

DOCTORAL THESIS

HIGH PERFORMANCE OF THE

GENERALIZED FINITE DIFFERENCE

METHOD AND APPLICATIONS

Augusto César Albuquerque Ferreira

Salamanca, 2022

2

HIGH PERFORMANCE OF THE

GENERALIZED FINITE DIFFERENCE

METHOD AND APPLICATIONS

A thesis submitted in fulfilment of the requirements for the degree of

Doctor por la Universidad de Salamanca in the Department of Computer

Engineering under the research line of numerical methods

Augusto César Albuquerque Ferreira

SUPERVISORS:

Miguel Ureña Asensio

Higinio Ramos Calle

Declaration

I hereby declare that the thesis entitled “HIGH PERFORMANCE OF
THE GENERALIZED FINITE DIFFERENCE METHOD AND
APPLICATIONS” being submitted to the University of Salamanca,
Spain, for the award of the degree of Doctor por la Universidad de
Salamanca contains the original work carried out by me under the
supervision of Prof. Miguel Ureña Asensio and Prof. Higinio Ramos
Calle.
The research work reported in this thesis is original and has not
been submitted either in part or full to any university or institution for
the award of any degree or diploma.

 Salamanca, 17 June 2022

 Augusto Albuquerque Ferreira
 (Research scholar)

V.B. (Approval)

Miguel Ureña Asensio Higinio Ramos Calle
(Supervisor) (Supervisor)

6

HIGH PERFORMANCE OF THE GENERALIZED

FINITE DIFFERENCE METHOD AND

APPLICATIONS

Summary

We solve 2D and 3D second-order partial differential equations considering the Gen-

eralized Finite Difference Method (GFDM) with third- and fourth-order approxima-

tions.

First of all, we analyze the influence of the number of points per star and establish

some values as references.

Secondly, we propose a new strategy to deal with ill-conditioned stars, which are

frequent in higher-order approximations. This strategy uses a few points per star in

relation to those established as reference and presents excellent results for detecting

ill-conditioned stars, increasing the accuracy of the numerical approximation and

reducing the computational cost.

To implement the algorithm, we use good programming practices together with

higher-order approximations in the GFDM to reduce the computational cost at dif-

ferent stages of the calculation.

On the other hand, we have developed a strategy to obtain discretizations adapted

to the specific problem to be solved. This strategy distributes the points in the domain

according to the gradient values, which allows using a discretization with a smaller

number of points, reducing the computational cost and maintaining the accuracy

that would be achieved with finer discretizations where the points are distributed

homogeneously.

Furthermore, we develop a 3D adaptive algorithm with fourth-order approxima-

tions on irregular initial discretizations. We compare the results with the algorithm of

points added halfway. In all applications, we achieve better accuracy with a decrease

in the final number of points and computational time.

7

Finally, to test the performance of the algorithm in a real problem, we evaluate

the seismic responses in onshore wind turbines using the GFDM coupled with the

Newmark method. We compare the history of transversal displacement with a model

based on the Finite Element Method using the ABAQUS software. The results are

essentially identical and show the validity of the model proposed in the GFDM.

8

ALTO RENDIMIENTO DEL MÉTODO DE LAS

DIFERENCIAS FINITAS GENERALIZADAS Y

APLICACIONES

Sumario

En esta tesis se aborda la resolución de ecuaciones en derivadas parciales de segundo

orden en 2D y 3D por el Método de las Diferencias Finitas Generalizadas (MDFG)

utilizando aproximaciones de tercer y cuarto orden.

En primer lugar, se analiza la influencia del número de puntos por estrella y se

establecen algunos valores a modo de referencia.

En segundo lugar, se ha desarrollado una nueva estrategia para detectar y tratar es-

trellas mal condicionadas, las cuales pueden aparecer con frecuencia cuando se utilizan

aproximaciones de orden superior. Esta estrategia utiliza una cantidad de puntos por

estrella menor que los establecidos como referencia y presenta excelentes resultados

detectando estrellas mal condicionadas, aumentando la precisión de la aproximación

numérica y reduciendo el coste computacional.

Para implementar el algoritmo, se han utilizado buenas prácticas de programación

junto con las aproximaciones de orden superior en el MDFG para reducir el coste

computacional en diferentes etapas del cálculo.

Por otro lado, se ha desarrollado una estrategia para obtener discretizaciones adap-

tadas al problema concreto que se desea resolver. Esta estrategia distribuye los puntos

en el dominio conforme a los valores del gradiente, lo que permite usar una dis-

cretización con un menor número de puntos, reduciendo así el coste computacional y

manteniendo la precisión que se alcanzaría con discretizaciones más finas donde los

puntos se distribuyen más homogéneamente.

Además, se ha desarrollado un algoritmo adaptativo para problemas en 3D con

aproximaciones de cuarto orden a partir de discretizaciones iniciales irregulares. Se

han comparado los resultados del algoritmo propuesto con los del algoritmo de puntos

9

añadidos a media distancia. En todas las aplicaciones, se ha conseguido una mayor

precisión junto con una disminución del número final de puntos y del tiempo com-

putacional.

Finalmente, para probar el desempeño del algoritmo en un problema real se ha

evaluado la respuesta sísmica en aerogeneradores terrestres empleando el MDFG

acoplado con el método de Newmark. Se han comparado los datos del desplazamiento

transversal con un modelo basado en el método de los elementos finitos utilizando el

programa ABAQUS. Los resultados son esencialmente idénticos y muestran la validez

del modelo propuesto en el MDFG.

10

Acknowledgements

I thank God first and foremost for the completion of this Thesis.

This research was supported by the international scholarship program of the Uni-

versity of Salamanca-Santander Bank.

I would like to express my sincere gratitude to my supervisors Dr. Miguel Ureña

and Dr. Higinio Ramos. They were fundamental for the realization of this thesis.

I acknowledge with a deep sense of reverence, my gratitude towards my parents

for their enormous support and encouragement.

Finally, I thank my bride Thaís Rodrigues de Albuquerque for her constant com-

pany at all times.

