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A B S T R A C T

Swarm-based algorithms define a family of methods that consider a population of very simple individuals that
cooperate to solve a difficult problem. The Shuffled frog-leaping algorithm is a method of this type that has
been applied to solve different types of problems. This article describes the application of this algorithm to the
color quantization problem. Although the selected method was developed to solve optimization problems, this
work shows how it can be adapted to solve the problem proposed. The proposed method uses the mean squared
error as the objective function of the optimization problem to be solved. To reduce the execution time of the
algorithm, it is applied to a subset of pixels of the original image. As a result, a quantized palette is obtained that
is used to define the quantized image. Computational results indicate that the proposed method can generate a
quantized image with low computational cost. Moreover, the quality of the image generated is better than that
of the images obtained by several well-known color quantization methods.

1. Introduction

In recent years several artificial intelligence methods have been
proposed to tackle difficult problems, of which swarm intelligence is
included. Swarm-based algorithms are nature-inspired techniques based
on the collective behavior of self-organized and decentralized systems
(Kar, 2016). They consider a population of individuals (particles, birds,
bees, ants, pollen grains among others) and imitate the behaviors
observed in natural systems and apply them to solve problems. These
methods have been applied to solve a wide variety of problems (Fister
et al., 2014; Karaboga et al., 2014; Neshat et al., 2014; Mavrovouniotis
et al., 2017; Shehab et al., 2017; Cheng et al., 2018).

The Shuffled frog-leaping algorithm (SFLA) is a swarm-based method
designed to solve optimization problems (Eusuff and Lansey, 2003;
Eusuff et al., 2006). This method is inspired by the behavior of frogs
when looking for food, and combines the benefits of memetic algorithms
and swarm-based algorithms. To solve a problem, a population of frogs
is considered. Each frog represents a feasible solution to the problem,
and the quality or fitness of the said solution is calculated based on the
objective function of the problem. The initial population includes frogs
randomly placed on the search space. According to the fitness of the
frogs, the population is divided into several subsets, called memeplexes.
The frogs in a memeplex evolve through a process of memetic evolution
that allows them to perform a local search without taking into account
the frogs in other memeplexes. During this process, the worst frog tries
to leap to a position with more food (that is, to a better position in the
search space). This movement takes into account the experience of this
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frog and the feedback coming from the best frog in the memeplex or
the best frog in the population. If the new position is worse than the
previous position, the frog moves to a random position. In this way,
each memeplex determines a local solution to the problem during the
memetic evolution process. After this, the frogs in all the memeplexes
are brought together, allowing them to exchange information and to
perform global evolution. The local search and shuffling processes are
applied iteratively until a convergence criterion is satisfied.

Interest in the SFLA method is shown by the fact that many au-
thors have analyzed their characteristics and applications (Sarkheyli
et al., 2015). This algorithm has been applied to solve a variety of
problems, such as water distribution networks design (Mora-Melia et al.,
2016), neural network training (Tripathy et al., 2015), assembly line
sequencing (Guo et al., 2015), tuning of PID controllers (Xiao et al.,
2016), job-shop scheduling (Lei et al., 2017), clustering (Xunli and
Feiefi, 2015), optimal power flow (Azizipanah-Abarghooee et al., 2014)
and routing problems (Luo and Chen, 2014; Luo et al., 2015). In
relation to image processing, this method has been applied to image
segmentation (Ladgham et al., 2015a; Ma and Zhu, 2017; Wang et al.,
2018), image threshold selection (Ladgham et al., 2015b), face detec-
tion (Torkhani et al., 2017) and image classification (Ladgham et al.,
2014).

This article proposes a new application for SFLA in the field of
image processing to solve the color quantization problem, which is
an operation that attempts to reduce the number of colors in an
image without the loss of quality or important global information. It
is evident that currently existing devices can display images with many
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colors, but other aspects of working with images, such as their storage
or transmission, must be taken into account (both features are very
important, for example, for reducing the loading time of web pages
that include images). Certainly, the number of colors of an image also
influences the storage space it occupies. Therefore, if the number of
distinct colors of an image is reduced, this can also reduce the size of
the file that contains the image, which is advantageous for the storage
(less space) and transmission (more velocity) of that image (Zain Eldin
et al., 2015; Alqudami and Kim, 2016; Kekre et al., 2016; Rabie, 2017).
On the other hand, color quantization is also related to other image
processing operations such as texture analysis (Ponti et al., 2016),
segmentation (An and Pun, 2014; Fu et al.) and content-based image
retrieval (Liu et al., 2015; Prasad et al., 2016).

The rest of the paper is organized as follows: first, the color quanti-
zation problem is defined and several interesting solution methods are
described; then, the operations of the SFLA algorithm are presented.
Section 4 describes the method proposed in this article for performing
color quantization using the SFLA algorithm and Section 5 includes the
computational results. Finally, the conclusions are presented.

2. The color quantization problem

2.1. Problem definition

Let us consider an image with 𝑛 pixels, organized in 𝑎 rows and
𝑏 columns. In the RGB color space, each pixel 𝑝𝑖, with 𝑖 ∈ [1, 𝑛], is
characterized by three values in the range of 0 to 255, corresponding
to the intensity of red, green and blue: 𝑝𝑖 = (𝑅𝑖, 𝐺𝑖, 𝐵𝑖). The color palette
used to represent the image has more than 16 million colors.

The quantization of images is a process that includes two operations.
The initial operation consists of defining a quantized palette that
includes a reduced number of colors, 𝑞. The next operation uses the
colors of that palette to represent the original image thus obtaining the
quantized image.

The quantized palette includes 𝑞 elements, {𝑐1,… , 𝑐𝑞}, where each
element is an RGB color, 𝑐𝑗 = (𝑅𝑗 , 𝐺𝑗 , 𝐵𝑗 ). To define the quantized
image, each pixel 𝑝𝑖 of the original image is replaced with a pixel 𝑝′𝑖
whose color is one of the colors of the quantized palette.

2.2. Color quantization methods

Garey et al. (1982) demonstrated that finding the optimal quantized
palette is an NP-complete problem. As a consequence, several heuristic
methods have been proposed to solve the color quantization problem.
Those methods can be classified into splitting methods and clustering-
based methods. The methods of the second type can obtain better
images, but are more time consuming.

Splitting methods apply a recursive division of the color space until
𝑞 regions are obtained. When the process ends, the quantized palette
includes a representative color of each region. Some methods which
apply this technique are Median-cut (Heckbert, 1982), Variance-based
method (Wan et al., 1990), Octree (Gervautz and Purgathofer, 1990),
Binary splitting (Orchard and Bouman, 1991), and Wu’s methods (Wu,
1991, 1992).

The Median-cut method divides the color space into rectangular
boxes. Each iteration selects the box that includes the largest number of
pixels and divides it along the longest axis at the median point. When the
process ends, the centroid of each box defines a color of the quantized
palette. Each color of this palette represents approximately the same
number of pixels in the original image. The colors of the original image
associated with fewer pixels are not well represented in the final image.

The Variance-based method applies the same idea as Median-cut,
but the selected box is the one with the largest weighted variance.
The splitting axis is the one with the least weighted sum of projected
variances and the splitting point is the one that minimizes the marginal

squared error. Since this method takes into account the actual distri-
bution of colors in the original image, the quality of the quantized
image improves. Nevertheless, the operations performed are more time-
consuming.

The Octree method uses a tree structure to define the quantized
palette. Each node of the tree can have 8 children and only needs 8
levels to store the colors of an RGB image. During the first step of
this algorithm, the pixels of the original image are used to build the
tree. Then, an iterative process merges the leaves that represent fewer
pixels; this process concludes when the number of leaves reduces to 𝑞.
The quantized image is worse when the original image includes similar
colors in general, but has many different low-frequency colors or noise.

The Binary splitting method builds a binary tree whose leaves
represent subsets of the pixels of the original image. Each subset is
represented by the average color of all the pixels in that subset. At the
beginning of the algorithm, the root node of the tree represents the set
of all the pixels of the original image. Each iteration of the algorithm
selects the leaf node with the largest distortion and creates two children
of this node, in such a way that the pixels associated with the parent
are divided into two subsets and each one is associated with a child.
The algorithm ends when the tree includes 𝑞 leaves, each one defining
a color of the quantized palette. A disadvantage of this method is that
it requires to compute the principal axis each time a leaf is split.

The Greedy orthogonal bipartitioning method proposed by Wu is
similar to the Variance-based method, but in this case the selected box
is divided along the axis that minimizes the sum of the variances of
both sides (Wu, 1991). This is a very fast color quantization method
because the values used to perform the splitting process are computed
once before this process starts. The same author proposed another
method that applies dynamic programming (Wu, 1992). This method
sorts the colors along their principal axis and divides the color space
with respect to this ordering; the resulting constrained optimization
problem is solved by dynamic programming. This method generates
better quantized images than Median-cut and Variance-based methods,
but it consumes more time.

Clustering-based methods divide the pixels of the image into clusters
or groups according to the similarity of the pixels; each cluster is
represented by a single color in the quantized palette. The K-means
method, the artificial neural networks or the swarm-based algorithms
are some of the clustering methods that have been applied to perform
color quantization.

The K-means algorithm is a very popular clustering method that
distributes a set of points among 𝑘 independent groups or clusters, 𝑘
being a predefined value. The method selects 𝑘 initial centroids and
applies an iterative process to improve them. Each iteration performs
two operations: the first one associates each point with the closest
centroid, so that all the points associated with the same centroid define
a cluster; and the second operation computes the centroids of the new
clusters defined in the previous operation. The operations can be applied
to a predefined number of iterations or can end when a predefined
convergence is reached. Although this method is easy to implement,
it is influenced by the initial centroids and is very time consuming.
Applications of K-means to color quantization appear in Verevka and
Buchanan (1995), Kasuga et al. (2000), Hu and Su (2008) and Celebi
(2009, 2011).

The Fuzzy c-means algorithm applies the same idea as K-means, but
in this case each point can belong to more than one cluster. There is a
set of membership levels associated with each point which indicates the
strength of the association between that point and a particular cluster. It
should be noted that Fuzzy c-means is slower than K-means. This method
has been applied to color quantization in Özdemir and Akarun (2002),
Schaefer and Zhou (2009) and Wen and Celebi (2011). As described for
K-means, the results of this method also depend on the initial values.

