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Abstract
Random Projection is one of the most popular and successful dimensionality reduction algorithms for large volumes of data.
However, given its stochastic nature, different initializations of the projection matrix can lead to very different levels of
performance. This paper presents a guided random search algorithm to mitigate this problem. The proposed method uses
a small number of training data samples to iteratively adjust a projection matrix, improving its performance on similarly
distributed data. Experimental results show that projection matrices generated with the proposed method result in a better
preservation of distances between data samples. Conveniently, this is achieved while preserving the database-friendliness
of the projection matrix, as it remains sparse and comprised exclusively of integers after being tuned with our algorithm.
Moreover, running the proposed algorithm on a consumer-grade CPU requires only a few seconds.

Keywords Random projection · Nearest neighbor search · Neighborhood preservation · Dimensionality reduction ·
Randomized algorithms

1 Introduction

The recent advances and democratization of technology
have come along with an unprecedented volume of high-
dimensional data. In this context, the search for effective
but at the same time efficient methods of exploiting this
ever-increasing volume of information has attracted a lot of
attention among researchers in the field of machine learning.
Among the techniques developed to deal with these previously
unmanageable volumes of data, Random Projection (RP) [1]
is arguably one of the most popular tools.

In essence, Random Projection is an extremely simple
linear dimensionality reduction method. Just like any
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other linear dimensionality reduction algorithm, Random
Projection reduces the dimension of samples by applying
a linear transformation to input data, so that each output
feature is computed as a linear combination of the original
features. However, the main difference between Random
Projection and other approaches is that it generates the
projection matrix from a random distribution. Therefore,
as opposed to other methods where training data is
required to select an appropriate projection matrix, Random
Projection is a data-independent method. This means
that no knowledge about the distribution of data is
required to generate the projection matrix. Surprisingly,
if an appropriate distribution is used to generate the
entries of the projection matrix, the structure of data in
the high-dimensional input feature space can be mostly
preserved after the projection. Moreover, the projection
matrix can be sparse and made of integers, allowing
for computational savings and efficient implementation in
database environments [2, 3].

Thanks to this property, Random Projection has become
a widespread tool for dimensionality reduction, especially
in large-scale applications where the volume of data or
the dimensionality of samples is too big for alternative
methods. For instance, Random Projection has been
successfully used to accelerate tasks such as multivariate
correlation analysis [4], high-dimensional data clustering
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[5, 6], image search [7] or texture classification [8], among
many others.

Despite its success, the random nature of this algorithm
is also the cause of its major disadvantage. Since the entries
of the random projection matrix are chosen at random,
different initializations of the projection matrix often yield
different results. In some cases, the differences between
worst and best case projection matrices are significant.
In the literature, some preliminary work has been done
on the use of genetic algorithms to generate a pool of
projection matrices with the goal of evolving the one
that is best suited to the dataset under consideration
[9]. However, this approach is highly inefficient both
in terms of memory and computation, as it involves
storing numerous projection matrices simultaneously in
memory.

In this paper, we propose a new guided random search
algorithm specially designed to tune sparse RP matrices
to improve their performances on specific data. The pro-
posed method works under the assumption that, in most
application scenarios, at least a small number of data sam-
ples are available when initializing the projection matrix.
Therefore, in such cases, it might be worth sacrificing the
data-independent nature of Random Projection to generate
a projection matrix whose performance is optimal on simi-
larly distributed data. Conveniently, this algorithm preserves
other beneficial features of Random Projection matrices,
such as their sparsity, which can lead to important mem-
ory and computational savings. The experimental results
show that (1) the proposed algorithm noticeably increases
the performance of RP matrices on specific data according
to neighborhood preservation quality metrics, (2) as little
as fifty samples are enough to obtain statistically signifi-
cant improvements and (3) training times are in the order of
seconds.

2 Related work

The modern Random Projection algorithm has its roots in
the Johnson-Lindestrauss (JL) lemma [10], which states that
a small set of points in a high-dimensional space can be
embedded into a space of much lower dimension in such
a way that squared Euclidean distances between the points
are nearly preserved. Formally, for any 0 < ε < 1 and
x1, . . . , xn ∈ R

d , there is a map f : R
d → R

k for k =
O(ε−2 log(n)) such that, for all i, j ∈ {1, . . . , n}, i �= j ,

(1 − ε)||xi − xj ||2 ≤ ||f (xi ) − f (xj )||2
≤ (1 + ε)||xi − xj ||2.

(1)

In addition, this map can be found in randomized
polynomial time [11].

In practice, the map f consists in multiplying the d-
dimensional data samples by a d × k projection matrix
with entries chosen at random from a suitable distribution,
and applying a 1/

√
k scaling factor1 to compensate for

the reduction in the dimensionality [2]. Once the d × k

projection matrix R has been populated, an arbitrary set of
n points represented as an n × d matrix X can be projected
from R

d to R
k as follows:

X′ = 1√
k
XR , where X′ ∈ R

n×k . (2)

Over the years, different distributions for the entries of the
projection matrix were proven to fulfill the JL-lemma. In the
early days, the standard normal distribution was used [13].
Later on, studies demonstrated that the projection matrix
can be drawn from many other distributions. For instance,
in [14], the authors showed that a result, that is analogous to
the JL-lemma, can be proven for any zero-mean distribution
with subgaussian tail. Another well-known study by D.
Achlioptas showed that the entries of the projection matrix
could instead be drawn from a sparse and much simpler
distribution [15]. In particular, Achlioptas’ work proved that
if the entries of the projection matrix are drawn from the
distribution defined by (3) with sparsity term s = 1 or
s = 3; then the JL-lemma will be satisfied.

rij = √
s ×

⎧
⎪⎨

⎪⎩

1 with probability 1/2s,

0 with probability 1 − 1/s,

−1 with probability 1/2s.

