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A B S T R A C T

Photovoltaic self-consumption in buildings requires the installation of photovoltaic (PV) systems mostly on roofs,
taking the advantage of these building locations for both the available surface area and the certainty of a big
amount of annual incoming solar radiation. Since the parameters required for a proper PV system design are
mainly geometric: azimuth-orientation, tilt angle and effective dimensions of the different roof slopes; aerial
LiDAR data and orthoimagery offered by the National Geographic Agencies became suitable data sources for this
purpose, ensuring its availability for any city regardless of its location. This paper presents a novel automatic
methodology that combines LiDAR and orthoimage data processing to geometrically characterize roofs at slope
level and calculate their PV solar potential. The methodology developed has been validated against results
obtained from a higher-resolution aerial 3D point cloud of the roofs under study. Different locations and roof
types have been tested in order to confirm the performance of the methodology under different conditions, being
able to accurately characterize the geometry of most types of roofs, such as flat roofs, gable or saddle roofs,
single pitched roofs and pyramid roofs at city, neighbourhood and building level.

1. Introduction

The use of solar energy has been a subject of increasing interest in
the last years, supplying the 6.6% of the total primary energy produc-
tion of renewable energy in Europe in 2017 [1] and with a great in-
crease regarding the contribution of 2% to the total energy production
in 2007. In addition, the growing concern about the climate change
issue has led to a rising willingness of consumers to become self-con-
sumers, also encouraged by national governments in an attempt to in-
crease their share in renewable energy consumption [2].

Within this framework, and thanks to the reduction of investment
costs of photovoltaic (PV) panels due to the maturity of this technology
[3], PV solar energy constitutes an option of interest for the building
users, especially for its exploitation in their main places of consumption
(home and work). In a commitment towards the distributed energy
generation and self-consumption to avoid energy losses due to trans-
portation, the ideal place for installing PV systems is in the buildings
themselves. Specifically, roofs are chosen as the main location for the
PV installation due to their favourable position with respect to the Sun
[4]. That is, roofs ensure the minimum energy-loss and optimize in-
stallation costs, as well as maximize the reception of Sun radiation. For
this reason, the location, characteristics and dimensions of roofs are

critical when analysing the feasibility, production and profitability of
PV installations [5]. In this regard, there are tools available to estimate
the PV energy production of roofs, such as Google SunRoof [6]. While
this kind of tools allows the analysis of costs and profitability of PV
installations on roofs, they have limitations derived from: (i) the use of
two-dimensional data, (ii) ideal values of solar production and (iii)
disregarding the real yields of the panels.

With the aim at avoiding the 2D limitation, LiDAR data and pho-
togrammetry have arisen as providers of the information about the
third dimension, allowing the simultaneous computation of the roof
parameters for several buildings [7–11]. However, most of the existing
approaches come from commercial software [7] or calculate the solar
potential of roofs without discretizing between the different roof slopes
and their different azimuth-orientations and tilt angles [8]. Other ap-
proaches make use of aerial imagery for 3D building reconstruction, in
such way that the accuracy commonly associated to the spatial re-
solution of this imagery is lost in the generation of the Digital Surface
Model [9]. Provided the complexity and variety of existing roofs, some
works [12] present a methodology focusing on pitched-roofs. However,
this approach is object-oriented, and computes the solar energy po-
tential for individual buildings. While this is a valid approach in regions
with single family houses, it cannot be applied in urban areas where the
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solar radiation of buildings is affected by the radiation of their sur-
roundings [13]. In this sense, [14] computed roof solar potential based
on LiDAR data and for complete neighbourhoods, taking into account
how the buildings of the surroundings affect in terms of projected
shadows. However, the use of LiDAR data alone presents limitations in
terms of occlusions, spatial resolution and horizontal accuracy that can
be solved by its combination with aerial imagery [15]. A summary of
the contribution of the methodology proposed regarding the state of the
art is presented in Table 1.

Accordingly, the proposed methodology allows an accurate esti-
mation of solar production in roofs based on their 3D characterization
in terms of location, azimuth-orientation, morphology and dimensions
for most existing roof types (Fig. 1). This is possible due to the opti-
mization of each data source for their combined processing in order to
compute such geometric parameters. While LiDAR data is used for the
computation of the angular parameters of the roofs, aerial orthoima-
gery provides accurate information about the contours of the roofs due
to its high spatial resolution. The main contribution of this paper is the
full automation of the roof characterization, discriminating between the
different roof slopes per building, and processing several buildings si-
multaneously (going from city to roof scale). In this way, it is possible to
perform studies at city, neighbourhood or building level obtaining high
precision results with a great level of detail for all cases.

In order to describe the proposed methodology, the paper is orga-
nized as follows. After this introduction, both the data sources and the
workflow of the methodology proposed are described in detail in
Section 2. The evaluation system and experimental results at city,
neighbourhood and building level are firstly described in Section 3 and
then discussed in Section 4. Finally, the conclusions and future works
are summarized in Section 5.