The Neuquant method is the most representative application of
neural networks for color quantization (Dekker, 1994). This method uses
a Kohonen neural network with 𝑞 neurons, which is trained with the
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pixels of the original image; the final weights of the neurons define the
quantized palette. When this method is applied to images with few col-
ors, the general colors can become similar and the colors corresponding
to fewer pixels are not represented in the final image. Other applications
of neural networks for color quantization are described in Papamarkos
et al. (2002), Chang et al. (2005), Wang et al. (2007), Rasti et al. (2011)
and Palomo and Domínguez (2014).

Related to the swarm-based algorithms applied to color quantization,
some interesting proposals appear in Omran et al. (2005), Ozturk et al.
(2014), Ghanbarian et al. (2007) and Pérez-Delgado (2015). A literature
review shows articles whose titles indicate they apply swarm algorithms
to the color quantification problem, but these studies tend to focus on
other image-related processing problems.

Omran et al. (2005) applied the Particle swarm optimization algo-
rithm. This method is combined with the K-means algorithm, which is
applied to each particle in a probabilistic way. In this case each particle
of the swarm represents a quantized palette and its quality is computed
by the mean squared error. The particles move on the search space and
this movement improves the quantized palette they represent. When the
process ends, the best particle in the swarm defines the palette that will
be used to obtain the quantized image. The main disadvantage of this
method is the execution time.

Ozturk et al. (2014) combine the Artificial bee colony algorithm with
K-means in a similar way to that proposed by Omran et al., where the
objective function is the mean squared error and K-means is applied in
a probabilistic way, but artificial bees are used instead of particles. In
this case, a set of food sources is considered, each of which represents a
quantized palette. Operations are applied that simulate the behavior of
honey-collecting bees, which allow the palettes to be improved. When
such operations conclude, the best food source represents the solution to
the problem. This method consumes more time than the Particle swarm
optimization algorithm.

Ghanbarian et al. (2007) applied an ant-based clustering method to
perform color quantization. First, the pixels of the original image are
spread on a grid, and then a set of artificial ants moves these pixels.
Each ant takes one pixel and moves it to another position on the grid
where there are similar pixels. With these movements, the ants define
a set of clusters, each of which includes similar pixels. The process of
creating the clusters can be slow.

Pérez-Delgado (2015) proposed another method that applies artifi-
cial ants. In this case, each ant represents a pixel of the original image
and the ants are organized in a tree structure according to the similarity
of the pixels they represent. In this way, the pixels of each subtree define
a cluster and are represented in the quantized image by the color of
that subtree. The results of this method are influenced by the value of a
parameter used to determine when an ant connects to the tree.

3. The shuffled frog-leaping algorithm

SFLA is inspired by the behavior of a group of frogs when they are
seeking for food (Eusuff and Lansey, 2003; Eusuff et al., 2006). Two
main behaviors are imitated: leaping and shuffling. A frog leaps to find
a position that has more food than the current one, and then shuffles
to exchange information. The algorithm considers a population of frogs,
each representing a solution to the problem of interest. This population
is divided into groups, called memeplexes, and the frogs of each group
perform a local search. After this, the frogs of all the groups are shuffled
so as they exchange information.

Let us consider an optimization problem defined on an 𝑟-dimensional
space, with an objective function 𝑓 (𝑥) associated with it. The solution
to this problem is an element 𝑥𝑗 = (𝑥𝑗1,… , 𝑥𝑗𝑟) of the search space that
maximizes (or minimizes) the objective function.

To solve the optimization problem using the SFLA algorithm, a set
of 𝑅 frogs is considered. Each frog 𝑖 has a position associated with
it, 𝑥𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑟), which represents a solution to the problem. The

fitness or quality of such solution is computed by applying the objective
function to the position of the frog: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝑓 (𝑥𝑖).

Algorithm 1 summarizes the operations of SFLA. The first operation
places the frogs on random positions of the search space. Next, an
iterative process is applied to a certain number of iterations 𝑇𝑚𝑎𝑥 (the
process could also stop when a predetermined error is reached). When
the iterations end, the position of the frog with the best fitness defines
the solution to the problem.

The first operation of each iteration sorts the frogs by decreasing
fitness. Once the frogs have been sorted, they are divided into sev-
eral memeplexes. Let 𝑚 represent the number of memeplexes to be
defined and 𝑟1, 𝑟2,… , 𝑟𝑅 the list of frogs sorted by fitness. Such list is
divided into consecutive sublists of size 𝑚: (𝑟1,… , 𝑟𝑚), (𝑟𝑚+1,… , 𝑟2𝑚),
. . . , (𝑟𝑘𝑚+1,… , 𝑟𝑅); obviously, if 𝑅 is not a multiple of 𝑚, the last sublist
will contain less than 𝑚 elements. Next, the frogs in the same position of
each sublist are associated with the same memeplex: 𝑟1, 𝑟𝑚+1,… , 𝑟𝑘𝑚+1
are associated with the memeplex 1, 𝑟2, 𝑟𝑚+2,… , 𝑟𝑘𝑚+2 are associated
with the memeplex 2, and so on.

The next operation of the algorithm (lines 6 to 21) applies a local
search that considers the frogs of a memeplex independent of the
remaining frogs in the population. An iterative process applies a certain
number of iterations, 𝐽𝑚𝑎𝑥, to each memeplex in an attempt to improve
the solution found by the frogs of that particular memeplex. This process
first determines the best and the worst frog in the memeplex. Then,
a candidate position is computed to move the worst frog to it. This
candidate position, 𝑥′𝑤𝑜𝑟𝑠𝑡, is computed by applying Eqs. (1) and (2),
where 𝜌 is a random value between 0 and 1, 𝑥𝑏𝑒𝑠𝑡 is the position of
the best frog in the memeplex and 𝑥𝑤𝑜𝑟𝑠𝑡 is the position of the worst
frog in the memeplex. 𝐷 is limited to take values between −𝐷𝑚𝑎𝑥 and
𝐷𝑚𝑎𝑥, where 𝐷𝑚𝑎𝑥 is the maximum amount of change allowed in a frog’s
position.

𝑥′𝑤𝑜𝑟𝑠𝑡 = 𝑥𝑤𝑜𝑟𝑠𝑡 +𝐷 (1)

𝐷 = 𝜌(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑤𝑜𝑟𝑠𝑡) (2)

If the candidate position has better fitness than the current position
of the worst frog, then 𝑥𝑤𝑜𝑟𝑠𝑡 is replaced with 𝑥′𝑤𝑜𝑟𝑠𝑡; otherwise another
candidate position is computed by Eqs. (1) and (3). Eq. (3) has the same
structure as Eq. (2), but in this case the best frog in the memeplex is
replaced by the best frog in the population, whose position is denoted
as 𝑥𝑔 .

𝐷 = 𝜌(𝑥𝑔 − 𝑥𝑤𝑜𝑟𝑠𝑡) (3)

If the second candidate position computed for the worst frog in the
memeplex has better fitness than its current position, the new value
replaces the previous one, or else the worst frog moves to a random
position in the search space.

The previous operations are applied to each memeplex indepen-
dently. When all the memeplexes have been processed, the frogs of the
𝑚 groups are combined (shuffled) to redefine a single group.

When SFLA has performed 𝑇𝑚𝑎𝑥 iterations, the position of the frog
with the best fitness, labeled 𝑥𝑔 , defines the solution to the problem.

4. SFLA applied to solve the color quantization problem — SFLA-
CQ

This paper proposes the application of the SFLA algorithm to perform
color quantization. To distinguish the general algorithm from the pro-
posal presented in this article, which is to solve the color quantization
problem, they are identified as SFLA and SFLA-CQ, respectively.

SFLA-CQ considers a set of 𝑅 frogs each representing a quantized
palette; that is, the position of frog 𝑟 is the palette 𝑥𝑟 = (𝑐𝑟1,… , 𝑐𝑟𝑞), where
𝑐𝑟𝑗 is an RGB color: 𝑐𝑟𝑗 = (𝑅𝑟

𝑗 , 𝐺
𝑟
𝑗 , 𝐵

𝑟
𝑗 ).

To compute the fitness or quality of the quantized palette represented
by a frog, an objective function must be defined for the problem. In this
case, the objective function considered is the mean squared error (MSE),
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Algorithm 1 Shuffled frog-leaping algorithm
1: Initialize the swarm of frogs
2: for 𝑡 = 1 to 𝑇𝑚𝑎𝑥 do
3: Compute the fitness of each frog
4: Sort the frogs by fitness
5: Create the 𝑚 memeplexes
6: for each memeplex do
7: for 𝑗 = 1 to 𝐽𝑚𝑎𝑥 do
8: Determine the best and the worst frog in this memeplex

(denoted 𝑏𝑒𝑠𝑡 and 𝑤𝑜𝑟𝑠𝑡, respectively)
9: Apply Eqs. (1) and (2) to compute a candidate position for

the worst frog in this memeplex, 𝑥′𝑤𝑜𝑟𝑠𝑡
10: if 𝑥′𝑤𝑜𝑟𝑠𝑡 is better than the position of the worst frog then
11: Take 𝑥′𝑤𝑜𝑟𝑠𝑡 as the new position of the worst frog
12: else
13: Apply Eqs. (1) and (3) to compute a candidate position for

the worst frog in this memeplex, 𝑥′𝑤𝑜𝑟𝑠𝑡
14: if 𝑥′𝑤𝑜𝑟𝑠𝑡 is better than the position of the worst frog then
15: Take 𝑥′𝑤𝑜𝑟𝑠𝑡 as the new position of the worst frog
16: else
17: Move the worst frog to a random position
18: end if
19: end if
20: end for
21: end for
22: Shuffle the frogs of the memeplexes
23: end for
24: Take the frog with the best fitness as the solution to the problem

computed by Eq. (4), where 𝑝𝑖 is the RGB color of a pixel of the original
image and 𝑝′𝑖 is the color of the pixel in the same position, but in the
quantized image. This objective function must be minimized.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
‖𝑝𝑖 − 𝑝′𝑖‖

2 (4)

The MSE is a value commonly used in the color quantization
literature to evaluate the quality of a quantized image (Celebi, 2009,
2011; Scheunders, 1997; Pérez-Delgado, 2015). Moreover, this error has
also bee used in Omran et al. (2005) and Ozturk et al. (2014) to apply
swarm-based methods to color quantization.

The input information for SFLA-CQ is the original image and the
result is a quantized palette with 𝑞 colors, in which case such palette
must be used to generate the quantized image.

