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A B S T R A C T   

The design of effective strategies for the conservation and management of threatened narrow-range species re-
quires basic knowledge on their geographic distribution and abundance. When such knowledge is lacking, 
modelling techniques can provide an opportunity to acquire basic information and incorporate it immediately 
into conservation programs. This study used ecological niche modelling to map the potential distribution range 
and rangewide variation in population abundance of a threatened narrow-range endemic plant, Antirrhinum 
lopesianum Rothm. in the Iberian Peninsula. We simulated the potential geographic distribution of the species 
using the Ensemble Modelling approach based on 28 species occurrences and a set of readily available envi-
ronmental data (Landsat 8 OLI/TIRS and LiDAR) and created a spatial model of the distance to the niche 
centroid. We tested the relationships between 35 records with abundance data for the species and their distance 
to the niche centroid using generalized regression models, and the resulting model was used to predict spatial 
estimations of A. lopesianum abundance across its entire potential distribution range. The ecological niche model 
of A. lopesianum covered the most suitable areas located along a narrow strip on the banks of the River Duero and 
River Sabor. We found a robust and negative relationship between observed abundance for the taxon and dis-
tance to the niche centroid. The spatially explicit model presented here provides a reliable tool for regional/ 
global management and conservation of A. lopesianum and an approach applicable for other narrow-range 
endemic plants. Finally, this approach maximization the exploitation of basic information through open re-
sources (software and environmental variables), which makes it of high interest for institutions with limited 
resources.   

1. Introduction 

Narrow-range endemic plant species are of conservation concern and 
are a challenge for conservation agencies due to their rarity and 
uniqueness. The difficulty increases when these species occupy remote 
areas or those difficult to explore. With ongoing environmental global 
change, these species are more susceptible to different environmental 
pressures (Breggin, George, & Pencak, 2003) and hence, reliable esti-
mates of their potential distribution and abundance are necessary both 
to evaluate its risk of extinction and design conservation strategies 
(Guisan et al., 2013; Rodríguez, Brotons, Bustamante, & Seoane, 2007). 
However, data on the current and/or historical distribution, biology, 

and ecology of many of these species is sparse, due to the fact that their 
populations, are, in many cases, present in small patches of difficult 
access (Gogol-Prokurat, 2011). Incomplete knowledge of this basic in-
formation makes its prioritisation for conservation an enormous 
challenge. 

Species distribution models (SDMs) offer a practical solution to 
improving our knowledge of narrow-range endemic plant species 
(Peterson et al., 2011), thus locating and prioritising areas for conser-
vation actions. SDMs use known occurrence locations and 
spatially-explicit data on the environmental conditions believed to 
control the geographic distribution of the target species to predict 
habitat suitability across the landscape (Soberón & Nakamura, 2009). 
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However, endemic plant species with narrow-range distributions and 
specialised habitat requirements represent a particular challenge for 
SDMs for several reasons: 1) such species have both small distributions 
and small sample sizes, creating issues that may compromise model 
robustness (Pearson, Raxworthy, Nakamura, & Townsend Peterson, 
2007); 2) sampling bias is inherent in occurrence data (Wisz et al., 
2008); and 3) given that narrow-range species with specialised habitat 
requirements often have patchy distributions of occurrences, defining a 
general range becomes less useful from a management perspective 
compared to understanding habitat occupancy. This is a challenge for 
SDMs because they are meant to identify the overall extent of a species’ 
range and may perform poorly if that range is heterogeneous or not 
well-sampled (McPherson & Jetz, 2007). 