2. Data sources

Given that the main purpose of this research work is to present a
standard methodology for the decision-making regarding PV installa-
tions in roofs, the focus is set on the use of available free geomatic data
that guarantees precision in the results. The methodology makes use of
LiDAR data and aerial orthoimagery in a combined way (Fig. 2) to
automatically obtain the location, azimuth-orientation, tilt angle and
dimensions of each of the slopes of the roof analysed. These are the
main parameters required to perform an appropriate query to any solar
radiation database in order to obtain PV potential of the roof. In ad-
dition, the importance of an accurate estimation of these parameters
when performing feasibility and profitability studies of PV installations
on roofs should be highlighted.

2.1. Data description

As already mentioned, the methodology developed uses two data
sources as input: i) 3D point clouds from aerial LiDAR technology and
ii) aerial orthoimagery, both widely used and available data sources in
most countries (especially in Europe, through the INSPIRE standard
[23]). In this case, both data sources are in the same reference system
(ETRS89) and are available at the download centre of the Spanish
National Geographic Agency [24]. This national agency analyses
changes in the Spanish territory based on aerial data acquired every 2
or 3 years.

While, at first instance LiDAR technology seemed to be ideal and
enough to perform 3D geometric analysis, it is limited by its spatial
resolution, horizontal accuracy and the concavity/convexity in some
building boundaries [15,25]. Since one of the key parameters when
calculating PV solar potential is the total available area, the detection of

Table 1
Comparison between the methodology proposed and the state of the art.

Existing works Reference Strengths of the proposed methodology compared to existing works

Arefi & Reinartz, 2013 [16] Automatic computation of roof parameters, not limited to the geometric modelling but including data exploitation.
Fan et al., 2014 [17] More robust and more accurate results due to the combination of two data sources (LiDAR and aerial orthoimagery) instead of being

dependent on the resolution and precision of a single data source (LiDAR data).
Ghaffarian & Ghaffarian, 2014 [18] Buildings are not only detected but parametrized, providing characterization data useful for further purposes such as for PV

potential computation.
Martín et al., 2015 [8] Lower computation requirements thanks to the processing at roof level.
Wang et al., 2015 [19] Symmetric and asymmetric roof structures can be analysed.
Ghaffarian & Ghaffarian, 2016 [20] Extraction of roof parameters useful for further purposes such as PV potential computation: azimuth-orientation, tilt angle and

dimensions of each roof slope.
Kiti et al., 2017 [14] The methodology does not rely on third-party software for any step, including the computation of solar radiation.
Li and Liu, 2017 [12] The 3D modelling regarding the extraction of parameters of interest (azimuth-orientation, tilt angle and dimensions of each roof

slope) is fully automatic.
Palmer et al., 2018 [7] Self-developed methodology not relying on third-party software.

No manual procedures are required.
Zhao et al., 2018 [21] Alternative methodology with which not only extract roofs but also obtain their azimuth-orientation, tilt angle and effective

dimensions.
Pirotti et al., 2019 [22] Façades are automatically discarded on the first steps of the algorithm. Roofs are detected and modelled with the parameters

required for the determination of solar radiation.

Fig. 1. Typology of roofs solved satisfactorily with this novel methodology: single pitched roofs (a), flat roofs (b), gable or saddle roofs (c and d) and pyramid roofs
(e). Source of the images: Google Maps ©.
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exterior roof edges is required when evaluating solar potential at roof
level. In this sense, LiDAR data is limited and should be hybridized with
another data source that allows boundaries detection with guarantees
of accuracy, such as aerial orthoimagery (Table 2).

Therefore, in the proposed methodology, aerial LiDAR data is used
to: (i) segment the roofs from the whole LiDAR point cloud, (ii) extract
their location, (iii) detect the number of slopes per roof, (iv) calculate
their azimuth-orientation and (v) tilt angle per roof slope, (vi) define
the roof structure (ridge, rips and valleys) and (vii) serve as a mask for
the identification of roofs in the orthoimagery processing. Then, or-
thoimagery is applied to determine the exterior roof edges which serve
to delimit the area belonging to each specific roof slope. In this way,
both technologies offer their advantages and their combination ensures
accuracy in terms of planimetric, altimetric and angular characteriza-
tion.

2.2. Aerial LiDAR data

This data source offers ranging accuracy for 3D documentation,
characterization and reconstruction, especially in terms of altimetry
(Table 2). However, it is crucial to analyse its limitations in terms of
spatial resolution to discern which elements could be properly char-
acterized and which could not. The aerial LiDAR data used in this study
is available in .LAZ files at the IGN data repository [24]. This

cartographic data has very low spatial resolution, specifically, between
0.5 and 1 points per square meter depending on the flight strip overlap.
Therefore, even though it is a high precision 3D data source, it is in-
advisable to use it for calculating roof dimensions since it would result
in their underestimation.

2.3. Aerial orthoimagery

The aerial orthoimages from the Spanish National
Orthophotography Program (PNOA, Spanish acronym) [24] are the
result of a photogrammetric network captured by a large format digital
camera (Vexcel UltraCam). A longitudinal overlap between images of
60% and a transversal overlap ≥25% was considered for this photo-
grammetric network. As a result, an orthoimage with a GSD of 25 cm
(Table 2) is obtained, resulting in a great advantage in terms of spatial
resolution. This resolution allows one to obtain an accurate estimation
of the roof's external edges by means of digital image procedures such
as edge detector algorithms and segmentation procedures. Despite its
high spatial resolution, this bidimensional product is not useful to de-
fine the angular roof parameters on its own, i.e. azimuth-orientation,
tilt angle and real area of each roof slope. Regarding its planimetric
accuracy, this cartographic product offers a precision of ± 50 cm.