(3)

Intuitively, when s = 1, each entry of the projection
matrix is randomly set to +1 or −1 with equal probability.
Similarly, when s = 3, roughly two-thirds of the
entries of the projection matrix are set to zero, and the
remaining entries are set to

√
3 or −√

3 with equal
probability. Conveniently, using the distribution proposed
by Achlioptas reduces the computational cost of the
projection. If the multiplication by

√
s present in (3)

is delayed, the computation of the projection reduces to
aggregate evaluation (i.e. summation and subtraction but
no multiplication), which can be efficiently performed in
database environments using standard SQL primitives. In

1In the early versions of Random Projection, the linear map from
R

d to R
k was chosen as the orthogonal projection on a random k-

dimensional subspace of R
d . With this formulation, the appropriate

scaling factor was proven to be
√

d/k [10, 12]. More recent
variations of the algorithm populate the projection matrix with entries
independently drawn from a suitable distribution, such as the standard
normal [13] or a sparse distribution [2]. In those cases, an additional
scaling factor of 1/

√
d is typically added to ensure that the projection

vectors (the columns of the projection matrix) are close to unit length.
When combined, the

√
d/k and 1/

√
d factors result in the simplified

1/
√

k scaling factor present in most modern formulations of the
Random Projection algorithm.
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addition, the sparsity term s enables further storage and
computational savings. For instance, when using s =
3, only 1

3 of the entries of the projection matrix are
nonzero. Moreover, it has been suggested that it is possible
to use greater sparsity levels in (3) with little loss in
the preservation of distances. In particular, some studies
recommend using s = √

d [3], which potentially reduces
computing times by a 1/

√
d factor.

For most distributions of the projection matrix, the proof
of the JL-lemma follows a similar line of reasoning. First,
it is shown that the squared length of an arbitrary vector
is preserved in expectation after the projection. The proof
goes further, showing that the squared length has a low
variance after the projection, and that therefore there is a
high probability that the squared length of the vector will not
get distorted by more than (1±ε) after the projection. Then,
the trivial union bound guarantees, for k = O(ε−2 log(n)),
that the probability the projection matrix produces a relative
distortion greater than (1 ± ε) for any pair among the n

samples, is lower than 1 − 1/n. Therefore, by generating
and evaluating O(n) projection matrices, the probability of
success can be raised to the desired constant, leading to the
claimed randomized polynomial time [11].

Despite these results, in practice, the usual approach
is to generate just one projection matrix, trusting that
the average-case matrix will perform well enough and
avoiding the need for any training data. This, as mentioned
before, causes the performance of Random Projection to
be inconveniently variable among different instantiations
of the projection matrix. In turn, the proposed algorithm
is motivated by the informal observation that, in most
scenarios, at least a small number of data samples are
available at the moment of initializing the projection matrix.
Therefore, if the performance of a given projection matrix
can be measured in terms of how well it preserves the pairwise
distances of the available data samples, it becomes possible to
tune it to work better than the average random matrix on similarly
distributed test samples.

2.1 Random projection variants

Over the years, the scope of applications of the RP algorithm
has greatly expanded, and a wide range of specialized
versions of the algorithm have been developed to fit the
needs of different domains. While some variants simply
modify the distribution from which the entries of the
projection matrix are drawn, others modify the algorithm at
a more fundamental level. Nevertheless, most variants fall
into one of the following categories:

– Quantized Random Projections: This line of research
studies the possibility of performing quantization
subsequent to the projection in order to achieve

additional data compression [16]. Proposals include
single-bit [17] as well as multiple-bit quantization [18].

– Sparse Random Projections: Inspired by the database-
friendly random projection matrices of [2], several
authors have explored the use of sparse [3, 19, 20] and
binary [21] random projection matrices.

– Non-linear Random Projections: RP-based tech-
niques have been used to capture non-linear features
in a compact representation. Approaches range from
RP-based preprocessing for existing non-linear dimen-
sionality reduction methods [22] to ad-hoc variants for
non-linear kernel functions [5, 23].

– Structured Johnson-Lindestrauss: Following the
work of [24], structured JL methods try to approximate
the result of a traditional RP by decomposing the pro-
jection matrix into a set of low-memory matrices [25,
26].

In terms of applications, variants of the RP algorithm
have been successfully applied to address some of the most
important challenges of big data systems, including privacy
protection [27, 28], handling of high-dimensional data [6,
29], and system scalability [7, 30, 31], among many others.

3 Proposed algorithm

Essentially, the proposed algorithm aims to find a sparse
Random Projection matrix that is optimized to preserve
pairwise distances among data samples following a specific
distribution. To achieve this, the assumption is made that,
in most application scenarios, at least a small number of
data samples are available at the moment of selecting the
projection matrix. These few data samples are used to
iteratively tune a randomly initialized projection matrix,
with the aim of minimizing a specially designed loss
function which measures the relative distortion induced by
the projection in pairwise distances.

