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Abstract

Predictor–corrector schemes are designed to be a compromise to retain the stability properties of the implicit schemes and
he computational efficiency of the explicit ones. In this paper a complete analytical study for the linear mean-square stability
f the two-parameter family of Euler predictor–corrector schemes for scalar stochastic differential equations is given. The
nalyzed family is given in terms of two parameters that control the degree of implicitness of the method. For each selection
f the parameters the stability region is obtained, letting its comparison. Particular cases of the counter-intuitive fact of losing
umerical stability by reducing the step size, is confirmed and proved. Figures of the MS-stability regions and numerical
xamples that confirm the theoretical results are shown.
c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Stochastic scheme; Predictor–corrector schemes; Mean-square stability; Multiplicative noise

1. Introduction and background

Due to its application for representing the evolution of dynamical systems, frequently subjected to random
henomena, stochastic differential equations (SDEs) are becoming an important tool in many scientific areas like
heoretical physics, including dynamics of satellites, mechanical vibrations or linear oscillators, see Langtangen [16],
agirow [19] or Tocino [23]; investment finance, see e.g. Black and Scholes [4], Jäckel [14] or Platen and Shi [18];

population dynamics, like in Allen [1], Carletti [7], or Gard and Kannan [9]; and many others, see [2] or [15] for
a wide number of applications.

Given a filtered probability space (Ω ,Ft , P) and an SDE of Itô type

d X t = a(X t ) dt + b(X t ) dWt , X t0 = x0, t0 ≤ t ≤ T, (1)

where x0 ∈ R, {Wt } is the standard scalar Wiener process and the coefficients a = a(x) and b = b(x) satisfy the
assumptions of the existence and uniqueness theorem, see [3], in general, its analytic solution is not available; to
approximate it, numerical methods represent an indispensable implement. A complete survey on numerical methods
for the solution of SDEs can be found in [15].
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The selection of a numerical method to solve the SDE is an important decision. Commonly, convergence is
considered the main criterion: strong convergence is used if the sample paths of the exact solution are needed and
weak convergence when their moments are required. But some authors, see [18], support that stability should be
taking into account firstly. Numerical stability relates with the capacity of the method to control the propagation of
errors. As in the deterministic case, the essential components to study the stability of stochastic numerical schemes
are a stochastic test equation, a definition of asymptotic stability for the stochastic equation and a characterization
of it in terms of equation parameters, a corresponding definition and characterization for numerical schemes and
a comparison between the domains of stability of the equation and the scheme. In this paper we consider the
multiplicative noise scalar linear test equation

d X t = λX t dt + µX t dWt , (2)

with t > 0, λ, µ ∈ R and initial condition X0 = x0 ̸= 0. To study stochastic stability, this test equation has been
widely used, see [11–13,20]. Several concepts of stability have been proposed, see e.g. [3] or [10]. Here we shall
focus on stability in the mean-square sense or linear MS-stability, characterized by the condition

lim
t→∞

E |X t |
2

= 0. (3)

Section 1.2 is devoted to recall this concept and its characterization.
As in the deterministic case, predictor–corrector (PC) schemes for SDEs have been developed to take advantage

of the good properties, and at the same time to avoid the drawbacks, of explicit and implicit schemes. Implicit
methods have been used due to their good stability properties; in return, the computational cost grows because they
usually require the solution of an algebraic equation at each time step. Starting from Yn , the idea behind PC methods
is to use first an explicit scheme (called the predictor) to obtain an approximated solution of the next step Y n+1;
hen, an implicit scheme (the corrector) is used as an explicit one replacing the unknown value of the following
tep Yn+1 by the prediction Y n+1. Since both schemes are explicit, PC methods share the computational efficiency

of explicit methods. The numerical methods considered in this work are the so-called predictor–corrector Euler
methods introduced in [15] as a bi-parametric family of weak order 1.0 schemes. In [5] it was proved that these
schemes have strong order 0.5 and their asymptotical stability was studied; later, see [18], asymptotical p-stability
was considered for the same family. Varying the parameters of a PC Euler scheme determines the involvement of
the predictor, i.e., the degree of implicitness; so, in this work the way how the variation of implicitness determines
the stability behavior will be studied. Up to our knowledge the stability analysis of PC methods has been carried
on the multiplicative noise linear test used in [5,15] and other works of the same authors; it differs from (2) and is
given by

d X t =

(
1 −

3
2
α

)
λX t dt +

√
α|λ|X t dWt .

imilarities and differences of this approach with our proposal will be shown.
The rest of this section is devoted to introduce PC Euler methods and the theoretical tools for mean square

tability analysis. In Section 2 this analysis is developed for each scheme in terms of its parameters. Their stability
egions will be calculated and pictures that make easier the comparison between different regions will be given.
o, it will be shown how the growth in implicitness affects stability. In particular, we are interested in the advised
henomenon, shown graphically in [18], of examples for which there is a loss of stability by decreasing the step
ize of the method. The theoretical results will be confirmed with the numerical experiments of Section 3. Finally,
ection 4 is devoted to expound the conclusions.