In recent years, a novel method to model geographic patterns of 
abundance based on the ecological niche theory, termed the Distance to 
the Niche Centroid (DNC) approach, was proposed by Martínez-Meyer, 
Díaz-Porras, Peterson, and Yáñez-Arenas (2013). This procedure is 
similar to those previously applied and based on orthogonal variables 
(Calenge, Darmon, Basille, Loison, & Jullien, 2008). This approach as-
sumes that optimal conditions for a species are found towards the 
centroid of the ecological niche in a multidimensional space (Hutch-
inson, 1957; Maguire, 1973). Thus, a locality which environment is close 
to the centroid of the n-dimensional niche harbours better conditions for 
the species and, as a consequence, higher abundance would be expected 
at these localities (Yañez-Arenas, Guevara, Martínez-Meyer, Man-
dujano, & Lobo, 2014). The DNC approach fits a curve for the rela-
tionship between observed abundance across the species’ geographic 
range and the distance to the ecological niche centroid that can be used 
to make range-wide estimates of the species’ abundance. Based on this 
approach, different studies have successfully tested this hypothesis in 
different geographic contexts and at different scales (Manthey et al., 
2015; Martínez-Gutiérrez, Martínez-Meyer, Palomares, & Fernández, 
2018; Martínez-Meyer et al., 2013). 

Expanding the use of the SDMs and DNC method to predict 
geographic patterns of distribution and abundances of narrowly 
endemic plants could be very helpful in designing management and 
conservation strategies. Here, we determined whether the distributional 
area of a narrow-range endemic plant, as well as variations in population 
abundance across its distribution range, can be accurately estimated at a 
fine scale using the SDMs and DNC method, based on very basic infor-
mation of the species. We illustrate these approaches with the arribes 
snapdragon, Antirrhinum lopesianum Rothm., a threatened narrow-range 
endemic plant of the north-western Iberian Peninsula. Finally, the po-
tential implications of the results for focussing future fieldwork and 
conservation efforts are discussed. 

2. Materials and methods 

2.1. Study area 

We delimited the study area by generating a 15 km buffer around the 
current distribution range of A. lopesianum based on the IUCN distri-
bution map (Amich-García, Bernardos-Hernández, González-Talaván, 
Caldas, & Alves, 2011). We assumed that this area reflects the 
geographic region that has been accessible to the species over relevant 
time periods (M in the BAM framework; Soberon & Peterson, 2005); 
Fig. 1). 

This area is included in the Lusitan Duriensean biogeographical 
sector (Carpetan-Leonese subprovince) (Rivas-Martínez et al., 2002), 
with a Mediterranean pluviseasonal oceanic bioclimate, within the 
Mesomediterranean thermoclimatic belt, with two ombrotypes: dry and 
subhumid. The dominant rock is silicic, generally granite and quartz, 
which causes soils to be acidic (Bernardos, Crespi, Aguiar, Fernández, & 
Amich, 2004). 

Fig. 1. Potential distribution range of Antirrhinum lopesianum: central western 
Iberian Peninsula. In colour, model of the ecological niche of A. lopesianum 
representing the distance to the niche centroid, with values from 0 (red) to 1 
(blue). Absence prediction is represented in grey background. White dots 
indicate presence records (n = 28) and black dots abundance data (n = 35). The 
background image (digital elevation model) represents the complexity topo-
graphic of the study area (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article). 

Fig. 2. The arribes snapdragon, Antirrhinum lopesianum Rothm. Photographed 
by R. Carbonell in Natural Park Arribes del Duero, Spain, June 2018. 
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2.2. Study species 

The arribes snapdragon, A. lopesianum (Fig. 2), is a perennial 
chamaephyte with woody stems, very lanuginose leaves and flowers that 
are white with violet stripes (Bernardos et al., 2006). 

Flowering occurs in spring (April-May) and fructification in summer 
(July-September), it is insect-pollinated, and seeds are dispersed by 
barochory/semachory. A. lopesianum grows on shaded cracks in 
calcareous substrates and has a discontinuous and highly fragmented 
distribution due to possibly stochastic and historical effects of both 
colonization (dispersion) and extinction. This taxon is listed as Endan-
gered due to its current severely fragmented distribution, with a low 
area of occupancy, below 500 km2 (Amich-García et al., 2011). 

2.3. Presence data 

Presence data across the current distribution range of the taxon were 
gathered from the literature (Gomes et al., 2013; Ramírez-Rodríguez & 
Amich, 2014) and the Arribes del Duero Natural Park. Presence records 
from the Global Biodiversity Information Facility (GBIF) were not used 
because the resolution at which they were uploaded into this database 
(≥ 1 × 1 km grids) is coarser than the resolution of the environmental 
variables used in this study. We obtained a total of 28 presence records 
for A. lopesianum (Fig. 1). 

