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In clinical treatment, deep learning plays a pivotal role in medical image classification. Deep learning techniques provide opportunities for radiologists and orthopedic to ease out their lives with faster and more accurate results. The traditional deep learning approach nevertheless reached its performance ceiling. Therefore, in this paper, we investigate different enhancement techniques to boost the deep neural networks performance and provide a solution as BoostNet. The experiment is categorized into four different phases. We have selected ChampNet from benchmark deep learning models (EfficientNet: B0, MobileNet, ResNet18, VGG19). This phase helps to obtain the best model. In the second phase, The ChampNet evaluates with different resolutions dataset. This phase helps to finalize the dataset resolution to enhance the performance of ChampNet. In the third phase, ChampNet merges with image enhancement techniques Contrast Limited Adaptive Histogram Equalization (CLAHE), High-frequency filtering (HEF), and Unsharp masking (UM). This phase helps to obtain BoostNet with enriched performance. The last phase helps us to verify BoostNet results with Lightness Order Error (LOE). The presented research work fuses the image enhancement technique with ChampNet to generate BoostNet models. An assessment was performed on the Musculoskeletal Radiographs Bone Classification (MURA-BC) using classification schemes to demonstrate the proposed model's performance. The Classification accuracy of BoostNet was for the train, test dataset with and without enhancement techniques. The proposed model ChampNet+ CLAHE, ChampNet+ HEF, ChampNet+ UM approach achieved 95.88%, 94.99%, and 94.18% accuracy, respectively. This experiment leads to a more accurate and efficient classification model.



1. Introduction
In medical imaging, a wide variety of studies have been conducted using different models of deep neural networks (DNNs) to classify or diagnose diseases. Technologies such as DNNs and computer vision have already demonstrated the ability to recognize images and exceed human accuracy. Besides, the remarkable success in recent years of deep learning models (DLMs) in image classification, segmentation, and detection tasks connects with an era of significant use for diagnostic medical imaging. However, the availability of huge datasets with reliable ground-truth analysis is a major issue in medical imaging.
DLMs have contributed to a series of breakthroughs in the task of image classification(Krizhevsky, Hinton and others, 2009)(Krizhevsky, Sutskever and Hinton, 2012). The DLMs utilities low, mid, and high-level features(Zeiler and Fergus, 2014). Recent research (Simonyan and Zisserman, 2014) shows that the depth of a network model is of critical importance for challenging datasets. The issue of shallow vs. deep networks has long been argued for a long time in DLMs. Training of very deep learning models raises the issue of diminishing feature reuse (Zagoruyko and Komodakis, 2017). This makes the training process cumbersome to train these models. In (Tan and Le, 2019) design a deep learning model with a perfect balance between resolution, depth, and width to achieve better accuracy and less error in training loss.
The public health sector is a highly critical sector where health professionals perform most interpretations of medical data. Advanced study of deep learning models reduced the complexity of the analysis of various medical images (Razzak, Naz and Zaib, 2018). Image enhancement is an essential component of pre-processing. It is therefore important to examine the association between image improvement and the deep learning approach. In (Xie and Richmond, 2018) authors employed on grayscale ImageNet dataset to pre-train, the Inception-V3 model tested on single-channel medical chest X-ray dataset outperformed both in terms of accuracy and speed. The DLMs ResNet-50 and DenseNet-161 approach a transfer learning methodology for the histopathology Kimia Path24 dataset, both color, and grayscale images dataset. The DenseNet-161 uses a grayscale dataset, and the ResNet-50 uses a color dataset (Talo, 2019).  A novel DLMs implements split-transform-merge block (STM) and RE-based feature extraction to detect COVID-19 pneumonia (Khan, Sohail and Khan, 2020). Deep learning automated detection of medical imaging has shown promising results.