.1. Predictor–corrector Euler schemes

Consider an equidistant discretization t0 < t1 < · · · < tN = T with step-size ∆ = (T − t0)/N . Assuming
he differentiability of the diffusion coefficient b, the family of predictor–corrector Euler schemes for computing
pproximations Yn to the exact values X tn of the solution to (1) at tn , n = 1, . . . , N , is given by

Yn+1 = Yn +
(
θ āβ(Ȳn+1) + (1 − θ )āβ(Yn)

)
∆ +

(
βb(Ȳn+1) + (1 − β)b(Yn)

)
∆Wn (4)

ith
′
āβ = a − β b b (5)

290



A. Tocino, R. Zeghdane and M.J. Senosiaı́n Mathematics and Computers in Simulation 180 (2021) 289–305

a

a

w
a
d
T
s

m
b
i
p
t

E

w

s
t
t
r
t

1

Fig. 1. Approximation of van der Pol equation (7) with initial values X0 = 2, Y0 = 0 and step size ∆ = 0.05 by the Euler scheme (left)
nd by the predictor–corrector Euler scheme (4) with β = 0 and θ = 1/2 (right).

nd

Ȳn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn (6)

here θ, β ∈ [0, 1], and ∆Wn = Wtn+1 − Wtn are Gaussian random variables N (0,∆). The parameters θ, β ∈ [0, 1]
re called the degree of implicitness in the drift and the diffusion coefficients, respectively. Notice also that the
rift a is corrected by āβ . In this work, for obvious reasons, we shall refer to PC Euler methods as (θ, β)-methods.
hese methods were introduced in [15]. Also they have been considered in [5] and [18]. For β = 0 they have been
tudied in [24]. Notice that Euler method is a particular member of this family; on the other hand if θ =

1
2 , β = 0

Eqs. (4)–(6) become the modified trapezoidal method of weak order 1.0, see [15].
Notice that the expression in (6), the predictor, gives the approximation Ȳn+1 of the value Yn+1 using Euler

ethod; on the other hand, the corrector in (4) can be seen as a modified implicit scheme where the value Yn+1 has
een replaced by its approximation Ȳn+1. This replacement converts an implicit scheme into an explicit one and,
n spite of the fact that (4) is an explicit expression, due to Ȳn+1 ≃ Yn+1, one can expect that the corrector retains
art of the features of the original implicit method. This argument is supported by the following example (see also
he numerical experiments in Section 3):

xample 1. Consider the stochastic van der Pol system, see [8],(
d X t

dYt

)
=

(
Yt

10(1 − X2
t )Yt

)
dt +

(
0

(1 − X2
t )Yt

)
dWt , (7)

here {Wt } stands for the standard scalar Wiener process, with initial value (X0, Y0) = (2, 0).

Application of the Euler scheme with step-size ∆ = 0.05 to approximate a solution path leads to an explosion,
ee Fig. 1, left; due to stability problems the program aborts computation around t = 10, see the inner window on
he left picture of Fig. 1; a similar result was obtained in [8] applying Milstein scheme. On the contrary, if we apply
he predictor–corrector Euler scheme (4)–(6) with β = 0 and θ = 1/2 and the same Brownian path we obtain the
esult shown in Fig. 1, right. Notice that here the explosion has been avoided by using an explicit scheme, unlike
he approach in [8], where an implicit scheme was used.

.2. Mean square stability analysis tools

Since the exact solution of (2) is given by{ 1µ2)t + µ W
}
, (8)
X t = x0 exp (λ − 2 t
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one has E|X t |
2

= |x0|
2 exp

{(
2λ + µ2

)
t
}

and MS-stability condition (3) is equivalent to

2 λ + µ2 < 0; (9)

the set

SSDE = {(λ, µ) ∈ R × R : 2λ + µ2 < 0} (10)

s called the MS-stability domain of the linear test equation (2).
By analogy with (3), for a numerical method we have

efinition 2. A stochastic method is said to be asymptotically mean-square stable if limn→∞ E|Xn|
2

= 0, where
Xn} is the sequence obtained when the method is applied to a test equation with equidistant step-size.

Explicitly, to study the linear MS-stability of a numerical method, we apply the scheme to test problem (2) giving
n expression of Xn+1 in terms of the step-size ∆, the parameters of the problem λ, µ, the parameters and random
ariables of the method, and Xn; then, taking mean-square norm in the obtained expression we get a recurrence of
he form

E[X2
n+1] = R(λ, µ,∆)E[X2

n]. (11)

rom here, E[X2
n] → 0 if and only if R(λ, µ,∆) < 1; then R(λ, µ,∆) is called the MS-stability function of the

ethod and the set

SSM (∆) = {(λ, µ) ∈ R × R : R(λ, µ,∆) < 1} (12)

s called the stability domain of the stochastic method applied with step ∆. This concept was established in [20]
nd has been considered in [12,13,21,22]. Following Higham, see [12,13], our approach to analyze numerical MS-
tability studies for what values of the step-size the numerical method share the stability of the test problem. In this
ense, MS-stability domains SSM (∆) and SSDE can be compared, and the inclusion SSDE ⊂ SSM (∆) for all ∆ > 0
eans that whenever the SDE is stable, then so is the stochastic method for any stepsize. This is a generalization

f deterministic A-stability property of numerical methods for deterministic equations.

. Stability analysis of PC Euler methods

Our aim here is to carry through a linear mean-square stability analysis for the methods of the biparametric
amily (4)–(6), where θ, β ∈ [0, 1]. On the one hand, varying the parameters θ, β allows to compare the stability
egions for different schemes of the family; on the other hand, for a given linear problem, a step-size bound will
e given for each (θ, β)-method to ensure MS-stable numerical solution. The work is inspired by [13] and [12],
here the author studies mean-square stability of semi-implicit Euler and Milstein θ -methods. Notice in particular

hat when θ = 0, β = 0 the PC method (4)–(6) becomes the Euler method; then it coincides with the stochastic
-method with θ = 0 in [13]. In that work it was proved that (a) if the test problem is unstable then so is the Euler
ethod for all ∆ > 0 and (b) if the problem is stable then so is the Euler method for ∆ < −(2λ + µ2)/λ2. In

his section we find a similar step-size bound for each predictor–corrector (θ, β)-method, i.e., a constant ∆(θ,β) > 0
uch that if the problem is stable then so is the predictor–corrector method for 0 < ∆ < ∆(θ,β).