2.4. Abundance data 

Abundance data of the taxon were gathered across its potential dis-
tribution in the Duero Basin (Portugal and Spain) during the spring and 
autumn of 2018. Due to the geomorphological complexity of these 
“Arribes” territories (see Fig. A1), a motorboat was used to assist in our 
surveys. This allowed us to reach places that otherwise would have been 
impossible to explore. When the species was detected, we recorded 
geographical location (using a Garmin e-map GPS device) and abun-
dance data (direct counting of all individuals as in Bernardos et al., 
2006). A total of 35 records with abundance data for the taxon were 
gathered (Fig. 1). 

2.5. Environmental variables 

As potential predictors to characterize the species’ ecological niche, 
we used a set of variables related to topographic conditions, tempera-
ture, soil water availability and vegetation cover (Table 1). In areas with 
a rugged topography, the selection of variable resolution is a conse-
quence of the availability and quality of data pertaining to the specific 
study area, which is typically the limiting factor in distribution studies 
(Zhang et al., 2016). Herein, predictor variables were derived by remote 
sensing data (Landsat 8 OLI/TIRS and LiDAR) and were chosen based on 
our knowledge of the species, and were assumed to be at least correlated 
with more proximal causal factors. Remote-sensing techniques have 

transformed ecological research by providing both spatial and temporal 
perspectives on ecological phenomena that would otherwise be difficult 
to study (He et al., 2015; Hernández-Lambraño, Rodríguez de la Cruz, & 
Sánchez-Agudo, 2019). A key advantage of these techniques is the 
capability to perform synoptic, spatially continuous and frequent ob-
servations of ecological indicators without interpolation or geographical 
biases at varying spatial and temporal resolutions (He et al., 2015), 
advantages that have huge potential when it improves the ability to 
predict the distribution at fine scale of a threatened narrow-range 
endemic plant. Other potentially important environmental variables 
such as edaphic, geological, phytocenotic and human influence vari-
ables, are not used due to the lack of a thematic cartography compatible 
with the resolution used in this study. To reduce multicollinearity be-
tween variables, we calculated the Variance Inflation Factor (VIF) using 
the VIF function of the “HH” package in R (Heiberger, Richard, & 
Holland, 2004). Variables with values of VIF > 5 were excluded 
(Table A1). All environmental data were standardised to Universal 
Transverse Mercator coordinates (Datum ETRS-89) at a spatial resolu-
tion of 30 × 30 m using ArcGIS ver. 10.3.1 (ESRI, 2015). See Appendix 
A1 for a more detailed description of the variables and estimation 
methods. 

2.6. Ecological niche-based distribution modelling 

We modelled the ecological niche of A. lopesianum using Ensemble 
Modeling approach (EM). EM was built to reduce the biases and limi-
tations inherent to the use of single SDM techniques (Araújo & New, 
2007). We used BIOMOD2 version 3.3–7 (Thuiller, Georges, Engler, & 
Breiner, 2016) in R version 3.4.2 (R Core Team, 2017), to fit four 
modelling methods: Generalised Linear Models (GLM), Generalised 
Boosting Models (GBM), Maximum Entropy (MaxEnt) and Random 
Forest (RF). These models have shown good performance in other 
modelling exercises (Breiner, Guisan, Bergamini, & Nobis, 2015; Elith 
et al., 2006; Williams et al., 2009). 