We propose a BoostNet DLM approach to improve the performance of musculoskeletal radiographs X-ray images. The highlight of this research is to assess the impact of three different image enhancement techniques (CLAHE, HEF, and UM) on DLMs for the medical musculoskeletal radiographs X-ray images. The paper is organized into six different sections as follows: the most crucial related works described in the second section. In the third section, we have discussed the materials and methods used for the proposed model. In the fourth section, we have elaborated on the proposed model. In the fifth section, we have explained the simulation, results, and validation in detail. In the last section, we have discussed the conclusion and future scope. 
2. Related Work
In (Jaderberg et al., 2015) DLM is to investigate the efficiency of the model by increasing the depth (16-19 layers) on datasets ImageNet Challenge 2014. As the model layer extends to the 19th layer, the error rate of the deep learning model is saturated. To ease out the training of substantially deeper networks, the authors have developed a residual learning model (He et al., 2016a). The model has achieved an error rate of 3.57 % on the ImageNet test dataset(He et al., 2016b). In (He et al., 2016a) authors have suggested the propagation formulations for a deep learning model to transmit backward and forward pass directly from block to block. In (Howard et al., 2017) two hyper-parameter resolution and width multiplier, the model creator can develop the best size model based on the problem that is a constraint. In (Tan and Le, 2019) the authors suggested an appropriate scaling approach, which uniformly scales all three parameters width/depth/resolution dimensions using a compound coefficient. 
The authors have applied a transfer learning approach to both the deep learning models DenseNet-161 and ResNet-50 without a fully connected layer (Talo, 2019). The research work was carried out on the Kimia Path24 dataset, both the grayscale and colored format. The DenseNet-161 utilizes a grayscale dataset to achieve a classification accuracy of 97.89%, and the ResNet-50 utilizes a color dataset to achieve a classification accuracy of 98.87%. The authors (Zhang et al., 2020) presented a new version of the ResNet model. In this model, the authors have eliminated the global average pooling layer and added an adaptive drop-out. The Montgomery County Chest X-ray to achieve a classification accuracy of 87.71%, NIH X-ray set to achieve a classification accuracy of 62.9%, and the Shenzhen chest X-ray to attain a classification accuracy of 81.8%.
The authors (Triwijoyo et al., 2020) have worked on the STARE dataset. The dataset is resized into three different datasets 31 × 35, 46 × 53, and 61 × 70 pixels classified with 15 different eye diseases. The studies have shown that input datasets with size 31 × 35 and 61 × 71 pixels have achieved the highest training accuracy and the input test dataset with size 31 × 35 with an accuracy of 80.93%. The authors (Mahbod et al., 2020) study dermoscopic image dataset with different resolutions size ranging from 64 × 64 to 768 × 768 pixels. Various deep learning models trained on DenseNet-121, ResNet-50, and ResNet-18. The author concludes the work as classification performance significantly reduced with small-sized dataset 64x64 pixels and shows significant improvement on the dataset with size 128×128 pixels.
In (Shin and Jung, 2013) the edge area was improved by applying a high-frequency pass (emphasis) filter to the X-ray medical imaging field. To enhanced the edge and contrast of the X-ray image, the gaussian high-pass filter is used with the optimized value offset=0.5 and cutoff frequency=0.05. In (González-Villà et al., 2020) author has proposed a two-stage fusion approach (m-NLSS and m-JLF)  for improving brain segmentation performance. In (Sahu et al., 2019) author has designed a model to remove the noise( Wiener Filter, Median Filter, Average Filter, Weighted Median Filter, Gaussian Filter) and enhance (CLAHE) the color fundus image. The Weighted Median filter combinds with the CLAHE technique gives a 7.85% improvement in Peak Signal to Noise Ratio (PSNR).In (Panetta et al., 2011) author has discussed a new non-linear UM enhancement technique (NLUM). NLUM can help boost the diagnosis and treatment by increasing fine details in mammograms.
3. Materials and methods for the proposed model
3.1. Bone X-ray images dataset: 
The musculoskeletal radiograph (MURA) is a collection of a total of 40561 images bone X-ray images. The dataset contains 55.63% normal and 44.36 % abnormal X-ray images. This dataset was published by (Rajpurkar et al., 2017) most popular X-ray dataset. We have re-organized the MURA dataset into musculoskeletal radiograph bone classification (MURA-BC) for our experiment. The data set is organized into two folders (train and test), and each folder contains seven subfolders for each study shoulder, elbow, humerus, finger, wrist, and hand. Only normal X-ray were extracted from the MURA dataset. The MURA-BC X-ray dataset detail listed in Table 1. 