Applying the method (4)–(6) to the test problem (2) produces the recurrence

Yn+1 =
(
1 + (λ − βµ2)∆(1 + θλ∆) + µ∆Wn +

(
(θ + β)λµ − θβµ3)∆∆Wn + βµ2∆W 2

n

)
Yn (13)

aking mean-square norm in (13) yields the difference equation

E[Y 2
n+1] = R(θ,β)(λ, µ,∆)E[Y 2

n ] (14)

ith

R(θ,β)(λ, µ,∆) =(2λ + µ2)∆(1 + θλ∆)2
+ θ2λ4∆4

+ (2θ − 2θ2)λ3∆3
+ (1 − 2θ )λ2∆2

+ µ4∆2β
(
βθ2λ2∆2

+ 2β − 2λ∆βθ − 2λ∆θ2
− 2θ

)
2 2 ( 2 2 2 ) 2 2 6 3
+ µ ∆ βλ −2θ λ ∆ + βλ∆ + 2(1 − θ ) + θ β µ ∆ + 1.
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A straightforward computation gives that the stability condition R(θ,β)(λ, µ,∆) < 1 is equivalent to the inequality

(2λ + µ2)θ2β2µ4∆3

+ (1 + θλ∆)∆
(
θλ3∆2

+ λ(θµ2
+ λ)∆ + 2λ + µ2)

+ µ4∆2β
(
βθ2λ2∆2

− 2θλ(θ + β + θβ)∆ + 2(β − θ )
)

+ βλµ2∆2 (
−2θ2λ2∆2

+ βλ∆ + 2(1 − θ )
)

< 0.

(15)

For each (θ, β) predictor–corrector method the stability domain defined in (12) will be denoted S(θ,β)(∆). A
eometrical representation of MS-stability regions SSDE and S(θ,β)(∆) helps to interpret the bounds found in the
esults of the next subsections. Following [13] we shall take

x = ∆λ, y = ∆µ2

o obtain such representation in the real half-plane {(x, y) ∈ R2
: y ≥ 0}. Notice that, given problem parameters

λ, µ ∈ R, varying ∆ correspond to moving along a ray that passes through the origin and (λ, µ2). The pairs (x, y),
y ≥ 0 such that 2x + y < 0 constitute the MS-stability region of the test equation SSDE and correspond to the area
between the ray y = −2x and the negative half-axis x , see, e.g., the squared areas shown in the pictures of Fig. 11.
For each (θ, β)-predictor corrector method, with the new coordinates the stability condition (15) becomes

y(y + 2) + θ2 (
x + y2) (y − βx)2

+2θ
(
βxy + x + y2

+ y
)

(y − βx) + x
(
2β2x + (βy + 1)2) < 0,

(16)

hich gives as representation of S(θ,β)(∆) the set

S(θ,β) =
{
(x, y) ∈ R2

: y ≥ 0; (16) holds
}
,

ee, e.g., the shaded areas shown in the pictures of Fig. 11.

.1. Methods with θ = 0

Euler method, as it was said, corresponds to the case θ = β = 0 and it was studied in [13]. Suppose now that
= 0, β ∈ (0, 1] and that the stability condition (9) of the test equation holds. Since θ = 0, condition (15) becomes

∆
(
β2λ2µ2∆2

+
(
λ2

+ 2β2µ4
+ 2βλµ2)∆ + 2λ + µ2) < 0,

hich can be written, since β > 0, as

∆β2λ2µ2(∆ − ∆−)(∆ − ∆+) < 0, (17)

here

∆±
=

−(λ2
+ 2β2µ4

+ 2βλµ2) ±
√

(λ2 + 2β2µ4 + 2βλµ2)2 − 4µ2β2λ2(2λ + µ2)
2µ2β2λ2 .

Since ∆− < 0 < ∆+ we conclude that for 0 < ∆ < ∆+ condition (17) holds. Then we have proved:

Theorem 3. If θ = 0 and β ∈ [0, 1], the (θ, β)-predictor–corrector method (4)–(6) applied with constant step-size
∆ > 0 to a stable test problem (2) is stable if ∆ < ∆(0,β) where

∆(0,β) =

⎧⎨⎩−
2λ+µ2

λ2 if β = 0
−(λ2

+2β2µ4
+2βλµ2)+

√
(λ2+2β2µ4+2βλµ2)2−4µ2β2λ2(2λ+µ2)

2µ2β2λ2 if 0 < β ≤ 1

We consider now the geometrical representation of the MS-stability region of the (0, β)-methods analyzed in the
above Theorem. With θ = 0 condition (16) becomes

y(y + 2) + x
(
2β2x + (βy + 1)2) < 0

and then

S =
{
(x, y) ∈ R2

: y ≥ 0; y(y + 2) + 2x2β2
+ x(βy + 1)2 < 0

}
.
(0,β)
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Fig. 2. MS-stability regions of (0, β)-predictor corrector schemes, β ∈ [0, 1].

Fig. 2 contains a graphical representation summarizing all these regions: For each β0 ∈ [0, 1] the S(0,β0) region is
obtained by the section of the solid with the plane β = β0. Notice that all sections are very similar; starting at
β = 0 (Euler method) there is a light size increasing of the regions up to values near to β = 1/4, followed by a
light decrease as the index β grows. This result can be interpreted as the effect of increasing implicitness on the
diffusion term (β grows from 0 to 1) of the PC method with explicit drift term (θ = 0): the stability behavior
improves slightly with values of β around 1/4.

