo de SDT-SFA mejora
substancialmente el acuerdo entre los modelos moleculares de
la SFA estándar y los cálculos de la TDSE exactos.

2. Hemos desarrollado una herramienta numérica para la extrac-
ción del factor de forma molecular a partir del análisis espectro-
temporal de la emisión de la HHG, que hemos utilizado para la
confirmación de nuestro modelo de la ionización túnel dependi-
ente de la ubicación electrónica.
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3. Hemos extendido el TSM a nuevas configuraciones: (i) la combi-
nación de varios vórtices retardados en el tiempo para la genera-
ción de haces XUV con auto-torque; (ii) el esquema no colineal
contrarrotante para la generación de pulsos de attosegundo ais-
lados con elipticidad controlada y para la caracterización de la
respuesta dipolar no perturbativa; y (iii) el campo bi-circular vor-
ticial para la generación de pulsos de attosegundo polarizados
circularmente y con OAM, así como para la propuesta de trenes
de pulsos con estados de polarización ordenados en el tiempo.

En conclusión, en esta tesis hemos presentado varias estrategias
para estructurar la HHG con el momento angular de la luz, un tema
a la vanguardia de la investigación ultrarrápida. Como primer paso,
hemos investigado la descripción de las características fundamentales
y los mecanismos físicos de la HHG. En este sentido, creemos que
hemos contribuido a una mejor comprensión de la ionización túnel,
proporcionando la implementación del procedimiento en el marco de
los modelos actuales, lo cual podría aplicarse a estudios de espectros-
copia de harmónicos altos. Además, en el futuro, nuestro modelo de
SDT-SFA podría extenderse a moléculas más grandes, y también hacia
el estudio de HHG haciendo incidir haces estructurados en moléculas.

A continuación, como principal contribución de esta tesis, hemos
demostrado la generación de haces XUV con nuevas propiedades de
momento angular, que podrían servir de ahora en adelante como
herramientas para la manipulación láser-materia en escalas espaciales
nanométricas y de tiempo de attosegundos. En particular, en contraste
con las tecnologías basadas en el control de la luz con OAM estático,
nuestro trabajo abre un nuevo régimen de control óptico basado en
la luz con OAM dinámico. Esta característica podría potencialmente
usarse para obtener imágenes de excitaciones magnéticas y topológicas
con OAM dependiente del tiempo, iniciar la excitación selectiva de
materia cuántica o manipular moléculas y nanoestructuras en sus
escalas naturales de tiempo y longitud. Además, hemos demostrado
que los haces incidentes con el contenido adecuado de OAM también
se pueden emplear para el control de las propiedades espectrales y
espaciales de los armónicos de orden alto, proporcionando diversos
peines de frecuencia para espectroscopia y formación de imágenes
con rayos X.

Finalmente, la generación de pulsos de attosegundo con eliptici-
dad controlada puede servir para el estudio de moléculas quirales
o materiales magnéticos. En particular, prevemos que la generación
experimental de trenes de pulsos de attosegundo con estados de po-
larización ordenados en el tiempo podría ser un paso futuro hacia
el estudio de la quiralidad dependiente del tiempo o del dicroísmo
magnético de rayos X de polarización circular.





A
A P P E N D I X : A D D I T I O N A L P U B L I C AT I O N S

In this appendix, we compile the full texts of the three articles that
are part of the work carried out in this thesis but were not included
in section 4.5. We first present two publications led by our exper-
imental collaborators from the group of Prof. M.-Ch. Chen at the
Institute of Photonics Technologies of the National Tsin Hua Univer-
sity (Taiwan), using the non-collinear counter-rotating driving field.
In section A.1, we include the publication about the generation of
attosecond pulses with monitored ellipticity, under the title "Polariza-
tion control of isolated high-harmonic pulses" [20], which was briefly
explained in section 4.2.1. In section A.2, we present our article re-
garding the extraction of information of the dipole phase response
from an ellipsometry technique, under the title "High-order nonlinear
dipole response characterized by extreme ultraviolet ellipsometry"
[21], mentioned in section 4.2.2. Finally, in section A.3, we include our
publication regarding the torus-knot angular momentum in HHG, a
work leaded by our collaborators from the group of Prof. M. Lewen-
stein at ICFO in Barcelona (Spain), under the title "Conservation of
Torus-knot Angular Momentum in High-order Harmonic Generation"
[22], which was briefly discussed in section 4.3.4.

a.1 polarization control of isolated high-harmonic
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Ultrafast extreme-ultraviolet (EUV) and soft X-ray beams 
carrying spin angular momentum are used in many dif-
ferent fields of science due to their ability to temporally 

investigate the structural, electronic and magnetic properties of 
materials. For example, ultrafast circularly polarized beams are 
particularly important in the study of chiral molecules, making 
it possible to discriminate between enantiomers and resolve their 
dynamics. Bright ultrafast beams with adjustable polarization have 
recently been produced using both free-electron laser (FEL) facili-
ties1–4 and tabletop high-harmonic generation (HHG) set-ups5–9. 
Several schemes to generate circularly polarized beams have been 
implemented at X-ray FELs, including converting linearly polar-
ized beams to circularly polarized beams using a phase retarder, 
or by using special undulators to precisely control the motion of 
electrons, and thus the polarization of the emitted radiation. FEL 
X-ray pulses are emitted with pulse durations as short as tens of 
femtoseconds10. However, although FEL radiation is well known 
for its brightness, the high cost of such large-scale facilities results 
in limited access.

A tabletop alternative to FELs is the extreme nonlinear optical 
process of HHG, where infrared light from a femtosecond laser can 
be coherently upconverted to produce fully coherent beams in the 
EUV and soft X-ray regimes with sub-femtosecond or attosecond 
pulse durations. HHG is a non-perturbative process that has both 
microscopic and macroscopic character. Microscopically, an atom 
is first ionized by the driving field, then the electronic wave packet 
is accelerated and finally driven back to recollide with the parent 
ion11,12. In this last step, the kinetic energy acquired from the laser 
field is released as high-frequency harmonics of the fundamental 
laser. Macroscopically, the phase relationship between harmon-
ics radiated from different atoms in the target becomes crucial for 
determining both the efficiency and the spatio-temporal properties 
of the emitted coherent radiation13–17.

Although tremendous progress has been made in generating 
and using linearly polarized high-harmonic beams, until recently 
it was not possible to directly generate bright circularly polarized 
HHG pulses. This is because when HHG is driven by a linearly 
polarized laser, the ionized electronic wave packet accelerates on a 
linear trajectory and therefore easily recollides with the parent ion. 
In contrast, with circularly polarized driving lasers (or elliptically 
polarized lasers with large ellipticity), the probability of electron 
recollision is strongly suppressed and therefore no harmonics are 
emitted18,19. Alternatively, EUV waveplates could be used to convert 
linearly polarized harmonics to circular polarization; however, this 
is extremely inefficient and is restricted to narrow bandwidths20.

Recent work has demonstrated the synthesis of bright circularly 
polarized high-harmonic attosecond pulse trains by modifying the 
microscopic physics of HHG through the combination of collin-
ear counter-rotating beams with different frequencies and macro-
scopic phase matching5,6,8,9,21. More recently, by using non-collinear 
counter-rotating circularly polarized driving lasers for HHG (NCP-
HHGs), circularly polarized trains of attosecond pulses were exper-
imentally generated that emerge as angularly separated beams22. 
Furthermore, numerical simulations suggest that isolated attosec-
ond bursts of circularly polarized light can be generated in NCP-
HHG, provided that the driving laser pulse duration is reduced to 
the few-cycle regime23.

Here we experimentally generate circularly polarized high-
harmonic EUV supercontinua, spanning photon energies from 20 
to 45 eV, and thus supporting 190 as (transform-limited) isolated 
pulses. As discussed in more detail in the following, although the 
single isolated high-harmonic burst is predicted to be linearly 
chirped to ~330 as, it represents, to our knowledge, the broad-
est coherent circularly polarized supercontinuum generated 
so far. This experiment is realized by the use of few-cycle pulses 
synthesized from compressed multiple thin-plate supercontinua 

Polarization control of isolated high-harmonic pulses
Pei-Chi Huang1,2*, Carlos Hernández-García   3, Jen-Ting Huang1, Po-Yao Huang   1, Chih-Hsuan Lu1,2, 
Laura Rego3, Daniel D. Hickstein   4, Jennifer L. Ellis4, Agnieszka Jaron-Becker4, Andreas Becker4, 
Shang-Da Yang1, Charles G. Durfee5, Luis Plaja3, Henry C. Kapteyn   4, Margaret M. Murnane4,  
A. H. Kung1,2 and Ming-Chang Chen1,6*

High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and 
materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which 
limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultra-
violet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The 
circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a pre-
dicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control 
the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without 
sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellip-
ticity control, paves the way towards attosecond metrology of circular dichroism.
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(MPContinua)24. The unique scalability of the MPContinuum tech-
nique enables the realization of almost identical near-single-cycle 
driving pulses without using split mirrors or a second compressor 
set-up. To characterize the isolated circularly polarized high-har-
monic pulses, the pulse temporal contrast is characterized using an 
EUV Fourier-transform field autocorrelation, which is a reliable 
technique to distinguish an isolated EUV pulse from a train of such 
pulses25. Most importantly, we show that this work provides the first 
polarization control of isolated high-harmonic pulses. We smoothly 
control the ellipticity of isolated EUV pulses, from linear through 
elliptical to circular polarization, while retaining the conversion 
efficiency. Remarkably, the polarization control is based on the non-
perturbative nature of HHG, as we unequivocally demonstrate that 
the polarization state of the isolated EUV pulses depends strongly 
on the quantum trajectory followed in the HHG process. The polar-
ization state of the isolated high-harmonic pulses is fully analysed 
with a rigorous and reliable polarimeter composed of two rotat-
able sets of triple-reflection polarization analysers, which unam-
biguously determine their ellipticity (the ratio of the minor axis to 
the major axis of elliptically polarized light), helicity (left-handed 
or right-handed circular polarization) and degree of polarization 
(the energy portion of pulses that is polarized). The generation and 
characterization of arbitrarily polarized high-harmonic pulses rep-
resents a major breakthrough in attosecond science, enabling the 
real-time measurement of energy and angular momentum transfer 
in magnetic materials and the symmetry-dependent characteristics 
of chiral molecules.