Table 1 MURA-BC X-ray dataset detail
	Study
	Train Set
	Test Set

	ELBOW
	2925
	92

	FINGER
	3138
	92

	FOREARM
	1164
	69

	HAND
	4059
	101

	HUMERUS
	673
	68

	SHOULDER
	4211
	68

	WRIST
	5765
	140

	Total
	21935
	630

	Complete Dataset Size:22565


3.2. Deep learning benchmark Models: 
The key technical points about benchmark deep learning models are discussed below:
3.2.1. Efficientnet: B0: 
In (Tan and Le, 2019) author has proposed the efficientnet model based on the scaling theory for deep learning models. The three scaling factors taken into account are depth, width, and resolution. We have implemented this efficientnet (efficientnet: B0) baseline model for our research purposes.
3.2.2. MobileNet: 
MobileNet is a lightweight and effective model (Howard et al., 2017). This model is designed to overcome few challenges for the hardware level, such as limited memory, energy, and power. The model was designed for depth-wise separable convolutions. These hyper-parameters help the model builder to select the appropriate DLM size for the framework depending on the problem constraints.
3.2.3. ResNet18: 
In (He et al., 2016a) author have submitted the ResNet model to the ImageNet Competition (ILSVRC) in 2015, and 152 layers 8× deeper VGG nets were a winner in the Image NetChallenge. Two essential features implemented are dropout and batch normalization. At the network edge, the architecture also lacks fully connected layers.
3.2.4. VGG-19: 
The VGG-19 model contains 19 trainable layers including convolutional and fully connected layers as well as max pooling, and dropout (Simonyan and Zisserman, 2014). The DLMs classify 1000 different object categories (mice, keyboards, pencils, and various animals, etc). As a result, the DLM has mastered rich features of classification for a wide range of images(Setiawan, Yahya and Lee, 2019). The network has an image scale of 224-by-224. The research shows that network depth is an essential component for improved performance(Zhang et al., 2015). The drawback of VGGNet is that assessment is costly higher and requires much more memory to handle 19.6 billion FLOPs and approx. 143 million parameters.  
3.3. Image Enhancement techniques: 
The mathematical strength of different types of image enhancement techniques discussed below:
3.3.1. CLAHE
CLAHE image enhancement technique(Zuiderveld, 1994), Input image () is divided into non-overlapping) regions called sub image, titles, blocks. The CLAHE method has primarily two key parameters: Clip limit () and non-overlapping regions. These two parameters mainly control enhanced image quality.  is average number of pixels in each gray level calculated as depict in (1).
                                                                         (1)
Where Gray levels number in the, Pixels number in the x dimensions of, Pixels number in the y dimensions of .the actual clip limit) is computes as depicted in (2).
                                                                      (2)
Where maximum multiple of average pixels in gray level of,  = total number of clipped pixels. The number of pixels distributed averagely into each gray level is computed as depict in (3).
                                                                                   (3)
The distributed pixel is computed as depicted in (4).
                                                                                        (4)                                             
Where  denotes the remaining number from clipped pixels.
3.1.1. HEF
 HEF is an enhancement technique that employs a Gaussian filter to enhance the edges in the input image (Bundy and Wallen, 1984). The edges emerge presented in the high-frequency variety as they have more shifts that are dramatic in intensity. This enhancement technique generates a low contrast-enhanced image and implements the Histogram Equalization method to improve contrast and sharpness. In the algorithm, radius represents Sharpness intensity. The original image implemented through the Fourier transformation, and the filter function. After the inverse transformation, we will have a filtered image. Secondly, the contrast of the image is in tune with Histogram Equalization. The Gaussian High Pass Filter is calculated as depict in (5)
                                                (5)
Where D0 denotes the cut-off distance, and the  denotes Fourier transform computes as depicted in (6)
                                          (6)
Where x and i = 0, 1,2, ......h-1     and y and j =0,1,2, ......w-1,  denotes inverse Fourier transform computes as depict in (7):
                                     (7)
3.3.2. UM: 
UM is an image enhancement technique that sharpens the original image (Polesel, Ramponi and Mathews, 2000). The sharp details are calculated as a difference between the original and its Gaussian blur image. These collected details are then scaled and added back to the original image. At the beginning of this technique Gaussian blur is applied to the input image. The radius and the amount are two important parameters for Gaussian blur(Ramponi, 1998). The size of the edge to be increased is affected by the radius. The amount is a factor of lightness or darkness, contrast added to the edges obtained through equation as depicted in (8).
                                                               (8)
Where x and y denote the horizontal and vertical distance from the source, σ denotes the Gaussian distribution standard deviation.   is an enhanced image obtained through equation as depicted in (9).
                      (9)
Where the original image, and  unsharp image 
4. Proposed Work 
There are four major phases of the proposed model: Image pre-processing, benchmark DLMs training from scratch & validation, ChampNet processed with different resolution datasets and applied image enhancement techniques. The highlights of the proposed model are to selects the ChampNet from the benchmark deep learning model and implemented image enhancement techniques to boost the ChampNet performance. Lightness Order Error (LoE) validates the performance of BoostNet = ChampNet + image enhancement techniques. Fig.1 depicts the block design of our suggested paradigm.
[image: ]
Fig.1 Block design of our suggested paradigm.

4. 
Research environment
 The research work carried out in the virtual environment. The host virtual machine is equipped with Ubuntu operating system, 12GB RAM, and six virtual CPUs from the Intel Xeon silver 2.10 GHZ processor server. Python 3.0 is used for the implementation of the proposed model.
 Image Preprocessing
 The Pre-processing X-ray images improve the key details of the raw image. The image-preprocessing two-step process dataset generation and transformation. 
Dataset generation
 In this phase, The MURA-BC X-ray dataset has been used in various pixel estimation dataset generation such as 32×32, 40×40, 48×48, 56×56, 64×64, 72×72, 80×80, 88×88 pixels. The MURA-BC X-ray dataset arrange in two folders: train and test.  The train folder contains a total no of  21935 and the test folder contains a total no of 630,  X-ray images from seven different classes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
Transformation 
In this phase, both the training dataset is randomly cropped with the 4 padding and X-ray images are randomly flipped horizontally. This technique provides an edge on the test dataset. The unseen X-ray image dataset captured for the test set can be in a random fashion. The normalization method is used to reduce unwanted noise or distortion signals. The X-ray image captured through the image modalities system may be incomplete and devoid of essential details, such as irregular staining and poor contrast.
Benchmark Deep Learning Models Training & Validation
The training of the benchmark deep learning models (EfficientNet: B0, MobileNet, ResNet18, VGG19) has been performed from scratch. The MURA-BC 32×32 X-ray image dataset has been used for training, validation, and testing purposes. This phase will help us to determine the best model from the benchmark is deep learning models.
ChampNet Processed with different resolution dataset
In this phase, we have determined the performance of deep learning model processed with different resolution dataset 40×40, 48×48, 56×56, 64×64, 72×72, 80×80, 88×88 pixels. The experiment performs in this phase is to select the resolution of the dataset for which the model performance gets stable in terms of training time and accuracy.
Image Enhancement techniques 
The Image enhancement phase is an essential aspect of our proposed model. The main aim of this phase is to boost the performance of the deep learning model and figure out the best enhancement techniques for the bone X-ray images. In this paper total, three enhancement techniques, CLAHE, HEF, UM are implemented. Table 2 contains the detailed parameters of enhancement techniques. In Fig. 2 we demonstrate the outcomes of enhancement techniques implemented on some of the original X-ray images and Fig. 3 shows a histogram of randomly selected Elbow images from the MURA-BC dataset.