Fig. 2. Workflow of the methodology proposed for the 3D characterization of roofs in order to assess their PV potential.

Table 2
Main features of the input data used by the proposed methodology.

Data source

Aerial LiDAR data Accuracy ± 20 cm (Z), ± 40 cm (XY)
Spatial resolution 0.5–1 p/m2

Geodesic reference ETRS89
Wavelength 1064 nm (infrared)
Coverage 4 km2

Information stored in the point
cloud

XYZ coordinates, RGB data, point source id, user data, scan angle, flight line edge, scan direction, returns, return
number, GPS time, classification and infrared intensity

Type of LiDAR Optech ALTM 3025 (time-of-flight)
Format LAZ 1.1

Aerial orthoimages Accuracy ± 50 cm
Spatial resolution 25 cm
Geodesic reference ETRS89
Type of camera Vexcel UltraCam (large format aerial digital camera)
Format ECW
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3. Methodology

As shown in the workflow diagram (Fig. 2), the procedure begins
with the LiDAR data processing, from which the layer corresponding to
individualized roofs with information about their location, azimuth-
orientation and tilt angle is obtained. Then, the point cloud corre-
sponding to each individual roof serves as a mask and input data to the
orthoimagery processing where it is used to crop the matching ortho-
image regarding the buildings under study. After the appropriate image
processing (Section 2.3), the exterior roof edges are obtained. Finally,
these edges serve as external delimitation to accurately quantify the
area of each roof slope identified through the LiDAR processing. Below,
all the phases and algorithms implemented in the proposed metho-
dology are described in detail.

3.1. LiDAR data processing (LDP)

This approach integrates several steps and two correlative working
scales: one at city level (CL) (Fig. 3) and the other at individual roof
level (RL) (Fig. 6). To operate at individual RL, the proposed metho-
dology integrates a sequential segmentation procedure based on both
geometric and radiometric criteria. All the algorithms and methods
implemented are described below in their order of application.

3.1.1. LDP at city level: location, azimuth-orientation and tilt angle
The result is the point cloud corresponding only to roof areas co-

loured according to the azimuth-orientation (Fig. 4b) and with in-
formation regarding both roof azimuth-orientation and tilt angle after
going through the following 8 steps:

• CL1-Removal of points belonging to the ground. Only those points

Fig. 3. LiDAR data processing at city level. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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with a single LiDAR return (Table 2) continue in the process, in
order to ensure that they correspond to solid surfaces (Fig. 3a–b).

• CL2-Removal of points belonging to vegetation areas. A previous
computation of the Normalized Vegetation Index (NDVI) [26] is
required (Fig. 3a–b). It is quantified thanks to the red and near in-
frared information collected by the LiDAR (Table 1) and by applying
Eq. (1).

=
+

< <NDVI NIR RED
NIR RED

where NDVI, ( 1 1) (1)

A NDVI threshold of 0.3 [26,27] was established in such a way that
points with higher NDVI value are considered vegetation and conse-
quently removed.

• CL3-Removal of points belonging to building façades. This seg-
mentation is based on the Z-component of the normal vector (Nz) of
each 3D point. Each normal vector is estimated through the ad-
justment of a 2D subspace that is tangent at the point of interest
based on pairwise point relationships [28]. Specifically, a surface is
adjusted to the 8 nearest neighbour points of each 3D point analysed
(search resolved by k-d tree) within a maximum radius of 4 m. In
this calculation, the covariance matrix of the 8 points is analysed
and the normal vector of the surface adjusted is determined as the
normal vector of the analysed point. A threshold of 0.15 was es-
tablished in such a way that any point with a Nz value below this
threshold is considered a point corresponding to façades due to the
verticality of the surface adjusted.

• CL4-Removal of remaining noise points. Possible residual points
from the previous steps are deleted by applying a Statistical Outlier
Removal (SOR) filter [29]. A threshold of 1-m deviation in 30
neighbour points was established. After this step, the resulting point
cloud corresponds only to roof areas (Fig. 3b).

• CL5-Individualization of roofs. Each roof is individualized by means
of a region growing segmentation establishing a cluster size of 20 cm
in the 20 nearby neighbours (Fig. 3c).

• CL6-Azimuth-orientation computation. The azimuth-orientation and
tilt angle of the roofs are calculated by analysing the X-Y-Z-com-
ponents of the normal vector (Nx, Ny and Nz) of each point

(Fig. 3c–d). This requires projecting the normal vector to the hor-
izontal plane and evaluating its corresponding quadrant (Fig. 4a).
The azimuth-orientation (−180° < Azi < 0 < Azi < 180°) is
calculated by Eqs. (2), (3) and (4), depending on the normal vector,
so if it belongs to the 1st, 2nd and 3rd, or to the 4th quadrant re-
spectively (Fig. 4).

° =Azi Nx
Ny

( ) tan 180 (1 quadrant)1 st
(2)

° =Azi Nx
Ny

( ) tan (2 and 3 quadrant)1 nd rd
(3)

° = +Azi Nx
Ny

( ) 180 tan (4 quadrant)1 th
(4)

• CL7-Point cloud colorization. Once the azimuth-orientation is
computed, the point cloud belonging to roofs is coloured (Fig. 3d)
following the criteria of Fig. 4b.