The structure of the SFLA-CQ algorithm is basically the same as that
of the general SFLA algorithm. Nevertheless, some operations must be
adapted to the problem of interest. In addition, SFLA-CQ includes some
extra operations not included in SFLA. The next two subsections explain
both types of operations in detail.

4.1. SFLA operations adapted for color quantization

The following operations of the general SFLA algorithm must be
adapted to perform color quantization:

• the fitness of the solution (quantized palette) represented by a frog
must be computed based on the objective function of the problem.

• the initialization step of the algorithm (line 1 of Algorithm 1) must
define a set of initial quantized palettes.

• the selection of a candidate solution for improving the worst frog
in a memeplex (lines 9, 13 and 17 of Algorithm 1) must define
valid quantized palettes.

4.1.1. The fitness of a frog
To compute the fitness of a palette 𝑥𝑟 using Eq. (4), it is first necessary

to define the color 𝑝′𝑖 used to represent the pixel 𝑝𝑖 in the quantized
image.

The operations applied to compute the fitness of the palette 𝑥𝑟 =
(𝑐𝑟1,… , 𝑐𝑟𝑞) are the following:

1. for each pixel 𝑝𝑖 of the original image, the closest color of the
palette 𝑥𝑟 is determined. For this purpose, 𝑝𝑖 is compared to the
𝑞 elements of 𝑥𝑟, and the closest of such elements, 𝑗, is selected
to represent 𝑝𝑖 in the quantized image.
This operation determines which pixels of the original image will
be represented in the quantized image by the same color of the
quantized palette.

2. each color 𝑐𝑟𝑗 of the quantized palette is replaced with the average
color of all the pixels associated with it in the previous step.

3. the fitness of 𝑥𝑟 is computed by Eq. (4), where 𝑝′𝑖 corresponds to
the element 𝑗 of the quantized palette associated with 𝑝𝑖 in the
first operation. Note that in the first step the element 𝑗 of the
palette was selected to represent to 𝑝𝑖 in the quantized image,
but the color 𝑐𝑟𝑗 used in Eq. (4) is the new value computed in the
second step.

It should be noted that before applying Eq. (4) to compute the fitness,
each color of the quantized palette is replaced with the average color
of all the pixels in the original image associated with that element of
the palette. Computational results show that better images are obtained
when the palette is recalculated in this way before calculating the
fitness. If this operation is not applied, the execution time decreases,
but the quantized image is worse.

To reduce the execution time of the SFLA-CQ algorithm, when the
position of a frog is established, the fitness computed for such position is
also stored, so that the fitness is recomputed only when a new position
must be defined for the frog.

4.1.2. Initialization of the swarm of frogs
The first operation of the algorithm associates a palette with each

frog. To define the initial palettes, first the initial position of each frog
is defined by selecting 𝑞 random pixels of the original image. Therefore,
the initial position (palette) associated with frog 𝑟 includes 𝑞 colors,
𝑥𝑟 = (𝑐𝑟1,… , 𝑐𝑟𝑞), where each element 𝑐𝑟𝑖 is a random pixel of the original
image.

Once the initial position of each frog has been defined, the fitness
of this position is computed, since this value is used in the following
operations of the algorithm. As described in the previous section, when
the fitness of 𝑥𝑟 is calculated, the colors of the palette are recalculated.
Therefore, each random value 𝑐𝑘𝑖 is replaced with the average color of all
the pixels in the original image for which 𝑐𝑘𝑖 is the closest color among
all the elements in the palette.

4.1.3. Candidate palette for the worst frog in a memeplex
When a candidate position is determined for the worst frog in a

memeplex, the result of applying Eq. (1) is always limited to taking
values within [0, 255] in order to use valid RGB colors.

On the other hand, when the worst frog must move to a random
position (line 17 of Algorithm 1), the new palette is generated in the
same way described in Section 4.1.2 to define each initial palette.

4.2. New operations of SFLA-CQ algorithm

SFLA-CQ algorithm includes new operations not included in SFLA:

• before applying the algorithm, the pixels of the original image are
sampled in order to reduce the execution time of the method.

• the best frog is improved.
• when the algorithm ends, the best quantized palette is used to

define the quantized image.
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Fig. 1. Images used for the tests.

4.2.1. Sampling of the original image
The size of the original image influences the execution time of the

algorithm. If the 𝑛 pixels of the image are considered when the algorithm
is applied, better quantized images can be obtained, but with more
computational effort. Therefore, the proposed algorithm considers the
possibility of applying the operations to a subset of pixels of the original
image. Instead of considering the 𝑛 pixels of the image, in this case, a
subset of 𝑛′ pixels is selected with 𝑛′ < 𝑛.

To take pixels of the whole image, they are sampled at a distance
that is determined by the parameter 𝑠𝑡𝑒𝑝. Given the list of pixels
that defines the successive rows of the original image, {𝑝1,… , 𝑝𝑛}, the
sampled image includes the pixels that are at a distance given by 𝑠𝑡𝑒𝑝:
{𝑝1, 𝑝1+𝑠𝑡𝑒𝑝, 𝑝1+2𝑠𝑡𝑒𝑝, 𝑝1+3𝑠𝑡𝑒𝑝,… , }.

The sampled image is used to compute the fitness of the palettes. On
the contrary, the selection of a random palette (in the initialization step
or when a random candidate position is selected for the worst frog) does
not consider the sampled image. This operation considers all the pixels
of the original image in order to avoid that the palettes could include
very similar colors if the set is too small.

4.2.2. Improvement of a frog
The SFLA algorithm only tries to improve the worst solution (frog)

in each memeplex. Nevertheless, the SFLA-CQ algorithm also tries to
improve the best solution in the population, in order to obtain better
results. This new operation is applied at the end of each iteration of
the algorithm, after applying the shuffling operation (after line 22 of
Algorithm 1).

The improvement applied consists of recomputing the fitness of the
palette represented by the best frog. As described in Section 4.1.1, when
the fitness of such frog is computed, the palette represented by this frog
is also recomputed. As a result, the fitness of the new palette is better
than the fitness of the previous one.

Computational experiments show that better results are obtained
if the improvement procedure is applied to all of the frogs in the
population, but this also increases the execution time. In this case the
improvement in the quality of the quantized image may be less useful
due to the time requirements needed for its execution. For this reason,
the improvement is applied to only one frog.

4.2.3. Generation of the quantized image
When the iterative process ends, the quantized palette associated

with the global best frog defines the solution to the problem: 𝑥𝑔 =
{𝑐𝑔1 ,… , 𝑐𝑔𝑞 }, with 𝑐𝑔𝑘 = (𝑅𝑔

𝑘, 𝐺
𝑔
𝑘 , 𝐵

𝑔
𝑘). This palette is used to define the

quantized image. To generate such image, the entire original image
must be considered (even though the algorithm has used sampled data),
since it is necessary to decide which color of the quantized palette will

Table 1
Test images: name, number of rows and columns (pixels) and number of different colors.

Image Dimensions Colors Image Dimensions Colors

Plane 512 × 512 77041 Landscape 600 × 450 93255
Lake 512 × 512 168459 Headbands 600 × 450 93303
Girl 512 × 512 79228 Dessert 600 × 450 103792
Mandrill 512 × 512 230427 Snowman 450 × 600 92413
Peppers 512 × 512 185525 Cathedrals beach 600 × 450 66305
Lenna 512 × 512 148279 Beach 600 × 450 124335

represent each point of the original image. For this purpose, each pixel
𝑝𝑖 of the original image is compared to each color of the quantized
palette, and the closest color of the palette is used to represents 𝑝𝑖 in
the quantized image.

If the SFLA-CQ algorithm uses sampled data (if 𝑠𝑡𝑒𝑝 > 1), the colors
of 𝑥𝑔 are computed based on a subset of pixels of the original image,
which is small when 𝑠𝑡𝑒𝑝 is large. Therefore, to better adjust the palette
to the entire set of pixels of the original image, the palette is updated
before generating the quantized image. This update consists of replacing
each color 𝑐𝑔𝑘 with the average color of all the pixels of the original image
associated with 𝑐𝑔𝑘 in the operation described in the previous paragraph.
This last operation improves the result, especially for large values of 𝑠𝑡𝑒𝑝
which uses a sampled image with very few points.

5. Results and discussion

The SFLA-CQ algorithm was coded in C language and was applied to
the 12 images shown in Fig. 1. The first 6 are images commonly used to
test color quantification methods (they are available at Weber, 2018)
and the remaining ones are new test images defined by the author of
this article, which are available at Pérez-Delgado (2018). The features
of the test images are summarized in Table 1.

Tests were performed on a PC running under Linux operating system,
with 8 GBytes of RAM and AMD Ryzen 7 1800X Turbo processor
(4.0 GHz). The value selected for the parameters of the algorithm was:
𝑅 = 8, 𝑚 = 2, 𝐷𝑚𝑎𝑥 = 5, 𝐽𝑚𝑎𝑥 = 4 and 𝑇𝑚𝑎𝑥 = 10. Although the general
tests were performed with the previous values, this section also analyzes
the results obtained with different values of each parameter.

To evaluate the effect of data sampling on the error and the execution
time, several values were considered for the 𝑠𝑡𝑒𝑝 parameter: 𝑠𝑡𝑒𝑝 =
{1000, 500, 200, 100, 10, 5, 2, 1}. These values of 𝑠𝑡𝑒𝑝 generate sampled
images with the following number of pixels: {263, 525, 1311, 2622, 26215,
52429, 131072, 262144} for images (a) to (f) of Fig. 1; {270, 540, 1350, 2700,
27000, 54000, 135000, 270000} for the remaining images.

Four palette sizes were considered: 𝑞 = {32, 64, 128, 256}. Twenty
independent tests were performed for each image, palette size and 𝑠𝑡𝑒𝑝
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Table 2
Results of 20 independent tests with 𝑚 = 2, 𝑅 = 8, 𝐽𝑚𝑎𝑥 = 4, 𝑇𝑚𝑎𝑥 = 10, 𝐷𝑚𝑎𝑥 = 5 and several values of the 𝑠𝑡𝑒𝑝 parameter. (𝑀𝑆𝐸𝑚: minimum MSE; 𝑀𝑆𝐸𝑎: average
MSE; 𝑑𝑒𝑣: standard deviation; 𝑇 : execution time (milleseconds)).