In the first row of Fig. 11 the MS-stability regions S(0,0), S(0,1/9), S(0,1/8), S(0,1/2) and S(0,1) have been represented.
For each pair (0, β) the bound ∆(0,β) found in Theorem 3 can be interpreted in the following sense: Giving a stable
problem, i.e. a pair (λ, µ) fulfilling (9) determines the ray y = (µ2/λ)x (contained in the squared area); there exists
a value ∆(0,β) such that the segment {(x, y) = (λ∆, µ2∆) : 0 < ∆ < ∆(0,β)} is entirely contained in the shaded
region.

2.2. Methods with β = 0

Consider now the case β = 0, θ ∈ (0, 1]. With these values, condition (15) becomes

(1 + θλ∆)∆
(
θλ3∆2

+ λ(θµ2
+ λ)∆ + 2λ + µ2) < 0. (18)

Notice that the discriminant of the second order polynomial in ∆ which appears in the last factor of (18) is

D1 = λ2(θµ2
+ λ)2

− 4(2λ + µ2)θλ3

= λ2 (
(1 − 8θ )λ2

+ µ2θ (µ2θ − 2λ)
)

= λ2 (
(λ − µ2θ )2

− 8θλ2)
;

(19)

hen if D1 ≥ 0, the stability condition (18) becomes

θλ3(∆ − ∆+

1 )(∆ − ∆−

1 )(1 + θλ∆)∆ < 0, (20)

here

∆±

1 =
−(θµ2

+ λ) ±
√

(λ − µ2θ )2 − 8θλ2

2θλ2 . (21)

n the other hand, note that (18) can also be written

(1 + θλ∆)∆
(
(2λ + µ2)(1 + θλ∆) + λ2∆(1 + θλ∆ − 2θ )

)
< 0. (22)
294
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Remark 4. If D1 ≥ 0, 0 ≤ θ ≤ 1/2 and (9) holds then λ + θµ2 < 0 and 0 < ∆−

1 < ∆+

1 since the roots can be
ritten

∆±

1 =
−(θµ2

+ λ) ±
√

(θµ2 + λ)2 − 4(2λ + µ2)θλ

2θλ2 .

Theorem 5. If β = 0 and 0 < θ ≤ 1, the (θ, 0)-predictor–corrector method (4)–(6) applied with constant step-size
∆ > 0 to a stable test problem (2) is stable if ∆ < ∆(θ,0) where

∆(θ,0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∆1 for 0 < θ ≤

1
8

∆0 for 1
8 < θ < 1

2 and µ2

−λ
<

√
8θ−1
θ

∆1 for 1
8 < θ < 1

2 and µ2

−λ
≥

√
8θ−1
θ

∆0 for 1
2 ≤ θ ≤ 1

with

∆0 =
−1
θλ

, ∆1 =
−(θµ2

+ λ) −
√

(θµ2 + λ)2 − 4(2λ + µ2)θλ

2θλ2 = ∆−

1 . (23)

Proof. Suppose that β = 0, 0 < θ ≤ 1 and the test problem is stable, i.e. that condition (9) holds (in particular
λ < 0). We shall prove that one of the inequalities (18), (20) or (22) fulfills for 0 < ∆ < ∆(θ,0).

Suppose that 0 < θ ≤
1
8 . In this case the second expression in (19) shows that D1 ≥ 0; we have, by Remark 4,

that λ + θµ2 < 0 and 0 < ∆−

1 < ∆+

1 . If ∆ < ∆−

1 then ∆ <
−(θµ2

+λ)
2θλ2 and

λ(θλ∆ + 1) = θλ2∆ + λ <
λ − θµ2

2
< 0;

rom here θλ∆ + 1 > 0 and the stability condition (20) holds if 0 < ∆ < ∆−

1 .
Suppose now that 1/8 < θ < 1/2 and denote k0 = (

√
8θ − 1)/θ ; notice that 0 < k0 < 2. We distinguish two

ases:
(a) If −µ2/λ < k0 then k0λ + µ2 < 0 and

(2λ + µ2)(1 + θλ∆) + λ2∆(1 + θλ∆ − 2θ )

= (k0λ + µ2)(1 + θλ∆) + (2 − k0)λ(1 + θλ∆) + λ2∆(1 + θλ∆ − 2θ )

= (k0λ + µ2)(1 + θλ∆) + λ3θ

(
∆ −

k0θ − 1
2λθ

)2

< 0

if 1 + θλ∆ > 0; from here, (22) holds for any 0 < ∆ < −1/λθ .
(b) If k0 = (

√
8θ − 1)/θ ≤ −µ2/λ, then 0 < 8θλ2

≤ (λ − µ2θ )2 and, using the last expression in (19), D1 ≥ 0,
nd, from Remark 4, 0 < ∆−

1 < ∆+

1 . Since ∆−

1 < −1/2λθ < −1/λθ , we conclude that if 0 < ∆ < ∆−

1 then
+ λθ∆ > 0 and (20) holds.
Finally, suppose that 1/2 ≤ θ < 1 and ∆ < −1/θλ. Since 1 + θλ∆ > 0, the stability condition (22) obviously

olds under the assumption (9) because 1 − 2θ ≤ 0. □

For the geometrical representation of (θ, 0)-methods, we have

S(θ,0) =
{
(x, y) ∈ R2

: y ≥ 0; (θy + 1)
(
θyx + x + θy3

+ y2
+ 2y

)
< 0

}
.