• CL8-Tilt angle computation. This is the last step of the LiDAR data
processing at CL. It is calculated by a simple trigonometric process
outlined in Fig. 5 and Eq. (5).

° =
+

Nz
Nx Ny

Tilt ( ) 90 tan 1
2 22 (5)

3.1.2. LDP at roof level: internal roof edges and dimensions of roof slopes
In order to calculate the azimuth-orientation, tilt angle and di-

mensions of each roof slope it is necessary to determine the number of
roof slopes per building under study. However, before starting this
analysis, each roof has to be classified as flat or non-flat. Specifically, a
threshold of 0.5% is established to highlight the difference between the
vertical and the horizontal component, in such a way that if the dif-
ference (in absolute value) between the mean values of the Nz and Nx
and between the mean values of the Nz and Ny is < 0.5% the roof is
classified as flat roof. It should be noted that these roofs are char-
acterized by a point cloud with mixed colours in reference to the azi-
muth-orientation colorization (Fig. 11-2d). In such cases, the azimuth-
orientation is established as “flat”, the tilt angle is the mean/average

Fig. 4. (a) The four quadrants in which the Cartesian axes are divided as well as the projection of the normal vector on them. (b) The colour assigned to each point
according to the 8 orientations established in the Spanish Technical Building Code (CTE [30]). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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value of all points of the roof and the area is obtained with the external
roof edges from the orthoimagery processing.

For non-flat roofs, the number of roof slopes and their main geo-
metric parameters are obtained after applying the following 6 steps
outlined in Fig. 6, where each colour indicates a different orientation of
the roof (step CL7):

• RL1-Colour Segmentation. Taking as basis the colours assigned to
each point in the step CL7, the point cloud of each roof is segmented
into as many groups as colours.

• RL2-Region growing segmentation. Each of the point groups after
RL1 is segmented based on region growing establishing a cluster size
of 10 cm in the 10 nearby neighbours. Some groups of points

disappear because they are considered noise due to their low point
density. This is the case of the yellow points (West and East facing)
in Fig. 6.

• RL3-Spatial dispersion filter. At this step, spatially dispersed groups
of points are removed, even if they have a good point density. The
criterion to consider spatial dispersion was the ratio between the
variance (in both X and Y dimensions) and the number of points. A
threshold of 1.3 was established in such a way that groups of points
with higher dispersion value, are removed, given that it is highly
probable that those points do not belong to any roof slope. They
should belong to roof edges due to the change of curvature in those
areas. This is the case of red points (South facing) in Fig. 6.

• RL4-Positive/Negative azimuth segmentation. Those groups of

Fig. 5. Tilt angle of a roof slope based on the analysis of the normal vector.

Fig. 6. Workflow of the LiDAR data processing at roof level for non-flat roofs. (For interpretation of the references to colour in this figure, the reader is referred to the
web version of this article.)
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points that have passed the RL1, RL2 and RL3 segmentations are
divided into groups of points with positive and negative azimuth in
case of having both. This is the case of orange points in Fig. 6
(South-East and South-West facing).

• RL5-Inclination dispersion filter. In this step, the tilt angle value of
all the points belonging to each group is analysed in terms of dis-
persion. If a high change of tilt angle is computed, the group is di-
vided into as many subgroups as tilt angles are computed. This is the
case of the South-West orange group in Fig. 6, which was divided
into 3 different groups (SW1, SW2 and SW3) belonging to 3 different
roof slopes.

• RL6-Roof edge parametrization. This is the final step of the LiDAR
processing where each point group, representative of each roof
slope, is subjected to 7 sequential steps after which the internal roof
edges are parametrized. Thanks to the detection of these boundaries
and those coming from the orthoimagery processing (Section 2.3) it
is possible to accurately estimate the dimensions of each roof slope
as well as the average value of the corresponding azimuth-orienta-
tion and tilt angle:

RL6-1. Fitting planes to each of the 3D point groups throughout
the M-estimator Sample and Consensus (MSAC) algorithm [31].
The maximum distance threshold established for a point to be
considered by the MSAC algorithm is 0.4 m, compatible with the
planimetric precision of LiDAR data (Table 2).
RL6-2. Intersection of planes in pairs based on a neighbourhood
criterion. Given the low resolution offered by the LiDAR data used
in this study and the loss of points through the previous proces-
sing steps, an average distance adaptive threshold of 8 m (adap-
tation regarding the size of the building) is established to de-
termine the neighbourhood between roof slopes.
RL6-3. Classification of the intersection lines into (i) ridges, (ii)
valleys and/or (iii) hips depending on their slope in Z axis. If the
slope is < 2% it is considered as a ridge. The remaining lines are
classified as valleys if the 3D points of the surroundings have
higher Z-coordinate and as hips if they have lower Z-coordinate.
RL6-4. In case there are the three types of lines, lines classified as

valleys and/or hips are 3D intersected with those classified as
ridges, and in case there are only valleys or hips, they are inter-
sected in pairs.
RL6-5. In this step, the orthoimagery processing is linked to the
LiDAR processing through the incorporation of the outer edges
defined in the orthoimagery process (in blue). These external
boundaries will serve as outer limits to the 2D intersection of
ridges, hips and valleys in order to define precisely each roof
slope.
RL6-6. The 2D projection of ridges, hips and valleys and the in-
tersection with outer limits is performed. At this point, each roof
slope is accurately defined.
RL6-7. Finally, the area of each roof slope defined is computed, in
2D firstly and in 3D later thanks to the tilt angle value.