Polarization control of isolated high-harmonic pulses
To control the ellipticity of high-harmonic EUV pulses εEUV, two 
identical elliptically polarized few-cycle fundamental laser beams 
with equal ellipticity εIR (but opposite helicity) were prepared and 
focused into a gas jet in a non-collinear geometry (Fig. 1). These 
two electric fields can be written as
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where EIR,R (EIR,L) represents right-handed (left-handed) ellipti-
cally polarized infrared (IR) light, k =  2π /λIR is the fundamental 
wavevector, λIR is the wavelength of the driving laser, θ is the half-
crossing angle between the two fundamental laser beams, x and z 
are the transverse and longitudinal distances away from the cen-
tre of the focal plane, respectively, τ is the full-width at half-max-
imum (FWHM) pulse duration, D is the delay between these two 
Gaussian-shaped electric fields, ω is the angular frequency of the 
driving laser, and ΦCEP is the carrier-envelope phase of the funda-
mental pulses.

At the focal plane (z =  0) and for perfect temporal overlap (D =  0), 
the electric field Efocus becomes
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Therefore, E-field vectors are created on the focal plane rotating 
across the transverse direction �x  with a period of 2π /(ksinθ). For any 
specific position x, the local E-field oscillates linearly, which is ideal 
for efficient single-atom HHG. In the far-field, the high-harmonic 
field distribution and vector varying with time can be numerically cal-
culated with the ‘thin slab model’ (TSM)26,27, a semiclassical method 
based on Fraunhofer diffraction (see Supplementary Section 2 for 
details). The diffraction integral of the linearly polarized oscillating 
high-harmonic field distributed along �x  (Fig. 1) results in two ellipti-
cally polarized EUV beams. Because both the amplitude and phase of 
HHG on the focal plane are coherently scaled and spatially imprinted 
by the driving IR field, εEUV can be well controlled by εIR, forming 
the ellipticity scaling as ε ε ε∝ −. .

EUV IR
4 5

IR
4 8, as discussed in more detail 

in the section ‘Complete polarization control of isolated EUV pulses’.

isolated, circularly polarized EuV pulses
The output of a Ti:sapphire amplifier (30 fs, 1 kHz, 480 μ J) was split 
into two beams using a slightly misaligned Mach–Zehnder interfer-
ometer (Fig. 1). Both linearly polarized laser beams were focused into 
an array of individual thin quartz plates of 50 μ m thickness to coher-
ently broaden the pulse bandwidth (Supplementary Section 1 and 
ref. 24). The resulting MPContinua were simultaneously compressed 
using the same chirped mirrors to ~3.6 fs (1.3 cycles), as confirmed 
by polarization gating cross-correlation frequency-resolved opti-
cal gating28. The NCP-HHG was implemented by inserting quarter 
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lasers results in coherent control of the amplitude and phase of the linearly polarized HHG fields at the focal plane, resulting in polarization control of the 
HHG beams in the far field. CM, chirped mirror; QWP, quarter-wave plate: PM, off-axis parabolic mirror. Insets: electric field distributions at the focal plane.
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waveplates into the two laser beams to produce counter-rotating 
polarization states. The two laser beams were then focused in a 
crossed-beam geometry onto a continuous-flow Ar gas jet placed in 
a vacuum chamber. The half-crossing angle was ~17 mrad, and the 
pulse energies were ~70 μ J. Two 200 nm Al filters were used to reject 
the residual laser light, and the HHG output was spectrally dispersed 
using an EUV spectrometer, calibrated to better than 0.3 eV reso-
lution. When both driving pulses overlapped in time and space, a 
continuous high-harmonic spectrum was observed (Fig. 2), because 
both driving pulses are near single cycles. To optimize the EUV con-
tinuum, the two counter-rotating driving pulses were delayed with 
respect to each other, to narrow the linear-polarization temporal-
gating window and thus obtain an isolated high-harmonic pulse23,29 
(Supplementary Section 3). Figure 2a presents the spatially resolved 
high-harmonic supercontinua for a relative time delay of 1.8 fs. The 
two HHG spectra with right and left circular polarization obtained 
with the NCP-HHG technique are clearly distinguishable. The gen-
erated photon flux of each beam is ~3 ×  107 counts per second over 
the whole EUV spectrum. Note that low-order harmonics below 
24 eV are mainly reabsorbed in the Ar generating medium.

To measure the temporal coherence and to distinguish the gen-
eration of an isolated EUV pulse from a train of pulses, we imple-
mented a Fourier-transform field autocorrelation, as has previously 
been done for linearly polarized pulses25. One of the circularly polar-
ized EUV beams was spatially selected and sent to a split mirror, 
separating the beam into two halves. A piezo actuator controlled 
the relative time delay between the two halves of the beam with 
sub-nanometre resolution. The resulting interference pattern was 
measured by an EUV charge-coupled device (CCD) as a function 
of time delay, providing the autocorrelation trace of the HHG beam 
(Supplementary Video 1). The HHG autocorrelation trace in Fig. 2c  
shows that the main EUV pulse has a high-amplitude contrast 
compared to the adjacent pulses and a coherence length of 380 as. 
Although the carrier-envelope phase (ΦCEP) of IR pulses was not 
stabilized in our experiment, our simulation results demonstrate 
that isolated high-harmonic pulses are still generated by controlling 
the linear-polarization temporal-gating window (Supplementary 
Section 3). Figure 2d shows a comparison between the spectrum 
extracted from a Fourier transform of the field autocorrelation  
trace and that experimentally measured by the grating-based  

spectrometer. The consistency between the two spectra indicates 
that all circularly polarized EUV light has been successfully deliv-
ered and spatially overlapped at one focal spot, which is an essen-
tial criterion for circularly polarized attosecond pulse generation. 
The observed bandwidth supports 190 as transform-limited pulses, 
while our theoretical simulations predict that isolated chirped 
pulses of 330 as are produced (Fig. 4 and Supplementary Fig. 4). It is 
worth noting that using a field autocorrelator, we can clearly show 
that the supercontinuum corresponds to an isolated pulse, while the 
good spectrum and beam observed indicate high temporal and spa-
tial coherence of the circularly polarized pulses.

Complete polarization control of isolated EuV pulses
Furthermore, by adjusting the ellipticity εIR of the two counter-rotat-
ing driving pulses, we demonstrate full control of ellipticity of iso-
lated high-harmonic EUV pulses, while keeping the high-harmonic 
beam quality and conversion efficiency (Fig. 3, Supplementary 
Fig. 8 and Supplementary Table 1). To maintain linearly polarized 
E-fields at the focal plane, as shown in equation (2) and Fig. 1, we 
prepared two counter-rotating driving pulses with identical ellip-
tical polarization εIR,R =  εIR,L =  εIR. The resulted polarization state 
of the right-handed and left-handed EUV pulses, εEUV,R and εEUV,L, 
were measured separately by one reflection polarimeter consist-
ing of two independent rotatable sets of triple-reflection polarizers, 
with the first set acting as the phase shifter and the second acting 
as a linear-polarization analyzer as shown in Fig. 3a30. Such a polar-
imeter unambiguously determines the ellipticity and helicity of the 
EUV pulses, as well as discriminating between unpolarized and 
polarized light by retrieving the Stokes parameters (Supplementary 
Section 7). While those two polarizer sets are set in the same rotat-
ing angle (α =  β), the polarimeter becomes a great EUV polariza-
tion analyser with an extinction ratio of ~80:1. Figure 3c shows the 
angularly resolved intensity of the high-harmonic pulses recorded 
under different orientations of the analyser axis, together with a 
table showing the ellipticity of the high-harmonic pulses retrieved 
by the polarimeter. It is worth mentioning that we experimentally 
observed almost identical ellipticity and tilt over the entire HHG 
spectra, clearly indicating that full polarization control of a very 
broad bandwidth of several tens of electronvolts is straightforward 
with the NCP-HHG geometry (Supplementary Section 8).
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To verify the working principle behind this method, we per-
formed numerical simulations of the NCP-HHG technique using 
two theoretical methods: (1) calculations of HHG including prop-
agation, using a combination of the fully quantum strong-field 
approximation (SFA) and the electromagnetic field propagator31; 
and (2) a semiclassical HHG approximation, the TSM, based on 
Fraunhofer diffraction26,27. Figure 4a presents εEUV,R/L versus εIR for 
experimental (dots), quantum SFA theory (stars) and TSM results 
with (pink crosses), and without (yellow crosses) the dipole har-
monic phase. We see that the ellipticity scaling obtained by SFA 
with propagation ε ε∝ .( )EUV IR

4 5  or the TSM ε ε∝ .( )EUV IR
4 6  agrees well 

with that observed in the experiments ε ε∝ .( )EUV IR
4 8 . The excellent 

agreement allows us to obtain a very straightforward ellipticity con-
trol that contrasts with all other approaches for polarization con-
trol of high-harmonic pulses so far, which are restricted to narrow 
bandwidths, low yields or cannot support isolated attosecond pul
ses5–9,20,32–35. Here, the quantum SFA simulations including propaga-
tion were performed using the 3.6 fs driving field as characterized 
in the experiment, applying a time delay between the non-collinear 
pulses of D = + 1.8 fs (+ 0.7 cycles of IR). The εEUV is calculated for 
the far-field harmonic signal detected at ± 1.0 mrad, integrating 
over a 1 mrad spatial window, mimicking the experiment (for more 
details of the simulation parameters see Supplementary Section 2).