In Fig. 3, varying θ ∈ [0, 1] all MS-stability regions with β = 0 had been represented simultaneously in a
-dimensional space with coordinates x = λ∆, y = µ2∆ and θ . This picture allows the direct comparison among
ll (θ, 0)-methods, θ ∈ [0, 1].

For θ0 ∈ [0, 1], the section of the shaded solid with the plane θ = θ0 corresponds to the MS-stability región S(θ0,0);
he regions S(0,0), S(1/9,0), S(1/8,0), S(1/6,0), S(1/4,0), S(1/2,0) and S(1,0) are represented in the first column of Fig. 11.
heorem 5 ensures that for each (θ, 0) there exists a value ∆(θ,β) such that the segment {(x, y) = (λ∆, µ2∆) : 0 <

< ∆(θ,β)} is entirely contained in the shaded region.
As it was pointed out in [18], we can observe in several of these pictures that for some values of (λ, µ) one can

ose numerical stability by reducing the step-size ∆. For example, S is made up of two disconnected regions;
(1/9,0)
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Fig. 3. MS-stability regions of (θ, 0)-predictor corrector schemes, θ ∈ [0, 1].

Fig. 4. MS-stability region of (1/7, 0)-predictor corrector scheme.

ny ray y = (λ/µ2)x with −2 < λ/µ2 < 0 directed to the origin, i.e., with decreasing values of ∆, intersects a part
of the region for a while, then leave it, and finally enter and remains contained in the second part of the region.
This fact is common to (θ, 0) methods with 0 < θ ≤ 1/8; and the bound ∆1 of Theorem 5 determines the value of
∆ for which the ray enters in the second connected part of S(θ,0).

Consider now the picture of S(1/7,0), shown in Fig. 4, as an illustration of (θ, 0)-regions with 1/8 < θ < 1/2;
Theorem 5 states that there is a value, in this case equal to

√
8θ−1
θ

=
√

56 − 7, represented by the dashed line in the
lot of Fig. 4, such that the extreme of the entirely contained ray belongs to the vertical line x = −1/θ (when the
lope satisfies 0 > µ2/λ > 7−

√
56) or to the curve y = −x2

−2x/(1+θx) (when 7−
√

56 ≤ µ2/λ < −2). Notice
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that in this last case we find again the mentioned counter-intuitive fact of losing numerical stability by reducing the
step-size.

2.3. Methods with θ > 0 and β > 0

For the sake of clarity we separate the rest of the analysis into two cases: firstly we consider 0 < β < θ ≤ 1;
later 0 < θ ≤ β ≤ 1.

Theorem 6. If 0 < β < θ ≤ 1 the (θ, β) predictor–corrector method (4)–(6) applied with step-size ∆ > 0 to a
table problem is stable if ∆ < ∆(θ,β) where

∆(θ,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min{∆1,∆2,∆3} for 0 < θ ≤
1
8

min{∆0,∆2,∆3} for 1
8 < θ < 1

2 and µ2

−λ
<

√
8θ−1
θ

min{∆1,∆2,∆3} for 1
8 < θ < 1

2 and µ2

−λ
≥

√
8θ−1
θ

min{∆0,∆2,∆3} for 1
2 ≤ θ < 1

min{∆0,∆4} for θ = 1

with ∆0,∆1 given in (23) and

∆2 =
θ + β + θβ −

√
(θ + β + θβ)2 − 2β(β − θ )

λθβ
, ∆3 =

β −
√

β2 + 16(1 − θ )θ2

4θ2λ
,

∆4 =
−βλ2

+ 2λµ2(1 + 2β) +
√

(βλ2 − 2λµ2(1 + 2β))2 − 8µ2(β − 1)λ2(µ2β − 2λ)
2λ2(µ2β − 2λ)

.

roof. Suppose that 2λ + µ2 < 0. For the sake of simplicity we write the stability condition (15) as

A + B + C + D < 0 (24)

ith
A = (2λ + µ2)θ2β2µ4∆3

B = (1 + θλ∆)∆
(
θλ3∆2

+ λ(θµ2
+ λ)∆ + 2λ + µ2)

C = µ4∆2β
(
βθ2λ2∆2

− 2θλ(θ + β + θβ)∆ + 2(β − θ )
)

D = −βλµ2∆2 (
2θ2λ2∆2

− βλ∆ − 2(1 − θ )
) (25)

otice that A < 0 and Theorem 5 gives conditions ensuring B < 0. Since β < θ we can write

C = µ4∆2β(∆ − ∆−

2 )(∆ − ∆+

2 )

ith

∆±

2 =
θ + β + θβ ±

√
(θ + β + θβ)2 − 2β(β − θ )

λθβ
;

since ∆+

2 < 0 < ∆−

2 , we conclude that C < 0 if 0 < ∆ < ∆2. On the other hand, we can write

D = −βλµ2∆2(∆ − ∆−

3 )(∆ − ∆+

3 )

with

∆±

3 =
β ±

√
β2 + 16(1 − θ )θ2

4θ2λ
.

f θ < 1 then ∆+

3 < 0 < ∆−

3 ; we conclude that D < 0 if 0 < ∆ < ∆3 = ∆−

3 .
Finally, to study the problem 0 < β < θ = 1, we shall prove that in this case C + D < 0 if 0 < ∆ < ∆4. Since

= 1,

C + D = βµ2∆2 (
(µ2βλ2

− 2λ3)∆2
+ (βλ2

− 2λµ2(1 + 2β))∆ + 2(β − 1)µ2)
2 2 2 2 − +
= βµ ∆ λ (µ β − 2λ)(∆ − ∆4 )(∆ − ∆4 )
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with