3.2. Orthoimagery processing: external roof edges and total roof area

The orthoimagery processing for the external roof edges detection
and the computation of the total roof area consists on a triple-stage
procedure (Fig. 7).

3.2.1. Roof mask
A combined processing between the individual roofs (RL) from the

LiDAR procedure and the orthoimagery is carried out to go from the CL
to the RL in the orthoimagery. The result of this combination allows one
to know the area of the orthoimage in which the roof is located. Making
a mask from the contour of the point cloud corresponding to each in-
dividual roof, a positive 2 m buffer is created so that the roof and its
immediate surroundings fit within. This process is required given the
low spatial resolution of the LiDAR data and in order to solve the
overestimation of the external boundaries of roofs by using this data
source. As a result, an image mask is obtained, and the following stages
are performed per roof (Fig. 7a).

3.2.2. Boundaries detection strategies
In order to define the external roofs edges from the orthoimage, a

Fig. 7. Methodological workflow to get the external edges of each roof.
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procedure consisting on the parallel application of an image segmen-
tation and an identification of straight contours is applied (Fig. 7b).
Image segmentation is performed using the Statistical Region Merging
(SRM) algorithm [32], which is based on region growing and merging
techniques. The identification of straight contours on the orthoimagery
is performed with the Line Segment Detector (LSD) algorithm [33,34].
This algorithm detects lines based on the image gradient orientation of
each pixel, so that lines are composed of adjacent pixels with the same
image gradient orientation, which is different from the image gradient
orientation of the surrounding pixels.

The image segmentation is applied to detect those pixels strictly
corresponding to roof and non-roof areas. Pixels corresponding with
roof areas are put together and the contour of the final “roof group” is
determined.

The LSD is applied as a double validation of the pixels corre-
sponding to the external roof edges. Since the LSD algorithm results in
the extraction of lines from the exterior contour of the roof but also
from the interior of the roof (i.e. lines that define the different roof
slopes), the double validation by the SRM algorithm allows the strict
definition of the external roof edges (Fig. 7c).

In the case that more than one line-segment are detected for one
external roof edge, RANSAC algorithm [35] is applied to combine them
in one line (Fig. 7d).

3.2.3. External edges detection
Lines from Stage 2 are intersected (Fig. 7e) with the aim at ob-

taining the real external contour of the roof (Fig. 7f). The contour ob-
tained after the application of the SRM algorithm is used as reference,
especially for the case of irregular roofs (for example, U-shaped). In the
case the intersection point between lines is within the reference con-
tour, it is considered as a real intersection point. If there are more than
one intersection points in the same edge, the most external ones are
considered as the real boundaries of the roof.

4. Results

This section deals with the application of the proposed methodology
to several buildings and case studies in order to check its scalability and
suitability to accurately characterize roofs at city, neighbourhood and
building level of those countries with geospatial data within the
INSPIRE standards. The case studies were a sample of buildings in the
city of Ávila (Spain) and in the city of Vaihingen an der Enz (Germany).
Specifically, the data of the city of Ávila corresponded to:

• Free aerial data offered by the Spanish National Geographic Agency
at the IGN data repository [24] that was used geometrically

Fig. 8. Perspective view of part of the city of Ávila. (a) Raw LiDAR point cloud
with true RGB values. (b) Incorporation of the roof layer in red. (c) Roof layer
colourized according to the azimuth-orientation of roofs and with information
about their tilt angles. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Plan view of part of the roofs of the city of
Ávila where the favourable orientations for the in-
stallation of PV systems have been coloured in red
(S, SW, SE, W and E) and those unfavourable in blue
(N, NW and NE). (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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characterize roofs at city, neighbourhood and building level.
• A higher resolution aerial data commissioned by the City Council of

Ávila that was used to compare both results.

Regarding the data of the city of Vaihingen an der Enz it corre-
sponded to:

• Aerial data offered by the German Society of Photogrammetry,
Remote Sensing and Geoinformation (DGPF).

• Reference data available within the framework of an ISPRS test
project [36] that served as ground truth to validate the proposed
methodology for the automatic characterization of roofs.

4.1. Roof characterization at city level

For this purpose, six LiDAR data sheets of the city of Ávila from the
IGN data repository were used covering 24 km2. Fig. 8 shows the results
obtained after applying the proposed methodology to this aerial LiDAR
data (Table 2).

It can be concluded that roofs of the city of Ávila have a pre-
dominant Northeast orientation with 18.75%. Other orientations are
distributed as follows: 13.07% of roof slopes oriented to the North,
13.04% to the Southeast, 12.75% to the Southwest, 10.86% to the West,
10.61% to the South, 10.60% to the East and 10.32% to the Northwest
(Fig. 8c). On the other hand, it can be figured that the average tilt angle
of the roof slopes of the city is 21.61°.