Table 2 Enhancement Techniques Parameters details
	Enhancement Techniques
	Parameters 

	CLAHE
	Window Size:8x8
Clip Limit:40

	HEF
	D0:70

	UM
	Radius:5
Amount:2
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Fig.2 Enhancement techniques outcomes
[image: ]
Fig. 3 Histogram of randomly Elbow image from MURA-BC
5. Simulation, results, and validation 
The simulation of the proposed model is categorized in three major phases: benchmark deep learning model training & validation, ChampNet processed with different resolution Dataset, implementation of image enhancement techniques on ChampNet, the simulation of these three phases has been performed on python 3.0. The model evaluation and validation explain in subsections.
5. 
5.1. Model Evaluations
The performance of our model evaluated using accuracy  and Cross-entropy error rate (. Validation performed through Lightness Order Error (LoE).
5.1.1. Accuracy
The accuracy is the total number of correctly classified images out of the total number of the images in the dataset(Mall, Singh and Yadav, 2019). The ‘Accuracy’ computes as depicted in (10) as follows:  
                                                                     (10)
The ‘total number’ of the images in the dataset is computed as depicted in (11) as follows:
                                                               (11)
Where TP denotes True positives, TN denotes True negative, FP denotes False positive, False denotes negative FN.
5.1.2. Cross-entropy
Cross-entropy is widely used in the deep learning training process (Zhang and Sabuncu, 2018). The Cross-entropy function is computed as depicted in (12):
           (12)
      	Loss calculated separated for each class per observation and sum of the result computes as depicted in (13):
                                                                                          (13)
Where M >2 denotes multiclass classification, the log is the natural log, y is a binary indicator (0 or 1), c is the correct classification for observation, p denotes predicted probability for observation is of class c.
5.1.3. Lightness Order Error
The naturalness is crucial for image enhancement technique but most of the technique cannot maintain the naturalness effectively. We have considered the well-known image quality assessment (IQA) technique as Lightness Order Error (LoE) (Wang et al., 2013). This IQA technique provides the foremost solution among the methods (HEF, UM, and CLAHE) tested. LoE measure is based on the differences between the original input image () and enhanced image (.the low LoE score indicates best solution and preserve the naturalness in enhanced images. The LoE is computes as depict in (14):

                                                                            (14)
When h and w are the height and width of RD(x,y) is the relative order difference. In equation (15), the relative order difference is defined of the original image and enhanced image.


                   (15)  
Where  lightness is computed as depict in (16) and U (x, y) the unit step method computes as depicted in (17):

                                                                                                   (16)

                                                                                                                  (17)
5.2. Experiment result for ChampNet selection and validation
We have implemented our proposed model in python, which provides the pathway to boost the performance of DLMs to classify bone X-ray images, we have performed a sequence of different experiments to analyze and confirm the effectiveness of our proposed model on benchmark medical image dataset. To verify the efficiency of our model on MURA-BC medical imaging datasets, First, the training of the benchmark deep learning models (EfficientNet: B0, MobileNet, ResNet18, VGG19) has been performed from scratch. The MURA-BC 32×32 X-ray image dataset has been used for model training, validation, and testing purposes. The model training was performed for 20 epochs. Table 3 contains the result of training accuracy of benchmark deep learning models EfficientNet: B0, MobileNet, ResNet18, VGG19. We have obtained max training accuracy values of 92.12%, 91.64%, 92.05%, and 91.96%, respectively. 
Table 3 Training Accuracy of benchmark deep learning models
	Training Accuracy

	Epoch
	EfficientNetB0
	MobileNet
	ResNet18
	VGG19

	1
	59.0755
	59.333955
	44.50047
	29.52292

	2
	78.02305
	61.427714
	54.92331
	34.61147

	3
	83.78104
	69.646071
	67.78663
	38.75943

	4
	85.91645
	72.885423
	78.62046
	47.31802

	5
	87.42056
	75.404919
	81.35328
	55.43174

	6
	88.42471
	76.404919
	83.64122
	63.57088

	7
	89.38649
	76.704919
	86.36556
	71.13804

	8
	89.91611
	78.781459
	87.30192
	76.17575

	9
	90.15761
	79.184163
	88.89077
	79.3026

	10
	90.31014
	81.184163
	89.39073
	82.72604

	11
	90.48809
	81.884163
	89.69579
	85.3148

	12
	90.6957
	83.598848
	90.61097
	86.8062

	13
	90.98805
	84.223155
	90.89484
	87.8273

	14
	90.95839
	86.763834
	91.31853
	89.19583

	15
	91.30158
	88.034912
	91.80154
	89.60681

	16
	91.67443
	89.263622
	92.01763
	90.19998

	17
	91.84815
	90.36946
	92.01863
	90.53046

	18
	91.65749
	90.615202
	92.02763
	90.844

	19
	92.01339
	91.640539
	92.05999
	91.96578

	20
	92.12355
	91.424456
	92.05999
	91.96678

	Max %
	92.12355
	91.640539
	92.05999
	91.96678



The test accuracy of EfficientNet: B0, MobileNet, Resnet18, and VGG19 benchmark models depicted in Table 4. The max test accuracy achieved   92.12%, 91.64%, 92.05%, 91.96%, respectively.
Table 4 Test Accuracy of benchmark deep learning models
	Test Accuracy