∆±

4 =
−βλ2

+ 2λµ2(1 + 2β) ±
√

(βλ2 − 2λµ2(1 + 2β))2 − 8µ2(β − 1)λ2(µ2β − 2λ)
2λ2(µ2β − 2λ)

.

ince ∆−

4 < 0 < ∆+

4 , we conclude that C + D < 0 if 0 < ∆ < ∆+

4 = ∆4. □

The following result completes the analysis:

heorem 7. If 0 < θ ≤ β ≤ 1 the (θ, β) predictor–corrector method (4)–(6) applied with step-size ∆ > 0 to a
table problem is stable if ∆ < min{∆5,∆6} with

∆5 =
−(2λ + µ2)

λ2(1 + 2θ ) + 2βµ4(β − θ )
and

∆6 = −
λµ2

(
β2

+ θ2
)
− 2βθµ4(βθ + β + θ ) + 2θλ2

2θ2λ(λ − βµ2)2

−

√(
λµ2

(
β2 + θ2

)
− 2βθµ4(βθ + β + θ ) + 2θλ2

)2
− 8λθ2µ2

(
λ − βµ2

)2 (β + θ (1 − β))

2θ2λ(λ − βµ2)2

roof. Suppose that 2λ + µ2 < 0. For the sake of simplicity now we write the stability condition (15) as

A + E + F < 0

here A < 0 is given in (25) and

E = ∆
(
2λ + µ2

+ ∆
(
λ2(1 + 2θ ) + 2βµ4(β − θ )

))
,

F = λ∆2
(

θ2λ
(
λ − βµ2)2

∆2

+
(
λµ2 (

β2
+ θ2)

− 2βθµ4(βθ + β + θ ) + 2θλ2)∆
+ 2µ2(β + θ (1 − β))

)
.

hen it is clear that E < 0 if ∆ < ∆5. On the other hand, F can be written

F = λ2∆2θ2 (
λ − βµ2)2

(∆ − ∆+

6 )(∆ − ∆−

6 )

here ∆+

6 < 0 < ∆−

6 ,

∆±

6 =

−b ±

√
b2 − 8λθ2µ2

(
λ − βµ2

)2 (β + θ (1 − β))

2θ2λ(λ − βµ2)2 ,

with b = λµ2
(
β2

+ θ2
)
− 2βθµ4(βθ + β + θ ) + 2θλ2, which proves that F < 0 if 0 < ∆ < ∆6. □

Similar to preceding geometrical interpretation, when we fix a value of θ > 0 a solid whose sections with β = β0
are the MS stability regions for (θ, β0)-method is obtained, see Fig. 5 for θ = 1/9, 1/8, 1/6, 1/2, 1. The top-center
picture is a joint representation of (1/9, β) predictor–corrector methods with β ∈ [0, 1]; see also the second row of
Fig. 11 for θ = 1/9 and some particular values of β. In this case, for every β0 the stability region S(1/9,β0) is made
of two separated components; notice that the component containing the origin is greater than S(0,β0). For values of
β near to 1/5 the stability region increases. When θ = 1/8, see top-right picture in Fig. 5 and the third row of
Fig. 11, the MS-stability regions are connected for every β ∈ [0, 1]. Larger regions are obtained with β around
1/7. For θ > 1/8 the MS-stability regions are connected for every β ∈ [0, 1].

Notice that for 1/2 ≤ θ < 1 the regions decrease when θ increases. If in addition β < θ then the threshold
∆(θ,β) in Theorem 6 does not depend on µ. This fact geometrically means, see Fig. 11, that these stability regions
contain a portion of the line y = −2x , or that the line is an inner tangent to the border, which numerically results in
a better stability behavior. The intersection of the last two rows with the first three columns in Fig. 11 corresponds

to PC methods with this property. Notice finally that for β fixed, ∆0, ∆2 and ∆3 are decreasing functions of θ in
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1

Fig. 5. Comparison between MS-stability region of (θ, β)-predictor corrector schemes for θ = 0 (top left), θ =
1
9 (top center), θ =

1
8 (top

right), θ =
1
6 (bottom left), θ =

1
2 (bottom center) and θ = 1 (bottom right).

the interval [1/2, 1]; then for β < θ and 1/2 ≤ θ < 1 the threshold ∆(θ,β) is a decreasing function of θ ∈ [1/2, 1].
This means that PC method with (1/2, β0) has the greatest stability region within PC methods with (θ, β0) when
β0 < θ and 1/2 ≤ θ < 1. We conclude that methods with θ = 1/2 and β < θ have better stability behavior with
greater stability regions. Example 1, where PC method with (θ, β) = (1/2, 0) was used, illustrates this conclusion.

A similar analysis can be made fixing β > 0; see Fig. 6 for β = 1/20, 1/10, 1/4, 1.

3. Numerical experiments

Two types of numerical experiments were carried out. Experiments (i) and (ii) are devoted to confirm the above
stability analysis; experiment (iii) is intended to compare the accuracy and efficiency of PC methods with standard
methods in the literature.

In the first two experiments Eq. (2) with initial condition X0 = 1 is solved with different PC methods. For
each method we have used 10 000 simulations to approximate E[|X t |

2]. For each experiment, these values have
been plotted against t in logarithm scale with basis 10; additionally, to compare the accuracy of each numerical
approximation, we have calculated the mean square error between the exact and the numerical solutions, see e.g. [6].
The computations were made with 16 significant digits.