Facing the installation of solar panels on roofs, arguably 57.86% of
the roofs of Ávila have a favourable orientation for the direct

installation of integrated PV panels, without changing their orientation
on the roof (Fig. 9). This percentage corresponds to the roof slopes
oriented to the South, Southwest, Southeast, West and East.

4.2. Roof characterization at neighbourhood level

To test the methodology at neighbourhood level, a set of 28 build-
ings from the industrial estate of Ávila (Fig. 10), located at the North-
east of the city, was selected. This area was chosen because most of the
roofs of industrial buildings have any of the typologies (Fig. 1) for
which the automatic characterization has been resolved through the
proposed methodology.

Then, in Table 3, all the parameters obtained after applying the
methodology proposed in the chosen study area are summarized.

Under the assumption of a perfect symmetry of the roof slopes of the
buildings 1, 4, 6, 7, 13, 15, 20, 21, 22, 23, 24, 25, 26, 27 and 28, which
were identified as symmetrical through the analysis of the orthoimages,
a RMSE of ± 5.25% is derived from the area estimation per roof slope
when using low resolution LiDAR data (0.5 p/m2, Table 2). For the case
study and given that the average area per roof slope for those buildings
supposed symmetrical was 313.63 m2, the area of each roof slope has
been overestimated or underestimated by an average of 16.47 m2.

4.3. Roof characterization at building level

For this analysis 4 buildings of the city of Ávila were chosen based
on their roof typology: a single pitched roof, a flat roof, a slope gable
roof and a pyramid roof were analysed (Fig. 11). Results obtained after
applying the proposed methodology are summarized in Table 4.

5. Validation and discussion

In order to validate the methodology, two analysis have been per-
formed in different cities and datasets features. For the city of Ávila, the
validation consisted in comparing results obtained for the 28 industrial
buildings of Fig. 10 when processing the free available aerial data of-
fered by the Spanish National Geographic Agency and when processing
a 4 times higher spatial resolution aerial data. The latest corresponds to
a 2 points per square meter LiDAR point cloud from a flight commis-
sioned by the City Council of Ávila in 2010. For the city of Vaihingen an
der Enz, the validation involved the comparison of the results obtained
after processing orthoimagery and LiDAR data provided by the DGPF
with the reference values offered by the ISPRS test project [36]. In this
case, the residential area called “Area 3” was chosen and the spatial

Fig. 10. Roof characterization of the chosen neighbourhood (red polygon) in the industrial estate of Ávila. Plan view of: (a) the raw LiDAR point cloud, (b) processed
point cloud corresponding to roofs coloured according to the azimuth-orientation and with tilt angle information, and (c) the final vector result with information
about the azimuth-orientation, tilt angle and area per roof slope. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3
Roof characterization parameters obtained for the 28 buildings analysed at
neighbourhood scale in the city of Ávila.
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resolution of data was 8 cm for the orthoimages and 4 points per square
meter for the LiDAR data.

5.1. Validation for the data set of Ávila (Spain)

The azimuth-orientation, tilt angle, area and altitude of the 28
buildings analysed in Section 3.2 are here updated (Table 5) with re-
sults obtained after applying the methodology to the higher spatial
resolution LiDAR data of the same area (Fig. 12).

As in Section 3.2, under the assumption of perfect symmetry be-
tween the roof slopes of buildings 1, 4, 6, 7, 13, 15, 20, 21, 22, 23, 24,
25, 26, 27 and 28, a RMSE of 2.63% is derived from the area estimation
per roof slope for this case study when using a 2 p/m2 point cloud
LiDAR data, and given that the average area per roof slope for those
groups of symmetrical buildings was 313.63 m2.

By comparing results obtained from both LiDAR data sets (Table 6)
the following is concluded:

• Angular parameters (azimuth-orientation and tilt angle) presented
an average error below 1°: 0.19% and 0.45% respectively con-
sidering 360° and 90° for azimuth-orientation and tilt angle, which
are below the adjustment accuracies offered by solar panel supports
[37].

• The altitude estimation highlighted for its low error, 0.02 m in this
case study. This is due the precision offered by LiDAR technology in
altimetry measurements (around 20 cm, Table 2).

• Area per roof slope obtained an average error of 14.51 m2 which
corresponds to an error in percentage of 4.63% taking as reference
the average area of the roof slopes analysed (313.63 m2). It would
suppose an underestimation or overestimation of 7 panels (of 2 m2)
in roofs with capacity for 156 panels. For residential use, where 10
panels are usually installed per roof, this would lead to under-
estimating or overestimating the installation in 1 or zero panels
(0.45 panels of 2 m2).

Fig. 11. Roof characterization of the four chosen buildings of the city of Ávila. (a) Plan view of: a (1) single pitched roof, a (2) flat roof, a (3) 4-slope gable roof and a
(4) pyramid roof; source: Google Maps ©. Being (b) the raw LiDAR point cloud, (c) the processed point cloud corresponding to roofs coloured according to the
azimuth-orientation and information regarding tilt angles after applying the CL8 step of the methodology, (d) the individual roof of interest, (e) points belonging to
each roof slope detected after applying the step RL5, note that in case of flat roofs, the processing finishes in “d” when they are identified as flat roofs (see Section
3.1.2); and (f) the final vector result obtained after applying the step RL6 of the methodology that contains information regarding the azimuth-orientation, tilt angle
and area per roof slope.