The experimental results also show that the orientations of the 
two counter-rotating high-harmonic beams are mirror-symmetri-
cally tilted with respect to the major axis of the fundamental beams 
(Fig. 3c). Figure 4a presents the scaling of the tilt angle versus εIR for 
experiments (dots) and quantum SFA theory (stars). To gain insight 
into the scalings of the ellipticity and tilt angle, we performed semi-
classical simulations using the TSM. One of the advantages of the 
TSM is that it allows us to identify the role of the intensity-dependent  

dipole harmonic phase, which is the phase acquired by the elec-
tronic wave packet in the microscopic HHG process. In Fig. 4a,  
the TSM results are plotted including (pink crosses) and deliberately 
neglecting (yellow crosses) the dipole harmonic phase. The present 
results correspond to a photon energy of 33 eV, which is the cen-
tral energy of the harmonic pulses, integrated over a 1 mrad win-
dow in the far-field, centred at ± 1.0 mrad (for more details about 
the TSM calculations see Supplementary Section 2). Our TSM sim-
ulations unequivocally show (1) the relevance of the dipole phase 
in the ellipticity scaling, and (2) that the tilt is induced mainly by 
the intensity-dependent dipole phase of HHG. Thus, both the ellip-
ticity and tilt angle of the harmonic pulses depend strongly on the 
quantum trajectory followed in the HHG process. According to  
equation (2), when the driving fields are elliptically polarized (εIR <  1) 
at the focal plane, not only does the direction of the linearly polarized 
E-field rotate, but there is also a field-amplitude modulation with a 
period of 2π /(ksinθ) along the transverse �x  direction. Because the 
dipole harmonic phase depends on the field intensity, such ampli-
tude modulation induces an additional dipole phase modulation 
along the �x  direction. In short, the field-amplitude modulation on 
the focal plane actually induces an additional phase shift between the 
far-field �x  and ŷ harmonic-field components, modifying the EUV 
ellipticity and rotating the major axis of the high-harmonic pulses.

Finally, Figure 4b–d presents numerical simulations of the time 
evolution of the high-harmonic pulses obtained for εIR =  1.0 (Fig. 4b), 
εIR =  0.9 (Fig. 4c) and εIR =  0.8 (Fig. 4d), for right-handed (blue) and 
left-handed (green) helicities, with a time delay of D = + 0.7 cycles of 
IR. These results were obtained with our quantum simulations (SFA 
and propagation) using the 3.6 fs driving field as characterized in the 
experiment, and a time-gating delay of 1.8 fs. As can be observed, iso-
lated attosecond pulses with controlled ellipticity are obtained. Note 

c
90

270
31

5

18
0

0

45
13

5

225

(I) (II) (III) (IV) (V) (VI)

εIR,R/L = 0.98

εEUV,R = 0.90

εIR,Linear = 0

εEUV,Linear = 0.03
εEUV,L = 0.93

εIR,R/L = 0.93

εEUV,R = 0.70

εEUV,L = 0.71

εIR,R/L = 0.9

εEUV,R = 0.61

εEUV,L = 0.54

εIR,R/L = 0.85

εEUV,R = 0.44

εEUV,L = 0.43

εIR,R/L = 0.80

εEUV,R = 0.31

εEUV,L = 0.34

a

Elliptically polarized 

high-harmonic pulse

EUV polarimeter

CCD camera

I

–S1 /S0

–S2 /S0

S3 /S0

II
III

IV
V

VI

I

II III
IV

V

R

L

Vertical

+45°
Linear

–45°
Linear

Horizontal

b

α

β

90

270
31

5

18
0

0

45
13

5

225

90

270
31

5

18
0

0

45
13

5

225

90

270
31

5

18
0 0

4513
5

225

90

270
31

5

18
0 0

45
13

5

225

90

270
31

5

18
0

0

45
13

5

225

Fig. 3 | Full polarization control of isolated high-harmonic pulses. a, Schematic of the EUV polarimeter used to characterize the polarization state of 
isolated high-harmonic pulses, where α and β are the rotating angles of the two mirror sets, respectively. b, Several polarization states, Stokes parameters 
(S1/S0, S2/S0, S3/S0), have been generated, characterized and marked on the Poincaré surface. c, The polarization states of the input IR (orange lines) 
and output EUV (blue and green dots) are measured by one IR and one EUV polarization analyser, respectively, and are depicted in the polar plots. The 
table gives the ellipticity relation between εIR and εEUV. For comparison, linear high-harmonic pulses driven by a linearly polarized fundamental were also 
measured (grey dots in inset VI).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATuRE PHoToNiCS | www.nature.com/naturephotonics

A.1 polarization control of isolated high-harmonic pulses 181



ArticlesNature PhotoNics

that each panel is normalized to the same quantity, so the upcon-
version efficiencies are similar for each εIR, agreeing well with our 
experimental observations (Supplementary Table 1). The simula-
tions also indicate that, for each εIR, the pulse durations of resultant 
circularly or elliptically polarized attosecond pulses are very similar 
and linearly chirped to approximately 330 as because of the attochirp; 
however, these could be compressed to near their transform limit of 
~190 as using chirped multilayer mirrors or metal-foil filters36.

In summary, we demonstrate a robust polarization control scheme 
of isolated high-harmonic EUV pulses by exploiting non-collinear 
HHG driven by two counter-rotating few-cycle laser beams. The cir-
cularly polarized supercontinuum is produced in the photon energy 
range from 20 eV to 45 eV, with a high > 0.90 degree of ellipticity. 
The isolation and temporal coherence of high-harmonic bursts was 
measured by EUV interferometry, and the polarization state of the 
pulses was characterized with an EUV polarimeter. Our simula-
tion results provide clear insight into the three-dimensional electric 
field vector on attosecond timescales, revealing a pulse duration of 
~330 as. Furthermore, by adjusting the ellipticity of the two counter-
rotating driving pulses simultaneously, we achieve full control of the 
polarization state of high-harmonic pulses from circular through 
elliptical to linear polarization, while retaining the conversion effi-
ciency. We unequivocally identify that the non-perturbative dipole 
phase of HHG is essential in the ellipticity and tilt angle scaling of 
HHG pulses, obtaining an ellipticity scaling rule of ε ε ε∝ −. .

EUV IR
4 5

IR
4 8.  

This new technique presents an accessible and reliable route for 
the generation of isolated arbitrarily polarized attosecond EUV 
pulses. Because of the importance of this new capability for ultrafast  

dynamics in angular momentum transfer in atoms, chiral molecules, 
and 2D and magnetic materials37–49, where very fast dynamics are 
known to occur and are not currently understood, our work repre-
sents an experimental breakthrough with several new aspects and 
impacts. This work can therefore motivate future work on methods 
to fully characterize the three-dimensional electric-field vector on 
attosecond timescales, which is currently a great challenge.

Data availability. The data that support the plots within this paper 
and other findings of this study are available from the correspond-
ing author upon reasonable request.
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Polarization engineering and characterization of coherent high-frequency radiation are essential to investigate and
control the symmetry properties of light–matter interaction phenomena at their most fundamental scales. This
work demonstrates that polarization control and characterization of high-harmonic generation provides an excel-
lent ellipsometry tool that can fully retrieve both the amplitude and phase of a strong-field-driven dipole response. The
polarization control of high-harmonic generation is realized by a transient nonlinear dipole grating coherently induced
by two noncollinear counterrotating laser fields. By adjusting the ellipticity of the two driving pulses simultaneously, the
polarization state of every high-harmonic order can be tuned from linear to highly elliptical, and it is fully characterized
through an energy-resolved extreme ultraviolet polarimeter. From the analysis of the polarization state, the ellipsom-
etry indicated that both the amplitude and phase of the high-harmonic dipole scale rapidly with the driving laser field
for higher-order harmonics, and, especially, for gases with a small ionization potential. Our experimental results were
corroborated by theoretical simulations. Our findings revealed a novel high-harmonic ellipsometry technique that can
be used for the next generation of high-harmonic spectroscopy and attosecond metrology studies because of its ability
to provide single-digit attosecond accuracy. Our work also paves the way to precisely quantify the strong-field dynamics
of fundamental processes associated with the transfer of energy and angular momentum between electron/spin systems
and the symmetry-dependent properties of molecules and materials. © 2021 Optical Society of America under the terms of

theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.413531

1. INTRODUCTION

High-order harmonic generation (HHG), first observed in 1987
[1], describes a frequency upconversion technique in which an
intense driving laser is focused into an atomic, molecular, or
solid target. As a result of the laser–matter interaction, harmonic
frequencies of the driving laser are emitted at the attosecond time
scale. HHG in atomic gases can be intuitively understood as a
sequence of three steps [2,3]: (i) tunnel ionization of the target,
creating an electronic wave packet in the continuum; (ii) acceler-
ation of the electronic wave packet by the strong laser field; and
(iii) recombination of the electronic wave packet with the parent
ion, with the emission of an attosecond burst of extreme ultravi-
olet (EUV) coherent light. At the core of the HHG process is the
coherent nature of the electronic wave-packet dynamics driven by
the intense laser field [4], able to produce a highly coherent beam
of high-frequency harmonics of the fundamental field. HHG thus

provides a tabletop ultrashort source of EUV/x-ray radiation emit-
ted at the attosecond time scale, which has enabled a wide range
of applications, such as for studying ultrafast molecular dissocia-
tion [5], for characterizing nanoscale heat flow [6], for following
element-specific dynamics in magnetic materials [7,8], and for
high-resolution coherent imaging [9,10]. Moreover, HHG can
also be driven in molecular or solid targets, in which the emitted
EUV radiation encodes unique information about the electronic
and geometric arrangements of the radiating molecules or solid
systems. This gives rise to self-probing schemes that allow the
performance of molecular tomography [11,12], chirality assign-
ment [13–15], and retrieval of the electronic band structure in
solids [16].