32 colors 64 colors 128 colors 256 colors

𝑠𝑡𝑒𝑝 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇

Plane 1000 93.64 129.28 18.6 60 70.64 84.46 10.3 123 52.34 55.00 1.7 260 41.70 44.94 1.1 487
500 106.55 125.58 12.6 73 59.05 74.25 8.8 139 40.34 46.42 3.5 287 33.02 35.11 1.2 575
200 81.55 114.09 14.2 97 56.26 64.18 6.1 182 36.44 42.28 3.1 379 28.29 29.68 0.9 739
100 80.69 108.13 13.7 139 53.73 62.82 7.0 261 36.63 39.93 2.1 514 24.94 27.32 1.4 1026
10 90.95 111.98 11.4 854 47.91 57.47 5.3 1649 32.28 36.49 1.9 3146 21.83 23.36 0.8 6507
5 102.13 123.11 14.0 1672 52.96 58.61 4.4 3305 31.38 34.97 2.2 6180 21.70 23.34 1.0 12669
2 81.55 105.41 12.2 3885 52.37 60.55 7.1 7769 33.06 35.88 1.5 15081 21.47 23.21 1.0 30198
1 81.09 112.42 14.8 7755 46.89 59.76 8.1 15400 33.41 37.55 2.4 29939 21.30 23.39 1.2 60463

Lake 1000 239.88 251.46 5.8 62 172.04 183.16 6.5 126 133.58 138.42 2.7 254 109.95 114.16 2.0 506
500 220.38 225.90 4.4 72 154.72 160.77 3.2 146 110.27 117.66 4.0 281 81.10 85.36 1.9 584
200 214.41 219.64 2.8 98 146.13 151.91 3.3 186 99.06 104.90 2.6 366 71.31 75.80 2.3 745
100 208.97 214.14 3.8 140 137.70 143.80 3.6 256 94.86 97.44 1.7 511 64.52 66.64 1.2 998
10 203.49 206.91 2.2 892 131.80 136.00 3.0 1580 87.62 89.37 1.1 3105 58.14 60.16 1.0 6257
5 204.12 206.64 1.9 1716 132.68 136.19 3.0 3075 86.83 89.40 1.1 6165 57.32 59.16 0.8 11931
2 203.63 205.92 1.6 4181 131.30 133.94 1.4 7430 86.84 88.51 1.1 14856 56.59 58.45 0.8 28967
1 202.55 205.86 1.8 8147 131.51 133.61 1.4 14749 86.22 88.14 1.0 29328 56.64 57.95 0.8 57507

Girl 1000 125.39 136.27 6.4 62 94.81 100.25 4.8 126 69.84 75.11 4.3 244 62.25 63.69 0.8 491
500 121.19 133.56 4.8 71 87.77 93.36 4.5 147 53.55 70.95 5.1 281 57.09 58.94 2.3 561
200 86.27 102.80 12.0 96 55.71 58.38 1.8 198 35.50 39.29 2.8 375 23.25 27.52 2.4 773
100 85.19 91.27 6.0 140 53.11 55.29 1.5 273 33.17 36.81 1.4 539 23.26 25.81 1.8 1057
10 82.98 89.16 7.4 881 50.32 52.51 1.0 1697 30.57 33.72 1.1 3316 20.36 21.79 0.8 6468
5 82.01 87.62 3.4 1697 50.94 52.98 1.0 3252 31.23 33.30 0.9 6222 19.98 21.76 1.0 12201
2 84.13 87.30 2.4 4171 49.48 52.07 1.3 7820 31.65 33.26 0.8 15327 19.80 21.70 1.0 29450
1 83.06 87.10 4.2 8088 50.98 52.41 0.9 15490 31.81 33.11 0.8 29753 19.94 21.33 0.8 58985

Mandrill 1000 416.42 437.95 14.4 63 268.61 293.55 8.3 127 196.42 202.00 3.8 259 158.07 161.63 2.0 512
500 394.12 407.30 7.2 73 261.29 268.25 4.8 144 175.79 184.33 4.4 330 127.66 130.94 1.8 609
200 390.86 397.43 5.6 102 250.75 255.48 3.1 191 168.56 172.18 2.5 402 114.05 117.79 1.7 733
100 380.61 387.04 3.8 144 244.97 249.38 2.7 273 161.88 164.30 1.3 562 108.38 110.17 1.2 1011
10 375.29 382.09 3.7 892 239.15 240.77 1.2 1721 153.60 154.77 0.7 3500 99.68 100.58 0.6 6586
5 375.52 379.65 3.0 1688 237.90 239.69 1.6 3310 152.83 154.03 0.8 6722 98.70 99.41 0.5 12806
2 375.85 381.48 4.2 4102 236.18 239.03 1.8 7966 152.37 153.69 1.2 16734 97.82 98.55 0.5 31460
1 373.72 379.10 3.7 8089 236.31 238.87 1.6 15768 151.85 153.01 0.8 32843 97.45 98.05 0.4 65011

Peppers 1000 282.67 300.94 8.1 60 186.37 206.31 8.3 125 142.67 149.69 5.3 259 117.66 121.83 3.9 490
500 253.84 259.03 4.3 70 161.87 168.56 4.8 142 114.95 120.74 4.0 284 83.75 87.92 1.9 560
200 238.76 256.71 12.8 96 143.20 149.44 5.8 181 93.70 98.42 2.3 359 64.48 67.65 1.4 727
100 232.24 242.20 8.1 141 141.96 148.67 4.6 259 90.31 93.24 2.5 506 61.75 63.01 0.8 1004
10 230.45 234.86 2.5 884 137.09 143.66 3.2 1635 85.61 88.45 3.3 3221 55.78 57.24 0.7 6323
5 231.35 236.74 5.2 1678 134.75 141.25 4.3 3109 84.72 89.21 4.2 6069 55.51 56.56 0.6 12313
2 230.63 235.59 3.6 4026 135.27 141.83 3.7 7518 84.48 87.10 2.9 15149 55.02 55.89 0.6 30413
1 230.14 233.98 2.3 7962 134.47 140.55 3.6 14767 83.84 87.20 3.4 29386 54.71 55.60 0.5 58755

Lenna 1000 127.70 140.25 7.22 63 84.59 92.45 4.77 126 62.43 65.17 1.71 265 50.51 51.52 0.88 514
500 130.21 132.79 2.12 72 82.81 86.32 2.25 142 54.20 56.44 1.16 296 41.16 41.79 0.62 610
200 124.07 128.08 2.48 98 76.63 79.41 1.57 192 52.11 53.12 0.68 409 35.57 36.82 0.74 829
100 120.93 123.40 2.35 144 75.46 77.13 1.13 280 50.38 51.11 0.69 577 34.07 34.86 0.53 1142
10 118.65 121.56 2.21 955 73.16 74.79 1.01 1865 47.06 48.23 0.76 3714 31.62 31.96 0.31 7626
5 119.13 121.27 1.63 1908 73.04 73.87 0.53 3548 46.80 47.74 0.75 7193 31.08 31.56 0.25 14665
2 119.34 120.50 0.74 4579 72.76 74.32 1.52 8589 46.78 47.32 0.40 17888 30.65 31.19 0.39 35801
1 118.37 120.37 1.21 8654 72.41 73.76 0.98 17022 46.88 47.64 0.57 35134 30.69 31.06 0.24 70477

value; the results of these tests appear in Tables 2 and 3. To evaluate
the quality of the solution, the MSE was considered (Eq. (4)). The tables
show the minimum error, the average error and the standard deviation,
as well as they show the average execution time.

It can be observed that the size of the sampled image influences
the execution time and the quality of the final image. When using
sampled images with few pixels, worse quantized images are obtained,
but the result is obtained faster. However, even for sampled images
that include very few pixels, the algorithm is capable of generating
acceptable quantized images. This can be seen in Fig. 2, which shows
the Lenna image with 32 colors obtained with different values of the
𝑠𝑡𝑒𝑝 parameter.

In general, it is observed that the average MSE obtained for tests
that consider 𝑠𝑡𝑒𝑝 ≤ 10 is very similar. Therefore, SFLA-CQ can generate
good quantized images with less time consumption if the tests consider
𝑠𝑡𝑒𝑝 = 10.

The worst MSE results are obtained for the Mandrill image, which
is the image that includes more different colors. The next images
with the worst MSE are Peppers and Lake, which also include many

different colors. On the other hand, the image with fewer different colors
(Cathedrals) generates the best MSE results.

The best quantized image obtained by SFLA-CQ with 𝑠𝑡𝑒𝑝 = 1 for
each image and palette size is included as supplementary material.

5.1. The effect of the algorithm parameters

This section includes results of several additional tests that allow
the effect of the algorithm parameters on the solution to be analyzed.
To reduce the length of this section, the comparison is applied to a
single image of the test set (the Lenna image) and only considers the
smallest and largest palettes. When a parameter is analyzed, the others
take the values used to perform the tests reported in Tables 2 and 3.
For each parameter analyzed, a figure shows the execution time and the
average MSE obtained for the Lenna image quantized to 32 and 256
colors. Since the range of time variation increases as parameter 𝑠𝑡𝑒𝑝
decreases, two sub-figures with different scales are used to represent
the execution time, each of which shows the result for half of the 𝑠𝑡𝑒𝑝
values. In general, line charts are used to show the execution time, since
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Table 3
Results of 20 independent tests with 𝑚 = 2, 𝑅 = 8, 𝐽𝑚𝑎𝑥 = 4, 𝑇𝑚𝑎𝑥 = 10, 𝐷𝑚𝑎𝑥 = 5 and several values of the 𝑠𝑡𝑒𝑝 parameter. (𝑀𝑆𝐸𝑚: minimum MSE; 𝑀𝑆𝐸𝑎: average
MSE; 𝑑𝑒𝑣: standard deviation; 𝑇 : execution time (milleseconds)).