Formally, let X = [x1, · · · , xn]� be the n × d matrix-
representation of the n data points that are available at
the moment of initializing the projection matrix. Also, let
R = [r1, r2, · · · , rk] be a projection matrix formed by
the concatenation of k projection directions of the form
ri ∈ {−1, 0, 1}d×1. Then, an individual data sample can be
projected using the map f : Rd → R

k defined as

f (x) =
√

s√
k
xR. (4)

The loss function used by the proposed algorithm emerges
naturally from the JL-lemma. As discussed before, this
lemma states that, for a sufficiently large output dimension,
the relative distortion induced by the projection in the
pairwise distances among a set of points is lower than
(1 ± ε) with high probability. This bound is expressed by
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the inequality in (1), which compares distances between
data samples before and after the projection, explicitly
introducing ε as the relative distortion bound.

In order to derive an algorithm which can optimize a
projection matrix to perform better on samples from a
given dataset, we begin by defining a loss function that,
similarly to the JL-lemma, considers the degree to which
distances between data samples are preserved after the
projection. Particularly, the selected loss function computes
the empirical average distortion induced on a concrete set of
n samples by a specific projection matrix. To this end, the
loss iterates over the

(
n
2

)
possible pairs of points, computing

the empirical relative distortion as the absolute difference of
the distances before and after the projection, divided by the
distance before the projection. Formally, the loss function is
defined as

L(R) = 1
(
n
2

)

n∑

i=1

n∑

j=i+1

∣
∣||xi − xj ||2 − ||f (xi ) − f (xj )||2

∣
∣

||xi − xj ||2 .

(5)

Conveniently, this loss can be easily interpreted. For
instance, a loss of L(R) = 0.12 for a projection matrix
R on a given set of n samples would indicate that, on
average, pairwise distances between samples suffered a
12% distortion (extension or contraction) relative to their
values before the projection.

However, note that the naive evaluation of this loss
function would be prohibitive from a computational point
of view. First, we can observe that it involves iterating
over the

(
n
2

)
pairwise distances. As detailed below, this can

be palliated, given that only a small number of training
samples are needed to achieve a notable improvement in
the performance of a random projection matrix. However,
computing the loss function also involves re-projecting
all data samples and re-calculating the pairwise distances
with the evaluated projection matrix. We will therefore
introduce some ic tricks in this section to mitigate this
problem.

Now that we have defined an optimization goal, the
next step is to decide on the optimization we will use to
minimize this loss function. While traditional optimization
s such as gradient descent could in principle be applied,
this approach would lose one of the major advantages
of Random Projection, as we would be sacrificing the
database-friendliness [15] granted by the sparsity of the
projection matrix and the fact that its entries are constrained
to lie in {−1, 0, 1}. Therefore, the goal is to find a
random projection matrix that minimizes the loss function
for a specific set of data samples, while preserving its
sparsity and integer nature. To achieve this, we introduce
a guided random search similar in nature to the family

of simulated annealing methods [32]2. Essentially, the
proposed iteratively evaluates random alterations of the
current projection matrix, and keeps them only if they
reduce the loss function. Specifically, the consists of the
following steps:

1. Initialize the d × k projection matrix R =
[r1, r2, · · · , rk] following Achlioptas’ distribution (3)
and compute L(R) on the available set of n

samples.
2. Generate a random projection direction w ∈

{1, 0, −1}d×1 following Achlioptas’ distribution (3)
and a random integer c from the discrete uniform
distribution U(1, k).

3. Generate a tentative improved random projection
matrix by replacing the c-th column of R with w.
Formally, the tentative random projection matrix is
R� = [r1, · · · , rc−1,w, rc+1, · · · , rk].

4. Compute L(R�). Then, if L(R�) < L(R), take R� as
the newly selected projection matrix (i.e., R ← R�).

5. Repeat steps 2-4 a desired number of times, as specified
by the hyper-parameter Niter

While this formulation of the is easy to understand and
to implement, it incurs in several inefficiencies that severely
limit its applicability. Particularly, naively computing L(R�)

at each iteration results in a cost of O(ndk + n2d +
n2k) per iteration, where the O(ndk) term comes from
computing the projection of samples with the tentative

projection matrix (i.e.,
√

s√
k
XR�), and the O(n2d + n2k)

is for the computation of the pairwise distances among
the d-dimensional (input) and k-dimensional (output) data
samples.

To mitigate this problem, the can be re-formulated
to yield the same results while avoiding unnecessary
computations. First, we observe that the computation of√

s√
k
XR� is highly redundant with

√
s√
k
XR, where R is the

best matrix found so far by the . This is because R and R�

only differ in the c-th column. As a consequence, if
√

s√
k
XR

is stored, the computation of
√

s√
k
XR� at each iteration can be

done in O(nd) time. With this modification, each iteration
of the takes O(nd + n2d + n2k). However, the complexity
can be further simplified by analyzing the computation of
the pairwise distances.

2Simulated annealing s differ from the proposed method in that these
often include a simulated temperature variable which encourages the
exploration of non-improving solutions to avoid getting stuck in local
minima. However, preliminary experiments showed that using this
approach only slowed down the convergence of the without improving
the performance.
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Let us define the function D : R
n×d → R

n×n

which computes the matrix of pairwise squared Euclidean
distances for a data matrix as

D(X) =
⎡

⎢
⎣

||x1 − x1||2 · · · ||x1 − xn||2
...

. . .
...

||xn − x1||2 · · · ||xn − xn||2

⎤

⎥
⎦ ,

where X = [x1, · · · , xn]�.