Remarkably, the quantum wave-packet dynamics leave a
unique signature in the phase of the emitted HHG radiation,
the so-called dipole phase [17], which influences the wavefront
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[18,19], spectrum [20], and pulse duration of the emitted attosec-
ond radiation [21]. Intriguingly, the dipole phase is sensitive to the
laser field, enabling applications of direct E -field reconstruction
[22,23] and light-assisted phase-matching of HHG [24,25]. As
a consequence, precise measurements can extract quantitative
information about the absolute dipole response—both amplitude
and phase—that is essential to explain the quantum dynamics of
the HHG process and to advance attosecond science.

Currently, the characterization of the high-harmonic dipole
response has followed two main approaches: spectroscopy and
interferometry. Spectroscopic methods are based on the spectral
modulation of HHG as a function of the driving laser intensity,
attributed to the interference between short- and long-quantum
paths [26–28]. However, a strong quantum path dependence
of the spectrum and wavefront might affect the fringe visibility
[29,30]. Thus, the spectral phase information is not fully retrieved
from the measured HHG spectra. Interferometric techniques
make use of two separate HHG sources interfering with each other,
but this approach is also challenging because undesirable mechani-
cal vibrations strongly influence the stability of the fringes [31].
Furthermore, one must devote extreme attention to avoid non-
linear effects in the transmission elements (e.g., the beam splitter,
polarizer, wave plate, and vacuum window) when designing the
interferometer because any laser-induced change of the refraction
index can unbalance two interferometric arms, resulting in a fringe
shift [32]. For instance, when two driving fields pass through the
same fused-silica window (of thickness 1 mm), a 1µJ energy differ-
ence between them is enough to induce an effective path difference
of 2 nm (corresponding to a temporal shift of ≈6.6 as in time)
because of the self-phase-modulation effect (assuming a beam size
of diameter 1 mm and a pulse duration of 30 fs). Additionally,
in HHG experiments, one must account for the macroscopic
phase-matching picture, in which the radiation emitted from
many—trillions of—single emitters at the target are coherently
combined. The differences in the properties of emission radiated
at each single atom, which depend strongly on the driving beam
mode, might hinder the investigation of the quantum wave-packet
dynamics. Thus, extracting accurate information about the dipole
response taking place in each emitter remains challenging.

Very recently, we found that the high-order harmonic (HH)
dipole phase is a key element that enables the polarization control
of attosecond pulses in noncollinear HHG geometry [33]. These
results, which provide a unique control rule over the ellipticity of
EUV radiation, also establish a strong link between the HH dipole
phase and HH polarization, motivating the use of ellipsometry
as a novel technique to characterize the HH dipole response. In
the late 19th century, Drude first used the phase shift induced
between mutually perpendicular components of polarized light
to measure the film thickness, which could be considered the
birth of ellipsometry. Currently, ellipsometry is one of the most
precise and accurate measurement tools and has been widely used
in diverse applications such as thin-film characterization, surface
molecular imaging, ion-sensing engineering, and integrated circuit
technology [34,35]. However, its application in the EUV regime is
challenging because of absorption limitations.

In this work, we introduce HH ellipsometry to unveil the
complicated dipole dynamics of HHG through the polarization
properties of EUV harmonics. Our findings reveal that the single-
atom response in HHG, dominated by the short-quantum path,
is the primary mechanism behind polarization control when the

driving field is arranged in a noncollinear geometry. This allows us
to circumvent the macroscopic picture and to use HH ellipsom-
etry to quantify both the amplitude and phase of the HH dipole,
tailored by the fundamental driving field. By adding a diffraction
element into our EUV polarimeter [see Fig. 1(a) and Supplement
1, Section 1], we can fully resolve the polarization state (the helic-
ity, ellipticity, tilt angle, and degree of polarization) for every
high-harmonic order simultaneously. To the best of our knowl-
edge, this is the first all-optical energy-resolved EUV polarimeter
in the EUV field, differing from previously published EUV polar-
imeter and polarizer work—in which only monochromatic light
was measured [33,35,36] or only an upper bound of the ellipticity
was provided without knowing the helicity [37,38], and molecular
polarimetry [39,40]—which requires a detailed knowledge of the
light–molecule interaction.

We show that the polarization control scaling rule found in
[33] (εEUV ∝ ε

σ
IR, where εEUV and εIR are the ellipticity of the

EUV high-harmonics and infrared (IR) driving field, respectively,
and σ is the ellipticity scaling coefficient) depends on not only
the harmonic order but also the gaseous species. The ellipticity
scaling coefficient σ becomes much larger for higher-order har-
monics, especially in atoms of a large atomic number (Z) with a
small ionization potential. Ellipsometry retrieval quantitatively
shows that the polarization control scaling depends on the effec-
tive order of nonlinearity of the high-order harmonics (qeff) and
on the intensity-dependent dipole phase coefficient (α), which
varies substantially with harmonic order and atomic elements.
Remarkably, this study also shows that the power scaling of HHG
is highly influenced by the dipole phase. The variation of the dipole
phase induced by any inhomogeneity in the driving laser consid-
erably limits the attainable EUV flux and harmonic order. The
homogeneity of the driving field becomes essential to achieve high
HHG brightness and to extend harmonic energies toward higher
frequencies.

2. EXPERIMENTAL RESULTS OF HIGH-HARMONIC
ELLIPSOMETRY

We performed HHG in Ar, Kr, and Xe using 35 fs Ti:Sapphire
laser pulses arranged in a noncollinear geometry (see Methods and
Supplement 1, Section 2). To control the polarization of the HH
pulses, two elliptically polarized fundamental beams of the same
ellipticity, but opposite helicity, were noncollinearly focused into a
gas jet, as shown in Fig. 1(a).

We optimized the HHG in the same spectral range in Ar, Kr,
and Xe to directly compare their HH dipole response; Supplement
1 Fig. S3 shows their harmonic spectra. Figure 2 and Supplement
1 Fig. S4 show the HH ellipsometry experimental measurements,
including the helicity, ellipticity (εEUV), tilt angle (τ ), and degree
of polarization of the EUV harmonics driven by fundamental fields
with varied ellipticities (εIR). Our results showed the two counter-
rotating HH beams to be mirror symmetrically tilted with respect
to the major axis of the fundamental beams (y direction), in agree-
ment with the rotational symmetry property of noble gas atoms.
Both τ and εEUV of each harmonic order were scaled disparately,
depending on the gaseous species. The complete harmonic-order-
dependent ellipticity scaling could be approximated as power
relations, as shown in Table 1. When εIR decreased, εEUV decreased
more rapidly for higher-order harmonics, especially in high-Z
atoms. Higher-order harmonics exhibited a larger tilt-angle τ in
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Fig. 1. HH ellipsometry technique is based on interferometry between EEUV·p and EEUV·s . One can obtain the ratio of intensities and phase shift
between EEUV·p and EEUV·s from the tilt-angle τ and ellipticity εEUV of the resultant HHG polarization. (a) Two elliptically polarized fundamental beams
of the same ellipticity (E IR·p/E IR·s = εIR) but opposite helicity are focused into a gas jet noncollinearly. The major axis (brown dashed line) points toward
the y (or s ) direction. In the focal plane, two fundamentals interferingly form local E -field vectors, rotating across direction x . Each location with linearly
oscillating polarization acts as a HH local dipole oscillation (green vectors), which, when superposed, constitute a pair of elliptically polarized EUV beams
in the far field. An energy-resolved polarimeter is developed to measure the ellipticity εEUV and tilt angle τ with respect to direction y (or s ) of the harmonic
emissions. (b) Microscopically, high harmonics are generated through ionization, acceleration, and recombination. Both the amplitude and phase of HHG
on the focal plane are coherently scaled and spatially imprinted by the driving IR vectors. We highlight only two positions—marked in magenta—in which
the dipole is driven by peaks of two perpendicular fundamentals, E IR·p and E IR·s (red lines). EEUV·p/s (blue lines) and θEUV·p/s present the amplitude and
phase response of the dipole driven by E IR·p/s ; θ̃EUV·p/s presents the phase shift in the far field from the coherent sum of all HH vectors projected to the
p and s polarizations, respectively.

Table 1. Ellipticity Relation between εEUV and εIR,
Extracted from Fig. 2(b)

Gas
23.3 eV 26.4 eV 29.5 eV 32.6 eV
ε15th ε17th ε19th ε21st

Ar ∝ ε2.2
IR ∝ ε2.8

IR ∝ ε4.0
IR ∝ ε5.8

IR

Kr ∝ ε2.5
IR ∝ ε4.0

IR ∝ ε5.3
IR ∝ ε8.3

IR

Xe ∝ ε5.3
IR ∝ ε10.2

IR ∝ ε13.5
IR

Ar and Kr than in Xe, the reason being that there was a much more
rapid amplitude decrease in the x direction in Xe. All these phe-
nomena are associated with the harmonic dipole response—that
is, the amplitude and phase of the high-order harmonics scale with
the laser field—as explained in detail in the discussion section.

To disentangle the microscopic and macroscopic nature of
the HH ellipsometry results, we performed two additional exper-
iments. First, we measured the HH yield as a function of the
backing pressure, as shown in Supplement 1, Section 4 and Fig. S6.
The results clearly show that the yield of every order of HHG in
Ar, Kr, and Xe exhibited a quadratic dependence on pressure,
indicating that plasma effects did not influence the propagation of
the driving fields. Second, we showed that the polarization state of
the high-order harmonics did not depend on the backing pressure
of the gas jet (Supplement 1 Fig. S7). Accordingly, we concluded
that the polarization control in the noncollinear geometry was
not related to the propagation of the IR effect in the generating
medium; the single-atom response itself was thus responsible for
shaping the polarization properties of the high-order harmonics.
In the following section, we reveal the relationship between the
polarization scaling of HHG and its complex dipole response.