32 colors 64 colors 128 colors 256 colors

𝑠𝑡𝑒𝑝 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇

Landsca. 1000 141.81 158.30 10.3 66 104.02 112.31 4.6 132 85.38 91.13 3.1 266 75.85 79.52 2.1 525
500 103.10 115.00 6.8 75 65.27 70.69 3.2 150 42.13 45.21 1.9 300 31.96 33.30 0.7 630
200 141.16 154.22 7.1 106 98.43 107.00 4.6 216 70.43 77.31 5.6 440 55.70 59.45 1.8 960
100 104.82 107.35 2.0 145 59.64 63.28 1.8 295 39.81 42.17 1.7 573 27.22 28.82 1.2 1212
10 98.94 102.31 2.8 949 54.54 57.72 1.5 1915 33.79 35.48 0.9 3759 22.03 22.87 0.5 7244
5 98.89 102.78 3.2 1813 55.80 57.52 1.4 3590 33.31 35.27 1.1 7317 21.10 22.58 0.5 14228
2 98.49 102.33 2.6 4381 55.53 57.55 1.1 8755 32.45 33.99 0.8 17527 20.91 22.16 0.7 35041
1 98.67 102.73 2.5 8626 55.23 56.69 1.3 17644 33.55 34.73 1.0 34613 20.80 22.05 0.5 69494

Headban. 1000 162.88 175.58 10.0 61 117.44 124.24 4.8 128 95.33 99.53 2.5 270 77.34 83.25 3.6 518
500 138.58 155.97 12.4 71 92.78 104.45 5.8 144 64.59 72.81 5.2 298 47.50 51.80 1.8 611
200 148.52 162.08 9.2 93 107.02 116.01 4.9 197 79.44 90.13 5.0 422 61.81 65.63 2.2 876
100 128.65 148.30 9.6 133 87.76 93.02 4.3 259 58.44 64.11 3.3 530 41.16 45.74 2.7 1150
10 124.60 132.01 5.1 812 74.13 82.56 6.0 1663 48.36 51.35 2.0 3323 31.67 33.02 1.2 6914
5 121.32 129.06 5.0 1558 72.79 79.38 4.0 3171 47.28 51.08 2.0 6428 30.88 32.54 1.1 13190
2 118.49 126.88 6.5 3801 72.30 79.79 2.8 7509 45.42 49.93 2.3 15347 29.79 32.12 1.1 32177
1 115.02 129.77 8.9 7418 73.44 79.12 3.2 14991 46.69 49.82 1.7 31290 30.04 31.44 1.2 64268

Dessert 1000 164.43 183.22 12.1 64 110.16 121.32 7.0 139 82.33 86.34 2.6 270 67.74 70.85 2.0 518
500 139.86 150.18 8.0 71 89.88 97.44 3.7 155 58.72 65.49 2.8 312 44.85 47.78 1.6 625
200 155.19 169.59 11.9 103 89.53 100.01 5.6 208 57.10 63.34 4.1 430 41.63 44.02 1.9 907
100 130.68 142.17 5.3 137 75.83 83.73 3.2 311 50.37 54.08 1.9 572 35.18 37.42 1.6 1219
10 121.86 128.21 4.2 900 68.89 71.81 1.8 1792 42.05 44.20 0.9 3471 26.06 27.35 0.6 6838
5 121.00 126.82 2.5 1709 66.67 70.71 2.3 3391 41.65 43.12 1.3 6673 24.99 26.51 0.7 13309
2 123.33 126.84 3.2 4100 66.91 70.75 2.3 8528 40.92 43.21 1.3 17194 25.41 26.09 0.5 32395
1 121.21 127.15 5.3 8063 68.36 71.60 2.2 16641 41.03 42.84 0.9 31867 25.45 26.46 0.4 64671

Snowman 1000 136.07 152.86 6.1 64 89.92 99.00 5.5 128 65.91 68.53 2.4 260 54.28 56.01 1.0 540
500 139.15 149.95 7.4 71 86.71 95.10 4.7 145 55.67 64.21 4.3 295 44.67 47.01 1.6 623
200 134.79 146.57 6.6 98 82.00 88.94 4.2 196 55.00 59.48 3.4 400 37.36 41.49 2.3 826
100 130.02 145.57 9.9 140 75.62 85.09 5.2 275 48.86 53.93 2.1 554 35.92 38.49 1.6 1178
10 118.15 126.04 8.7 905 63.31 69.29 3.2 1765 38.56 41.10 1.4 3286 24.66 25.91 0.7 6633
5 115.08 129.12 9.3 1711 63.32 67.98 2.4 3217 37.85 39.69 1.4 6376 23.52 25.06 0.6 12239
2 116.18 124.21 8.5 4197 64.23 68.60 2.8 7824 38.06 39.80 1.3 15172 23.68 24.81 0.6 30480
1 115.58 123.03 4.9 8165 63.01 67.81 2.9 15644 38.05 39.54 1.1 30058 23.17 24.34 0.6 61678

Cathedr. 1000 118.79 130.99 7.3 63 87.11 96.19 4.8 131 71.89 76.88 4.0 265 62.19 65.29 3.1 523
500 68.23 77.08 6.3 71 42.06 46.39 2.8 144 27.65 30.41 1.7 295 20.25 21.37 0.5 620
200 97.85 113.37 12.1 107 66.19 75.19 7.5 216 49.43 54.60 2.4 436 36.65 43.22 2.9 902
100 63.33 67.54 4.1 141 36.62 39.67 2.2 283 23.46 25.54 1.5 573 15.74 17.17 1.0 1189
10 60.97 63.89 2.3 906 32.80 35.26 1.1 1778 20.64 21.57 0.6 3597 13.46 14.21 0.3 7498
5 59.95 63.44 3.2 1722 33.52 36.07 1.8 3447 20.05 21.16 0.6 6990 13.15 13.86 0.3 14389
2 60.06 64.18 3.4 4207 32.93 35.92 1.6 8210 19.70 21.22 0.7 16977 13.23 13.73 0.3 35035
1 58.86 63.92 3.5 8206 33.32 35.43 1.0 16362 20.18 21.11 0.5 33128 13.00 13.52 0.3 70015

Beach 1000 155.80 169.41 9.0 62 95.24 101.45 3.8 132 66.26 69.52 2.0 275 53.45 55.99 1.0 530
500 150.97 156.29 4.9 73 86.61 91.67 2.3 147 55.29 57.80 1.6 310 39.79 41.05 0.8 657
200 148.61 156.90 5.2 100 88.27 92.07 2.6 207 54.43 58.73 2.0 425 37.60 38.74 0.8 935
100 141.48 149.27 3.8 149 78.73 84.05 2.7 289 49.36 52.50 1.9 595 33.46 35.02 0.8 1221
10 137.07 142.77 4.0 939 75.18 77.76 2.0 1851 45.57 47.11 0.8 3836 28.91 30.06 0.6 7456
5 136.05 142.55 4.2 1805 74.36 76.92 2.2 3631 44.80 46.78 1.2 7698 28.33 29.34 0.4 14402
2 135.51 140.50 4.2 4394 74.97 77.78 2.3 8706 45.36 46.61 0.8 20240 27.85 29.42 0.7 35390
1 136.67 143.34 6.2 8480 73.29 77.07 3.0 17244 45.42 46.72 0.7 41639 28.01 28.93 0.6 71549

they allow evolution to be easily seen. However, bar charts are used to
make the graph clearer when the lines are very close.

The 𝑠𝑡𝑒𝑝 parameter is not analyzed in this section because Tables 2
and 3 already include the results for several values of this parameter.
Regarding the other parameters, the number of iterations of the algo-
rithm (𝑇𝑚𝑎𝑥) and the number of improvement iterations applied to each
memeplex (𝐽𝑚𝑎𝑥) are those that have more influence on SFLA-CQ results.
If the value of both parameters increases, better images can be obtained,
but the execution time also increases. Therefore, it is necessary to choose
between quality and speed when assigning value to these parameters.

The following subsections analyze the effect of each parameter.

5.1.1. The effect of 𝑇𝑚𝑎𝑥
The number of iterations of the algorithm greatly influences the

execution time. Fig. 3 shows the results for several values of this
parameter: 𝑇𝑚𝑎𝑥 = {1, 5, 10, 15, 20}. It is clearly observed that, as the
number of iterations increases, the error decreases and the execution
time increases. The largest reduction in the MSE error is obtained during

the initial iterations of the algorithm, especially for the smallest 𝑠𝑡𝑒𝑝
values. In addition, the increase in the execution time is approximately
linear with the number of iterations.

5.1.2. The effect of 𝐽𝑚𝑎𝑥
The number of improvement iterations applied to each memeplex

also influences the execution time of the algorithm. When the value of
this parameter is large, the local search of each memeplex is intensified
and this increases the execution time.

Fig. 4 compares the results of 𝐽𝑚𝑎𝑥 = {4, 8, 16}. This figure shows
that as 𝐽𝑚𝑎𝑥 increases the execution time also increases, especially for
the smallest 𝑠𝑡𝑒𝑝 values. Nevertheless, the MSE value does not always
improve with the increase of 𝐽𝑚𝑎𝑥.

5.1.3. The effect of 𝑅
Fig. 5 shows the results for various population sizes: 𝑅 = {8, 16,

32, 64}. It can be observed that the number of frogs in the population
has less influence on the execution time than the previous parameters.
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Fig. 2. Lenna image with 32 colors generated by SFLA-CQ with several values of the 𝑠𝑡𝑒𝑝 parameter.

The increase in time is not linear with the number of frogs, since the
iterative operations of this algorithm only modify the worst frog in each
memeplex and the best frog in the population, instead of all the frogs.

On the other hand, a population with more frogs does not always
guarantee better quantized images. When the population includes more
frogs, more elements of the search space (palettes) are considered to
select the best one. However, the operations of the algorithm mainly
work on the worst frog in each memeplex, independently of the number
of frogs in the memeplex.

5.1.4. The effect of 𝑚
Fig. 6 shows the results of several memeplexes, 𝑚 = {2, 4, 6, 8}. Since

the results reported in Tables 2 and 3 consider 4 frogs per memeplex,
the same value is considered in this case.

It is clear that the value of this parameter influences the execution
time: more memeplexes require more operations to optimize them.
When 𝑚 increases, better images are obtained in some cases, but this
is not true for all cases.

The number of memeplexes influences the execution time more than
the number of frogs, since each additional memeplex requires 𝐽𝑚𝑎𝑥
iterations of improvement of the said memeplex.

It should be noted that the number of frogs in the population is
the same for the results in Figs. 5 and 6. Both figures show the results
obtained for populations with 8, 16, 32 and 64 frogs, but with different
number of frogs per memeplex. When both figures are compared, it is
clear that the execution time varies more when 𝑚 is modified. This is
because the algorithm tries to improve each memeplex, so the execution
time is proportional to the number of memeplexes. On the other hand,
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Fig. 3. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors with 𝑇𝑚𝑎𝑥 = {1, 5, 10, 15, 20}.