(6)

Intuitively, D(X)ij corresponds to the squared Euclidean
distance between the i-th and the j -th samples in X. Then,
the error function defined in (5) for a tentative projection
matrix R� can be expressed as

L(R�) = 1
(
n
2

)

n∑

i=1

n∑

j=i+1

∣
∣
∣D(X)ij − D(

√
s√
k
XR�)ij

∣
∣
∣

D(X)ij
. (7)

At this point, we see that the computation of L(R�) at
each iteration can be easily accelerated by pre-computing
and storing D(X), which will not change throughout the
iterations of the . This further reduces the cost of each
iteration from O(nd + n2d + n2k) to O(nd + n2k). Now,
the single most expensive computation at each iteration is
the computation using D(·) of the pairwise distance matrix
for the data samples projected by R�, which takes O(n2k).
To accelerate this step, we will rely on a helpful property
of squared Euclidean distances. Consider two arbitrary data
samples

x = [x1, x2, · · · , xi, · · · , xd ],
y = [y1, y2, · · · , yi, · · · , yd ]. (8)

Then, perform an arbitrary modification in one feature of
each sample, yielding

x� = [x1, x2, · · · , x′
i , · · · , xd ],

y� = [y1, y2, · · · , y′
i , · · · , yd ]. (9)

Conveniently, if the squared Euclidean distance between the
original samples is known, the squared Euclidean distance
between x� and y� can be computed in a time independent
of their dimensionality using:

||x� − y�||2 = ||x − y||2 − (xi − yi)
2 + (x′

i − y′
i )

2, (10)

since the total squared Euclidean distance between two
samples can be expressed as the sum of the squared
differences between individual features. As a consequence,
when evaluating L(R�) with (7), the computation of

D(
√

s√
k
XR�) can be done using the following formula3

D(
√

s√
k
XR�) = D(

√
s√
k
XR) −D(

√
s√
k
XR[:, c])

+D(
√

s√
k
XR�[:, c]),

(11)

3In this context, the notation R[:, c] denotes the c-th column of R,
considering it as a d × 1 column vector.

where, as mentioned before, R is the best projection matrix
found so far, which only differs from R� in the values of
the c-th column. Note that, conveniently, applying D(·) to
XR[:, c] and XR�[:, c] takes only O(n2) since they are of shape
n × 1. Also, note that R�[:, c] = w. Therefore, provided that
the projection of data samples and the pairwise distance
matrix corresponding to the best projection matrix found

so far (i.e.,
√

s√
k
XR and D(

√
s√
k
XR)) are stored and updated

at each iteration, D(
√

s√
k
XR�) can always be computed

in O(nd + n2) by applying (11). This final modification
reduces the complexity of each iteration from O(nd + n2k)

to O(nd + n2).
Algorithm 1 provides a self-contained description of the

proposed with the implementation details described above.
The final computational complexity is as follows: steps 1-
5 of 1, which are executed only once, have a complexity of
O(ndk + n2(d + k)). Then, steps 6-14 which are repeated
iteratively Niter times have a complexity of O(nd +n2). The
complete complexity of the is hence O(ndk + n2(d + k) +
Niter(nd + n2)).

Regarding the parametrization of Algorithm 1, the
proposed has three hyper-parameters, two of which are
inherited from the standard Random Projection method and
have well known semantics and effects:

– Output dimension of the projection matrix (k): Deter-
mines the output dimension of the projected samples.
Using a larger k results in a better performance, at
the cost of having a bigger projection matrix and a
larger dimension of output data samples. Tables 2 and
3 present results for a wide range of values of k, show-
ing that the improvements in performance obtained
by using Algorithm 1 are consistent regardless of the
selected output dimensionality.

– Sparsity level (s): Determines the fraction of zero-
valued entries in the projection matrix. Can be used
to reduce the storage and computational costs while
preserving most of the performance. This hyper-
parameter was introduced in [2], and further studied
in [3]. Following the recommendation of [3], we
use s = √

d in all the experiments presented in
Section 4, where d is the dimension of input data
samples.

– Number of iterations (Niter): Determines the number
of iterations to be run by the optimization . In
essence, using more iterations will result in a better
performance, at the cost of longer execution times. The
experimental results presented in Section 4 suggest that
the proposed is fairly robust regarding the selection of
this hyperparameter, as using 3×103 or 4×103 resulted
in a good balance between performance and efficiency
in all the experiments.
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4 Experimental results

In this section, we use different evaluation tools to measure
the improvement in the performance of RP matrices
obtained by means of Algorithm 1. For the experiments,
we selected six public datasets from a wide range of
domains. In particular, the data used in the experiments
ranges from raw image data (Trevi), to audio features
(Isolet), including hand-crafted image features (GIST). In
this regard, the results presented in this section suggest
that the proposed algorithm performs well on a wide range
of data distributions. This is true likely because of the
generality of Algorithm 1, which makes no assumption
about the distribution of data, but instead evaluates different
random variations of the projection matrix in an efficient
manner. Table 1 describes their main features. Throughout
this section, we will refer to the proposed algorithm as
Data-Tuned Random Projection (DT-RP).