3. RETRIEVAL OF HIGH-HARMONIC DIPOLE
RESPONSE FROM ELLIPSOMETRY

Straightforwardly, ellipsometry can determine the sign of the HH
phase change using the tilt direction. In Fig. 2(a), all orientations of
the right-handed circularly polarized harmonics tilt counterclock-
wise with respect to the major axis of the fundamental beams (y
direction), whereas the left-handed circularly polarized harmonics
tilt clockwise. This effect can be explained in terms of the weight
of the s and p components of the local E -field at the focal plane,
as depicted in Fig. 1(b). If E IR·s is stronger than E IR·p , the induced
dipole phase advance (negative sign) of θEUV·s − θEUV·p on the
focal plane makes ϕEUV = π/2− |θ̃EUV·s − θ̃EUV·p |<π/2,
resulting in a positive tilt angle τ in the far field, as defined and
marked in Fig. 1(a).

To retrieve quantitative information of the atomic dipole
response from an HH ellipsometry measurement, we applied the
thin-slab model (TSM), based on strong-field assumptions about
the nature of the produced harmonics, which are known to provide
satisfactorily qualitative results for HHG in a thin gas-jet configu-
ration [18,19,41–43] (also described in Supplement 1, Sections
6–7). The local q order HH emission in the x and y directions at
time t can be described by

EEUV·x (x , y , 0, t)∝ IIR(x , y , t)
qeff

2 e i[qωIRt−IIR(x ,y ,t)α]

×
E IR·x (x , y , 0, t)
√

IIR(x , y , t)
x̂ , (1)
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EEUV·y (x , y , 0, t)∝ IIR(x , y , t)
qeff

2 e i[qωIRt−IIR(x ,y ,t)α]

×
E IR·y (x , y , 0, t)
√

IIR(x , y , t)
ŷ , (2)

where ωIR is the IR angular frequency, E IR·x (x , y , 0, t)
and E IR·y (x , y , 0, t) represent structured IR in the focal
plane toward the x and y directions, respectively, and
IIR(x , y , t) ∝ |E IR·x (x , y , 0, t)|2 + |E IR·y (x , y , 0, t)|2 rep-
resents the local intensity (details are presented in the Methods
section). Equations (1) and (2) are based on the dipole response
of the q -order harmonic as a function of the laser field having
the form EEUV(IIR)∝ Aq (IIR)exp[iθq (IIR)], which can be

well approximated as EEUV(IIR)∝ I qeff/2
IR exp[−i IIRα], where

Aq (IIR)∼= I qeff/2
IR is the amplitude of the q -order harmonic, qeff

is an effective order of nonlinearity, and θq (IIR)∼=−IIRα is the
phase of the q -order harmonic. The phase shift is approximately
proportional to the local intensity and has been theoretically and
experimentally validated [17,23,31]. The leading negative sign
indicates that an increased driving intensity advances the HHG
phase, which agrees with the tilt angle direction observed in Fig. 2.
The coefficient α depends strongly on the quantum path followed
by the electronic wave packet during the HHG process—that
is, the type (short or long), peak intensity and frequency of the
driving field, harmonic order, and gaseous species. We noted that
the HHG emission was dominated by the short-quantum path
contribution in this study of polarization control, as discussed in
Supplement 1, Section 7.

The state of polarization of high-order harmonics in the far
field was obtained through the coherent sum of Eqs. (1) and
(2) for s and p polarizations at the focal plane, based on the
Huygens–Fresnel principle [41,42,44,45], which results in two
main diffraction EUV beams. The polarization characteristics
of the helicity, ellipticity εEUV, and tilt angle τ are determined by
how the EUV vector [sum of Eqs. (1) and (2)] rotates as a function
of time t . Consequently, the microscopic parameters qeff and α
can be directly extracted through the measured EUV ellipticity
εEUV and tilt angle τ . Using two-dimensional range queries for the
minimum deviations (see Supplement 1 Section 5, Figs. S9 and
S10), the effective scaling parameters in amplitude and phase, qeff

andα, were obtained by fitting all observations of εEUV and τ from
Fig. 2. The statistics of all retrieved qeff andα are shown in Fig. 3. It
should be emphasized that all polarization measurements of HHG
were extracted to have a similar characterization response in qeff

and α in the same HH target, validating our TSM-based retrieval
model.

4. DISCUSSION

Our polarization control scheme differs significantly from those in
the literature, in which interferometry of two-color counterrotat-
ing beams [40,47] or two attosecond pulses [48,49] were applied.
The resulting polarization provided by these two approaches—
characterized by εEUV and τ—can be extremely sensitive to a delay
between the two arms of the interferometer. The degree p of the
HHG polarization can also deteriorate due to the instability of
the interferometer. Compared to the two-color counterrotating

(a) (b) (c)

Fig. 2. Polarization scaling of HHG in Ar, Kr, and Xe. (a) The experimentally observed polarization states of HHG EUV (green lines for Ar, blue lines for
Kr, and red lines for Xe) when driven by εIR = 0.9 IR (yellow area with blask dashes) are depicted in the polar plots. Outputs (b) εEUV and (c) τ versus varied
εIR. The color gradient shows varied harmonic order q . The uncertainties (standard deviation) are derived from five individual measurements.
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(a) (b)

Fig. 3. Dipole response information extracted from HH ellipsometry. (a) Power scaling, qeff versus harmonic order q , extracted from Ar (green), Kr
(blue), and Xe (red). Green stars represent the calculated qeff in Ar obtained from quantum strong-field approximation (SFA) theory, as described in [42]
and Supplement 1, Section 6. This calculation uses a peak intensity, 1.2× 1014 W/cm2, less than the 2.8× 1014 W/cm2 applied in HH ellipsometry.
(b) Phase-intensity slope α versus harmonic order q . Light strips mark α calculated from the semiclassical model (as indicated in [46]), using intensities
70% and 80% of their average peak intensities. The use of a reduced intensity in our simulations is attributed to nonuniformities at the experimental focus,
and to remain in the tunneling regime.

scheme [40], in which p ranges from 0.4 to 0.85, and τ is unstable,
we observed a high degree of polarization p in a range between
0.8 and 1 (see Supplement 1 Fig. S4). With no locking system
for active stabilization of the path between two IR beams, the
uncertainty of τ was only≈1.5◦, as shown in Fig. 2(c), indicating
that the timing jitter between EEUV·s and EEUV·p was≈3 as. Such
excellent stability arises because our scheme is based on a transient
polarization grating induced by two driving fields. Calculations
show that the phase fluctuation between the two arms could easily
alter the IR interference on the focal plane, but barely alter εEUV

and τ of the EUV beams in the far field. Hence, our interferometry
performs as an inline interferometer [32], in which the instability
between two arms is negligible. The observed fluctuation is likely
attributed to the power instability≈1% of the driving laser as both
the amplitude and phase of the HHG are coupled with the IR
intensity.

Further insight was obtained by comparison with a semiclassical
calculation [46,50]. The electronic dynamics in the three-step
model can be approximated by integrating the classical equations
of motion given by Newton’s law. In the tunneling regime, one can
assume that the ionization depends on only the instantaneous value
of the electromagnetic field; immediately after ionization, the elec-
tron is located at the coordinate origin with zero velocity. Another
assumption of this model is that the dynamics subsequent to ion-
ization correspond to a classical free electron in the electromagnetic
field, thus neglecting the influence of the Coulomb potential.
Figure 4 shows the recollision kinetic energy of the electrons as a
function of ionization time ti (brown curves) and recollision time
tr (black curves). The phase of the harmonic emission depends not
only on the phase of the fundamental field, but also on the par-
ticular quantum path followed by the electron. Our calculations
reveal that HHG phase θEUV exhibits a piecewise-linear depend-
ence on the electron excursion time tr − ti ; the phase difference
|θEUV·p − θEUV·s | is approximately linearly proportional to the

intensity difference, 1IIR = IIR·s − IIR·p , in agreement with our
ellipsometry observations in Supplement 1 Fig. S11.

Figure 3 shows that α increases as a function of the harmonic
order q . This is understandable because the quantum path that
requires a greater kinetic energy would ionize earlier at ti and
recombine later at tr , as shown in Fig. 4. In such a case, a greater
value of the quantum phase accumulates in the process of ioniza-
tion, acceleration, and recombination. Moreover, for the same

Fig. 4. Comparison of quantum paths of HHG in s and p polariza-
tions. Output HH energy q~ωIR is the sum of ionization potential Ip

and kinetic energy (KE) gained from the driving IR field (red lines). KE
just before recombination is depicted as a function of time of ionization ti

(brown curves) and recombination tr (black curves) with a semiclassical
calculation. The driving IR field is normalized to the field amplitude in
s -polarization E IR.s . Since E IR.p (light red line) is weak with less pon-
dermotive energy (U p), to keep the same output energy q~ωIR—i.e., to
obtain the same KE—an electron takes a longer excursion time in the
continuum with an earlier ti and a later tr . As a result, there is a phase lag
in EEUV·p (light blue line) with respect to EEUV·s (blue line) because more
quantum phase is accumulated through the interference (green lines)
between the external and internal quantum paths (QP).
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harmonic order q , a larger α is also observed in a noble gas of large
Z—the reason being that output energy q~ωIR is the sum of ion-
ization energy Ip overcome by the laser pulse and the kinetic energy
gained from the electric force of the following field. Because Ip is
smaller in a noble gas of large Z, more kinetic energy is required to
maintain the same output energy q~ωIR. Electrons thus undergo
a longer excursion period in the continuum, resulting in a larger
HHG phase. The HHG phase dependent on Ip has also been
observed in other findings in a mixed gas [51], and in 2-as pulse
interference [52].