Models were calibrated with 28 presences of the specie and 10 000 
random pseudo-absence points. Pseudo-absence data were limited to 
within 5 km from the known presence records (Williams et al., 2009). 
The Continuous Boyce Index (CBI) (Hirzel, Le Lay, Helfer, Randin, & 
Guisan, 2006), a metric specifically designed for presence only models 
and insensitive to pseudo-absences was used to evaluate the model 
performance. We considered models to be “wrong” when CBI values 
were below -0.5, “average to random” for values ranging from -0.5 to 
0.5, and “good” for values above 0.5. For each model, we computed CBI 
by performing ten-fold split sampling (80 % training data and 20 % test 
data). We assembled all individual models into a single EM by weighting 
projections based on the individual CBI scores (CBI > 0.5). EM evalua-
tion consisted of calculation of CIB using independent data. In this case, 
the abundance data gathered from field surveys were used as presence 
records for the EM validation. EM output was converted into a discrete 
binary map of presence/absence, using the minimum training presence 
(MTP) value. Finally, variable importance was calculated to assess the 
relevance of each predictor through all considered models and response 
curves were calculated to interrogate the relationship between the 
response (i.e., presence) and each explanatory variable (See Appendix 
A2 for a more detailed description of model implementation). 

Here, we assume that the niche model is a good estimator/approxi-
mation of the fundamental niche of a plant with scarce knowledge about 
its biology, but we acknowledge that it is difficult to capture the true 
fundamental niche without an ecophysiological approach for the species 
(Peterson et al., 2011). 

2.7. Distance to the niche centroid 

Following Martínez-Gutiérrez et al. (2018), the niche centroid was 
calculated in the environmental space from potential distribution range. 
The niche centroid is located at the centre of the multidimensional 

Table 1 
Variables used as predictors of the Antirrhinum lopesianum presence in the 
study area. See Table A1 for variable descriptions and estimation methods.  

Variables Description Range (min to 
max) 

slope Slope of the terrain (degrees) 0.119 to 55.92 
LST_avg Average of the land surface temperature in growing 

season (ºC) 
20.46 to 38.09 

northness South-north aspect − 1 to 1 
SAVI_avg Average of the Soil-Adjusted Vegetation Index in 

growing season 
− 0.063 to 0.608 

eastness West-East aspect 1 to − 1 
NDII_avg Average of the soil water availability in growing 

season 
− 0.370 to 0.772 

TPI Topographic position index (m) − 13.19 to 9.984  
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envelope of the presence records in the environmental space. To obtain 
the DNC, we first extracted values of environmental variables for all grid 
cells where the species were predicted to be present according to the EM 
binary map, which represents a list of all unique environmental com-
binations along the potential geographic distribution of the species 
(Martínez-Gutiérrez et al., 2018). To avoid biases introduced by differ-
ences in scales among the 7 dimensions of the ecological niche, we 
converted them to a common scale (i.e., standardisation procedure, 
mean = 0 and standard deviation = 1). We calculated multidimensional 
Euclidean distance from each grid cell with a presence prediction to the 
niche centroid as follows: 

DNC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

j
(Pij − Nj)

2
√

where DNC is distance to the niche centroid, Nj is mean of variable j and 
Pij is value of the variable j in grid cell i. 

Finally, we represented the DNC in a raster map (Fig. 1) using raster 
calculator in ArcGIS and rescaled the values between 0 and 1, with 
0 representing the shortest DNC and 1 the largest distance to this 
centroid. 

2.8. Relationship between the abundance and the Distance to the Niche 
Centroid, and abundance map 

We analysed relationships between abundance data of A. lopesianum 
(i.e., response variable) to DNC measures (i.e., predictor variable) using 
a Generalized Linear Model (GLM). We modelled the error terms of the 
GLM using a negative binomial distribution (Abundance ~ DNC, fam-
ily = negbin(link="log")), which is typically used for count data when 
overdispersion occurs (Gelman & Hill, 2007). 

The fit model was evaluated using a randomly split 80/20 data for 
training/validation. We re-estimated the GLM model using the 80 % 
section of the data, and the resulting section was used to predict the 
abundance of the remaining 20 % data. The process of splitting the data 
was repeated ten times and the mean of R2 (i.e., the squared correlation 
between the observed outcome values and the predicted values by the 
model) and its standard deviation were calculated as a performance 
metric for the fitted models. We used the R packages “tidyverse” ver. 
1.2.1 (Wickham, 2017) and “caret” ver. 6.0–77 (Kuhn, Wing, & Weston, 
2017) for the procedure of model evaluation. Since the specie’s presence 
can be given by historical and stochastic processes, we only validate 
DNC with those points where we have detected its presence. 