(i) For the first experiment, the parameters λ = −100, µ = 10 in (2) were taken and the equation was solved using
firstly predictor–corrector (θ, β)-schemes with (θ, β) = (0, 0), (0, 1

4 ), (0, 1
2 ), (0, 3

5 ), (0, 1); then with (θ, β) = ( 1
4 , 1

4 ),
( 1

2 , 1
2 ), ( 3

5 , 3
5 ), ( 2

3 , 2
3 ) and (1, 1); in both cases a constant step size ∆ = 1/100 has been used. The results are shown in

Figs. 7 and 8 respectively. They confirm the theoretical results: for the first batch all methods except (θ, β) = (0, 0)
and (θ, β) = (0, 1) show stability, which agrees with the values R(0,0)(−100, 10, 1

100 ) = 1, R(0,1/4)(−100, 10, 1
100 ) =

1/16 < 1, R(0,1/2)(−100, 10, 1
100 ) = 3/4 < 1, R(0,3/5)(−100, 10, 1

100 ) = 22/25 < 1 and R(0,1)(−100, 10, 1
100 ) = 2

in (14). For the second batch all methods except (θ, β) = (1/4, 1/4) show instability, which agrees with the values
R(1/4,1/4)(−100, 10, 1

100 ) = 53/128, R(1/2,1/2)(−100, 10, 1
100 ) = 9/8 > 1, R(3/5,3/5)(−100, 10, 1

100 ) = 1222/625 > 1,
R (−100, 10, 1 ) = 221/81 > 1 and R (−100, 10, 1 ) = 10 > 1 in (14).
(2/3,2/3) 100 (1,1) 100
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Fig. 6. Comparison between MS-stability region of (θ, β)-predictor corrector schemes for β =
1
20 (top left), β =

1
10 (top right), β =

1
4

(bottom left) and β = 1 (bottom right).

(ii) The second experiment is devoted to illustrate the observed fact that for some values of (λ, µ) one can lose
numerical stability by reducing the step-size ∆. We have integrated the equation

d X t = −60X t dt + 8X t dWt (26)

in the interval [0, 10] with the predictor–corrector ( 1
7 , 0) method and step sizes ∆ = 0.2, 0.1, 0.05, 0.02, 0.01. The

results can be seen in Fig. 9. Notice that R(1/7,0)(−60, 8, 1/5) = 687/7 > 1, R(1/7,0)(−60, 8, 1/10) = 37/245 < 1,
R(1/7,0)(−60, 8, 1/20) = 381/245 > 1, R(1/7,0)(−60, 8, 1/50) = 26913/30625 < 1 and R(1/7,0)(−60, 8, 1/100) =

181/245 < 1. Then, ∆ = 0.2 gives instability and the first time we halve the step size (∆ = 0.1) the scheme
becomes stable; but when we halve it again (∆ = 0.05), the method becomes unstable; finally for ∆ = 0.02 and
∆ = 0.01 the scheme is again stable (recall the geometrical interpretation of the ray directed to the origin with
decreasing values of ∆ that intersects the stability region for a while, then leaves it, and finally enters and remains
contained in the region).

(iii) In this experiment we compare some PC methods with well-known methods in the literature, including
implicit and higher order ones. The results show mean error values and time of computation in order to compare
accuracy and computational effort. For the comparison, the nonlinear stochastic differential equation

d X t =

(
1
3

X1/3
t + 6X2/3

t

)
dt + X2/3

t dWt (27)
X0 = 1
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Fig. 7. Values of log E |X t |
2 (left) and MS-errors (right) against t using different (θ, β)-schemes with ∆ = 1/100 to solve d X t = −100X t dt

10X t dWt .

Fig. 8. Values of log E |X t |
2 (left) and MS-errors (right) against t using different (θ, β)-schemes with ∆ = 1/100 to solve d X t = −100X t dt

10X t dWt .

as been used. Since its exact solution X t = (2t +1+
Wt
3 )3 is known, we can compared the exact values E[X1] = 28

nd E[X2
1] = 869 +

5
35 with the approximations given by the different schemes. The PC-methods used were Euler

(EU) method (θ = β = 0), the modified trapezoidal (MT) method (θ = 1/2, β = 0) and, due its relevant stability
region, the predictor–corrector method with parameters θ = β = 1/8, denoted as PC18. Recall that these methods,
s members of the PC family have strong order 0.5 and weak order 1.0. For the comparison, from the so called
amily of stochastic theta methods (STM), see [13], we have selected, due to its special stability behavior, the
emi-implicit Euler method:

Xn+1 = Xn +
1

(a(Xn) + a(Xn+1))∆ + b(Xn)∆Wn,
2
301



A. Tocino, R. Zeghdane and M.J. Senosiaı́n Mathematics and Computers in Simulation 180 (2021) 289–305

t
a
s
t

w
a
m
S
g

e

a
w
o
∆
1

Fig. 9. Values of log E |X t |
2 against t using PC ( 1

7 , 0)-scheme with different values of ∆ to solve (26).

Table 1
Mean errors in the computation of E[X1] for test equation (27) by Euler (EU), Milstein (MIL),
Runge–Kutta (RK), modified trapezoidal (MT), PC with θ = β = 1/8 (PC18) and semi-implicit
stochastic theta (STM) methods with step sizes ∆ = 2−1, . . . 2−8.