11

12

Contents

1 Introduction 31

1.1 State of the art . 31

1.1.1 The generalized finite difference method 31

1.1.2 Higher-order approximations 33

1.1.3 Computational aspects . 35

1.1.4 Treatment of ill-conditioned stars 35

1.1.5 Different forms of discretization using the GFDM 36

1.1.6 Adaptive methods using the GFDM 37

1.1.7 Simplified models in the seismic response of wind turbines and

the GFDM in dynamic responses 39

1.2 Objectives . 40

2 The generalized finite difference method 43

2.1 Solution of a Dirichlet boundary value problem by the GFDM 48

2.2 Influence of the number of points per star with higher-order approxi-

mations . 49

2.2.1 Approximations in 2D . 50

2.2.2 Approximations in 3D . 53

3 Computational aspects 57

3.1 Parallel process in the GDFM . 59

3.2 A vectorized algorithm in the GFDM 59

3.3 Examples . 63

13

3.3.1 Speedup with parallel process 63

3.3.2 Times with vectorized algorithm 64

4 Treatment of ill-conditioned stars 67

4.1 Strategy to avoid ill-conditioned stars 67

4.2 Numerical results . 69

4.2.1 Results with the proposed strategy to avoid ill-conditioned stars

in 2D . 70

4.2.2 Results with the proposed strategy to avoid ill-conditioned stars

in 3D . 73

4.2.3 Influence of the weighting function 75

4.2.4 Influence of the number of intervals on the proposed strategy . 76

5 A technique for generating adapted discretizations 79

5.1 A procedure for generating discretizations adapted to the partial dif-

ferential equation . 79

5.1.1 Procedure for generating interior points 80

5.1.2 Procedure for generating boundary points 83

5.2 Numerical results . 84

5.2.1 Adapted discretizations with fourth-order approximation . . . 85

5.2.2 Influence of the parameters 𝜂 and 𝛽 94

5.2.3 Influence of the weighting functions 95

5.2.4 Adapted discretizations with second-order approximations . . 96

6 An h-adaptive method in 3D 99

6.1 Error indicator . 99

6.2 An adaptive procedure . 99

6.3 Procedure for adding boundary points 101

6.4 Examples . 102

6.4.1 Example 1 . 102

6.4.2 Example 2 . 104

14

6.4.3 Example 3 . 105

6.4.4 Example 4 . 106

6.4.5 Example 5 . 107

7 Seismic response in onshore wind turbines 109

7.1 Partial differential equation of motion - beam bending 109

7.2 Analysis of dynamic response . 111

7.3 Procedure to calculate the natural vibration modes 115

7.4 Turbine NREL . 117

7.4.1 External force applied - earthquake 117

7.4.2 Result of dynamic response 118

7.5 Turbine Senvion MM92 . 120

7.5.1 External force applied - earthquake 121

7.5.2 Result of dynamic response 122

8 Conclusions and future lines of research 125

8.1 Conclusions . 125

8.2 Future developments . 130

9 Conclusiones y futuras líneas de investigaciones 133

9.1 Conclusiones . 133

9.2 Desarrollos futuros . 139

15

16

List of Figures

2-1 Discretization of the domain and the star formation in 3D (ℎ𝑖, 𝑘𝑖 and

𝑙𝑖 are the relative distances of x𝑖 to x0) 45

2-2 The domains and discretizations used in the 2D examples. 50

2-3 Numerical errors for each approximation order in 2D 52

2-4 The domains and discretizations used in the 3D examples. 53

2-5 Numerical errors for each order of approximation in 3D applications . 55

4-1 Strategy to avoid large condition number in the matrix A. 68

4-2 Distribution of the formation of stars used at each point in the dis-

cretization: stage 1 (quadrant criterion) and stage 2 (quadrant criterion

with the addition of points). 72

5-1 Influence areas for each point in the domain with their geometric cen-

tres at the respective points. Note that there is no overlap between the

influence areas relative to the internal points. However, overlap can

occur between the influence area of a interior point and the influence

area of a boundary point. 81

5-2 The insertion of points within the areas of influence (left) and the

discretization smoothing process (right). 82

17

5-3 Interior points generated from boundary points and boundary points

inserted. The points p1, p2, p3, and p4 have the closest interior areas

A1, A2, A3, and A4 with 4, 1, 1, and 9 points, respectively. The white

points are rejected because they are outside the domain, the yellow

point is removed because it is too close to the boundary, and the green

point is removed because it is close to an interior point generated from a

boundary point. The blue and red points are the interior and boundary

points inserted, respectively. 83

5-4 Gradients, adapted and uniform discretizations for Example 1. 86

5-5 Gradients, adapted and uniform discretizations for Example 2. 87

5-6 Gradients, adapted and uniform discretizations for Example 3. 89

5-7 Gradients, adapted and uniform discretizations for Example 4. 90

5-8 Gradients, adapted and uniform discretizations for Example 5. 92

5-9 Gradients, adapted and uniform discretizations for Example 6. 93

5-10 Relationship between the value of 𝜂 and the global errors. 94

5-11 Relationship between the value of 𝛽 and the global errors. 95

5-12 Relationship between the value of 𝜂, weighing functions, and global

errors. 96

5-13 Adapted and uniform discretizations for Examples 1 and 2 with second-

order approximations . 97

6-1 Position of the added points in relation to the refined point. On the

left, 8 points are added; and on the right, 14 points are added. 101

6-2 Discretizations in the adaptive algorithm for Example 1. 104

6-3 Discretizations in the adaptive algorithm for Example 2. 105

6-4 Discretizations in the adaptive algorithm for Example 3. 106

6-5 Discretizations in the adaptive algorithm for Example 4. 107

6-6 Discretizations in the adaptive algorithm for Example 5. 108

18

7-1 Euler-Bernoulli beam with a top mass and cross section variable sub-

jected to a horizontal earthquake. The soil-structure interaction is mod-

elled by two flexible springs. 110

7-2 Discretization with the GFDM and sparsity pattern of matrices K and

M. 113

7-3 Accelelogram for the Loma Prieta earthquake. 118

7-4 History of transversal displacement considering soil-structure interac-

tion and damping ratio in the turbine NREL-5 MW. 120

7-5 Accelelogram for the Cape Mendocino earthquake. 122

7-6 History of transversal displacement considering soil-structure interac-

tion and damping ratio in the turbine Senvion MM92. 123

19

20

List of Tables

3.1 Summary of the algorithm developed in GFDM. 63

3.2 Speedup of each calculation process in the 2D case. 64

3.3 Speedup of each calculation process in the 3D case. 64

3.4 The runtime of the 2D code to calculate the derivatives and assemble

the K matrix. 65

3.5 The runtime of the 3D code to calculate the derivatives and assemble

the K matrix. 65

3.6 Times to the non-vectorized and vectorized codes in 2D and 3D examples. 66

4.1 Global errors with the third-order approximation in 2D 71

4.2 Global errors with the fourth-order approximation in 2D 71

4.3 Global error with third-order approximation in 2D for the discretiza-

tion ID1. 73

4.4 Global error with fourth-order approximation in 2D for the discretiza-

tion ID1. 73

4.5 Global error with the third-order approximation in 3D 74

4.6 Global error with the fourth-order approximation in 3D 74

4.7 Global error with the third-order approximation in 3D for the dis-

cretization ID4. 75

4.8 Global error with the fourth-order approximation in 3D for the dis-

cretization ID4. 75

4.9 Relation between the weighting functions, the global error and the

percentage (%) of modified stars. 76

21

4.10 Relation between the number of intervals 𝜆, the global error and the

percentage (%) of modified stars. 77

5.1 Global error and execution times for Example 1 86

5.2 Global error and execution times for Example 2 87

5.3 Global error and execution times for Example 3 89

5.4 Global error and execution times for Example 4 91

5.5 Global error and execution times for Example 5 92

5.6 Global error and execution times for Example 6 with fourth-order ap-

proximations. 93

5.7 Data for different weighting functions (𝜂 = 0.25, 𝛽 = 0.5). 96

5.8 Global error and execution times for Example 1 with second-order

approximation . 98

5.9 Global error and execution times for Example 2 with second-order

approximation . 98

6.1 Coordinates of the points to be added for each point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) to be

refined (𝑒𝑖 is the error indicator; 𝑒 and 𝜎𝑒 are the average and the stan-

dard deviation of the error indicators, respectively; ∆ is the shortest

distance between two points in all the domain). 100

6.2 Errors, number of points, number of adaptive steps, and time in each

algorithm for Example 1. 103

6.3 Errors, number of points, number of adaptive steps, and the time in

each algorithm for Example 2. 105

6.4 Errors, number of points, number of adaptive steps, and the time in

each algorithm for Example 3. 106

6.5 Errors, number of points, number of adaptive steps, and the time in

each algorithm for Example 4. 107

6.6 Errors, number of points, number of adaptive steps, and the time in

each algorithm for Example 5. 108

22

7.1 Summary of Baseline Wind Turbine Properties (NREL- 5 MW) . . . 118

7.2 Modal frequencies to the Bmodes, FEM and GFDM in the turbine NREL119

7.3 Summary of Baseline Wind Turbine Properties (Senvion MM92- 2,050

kW) . 121

7.4 Modal frequencies in the FEM and the GFDM to the turbine Senvion

MM92. 122

23

24

List of Symbols and acronyms

𝐷 Domain

Φ Dimension

Ω Interior domain

x Spatial coordinates

𝑀 Discretization of the domain

N Total number of points

𝑚 Number of star points

𝑉 Set of star points

x0 Coordinate at the central point

x𝑖 Coordinate at a point of the star

𝑈 Any function determined on the domain D

𝑟 Residual vector

𝑢0 Approximate value at the central point

𝑢𝑖 Approximate value at a point of the star

u Approximate value vector

∆u Difference vector

P Matrix of coefficients of the Taylor series

D𝑢 Vector of approximate derivatives at the central point

ℎ Relative distance in relation to the x axis

𝑘 Relative distance in relation to the y axis

𝑙 Relative distance in relation to the z axis

25

W Diagonal matrix of weights

A Matrix of coefficients the GFDM

B and B̄ Matrices of coefficients of the derivatives

𝑏𝑖,𝑗 Elements of the B matrix

𝑝 Number of terms of the Taylor series

ℒ Second-order linear differential operator

𝑓 and 𝑔 Known real functions

𝑎0 Constant

a Coefficients of the partial derivatives

K Coefficient matrix of the global equation system

NI Total number of interior points

F Vector of the values of 𝑓 at each interior point

F̄ Vector F with boundary conditions applied

ũ Vector of approximate values of 𝑈 at the points of 𝑀

ū Vector of approximate values of 𝑈 at the interior points of 𝑀

B𝑔, I𝑔, J𝑔 and a𝑔 four global 1D-arrays

d Vector of minimum distances

𝜆 Number of intervals

𝛿𝑖 Length of an interval

𝑑𝑚𝑖𝑛 Minimum value of d

𝑑𝑚𝑎𝑥 Maximum value of d

𝜅(A) Condition number of A

𝑡𝑜𝑙 Tolerance

Error Global error

𝑚0 Initial number of points per star

∇⃗0 Vector gradient at each interior central point

∆ Shortest distance between two points in all the domain

26

∇̄ Average gradient

𝜎 Standard deviation of the gradients

𝛽 Constant

𝜂 Expansion percentage

𝛼 Percentage of broadening of the regular grid in the influence area

𝑛 Number of points within the area of influence in one direction

𝑒𝑖 Error indicator at a point

𝑒 Mean of the error indicators

𝜎𝑒 Standard deviation of the error indicators

P̃ 3D array with all P matrices of the stars

W̃ 3D array with all W matrices of the stars

hi,ki, and li 1D arrays with all relative distances

B̃ 3D array with all B matrices of the stars

K𝑠 Global matrix formed by the coefficients of the stars

K𝑜 Global matrix formed by the coefficients of central points

Bo𝑔, Io𝑔, and Jo𝑔 1D-arrays that generate K𝑜

Bs𝑔, Is𝑔, and Js𝑔 1D-arrays that generate K𝑠

ao𝑔 and as𝑔 1D-arrays formed from the coefficients of the differential equation

𝑆𝑘
1 ... 𝑆𝑘

𝑚 Global numbering of the stars

𝜈 Exact transverse displacement

𝐸 Young’s modulus

𝐼 Cross-sectional moment of inertia

𝑡 Time

𝑓𝑔 Transversal force along the structure

𝜇 Structural mass per unit length

𝑄 Axial force along the structure

𝑀𝑡 Concentrated mass

𝐽 Rotary inertia

27

𝑔 Gravitational acceleration

𝑘𝑡 Foundation lateral stiffness

𝑘𝑟 Foundation rocking stiffness

𝑎𝑔 Horizontal acceleration caused by an earthquake at the base of the structure

𝑓𝑡 Concentrated force at the top of the structure

�̂�𝑡 Approximate acceleration in at top of the tower

�̂�0 Approximate acceleration in at central point

𝐿 Height of the tower

𝜈 Approximate value of transverse displacement

�̂� Approximate value of transverse acceleration

𝑓0 Force at the central point

𝜈 Approximate value of transverse displacement at the central point

𝜈𝑖 Approximate value of transverse displacement at the star points

𝜇0 Structural mass per unit length at the central point

𝐼 Cross-sectional moment of inertia at the central point

𝜈 Transverse displacement vector

â Transverse acceleration vector

Fg Force vector

C Damping matrix

𝜔 Frequency matrix

𝑐1 and 𝑐2 Proportionality constants

𝜉 Damping ratio

𝜔 Natural frequency

∆𝑡 Time step

FEM finite element Method

GFDM generalized finite difference Method

EFG element-free Galerkin

LPM lumped-Parameter Models

28

KDC Krylov deferred correction

MDOF multi-degree-of-freedom

NFD Newmark finite difference

FFDM fast finite difference method

SOE sum-of-exponentials

PGA peak ground acceleration

RNA rotor-nacelle-assembly

29

30

Chapter 1

Introduction

1.1 State of the art

1.1.1 The generalized finite difference method

The solution of differential equations by the Finite Difference Method (FDM) is a

classic approach on regularly distributed points. It is a simple, intuitive and univer-

sal numerical method that deals directly with the differential form of the problem.

However, disadvantages arise about the application of boundary conditions and the

use of arbitrary grids, required for the solution on irregular geometries.

With the development of the finite element method (FEM), versatile and capable

of to easily dealing with the problems mentioned above, the scientific interest of

researchers in new procedures associated to the FDM gradually diminished. The FEM

has been the dominant technique in computational mechanics in past decades, and

has made significant contributions to the advancement of engineering and science.

However, the FEM can have a high computational cost in the meshing process.

Consequently, in recent years, there has been a great interest in the meshless method

in which neither elements nor mesh are needed. This increase is explained by Chen

et al. [15]: "It discretizes the continuum body only with a set of nodal points and

the approximation is constructed entirely in terms of nodes. The method is thus

less susceptible to mesh distortion difficulties than the FE method. For a variety of

31

problems with extremely large deformation, moving boundary discontinuities, or in

optimization problems where re-meshing may be required, meshless methods are very

attractive. The method has the promise to provide an approach with more flexibility

in the applications in engineering and science".

Meshless methods appeared from 1970 onwards in numerical simulations of as-

trophysics problems through the well-known smooth particle hydrodynamics (SPH)

method [32]. Since then, many researchers have endeavored to increase the accuracy

and the computational performance of such methods. Among the meshless methods,

there are those used in the weak form [32, 62, 56, 55] and strong form [64, 54, 5, 52].

The generalized finite difference method (GFDM) is an extension of the classical

finite difference method that is not restricted to a regular grid of points. The first

contributions to the GFDM appeared in the 60s, for example, Forsythe and Wasow

[23] introduced the possibility of using finite differences in irregular grids. In the

following decade, Jensen [43] formulated the basis of the method and concluded that

building the stars with the closest points may be inappropriate due to the emergence

of ill-conditioned problems.

An important step in the development of the GFDM was the introduction of

weighted moving least squares in the derivative approximations [84, 52]. Liszka and

Orkisz [52] developed a robust algorithm, the FIDAM code, for the solution of linear

and nonlinear problems in two-dimensional elliptic and three-dimensional parabolic

equations. In particular, the problems of bar torsion, plane elasticity, deflections of

plates and membranes, fluid Bow, and temperature distribution were solved using the

FIDAM code.

Later, Benito et al. [8] found an explicit formulation of the derivatives, obtained

through the Cholesky decomposition, and analyzed the impact of different factors in

the star concerning the accuracy of the derivatives using the second-order approxi-

mation. The three main conclusions were: (i) the results improve with the increase

of points per star, but an exaggerated increase does not compensate for the compu-

tational effort required; (ii) the four quadrant criterion is the most suitable for the

placement of points in the star; (iii) smooth weighting functions yield more accurate

32

results.

In Gavete et al. [28], the GFD method was compared with the element-free

Galerkin (EFG) method. Both methods were tested for the Laplace equation with

different domains and irregular mesh discretizations. For the tested cases, the GFD

method appears to be more accurate compared to the EFG method with linear ap-

proximation. In Benito et al. [9], explicit equations for parabolic and hyperbolic prob-

lems were developed. The truncation errors and stability limit were also shown for

those equations. An index of irregularity for a star and a discretization of points were

proposed by Ureña et al. [77] to quantify the level of dispersion of the points in the

domain. A study on the key parameters of the method in 3D applications was wade by

Ureña [74], where he highlighted that the number of points and the selection criteria

per star should be analysed together.

The current scenario of the GFDM indicates a trend towards the use of higher-

order approximations in second-order differential equations. One of the ways adopted

was to consider additional correction terms [59, 61], where the correction was made

by modifying only the right-hand sides of the algebraic equations; another way has

been to use the idea of multipoint solution created by Collatz [18] that was extended

to the GFDM [40, 41, 42], where additional degrees of freedom were added per star

points.

1.1.2 Higher-order approximations

The use of second-order approximation on the GFDM has received much attention

in the last two decades and has been successfully consolidated. Its applications vary

among many types of problems, such as: inverse Cauchy problems in linear elasticity

[51], natural frequency analysis of nanocomposite cylinders [38], hyperbolic nonlinear

equations [76], transient heat flow in anisotropic composites [33], mathematical models

of tumor growth [7], inverse heat conduction problem [39], discontinuous crack-faces

[50], PDEs defined on manifolds [70], perfectly matched layer analysis of the problems

in wave mechanics [49], mathematical model of the anti-plane elastic wave propagation

in 2D solid phononic crystals [24], water-wave interactions with multiple-bottom-

33

seated-cylinder-array structures [25], fluid–structure coupling vibration response of

thin plate structure [85], etc.

The fourth-order approximation may be used in the GFDM due to the higher-order

operator inherent in the differential equation [30, 77] or to improve the approxima-

tion of derivatives with an order less than four. In addition, some authors propose

the use of higher-order approximations to determine the errors in adaptive methods

for solving second-order differential equations [10, 75, 12, 66]. However, higher-order

approximations have been rarely used in the GFDM, due to two main reasons: the

need to increase the minimum number of points per star, which often causes problems

of ill-conditioning, and the high computational cost.

To avoid the use of the fourth-order approximation when the differential equa-

tion is of fourth-order, Orkisz [65] and Tseng and Gu [72] suggested decomposing the

fourth-order operators by successive approximations using second-order operators.

Nowadays, the power of computers allows using the fourth-order approximation with

many more points per star than the minimum necessary, thus avoiding ill-conditioned

stars. Therefore, some authors used the fourth-order approximation directly in the

fourth-order differential equation: to solve plate bending problems in thin and thick

elastic plates [77], in the dynamic analysis of beams and plates [30] or to solve the

inverse biharmonic boundary value problems [21]. However, in higher-order approxi-

mations, a number of points per star has not been established as a reference, contrary

to what happens in the second-order approximation, where eight points per star usu-

ally provides good results and is used as a reference value [8].

Regarding the use of higher-order operators in second-order differential equations,

Benito et al. [10] concluded that reducing the error by using third-order operators does

not justify the additional amount of calculations required. Milewski [59] presented a

strategy in which higher-order terms were used as a correction to modify the right-

hand side of the equation in GFDM, resulting in a two-step iterative procedure.

Jaworska and Orkisz [41] introduced the idea of multipoint, which increases the order

of approximation by introducing additional degrees of freedom at the star points.

34

1.1.3 Computational aspects

Meshless methods have been widely applied in various areas of engineering. However,

in general applications, they still do not reach the computational efficiency in relation

to traditional techniques in finite elements or finite volumes.

Python vector languages are widely used for scientific computing and there is

significant interest in programming techniques in these languages for two reasons.

The first is to make the code clear and compact, which provides rapid prototyping

in research and industry. The second, of course, is to make the code fast enough for

applications in realistic simulations. Additionally, vectorization is especially impor-

tant in problems where the assembly of the arrays must be done multiple times, for

instance, in nonlinear problems.

The use of parallel processing appears as an interesting and accessible workaround

on multi-core computers. In Python, this procedure requires the use of the multipro-

cessing package, which performs simultaneous operations on the number of processors

allocated to a task. Considering that in the GFDM each point is independent in the

formation of stars and the calculation of the derivatives, then these steps can be par-

allelized among the available cores in a multiprocessor environment. In Ferreira and

Ribeiro [22], the parallel process was used in the star formation with the MATLAB

software.

Although the GFDM has demonstrated great ease of application in various com-

plex engineering problems, not enough emphasis has been placed on computational

efficiency. However, for a meshless technique to be widely applicable in industry, com-

putational efficiency is a key factor.

1.1.4 Treatment of ill-conditioned stars

To avoid ill-conditioned stars or singularities, the main strategies used have been

directed to the way of selecting the points in the star and the distribution of the

points in the domain, considering for example Voronoi diagrams [65]. Another line of

research focuses on the use of pseudo inverse matrices [4, 53].