The semiclassical three-step model can also obtain α through
an action integral over the electron trajectory [46], but such a
calculation is based on a single-atom picture. For HHG driven
with a Gaussian focus, many single emitters are excited with varied
intensities. The interference effect should be considered when
performing a coherent sum over all emitters. Two α curves using
70% and 80% of the average peak intensities are calculated and
shown in Fig. 3(b) (their average peak intensities, (IIR·s + IIR·p)/2,
are listed in Supplement 1, Table S1). In Ar, α extracted from ellip-
sometry measurements shows quantitatively good agreement with
that obtained from a semiclassical calculation, which indicates that
the experimental α could be accurately estimated using 80% of
the average peak intensity. Interestingly, in Kr and Xe, the slope
of α obtained from ellipsometry measurements was flatter than
that derived from a semiclassical calculation. Such a discrepancy
between the theory and experimental results can be understood
to be due to a strong variation in the beam size of HHG versus
harmonic order in gases with a small ionization potential, as qeff

varies significantly [see Fig. 3(a)]. When HHG is driven with a
Gaussian beam, higher-order harmonics with a larger qeff tend to
be generated nearer the center of the focus, at which the intensity
is greater on average. Consequently, α should become smaller, as
discussed in the preceding paragraph.

Moreover, Fig. 3(a) clearly shows that qeff becomes larger in a
large-Z gas. This phenomenon could be due to the tunnel ioniza-
tion yield, as the single-atom yield of HHG is proportional to the
ionization probability. A comparison of the ionization fraction of
Ar, Kr, and Xe using the Ammosov–Delone–Krainov ionization
model can be found as a function of time for a 35 fs duration pulse
[53]. In a gas with a smaller ionization potential, there is a more
rapid change in the fraction of ionization due to the variation
of fundamental pulses—which implies that atoms with a small
ionization potential have a large effective order of nonlinearity
qeff. Generally, a large quantum phase shift between the s and p
polarization tends to enlarge the tilt angle τ , but in Xe, a much
more rapid amplitude drop in p polarization leads to a small tilt-
angle τ in higher-order harmonics, contrary to the τ behavior in
Ar and Kr, as shown in Fig. 2. In short, qeff also influences the tilt
angle τ . HH ellipsometry can thus decouple and quantify the scal-
ing of amplitude and phase with an accuracy of a few attoseconds,
which differs markedly from other HH spectroscopic techniques
[15,26–28,31,53]–55.

Finally, our HH ellipsometry results were validated using an
alternative HHG experiment driven by a linearly polarized IR
beam. Figure 5 shows a comparison of the HHG yield as a func-
tion of the driving laser intensity in Ar, Kr, and Xe. In Ar, the flux
of all harmonics grew exponentially under a small IR intensity,
whereas it saturated at a large intensity because of the depletion of
neutral atoms, limiting the amplitude of single-atom emission. In
Kr, the flux scaling of the low-order harmonics behaved similarly

0 1 2 3 4 5 6 7 0 1 2 3 4 0 1 2

H
ar

m
on

ic
 o

rd
er

 q

23

21

19

17

15

(c)(b)

Peak Intensity  ( x1014  W/cm )2

Ar Kr Xe(a)

0 2 4 6 8 10 12 0 2 4 6 0 2 4
Up      ( x10 eV )

Fig. 5. Comparison of HHG yield as a function of driving laser inten-
sity in (a) Ar, (b) Kr, and (c) Xe. The harmonic with a large phase-intensity
slope α, observed in Fig. 3, also behaves more weakly and grows almost
linearly with IR intensity because of the strong EUV phase variation
induced by the transverse and longitudinal inhomogeneity of the IR
beam. Dotted lines indicate the minimum peak intensity to generate the
q -order harmonic. Dashed lines mark the peak intensity of 3.6× 1014,
2.35× 1014, and 1.4× 1014 W/cm2 for Ar, Kr, and Xe, respectively,
that produces 50% ionization after a 35-fs IR laser field based on the
Ammosov–Delone–Krainov ionization model [53].

to that in Ar, whereas the growth of the higher-order harmonics
decreased gradually, becoming linearly proportional to the driving
laser intensity in harmonic order 23. Such linear growth behavior
occurred more significantly in Xe, for which—by comparison to
the same harmonic order—the power scaling became more linear
in large Z atoms in every order. It should be noted that all observed
power scalings in these three gases exhibited no dependence on the
backing pressure, indicating no propagation effect of IR that might
have influenced the HH yield. Remarkably, these results agreed
well with α, observed from the HH ellipsometry. The harmonic
with a large phase-intensity slope α, as shown in Fig. 3(b), behaved
much more weakly, growing almost linearly with the IR intensity.
The power scaling of HHG became limited by a strong EUV phase
variation induced by the intensity inhomogeneity of the driving
IR in higher-order harmonics and in a gas with a small ionization
potential, especially when α > 10 deg./(1013 W/cm2). It should
also be emphasized that the power scaling of the single-atom
response (qeff) cannot be directly extracted from this yield-growth
measurement, since it cannot correctly retrieve the single-atom
response of HHG. Lastly, it is also interesting to note that, despite
the phase of each HHG emitter varying widely in Xe, we still
observed a large degree of polarization, p ∼= 0.9, based on the
polarimeter measurement, indicating that the wavefront of HHG
was still stable and coherent.
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5. CONCLUSIONS

We demonstrated that polarization control and characterization
of HHG in a noncollinear geometry provides an excellent ellip-
sometry tool able to unveil the quantum dynamics of HH samples
under intense laser fields. Our polarization control scheme was
based on a transient polarization grating induced by two funda-
mental fields, being insensitive to the path fluctuation between
the two arms of the driving fields and demonstrating excellent
stability and single-digit attosecond accuracy. HH ellipsometry
can measure two parameters—the ratio of intensities and phase
difference information—compared with the single parameter
of regular HH spectroscopic techniques, that is, only intensity
without phase. Both the amplitude and phase of the HH dipole
were precisely characterized using HH ellipsometry, carrying
detailed information about the evolution of an ionized electronic
wave packet. This study also clearly demonstrated how the ampli-
tude and phase of the nonperturbative HH dipole influenced the
power scaling of HHG and the achievable HH energy. Prospective
future applications of HH ellipsometry should allow us to pre-
cisely quantify quantum dynamics, ultrafast chirality changes, and
circular dichroism in HHG samples, as well as to enable critical
comparisons with theory. This work also motivates future work
to drive HH ellipsometry with structured light having tailored
angular momentum and chiral properties [43,56], in which the
most rapid transfer of energy and angular momentum in atoms,
chiral molecules, 2D, and magnetic materials can be quantitatively
resolved.

6. METHODS

A. Polarization Control of HHG in a Noncollinear
Geometry

The pulse energies of the two IR arms were carefully tuned to be
identical—that is, 130, 120, and 100 µJ for the Ar, Kr, and Xe
gas jets, respectively. The average peak intensity of the crossing
beam on the focal plane, (IIR·s + IIR·p)/2, was estimated to be
2.82× 1014, 2.6× 1014, and 2.16× 1014 W/cm2, respectively
(details of driving IR fields are shown in Supplement 1, Table S1).
The tilt angle of the major axes of the driving pulses was carefully
aligned toward the y direction. Each driving electric field thus
consisted of two perpendicular components with an amplitude
ratio and ellipticity E IR·p/E IR·s = εIR, and phase shift ϕIR = π/2.
At the focal plane, the combination of the two noncollinear driving
fields resulted in local linearly polarized E -field vectors, of which
the direction rotated along the x axis. Each local linearly polarized
IR field produced linearly polarized HH emission in the near
field, which, upon propagation into the far field, led to a pair of
elliptically polarized EUV beams. The ellipticity εEUV of the HH
pulses—that is, the ratio of the minor axis with respect to the major
axis of elliptically polarized light, and tilt angle τ of the major
axis with respect to the y direction—were controlled with the
fundamental ellipticity εIR, while maintaining a good beam profile
(Supplement 1, Section S3), as well as an upconversion efficiency.

B. Structured IR Light on the Focal Plane

We consider two identical elliptically polarized IR driving beams
with equal ellipticity but opposite helicity [see Fig. 1(a)], given by

E IR·R (x , y , z, t)= E0
−iεIR p̂ + ŝ
√

1+ εIR
2

× exp [−ikz cos ξ + ikx sin ξ + iωIRt] ,
(3)

E IR·L (x , y , z, t)= E0
iεIR p̂ + ŝ
√

1+ εIR
2

× exp [−ikz cos ξ − ikx sin ξ + iωIRt] ,
(4)

where E IR·R (E IR·L ) represents the right-handed (left-handed)
elliptically polarized IR field, E0 is the field amplitude, k = 2π/λIR

is the fundamental wave vector,λIR is the wavelength of the driving
laser, ωIR is the IR angular frequency, and ξ is the half-crossing
angle between the two fundamental laser beams. As the non-
collinear angle is small in the experiment (ξ = 20.9 mrad), ŷ = ŝ
and x̂ = p̂ cos(ξ)∼= p̂ , considering a Gaussian intensity distri-
bution (with beam waist ω0), the electric field at the focal plane
(z= 0) can be written as

E focus(x , y , 0, t)∝ E IR·R(x , y , 0, t)+ E IR·L(x , y , 0, t)

= 2E0
e
−

(
x2
+y 2

ω2
o

)
+iωIRt√

(1+ εIR
2)

×
[
εIR sin(kx sin ξ)x̂ + cos(kx sin ξ) ŷ

]
= E IR·x (x , y , 0, t)x̂ + E IR·y (x , y , 0, t) ŷ ,

(5)

in which

E IR·x (x , y , 0, t)= 2E0
εIR sin(kx sin ξ)√(

1+ ε2
IR

) e
−

(
x2
+y 2

ω2
o

)
+iωIRt

, (6)

and

E IR·y (x , y , 0, t)= 2E0
cos(kx sin ξ)√
(1+ ε2

IR)

e
−

(
x2
+y 2

ω2
o

)
+iωIRt

. (7)

One calculated snapshot of the IR E -field vector distribution
is shown in Supplement 1 Fig. S8. For the retrieval, the IR laser
amplitude E0, focal beam waist ω0, half-crossing angle ξ , and
ellipticity εIR were calibrated experimentally, and then used as an
input for Eqs. (1) and (2).
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High-order harmonic generation stands as a unique nonlinear optical up-conversion process, mediated
by a laser-driven electron recollision mechanism, which has been shown to conserve energy, linear
momentum, and spin and orbital angular momentum. Here, we present theoretical simulations that
demonstrate that this process also conserves a mixture of the latter, the torus-knot angular momentum Jγ ,
by producing high-order harmonics with driving pulses that are invariant under coordinated rotations. We
demonstrate that the charge Jγ of the emitted harmonics scales linearly with the harmonic order, and that
this conservation law is imprinted onto the polarization distribution of the emitted spiral of attosecond
pulses. We also demonstrate how the nonperturbative physics of high-order harmonic generation affect the
torus-knot angular momentum of the harmonics, and we show that this configuration harnesses the spin
selection rules to channel the full yield of each harmonic into a single mode of controllable orbital angular
momentum.