	Epoch
	EfficientNetB0
	MobileNet
	ResNet18
	VGG19

	1
	74.02519
	68.32633
	54.64907
	23.93521

	2
	80.20396
	78.16437
	49.13017
	33.23335

	3
	79.90402
	82.96341
	72.88542
	24.35513

	4
	81.46371
	83.62328
	43.31134
	43.97121

	5
	82.78344
	86.92262
	61.42771
	50.56989

	6
	84.94301
	87.70246
	69.64607
	55.72885

	7
	82.0036
	88.84223
	84.22316
	59.56809

	8
	86.56269
	88.42232
	85.4829
	50.08998

	9
	89.0222
	89.92202
	86.14277
	70.60588

	10
	88.06239
	90.76185
	86.68266
	72.70546

	11
	89.0222
	90.64187
	87.22256
	65.08698

	12
	85.4829
	91.18176
	89.86203
	67.30654

	13
	86.38272
	87.40252
	90.10198
	78.22436

	14
	85.24295
	86.38272
	87.16257
	82.60348

	15
	87.94241
	90.04199
	89.14217
	86.14277

	16
	90.16197
	90.10198
	88.96221
	88.36233

	17
	90.94181
	89.68206
	89.74205
	88.06239

	18
	84.46311
	91.60168
	90.16197
	89.80204

	19
	91.30174
	90.40192
	90.40192
	87.76245

	20
	86.5027
	91.78164
	90.50178
	88.18236

	Max %
	91.30174
	91.78164
	90.50178
	89.80204


	 
Table 5 contains the training error rate of benchmark deep learning models EfficientNet: B0, MobileNet, ResNet18, and VGG19. We obtain min training error rate values of 0.2814, 0.402656, 0.276089, and 0.3524966 respectively.
Table 5 Training Error Rate of benchmark deep learning models
	Training Error Rate

	Epoch
	EfficientNetB0
	MobileNet
	ResNet18
	VGG19

	1
	1.383322
	1.21302
	1.731406
	2.199559

	2
	0.642499
	1.086369
	1.353959
	1.704481

	3
	0.476108
	0.86186
	0.914831
	1.592747

	4
	0.418697
	0.792313
	0.628165
	1.433213

	5
	0.380908
	0.704619
	0.545471
	1.227937

	6
	0.352331
	0.676819
	0.487505
	1.025349

	7
	0.333074
	0.644619
	0.40772
	0.844052

	8
	0.315124
	0.625471
	0.387088
	0.706743

	9
	0.311794
	0.595194
	0.339379
	0.606142

	10
	0.303991
	0.575274
	0.329567
	0.505616

	11
	0.300183
	0.545334
	0.311932
	0.444331

	12
	0.292185
	0.484095
	0.292552
	0.400369

	13
	0.287271
	0.45264
	0.280182
	0.37328

	14
	0.2814
	0.402656
	0.276089
	0.352496

	15
	0.275123
	0.370232
	0.25803
	0.335794

	16
	0.262874
	0.333399
	0.249875
	0.319002

	17
	0.260169
	0.306982
	0.249775
	0.307171

	18
	0.259444
	0.295539
	0.249675
	0.302845

	19
	0.241755
	0.269972
	0.242157
	0.267149

	20
	0.244397
	0.275724
	0.242157
	0.268149

	Min %
	0.241755
	0.269972
	0.242157
	0.267149


 
	The test accuracy of EfficientNet: B0, MobileNet, Resnet18, and VGG19 benchmark models are depicted in Table 6. The min test error rate achieved   0.276527, 0.291593, 0.293466, and 0.324585 respectively.

Table 6 Test Error Rate of benchmark deep learning models
	Test Error Rate

	Epoch
	EfficientNetB0
	MobileNet
	ResNet18
	VGG19

	1
	0.726903
	0.866627
	1.180009
	2.032817

	2
	0.567598
	0.694435
	1.907381
	1.749024

	3
	0.575895
	0.505958
	0.792313
	1.926473

	4
	0.52121
	0.478591
	2.260284
	1.456533

	5
	0.518982
	0.39099
	1.086369
	1.378928

	6
	0.429103
	0.381977
	0.86186
	1.092998

	7
	2.691613
	0.352362
	0.45264
	1.096194

	8
	0.415552
	0.353442
	0.445867
	1.425752

	9
	0.338509
	0.333816
	0.432549
	0.868752

	10
	0.371915
	0.303375
	0.39823
	0.784532

	11
	0.345888
	0.319616
	0.423801
	1.163236

	12
	0.401998
	0.291593
	0.319726
	1.09825

	13
	0.958694
	0.388062
	0.296771
	0.652425

	14
	0.441828
	0.411231
	0.37014
	0.554189

	15
	0.375713
	0.317347
	0.350389
	0.452177

	16
	0.300061
	0.296771
	0.334783
	0.377894

	17
	0.327415
	0.33928
	0.306369
	0.40352

	18
	0.432823
	0.326823
	0.312
	0.324585

	19
	0.276527
	0.298766
	0.298766
	0.416029

	20
	0.413443
	0.329408
	0.293466
	0.383946

	Min %
	0.276527
	0.291593
	0.293466
	0.324585



The ChampNet selection is based on two standards: the max accuracy and the min error rate. The ChampNet is selected based on the training and test accuracy indicated in Fig. 4. Maximum training and test accuracy are 92.15 and 91.30 respectively.  