35

The strategies used so far with schemes of any order to select the points in the star,

as an alternative to the distance criterion, have been: the octant criterion proposed

by Perrone and Kao [67], the quadrant criterion formulated by Liszka and Orkisz [52]

and, as a complement to the quadrant criterion, Ferreira and Ribeiro [22] added an

angular tolerance to avoid close points in the same quadrant or on the edge of two

adjacent quadrants. All these selection criteria help to avoid ill-conditioned stars, but

add computational cost compared to the minimum distance criterion. Hence, some

authors suggest [77, 27, 78] the use of an index of the irregularity of the star to choose

an appropriate selection criterion. However, there is also an extra computational cost

in calculating these indices.

1.1.5 Different forms of discretization using the GFDM

The discretization of the domain when applying GFDM to solve a partial differential

equation has been addressed in many ways. It can be discretized regularly whenever

possible and irregularly only in regions where it cannot be done otherwise. In the

latter case, there is usually some minimum distance criterion to prevent two points

from being too close together.

It can also be discretized irregularly, either arbitrarily [19, 23, 43] or on the basis

of some kind of structure such as, for example, using triangular elements (Delaunay

triangulation) [60, 59, 83, 22], quadrilateral elements [16, 73], partitions into nodal

subdomains (Voronoi tessellation) [65, 59] or Coatmèlec distribution of points [26].

All these discretizations have in common that the initial distribution of points

is of approximately constant density throughout the domain. Liszka and Orkisz [52]

developed a pre-process based on density functions that are defined by the user.

However, there are not many papers where initial distributions adapted to the problem

are applied, i.e., with a distribution of points that allows capturing the particularities

of the problem or part of them. For example, in Benito et al. [13] a higher density of

points near the interfaces is used, and in Ferreira and Ribeiro [22] a higher density of

points near the boundary is used.

There are many papers where discretizations with different densities are used in

36

different regions of the domain, but these discretizations are the result of adaptive

algorithms that refine the discretization in several steps depending on where the

highest errors are.

1.1.6 Adaptive methods using the GFDM

There are several possible ways to improve the solution by the GFDM. One way is to

increase the order of approximation of the derivatives, however, we do this by using

fourth-order approximations since most authors use second-order approximations.

Another way is increasing the number of points, this may be done by considering

regular or irregular discretizations. In the last case, they may be generated using an

h-adaptive approach.

The main advances in h-adaptive methods using the GFDM are described below.

Benito et al. [10] proposed an interesting error indicator based on a linear com-

bination of the higher-order derivatives weighted by the coefficients of the stars.

When adding points in the h-adaptive algorithm, special care is needed to avoid

ill-conditioned stars. So, the authors proposed two key parameters for adding the

points: at each central point a maximum of four points are added inside its star; and

if the distance between the new point and any other point in the domain is less than

a minimum distance, then the new point should not be added. The points are added

halfway between the central point and the points of its star with greater values of

error indicators.

An extension in 3D of the technique used in Benito et al.[10] can be seen in Ureña

et al. [75], in this case a maximum of eight points was added to each star refined.

Benito et al. [12] developed an algorithm where the new points are added at the

center of gravity of the triangles formed from the stars. In addition, the posteriori

error indicator developed by Benito et al. [10] was compared with the posteriori error

estimator created by Orkisz [65]. The results showed that, in general, the error estima-

tor has a slight advantage concerning the error indicator. However, the disadvantage

of the error estimator is that it needs to solve more than one system of equations.

A year later, Benito et al. [11] used the same idea with triangles but established

37

an additional criterion where points are not added in triangles with small areas.

A sophisticated version of adding points is provided by Ureña et al. [78]. Here,

the algorithm allows not only adding, but also moving and deleting points. According

to the authors: “ this movement algorithm helps to reduce the global error because

of the reduction of the estimation of the error in the node itself as a consequence

of improving the distribution of the nodes. Moreover, it produces a repulsion effect

between nodes in areas with large values of the error, making spaces that can be

occupied by new nodes if the addition algorithm was applied ”. At the end of the

adaptive steps, the results show better accuracy with a decrease in the number of

points compared to Benito et al. [11] and Ureña et al. [75] in 2D and 3D domains,

respectively.

Another way chosen by some authors was to use an auxiliary background mesh to

add points at each step of the adaptive procedure.

Liszka and Orkisz [52], Orkisz [65], and Orkisz and Milewski [66] developed an

adaptive algorithm partitioning the domain into Voronoi polygons and Delaunay tri-

angles. The candidate points are introduced using one level denser sieve (e.g., at the

vertices of the elements created from Voronoi polygons). A residual error estimation

was widely used in the adaptive mesh refinement technique. The residuals are exam-

ined in the candidate points only, being inserted if they exceed a maximum residual

error.

The adaptive method proposed in Gavete et al. [29] is based on the use of quadtree

and on the computations of the gradients, using the differences between the gradients

in each quadtree as a simple error indicator. The main idea is that each quadrilateral

cell selected for refinement is subdivided into four other quadrilaterals, one in each

quadrant, consequently, 5 points are added per cell.

An extension in 3D of the algorithm quadtree was made by Gavete et al. [31],

which was called octree algorithm. The cells are formed by cubes which in turn can

be subdivided into eight other cubes, one in each octant, consequently, 19 points are

added per cubic cell. Such a strategy can provoke an unnecessary increase of points

in the same adaptive step. Then, the authors recommend that the refined cells should

38

be less than 15% of the number of cells in the domain in each step. Additionally, the

authors clarify that the use of the octree structure in the adaptive refinement places

points in a favorable way to avoid ill-conditioned stars.

1.1.7 Simplified models in the seismic response of wind tur-

bines and the GFDM in dynamic responses

In seismically active areas the design of wind turbines must be verified for seismic load

combinations. To simulate these seismic scenarios, the computational model should

consider the aerodynamics of the rotor, the flexibility of the tower and soil, tran-

sient operational phases, and the interrelation of all these aspects. At the same time,

the complexity should be reduced to avoid enormous computational costs, especially

when the soil-structure interaction is considered. Therefore, it is natural that simpli-

fied models, either analytical or numerical, replace, for example, three-dimensional

complex models.

Zhao and Maisser [87] and Jin et al. [45] used the dynamic theory of multi-body

system in the analysis of the dynamic response of the tower under earthquake action.

The soil-structure effect was considered with the presence of spring and dampers.

Malaeke and Moeenfard [57] analysed the dynamic response of a non-uniform can-

tilever beam carrying an eccentric tip mass. The model is governed by two non-linear

ordinary differential equations, which in turn are solved analytically using the mul-

tiple time scale perturbation technique. Taddei et al. [71] presented a model based

on the LPM (Lumped-Parameter Models) method for the analysis of the effects of

soil-structure interaction on the seismic behavior of wind turbines. Recently [14], a

multi-degree-of-freedom (MDOF) system was used to describe a wind turbine system

with the consideration of the soil-structure interaction. Due to the increasing demand

for offshore applications, the seismic response in this type of structure has also been

studied [58, 44, 86, 2].

Regarding the application of the GFDM in partial differential equations involving

the time variable, the most common way [9, 30, 79, 13] is to use the GFDM to

39

approximate the spatial derivatives together with classical finite-difference operators

to approximate the time derivatives. In this case, the solution at a point of time level k

+ 1 is expressed explicitly in terms of the known solution at time level k. The explicit

finite difference method is conditionally stable, consequently, the required step size is

generally quite small, and the amount of computational effort required to obtain the

solution of some problems can be large.

Other combinations also were proposed. Hosseini [37] proposed a hybrid mesh-free

method based on GFDM and Newmark Finite Difference (NFD) methods to calculate

the velocity of elastic wave propagation in functionally graded materials (FGMs). Gu

et al. [34] developed a combined Krylov deferred correction (KDC)-GFDM scheme

for long-time dynamic simulations in thermoelasticity problems. Recently, Wang and

Sun [82] combined the GFDM with a fast finite difference method (FFDM) based on

sum-of-exponentials (SOE) approximation in the solution of the Fractional advection-

diffusion equation.

In Gavete et al. [30], the GFDM was applied in a simplified model of Euler-

Bernoulli beam vibration with constant section and fixed, supported, and free bound-

ary conditions. The von Neumann stability criterion was applied to ensure the stability

of the solution in the time variable.

Considering the geometric properties of a wind turbine, it is easily observable

that such a structure can be approximately described by a model of Euler-Bernoulli

transverse beam vibration. Within these geometric properties, we can highlight the

variable cross-section throughout the tower, rotary inertia and mass at the top of the

tower, and springs at the base describing the soil-structure interaction. Until now,

there is no application of the GFDM in the literature for the solution of the dynamic

response of this type of structure.

1.2 Objectives

The main objectives of this thesis are

∙ provide a number of points per star as a reference in third- and fourth-order

40

approximations;

∙ reduce the computational cost in different stages of the method;

∙ get a strategy to detect and correct ill-conditioned stars;

∙ designing a strategy to generate a discretization adapted to the problem in a

general way;

∙ obtain a 3D adaptive algorithm using fourth-order approximation;

∙ obtain the seismic response of wind turbines using the GFDM coupled with the

Newmark method.

41

42

Chapter 2

The generalized finite difference

method

Let 𝐷 ⊂ RΦ, Φ = 1, 2, 3, be a domain with interior Ω and boundary Γ. Let us consider

x = 𝑥 for Φ = 1, x = (𝑥, 𝑦) for Φ = 2, and x = (𝑥, 𝑦, 𝑧) for Φ = 3.

Let 𝑀 be a discretization of 𝐷 with N points. For the ease of notation and,

without loss of generality, let us consider a set of 𝑚 different points of 𝑀 , say 𝑉 =

{x1,x2, . . . ,x𝑚}, and denote a generic point of 𝑀 − 𝑉 as x0, that is, x0 ∈ (𝑀 − 𝑉).

The pair (x0, 𝑉) is called a star with central point x0, and the elements of 𝑉 are

called the points of the star. We assume that the points of 𝑉 are chosen in such way

that each line joining the central point and any point of 𝑉 is entirely contained in 𝐷.

Consider any function 𝑈(x) determined on the domain 𝐷 with 𝑈 being sufficiently

derivable in x0. For each x𝑖 ∈ 𝑉 , 𝑖 = 1, 2, . . . ,𝑚, we consider the Taylor expansion of

𝑈(x) centered at x0 where we assume that two higher-order mixed partial derivatives

that involve the same number of differentiations in each variable are equal (Clairaut-

Schwarz Theorem). If we truncate the derivatives after second-, third- or fourth-order

we obtain respectively approximations of such orders. We consider here the truncation

of the terms after fourth-order. Then, we can write the residuals as

r = ∆u−PDu, (2.1)

43

being

P =

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1
ℎ2
1

2

ℎ3
1

6

ℎ4
1

24

ℎ2
ℎ2
2

2

ℎ3
2

6

ℎ4
2

24
...

...
...

...

ℎ𝑚
ℎ2
𝑚

2

ℎ3
𝑚

6

ℎ4
𝑚

24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, if Φ = 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1 𝑘1
ℎ2
1

2

𝑘2
1

2
ℎ1𝑘1 · · · ℎ1𝑘

3
1

6

𝑘4
1

24

ℎ2 𝑘2
ℎ2
2

2

𝑘2
2

2
ℎ2𝑘2 · · · ℎ2𝑘

3
2

6

𝑘4
2

24
...

...
...

...
...

. . .
...

...

ℎ𝑚 𝑘𝑚
ℎ2
𝑚

2

𝑘2
𝑚

2
ℎ𝑚𝑘𝑚 . . .

ℎ𝑚𝑘
3
𝑚

6

𝑘4
𝑚

24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, if Φ = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1 𝑘1 𝑙1
ℎ2
1

2

𝑘2
1

2

𝑙21
2
· · · ℎ4

1

24

𝑘4
1

24

𝑙41
24

ℎ2 𝑘2 𝑙2
ℎ2
2

2

𝑘2
2

2

𝑙22
2
· · · ℎ4

2

24

𝑘4
2

24

𝑙42
24

...
...

...
...

...
...

. . .
...

...
...

ℎ𝑚 𝑘𝑚 𝑙𝑚
ℎ2
𝑚

2

𝑘2
𝑚

2

𝑙2𝑚
2
· · · ℎ4

𝑚

24

𝑘4
𝑚

24

𝑙4𝑚
24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, if Φ = 3

(2.2)

Du =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
𝑑𝑢0

𝑑𝑥
,
𝑑2𝑢0

𝑑𝑥2
,
𝑑3𝑢0

𝑑𝑥3
,
𝑑4𝑢0

𝑑𝑥4

)︂𝑇

if Φ = 1

(︂
𝜕𝑢0

𝜕𝑥
,
𝜕𝑢0

𝜕𝑦
,
𝜕2𝑢0

𝜕𝑥2
,
𝜕2𝑢0

𝜕𝑦2
,
𝜕2𝑢0

𝜕𝑥𝜕𝑦
, · · · , 𝜕4𝑢0

𝜕𝑥𝜕𝑦3
,
𝜕4𝑢0

𝜕𝑦4

)︂𝑇

if Φ = 2

(︂
𝜕𝑢0

𝜕𝑥
,
𝜕𝑢0

𝜕𝑦
,
𝜕𝑢0

𝜕𝑧
,
𝜕2𝑢0

𝜕𝑥2
,
𝜕2𝑢0

𝜕𝑦2
,
𝜕2𝑢0

𝜕𝑧2
, · · · , 𝜕

4𝑢0

𝜕𝑥4
,
𝜕4𝑢0

𝜕𝑦4
,
𝜕4𝑢0

𝜕𝑧4

)︂𝑇

if Φ = 3

(2.3)

44

set V - points of the star

W

central point

G

set of points M

ix

x

y

z

x
z

y

0x
hi

ki

li

Figure 2-1: Discretization of the domain and the star formation in 3D (ℎ𝑖, 𝑘𝑖 and 𝑙𝑖
are the relative distances of x𝑖 to x0)

∆u =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢1 − 𝑢0

𝑢2 − 𝑢0

...