4.1 Recall on different datasets

To compare the performance of DT-RP to the standard
Random Projection method, we first use the Recall measure,
very common in the literature of approximate nearest
neighbor search [40]. For a given query point, the Recall is
the proportion of true K-nearest neighbors returned by an
algorithm, in this case, K-NN in the projected version of the

data. Formally, the recall4 is computed as

Recall =
∣
∣ν ∩ ν′∣∣

K
, (12)

where ν′ is the set of K-approximate nearest neighbors,
ν is the set containing the real K-nearest neighbors and∣
∣ν ∩ ν′∣∣ is the cardinality of the intersection of the two sets.
In the experiments, we considered the 5-nearest neighbors
(K = 5) to compute the Recall, which is a typical value, for
instance, in distance-based classification applications.

The experimental protocol for all datasets was as follows:
first, 500 samples were selected at random from the training
set, and provided to DT-RP for training. To compute the
Recall, 1000 samples were selected as the query points from
the test set. The remaining points in the test set were used
as the database to perform the query. Each algorithm was
evaluated 500 times to study the stochastic nature of both RP
and DT-RP. Figure 1 shows the results of this experiment as
a pair of Box-plots for each dataset. In this case, the output
dimension was fixed at k = 200.

As we can observe, the proposed DT-RP algorithm
outperforms RP for all datasets. The average Recall

4Note that the recall metric used here is different from the common
classification recall (sensitivity, true positive rate) commonly used in
categorization problems together with the precision score. For more
details about the recall score used in approximate nearest neighbor
search see [40].
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Table 1 Summary of the six public datasets used in the experiments

Dataset Reference Description Classes Feature number Test set size

MNIST [33] 28 × 28 Images of handwritten digits 10 784 10,000

ISOLET [34] Spoken words (audio features) 26 617 3,898

CIFAR10 [35] 32 × 32 Color images of objects 10 3072 10,000

GIST (subset) [36] Global image descriptors (GIST) N/A 960 50,000

Trevi [37] 64 × 64 Gray-scale image patches N/A 4096 50,450

FMA [38] Song’s features extracted with librosa [39] 161 518 53,287

For Isolet, Trevi and FMA datasets, a random train/test split was arranged with a 50%/50% proportion. A similar random split was used on a
subset of the GIST dataset with 100,000 samples

obtained with DT-RP was in all cases superior to the
best score obtained by any instance of RP. Furthermore,
the worst Recall obtained by DT-RP for four of the six
datasets, was very close to and in some cases above the
best score obtained by RP in the 500 runs. In addition,
when comparing RP to DT-RP, a reduction in the standard
deviation of Recall scores among runs was registered for all
datasets. These reductions ranged from ∼11% for GIST to
∼62% for FMA.

To further assess the performance of the proposed
method, we ran a number of experiments following the
same protocol, but with different output dimension values.
In this case, 50 runs of each algorithm were executed. The
resulting Recall values and standard deviations are provided
in Table 2. This table also displays the approximate running
time for each algorithm5, computed as the lowest running
time out of ten executions on an Intel i7-6700K CPU with
16GB of RAM memory.

Analyzing Table 2, the proposed algorithm achieves
consistent improvements across the different datasets and
output dimensions. We can also observe that the running
time for DT-RP lies in the 4 to 5 seconds range for all
datasets and output dimensions. As mentioned above, the
computational complexity of DT-RP includes a O(Niter ·
n2) term, which dominated the computation time in this
case. This explains why the times were similar for all
datasets, since n and Niter were not changed throughout the
experiments. Of course, standard RP is several orders of
magnitude faster, as it only requires drawing the d ·k entries
of the projection matrix from a discrete random distribution.
Nevertheless, since in many application scenarios the
projection matrix will remain in use for long periods of
time after its initialization, spending these extra seconds
on the initialization process is worthwhile in many
cases.

5Note that the provided times correspond to the initialization/tuning of
the projection matrices. Comparing test times is not necessary because
once the projection matrix has been constructed, both standard RP and
DT-RP are identical.

4.2 Comparison with an improved baseline

While the standard RP is the most obvious baseline for
comparison, another natural reference method can be used
to validate DT-RP. As detailed in Section 2, most JL-lemma
proofs show that a randomly initialized projection matrix
has, for a sufficiently large k, a probability greater than 1/n

of succeeding in its low distance distortion goal. Therefore,
a rarely employed in practice but natural approach would
involve generating and evaluating a number of projection
matrices, keeping the one that achieves the lowest average
distortion for the available training samples. We shall refer
to this approach as “Best of n RPs”.

Table 3 compiles the results of the experiments,
comparing DT-RP to the Best of n RPs approach. Again,
we used the Recall measure for different output dimensions
and datasets. Each experiment was executed 50 times, so
the table reports the average and standard deviation of
the results. In this case, we selected a more conservative
value for the number Niter of iterations of DT-RP. Namely,
we used Niter = 3 × 103, to highlight how this would
reduce execution times with little loss in performance. As
expected, selecting the best RP matrix out of a number of
initializations resulted in a slight increase in the accuracy
as compared to the basic RP approach. However, this
small improvement came along with vast increases in the
execution time. In fact, while the Best of n RPs approach
was outperformed by DT-RP all across the board, execution
times of the former were longer in most cases. This suggests
that the naive “Best of n RPs” approach is a much less
efficient alternative for data-aware RP matrix selection than
DT-RP.