∆ EU MIL RK MT PC18 STM

2−1 15.834163 15.838953 15.890211 5.779845 5.859981 3.450810
2−2 10.421102 10.41590 10.454726 1.959769 2.201637 1.146166
2−3 6.145018 6.13697 6.298351 0.557268 0.674469 0.361481
2−4 3.386426 3.37917 3.296597 0.161179 0.200451 0.091673
2−5 1.840789 1.83741 1.318922 0.131892 0.161089 0.041064
2−6 0.914740 0.91158 0.865913 0.042104 0.079803 0.024608
2−7 0.410595 0.40959 0.299432 0.019853 0.028655 0.011547
2−8 0.119174 0.11920 0.092857 0.014884 0.016926 0.009501

i.e., the STM with θ = 1/2. It shares strong and weak orders with the components of PC family. In this experiment,
he implicit equation that arises at each step was solved with three iterations of the Newton–Raphson method. In
ddition two higher (strong) order schemes were employed in the comparison: the explicit strong order 1.0 Milstein
cheme (MIL), see [17], which, as PC-methods with β ̸= 0, contains the derivative of the drift coefficient b; and
he explicit strong order 1.0 Runge–Kutta (RK) scheme, proposed by Platen, that appears in [15], pages 374–375.

For each step size ∆ = 2−1, . . . , 2−8, N = 10000 trajectories were simulated using the same Brownian paths
ith each scheme. Then the mean values at the endpoint were used to approximate the known expectations E[X1]

nd E[X2
1]. The mean errors are shown in Table 1 for E[X1] and in Table 2 for E[X2

1]. It can be seen that explicit
ethods (EU, MIL, RK) present similar results with greater mean errors. As it was expected, the implicit method
TM shows the best results in both experiments. Predictor–corrector methods MT and PC18 form an intermediate
roup showing better results than MIL and RK, which are methods with greater (strong) order.

To compare the efficiency, the experiments were repeated for each method separately and the required time
mployed in the computations was calculated for step sizes ∆ = 2−1, . . . , 2−9. The results for both calculations

E[X1] and E[X2
1] were alike and are shown graphically in Fig. 10, where the time (in seconds) is represented

gainst the logarithm with basis 2 of the step size. The picture shows that explicit and PC methods form a group
ith a very similar time consumption whereas the implicit method STM doubled the computational cost of the rest
f schemes. The results for explicit and PC methods are, in fact, indistinguishable in the graph; for example, with
= 2−9 the difference between the fastest (Euler, 252 s) and the slowest (Runge–Kutta, 255 s) methods was about

.1%.
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Table 2
Mean error in the computation of E[X2

1] for test Eq. (27) by Euler (EU), Milstein (MIL), Runge–
Kutta (RK), modified trapezoidal (MT), PC with θ = β = 1/8 (PC18) and semi-implicit stochastic
theta (STM) methods with step sizes ∆ = 2−1, . . . 2−8.

EU MIL RK MT PC18 STM

∆ = 2−1 715.412 715.524 711.735 339.451 358.571 76.905
∆ = 2−2 544.486 544.711 542.843 128.689 159.276 36.764
∆ = 2−3 353.533 353.374 352.126 56.468 58.257 16.837
∆ = 2−4 205.119 204.571 203.436 23.015 26.971 6.005
∆ = 2−5 102.647 102.322 101.857 17.423 22.089 4.651
∆ = 2−6 79.076 79.109 79.107 8.244 12.097 2.775
∆ = 2−7 38.336 37.723 37.464 5.752 6.084 1.840
∆ = 2−8 18.537 17.307 17.223 2.271 3.630 1.648

Fig. 10. Time (in seconds) consumed for the calculation of E[X1] or E[X2
1] with step sizes ∆ = 2−1, . . . , 2−9 for test equation (27) by

uler (EU), Milstein (MIL), Runge–Kutta (RK), modified trapezoidal (MT), PC with θ = 1/2, β = 1/8 (PC18) and semi-implicit stochastic
heta (STM) methods.

. Conclusions

A complete analytical study for the linear mean-square stability of the two-parameter family of Euler predictor–
orrector schemes for scalar stochastic differential equations has been carried out. The analyzed family is given in
erms of the parameters θ , β that control the degree of implicitness of the drift and diffusion terms respectively
f the method. Since SSDE ⊈ S(θ,β)(∆) for all (θ, β) ∈ [0, 1] × [0, 1] and any ∆ > 0, PC methods are not
-stable; and for each (θ, β) a constant ∆(θ,β) such that the (θ, β)-PC method applied with step-size ∆ > 0 to a

table problem is stable if ∆ < ∆(θ,β) has been found. In addition we have calculated and represented for each
θ, β)-method its MS-stability region. We have confirmed the unexpected fact of losing numerical stability by
educing the step-size ∆. In some cases this fact is due to the composition in disconnected parts of the stability
egion, e.g. if (θ, β) = (1/9, 0); in others, to the non convexity of the stability region. We have obtained that the
reatest stability regions correspond to (θ, β)-methods with θ around 1/7 and β between 1/8 and 1/9. Increasing the
alues of the parameters from these values to 1, it can be observed that the stability region declines, corresponding
o θ = β = 1 the smallest stability region. Finally, we can affirm that the best stability behavior corresponds to
θ, β)-methods with θ = 1/2 and β < θ .

Different examples proposed along the text show that PC methods overcome explicit ones with the same (in
ome cases greater) strong order in accuracy and stability, but with similar computational cost. On the other hand,

he better accuracy of implicit stochastic theta methods requires double computational effort than for PC methods.
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Fig. 11. Comparison between MS-stability region (shaded area) of (θ, β)-predictor corrector schemes for θ = 0, 1
9 , 1

8 , 1
6 , 1

4 , 1
2 , 1, β =

0, 1
9 , 1

8 , 1
2 , 1, and the stability region of test equation (squared area).
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