𝑢𝑚 − 𝑢0

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.4)

where 𝑢𝑖, 𝑖 = 0, 1, . . . ,𝑚, denote approximate values of 𝑈𝑖 = 𝑈(x𝑖), Du corresponds

to the approximate derivatives at the central point and ℎ𝑖 = 𝑥𝑖− 𝑥0, 𝑘𝑖 = 𝑦𝑖− 𝑦0 and

𝑙𝑖 = 𝑧𝑖 − 𝑧0 are the relative coordinates of the points of the star (see Figure 2-1).

To minimize the residuals we consider the method of least squares applied to the

weighted residual given by r𝑇W2r, where

W =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑤1

𝑤2

. . .

𝑤𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ (2.5)

is a diagonal matrix of weights. Solving the system

𝜕(r𝑇W2r)

𝜕Du

= 0, (2.6)

we obtain the following approximate values for the derivatives

Du =
(︀
P𝑇W2P

)︀−1
P𝑇 W2∆u. (2.7)

45

The prove of (2.7) is shown as follow

r𝑇W2r = (∆u−P Du)𝑇 W2 (∆u−P Du)

= ∆u𝑇 W2 ∆u−∆u𝑇 W2 P Du− (P Du)𝑇 W2 ∆u + (P Du)𝑇 W2 P Du

= ∆u𝑇 W2 ∆u−Du𝑇
(︀
∆u𝑇 W2 P

)︀𝑇 −Du𝑇 P𝑇 W2 ∆u + Du𝑇 P𝑇 W2 P Du.

(2.8)

Substituting the least line of (2.8) in (2.6) we get

𝜕(r𝑇W2r)

𝜕Du

= −P𝑇 W2∆u−P𝑇 W2∆u + 2P𝑇 W2 P Du = 0, (2.9)

and therefore

−2P𝑇 W2∆u + 2P𝑇 W2 P Du = 0⇒ Du =
(︀
P𝑇W2P

)︀−1
P𝑇 W2∆u. (2.10)

Note that if P is a square matrix, then the derivatives do not depend on the weight

matrix.

The equation (2.7) can be written in the compact form:

Du = B∆u, (2.11)

where the matrix B is given by

B = A−1 P𝑇 W2, (2.12)

with

A = P𝑇W2P. (2.13)

In the least squares minimization the matrix A is invertible if and only if the rows

of the matrix P contain a base of R4 if Φ = 1, R14 if Φ = 2 or R34 if Φ = 3 (see [79]).

Denoting u = (𝑢0, 𝑢1, . . . , 𝑢𝑚)𝑇 and

46

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
𝑚∑︀
𝑖=1

𝑏1,𝑖 𝑏1,1 𝑏1,2 . . . 𝑏1,𝑚

−
𝑚∑︀
𝑖=1

𝑏2,𝑖 𝑏2,1 𝑏2,2 . . . 𝑏2,𝑚

...
...

...
. . .

...

−
𝑚∑︀
𝑖=1

𝑏𝑝,𝑖 𝑏𝑝,1 𝑏𝑝,2 . . . 𝑏𝑝,𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.14)

where the elements 𝑏𝑖,𝑗 are those of the matrix B and 𝑝 is the number of columns in

P, we get the formula

Du = B∆u = B̄u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑢0

𝑚∑︀
𝑖=1

𝑏1,𝑖 +
𝑚∑︀
𝑖=1

𝑏1,𝑖𝑢𝑖

−𝑢0

𝑚∑︀
𝑖=1

𝑏2,𝑖 +
𝑚∑︀
𝑖=1

𝑏2,𝑖𝑢𝑖

...

−𝑢0

𝑚∑︀
𝑖=1

𝑏𝑝,𝑖 +
𝑚∑︀
𝑖=1

𝑏𝑝,𝑖𝑢𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑢0

𝑚∑︀
𝑖=1

𝑏1,𝑖

−𝑢0

𝑚∑︀
𝑖=1

𝑏2,𝑖

...

−𝑢0

𝑚∑︀
𝑖=1

𝑏𝑝,𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚∑︀
𝑖=1

𝑏1,𝑖𝑢𝑖

𝑚∑︀
𝑖=1

𝑏2,𝑖𝑢𝑖

...

𝑚∑︀
𝑖=1

𝑏𝑝,𝑖𝑢𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(2.15)

Note that the equation in (2.15) does not depend on the differential equation, but

it depends on

i) the number of points of the star, m,

ii) the weighting function used (if 𝑚 > 𝑝),

iii) the geometry of the star.

Theoretical issues as consistency, order, stability, and convergence of the GFDM,

have been studied in previous works [30, 27, 9].

47

2.1 Solution of a Dirichlet boundary value problem

by the GFDM

Consider a boundary value problem of Dirichlet type given by

ℒ
(︀
𝑈(x)

)︀
= 𝑓(x),x ∈ Ω (2.16)

𝑈(x) = 𝑔(x),x ∈ Γ (2.17)

where ℒ is a second-order linear differential operator with constant coefficients, and

𝑓 and 𝑔 are known real functions, where we assume enough regularity in order that

the above problem has a unique solution. Our goal is to obtain approximate values

of 𝑈 at the points of 𝑀 ∩ Ω.

We consider 𝑎0 ∈ R and a vector a with the same size as Du, where 𝑎0 is the

coefficient of 𝑈 in (2.16) and a contains the coefficients of the partial derivatives

of the linear differential operator in (2.16) placed according to the corresponding

elements of Du:

a = (𝑎1 𝑎2 . . . 𝑎𝑝) . (2.18)

Note that in (2.18) the elements that multiply the third and fourth-order partial

derivatives are zero. Then, we can substitute the values of the approximate derivatives

obtained in (2.15) into (2.16) to get

𝑎0𝑢0 + aDu = 𝑓(x0) =⇒ 𝑎0𝑢0 + aB̄u = 𝑓(x0). (2.19)

Note that the equation in (2.19) was obtained for a generic interior point of 𝑀 . If we

evaluate (2.19) at each interior point 𝑀 , we get a system of linear equations

Kũ = F (2.20)

where K is a matrix of dimension NI×N, with NI the total number of interior points

of 𝑀 , and where each row has at most 𝑚 + 1 terms different from zero, the vector F

48

contains the values of 𝑓 at each interior point of𝑀 and ũ is the vector of approximate

values of 𝑈 at the points of𝑀 . When the boundary conditions in (2.17) are evaluated,

we get a system of linear equations with NI equations and NI unknowns:

K̄ū = F̄, (2.21)

where K̄ is the square matrix formed by K without the columns corresponding to

the boundary values, the vector F̄ is obtained through the vector F and the known

boundary values, and ū is the vector of approximate values of 𝑈 at the interior points

of 𝑀 .

Most of the applications in this thesis involve Dirichlet problems. However, the

application of the method in chapter 7 involves equations with initial conditions and

Neumann boundary conditions. In this case, the procedure will be explained in chapter

7.

2.2 Influence of the number of points per star with

higher-order approximations

We analyzed the influence of the number of points per star on higher-order approxi-

mations for 2D and 3D in sections (2.2.1) and (2.2.2), respectively.

To do this, we consider some discretized domains in 2D and 3D, as follows:

- The interior of the domain is discretized regularly taking a stepsize (ℎ, ℎ) in

2D and (ℎ, ℎ, ℎ) in 3D. The points close to the boundary already present enough

irregularity but, despite this, we also carried out examples allowing small random

displacements of the interior points with respect to their position of regularity, with

the intention of making the discretization even more irregular.

- Interior points that are at a distance less than ℎ/2 from the boundary are not

placed to avoid ill-conditioned stars due to points that are too close.

Furthermore, we also consider two domains discretized in an absolutely random

way.

49

In all cases, and for each star, we used the weighting function 𝑤𝑖 = ‖x𝑖 − x0‖−4
2 ,

𝑖 = 1, 2, . . . ,𝑚, and the distance criterion to form the stars.

2.2.1 Approximations in 2D

We consider four domains, D1, ID1, D2, and D3, given by

D1 = ID1 = {(𝑥, 𝑦) ∈ R2|0 ≤ 𝑥, 𝑦 ≤ 1}

D2 = {(𝑥, 𝑦) ∈ R2|0.52 ≤ 𝑥2 + 𝑦2 ≤ 1.52}

D3 = {(𝑥, 𝑦) ∈ R2|0 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤ 5} − (𝐶1 ∪ 𝐶2 ∪ 𝐶3),

with 𝐶1 = {(𝑥, 𝑦) ∈ R2|(𝑥−0.75)2 +(𝑦−4)2 < 0.252}, 𝐶2 = {(𝑥, 𝑦) ∈ R2|(𝑥−0.8)2 +

(𝑦−1)2 < 0.42} and 𝐶3 = {(𝑥, 𝑦) ∈ R2|(𝑥−2)2+(𝑦−2)2 < 0.62}, and discretizations:

188 points for D1 and ID1, 799 points for D2, and 934 points for D3 (see Figure 2-2).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
D1

internal points
boundary points

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5
D2

internal points
boundary points

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5
D3

internal points
boundary points

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
ID1

internal points
boundary points

Figure 2-2: The domains and discretizations used in the 2D examples.

We consider three boundary value problems given by the following partial differ-

50

ential equations

2
𝜕2𝑈

𝜕𝑥2
− 𝜕2𝑈

𝜕𝑦2
+ 2

𝜕𝑈

𝜕𝑥
= (𝑥 + 2)2 cos(𝑦), (2.22)

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 0, (2.23)

𝜕2𝑈

𝜕𝑥2
+ 2

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑥𝜕𝑦
+

𝜕𝑈

𝜕𝑥
− 𝜕𝑈

𝜕𝑦
= 0, (2.24)

with exact solutions 𝑈(𝑥, 𝑦) = 𝑥2 cos(𝑦), 𝑈(𝑥, 𝑦) = ln(𝑥2+𝑦2) and 𝑈(𝑥, 𝑦) = 𝑒𝑥 sin(𝑦),

respectively. The corresponding boundary values are obtained from the exact solu-

tions.

We solve the equation (2.22) in the domains D1 and ID1, the equation (2.23) in

D2, and the equation (2.24) in D3.

For the third-order approximation, we calculate the global error by increasing the

number of points in the star starting with the minimum number necessary, which is

9 points, and we compare those errors with the error caused by using stars with 8

points for the second-order approximation. Plots (a), (c), (e) and (g) in Figure 2-3

show that 20 points per star can be an appropriate reference.

For the fourth-order approximation, we calculate the global error by increasing

the number of points in the star starting with the minimum number necessary, which

is 14 points, and we compare those errors with the error caused by using stars with

20 points for the third-order approximation. Plots (b), (d), (f) and (h) in Figure 2-3

show that 30 points per star can be an appropriate reference.

In both cases we have chosen the number of reference points as the first value

from which the variations between the errors for consecutive values are stable for the

first time. Therefore, this reference value serves as a starting point, but this does not

mean that large errors cannot occur with a larger number of points, 𝑚, per star.

51

9 11 13 15 17 19 21 23 25 27 29 31 33 35
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
ro

r (
%

)

1e 2 D1

two-order approx. (m = 8)
three-order aprox.

(a)

14 16 18 20 22 24 26 28 30 32 34 36 38 40
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
ro

r (
%

)

1e 2 D1
three-order approx. (m = 20)
fourth-order approx.

(b)

9 11 13 15 17 19 21 23 25 27 29 31 33 35
m

0

1

2

3

4

5

er
ro

r (
%

)

1e 1 D2
two-order approx. (m = 8)
three-order aprox.

(c)

14 16 18 20 22 24 26 28 30 32 34 36 38 40
m

0

1

2

3

4

5

er
ro

r (
%

)

1e 2 D2

three-order approx. (m = 20)
fourth-order approx.

(d)

9 11 13 15 17 19 21 23 25 27 29 31 33 35
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
ro

r (
%

)

1e 1 D3
two-order approx. (m = 8)
three-order aprox.

(e)

14 16 18 20 22 24 26 28 30 32 34 36 38 40
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
ro

r (
%

)

1e 1 D3
three-order approx. (m = 20)
fourth-order approx.

(f)

9 11 13 15 17 19 21 23 25 27 29 31 33 35
m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

er
ro

r (
%

)

ID1

two-order approx. (m = 8)
three-order aprox.

(g)

14 16 18 20 22 24 26 28 30 32 34 36 38 40
m

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r (
%

)

1e 1 ID1
three-order approx. (m = 20)
fourth-order approx.

(h)

Figure 2-3: Numerical errors for each approximation order in 2D

52

2.2.2 Approximations in 3D

We consider now the domains D4, ID4, D5 and D6, given by

D4 = ID4 = {(𝑥, 𝑦, 𝑧) ∈ R3|0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1}

D5 = {(𝑥, 𝑦, 𝑧) ∈ R3|𝑥2 + 𝑦2 + 𝑧2 ≤ 1}

D6 = {(𝑥, 𝑦, 𝑧) ∈ R3|(1−
√︀

𝑥2 + 𝑦2)2 + 𝑧2 ≤ 0.52},

, taking discretizations with 233 points for D4 and ID4, 604 points for D5, and 4161

points for D6 (see Figure 2-4).

x

0.0

0.5

1.0
y

0.0

0.5

1.0

z

0.0

0.5

1.0

D4internal points
boundary points

x

1.5

0.0

1.5
y

1.5

0.0

1.5

z

1.5

0.0

1.5

D5internal points
boundary points

x

1.5

0.0

1.5
y

1.5

0.0

1.5

z

1.5

0.0

1.5

D6internal points
boundary points

x
1.0

0.0

0.5
y

1.0

0.0

0.5

z

1.0

0.0

0.5

ID4internal points
boundary points

Figure 2-4: The domains and discretizations used in the 3D examples.