Table 4
Roof characterization parameters obtained for the 4 buildings analysed at
building scale.

Building Roof
slope

Azimuth
(0°–360°)

Orientation Tilt
angle
(°)

Area (m2) Altitude (m)

1 1 52.96° NE 10.13° 483.89 1141.50
2 1 FLAT FLAT FLAT 769.07 1151.80
3 1 322.28° NW 10.92° 309.17 1149.60

2 143.57° SE 10.16° 323.96 1149.60
3 323.19° NW 10.24° 263.95 1149.60
4 142.44° SE 10.70° 224.31 1149.60

4 1 334.34° NW 18.34° 136.71 1177.20
2 65.65° E 18.14° 129.77 1177.10
3 153.65° SE 17.72° 134.97 1177.00
4 243.98° SW 17.87° 135.99 1177.10
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• Assuming perfect symmetry between the roof slopes of the buildings
1,4, 6, 7, 13, 15, 20, 21, 22, 23, 24, 25, 26, 27 and 28, the im-
provement on the results of area calculation using the higher spatial
resolution LiDAR data validates the methodology, since the error is
dependent on the data source.

5.2. Validation for the data set of Vaihingen an der Enz (Germany)

Finally, in order to validate the performance of the proposed
methodology with ground-truth reference data, a sample of buildings
from a residential neighbourhood of the city of Vaihingen an der Enz
was analysed. Specifically, the neighbourhood called “Area 3” in the
ISPRS test project [36] that has 47 buildings and for which reference
data is available. “Area 3” was chosen from among the three areas of-
fered because most of the roofs (42 of the 47) have a morphology that

can be characterized by the proposed methodology. However, the
analysis was carried out in 41 buildings since there was a scarce LiDAR
data recorded for the building located to the right of the building 2 in
Fig. 13. This is due to the fact that slate roofs absorb the infrared ra-
diation [38], spectral range for which the LiDAR used by the DGPF
operates (Leica ALS50).

After segmenting the point cloud by eliminating the 6 buildings that
were not analysed for the aforementioned reasons, the methodology
was applied for the point cloud with the 41 remaining buildings. The
geometrical parameters obtained for each roof slope are summarized in
Table 7.

Since the average altitude of the ground of such neighbourhood (Z
coordinate of the LiDAR data) was 266.50 m and that of the roofs
analysed was 273.42, it was concluded that it is a low-rise residential
neighbourhood with buildings of an average height of
6.92 m ± 3.55 m.

In order to check the results obtained and validate the methodology,
each geometric parameter was compared with its corresponding re-
ference value offered by the ISPRS test project [36]. Table 8 shows the
comparative analysis after which the following conclusions were de-
rived:

• Angular parameters (azimuth-orientation and tilt angle) presented
an average error around 1°, matching the results obtained in the test
site of the city of Ávila. These uncertainty values are below the
adjustment accuracies offered by solar panel supports [37].

• An average error of 6.97 m2 was obtained when evaluating the area
per roof slope. It corresponds to an error in percentage of 2.93%
taking as reference an area of 238.29 m2. This error supposes an
underestimation or overestimation of 3 PV panels (of 2 m2). Better
results have been obtained compared to those of the city of Ávila
due to the greater spatial resolution offered by the aerial data pro-
vided by the DGPF.

• The altitude estimation had a 0.10 m average error, a slightly higher
error than the one obtained in the test site of the city of Ávila.
However, in both cases, errors are insignificant for the solar radia-
tion computation.

6. Conclusions

The proposed methodology effectively solves the automatic para-
meterization of roofs at city, neighbourhood and building level from the
combined use of discrete aerial LiDAR data and aerial orthoimagery and
for the vast majority of existing roof types: single pitched roofs, flat
roofs, gable or saddle roofs and pyramid roofs. In addition, the possi-
bility of processing at city level allows the performance of prospective
studies, towards the analysis of possibilities and establishment of reg-
ulations and incentives by the urban and regional Administrations.

The methodology involves not only the automatic extraction of roof
boundaries but also the parametrization of each roof slope in terms of
azimuth-orientation, tilt angle, altitude and effective dimensions, which
are the parameters required for the computation of the PV capacity of
roofs. However, it should be highlighted that the methodology is sen-
sitive to changes in the resolution of the input data, in such a way that
important improvements in accuracy are obtained with higher resolu-
tion data sets. Specifically, significant improvements have been ob-
tained regarding the delimitation of the roof slopes and the computa-
tion of their dimensions when comparing results from higher spatial
resolution orthoimagery and LiDAR data. This is because a higher
density point cloud provides a better definition of the elements and
therefore, in the case of the building roofs, allows a better differentia-
tion of each roof slope and a better fit of planes. As for the rest of the
parameters, very precise results are obtained in the angular measure-
ments for both higher and lower spatial resolution aerial data.
Specifically, an average error of 0.20% was obtained in the azimuth-
orientation estimation, 1.29% in the tilt angle estimation, 0.63% in the

Table 5
Roof characterization parameters obtained for the 28 buildings analysed at
neighbourhood scale when using the 2 p/m2 LiDAR data.