The fitted GLM describing the relationship between abundance and 
DNC was used to generate an estimated abundance map of A. lopesianum 
across its entire potential distribution using the “predict” function of the 
R package “raster” ver. 3.0–7 (Hijmans, 2019) (see Table A2). We only 
showed spatial predictions for the observed range of abundances. 
Finally, we constructed correlograms and calculated global Moran’s I in 
ArcGIS using residuals from the GLM and evaluated it for evidence of 
autocorrelation. We did not detect strong spatial autocorrelation in the 
residuals of the GLM (see Fig. A2). 

3. Results 

3.1. Ecological niche-based distribution modelling 

The CBI average values, ranging between 0.618 and 0.801, indicated 
that the single-algorithm model predictions exhibited a good discrimi-
nation capacity compared to the expected value (0.5) from a random 
prediction. Despite the initial good performance of the models, the EM 
outclassed the accuracy of their predictions with an CIB value of 0.818. 
The threshold value of consensus to produce the binary map of pres-
ence/absence was = 0.291. According to the resolution used, the po-
tential habitat distribution covered an area of 273 km2. Most suitable 
areas were located along a narrow strip on the banks of the rivers 

(Fig. 1). The binary map includes areas with suitable environments 
where the species has not yet been recorded. These predicted areas were 
located in the south and middle parts of the Sabor Basin (Portugal), and 
another in the south and middle parts of the Duero River (Portugal- 
Spain). 

From the seven predictors considered for running the models, terrain 
slope (slope), land surface temperature (LST_avg), north-south aspect 
(northness) and soil-adjusted vegetation index (SAVI_avg) were the 
variables with the consistent highest contributions (Fig. 3). 

These results identify variables related to landscape topographic 
features and land-cover as the most important to explain the potential 
distribution of the taxon. The model response curves in respect to these 
variables (Fig. 4), reveal that the most suitable areas for A. lopesianum 
are those that have steep slopes facing north with an average tempera-
ture for the growth season of approximately 21 ◦C. Moreover, they are 
areas with low vegetation cover and high humidity that are in relatively 
deeper valleys. 

3.2. Relationship between observed abundance and distance to ecological 
centroid 

The GLM showed that the observed abundance of A. lopesianum was 
significantly negatively associated with the DNC (regression coefficient 
of -26.09 ± 4.276 SE; p < 0.001) and the model for this species 
explained 0.598 of variation in abundance as a function solely of niche- 
centroid distance (Fig. 5). As expected, the observed abundance drops 
when the environmental conditions depart from those found near the 
species’ ecological niche centroid. 

According to the validation procedure, GLM averaged an R2 of 
0.712 ± 0.274 (p < 0.001). Abundance estimates are within reasonable 
ranges (4–73 individuals) and coincide with our observed field data 
(1–65 individuals). Finally, spatial predictions of A. lopesianum abun-
dance across its entire potential habitat distribution were estimated with 
the coefficients of the GLM (Fig. 6; Table A2). Areas with high estimated 
abundances are predicted along the Sabor Basin, mainly in the south and 
middle parts, north part of the Maças River, and another in the south and 
middle zones of the Duero Basin (Portugal-Spain). 

4. Discussion 

4.1. Potential distribution range of Antirrhinum lopesianum 

Herein, we developed a spatially-explicit model to represent the 
potential habitat distribution of the threatened narrow-range endemic 
A. lopesianum across its entire distributional range. The value of per-
formance (CIB) of our SDM indicates a high dependence on the occur-
rence data and the set of variables included in the analysis. This result, 
however, may be an artefact of the small sample size used for the model 
calibration (Yañez-Arenas et al., 2014). This effect has often been re-
ported for species with restricted distributions, or when study area is 
extremely large compared to narrow species distribution (Lobo, 
Jiménez-Valverde, & Real, 2008). Our SDM indicates that the potential 
habitat distribution covered the most suitable areas located along a 
narrow strip on the banks of the River Duero (north-eastern Portugal and 
central western Spain) and River Sabor (north-eastern Portugal). These 
findings are congruent with known range limits described by Bernardos 
et al. (2006) but expand them considerably. Results from the analysis of 
predictor importance revealed that the distribution patterns of 
A. lopesianum appear to be mostly influenced by topographic features (i. 
e., slope, aspect) and land surface temperature. In fact, the taxon pre-
sents a special preference for spatially heterogeneous areas. In these 
environments, the species likely finds refuge on humid and shady slopes, 
which reduce insolation and maintain water balance in the dry season. 
In addition, the presence probability of the taxon responds positively to 
zones with high soil moisture. These environments facilitate vegetative 
propagation via the production of new shoots with many adventitious 
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roots that are introduced in the fissures of the rock walls that colonises 
(Bernardos et al., 2006). 