Fig. 4 Max Train and Test accuracy of different DLMs
With the help of Fig. 5, based on the training and testing error rates of the various deep learning models. We have estimated the minimum training and testing error rates as 0.242 and 0.277, respectively. Through Figure 4 and 5, we can easily determine EfficientNet: B0 as our ChampNet from the benchmark DLMs.


Fig. 5 Train and Test error rate of different DLMs

5.3. Experiment result for ChampNet Processed with different resolution datasets
First, this experiment contributes to finding out the relationship between deep learning model performance and different dataset resolutions. Second, estimate training time on different resolutions. The results in Table 7 and 8 shows the different resolution X-ray image dataset on the classification performance based on train and test accuracy respectively. Table 9 contains estimate-training time on different resolutions datasets. However, the performance of DLMs improves with growth in dataset resolution. As we increase the dataset resolution, the training time also increases. Thus, it is evident that from Tables 7, 8, and 9 that the 64×64-pixel resolution dataset is best in terms of accuracy and training duration. Due to this reason, we have selected a 64×64-pixel X-ray image dataset, further investigating the performance of the model in the next phase. 






Table 7 ChampNet accuracy based on different resolution train dataset
	Training Report

	Epoch
	EfficientNetB0 32 X 32
	EfficientNetB0 40 X 40
	EfficientNetB0 48 X 48
	EfficientNetB0 56 X 56
	EfficientNetB0 64 X 64
	EfficientNetB0 72 X 72
	EfficientNetB0 80 X 80
	EfficientNetB0 88 X 88

	1
	59.07
	61.08
	53.57
	46.95
	58.43
	60.63
	68.70
	69.13

	2
	78.02
	83.02
	79.70
	76.30
	80.55
	81.85
	87.81
	88.27

	3
	83.78
	87.41
	86.66
	83.37
	87.36
	88.31
	90.78
	91.28

	4
	85.91
	89.31
	88.59
	86.32
	89.61
	90.72
	92.44
	92.45

	5
	87.42
	90.08
	89.66
	88.15
	90.86
	92.18
	93.09
	93.39

	6
	88.42
	90.77
	90.68
	89.11
	91.36
	92.72
	93.55
	93.30

	7
	89.38
	91.21
	91.19
	89.84
	91.82
	91.26
	93.65
	94.10

	8
	89.91
	91.48
	91.25
	90.25
	92.42
	92.91
	93.90
	93.91

	9
	90.15
	91.76
	91.73
	90.64
	92.22
	93.19
	93.93
	94.24

	10
	90.31
	92.05
	91.69
	91.00
	92.85
	93.40
	93.85
	94.18

	11
	90.48
	91.79
	91.85
	91.39
	92.47
	93.48
	94.22
	94.44

	12
	90.69
	92.45
	91.91
	91.56
	93.00
	93.89
	94.39
	94.31

	13
	90.98
	92.63
	91.84
	91.69
	92.35
	93.50
	94.39
	94.45

	14
	90.95
	92.63
	92.29
	91.75
	92.61
	93.77
	94.08
	94.17

	15
	91.30
	92.62
	91.53
	92.01
	92.86
	93.86
	94.22
	94.25

	16
	91.67
	93.07
	91.98
	92.18
	93.03
	93.19
	94.19
	94.47

	17
	91.84
	92.50
	92.33
	92.14
	92.83
	93.69
	94.53
	94.38

	18
	91.65
	92.65
	91.99
	92.30
	92.89
	93.71
	94.55
	94.86

	19
	92.01
	92.94
	92.54
	92.30
	92.94
	93.64
	94.64
	94.50

	20
	92.12
	92.74
	92.33
	92.55
	93.10
	93.70
	94.39
	94.2

	Max %
	92.12
	93.07
	92.54
	92.55
	93.10
	93.89
	94.64
	94.86





Table 8 ChampNet accuracy based on the different resolution test dataset 
	Testing report

	Epoch
	EfficientNetB0 32 X 32
	EfficientNetB0 40 X 40
	EfficientNetB0 48 X 48
	EfficientNetB0 56 X 56
	EfficientNetB0 64 X 64
	EfficientNetB0 72 X 72
	EfficientNetB0 80 X 80
	EfficientNetB0 88 X 88