4.3 Influence of the training set size

As previously mentioned, one of the advantages of DT-RP
is that it can improve the performance of RP matrices even
if only a small number of training samples are available. In
all the experiments presented so far, DT-RP was provided
with only 500 training samples, which is a small number
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Fig. 1 Box-plots of Recall values for 500 runs of standard sparse
Random Projection (RP) and the proposed algorithm (DT-RP). In all
experiments, the sparsity degree was set at s = √

d and the out-
put dimension at k = 200. Iteration number for DT-RP was set at

Niter = 4×103, and 500 training samples were employed. Points have
been spread along the horizontal axis to ease visualization. Below each
plot, the average Recall is depicted for both RP and DT-RP

by today’s standards. The ability to work with little training
data explains why DT-RP’s training time is in the order

of seconds. In this subsection, we explore the limits of
this feature by repeating the experiment in Fig. 1 with a

Table 2 Average ± standard deviation of the Recall values and training times for 50 runs of standard sparse Random Projection (RP) and the
proposed algorithm (DT-RP)

Output dim. MNIST Isolet CIFAR10

RP DT-RP RP DT-RP RP DT-RP

k =25 33.51 ± 0.99 36.99 ± 0.72 31.15 ± 1.38 34.75 ± 1.09 14.15 ± 1.12 17.75 ± 0.60

0.001s 3.959s 0.001s 3.932s 0.002s 4.240s

k =50 49.16 ± 0.76 53.10 ± 0.66 45.95 ± 1.18 49.36 ± 0.73 27.81 ± 1.01 32.78 ± 0.67

0.002s 3.969s 0.002s 3.962s 0.003s 4.251s

k =100 62.24 ± 0.66 65.60 ± 0.62 58.78 ± 0.67 62.04 ± 0.64 42.80 ± 0.94 48.31 ± 0.66

0.003s 4.001s 0.003s 3.937s 0.006s 4.294s

k =200 72.11 ± 0.54 74.91 ± 0.49 69.33 ± 0.61 72.03 ± 0.57 56.42 ± 0.93 61.67 ± 0.61

0.007s 4.006s 0.006s 3.960s 0.011s 4.268s

k =400 79.41 ± 0.38 81.95 ± 0.40 77.12 ± 0.51 79.48 ± 0.32 67.55 ± 0.63 72.08 ± 0.49

0.013s 4.064s 0.012s 3.987s 0.023s 4.354s

Output dim. GIST Trevi FMA

RP DT-RP RP DT-RP RP DT-RP

k =25 7.98 ± 0.40 9.00 ± 0.38 17.42 ± 0.83 20.33 ± 0.67 29.84 ± 11.05 66.03 ± 7.27

0.001s 3.986s 0.002s 4.372s 0.001s 3.933s

k =50 15.39 ± 0.56 17.36 ± 0.47 30.90 ± 0.81 35.54 ± 0.75 50.15 ± 9.11 69.93 ± 4.54

0.002s 4.014s 0.003s 4.402s 0.002s 3.944s

k =100 26.03 ± 0.85 29.07 ± 0.62 45.67 ± 0.84 50.55 ± 0.71 63.07 ± 6.49 77.75 ± 2.34

0.004s 4.046s 0.006s 4.408s 0.003s 3.953s

k =200 39.32 ± 0.73 42.42 ± 0.67 58.76 ± 0.65 63.64 ± 0.56 73.97 ± 3.84 83.95 ± 1.32

0.007s 4.028s 0.013s 4.439s 0.006s 3.981s

k =400 52.36 ± 0.67 55.64 ± 0.64 69.60 ± 0.64 73.52 ± 0.51 81.49 ± 1.98 88.25 ± 0.81

0.014s 4.081s 0.025s 4.472s 0.011s 3.996s

In all experiments, the sparsity degree was set at s = √
d. Iteration number for DT-RP was set at Niter = 4 × 103, and 500 training samples were

provided
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Table 3 Average ± standard deviation of the Recall values and training times for 50 runs of the “Best of n RPs” approach and the proposed
algorithm (DT-RP)

Output dim. MNIST Isolet CIFAR10

Best of n RP DT-RP Best of n RP DT-RP Best of n RP DT-RP

k =200 72.61 ± 0.44 74.99 ± 0.57 69.69 ± 0.48 71.81 ± 0.57 57.60 ± 0.56 61.56 ± 0.57

3.478s 3.034s 3.045s 3.018s 7.933s 3.280s

k =400 79.70 ± 0.38 81.72 ± 0.35 77.44 ± 0.44 79.34 ± 0.41 68.54 ± 0.61 71.80 ± 0.45

5.437s 3.056s 4.762s 3.014s 13.993s 3.292s

Output dim. GIST Trevi FMA

Best of n RP DT-RP Best of n RP DT-RP Best of n RP DT-RP

k =200 39.77 ± 0.62 42.68 ± 0.60 59.90 ± 0.65 63.50 ± 0.61 78.58 ± 2.23 83.32 ± 1.10

3.826s 3.052s 9.900s 3.375s 2.875s 3.005s

k =400 52.82 ± 0.64 55.56 ± 0.59 69.99 ± 0.53 73.33 ± 0.38 84.40 ± 1.20 87.99 ± 0.87

6.054s 3.080s 17.825s 3.426s 4.397s 3.040s

In all experiments, the sparsity degree was set at s = √
d. Iteration number for DT-RP was set at Niter = 3 × 103, and 500 training samples were

provided to both algorithms

decreasing number of training samples. Specifically, DT-RP
was executed 300 times, with only 500, 400, 300, 200, 100
and 50 training samples, respectively. The resulting Recalls
for MNIST, Isolet and CIFAR10 datasets are depicted in
Fig. 2.