As we noted in the environmental variables section, our SDM has 
several limitations regarding other potentially important environmental 
variables that may influence the presence of A. lopesianum. Despite these 
limitations, the SDM-based distribution model represented the potential 
habitat patterns of the taxon fairly well and could serve as a first 
approximation for the species. Finally, any characterisation of the spe-
cies’ ecological niche will always be partial, inherent to the multidi-
mensional niche (Martínez-Gutiérrez et al., 2018). 

4.2. Relationship between observed abundance and distance to ecological 
centroids 

We implemented the DNC approach to estimate the potential abun-
dance of A. lopesianum across its entire potential distribution range. We 

found a significant, negative relationship between observed abundance 
for the taxon and DNC. Ecological theory has proposed that optimal 
conditions for species are found towards the centroid of their multidi-
mensional ecological niche, thus abundance under such conditions 
should be maximal (Maguire, 1973). Our results provide empirical 
support for these ideas, as a strong inverse relationship was found be-
tween the distance to the centroid and observed values of abundance, 
indicating that the internal structure of the species’ ecological niche 
contributes to population abundance Brown, Mehlman, and Stevens 
(1995)). 

Our results were similar to those reported by Yañez-Arenas, Martí-
nez-Meyer, Mandujano, and Rojas-Soto (2012); Ureña-Aranda et al. 
(2015) and Martínez-Gutiérrez et al. (2018), regarding the DNC– 
abundance relationship. These authors found that the abundance dis-
tribution followed a centralized pattern in the ecological space, where 
abundance tends to be highest toward the centre of these spaces and 

Fig. 3. Relative environmental variable importance derived from the single-algorithm models and ensemble model, with the error bars corresponding to standard 
deviation computed for each variable. See Table 1 for variable descriptions. 
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decrease toward the boundaries. On the other hand, the relationship that 
we found was not as strong as that reported for Odocoileus virginianus 
(R2 = 0.902; Yañez-Arenas et al., 2012). If the hypothesis that the 
centroid of the ecological niche encompasses the optimal conditions for 
the species is correct, differences in the explanatory power of the model 
could be due to other factors that were not taken into account in char-
acterising the species’ niche (Brown et al., 1995; Osorio-Olvera, 
Soberón, & Falconi, 2019). For instance, A. lopesianum grows in vertical 
habitats, rocky cliffs, and on fissures in granitic walls with carbonate 
crusts (Bernardos et al., 2006). In addition, due to the habitat of 
A. lopesianum, rocky cliffs along riverbanks (Fig. A4), the majority of 
produced seeds may fall into the river, which could cause difficulties for 
new colonization and low population numbers in suitable habitats. 
Therefore, besides the abiotic variables considered in this study (i.e., 
climatic, topographic, and land cover), variables such as edaphic fea-
tures, historic events, disturbances and biotic interactions are important 
factors that also drive species’ distributions (Hernández-Lambraño, 

González-Moreno, & Sánchez-Agudo, 2018; Osorio-Olvera et al., 2019; 
Santini, Pironon, Maiorano, & Thuiller, 2019), and ultimately influence 
the presence and abundance of the species. 