DOI: 10.1103/PhysRevLett.122.203201

Nonlinear optical processes offer the unique possibility
of mediating interactions and transferring energy between
modes of the electromagnetic field at different frequencies
[1]. When this transfer happens in a symmetric medium, the
interaction will also carry the symmetry’s conserved charge
to the recipient mode [2,3], so one can, e.g., combine two
photons with well-defined orbital angular momentum
(OAM) [4] to make a single photon at twice the frequency
and twice the angular momentum [5]. The few-photon
exchanges of perturbative nonlinear optics, however, have
a relatively limited scale and complexity in comparison
to high-order harmonic generation (HHG) [6,7], where
strong-field interactions can produce harmonics with pho-
ton energy hundreds or thousands of times larger than the
driver [8]. HHG is a nonperturbative phenomenon which is
best understood using a semiclassical picture: an ionized
electron is accelerated back to its parent ion, emitting high-
frequency light in the ensuing recollision [9–11]. Despite the
lack of a photon-exchange model, HHG is often regarded as
a parametric process, and its conservation properties have
been explored extensively as regards energy [12], linear
momentum [13], and orbital and spin angular momentum
(SAM) [14–26].
The individual symmetries associated with these con-

servation laws of the electromagnetic field can be com-
posed in nontrivial ways to make new ones. This is the case

for coordinated rotations (CRs): symmetry transformations
in which the spatial dependence of the field is rotated by
an angle θ about the propagation axis, while the light’s
polarization is rotated by γθ around the same axis, γ being a
coordination parameter. CRs are generated by the linear
combination Jγ ¼ Lþ γS of the orbital and spin angular
momenta, L and S, which are otherwise independently
conserved in the paraxial regime [27]. For monochromatic
light, γ is restricted to integer or half-integer values [28,29],
with the latter case imparting on the field the topology of a
Möbius strip [30–32]. However, when the monochromatic
restriction is lifted, γ can take arbitrary values and still
admit invariant states of the field [33], since polychromatic
combinations can have polarization states with higher-order
internal rotational symmetries.
One particularly relevant example is the threefold-

symmetric trefoil field present in the “bicircular” HHG
configurations [22–26,34–41] used to produce circularly-
polarized harmonics. This field consists of two counter-
rotating circularly-polarized drivers at different frequencies,
and exhibits the same configuration after a polarization
rotation by an angle 2π=n, with n ≥ 3. If we then add
different OAM to the two drivers, this polarization rotation
can be realized over a 2π rotation of the spatial dependence.
The resulting field, which carries both SAM and OAM, but
is not an eigenstate of either, has the topology of a torus
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knot: when the polarization and spatial dependences of the
field are unfolded, the trefoil tips trace out a knotted curve
embedded on the surface of a torus [33]. With suitable
choices of the OAM and frequency of the two components,
any arbitrary torus knot [42] can be achieved. Moreover, this
topology mirrors the subgroup of the independent-rotations
group SOð2Þ × SOð2Þ generated by the torus-knot angular
momentum (TKAM) Jγ ¼ Lþ γS [33].
In this Letter, we show that the topological charge Jγ is

conserved in high-order harmonic generation for any
arbitrary rational coordination parameter γ ∈ Q [43], pro-
viding an infinite family of topological charges (correspond-
ing to an infinite family of dynamical symmetries) that are
preserved by the nonperturbative nonlinear interaction. We
show that this spin-orbit linking appears in the time domain
as a structured spiral of attosecond pulses, that it opens a new
window for the exploration of nonperturbative effects in
harmonic generation, and that it provides an extreme
ultraviolet (XUV) light source with controllable OAM.
To demonstrate this conservation property, we study

HHG driven by TKAM beams that are invariant under
coordinated rotations with a mixing parameter γ ∈ 1

3
Z.

This configuration corresponds, as we will show below, to a
bicircular field consisting of two beams at frequencies ω
and 2ω, with counter-rotating right- and left-handed cir-
cular polarizations, ↺ and ↻, and carrying independent
OAM, l1 and l2, respectively, as shown in Fig. 1. The
OAM of the drivers determines the mixing parameter γ
under which the bicircular beam is CR-invariant, so that

the two components carry a TKAM of jð1Þγ ¼ l1 þ γ and

jð2Þγ ¼ 2jð1Þγ ¼ l2 − γ, respectively [44]. (The drivers are

required to carry different TKAM to have identical CR
dynamical symmetries, since phase and time delays cor-
respond differently at different frequencies.) Within that
framework, then, the TKAM conservation is expressed as

jðqÞγ ¼ qjð1Þγ ; ð1Þ

i.e., in the linear scaling of the Jγ charge carried by the qth
harmonic with the harmonic order q.
In this configuration, the local field at each point in the

beam is the usual bicircular trefoil [22], so that each atom in
the target emits harmonics in circularly-polarized doublets
with opposite helicities:↺-polarized harmonics at frequen-
cies ð3nþ 1Þω, and ↻-polarized harmonics at ð3n − 1Þω;
in the time domain, the emission forms a train of attosecond
pulses with linear polarizations at 120° from each other
[35,38]. The orientation of this local trefoil, given by the
relative phase between the two components rotates around
the beam, as shown in Fig. 1(b).
Thus, the dynamical symmetry of the driving field F is

RðγαÞF(R−1ðαÞr; t) ¼ Fðr; tþ ταÞ; ð2Þ

where τ is a time-delay constant and the angle α para-
metrizes the transformation. Here, the rotations act on the
circular polarization basis ê� ¼ 1ffiffi

2
p ðêx � iêyÞ and on the

spatial dependence via

RðγαÞê� ¼ e∓iγαê� and ð3aÞ

R−1ðαÞðr; θ; zÞ ¼ ðr; θ − α; zÞ; ð3bÞ

FIG. 1. High-harmonic generation driven by a torus-knot beam. The combination of counter-rotating circular beams at frequencies ω
and 2ω with different OAM and therefore different azimuthal phase gradients [(a), with optical phase as the hue color scale] produces a
bicircular trefoil polarization which rotates and acquires a delay over azimuthal displacements (b). Here, with l1 ¼ l2 ¼ 1, tracking one
lobe over an azimuthal loop around the beam axis (black dots) produces a 120° rotation, which induces the topology of a torus knot [33],
as well as a time delay within each trefoil (arrows). When this combination impinges on a gas jet at high intensity (c), the attosecond
pulse trains produced share the coordinated-rotation invariance of the driver, so that the emission at different azimuthal points is related
by a time delay and a rotation of the polarization.
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i.e., as an active and a passive transformation, respectively,
with the polarization rotation RðγαÞ acting through a
fraction γα of the spatial rotation angle α.
Our driving field consists of two components with well-

defined SAM and OAM,

F1ðr; tÞ ¼ Re½F1êþf1ðr; zÞeil1θe−iωt� ð4aÞ
F2ðr; tÞ ¼ Re½F2ê−f2ðr; zÞeil2θe−2iωt�; ð4bÞ

each of which satisfies separate orbital and spin invariance
properties

RðγαÞF1ðr; tÞ ¼ F1ðr; tþ γα=ωÞ; ð5aÞ
F1(R−1ðαÞr; t) ¼ F1ðr; tþ l1α=ωÞ; ð5bÞ
RðγαÞF2ðr; tÞ ¼ F2ðr; t − γα=2ωÞ; ð5cÞ

F2(R−1ðαÞr; t) ¼ F2ðr; tþ l2α=2ωÞ: ð5dÞ

The correct CR invariance of the system can then be
found by requiring that the combined time delay imposed
by Eqs. (5a), (5b) matches that produced by the combina-
tion of Eqs. (5c), (5d), so that

l1α

ω
þ γα

ω
¼ l2α

2ω
−
γα

2ω
⇒ γ ¼ l2 − 2l1

3
; ð6Þ

with a time-delay constant τ ¼ ðl1 þ l2Þ=3ω. This then

sets the TKAM charge jðnÞγ for each driver, defined in
analogy to the OAM charge in Eqs. (5b), (5d) by requiring
that