	1
	74.02
	61.08
	68.86
	67.84
	71.02
	72.76
	80.44
	80.44

	2
	80.20
	83.02
	79.72
	67.30
	81.82
	81.40
	86.20
	86.74

	3
	79.90
	87.41
	81.94
	78.76
	85.84
	87.94
	88.78
	90.40

	4
	81.46
	89.31
	86.92
	79.60
	89.26
	88.72
	90.70
	92.38

	5
	82.78
	90.08
	87.52
	85.96
	89.44
	91.12
	89.92
	87.22

	6
	84.94
	90.77
	89.20
	82.48
	89.56
	87.82
	91.24
	90.46

	7
	82.00
	91.21
	89.68
	84.76
	86.26
	89.02
	91.24
	91.18

	8
	86.56
	91.48
	88.66
	87.40
	87.22
	91.84
	91.66
	92.86

	9
	89.02
	91.76
	87.16
	87.70
	89.80
	90.04
	91.78
	91.42

	10
	88.06
	92.05
	89.74
	88.90
	87.88
	92.02
	91.30
	90.76

	11
	89.02
	91.79
	87.88
	89.02
	90.58
	91.24
	89.92
	91.60

	12
	85.48
	92.45
	84.16
	83.80
	89.68
	90.70
	91.54
	91.54

	13
	86.38
	92.63
	85.36
	88.36
	89.02
	91.78
	89.92
	92.32

	14
	85.24
	92.63
	89.08
	90.46
	88.96
	91.90
	91.96
	91.84

	15
	87.94
	92.62
	86.98
	89.14
	90.94
	88.00
	89.44
	91.00

	16
	90.16
	93.07
	88.36
	90.76
	88.54
	87.16
	94.24
	88.48

	17
	90.94
	92.50
	86.92
	86.86
	91.30
	91.42
	92.68
	90.82

	18
	84.46
	92.65
	85.90
	89.92
	91.96
	88.06
	89.20
	90.10

	19
	91.30
	92.94
	87.40
	89.38
	88.60
	91.36
	92.80
	92.14

	20
	86.50
	92.74
	87.70
	89.92
	85.90
	91.4
	93.46
	90.82

	Max %
	91.30
	93.07
	89.74
	90.76
	91.96
	92.02
	94.24
	92.86





Table 9 ChampNet training duration on different resolution dataset
	ChampNet with Resolution
in Virtual Environment 
	Training Duration for 20 epochs

	EfficientNetB0 32 X 32 
	30 Minutes

	EfficientNetB0 40 X 40
	55 Minutes

	EfficientNetB0 48 X 48
	1 hours 50 Minutes

	EfficientNetB0 56 X 56 
	2 hours 45 Minutes

	EfficientNetB0 64 X 64 
	3 hours 20 Minutes

	EfficientNetB0 72 X 72 
	5 hours

	EfficientNetB0 80 X 80 
	7 hours 50 Minutes

	EfficientNetB0 88 X 88 
	10 hours



5.4. Experiment result for ChampNet Processed with different Image Enhancement
In this phase of research, the main objective is to boost the performance of DLMs. We have processed the dataset finalized from the previous phase with different image enhancement techniques, namely CLAHE, HEF, and UM. The results in Table 10 and Fig. 6 show the classification performance of ChampNet with enhancement techniques on the train, test dataset with and without enhancement techniques applied. All three techniques of image enhancement on the training dataset perform approximately the same in the range of 95.88%. The difference was examined during the test dataset with and without enhancement techniques. From Table 10, it is clear that the CLAHE technique outperforms the other two techniques on both the test dataset with and without enhancement techniques. The CLAHE technique achieved 94.99% and 94.18% accuracy on the test dataset with and without enhancement techniques respectively. HEF achieved 94.79% and UM achieved 94.61% for the test dataset with enhancement techniques. HEF achieved only 40.13% and UM achieved 84.58% for the test dataset without enhancement techniques. 







Table 10 ChampNet training and test Accuracy for different Enhancement techniques
	
	ChampNet + CLAHE
	ChampNet + HEF
	ChampNet + UM
	ChampNet + CLAHE
	ChampNet + HEF
	ChampNet + UM
	ChampNet + CLAHE
	ChampNet + HEF
	ChampNet + UM

	
	Training Accuracy on   Train Dataset
	Test Accuracy with Enhancement on Test Dataset
	Test Accuracy without Enhancement on Test Dataset