Fig. 4. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors with 𝐽𝑚𝑎𝑥 = {4, 8, 16}.

this improvement considers the best and the worst frogs, not all the
frogs of the memeplex; for this reason, the amount of frogs included in
a memeplex does not influence the execution time as much.

5.1.5. The effect of 𝐷𝑚𝑎𝑥
The maximum change allowed in a frog’s position was defined

taking into account the range of variation of the variables in the color

quantization problem: [0, 255]. Fig. 7 shows results for several values:
𝐷𝑚𝑎𝑥 = {5, 10, 25, 50, 255}.

This parameter has little influence on the error of the final image
and the range of variation of the results represented in the figures
is narrow, especially for 256 colors. For 32 colors the maximum
variation is 3.94 (obtained for 𝑠𝑡𝑒𝑝 = 500) and the minimum is 0.70
(obtained for 𝑠𝑡𝑒𝑝 = 10) and for 256 colors the maximum range is
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Fig. 5. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors with 𝑅 = {8, 16, 32, 64}.

Fig. 6. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors with 𝑚 = {2, 4, 8, 16}.

0.52 and the minimum is 0.08, obtained for 𝑠𝑡𝑒𝑝 = 1000 and 𝑠𝑡𝑒𝑝 = 1,
respectively.

In general, the execution time increases with the value of 𝐷𝑚𝑎𝑥 and
the shortest execution time is obtained for 𝐷𝑚𝑎𝑥 = 5. Large values of
𝐷𝑚𝑎𝑥 allow a wide range of variation in the colors of the palette when
Eq. (2) is applied. In many cases this obtains a candidate palette that is
worse than the current palette of the worst frog in the memeplex. In such

cases, after generating the first candidate palette (line 9 of Algorithm 1),
the second candidate palette must be generated (line 13 of Algorithm 1),
and in many cases a random candidate palette must finally be selected
(line 17 of Algorithm 1). All of these operations increase the execution
time, although the error of the final image does not always improve. In
any case, it should be noted that this parameter has less influence on
the execution time than 𝑇𝑚𝑎𝑥, 𝐽𝑚𝑎𝑥 and 𝑚.
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Fig. 7. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors with 𝐷𝑚𝑎𝑥 = {5, 10, 25, 50, 255}.

5.2. The new operations of the algorithm

5.2.1. The improvement of a frog at the end of each iteration of the algorithm
This section analyzes the effect on the final solution of the improve-

ment applied to the best frog in the population.
To analyze this improvement, several tests were performed that ap-

plied the improvement to other frogs. Three possibilities were analyzed:

• the improvement was applied to a random frog of the population.
• no frog was improved.
• all frogs in the population were improved.

Fig. 8 compares the results obtained in previous cases using the
results of improving the best frog in the population.

It can be observed that the improvement of all of the frogs is the
most time-consuming option, while not improving any frog is the least
time-consuming option. The execution time is very similar for both cases
that improve only one frog.

When the average MSE is analyzed, the worst results correspond to
the case that does not improve any of the frogs (especially for 𝑠𝑡𝑒𝑝 ≤ 10),
followed by the case in which a random frog of each memeplex is
improved. Furthermore, the best results are obtained when all of the
frogs are improved. Since this last option is the most time-consuming, a
good alternative would be the case that improves the best frog, because
it can generate good images with low computational cost.

5.2.2. The effect of recomputing the colors of a palette
As described in Section 4.1.1, when the fitness of a frog is calculated,

the colors of the palette associated with that frog are recalculated. To
analyze the effect of this operation, Fig. 9 compares the results obtained
for the Lenna image in 3 cases:

• the colors of a palette are recalculated whenever the fitness is
calculated (this is the case considered by SFLA-CQ).

• this operation is never performed.

• said operation is performed only when the palette includes ran-
domly taken pixels; that is, it is executed when defining the initial
position of each frog of the population (line 1 of Algorithm 1) and
when choosing a random position for the worst frog in a memeplex
(line 17 of Algorithm 1).

It is clearly observed that the MSE of the quantized image is worse
if the palettes are not recalculated, especially for the case in which
this operation does not apply to any palette. In addition, the effect of
sampling the input image is less when the palette is not recalculated,
since MSE results do not improve when the sampled image includes
more pixels.

The case that recalculates the palettes every time the fitness is
calculated is the one that consumes less time (it should be remembered
that fitness is not recalculated in all iterations of the algorithm, but only
when the position of the frog is modified). Although such calculation
requires a number of operations proportional to the number of pixels of
the input image (𝑛′), the final execution time of the algorithm increases
if this operation is not performed. This is due to the fact that when the
palettes are not recalculated, the selection of a candidate position for the
worst frog in a memeplex often involves assigning a random position to
the frog. In such cases, the algorithm calculates two candidate solutions
and finally selects a random position. Therefore, the three operations
applied to modify the position of the worst frog increase the total
execution time of the algorithm.

5.3. SFLA-CQ compared to other methods

To analyze the quality of the proposed solution, it was com-
pared to several color quantization methods described in Section 2.2:
the method proposed in Wu (1991) (WU), Variance-based method
(VB), Octree (OC), Neuquant (NQ), Binary splitting (BS), K-means
(KM), the Ant-tree for color quantization method proposed in Pérez-
Delgado (2015) (ATCQ), Particle swarm optimization combined with
K-means (PSO+KM) and Artificial bee colony combined with K-means
(ABC+KM). The results of 20 independent tests are shown in Tables 4
and 5.
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Fig. 8. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors when different frogs are improved (𝑏𝑒𝑠𝑡: the best frog in the population; 𝑟𝑎𝑛𝑑: a random
frog of the population; 𝑎𝑙𝑙: all the frogs in the population; 𝑛𝑜𝑛𝑒: no frog is improved).

Fig. 9. MSE and execution time (milliseconds) for Lenna image quantized to 32 and 256 colors when several strategies are applied to recompute the colors of a palette when the fitness
of such palette is computed (𝑦𝑒𝑠: colors recomputed for all the palettes; 𝑛𝑜: colors not recomputed for any palette; 𝑟𝑛𝑑: colors recomputed only when a random palette is selected).

For the 3 iterative methods compared (KM, PSO+KM and ABC+KM),
the same number of iterations applied to SFLA-CQ were executed (10
iterations). The sampling factor of Neuquant was set to 1 in order
to obtain the best solution that this method is able to generate. The
parameters of PSO+KM were set as follows: the cognitive and the

social parameters were set to 1.49; the inertia was set to 0.72; the
range for the velocity of the particles was [−5, 5] and the probability
of application of K-means was set to 0.1 (these values were proposed
by Omran et al., 2005). In addition, the number of particles was set
to 8 (because SFLA-CQ considers 8 frogs) and only 5 iterations of
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Fig. 10. Percentage of error reduction obtained by PSO+KM and ABC+KM with respect to SFLA-CQ with 𝑠𝑡𝑒𝑝 = 1.

K-means were performed (to reduce the execution time of the method).
ABC+KM was executed with 8 food sources (to equal the number of
frogs used by SFLA-CQ) and the same number of iterations of K-means
and the probability of application of this method that was used when
applying PSO+KM. The values given to the 𝛼 parameter of ATCQ were
established taking into account the palette size, as proposed in Pérez-
Delgado (2015): 𝛼 ∈ [0.20, 0.30] for 32 colors; 𝛼 ∈ [0.25, 0.35] for 64
colors; 𝛼 ∈ [0.30, 0.40] for 128 colors and 𝛼 ∈ [0.40, 0.50] for 256 colors.

A general comparison of the methods showed that SFLA-CQ with
𝑠𝑡𝑒𝑝 ≤ 10 can be considered as good cases to be compared with other
methods. With these 𝑠𝑡𝑒𝑝 values, SFLA-CQ obtains better quantized
images than the other methods in many cases. In addition, the results
corresponding to palettes with fewer colors are also improved by
SFLA-CQ with large 𝑠𝑡𝑒𝑝 values. In terms of execution time, splitting
methods are generally faster than clustering-based methods, and this
also happens when such methods are compared to SFLA-CQ. On the
other hand, the proposed method can obtain better images with less
execution time than the other clustering-based methods analyzed; it is
worth noting the great difference in the execution time with respect to
PSO+KM and ABC+KM.

The following paragraphs compare the results of each method in
more detail:

• SFLA-CQ with 𝑠𝑡𝑒𝑝 ≤ 100 improves the average MSE results of VB
for all the images and palette sizes. In addition, for the Lenna,
Mandrill, Lake and Peppers images this happens for all the values
of 𝑠𝑡𝑒𝑝 analyzed. The tests corresponding to the largest 𝑠𝑡𝑒𝑝 values
consume less time than VB for palettes with less than 256 colors.
Therefore, SFLA-CQ can obtain better images than VB in less
time for palettes with 128 colors as a maximum (only Girl image
with 128 colors consumes a little more time); for 256 colors, the
quantized images obtained are better, but they consume more
time.

• OC is improved for almost all the cases reported in the tables. The
results are not improved only for 9 out of 384 cases (12 images ×
4 palettes × 8 𝑠𝑡𝑒𝑝 values = 384), all of them corresponding to the
three greatest values of 𝑠𝑡𝑒𝑝 and palettes with 128 or 256 colors.

Although OC consumes less time than SFLA-CQ for palettes with
128 or 256 colors, SFLA-CQ can obtain better images of 32 and 64
colors than those obtained by OC and in less time.

• Wu’s method is the least time-consuming method among all the
methods compared. SFLA-CQ with 𝑠𝑡𝑒𝑝 ≤ 10 improves the MSE
results of Wu’s method for all the images and palettes except for
the Plane image. Moreover, the error of some images has also been
improved for all the palette sizes with 𝑠𝑡𝑒𝑝 values larger than 10
(Lenna and Mandrill for 𝑠𝑡𝑒𝑝 ≤ 200; Peppers, Cathedrals and Beach
for 𝑠𝑡𝑒𝑝 ≤ 100), and even for some images of 32 and 64 colors the
results are also improved with the two largest 𝑠𝑡𝑒𝑝 values.