DT-RP’s performance continues to be superior to that of
standard RP even for the instances of DT-RP trained with
the least training samples. The results for the remaining
datasets listed in Table 1 are similar and are not shown due
to space limitations.

The 500 runs of RP and DT-RP for each training set
size make it possible to compute statistical tests and assess
whether the average performances of RP and DT-RP are

significantly different according to the Recall measure.
Two-tailed unpaired t-tests are employed if the 500 values
for RP and for each training set size of DT-RP can
be considered as being normally distributed according to
D’Agostino and Pearson’s omnibus normality test [41].
Otherwise, Mann-Whitney U tests are employed. The
significance level was set at α = 0.01. Since comparing the
performances of RP and DT-RP for each training set size
involves multiple hypothesis tests, the Holm-Bonferroni
correction has been applied to bound by α the probability
of considering at least one non-significant difference as
statistically significant [42]. As suggested by Fig. 2, the
dominance of DT-RP over RP is statistically significant

Fig. 2 Box-plots of Recall values for 500 runs of standard sparse
Random Projection (RP) and of the proposed algorithm (DT-RP)
for different numbers n of training samples. In all experiments, the

sparsity degree was set at s = √
d and the output dimension at

k = 200. Iteration number for DT-RP was set at Niter = 4×103. Points
have been spread along the horizontal axis to facilitate visualization
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for all training set sizes and all datasets listed in Table 1,
even when only 50 training samples were employed. This
supports the claim that DT-RP is useful even if only a small
amount of data samples are available when initializing the
projection matrix.

4.4 Neighborhood preservation assessment

Despite its convenience and widespread usage, the Recall
measure is limited by the fact that it only quantifies the
neighborhood preservation for a single, fixed neighborhood
size. This feature hinders the ability to analyze whether
the neighborhoods are reproduced at different data scales
and does not highlight the local and global properties of
the mapping. For these reasons, some studies developed
dimensionality reduction (DR) quality criteria which mea-
sure the high-dimensional neighborhood preservation in
the projection [43], becoming generally adopted in sev-
eral publications [44–46]. This neighborhood preservation
principle is indeed considered as the driving factor in the
DR quality [47]. Denoting the sets of the K nearest neigh-
bors of xi and xi in the high-dimensional space and in the
projection by viK and v′

iK respectively, their average nor-
malized agreement can be computed as

QNX (K) = 1

n

∑n

i=1

∣
∣νiK ∩ ν′

iK

∣
∣

K
∈ [0, 1] . (13)

It corresponds to the recall measure with neighborhood
size K . As E [QNX (K)] equals K/ (n − 1) for uniformly
distributed samples in the output space,

RNX (K) = (n − 1) QNX (K) − K

n − 1 − K
(14)

rescales QNX (K) to enable the comparison of different
neighborhood sizes [48]. The RNX (K) curves are typically
displayed with a log-scale for K as local neighborhoods

usually prevail. The area under the resulting curve,
computed as

AUC =
n−2∑

K=1

RNX (K)

K

/(
n−2∑

K=1

1

K

)

∈ [−1, 1] , (15)

increases with the DR quality, quantified at all scales with
an emphasis on the small ones [49].

Figure 3 depicts the RNX (K) curves, which are
computed using an experimental protocol similar to the one
used in Section 4.1. The main difference is that, thanks
to the RNX(K) curves, we can actually visualize how the
behavior of the compared algorithms changes depending on
the neighborhood size. Note that in this case, each curve
corresponds to one run of one of the algorithms, enabling
us to observe the typical behavior of each method over
50 executions. As we can observe, the general shape of
the curves greatly depends on the dataset. This is due to
the fact that the high-dimensional neighborhood structure
can change radically depending on the dataset, and this
greatly influences the performances of RP as a function
of the neighborhood size K . Nevertheless, in agreement
with the results previously presented in this section, DT-
RP outperforms standard RP for all datasets. Moreover, this
holds for all the neighborhood sizes.

4.5 Performance stability of RPmatrices across
datasets

One may argue that DT-RP is in fact optimizing an intrinsic
property of the projection matrix, i.e., that it just improves
the projection matrix in general without really adapting it to
a specific dataset. For instance, one might think that DT-RP
simply reduces the level of sparsity of the projection matrix,
whereas in fact no significant decrease in the sparsity level

Fig. 3 Obtained RNX (K) curves for 50 runs of standard sparse Ran-
dom Projection (RP) and the proposed algorithm (DT-RP). In all
experiments, the sparsity degree was set to s = √

d and the out-
put dimension to k = 200. Iteration number for DT-RP was set to

Niter = 4 × 103, and 500 training samples were provided to DT-RP.
The neighborhood size K = 5 employed for the Recall measure in
Fig. 1 is highlighted by a dashed line
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Fig. 4 (Left) Parallel-coordinate plot in which each line links the
Recall scores of a single RP matrix instantiation on the six datasets.
Only the first 518 features of each data set were kept to make it possi-
ble to employ the same RP matrix for each one of them. A total of 100

different RP matrices were used. (Right) Heat-map representation of
the correlation matrix for the 100 Recall scores obtained on the dif-
ferent data sets. In all experiments, the sparsity degree was set at
s = √

518 and the output dimension at k = 200

of the projection matrices was registered in the experiments.
Nevertheless, DT-RP might very well alter other intrinsic
properties of the projection matrix. If that were the case,
it would mean that it is feasible to improve RP matrices
independently of the specific data to be projected. Then, a
better data-independent tuning method could in principle be
devised.