Building Roof
slope

Azimuth
(0°–360°)

Orientation Tilt
angle
(°)

Area (m2) Altitude (m)

1 1 142.36° SE 10.88° 203.67 1143.60
2 322.44° NW 11.14° 203.12 1143.60

2 1 143.77° SE 6.20° 515.02 1148.00
2 322.33° NW 6.39° 511.56 1147.80

3 1 142.04° SE 15.31° 493.70 1147.40
2 321.84° NW 15.42° 497.78 1147.20
3 FLAT FLAT 3.14° 250.85 1142.60

4 1 144.08° SE 5.67° 620.65 1145.70
2 322.24° NW 5.65° 610.34 1145.70

5 1 144.26° SE 4.74° 420.00 1147.40
2 323.24° NW 4.68° 408.04 1147.40
3 325.44° NW 3.46° 42.21 1143.50

6 1 143.38° SE 16.43° 197.30 1148.00
2 323.62° NW 15.77° 216.01 1147.60

7 1 143.00° SE 5.55° 494.37 1149.30
2 322.76° NW 5.52° 494.41 1149.20

8 1 55.77° NE 11.29° 106.12 1150.30
9 1 143.19° SE 8.86° 217.17 1150.40

10 1 227.49° SW 10.48° 167.46 1150.50
11 1 52.17° NE 11.11° 831.74 1150.50
12 1 320.98° NW 9.16° 203.65 1150.30
13 1 270.95° W 7.78° 67.53 1152.10

2 92.32° E 5.76° 69.46 1152.10
14 143.22° SE 10.24° 118.18 1150.30
15 1 8.27° N 9.39° 56.84 1152.40

2 187.91° S 8.39° 60.51 1152.10
16 1 233.62° SW 10.57° 128.25 1150.30
17 1 233.17° SW 11.44° 78.60 1150.30
18 1 322.83° NW 9.84° 68.74 1147.60
19 1 321.49° NW 11.19° 217.87 1150.30
20 1 231.77° SW 5.85° 221.26 1153.90

2 53.27° NE 5.85° 220.04 1153.80
21 1 322.91° NW 5.61° 373.08 1155.70

2 143.44° SE 5.60° 330.11 1153.70
22 1 232.97° SW 5.66° 365.70 1155.70

2 52.70° NE 5.65° 369.01 1155.70
23 1 323.32° NW 5.48° 378.1 1153.30

2 143.08° SE 5.45° 296.6 1153.10
3 323.36° NW 5.54° 356.82 1153.20
4 142.88° SE 5.53° 299.56 1153.30

24 1 232.64° SW 5.60° 375.49 1153.80
2 53.24° NE 5.63° 367.25 1153.70

25 1 324.11° NW 12.46° 205.86 1151.80
2 143.91° SE 10.81° 207.69 1151.70

26 1 323.81° NW 11.98° 221.96 1152.10
2 142.95° SE 8.48° 224.61 1152.40

27 1 323.15° NW 3.34° 399.59 1153.60
2 143.39° SE 3.42° 405.06 1153.50

28 1 322.51° NW 10.21° 292.48 1149.60
2 143.43° SE 10.35° 274.65 1149.60
3 322.56° NW 10.35° 288.46 1149.60
4 142.91° SE 10.77° 265.80 1149.60
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altitude estimation and 2.93% in the area per roof slope estimation.
Future works will present a three-fold approach: on the one hand,

focusing on the improvement of the characterization of the roofs, the
authors will deal with the detailed study and analysis of hipped roofs to
include them in the methodology in order to make it applicable to all
typologies of existing roofs. In addition, procedures to automatically
detect the projected shadows on roofs will be designed based on the
altitude value and making a study of the sight line of each building.
Finally, the analysis of the PV potential will be performed by in-
tegrating the study of the effect of the geomorphology of the soil on the
incident solar radiation to PV surfaces.

Fig. 12. Roof characterization parameters obtained for the 28 buildings analysed at neighbourhood scale when using (a) the LiDAR data of 0.5 p/m2 resolution and
when using (b) the LiDAR data of 2 p/m2 resolution. The abscissa and ordinate represent the X and Y coordinates respectively in EPSG 25830 projection (ETRS89/
UTM zone 30N).

Table 6
Uncertainty estimation taking as real values those obtained after processing the
higher spatial resolution LiDAR data set (2 p/m2). Values in bold indicate the
relative average error in percentage.

Azimuth (°) Tilt angle
(°)

Area per roof
slope (m2)

Altitude (m)

Min error 0.01° 0.01° 0.45 0.00
Max error 4.27° 1.08° 76.83 0.10
Average error 0.70° 0.40° 14.51 0.02
Average error (%)

(Reference)
0.19%
(360°)

0.45%
(90°)

4.63%
(313.63 m2)

0.15%
(15 m)

Fig. 13. Roof characterization of the chosen neighbourhood in the city of Vaihingen an der Enz. (a) Orthoimage of the neighbourhood in false colour, (b) processed
point cloud corresponding to roofs coloured according to the azimuth-orientation and with tilt angle information, and (c) the final result with information about the
azimuth-orientation, tilt angle and area per roof slope. Note that in (c) the abscissa and ordinate represent the X and Y coordinates respectively in EPSG 25832
projection (ETRS89/UTM zone 32N).
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