We consider three boundary value problems given by the partial differential equa-

tions

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+

𝜕𝑈

𝜕𝑧
= (1− 𝑧)(sin(𝑥) + sin(𝑦)) (2.25)

53

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑧2
= 0 (2.26)

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑧2
= 2(𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2), (2.27)

with exact solutions 𝑈(𝑥, 𝑦, 𝑧) = 𝑧(sin(𝑥)+sin(𝑦)), 𝑈(𝑥, 𝑦, 𝑧) = 𝑒𝑥 sin(𝑦)+𝑒𝑦 sin(𝑧)+

𝑒𝑧 sin(𝑥), and 𝑈(𝑥, 𝑦, 𝑧) = 𝑥2𝑦2𝑧2, respectively. The boundary values are obtained

from the exact solutions.

We solve the equation (2.25) in the domains D4 and ID4, the equation (2.26) in

D5 and the equation (2.27) in D6.

For the third-order approximation, we calculate the global error by increasing the

number of points per star starting with the minimum number necessary, which is 19

points, and we compare those errors with the error caused by using stars with 26

points for the second-order approximation. Plots (a), (c), (e) and (g) in Figure 2-5

show that 50 points per star can be an appropriate reference.

For the fourth-order approximation, we calculate the global error by increasing

the number of points per star starting with the minimum number necessary, which

is 34 points, and we compare those errors with the error caused by using stars with

50 points for the third-order approximation. Plots (b), (d), (f) and (h) in Figure 2-5

show that 90 points per star can be an appropriate reference.

In both cases we have chosen the number of reference points as the first value

from which the variations between the errors for consecutive values are stable for the

first time. Therefore, this reference value serves as a starting point, but this does not

mean that large errors can not occur with a larger number of points.

54

19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79
m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

er
ro

r (
%

)

1e 1 D4

two-order approx.(m = 26)
three-order aprox.

(a)

34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98
m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

er
ro

r (
%

)

1e 1 D4
three-order approx. (m = 50)
fourth-order approx.

(b)

19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79
m

0

1

2

3

4

5

6

er
ro

r (
%

)

1e 2 D5
two-order approx.(m = 26)
three-order aprox.

(c)

34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98
m

0

1

2

3

4

5

6

er
ro

r (
%

)

1e 2 D5
three-order approx. (m = 50)
fourth-order approx.

(d)

19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

er
ro

r (
%

)

1e 1 D6
two-order approx.(m = 26)
three-order aprox.

(e)

34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

er
ro

r (
%

)

1e 1 D6
three-order approx. (m = 50)
fourth-order approx.

(f)

19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
ro

r (
%

)

1e 1 ID4

two-order approx.(m = 26)
three-order aprox.

(g)

34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
ro

r (
%

)

1e 1 ID4
three-order approx. (m = 50)
fourth-order approx.

(h)

Figure 2-5: Numerical errors for each order of approximation in 3D applications

55

56

Chapter 3

Computational aspects

In recent years there has been a growing interest in the GFDM. While current re-

search efforts are primarily aimed at applying these techniques to the analysis of var-

ious complex engineering problems, not enough emphasis is placed on computational

efficiency. Considering the increase in computational cost when using higher-order

approximations, these aspects cited above become even more relevant.

The codes to perform the numerical experiments have been written in Python.

We have performed all the simulations of this thesis with an Intel i7-8750H processor

(with six cores and maximum frequency 2.2GHz).

The K matrix is a sparse matrix and the programming routine follows the recom-

mended good programming practices for sparse assembly matrices [20]. To assemble

the global K matrix, we calculate and store all the point contributions first and then

they are used to generate the sparse K matrix. The main idea is to create four global

1D-arrays B𝑔, I𝑔, J𝑔 and a𝑔 (the subindex 𝑔 denotes that they are global variables).

The vector B𝑔 is formed by the contribution of each local matrix B̄ (2.14) stored

row-wise

B𝑔 =

(︂ NI times⏞ ⏟
−

𝑚∑︁
𝑖=1

𝑏1,𝑖 𝑏1,1 . . . 𝑏1,𝑚 −
𝑚∑︁
𝑖=1

𝑏2,𝑖 𝑏2,1 . . . 𝑏2,𝑚 . . . −
𝑚∑︁
𝑖=1

𝑏𝑝,𝑖 𝑏𝑝,1 . . . 𝑏𝑝,𝑚

)︂
,(3.1)

57

a pseudocode for assembling the vector B𝑔 is shown in Algorithm 1.

Algorithm 1 A pseudocode to assemble the vector B𝑔 in Python
Require: import numpy as np
Initialize the global vector B𝑔

Calculate and store the stars
for 𝑖 = 1 . . .NI do ◁ loop to each central point

Assemble the matrices P and W of one star ◁ equations (2.2) and (2.5)
A = np.matmul(np.matmul(P.T,W**2),P) ◁ equation (2.13)
B = np.matmul(np.matmul(inv(A),P.T), W**2) ◁ equation (2.12)
B̄ = np.hstack((-np.sum(B, 1, keepdims=True), B)) ◁ equation (2.14)
B𝑔 ← B̄.flatten() ◁ collapse the matrix B̄ in one direction and store it in B𝑔

end for

I𝑔 denotes the global row indices associated with the elements stored in B̄ and J𝑔

refers to the global column indices associated with the elements stored in B̄.

Finally,

a𝑔 =

(︂ NI times⏞ ⏟
𝑎1𝑎1...𝑎1⏟ ⏞

𝑚+1

𝑎2𝑎2...𝑎2⏟ ⏞
𝑚+1

𝑎3𝑎3...𝑎3⏟ ⏞
𝑚+1

. . . 𝑎𝑝𝑎𝑝...𝑎𝑝⏟ ⏞
𝑚+1

)︂
. (3.2)

The number of points per star, 𝑚, used in (3.1) and (3.2) has local numbering.

Note that this value can change of one star to another.

The global K matrix is assembled in the form

K = sparse.coo matrix((a𝑔 ∘B𝑔, (I𝑔,J𝑔))) + 𝑑𝑖𝑎𝑔(𝑎0, 𝑎0, . . . , 𝑎0)[46],

where ∘ is the Hadamard product. Notice that in the current procedure used, the

instruction K(𝑖, 𝑗) = ... does not exist (𝑖 and 𝑗 are scalars), this statement is quite

slow when K is large and sparse. This leads us to an improvement in the execution

time of the code.

Note that the size of the vectors I𝑔, J𝑔, B𝑔 and a𝑔 is given by 𝑝 · (𝑚 + 1) · NI,

provided that all the stars have the same number of points, 𝑚.

58

3.1 Parallel process in the GDFM

As a consequence of the independence for each interior point of the calculations for

the formation of the stars and of the calculations of the derivatives, we can parallelize

the GFDM and distribute the work among the available cores on a multiprocessor

environment. This task is performed as follows:

1. Parallelization of the stars: the calculation of the points of the star of each

interior point is an independent task and, therefore, the work can be distributed

among the available cores.

2. Parallelization of the derivatives: this is similar to the parallel process in the

construction of the global vectors B𝑔, I𝑔, J𝑔 and a𝑔, which is distributed by

multiple independent tasks. These global vectors are arrays allocated in shared

memory using the multiprocessing.Array [68] in Python.

Note that the formation of stars and the calculation of the derivatives do not

depend on the differential equation.

3.2 A vectorized algorithm in the GFDM

In the current section, we will present the vectorized version of the algorithm 1 where

the loop at each central point is removed to compute the derivatives. The main idea

consists in transforming the 2D arrays P and W into 3D arrays, where the third

index is used to store the P and W arrays of each star of the domain. Therefore, we

59

have

h1 =
(︀
ℎ1
1 ℎ2

1 . . . ℎNI

1

)︀
k1 =

(︀
𝑘1
1 𝑘2

1 . . . 𝑘NI

1

)︀
l1 =

(︀
𝑙11 𝑙21 . . . 𝑙NI

1

)︀
...

hm =
(︀
ℎ1
𝑚 ℎ2

𝑚 . . . ℎNI

𝑚

)︀
km =

(︀
𝑘1
𝑚 𝑘2

𝑚 . . . 𝑘NI

𝑚

)︀
lm =

(︀
𝑙1𝑚 𝑙2𝑚 . . . 𝑙NI

𝑚

)︀
,

(3.3)

where the super-indices are the global numbering of the central points. For instance:

ℎ8
5, 𝑘

8
5 and 𝑙85 are the relative distances from the eighth central point to the fifth point

of its star. The 3D arrays P̃ and W̃ are obtained from (3.3), as shown in Algorithm 2.

We recall that 𝑚 and 𝑝 are the number of points per star and the number of columns

in P, respectively.

Algorithm 2 A vectorized pseudocode to assemble the 3D arrays P̃ and W̃ in Python

Initialize the global 3D arrays P̃ and W̃
for 𝑖 = 1 . . .𝑚 do

P̃[:,i,1] = hi

P̃[:,i,2] = ki

P̃[:,i,3] = li
P̃[:,i,4] = hi * *2/2
P̃[:,i,5] = ki * *2/2
P̃[:,i,6] = li * *2/2
...
P̃[:,i,p] = · · ·
W̃[:,i,i] = funWeigh(hi,ki, li) ◁ funWeigh is the weighting function chosen

end for

Note that in Python, the third dimension is placed at the first index of a 3D array.

In our case, the third dimension refers to each star of the domain. For this reason,

the symbol ’:’ sweeps all the stars of the domain.

Also note that the inserted loop depends on the number of points per star, and has

a negligible computational cost compared to the loop of algorithm 1 (of course, we are

60

considering a problem with a large number of points in 𝑀 , otherwise vectorization

would not be necessary).

The 3D array B̃ stores the array B of all the stars, it is calculated with only

three multiplications, as can be seen in Algorithm 3. The command matmul is ca-

pable of performing multiplications between 3D arrays. In Algorithms 2 and 3, the

broadcasting rules in Python facilitate operations with 3D arrays.

Algorithm 3 A vectorized pseudocode to assemble the 3D array B̃ in Python
Require: import numpy as np
PTW2 = np.matmul(P̃.swapaxes(1, 2),W̃ * *2) ◁ multiplication 3D of P̃𝑇W̃2

Ã = np.matmul(PTW2,P) ◁ multiplication 3D of P̃𝑇W̃2P̃
B̃ = np.matmul(inv(Ã),PTW2) ◁ multiplication 3D of Ã−1P̃𝑇W̃2

The next step is to get the indexes. Considering the right-hand side of (2.15),

we can divide the assembly of the global K matrix into K = K𝑠 + K𝑜, where the

matrices K𝑠 and K𝑜 are formed by the coefficients of the stars and of the central

points, respectively. Therefore, we call Bs𝑔, Is𝑔, and Js𝑔 the arrays that generate K𝑠

and Bo𝑔, Io𝑔, and Jo𝑔 those that generate K𝑜. The following are the formulas for

assembling both matrices:

∙ Assembly of the K𝑠 matrix

The vector Bs𝑔 is formed row-wise from B̃:

Bs𝑔 =

(︂
𝑏11,1 𝑏11,2 . . . 𝑏1𝑝,𝑚 𝑏21,1 𝑏21,2 . . . 𝑏2𝑝,𝑚 . . . 𝑏𝑁𝐼

1,1 𝑏𝑁𝐼
1,2 . . . 𝑏𝑁𝐼

𝑝,𝑚

)︂
, (3.4)

where the super-indices denote the global numbering of the central points of

the domain.

Is𝑔 =

(︂
1 ... 1⏟ ⏞
𝑝·𝑚

2 ... 2⏟ ⏞
𝑝·𝑚

3 ... 3⏟ ⏞
𝑝·𝑚

. . . 𝑁𝐼 ... 𝑁𝐼⏟ ⏞
𝑝·𝑚

)︂
(3.5)

and

61

Js𝑔 =

(︂ 𝑝 times⏞ ⏟
𝑆1
1 ... 𝑆1

𝑚

𝑝 times⏞ ⏟
𝑆2
1 ... 𝑆2

𝑚

𝑝 times⏞ ⏟
𝑆3
1 ... 𝑆3

𝑚 . . .

𝑝 times⏞ ⏟
𝑆𝑁𝐼
1 ... 𝑆𝑁𝐼

𝑚

)︂
, (3.6)

where the set 𝑆𝑘
1 ... 𝑆𝑘

𝑚, 𝑘 = 1, . . . , 𝑁𝐼, corresponds to the global numbering of

the stars. For instance: the specific set 𝑆3
1 ... 𝑆3

90 is a star with 90 points whose

central point is numbered 3.

Finally,

as𝑔 =

(︂ 𝑁𝐼 times⏞ ⏟
𝑎1𝑎1...𝑎1⏟ ⏞

𝑚

𝑎2𝑎2...𝑎2⏟ ⏞
𝑚

𝑎3𝑎3...𝑎3⏟ ⏞
𝑚

. . . 𝑎𝑝𝑎𝑝...𝑎𝑝⏟ ⏞
𝑚

)︂
. (3.7)

Therefore K𝑠 is obtained as

K𝑠 = sparse.coo matrix((as𝑔 ∘Bs𝑔, (Is𝑔,Js𝑔))).