This subsection aims to evidence empirically that the
performances are in fact determined by the combination
of the RP matrix and the distribution of the data to be
projected, rather than some property of the standalone
projection matrix. To achieve this, we analyzed the
correlation of the performance of RP matrices on different
datasets. One major problem in this case is that, in order
to use the same projection matrix on different datasets,
they must have the same dimensionality. To manage this,
we kept only the first 518 features of each dataset, as that
is the smallest number of features among the datasets we
employed. Then, 100 matrices were generated and evaluated
in terms of Recall on each dataset. This was done following
a protocol that was analogous to the one used in Section 4.1,
except for the fact that, this time, the same RP matrix was
used for all datasets at each run. Figure 4 shows a parallel-
coordinates visualization of the results, where each line
represents one of the 100 projection matrices generated.
This figure also displays the correlation matrix for the
results obtained with different datasets. As we can observe,
no significant correlation exists between the results, in spite
of the fact that the same RP matrix was used for all the
datasets. In plain words, an RP matrix which performs
well on one dataset, might perform poorly on another. This
supports the claim that it is the combination of the RP matrix
and the dataset that determines the performance, justifying

the need for a data-dependent method for improving RP
matrices, as the one proposed in this paper.

5 Conclusions

This paper has introduced the Data-Tuned Random Pro-
jection (DT-RP) method. The proposed algorithm aims to
improve the performance of Random Projection matrices
on specific datasets, assuming that at least a small num-
ber of samples are available at the moment of initializing
the projection matrix. Essentially, DT-RP performs a guided
random search by iteratively re-generating the projection
directions that form the projection matrix and checking
whether each modification decreases the average distortion
of the pairwise distances. Therefore, the proposed method
sacrifices the data-independence of RP to achieve better
performance with samples following a specific distribu-
tion. Conveniently, once the projection matrix is selected,
the computational cost of projecting data samples is not
altered at all. This is because the projection matrices tuned
by DT-RP consist of integer numbers and remain sparse.
In addition, we have introduced some mathematical tricks
that, thanks to the properties of squared Euclidean distances,
allowed us to rapidly evaluate modifications in the pro-
jection matrix. In particular, DT-RP ran in less than five
seconds in all of the experiments.

When comparing the standard RP method with DT-RP,
the experimental results show consistent improvements in
the performance as measured by the different neighborhood
preservation criteria. While these improvements in perfor-
mance are affected by the number of available training
samples, the results show that statistically significant gains
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in performance can be achieved with as little as fifty train-
ing samples. This makes DT-RP a good option when some
samples are available at the moment of initializing the pro-
jection matrix and when we want to obtain well-performing,
database-friendly RP matrices, especially in cases where
they are to remain in use over an extended time period. A
potential drawback of DT-RP is that, as opposed to standard
RP, it is not robust to changes in the distribution of samples
after the projection matrix has been initialized. In the future,
we intend to assess how the boost in the distance preser-
vation properties of projection matrices can impact tasks
such as distance-based classification, document retrieval or
clustering.

In addition, the applicability of different heuristic opti-
mization methods should be explored in the future, assess-
ing if they can enable improvements in the performance
or efficiency of the optimization problem described in this
paper. For instance, simulated annealing [32] and genetic
algorithms have been successfully applied in the literature
to manage working with high-dimensional data [50].

Finally, it is worth noting how the field of machine
learning has recently experienced significant breakthroughs
thanks to the contributions of the deep learning paradigm.
In this regard, deep learning models are being successfully
applied in a wider range of domains, including dimension-
ality reduction [51] and representation learning [52, 53],
thanks to their ability to model very complex properties of
data. Moreover, random projection techniques have been
recently applied in conjunction with certain deep learning
models to make them more efficient [54]. In this regard,
we can expect future research to continue bridging the gap
between these two fields.
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Wang L, Corander J, Roos T (2016) Fast nearest neighbor search
through sparse random projections and voting. In: Big Data (Big
Data), 2016 IEEE International Conference on. IEEE, pp 881–888

41. d’Agostino RB (1971) An omnibus test of normality for moderate
and large size samples. Biometrika 58(2):341–348

42. Shaffer JP (1995) Multiple hypothesis testing. Ann Rev Psychol
46(1):561–584

43. Lee JA, Verleysen M (2009) Quality assessment of dimensionality
reduction: Rank-based criteria. Neurocomputing 72(7):1431–
1443

44. de Bodt C, Mulders D, Verleysen M, Lee JA (2019) Nonlinear
dimensionality reduction with missing data using parametric
multiple imputations. IEEE Trans Neural Netw Learn Syst
30(4):1166–1179

45. Mokbel B, Lueks W, Gisbrecht A, Hammer B (2013) Visual-
izing the quality of dimensionality reduction. Neurocomputing
112:109–123

46. de Bodt C, Mulders D, Verleysen M, Lee JA (2020) Fast multiscale
neighbor embedding. IEEE Trans Neural Netw Learn Syst:1–15

47. Venna J, Peltonen J, Nybo K, Aidos H, Kaski S (2010) Information
retrieval perspective to nonlinear dimensionality reduction for data
visualization. J Mach Learn Res 11:451–490

48. Lee JA, Renard E, Bernard G, Dupont P, Verleysen M (2013) Type
1 and 2 mixtures of kullback–leibler divergences as cost functions
in dimensionality reduction based on similarity preservation.
Neurocomputing 112:92–108
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