Recently Dallas, Decker, and Hastings (2017), performed a 
meta-analysis in which they suggest that distance-abundance relation-
ships may be rare, difficult to detect, or are an oversimplification of the 
complex biogeographical forces that determine species spatial abun-
dance patterns. However, the fact that the authors failed to detect sig-
nificant relationships may result from methodological artefacts or 
ecological factors (Osorio-Olvera et al., 2019; Soberón, Peterson, & 
Osorio-Olvera, 2018), rather than to non-existence of such relationships. 
In fact, Dallas et al. (2017), limited their analyses to a given geographic 
area, irrespective of the range-wide distribution of the species consid-
ered, which can result in important biases in the estimate of distance 
from centre to edge, and in large under-estimation of species niches 
(Santini et al., 2019; Soberón et al., 2018). 

The application of our abundance model must incorporate an 

Fig. 4. Response curves: the panel represents the response curves of the environmental variables explaining the presence of Antirrhinum lopesianum derived from the 
single-algorithm models and ensemble model. Response curves were calculated for the models calibrated with all presence records (n = 28). See Table 1 for variable 
descriptions. 
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understanding of potential biases. Performance of the DNC model is 
affected by sampling bias in the occurrence data and sample size 
(Yañez-Arenas et al., 2014); therefore, the accuracy of the estimates will 
depend on the quantity and quality of the data used. The DNC approach 
is a static method that does not capture the dynamic nature of popula-
tion fluctuations over time (Yañez-Arenas et al., 2012). Also, the 
approach assumes that optimal conditions are always close to the mean 
values for all variables, and this may not necessarily hold true, due to the 
fact that for some variables optimal conditions may be closer to the 

extreme values (Yañez-Arenas et al., 2012). Despite these shortcomings, 
our results indicate that DNC is a good proxy for estimating 
A. lopesianum abundance across its potential distribution range (Fig. 6); 
therefore, mapping the distance to the centroid may be a useful 
approach for obtaining a spatial approximation of the potential abun-
dance for other narrow-range endemic plants, in cases that such data are 
not available. 

4.3. Management implications and future research 

While we may be able to define rough range limits for these species at 
a landscape scale, conservation management actions require planning at 
the scale of habitat occupancy within the defined range (Margules & 
Pressey, 2000; Williams et al., 2009). At a conceptual level, range and 
habitat occupancy are fundamentally different concepts (Gaston, 2003) 
and SDMs have mostly been applied to predict species ranges. However, 
the better an SDM, the more it can distinguish between the character-
istics of places where species occur and the surrounding background 
matrix where they are absent, i.e. a species’ habitat occupancy (Williams 
et al., 2009). The modelling approach presented in this study is based on 
a solid ecological foundation (ecological niche theory; Hutchinson, 
1957; Maguire, 1973), therefore facilitating the interpretation of results. 
The method is relatively simple, requiring only: 1) an occurrence dataset 
(presence-only or presence-absence) with or without associated abun-
dance information, 2) a proper set of environment variables to charac-
terise species’ niche, 3) a reliable SDM and 4) a DNC calculation. 

The fact that new occurrences of the taxon were discovered at lo-
cations where the binary map indicated favourable habitat suggests that 
our modelling approach can discriminate between the background 
matrix and potential habitat at fine scales. In this sense, the information 
provided by the binary map can support the identification of priority 
areas for population management such as, reinforcement, introductions 

Fig. 5. Relationship between the observed abundance (individuals’ number of 
Antirrhinum lopesianum) and the distance to the niche centroid. 

Fig. 6. Estimated abundance of Antirrhinum lopesianum along its potential distributional range based on the effect of distance to the niche centroid. We only showed 
spatial predictions for the observed rank of abundances; therefore, in black, we represent areas with an abundance prediction above the maximum observed. Absence 
prediction is represented in grey background. White dots indicate presence records and black dots abundance data. 
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and translocations (Borthakur et al., 2018; Guisan et al., 2006; 
IUCN/SSC, 2013). 

The validation of our DNC model (R2 of 0.712) also suggests that the 
differential values of abundance estimated by the model might also be 
used to guide other types of conservation management decisions. These 
could include identifying potential restoration sites or scoring aggregate 
conservation values based on high densities of cells with high values of 
expected abundance for the taxon (Williams et al., 2009). On the other 
hand, our SDM can also support accurate forecasts of range dynamics 
under scenarios of climate change. Specifically, for our test species the 
model highlighted a high dependence on features of the temperature 
regime, which would support more accurate forecasts if climate change 
scenarios are applied (Sala et al., 2000). 