• Except for the Plane image, the average MSE obtained by BS is
worse than the results of SFLA-CQ with 𝑠𝑡𝑒𝑝 ≤ 10 for images with
32 and 64 colors. In addition, this is also true for 10 of the 12
images with 128 colors and for 8 images with 256 colors. On the
other hand, SFLA-CQ also obtains for the smallest palettes better
images than BS for 𝑠𝑡𝑒𝑝 values greater than 10 (with 𝑠𝑡𝑒𝑝 ≥ 100
it improves 11 images of 32 colors and 9 of 64 colors). Since the
execution time of SFLA-CQ is shorter than that of BS for the two
smallest palettes and the largest 𝑠𝑡𝑒𝑝 values (𝑠𝑡𝑒𝑝 ≥ 100 for 32
colors and 𝑠𝑡𝑒𝑝 ≥ 200 for 64 colors), the first method can generate
better images in less time for both palettes.

• SFLA-CQ generates images with better MSE (minimum and aver-
age) than KM for 𝑠𝑡𝑒𝑝 ≤ 10. On the other hand, SFLA-CQ with
𝑠𝑡𝑒𝑝 ≥ 5 consumes less time than KM for all the images and
palette sizes. Therefore, the proposed method can generate better
solutions than KM with less time consumption for all the images
and palette sizes considered.

• SFLA-CQ obtains better average error than NQ for all the images
and palette sizes with 𝑠𝑡𝑒𝑝 ≤ 10, except for Plane with 128 or 256
colors and Headbands with 256 colors. Since the results for most
images with 32 colors are improved with 𝑠𝑡𝑒𝑝 ≤ 500, the smallest
palette size can obtain better images using SFLA-CQ rather than
NQ and in less time.
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Table 4
Results of some color quantization methods: WU: Wu’s method; VB: Variance-based method; OC: Octree; NQ: Neuquant; BS: Binary splitting; KM: K-means. (𝑞: palette
size; 𝑇 : average execution time (milliseconds); 𝑀𝑆𝐸: mean squared error (for KM the minimum MSE (𝑀𝑆𝐸𝑚), the average value (𝑀𝑆𝐸𝑎) and the standard deviation
(𝑑𝑒𝑣) are included)).

WU VB OC NQ BS KM

𝑞 𝑀𝑆𝐸 𝑇 𝑀𝑆𝐸 𝑇 𝑀𝑆𝐸 𝑇 𝑀𝑆𝐸 𝑇 𝑀𝑆𝐸 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇

Plane 32 85.45 13 123.56 218 342.23 141 123.70 127 83.12 152 99.04 141.13 23.72 3079
64 51.33 13 80.73 256 225.98 143 57.57 183 46.22 204 56.72 91.63 25.98 5954

128 32.60 14 52.60 309 133.59 151 29.71 273 28.06 253 33.05 48.12 15.13 11839
256 21.66 14 36.85 372 52.31 158 21.09 474 18.42 355 22.70 25.33 1.74 23199

Lake 32 249.81 13 357.26 366 922.04 141 274.45 154 245.65 181 210.08 222.64 12.97 3058
64 161.34 13 251.70 455 466.14 143 164.26 212 162.89 235 140.25 147.09 5.56 5931

128 102.55 13 170.97 561 198.49 153 100.88 313 107.00 293 92.76 96.78 4.77 11718
256 66.47 13 120.10 676 159.21 153 65.70 514 68.36 378 60.66 63.03 1.61 23236

Girl 32 107.55 13 232.43 142 477.64 148 123.89 138 111.28 192 89.25 117.71 21.30 3089
64 63.03 13 129.43 160 163.08 160 66.32 201 63.07 239 54.13 67.93 13.87 5979

128 36.84 13 82.22 193 89.86 159 38.30 307 38.46 293 33.75 36.14 1.95 11805
256 23.59 14 54.42 208 50.79 159 23.86 496 23.65 389 21.59 23.06 0.78 23567

Mandrill 32 468.39 13 531.03 335 1094.11 144 456.13 149 441.30 220 384.72 394.47 5.18 3060
64 288.33 13 346.58 409 576.19 150 272.25 216 286.93 254 244.46 247.86 2.66 5947

128 186.33 13 248.02 496 357.13 152 168.22 320 183.51 312 156.81 159.15 2.05 12018
256 118.65 13 181.94 600 195.82 153 109.34 513 117.85 429 100.68 102.22 1.11 23561

Peppers 32 279.27 12 451.10 312 777.14 151 283.69 152 311.66 193 240.75 259.36 14.74 3037
64 165.37 13 304.21 380 495.51 144 166.37 222 173.75 245 140.87 149.32 5.18 5939

128 102.31 13 212.68 440 308.76 152 95.69 323 106.85 292 87.78 92.87 3.64 11678
256 66.08 13 147.18 528 156.24 153 63.08 530 68.72 374 57.48 60.18 3.24 23251

Lenna 32 158.61 12 203.07 242 482.03 143 152.13 134 138.44 198 122.00 127.80 5.88 3047
64 99.16 13 135.86 292 212.92 148 85.60 203 82.44 265 76.32 81.33 4.49 5937

128 61.79 13 94.68 345 140.53 155 53.73 310 53.04 301 48.69 50.23 1.03 11665
256 39.53 13 69.41 401 74.12 160 34.88 508 35.28 379 32.55 33.29 0.51 23261

Landscape 32 131.31 14 164.35 230 576.99 145 139.03 133 129.18 221 104.55 111.03 5.02 3163
64 72.20 13 113.61 272 185.19 152 70.13 201 66.61 262 58.28 61.59 3.85 6143

128 42.75 13 84.46 328 149.46 148 37.17 306 36.48 325 33.78 37.32 1.56 12025
256 25.75 14 61.90 367 53.17 173 23.75 520 22.18 419 22.58 24.25 1.02 24243

Headbands 32 142.63 13 184.82 295 430.86 148 188.99 141 149.52 212 135.96 151.13 17.66 3182
64 87.52 13 121.28 374 192.74 151 99.49 210 84.86 249 85.05 93.86 7.05 6100

128 53.42 14 79.90 471 128.22 149 52.12 326 51.30 303 53.34 58.39 3.46 12172
256 33.83 14 53.29 557 53.17 168 30.77 522 31.28 384 34.62 35.61 0.78 23900

Dessert 32 160.65 13 191.72 256 426.95 146 176.26 127 152.16 203 132.09 146.45 15.46 3145
64 90.42 13 118.69 307 203.65 153 90.70 183 85.29 242 72.94 77.31 4.23 6214

128 52.66 13 82.38 363 118.32 150 51.09 285 48.50 298 45.49 46.95 1.84 11902
256 32.71 14 56.92 426 67.32 157 30.21 485 29.42 387 28.15 29.53 0.89 25109

Snowman 32 161.12 13 216.35 284 559.57 151 202.14 137 163.63 206 124.17 153.03 20.54 3157
64 89.53 13 118.13 366 334.53 147 90.05 191 87.54 255 71.76 76.05 3.70 6109

128 49.69 13 70.03 477 134.31 154 44.23 294 46.97 315 42.74 47.05 3.22 12074
256 29.85 14 43.68 518 84.45 155 27.51 514 27.48 415 26.21 28.05 1.38 24010

Cathedrals 32 81.90 13 105.84 261 316.46 146 93.72 120 72.42 188 65.46 74.03 7.81 3153
64 45.28 13 61.50 324 109.02 153 48.67 179 38.57 212 36.29 39.91 3.11 6072

128 27.31 14 40.15 386 69.79 154 24.33 275 22.43 256 21.98 23.83 1.76 11943
256 18.10 14 26.16 408 45.83 158 15.28 476 13.29 337 14.72 15.23 0.43 24149

Beach 32 177.34 13 211.50 334 446.43 147 178.32 134 179.49 191 148.65 165.21 12.26 3140
64 101.92 13 123.49 419 309.23 154 91.86 193 93.22 218 77.11 81.69 3.14 6143

128 59.64 13 81.50 535 134.36 156 52.71 299 52.30 274 46.93 49.94 1.64 11945
256 36.33 14 52.92 641 81.77 158 32.95 487 31.89 351 29.95 31.23 0.58 24724

• For 𝑠𝑡𝑒𝑝 ≤ 100, SFLA-CQ gets better quantized images than ATCQ
for all the images and palette sizes except for Snowman and
Headbands with 256 colors, which are improved when 𝑠𝑡𝑒𝑝 ≤ 10
is considered. Moreover, as the palette size decreases, SFLA-CQ
improves the ATCQ results with larger 𝑠𝑡𝑒𝑝 values. For example,
when 32 or 64 colors are considered, SFLA-CQ improves all the
images with 𝑠𝑡𝑒𝑝 ≤ 500 and almost all with 𝑠𝑡𝑒𝑝 = 1000 (only 3
cases are not improved for 𝑠𝑡𝑒𝑝 = 1000: Cathedrals with 32 or 64
colors and Headbands with 64 colors). As far as the speed of the
algorithm is concerned, SFLA-CQ consumes more time than ATCQ;
the results are only comparable in some cases when considering
the smallest palette and 𝑠𝑡𝑒𝑝 = 1000.

• When the results of PSO+KM and ABC+KM are analyzed, it is
revealed that both methods are highly time consuming: both
consume much more time than SFLA-CQ even when the case with
𝑠𝑡𝑒𝑝 = 1 is compared. In addition, the increase in the execution

time does not mean that both algorithms generate much better
images than those obtained by SFLA-CQ. This aspect can be seen
in Fig. 10, which shows the percentage of error reduction obtained
using both methods with respect to the solution of SFLA-CQ with
𝑠𝑡𝑒𝑝 = 1. It can be observed that the best results of PSO+KM
and ABC+KM are obtained for the Plane and Headbands images,
obtaining an improvement of between 11.55% and 22.85% for the
Plane image when PSO+KM is applied. Nevertheless, for the rest
of the images the improvement is less than 5% in most cases and
is close to 1% in some cases. In addition, SFLA-CQ improves the
results of PSO+KM in 11 out of 48 cases (12 images × 4 palettes =
48), most of them corresponding to images with 128 or 256 colors.
In summary, the results clearly show that PSO+KM and ABC+KM
consume much more time than SFLA-CQ, but the quality of the
images they generate does not improve much in most cases.
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Table 5
Results of some color quantization methods: ATCQ: Ant-tree for color quantization method; PSO+KM: Particle swarm optimization combined with
K-means; ABC+KM: Artificial bee colony combined with K-means. (𝑞: palette size; 𝑇 : average execution time (milliseconds); 𝑀𝑆𝐸𝑚: minimum MSE;
𝑀𝑆𝐸𝑎: average MSE; 𝑑𝑒𝑣: standard deviation of MSE).