∙ Assembly of the K𝑜 matrix

To get Bo𝑔 from B̃ we use the command sum(B̃, axis=2, keepdims=True) in

Python. Then, we get a set of 3D arrays

Bo𝑔 =

(︂(︂
−

𝑚∑︁
𝑖=1

𝑏01,𝑖 . . . −
𝑚∑︁
𝑖=1

𝑏0𝑝,𝑖

)︂𝑇 (︂
−

𝑚∑︁
𝑖=1

𝑏11,𝑖 . . . −
𝑚∑︁
𝑖=1

𝑏1𝑝,𝑖

)︂𝑇

. . .(︂
−

𝑚∑︁
𝑖=1

𝑏NI

1,𝑖 −
𝑚∑︁
𝑖=1

𝑏NI

2,𝑖 . . . −
𝑚∑︁
𝑖=1

𝑏NI

𝑝,𝑖

)︂𝑇)︂
,

(3.8)

with indexes

Io𝑔 = Jo𝑔 =

(︂
0 1 . . . NI

)︂
. (3.9)

Finally,

ao𝑔 =

(︂ NI times⏞ ⏟
(𝑎1 𝑎2 . . . 𝑎𝑝)

)︂
. (3.10)

62

Therefore, K𝑜 is obtained as

K𝑜 = sparse.coo matrix((matmul(ao𝑔,Bo𝑔), (Io𝑔,Jo𝑔))) + diag(𝑎0, 𝑎0, . . . , 𝑎0).

Note that K𝑜 is responsible for filling the diagonal of the K matrix.

To apply the vectorized procedure explained in this section, it is necessary that

the number of points per star, 𝑚, be the same for all of them.

3.3 Examples

We used 30 and 90 points per star with the distance criterion in the 2D and 3D

examples, respectively. In all examples, we used the weighting function 𝑤𝑖 = ‖x𝑖 −

x0‖−4
2 , 𝑖 = 1, 2, . . . ,𝑚.

The Table 3.1 shows the summary of the algorithm. In section 3.3.1 we apply

the parallel process in steps 1 and 2. In section 3.3.2 we show the times using the

vectorized algorithm in steps 2 and 3.

Table 3.1: Summary of the algorithm developed in GFDM.

Order Steps of the algorithm

1 star formation

2 derivatives

3 assemble of K

4 application of boundary conditions

5 solution of the system of equations

3.3.1 Speedup with parallel process

The term speedup refers to the ratio between the processing time with a single core

and with multiple cores (six cores in our case). In multiple cores we used a multipro-

cessing package.

63

In 2D we solved a square domain with unit edges with 21,609 points obtaining

results about three times faster in the specific parts of the GFDM, as shown in the

data corresponding to the star formation and derivatives calculation in Table 3.2.

In 3D we solved a cubic domain with unit edges with a total of 26,328 points. The

results obtained are more than two times faster in the specific parts of the GFDM,

as shown in the data corresponding to the star formation and derivatives calculation

in Table 3.3.

Table 3.2: Speedup of each calculation process in the 2D case.
Calculation one process six processes speedup

Star formation 14.35 s 5.17 s 2.77
Derivatives 165.18 s 49.77 s 3.32

Table 3.3: Speedup of each calculation process in the 3D case.
Calculation one process six processes speedup

Star formation 59.44 s 21.28 s 2.79
Derivatives 318.87 s 143.02 s 2.23

3.3.2 Times with vectorized algorithm

Consider a 2D example in a square domain with unit edges and the following partial

differential equation

𝜕2𝑈

𝜕𝑥2
+ 2

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑥𝜕𝑦
+

𝜕𝑈

𝜕𝑥
− 𝜕𝑈

𝜕𝑦
= 0, (3.11)

with exact solution 𝑈 = 𝑒𝑥sin(𝑦).

Consider a 3D example in a cubic domain with unit edges and the following partial

differential equation

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+ 2

𝜕2𝑈

𝜕𝑧2
= 0, (3.12)

with exact solution 𝑈 = 𝑒𝑧sin(𝑥)cos(𝑦).

64

Table 3.4: The runtime of the 2D code to calculate the derivatives and assemble the
K matrix.

Total number of points in 2D
Algorithm 21,609 29,584 40,804 49,284 63,504 71,289

Non-vectorized 165.18 s 314.01 s 583.84 s 1235.29 s 1407.82 s 1829.25 s
Vectorized 1.10 s 1.70 s 2.43 s 2.75 s 4.02 s 4.84 s

Table 3.5: The runtime of the 3D code to calculate the derivatives and assemble the
K matrix.

Total number of points in 3D
Algorithm 8,805 11,663 17,000 26,328

Non-vectorized 43.13 s 68.71 s 138.70 s 318.87 s
Vectorized 2.86 s 4.24 s 6.44 s 19.89 s

Tables 3.4 and 3.5 shows the runtime of the codes to assemble the K matrix

with and without the vectorized algorithm. The results show a considerable saving

in execution time with the vectorized algorithm in both applications. As the number

of points increases, the computational advantage tends to be more remarkable. In

2D applications, the vectorized algorithm was approximately 150 to 450 times faster

than the non-vectorized algorithm. In 3D applications, the vectorized algorithm was

approximately 15 to 20 times faster than the non-vectorized algorithm.

Taking into account the calculation of the derivatives and assembling the K ma-

trix, the steps of execution times using 21,609 points in 2D and 26,328 in 3D are

approximately 1s (Table 3.4) and 20s (Table 3.5) in the vectorized algorithm, re-

spectively. In contrast, the parallel process takes approximately 50s and 140s only to

calculate the derivatives (see Tables 3.2 and 3.3). Therefore, combining the parallel

process in the star formation with the vectorized algorithm in the calculation of the

derivatives is the most suitable way.

We highlight the following additional comments:

- In the 3D example, the non-vectorized algorithm failed to assemble the K matrix

for approximately 30,000 points. The failure occurred due to insufficient memory

when executing the sparse.coo matrix command. In the vectorized algorithm, the

same command is executed but requires less memory because the assembly of K is

split into two steps: one for the K𝑠 matrix and another for the K𝑜 matrix.

65

Table 3.6: Times to the non-vectorized and vectorized codes in 2D and 3D examples.
2D example (70,000 points) 3D example (25,000 points)

Stages Non-vectorized Vectorized Non-vectorized Vectorized
Star formation 181 s 181 s 38 s 38 s

Derivatives and assembly of K 884 s 4 s 315 s 20 s
Solve 35 s 35 s 108 s 108 s

- Table 3.6 shows the times in 2D and 3D examples at different stages of the codes

using approximately 70,000 and 25,000 points, respectively. In the non-vectorized

algorithm, the assembly of the K matrix is clearly the bottleneck of the code. With

the vectorized algorithm, this bottleneck is eliminated. Then, in 2D and 3D, the

formation of the stars and the solution of the system of equations become the most

time-consuming stages 1, respectively.

- Note that by changing the partial differential equation, only the elements of

(2.18) are modified. However, the size of this array only depends on the order of

approximation and the dimension (1D, 2D, or 3D) chosen. Then, the times calculated

here should be approximately equal by varying only the partial differential equation.

1Note that in 3D the number of non-zero elements in each row of K is much greater than in 2D,
affecting considerably the time in solving the system of equations.

66

Chapter 4

Treatment of ill-conditioned stars

4.1 Strategy to avoid ill-conditioned stars

A drawback of the GFDM is the possibility of generating ill-conditioned stars through

the inverse matrices in (2.12). The stability of the solution depends on the condition

number of the matrix involved in the approximation of the derivatives. A large con-

dition number warns us that special care may be necessary when solving the system

of linear equations.

Since the parameters of the method can be chosen arbitrarily, an appropriate

change in these parameters can significantly reduce the condition number. The key

issue is to detect troublesome stars in advance.

First, we need to establish a tolerance for each star from which to consider that

the star has a large condition number. After that, we only act on those stars that

exceed this tolerance value.

Given a discretization, we form all the stars with the desired number of points 𝑚0

using the distance criterion. When applying the algorithm not all stars will end up

with the same number of points, from here on, we denote with 𝑚0 the initial number

of points of each star. For each of those stars, we calculate the tolerance as follows:

1. Calculate the minimum distance 𝑑𝑖 between any point on the star and the

central point, obtaining a vector d of minimum distances (see step 1 at Figure 4-1).

2. Consider 𝜆 intervals [𝛿𝑖, 𝛿𝑖+1) with 𝑖 = 1, 2, ..., 𝜆 such that the interval [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]

67

2d ...

()1 2 NId d dKd =

1d

K

K

star 1 star 2 star NIK

1d

Step 1 (minimum distances) Step 2 (intervals formation)

2d

K

1 ()tol k= A 2 ()tol k= A

ad

()tola k= A

Step 3 (tolerances of each interval)

auxiliary regular star (2D)

1d

NId K

maxdmind

ad2d 3d 1ad +

λ intervals

Figure 4-1: Strategy to avoid large condition number in the matrix A.

⊂ ∪𝜆
𝑖=1[𝛿𝑖, 𝛿𝑖+1) (see step 2 at Figure 4-1, where the black points represent the mini-

mum distances obtained in step 1 and the gray points represent the minimum distance

of the auxiliary regular stars). In particular, the criterion that we apply is to divide

intervals of consecutive powers of 10, [10𝑗, 10𝑗+1), 𝑗 ∈ Z, into 10 equal parts.

3. Once obtained the minimum values 𝛿𝑖 of the intervals, calculate the condition

numbers 𝜅(A) of the auxiliary regular stars with stepsize 𝛿𝑖 in all directions (see step

3 at Figure 4-1, where the tolerance of the auxiliary regular star with stepsize 𝛿𝑖

represents all the stars whose minimum distances are in the interval [𝛿𝑖, 𝛿𝑖+1)). The

condition numbers obtained are the respective tolerances 𝑡𝑜𝑙𝑖 with 𝑖 = 1, 2, . . . , 𝜆. We

say that a star is regular when their points are located on a square (2D) or on a cube

(3D) contained in a regular grid. In particular, we use stars with 24 points in 2D and

124 points in 3D because they are the first square (2D) and the first cube (3D) whose

number of points is greater than the minimum required for the approximation order.

Note that choosing the minimum value in step 3 for each interval is a conservative

choice as the tolerance is the highest one in that case.

We consider an example to clarify these steps. Given a discretization with 5 stars,

we calculate the minimum distances and they are 0.091, 0.089, 0.083, 0.175 and 0.151

(step 1). Then we consider the 3 intervals [0.08, 0.09), [0.09, 0.1) and [0.1, 0.2) whose

68

union contains [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥] = [0.083, 0.175] (step 2). Finally, we calculate the condition

numbers (the tolerances) for the 3 regular stars with stepsizes 0.08 (𝑡𝑜𝑙1), 0.09 (𝑡𝑜𝑙2)

and 0.1 (𝑡𝑜𝑙3) in all directions and so, the stars with minimum distance equal to 0.089

and 0.083 have tolerance 𝑡𝑜𝑙1, the star with minimum distance equal to 0.091 has

tolerance 𝑡𝑜𝑙2 and the stars with minimum distance equal to 0.175 and 0.151 have

tolerance 𝑡𝑜𝑙3 (step 3).

After calculating the tolerances, each star has its corresponding associated toler-

ance and if the condition number of A is greater than such tolerance, then the star

can be corrected as follows:

∙ Stage 1: In both 2D and 3D cases, the distance criterion is changed by the

quadrant criterion (2D) or by the octant criterion (3D).

∙ Stage 2: If the condition number of the recalculated matrix A is still greater

than the corresponding tolerance 𝑡𝑜𝑙𝑖, then we add 𝑚0 points to the star in 2D,

or 2𝑚0 points to the star in 3D.

It is important to note that this strategy uses known techniques to correct the stars

that are at risk of being ill-conditioned. The key issue is that this strategy allows

deciding which stars are formed in one way or another, contrary to the usual practice

of using a fixed number of points per star and the same formation criterion for all

stars in the domain.

4.2 Numerical results

This section is devoted to the numerical experiments to assess the validity of the

proposed strategy. We show the performance of the strategy to detect and treat

ill-conditioned stars for 2D and 3D in sections (4.2.1) and (4.2.2), respectively. We

study in section (4.2.3) the influence on the proposed strategy of different weighting

functions with regard to the accuracy and the number of modified stars. Finally, in

section (4.2.4) we study the influence on the proposed strategy of the number of

intervals.

69

The 2D (D1, D2, D3 and ID1) and 3D (D4, D5, D6, and ID4) domains used in

the current section are in Figures 2-2 and 2-4, respectively.

In all cases, and for each star, we use the weighting function 𝑤𝑖 = ‖x𝑖 − x0‖−4
2 ,

𝑖 = 1, 2, . . . ,𝑚. The distance criterion is used in all cases, except for the stars where

we applied the correction.

We use the following global error formula for the errors:

Global error (%) =

⎯⎸⎸⎸⎷ NI∑︀
𝑗=1

(𝑈𝑗 − 𝑢𝑗)
2

NI
· 100, (4.1)

where 𝑈𝑗 is the exact value of the solution at the point (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) ∈𝑀 ∩Ω and 𝑢𝑗 is

the approximate solution provided by the GFDM at the same point1.

4.2.1 Results with the proposed strategy to avoid ill-conditioned

stars in 2D

We apply the proposed strategy using the minimum number of points per star or

close to it to show the efficiency of the algorithm when dealing with ill-conditioned

stars.

To calculate the tolerances from which to apply the algorithm we have needed 1,

4, 5 and 5 auxiliary regular stars in D1, D2, D3 and ID1, respectively.

As an example, in D2 we have used the intervals [0.04, 0.05), [0.05, 0.06), [0.06, 0.07)

and [0.07, 0.08] to generate regular stars with minimum distances of 0.04, 0.05, 0.06

and 0.07. The condition number for each of these stars is the tolerance shared by all

stars that have their minimum distance in the associated interval.

For the third-order approximation, we show in Table 4.1 the global error obtained

when using stars with 20 points, which we use as a reference value, stars with 9

points formed by the distance criterion and stars with 9 points applying the proposed

strategy to avoid ill-conditioned stars.

1For convenience, the numbering used here is global, as distinct from the local numbering 𝑢𝑖, 𝑖 =
0, 1, . . . ,𝑚, used for each star in chapter 2.