Since there are still a lot of unanswered questions about the 
ecological processes involved in the persistence of the taxon, it is crucial 
to develop several research lines to provide an effective conservation 
plan in the long term. The DNC model can help to design new studies to 
address knowledge gaps, for example flowering phenology, plant size, 
and genetic and breeding systems of the species to assess the main fac-
tors affecting female reproductive success (Bernardos et al., 2006). 
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Talaván, A., … Amich, F. (2006). Conservation status of the threatened Iberian 
Peninsula narrow endemic Antirrhinum lopesianum Rothm. (Scrophulariaceae). Plant 
Biosystems - an International Journal Dealing With All Aspects of Plant Biology, 140, 2–9. 

Bernardos, S., Crespi, A., Aguiar, C., Fernández, J., & Amich, F. (2004). The plant 
communities of the Rumici indurati-Dianthion lusitani alliance in the Lusitan 
Duriensean biogeographical sector (NE Portugal and CW Spain). Acta Botanica 
Gallica, 151, 147–164. 

Borthakur, S. K., Sharma Baruah, P., Deka, K., Das, P., Sarma, B., Adhikari, D., … 
Tanti, B. (2018). Habitat distribution modelling for improving conservation status of 
Brucea mollis Wall. ex Kurz.–An endangered potential medicinal plant of Northeast 
India. Journal for Nature Conservation, 43, 104–110. 

Breggin, L., George, S. M., & Pencak, E. H. (2003). Planning for biodiversity: Authorities in 
state land use laws. Washington, DC: Environmental Law Institute.  

Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations 
of modelling rare species by using ensembles of small models. Methods in Ecology and 
Evolution, 6, 1210–1218. 

Brown, J. H., Mehlman, D. W., & Stevens, G. C. (1995). Spatial variation in abundance. 
Ecology, 76, 2028–2043. 

Calenge, C., Darmon, G., Basille, M., Loison, A., & Jullien, J.-M. (2008). The factorial 
decomposition of the mahalanobis distances in habitat selection studies. Ecology, 89, 
555–566. 

Dallas, T., Decker, R. R., & Hastings, A. (2017). Species are not most abundant in the 
centre of their geographic range or climatic niche. Ecology Letters, 20, 1526–1533. 

Elith, J. H., Graham, C. P., Anderson, R., Dudík, M., Ferrier, S., Guisan, A., … E. 
Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions 
from occurrence data. Ecography, 29(2), 129–151. 

ESRI. (2015). ARCMAP version 10.3.1 (10.3.1. ed.) California, USA. 
Gaston, K. J. (2003). The structure and dynamics of geographic ranges. Oxford University 

Press on Demand.  
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical 

models (1st edn.). New York, USA: Cambridge University Press.  
Gogol-Prokurat, M. (2011). Predicting habitat suitability for rare plants at local spatial 

scales using a species distribution model. Ecological Applications, 21, 33–47. 
Gomes, A., Fortalezas, S., Pimpão, R., Figueira, I., Maroco, J., Aguiar, C., … Santos, C. N. 

(2013). Valuing the endangered species Antirrhinum lopesianum: Neuroprotective 
activities and strategies for in vitro plant propagation. Antioxidants (Basel, 
Switzerland), 2, 273–292. 

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, A., … 
Zimmermann, N. E. (2006). Using niche-based models to improve the sampling of 
rare species. Conservation Biology, 20, 501–511. 

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., 
Tulloch, A. I. T., … Buckley, Y. M. (2013). Predicting species distributions for 
conservation decisions. Ecology Letters, 16, 1424–1435. 

He, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M.-N., Schmidtlein, S., … 
Pettorelli, N. (2015). Will remote sensing shape the next generation of species 
distribution models? Remote Sensing in Ecology and Conservation, 1, 4–18. 

Heiberger, Richard, M., & Holland, B. (2004). Statistical analysis and data display: An 
intermediate course with examples in S-Plus, r, and SAS. Springer Texts in Statistics.  
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