	1
	75.35
	62.30
	66.64
	68.74
	67.13
	79.75
	75.35
	18.42
	65.15

	2
	91.08
	79.62
	85.91
	86.03
	73.05
	81.97
	73.01
	18.96
	70.19

	3
	92.93
	85.43
	89.53
	85.19
	80.18
	89.57
	81.64
	18.42
	76.66

	4
	93.62
	88.37
	91.09
	87.29
	85.39
	88.68
	83.08
	19.68
	67.13

	5
	94.07
	89.47
	92.14
	90.53
	80.06
	85.32
	87.76
	20.58
	65.15

	6
	93.99
	90.51
	92.83
	88.31
	85.03
	89.87
	88.66
	19.98
	72.77

	7
	94.30
	91.04
	93.54
	89.60
	77.90
	91.67
	85.72
	18.90
	77.20

	8
	94.07
	91.67
	93.42
	90.59
	88.08
	88.98
	88.84
	21.06
	68.45

	9
	94.28
	91.59
	93.85
	82.43
	84.73
	87.42
	86.56
	34.55
	76.72

	10
	94.43
	91.98
	93.59
	89.12
	85.03
	91.85
	87.34
	35.75
	72.95

	11
	94.31
	93.01
	93.96
	91.07
	78.44
	90.71
	90.34
	22.74
	70.55

	12
	94.38
	92.91
	93.94
	92.42
	81.08
	83.28
	88.78
	35.93
	75.52

	13
	94.61
	93.16
	94.23
	91.55
	79.58
	89.04
	90.70
	40.13
	65.33

	14
	94.60
	93.32
	94.42
	92.54
	81.08
	93.53
	86.80
	23.22
	72.35

	15
	94.79
	93.21
	94.20
	92.93
	82.34
	90.35
	91.06
	25.73
	65.51

	16
	94.70
	94.74
	95.26
	91.85
	92.93
	94.61
	92.02
	28.19
	63.47

	17
	94.87
	94.99
	95.27
	94.99
	91.20
	92.45
	87.28
	24.06
	75.46

	18
	94.83
	95.27
	94.98
	92.45
	90.90
	94.39
	94.18
	28.49
	84.58

	19
	95.01
	95.06
	95.00
	92.03
	93.77
	93.41
	90.22
	24.12
	69.59

	20
	95.88
	95.57
	95.69
	91.55
	94.79
	93.11
	91.90
	20.34
	69.71

	Max %
	95.88
	95.57
	95.69
	94.99
	94.79
	94.61
	94.18
	40.13
	84.58




Fig. 6 Train and Test accuracy on the train, test (with and without enhancement) dataset
5.5. Experiment result validation with LoE: 
In the last phase, the LoE method is used to validate the result of the previous phase of the experiment as depicted in Fig. 7. The LoE score for different bone X-ray images is shown in Table 11. The low LoE score indicates the best solution and preserves the naturalness in enhanced images. The CLAHE LoE score is 96.72, which is the lowest among the other two techniques. The HEF LoE score is 403.68 and the UM LoE score is 115.68. The low LoE score of CLAHE validates the result of the previous phase.
Table 11 LoE Score for different X-ray study dataset
	LoE Score 
	CLAHE
	HEF
	UM

	LoE_ELBOW
	116.19
	407.99
	138.88

	LoE_FINGER
	79.52
	613.34
	203.26

	LoE_FOREARM
	125.11
	324.60
	54.16

	LoE_HAND
	37.82
	487.82
	131.14

	LoE_HUMERUS
	89.25
	585.77
	104.15

	LoE_SHOULDER
	170.83
	1.59
	95.30

	LoE_WRIST
	58.36
	404.67
	82.84

	Average_LoE Score
	96.72
	403.68
	115.68




Fig. 7: LoE score for different X-ray study
6. CONCLUSION AND FUTURE SCOPE
The proposed design of BoostNet can enhance the performance of the MURA-BC dataset. The BoostNet plays a dynamic role in advancing the state-of-art performance of musculoskeletal radiograph dataset. In this paper, we have introduced a model to improve DLMs in the medical imaging domain. Specifically, we have executed a series of experiments to enhance the accuracy of the model and authenticate the result using LoE techniques. The obtained findings are interesting for a wide variety of reasons:
· Benchmark DLMs (EfficientNet: B0, MobileNet, ResNet18, VGG19). The EfficientNet: B0 (ChampNet) outperforms other deep learning models MobileNet, ResNet18, VGG19 in terms of high accuracy and low error rate. The EfficientNet: B0 provides high performance on minimum hardware resources. The experiment was performed in a virtual environment with 12GB RAM, and six virtual CPUs from an Intel Xeon silver 2.10 GHZ processors server. 
· The ChampNet performance improves gradually as we increase the dataset resolution, but the performance of the model gets stable. The EfficientNet: B0 with 64x64 resolution achieves stable accuracy (Table 7 and Table 8). This finding helps to improve the model accuracy.
· The ChampNet with 64x64 resolution dataset is implemented with three different enhancement techniques (CLAHE, HEF, and UM). The CLAHE outperforms the other two enhancement techniques, HEF and UM (Tables 10). The ChampNet with CLAHE technique is referred to as BoostNet.
· The outcome of the ChampNet (64x64 resolution) with different enhancement techniques (CLAHE, HEF, and UM) experiment is verified with the LoE technique (Tables 11 and Figure 6). 
The outcome of the research is musculoskeletal radiographs X-ray images processed with CLAHE enhancement techniques with DLMs. The BoostNet can be implemented on several other medical imaging problems. In the future, the experiment could be processed with a higher resolution dataset and high-performance hardware resources. This model provides an immediate, complete tool to guide medical professionals for the treatment process in multiple medical domains. The practical deployments and application order to respond to resource constraints.
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Benchmark Deep Learning Models Performance 
Max Train Accuracy	EfficientNetB0	MobileNet	ResNet18	VGG19	92.123548851789579	91.640538937378182	92.05999491568511	91.966782476060658	Max Test Accuracy	EfficientNetB0	MobileNet	ResNet18	VGG19	91.301739652069458	91.781643671268142	90.501777616075458	89.802039592079296	Accuracy  %
Benchmark Deep Learning Models Error Rate

Min Train Error Rate	EfficientNetB0	MobileNet	ResNet18	VGG19	0.24175523415611108	0.26997241949712908	0.24215731644952621	0.26714906158157276	Min Test Error Rate	EfficientNetB0	MobileNet	ResNet18	VGG19	0.276527232764398	0.29159296566950127	0.29346559183878684	0.3245853200993174	Error Rate %
Train & Test Accuracy 
 Train Dataset	ChampNet +  CLAHE 	ChampNet +  HEF 	ChampNet +  UM 	95.88	95.57	95.69	 Test Dataset(Enhancement)	ChampNet +  CLAHE 	ChampNet +  HEF 	ChampNet +  UM 	94.990000000000023	94.79	94.61	 Test Dataset(without Enhancement)	ChampNet +  CLAHE 	ChampNet +  HEF 	ChampNet +  UM 	94.179999999999978	40.130000000000003	84.58	Accuracy  %
Average  LoE Score for different X-ray study
CLAHE	HEF	UM	96.72	403.68	115.67999999999998	LoE  Score
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