70

Table 4.1: Global errors with the third-order approximation in 2D

third-order approximation

Equation Discretization 𝑚 = 20 𝑚 = 9 𝑚0 = 9 (with strategy)

(2.22) D1 1.20e-2 357.14 1.22e-2
(2.23) D2 3.12e-2 2.82e-1 3.09e-2
(2.24) D3 7.05e-2 39.50 9.26e-2
(2.22) ID1 4.00e-2 73.50 2.98e-2

Table 4.2: Global errors with the fourth-order approximation in 2D

fourth-order approximation

Equation Discretization 𝑚 = 30 𝑚 = 14 𝑚0 = 14 (with strategy)

(2.22) D1 1.10e-4 72.70 5.45e-4
(2.23) D2 1.71e-2 427.05 3.65e-2
(2.24) D3 2.68e-3 1635.12 5.96e-3
(2.22) ID1 4.12e-3 260.90 2.34e-2

For the fourth-order approximation, we show in Table 4.2 the global error obtained

when using stars with 30 points, which we use as a reference value, stars with 14 points

formed by the distance criterion and stars with 14 points applying the proposed

strategy to avoid ill-conditioned stars.

Both cases show that the errors applying the proposed strategy are of the same

order or less than the errors obtained using the number of points established as a

reference, which is a greater number, as a consequence of the treatment given to the

ill-conditioned stars.

Note that the lower the number of initial points 𝑚0, the greater the possibility of

finding ill-conditioned stars and, therefore, a greater number of stars must be treated.

For example, for the equation (2.22) with the discretization used on D1 and fourth-

order approximation, the second stage of the algorithm was reached in 96% of the

points.

However, if we increase the number of initial points, we reduce the possibility of the

appearance of ill-conditioned stars and therefore fewer stars should be treated, which

is a desirable situation. In the previous example (equation (2.22) with the discretized

domain D1 in the fourth-order approximation), if we increase the number of initial

71

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Stage 1 Stage 2

(a) 𝑚 = 14

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Initial star Stage 1 Stage 2

(b) 𝑚 = 18

Figure 4-2: Distribution of the formation of stars used at each point in the discretiza-
tion: stage 1 (quadrant criterion) and stage 2 (quadrant criterion with the addition
of points).

points from 14 to 18, still far from the reference 30, the number of stars that reach

the second stage is 47%, 8% of the stars remains in the first stage and the remaining

45% does not need treatment (those stars were formed by the distance criterion).

Furthermore, the global error obtained in this case without applying the strategy is

85.34% and applying the strategy is 2.27e-4%, less than the error of 5.45e-4% shown

in Table 4.2.

Figure 4-2 shows the stages reached by the points of the discretization 𝐷1 when

we consider 14 initial points (a) and 18 initial points (b). We want to highlight that all

the interior points close to the boundary reach the second stage of the algorithm. One

way to reduce the appearance of ill-conditioned stars in this case would be to make a

more adequate distribution of the boundary points, but we have not considered this

issue in this thesis.

We are proposing a number of points as a reference for a type of irregular dis-

cretization that has a defined pattern and is applicable to any domain. In any case,

we have also used a completely irregular discretization with randomly distributed

points. For the latter case, we show the errors caused both by applying the strategy

and without applying it to the highest errors, as can be seen in Tables 4.3 and 4.4 for

the third- and fourth-order approximations, respectively. Note that these errors are

in line with the errors of the discretization D1.

72

Table 4.3: Global error with third-order approximation in 2D for the discretization
ID1.

𝑚0 Without strategy With strategy

9 73.50 2.98e-2
10 28.45 2.98e-2
11 27.65 1.43e-1

Table 4.4: Global error with fourth-order approximation in 2D for the discretization
ID1.

𝑚0 Without strategy With strategy

14 260.90 2.34e-2
15 18.78 2.03e-3
16 75.66 1.97e-3
17 37.92 1.32e-3
18 8.55e-1 1.64e-3

4.2.2 Results with the proposed strategy to avoid ill-conditioned

stars in 3D

As we did in the 2D cases, we apply the proposed strategy using the minimum number

of points per star or close to it to show the efficiency of the algorithm for treating

ill-conditioned stars.

To calculate the tolerances from which to apply the algorithm we have needed

1 auxiliary regular star both in D4 and D5, 6 auxiliary regular stars in D6, and 8

auxiliary regular stars in ID4.

For the third-order approximation, we show in Table 4.5 the global error obtained

when using stars with 50 points, which we use as a reference value, stars with 19

points formed by the distance criterion and stars with 19 points applying the proposed

strategy to avoid ill-conditioned stars.

For the fourth-order approximation, we show in Table 4.6 the global error obtained

when using stars with 90 points, which we use as a reference value, stars with 36 points

formed by the distance criterion and stars with 36 points applying the proposed

strategy to avoid ill-conditioned stars.

73

Table 4.5: Global error with the third-order approximation in 3D

third-order approximation

Equation Discretization 𝑚 = 50 𝑚 = 19 𝑚0 = 19 (with strategy)

(2.25) D4 1.07e-2 1.55e-1 9.71e-3
(2.26) D5 1.94e-2 127.58 1.11e-2
(2.27) D6 3.43e-2 4.05 4.60e-2
(2.25) ID4 8.65e-2 10.60 3.05e-2

Both cases show that the errors applying the proposed strategy are of the same

order or less than the errors obtained using the number of points established as a

reference, which is a greater number, as a consequence of the treatment given to the

ill-conditioned stars.

Table 4.6: Global error with the fourth-order approximation in 3D

fourth-order approximation

Equation Discretization 𝑚 = 90 𝑚 = 36 𝑚0 = 36 (with strategy)

(2.25) D4 2.30e-3 0.101 3.76e-3
(2.26) D5 3.79e-3 154.94 4.45e-3
(2.27) D6 1.05e-2 63.28 3.18e-2
(2.25) ID4 5.76e-3 2.04e-2 1.26e-2

As in 2D cases, the lower the number of initial points, the greater the possibility

of finding ill-conditioned stars and, therefore, a greater number of stars must be

treated. For example, for the equation (2.26) in the discretization of the domain D5

with fourth-order approximation, the second stage of the algorithm was reached in

82% of the points.

However, if we increase the number of initial points, we reduce the possibility of the

appearance of ill-conditioned stars and, therefore, fewer stars should be treated, which

is a desirable situation. In the previous example (equation (2.26) in the discretized

domain D5), if we increase the number of initial points from 36 to 42, still far from

the reference 90, the number of stars that reach the second stage is 39%, 9% of the

stars remains in the first stage and the remaining 52% do not need treatment (these

stars are formed by the distance criterion). Moreover, the global error obtained in this

74

Table 4.7: Global error with the third-order approximation in 3D for the discretization
ID4.

𝑚0 Without strategy With strategy

19 10.60 2.82e-2
64 1.35 2.48e-2
65 2.74 3.05e-2

Table 4.8: Global error with the fourth-order approximation in 3D for the discretiza-
tion ID4.

𝑚0 Without strategy With strategy

41 1.14e-1 2.05e-2
44 2.49e-1 5.27e-3
50 1.02e-1 5.05e-3

case without applying the strategy is 52.49% and applying the strategy is 2.67e-3%,

less than the error of 4.45e-3% shown in Table 4.6.

We are proposing a number of points as a reference for a type of irregular dis-

cretization that has a defined pattern and is applicable to any domain. In any case,

we have also used a completely irregular discretization with randomly distributed

points. For the latter case, we show the errors caused both by applying the strategy

and without applying it to the highest errors, as can be seen in Tables 4.7 and 4.8 for

the third- and fourth-order approximations, respectively. Note that these errors are

in line with the errors of the discretization D4.

4.2.3 Influence of the weighting function

The weighting function affects both the accuracy of the solution and the number of

stars that must be modified by the proposed algorithm for a fixed number of auxiliary

stars.

To analyze this, we consider potential and exponential weighting functions that

have already given good results before [8] and solve the equation (2.22) in the domains

D1 and ID1 with 𝑚0 = 18 and the equation (2.25) in the domains D4 and ID4 with

𝑚0 = 42 using in both cases the fourth-order approximation.

75

In Table 4.9 we show the weighting functions used, the global error and the per-

centage of stars that have been modified by the algorithm.

We note that, in general, the potential weighting functions provide better accuracy,

but the number of modified stars is greater as the exponent increases. On the other

hand and also in a general way, the exponential weighting functions need to modify a

smaller number of stars but have a lower accuracy. A good balance can be given for

potential weighting functions with exponent 2 or 4, although this will depend on the

needs of the problem to be solved.

Table 4.9: Relation between the weighting functions, the global error and the per-

centage (%) of modified stars.

Domain D1 Domain ID1 Domain D4 Domain ID4

weighting

function

error

(%)

% of modified

stars

error

(%)

% of modified

stars

error

(%)

% of modified

stars

error

(%)

% of modified

stars

‖x𝑖 − x0‖−2
2 1.90e-4 51.00 1.03e-2 59.62 5.89e-3 20.00 3.31e-2 2.97

‖x𝑖 − x0‖−4
2 2.30e-4 55.00 1.65e-3 87.50 6.45e-3 36.00 5.09e-2 61.49

‖x𝑖 − x0‖−6
2 6.20e-4 98.00 6.30e-4 100.00 1.81e-3 38.40 4.82e-1 89.63

‖x𝑖 − x0‖−8
2 2.58e-3 100.00 1.18e-3 100.00 1.27e-2 40.80 3.01e0 91.86

𝑒−4‖x𝑖−x0‖2
2 5.53e-3 41.00 8.12e-3 40.39 1.09e-2 0.80 2.34e-2 0.00

𝑒−9‖x𝑖−x0‖2
2 1.80e-3 41.00 3.44e-2 40.39 1.94e-2 0.80 4.90e-3 0.75

𝑒−16‖x𝑖−x0‖2
2 5.60e-4 44.00 1.95e-2 40.39 2.35e-1 4.80 1.35e-2 1.49

4.2.4 Influence of the number of intervals on the proposed

strategy

The number of intervals, 𝜆, affects the number of stars modified by the algorithm,

so it also affects the accuracy. The number of intervals coincides with the number of

auxiliary stars to be calculated additionally and this also affects the execution time,

but the number of extra stars is so small that we can neglect it.

To analyze this, we solve the equation (2.22) in the domains D1 and ID1 with

𝑚0 = 18 and the equation (2.25) in the domains D4 and ID4 with 𝑚0 = 42 using

76

in both cases the fourth-order approximation. We consider the value of 𝜆 obtained

according to step 2 of section 4.1 and three refinements: 2𝜆, 4𝜆, and 8𝜆.

Given the results shown in Table 4.10, we can say that increasing the number

of intervals does not have a significant impact on increasing the number of modified

stars or reducing the error. The only exception would be when the discretization is

practically regular because in that case the condition numbers of the stars will be very

close to the tolerances and a small increase in the number of intervals may cause a

large increase in the number of modified stars, as occurs in D4. Therefore, the strategy

to 𝜆 proposed in this thesis is sufficient.

Table 4.10: Relation between the number of intervals 𝜆, the global error and the

percentage (%) of modified stars.

Domain D1 Domain ID1

Number of

intervals
error (%)

% of modified

stars

Number of

intervals
error (%)

% of modified

stars

𝜆0 = 2 2.27e-4 54.00 𝜆0 = 6 1.64e-3 87.50

2𝜆0 = 4 2.26e-4 54.00 2𝜆0 = 12 1.39e-3 96.15

4𝜆0 = 8 2.26e-4 54.00 4𝜆0 = 24 1.53e-3 98.08

8𝜆0 = 16 2.16e-4 56.00 8𝜆0 = 48 1.48e-3 99.38

Domain D4 Domain ID4

Number of

intervals
error (%)

% of modified

stars

Number of

intervals
error (%)

% of modified

stars

𝜆0 = 1 6.45e-3 36.00 𝜆0 = 9 5.09e-2 61.48

2𝜆0 = 2 4.19e-3 78.40 2𝜆0 = 18 3.92e-2 68.15

4𝜆0 = 4 3.36e-3 79.20 4𝜆0 = 36 1.61e-2 72.59

8𝜆0 = 8 3.37e-3 80.00 8𝜆0 = 72 9.65e-3 75.55

77

78

Chapter 5

A technique for generating adapted

discretizations

5.1 A procedure for generating discretizations adapted

to the partial differential equation

Our goal is to obtain a discretization adapted to the problem to be solved. The

strategy consists of solving the problem twice but with different resolution purposes

and different discretizations. In the first step, we use a coarse uniform discretization

and compute the absolute values of the gradients. Depending on these values, we place

more points where the gradients are higher and fewer points where the gradients are

lower. In the second stage, we calculate the approximate solution using the adapted

discretization generated in the previous stage. To generate the adapted discretization

and for each point of the initial discretization, we consider an area of influence where

the new points are placed.

It is important to highlight several aspects:

- The use of a regular discretization as a starting point is due to the fact that

better results are obtained than using random discretizations [8, 65].

- The initial discretization is, in general, locally regular and globally irregular,

since we only discretize regularly in the interior of the domain.

79

- The resulting adapted discretization is also locally irregular, which do not impose

any limitation to discretize any problem.

We have divided this section into two parts, addressing the generation of interior

points and the generation of boundary points. In the first part, we distinguish between

interior points generated from interior points and from boundary points.

5.1.1 Procedure for generating interior points

Firstly, we use a coarse uniform discretization to get an initial approximate solu-

tion by applying a second-order approximation with the GFDM. This initial coarse

discretization, should be fine enough to provide a correct solution, although not nec-

essarily with great accuracy. With these results, we compute the euclidean norm of

the vector gradient at each interior central point, that is

‖∇⃗0‖ =

√︃(︂
𝜕𝑢0

𝜕𝑥

)︂2

+

(︂
𝜕𝑢0

𝜕𝑦

)︂2

. (5.1)

Each interior point of the domain has the same square area of influence, with the

geometric center at the respective point (see Figure 5-1). The length of the side of

this square, ∆, is the shortest distance between two points in all the domain.