ATCQ PSO+KM ABC+KM

𝑞 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑎 𝑑𝑒𝑣 𝑇

Plane 32 109.16 258.99 221.23 50 67.38 86.74 11.6 91483 71.63 91.53 11.3 146343
64 58.30 89.27 34.31 79 44.53 48.43 2.4 178939 46.34 46.99 0.2 551584

128 35.49 55.06 13.94 120 28.56 30.84 2.1 342849 31.63 33.14 1.4 543689
256 23.76 27.42 4.07 306 20.16 20.68 0.5 691193 20.53 21.80 0.6 1172338

Lake 32 268.93 5188.44 6798.47 53 203.94 204.76 0.6 88728 203.29 204.35 0.5 143206
64 178.38 203.05 36.12 125 131.64 132.71 0.7 175367 130.84 131.93 0.7 278690

128 118.89 136.96 20.93 211 85.67 86.33 0.4 354141 86.19 87.04 0.6 574691
256 76.29 81.71 5.25 428 56.23 56.64 0.4 698147 56.78 57.28 0.4 1135666

Girl 32 152.06 184.92 27.15 58 82.69 83.58 0.6 90522 82.37 82.79 0.4 504507
64 94.85 111.85 22.00 99 50.62 51.26 0.6 177422 50.06 50.57 0.2 287817

128 55.38 70.78 10.19 164 30.63 31.84 0.7 351931 30.68 31.58 0.6 585449
256 28.07 35.21 6.57 379 19.18 19.64 0.8 704688 19.65 19.86 0.3 1094486

Mandrill 32 758.39 5880.82 3821.17 24 373.32 377.12 1.8 91611 373.66 375.28 1.2 148121
64 393.09 1913.96 2584.09 63 236.34 237.40 0.9 175347 235.88 236.60 0.4 276857

128 220.56 382.85 159.20 142 152.43 153.69 1.0 343677 151.37 151.83 0.3 564477
256 134.34 153.95 20.02 394 97.67 98.93 0.5 706416 97.14 97.54 0.2 1091333

Peppers 32 419.31 456.19 39.45 63 230.88 232.32 0.9 91035 227.26 230.62 1.4 145258
64 189.87 341.02 107.39 95 135.39 137.38 1.4 190334 134.03 135.47 2.3 285673

128 116.72 193.17 97.40 190 84.74 85.69 0.7 350765 83.74 84.45 0.5 553814
256 72.96 81.01 9.57 433 55.68 56.29 0.4 686947 54.78 55.09 0.2 1095412

Lenna 32 160.74 204.23 45.96 58 119.79 121.35 1.5 93219 118.82 119.21 0.4 140119
64 94.94 127.94 36.99 102 73.36 74.73 1.1 180290 72.73 73.24 0.4 273863

128 58.87 73.93 16.50 182 47.15 47.84 0.5 355805 46.69 46.97 0.2 551584
256 38.68 40.94 2.10 415 31.33 31.91 0.4 703331 30.97 31.15 0.1 1063209

Landscape 32 135.93 280.86 130.97 61 97.17 100.37 2.8 96169 97.08 98.45 0.9 146573
64 77.21 138.80 68.66 110 55.63 57.22 1.6 188092 54.22 55.25 0.5 287501

128 45.84 75.20 26.95 187 32.88 34.75 1.0 355077 32.18 32.76 0.3 568052
256 26.76 31.35 6.65 457 20.93 21.73 0.4 727046 20.50 20.66 0.1 1109933

Headbands 32 161.00 208.74 50.03 58 113.56 117.07 1.8 106756 115.25 118.88 3.0 143921
64 100.67 122.54 20.05 100 68.88 70.54 1.6 184585 70.41 74.01 2.1 287435

128 56.24 74.41 17.65 169 42.81 44.50 1.0 370737 44.15 45.94 1.4 547842
256 34.79 38.35 2.96 367 27.59 28.20 0.5 710804 28.79 29.64 0.6 1137880

Dessert 32 203.68 304.38 101.49 60 120.48 123.03 1.3 105843 122.06 123.69 1.2 150113
64 129.26 167.68 43.94 107 67.47 68.56 0.8 181495 68.60 69.30 0.6 291267

128 72.66 96.75 21.72 199 39.98 40.63 0.5 370856 40.52 41.97 0.7 548795
256 36.94 43.25 3.99 477 24.46 24.96 0.3 720788 25.39 25.70 0.2 1133866

Snowman 32 188.61 279.52 71.22 65 116.44 119.12 2.2 109983 115.79 118.49 1.9 162902
64 99.49 145.65 36.93 117 63.36 64.39 0.9 178304 61.85 64.47 1.4 294426

128 56.97 76.14 26.57 221 36.83 38.01 0.7 362277 37.09 37.92 0.5 564005
256 32.99 36.73 3.31 510 22.82 23.91 0.6 717805 23.33 23.91 0.3 1117948

Cathedrals 32 98.42 121.41 19.39 56 61.07 62.41 1.6 95577 59.35 60.82 1.0 148623
64 57.97 78.78 19.62 84 32.95 34.16 0.6 186254 32.89 33.60 0.4 293007

128 36.78 51.64 12.76 126 20.15 20.65 0.4 365408 19.96 20.32 0.3 564088
256 19.91 24.09 4.78 297 13.33 13.67 0.2 710510 12.99 13.24 0.2 1149640

Beach 32 263.38 320.03 90.30 52 135.40 137.56 1.3 95092 134.64 136.19 1.3 152183
64 141.02 183.60 41.15 87 75.03 76.66 1.2 181030 74.23 75.25 0.8 285653

128 76.25 96.27 16.55 149 45.36 46.05 0.6 362801 44.69 45.47 0.5 576216
256 46.52 63.89 15.43 332 28.39 29.15 0.7 701736 28.08 28.57 0.3 1125092

To facilitate the comparison of the results, Fig. 11 shows the percent-
age of error reduction obtained by SFLA-CQ with 𝑠𝑡𝑒𝑝 = 10 with respect
to the methods not shown in Fig. 10; in this case lines are used instead
of bars to make the figures clearer. As previously described, it can be
observed that the proposed method improves the images obtained by
the other methods in almost all cases. To facilitate the interpretation of
Figs. 10 and 11, the values represented in both figures are included as
supplementary material.

To analyze the statistical significance of the improvement obtained
by SFLA-CQ with respect to the other methods, the Wilcoxon test was
applied (Corder and Foreman, 2009). This test compares two methods
to determine that there is no significant difference between their results.
In this case, the test was applied twice: the first to compare the average
MSE and the second to compare the average execution time. Based on
the discussion presented in the previous paragraphs, the Wilcoxon test
was applied to compare the results of SFLA-CQ with 𝑠𝑡𝑒𝑝 = 10 and

those of each of the other methods. Table 6 shows the results with
a significance level equal to 0.05. The 𝑝-value obtained in all cases
indicates that the differences between each pair of methods compared
are significant. When comparing the MSE values, the sums of ranks
show that SFLA-CQ is significantly better than the other methods, except
PSO+KM and ABC+KM. When the execution time is considered, the
results of SFLA-CQ are significantly better than those of KM, PSO+KM
and ABC+KM. Therefore, the results of the Wilcoxon test confirm the
conclusions presented in this section.

6. Conclusion

This article describes how the Shuffled frog leaping algorithm can be
used to reduce the colors of an RGB image. The operations of the basic
algorithm have been adapted to solve the color quantization problem.
The modified algorithm, called SFLA-CQ, uses the mean squared error
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Fig. 11. Percentage of error reduction obtained by SFLA-CQ with 𝑠𝑡𝑒𝑝 = 10 compared to other methods: Wu’s method (WU), Variance-based method (VB), Octree (OC), Binary splitting
(BS), Neuquant (NQ), K-means (KM), Ant-tree for color quantization method (ATCQ).

Table 6
Results of the Wilcoxon test that compares SLFA-CQ to other color quantization methods: Wu’s method (WU), Variance-based method (VB), Octree
(OC), Binary splitting (BS), Neuquant (NQ), K-means (KM), Ant-tree for color quantization method (ATCQ), Particle swarm optimization combined
with K-means (PSO+KM), Artificial bee colony combined with K-means (ABC+KM). (𝑍-value: value of the test statistic; 𝑝-value: probability value
corresponding to the 𝑍-value; 𝑠𝑢𝑚+: sum of positive ranks; 𝑠𝑢𝑚−: sum of negative ranks).

MSE Execution time

Method 𝑍-value 𝑝-value 𝑠𝑢𝑚+ 𝑠𝑢𝑚− 𝑍-value 𝑝-value 𝑠𝑢𝑚+ 𝑠𝑢𝑚−

WU −5.4103 0 60.5 1115.5 −6.0308 0 1176 0
VB −6.0308 0 0 1176 −6.0308 0 1176 0
OC −6.0308 0 0 1176 −6.0308 0 1176 0
BS −4.8001 0 120 1056 −6.0308 0 1176 0
NQ −5.6514 0 37 1139 −6.0308 0 1176 0
KM −6.0308 0 0 1176 −6.0308 0 0 1176
ATCQ −6.0308 0 0 1176 −6.0308 0 1176 0
PSO+KM −6.0308 0 1176 0 −6.0308 0 0 1176
ABC+KM −6.0308 0 1176 0 −6.0308 0 0 1176

as the objective function and generates a quantized palette that allows
the quantized image to be obtained. Given that the size of the images
considered influences the execution time of the algorithm, the possibility
of working with a subset of pixels of the original image has been
analyzed to accelerate the process.

The proposed method has been applied to several images and the
results obtained with different values of each parameter of the algorithm
have been compared. It is observed that the results corresponding to
sampled images that include 10% of the pixels of the original image are
good, since the execution time is reduced without greatly reducing the
quality of the final image.

The SFLA-CQ method has also been compared to 9 other color
quantification methods and, in general, the proposed method obtains
better images than the other methods. As expected, the splitting methods
that are compared consume less time than the proposed one; however, it
should be noted that these methods also obtain worse images. Regarding
the clustering-based methods analyzed, it is worth mentioning that there
is a significant difference in the execution time between the proposed

method and two other swarm-based methods: PSO+KM and ABC+KM.
Although both methods obtain better images than SFLA-CQ in some
cases, the results are not comparable due to the excessive time required
to obtain such results. On the other hand, NQ and ATCQ, which are
also clustering-based methods, consume less time than SFLA-CQ, but
generate worse images.
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