RðγαÞFn(R−1ðαÞr; t) ¼ Fðr; tþ jðnÞγ α=nωÞ; ð7Þ

to be jðnÞγ ¼ nωτ ¼ nðl1 þ l2Þ=3 [45].
Turning to the HHG radiation, we can now see the

conserved TKAM charge in action, via the standard
correspondence between dynamical symmetries and con-
served charges, and their associated selection rules [46,47].
Since in our configuration the application of a CR to
the driving field is equivalent to a time delay, via Eq. (2),
and the gaseous generating medium is unaffected by the
transformation, the same must be true for the emitted HHG
radiation. With the XUVemission’s TKAM charge defined
as in Eq. (7), the CR invariance then guarantees the
conservation of the TKAM charge as expressed in Eq. (1).
To explore the conservation of TKAM in HHG, we

perform numerical simulations of HHG by solving the
Schrödinger-Maxwell equations for a sample of atoms in
the interaction region within the SFA+ approximation and
using the electromagnetic field propagator described in
Ref. [48]; further details of our method can be found in
Refs. [15,17,49].
We consider the harmonic emission driven by a bicir-

cular field with l1 ¼ l2 ¼ 1, as shown in Fig. 1, equal

beam waists of 30 μm, and pulses of total intensity
I ¼ 2 × 1014 W=cm2. The ω and 2ω driving pulse enve-
lopes are modelled as a trapezoidal function with 5.3 fs
linear on- and off-ramps and 10.7 fs of constant amplitude.
Harmonics are generated in a thin-slab argon gas jet
and propagated to the far field (i.e., longitudinal phase-
matching effects are neglected, since transverse phase-
matching effects are dominant [17,49]).
We present our results in Fig. 2, by comparing the

(a) OAM and (b) TKAM spectra of the circularly polarized
components of the HHG emission as a function of
harmonic order. Since in this configuration jð1Þγ ¼ 2=3,
following Eq. (1) the qth harmonic exhibits a TKAM of

jðqÞγ ¼ 2
3
q (so, e.g., jð13Þγ ¼ 26

3
and jð14Þγ ¼ 28

3
) and, following

the definition of the TKAM, its OAM would be lq ¼
jðqÞγ − γSq ¼ ð2q� 1Þ=3 for right- (þ) and left- (−) polar-
ized harmonics (therefore giving l13 ¼ l14 ¼ 9, in agree-
ment with the results of Refs. [41,50]). Thus, while the
OAM behaviour can be explained using photon-counting
methods, the spectrum is much easier to understand via the
TKAM conservation law, which is embodied in the linear
trend observed in the TKAM spectrum, as in Eq. (1).
A similar conservation law, with γ ¼ 1=2, can also be

(a)

(b)

FIG. 2. Simulated HHG spectra of the right and left-polarized
components (shown in red and blue, respectively) driven by a
bicircular field with l1 ¼ l2 ¼ 1. We compare the (a) OAM and
(b) TKAM spectra, with γ ¼ −1=3, as a function of the harmonic
order. We calculate the OAM spectrum by taking a standard
Fourier series over the azimuthal dependence and integrating over
the radial dependence. For the TKAM spectrum, the OAM charge
of the ↺- and↻-polarized components is shifted by γ times their
SAM. The conservation of TKAM is clear in the linear trend
shown in (b).
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observed in HHG driven by monochromatic CR-invariant
beams [51].
The CR invariance can also be seen in the time domain:

similarly to OAM-beam HHG, where spatial rotations are
equivalent to time delays and the attosecond pulse train
(APT) forms a spiral [15,18,49], the addition of a polari-
zation rotation means that here the spiral also has a twisted-
polarization structure [51]. We present this in Fig. 3(a),
using an isosurface plot for the XUV intensity and the color
scale to represent the polarization direction, which twists
smoothly along the attosecond pulse spiral.
To study this polarization structure quantitatively, we

require a measure of the absolute orientation of the APT
at different azimuthal points in the beam—and, ideally,
one which is sensitive to the pulse train’s structure as a
sequence of linearly-polarized pulses at nontrivial angles
[35,38]. For monochromatic radiation, the polarization

ellipse orientation angle is obtained via the eigenvectors
of the polarization matrix hEiEji [52] or, equivalently,
as the phase of the quadrupole component T22 ¼R∞
−∞ (ExðtÞ þ iEyðtÞ)2dt [33]. The symmetry of our APT
means that the average orientation is undefined, so we use a
time-windowed version [53],

T22ðr; tÞ ¼
Z

∞

−∞
(EðxuvÞ

x ðr; t0Þ þ iEðxuvÞ
y ðr; t0Þ)2

× e−ðt0−tÞ2=2σ2dt0; ð8Þ

from which the local polarization orientation angle can be
obtained as 1

2
arg (T22ðr; tÞ) [54]. Thus, e.g., a linearly

polarized pulse along êx produces a positive T22, an êy
polarization gives a negative moment, and there is a
continuous passage between the two behaviors.
The time-windowed quadrupole moment, which we plot

in Fig. 3(b), clearly shows the twisted-spiral structure of
the XUV emission: the amplitude is constrained to two
strips that wind around the azimuthal axis, acquiring a time
delay of 4π=3ω after one revolution, while the polarization
direction, indicated by the hue color scale, turns by −120°
over that span, in an essentially linear progression. This
directly confirms the CR invariance of the HHG emission, in
the sense of Eq. (2), and, with that, its nontrivial torus-knot
topology.
Here, it is also instructive to broaden our scope to

consider what happens when the coordinated-rotation
invariance gets broken, by perturbing the OAM of one
or both of the drivers. For single-color driving fields, this
fully brings into play the nonperturbative physics of HHG,
through the intrinsic dipole phase of the harmonics, which
is proportional to the field intensity [55–58]. In that case, an
OAM perturbation imprints an azimuthal intensity gradient
that, through the intrinsic phase, broadens the OAM content
of each harmonic [17]. Bicircular drivers, on the other
hand, allow us to perform a wider exploration of the
nonperturbative physics of OAM-HHG, since we can
now affect both the field intensity and its shape.
To impart an intensity gradient, as in the single-color

case, we divert 10% of the intensity to a donutlike l ¼ 0

mode (with an amplitude profile ∼r2e−r2=σ2) on both
modes; the results are displayed in Fig. 4(b) and, as in
the one-color case [17], they display an OAM broadening
on each harmonic. To impart a phase gradient, on the other
hand, we switch the phase of one of the l ¼ 0 modes, so
that the intensity profiles are complementary, giving a
constant total intensity but a varying Iω=I2ω intensity ratio.
This produces a smaller broadening, shown in Fig. 4(c),
with a different origin: the intensity ratio affects the
quantum-path dynamics [40], which alters both the action
and the vector aspects of the recollision [39]. Note that
similarly, even in the unperturbed case, quantum-path

FIG. 3. Twisted-spiral structure of the attosecond pulse train
emitted by CR-invariant bicircular drivers at l1 ¼ l2 ¼ 1, as in
Fig. 2. (a) Iso-intensity surface of the HHG emission, filtered
above harmonic order 10, over the far-field divergence Cartesian
coordinates x and y, with the color denoting the local polarization
direction as in (b). (b) Polarization angle of the attosecond pulses
over azimuthal emission angle θ, obtained from the time-
windowed T22ðr; tÞ field moment of Eq. (8) with σ ¼ 15°=ω
and integrated over angular divergence, with 1

2
arg (T22ðr; tÞ)

plotted as the hue and jT22ðr; tÞj (which closely follows the XUV
intensity) as the color saturation. The polarization angle rotates
by −120° over each turn of the spiral, directly confirming the
γ ¼ −1=3 rotation-coordination parameter of the beam. At each
fixed θ, the polarization jumps over three complementary colors
such as blue-green-red (dashed line) or cyan-yellow-magenta
(dot-dashed line), showing the local polarization structure as a
train of linear pulses at 120° from each other.
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dynamics and phase-matching effects should contribute to
radial structures in the HHG emission [49,59].
Finally, it is important to note that this configuration also

allows for the production of XUV radiation with control-
lable OAM, as recently pointed out in Refs. [41,50,60]. In
single-color collinear experiments the OAM scales linearly
[16–18], with the qth harmonic carrying OAM lq ¼ ql
[15,17]; for high q, this OAM is often too big to be useful,
and it is challenging to detect and characterize it in the
first place [16,61]. One solution is to use a noncollinear
perturbing beam [16,19,20], but that spreads the harmonic
yield over a range of different OAM modes.
Here, however, the use of CR-invariant drivers allows us

to imprint the qth harmonic with an arbitrary OAM lq by
leveraging the bicircular spin selection rules [22,24,46] to
concentrate all of the harmonic yield at a given harmonic
order into a single OAM mode. Moreover, the interaction
region is no longer constrained to lie within the intersection
of two noncollinear beams, allowing it to be substantially
longer and therefore to support a stronger harmonic
emission when properly phase matched.
The generation of structured high-frequency pulses

through TKAM conservation provides a source of bright
XUV radiation with customized polarization and OAM.
For example, it opens a scenario to explore spin-orbit
coupling at the nanoscale [62], and to study the modification
of photoionization dynamics of single atoms and molecules

[63,64]. Such XUV beamswith controlled angular momenta
can also be used to enhance light microscopy—through
high-contrast high-resolution spiral-phase imaging [65] or
XUV microscopy [16]—in lithography [66], and as tailored
waveforms for developing and improving spectroscopic
techniques [67,68]. Finally, we note that TKAM conserva-
tion in HHG provides a new tool to study ultrafast magnet-
ism, in particular to imagemagnetic domains [69], to uncover
spin or charge dynamics in magnetic materials [70], and to
generate ultrafast magnetic fields [71].
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Ultrashort laser pulses are a unique tool to explore the fastest 
dynamics in matter. Remarkably, the shortest laser pulses to date 
are produced from the non-linear phenomenon of high-order 
harmonic generation, which results in the emission of 
extreme-ultraviolet/X-ray attosecond pulses. Importantly, such 
attosecond pulses can exhibit a very exciting property, the 
angular momentum, in two different forms: the spin angular 
momentum and the orbital angular momentummomentum and the orbital angular momentum.

In this thesis, we develop a compilation of schemes for the 
creation of ultrashort pulses with novel spin and orbital angular 
momentum properties. To this end, we structure the process of 
high-order harmonic generation through the characteristics of 
the driving beams. As one of our main results, we demonstrate 
the generation of high-frequency beams with time-varying 
angular momentum, a new degree of freedom that opens new 
routes routes for the study of light-matter interactions.
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