Let ∇̄ be the average gradient, 𝜎 the standard deviation of the gradients and 𝛽 a

constant. The general rule for deciding the number of points 1 in each area of influence

is to place regular square grids with 1, 4 or 9 points (see Figure 5-2) depending on

the gradient values as follows:

i) 1 point if ‖∇⃗0‖ < ∇̄+ 𝛽𝜎;

ii) 4 points if ∇̄+ 𝛽𝜎 6 ‖∇⃗0‖ < ∇̄+ 2𝛽𝜎;

ii) 9 points if ‖∇⃗0‖ > ∇̄+ 2𝛽𝜎.

If the influence area has 4 points, then we have a distance between them of ℎ = ∆/3

and if it has 9 points, the distance is ℎ = ∆/4. To facilitate a smooth transition

1We considered the possibility of using four regular square grids, the previous ones and also the
one with 16 points. However, we observed that this additional grid of 16 points did not improve the
accuracy of the results significantly. Therefore, we have decided to implement the method with these
three types of grids and thus avoid a large number of points in the adapted discretization.

80

D

G
W

square area of influence

interior point

boundary point

Figure 5-1: Influence areas for each point in the domain with their geometric centres
at the respective points. Note that there is no overlap between the influence areas
relative to the internal points. However, overlap can occur between the influence area
of a interior point and the influence area of a boundary point.

between the different influence areas, we multiply ℎ by an expansion coefficient 𝛼,

checking that the points do not leave their influence area. This 𝛼 is given by

𝛼 = 1 +
2𝜂

𝑛− 1
, (5.2)

where 𝜂 is an expansion percentage (0 ≤ 𝜂 ≤ 1) and 𝑛 is the number of points within

the area of influence in one direction (𝑛 = 2 in case of 4 points and 𝑛 = 3 in case of

9 points). So, 𝛼 is just a percentage of broadening of the regular grid in the influence

area. We give below the details of how 𝛼 is obtained.

Since the ∆ value is invariable considering the same discretization M, then we

established a limit in 𝛼 to avoid that any point be inserted outside the area of influence

to which it belongs.

Considering 𝛼 ≥ 1, we have

(𝑛− 1)ℎ ≤
𝑛−1∑︁
𝑖=1

𝛼ℎ ≤ ∆⇒ (𝑛− 1)ℎ ≤ 𝛼ℎ(𝑛− 1) ≤ ∆. (5.3)

81

influence area

non-smooth transition smoothing

points inserted

pre-existing points

D

D

ha ×

Figure 5-2: The insertion of points within the areas of influence (left) and the dis-
cretization smoothing process (right).

Since ℎ =
∆

𝑛 + 1
, then it is

(𝑛− 1)
∆

𝑛 + 1
≤ 𝛼∆

𝑛− 1

𝑛 + 1
≤ ∆, (5.4)

from which it follows that

1 ≤ 𝛼 ≤ 𝑛 + 1

𝑛− 1
. (5.5)

Finally, we adopted an expansion coefficient given by

𝛼 = 1 + 𝜂(max(𝛼)−min(𝛼)) = 1 +
2𝜂

𝑛− 1
. (5.6)

After inserting the corresponding points in the influence areas, we check if there

are influence areas with a single point and at least one of the four closest areas of

influence has 9 points. In such a case, we treat the area of influence of the single point

as if it were the case with 4 points. In this way, we smooth the transition between

influence areas, as can be seen in Figure 5-2.

Further, since we do not have the gradient values for the boundary points, we asso-

ciate to each boundary point the number of points containing the area of influence of

the closest interior point. Then we place the points as before but without considering

82

G
interior point inserted

pre-existing points

point outside of the domain

removed point (too close to the boundary)

W

p1

p2

p3

p4

removed point (too close to an interior
point generated from a boundary point)

boundary point inserted

A1

A2

A3

A4

Figure 5-3: Interior points generated from boundary points and boundary points
inserted. The points p1, p2, p3, and p4 have the closest interior areas A1, A2, A3,
and A4 with 4, 1, 1, and 9 points, respectively. The white points are rejected because
they are outside the domain, the yellow point is removed because it is too close
to the boundary, and the green point is removed because it is close to an interior
point generated from a boundary point. The blue and red points are the interior and
boundary points inserted, respectively.

the points that fall outside the domain and that are located at a distance less than

∆/10 from the boundary. We also use two additional restrictions in this case, on the

one hand, an expansion percentage (𝜂) 50% higher than that used in the previous

case and, on the other hand, if one of the interior points added from the boundary is

less than ∆/2 from any other interior point, we keep it and remove the other interior

point. Note that the inserted points in this section are not in Γ (see Figure 5-3).

5.1.2 Procedure for generating boundary points

We have just explained in the last paragraph of subsection 5.1.1 that the boundary

points will have in their area of influence 1, 4, or 9 points which will be determined

by the number of points in the area of influence of the closest interior point. In this

way, we can add interior points near the boundary. Now we deal with how to add

points on the boundary itself.

In order to add points on the boundary, we use a cubic spline interpolation.

If the considered boundary point has been treated in the previous step as an area

83

of influence of 1 point, then we do not add points, and, if it has been treated as an

area of influence of 4 or 9 points, then we add two points, one on each side of the

considered boundary point and at half distance with respect to the nearest boundary

points. For example, in Figure 5-3, boundary points p1 and p4 generate 4 and 9

points, respectively, in their areas of influence, and consequently, we add two points

(red points) in each case. The boundary points p2 and p3 do not generate points in

their areas of influence, so nothing is done. Of course, in case of overlapping points

in Γ, only one of them is added.

5.2 Numerical results

In all examples, we used the algorithm of star correction (chapter 4). In particular,

we used the weighting function 𝑤𝑖 = ‖x𝑖 − x0‖−4
2 , 𝑖 = 1, 2, . . . ,𝑚, and stars with 18

initial points formed by the distance criterion. In section 5.2.4, we used the second-

order approximation and stars with 16 points formed by the distance criterion.

In all examples, we chose 𝜂 = 0.25, 𝛽 = 0.5 and have considered two uniform

discretizations whose errors are above and below the error obtained with the corre-

sponding adapted discretization.

We used the following global error formula:

Error(%) =

⎯⎸⎸⎸⎷ NI∑︀
𝑗=1

(𝑈𝑗 − 𝑢𝑗)
2

NI
𝑢máx

· 100, (5.7)

where 𝑈𝑗 is the exact value of the solution at the point (𝑥𝑗, 𝑦𝑗) ∈ 𝑀 ∩ Ω, 𝑢𝑗 is the

approximate solution provided by the GFDM at the same point1, and 𝑢max is the

maximum value of the approximations given by the GFDM.

In all examples, by uniform discretization we mean a uniform discretization over

the entire domain except for the boundaries.

1The numbering used here is global, as distinct from the local numbering 𝑢𝑖, 𝑖 = 0, 1, . . . ,𝑚, used
for each star in section 2.

84

We wrote the codes in Python and used an Intel i7-8750H processor to execute the

codes. The calculated values of speedups in each example refer to the ratio between

the runtime using a uniform discretization and the one of the corresponding adapted

discretization. Of course, when we put the runtime of an adapted discretization, the

calculation of the gradients was also included.

In section 5.2.1, we show the errors and the code runtimes in adapted discretiza-

tions. We study the influence on the proposed technique for different values of 𝜂 and

𝛽 concerning the accuracy in section 5.2.2. We study the influence on the proposed

technique for different values of weighing functions concerning the accuracy in section

5.2.3. Finally, in section 5.2.4, we show the errors and the code runtimes of adapted

discretizations with second-order approximations.

5.2.1 Adapted discretizations with fourth-order approxima-

tion

Example 1

Consider the square domain

D7 = {(𝑥, 𝑦) ∈ R2|0.01 ≤ 𝑥, 𝑦 ≤ 1.01}

and the boundary value problem given by the following partial differential equation:

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 2500e−50𝑥 + 25e−5+5𝑥 + 25e−5𝑦 + 25e−5+5𝑦 (5.8)

whose exact solution is

𝑈(𝑥, 𝑦) = e−50𝑥 + e−5𝑦 + e−5+5𝑥 + e−5+5𝑦. (5.9)

We solve (5.8) in the domain D7 considering an initial discretization with 196

points. The gradient field obtained from the initial discretization is shown in Figure

5-4a. We denote by SA1 the resulting adapted discretization that can be seen in

85

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Gradient field

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(b) Discretization SA1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(c) Discretization SU2

Figure 5-4: Gradients, adapted and uniform discretizations for Example 1.

Table 5.1: Global error and execution times for Example 1

Discretization Total number of points (N) Error (%) Time (s)

SU1 1600 8.63e-1 7.02
SU2 1681 7.93e-1 7.92

SA1 (adapted) 596 8.10e-1 2.05

Figure 5-4b with 596 points. The uniform discretizations SU1 and SU2 have 1600 and

1681 points, respectively. The uniform discretization SU2 is shown in Figure 5-4c.

Table 5.1 shows the errors and the execution times of all discretizations. In the

adapted discretization SA1, we achieved similar accuracy with a decrease of approx-

imately 65% in the number of points and with a speedup of approximately 4 relative

to the uniform discretization SU2.

Example 2

Consider the boundary value problem given by the following partial differential equa-

tion:

𝜕2𝑈

𝜕𝑥2
− 𝜕2𝑈

𝜕𝑦2
= 0, (5.10)

whose exact solution is

86

𝑈(𝑥, 𝑦) = e−𝑥−𝑦−2. (5.11)

We solve (5.10) in the domain D7 using an initial discretization with 220 points.

The gradient field obtained from the initial discretization is shown in Figure 5-5a.

We denote by SA2 the adapted discretization that can be seen in Figure 5-5b with

526 points. The uniform discretizations SU3 and SU4 have 2254 and 2304 points,

respectively. The discretization SU4 is shown in Figure 5-5c.

Table 5.2 shows the errors and the execution times of all discretizations. In the

adapted discretization SA2, we achieved similar accuracy with a decrease of approx-

imately 75% in the number of points and with a speedup of approximately 6 relative

to the uniform discretization SU4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Gradient field

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(b) Discretization SA2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(c) Discretization SU4

Figure 5-5: Gradients, adapted and uniform discretizations for Example 2.

Table 5.2: Global error and execution times for Example 2

Discretization Total number of points (N) Error (%) Time (s)

SU3 2254 5.96e-1 11.00

SU4 2304 1.94e-2 11.19

SA2 (adapted) 526 3.34e-2 1.79

87

Example 3

Consider the circular domain

D8 = {(𝑥, 𝑦) ∈ R2|𝑥2 + 𝑦2 ≤ 1.52}

and the boundary value problem given by the following partial differential equation

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
=

4(𝑥2 + 𝑦2 − 0.01)

(𝑥2 + 𝑦2 + 0.01)3
, (5.12)

with exact solution

𝑈(𝑥, 𝑦) =
1

𝑥2 + 𝑦2 + 0.01
. (5.13)

We solve (5.12) in the domain D8 using an initial discretization with 488 points.

The gradient field obtained from the initial discretization is shown in Figure 5-6a.

We denote by CA1 the adapted discretization that can be seen in Figure 5-6b with

696 points. The uniform discretizations CU1 and CU2 have 1719 and 1799 points,

respectively. The discretization CU2 is shown in Figure 5-6c.

Table 5.3 shows the errors and the execution times of all discretizations. In the

adapted discretization CA1, we achieved similar accuracy with a decrease of approx-

imately 60% in the number of points and with a speedup of approximately 4 relative

to the uniform discretization CU1.

88

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Gradient field

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(b) Discretization CA1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(c) Discretization CU2

Figure 5-6: Gradients, adapted and uniform discretizations for Example 3.

Table 5.3: Global error and execution times for Example 3

Discretization Total number of points (N) Error (%) Time (s)

CU1 1719 9.61e-1 15.94

CU2 1799 6.17e-1 21.75

CA1 (adapted) 696 9.38e-1 4.29

Example 4

Consider the boundary value problem given by the following partial differential equa-

tion

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
=

8𝑥2

(𝑥2 + 𝑦2 + 0.01)3
− 4

(𝑥2 + 𝑦2 + 0.01)2
+

2(2𝑥 + 1.50)2

((𝑥 + 0.75)2 + (𝑦 + 0.75)2 + 0.01)3

− 4

((𝑥 + 0.75)2 + (𝑦 + 0.75)2 + 0.01)2
+

8𝑦2

(𝑥2 + 𝑦2 + 0.01)3
+

2(2𝑦 + 1.50)2

((𝑥 + 0.75)2 + (𝑦 + 0.75)2 + 0.01)3

(5.14)

with exact solution

89

𝑈(𝑥, 𝑦) =
1

𝑥2 + 𝑦2 + 0.01
+

1

(𝑥 + 0.75)2 + (𝑦 + 0.75)2 + 0.01
. (5.15)

We solve (5.14) in D8 using an initial discretization with 488 points. The gradient

field obtained from the initial discretization is shown in Figure 5-7a. We denote by

CA2 the adapted discretization that can be seen in Figure 5-7b with 849 points. The

uniform discretizations CU3 and CU4 have 1579 and 1653 points, respectively. The

discretization CU4 is shown in Figure 5-7c.

Table 5.4 shows the errors and the execution times of all discretizations. In the

adapted discretization CA2 we achieved similar accuracy with a decrease of approxi-

mately 50% in the number of points and with a speedup of approximately 2 relative

to the uniform discretization CU4.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Gradient field

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(b) Discretization CA2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(c) Discretization CU4

Figure 5-7: Gradients, adapted and uniform discretizations for Example 4.

90

Table 5.4: Global error and execution times for Example 4

Discretization Total number of points (N) Error (%) Time (s)

CU3 1579 1.56 13.30

CU4 1653 1.00 14.20

CA2 (adapted) 849 1.19 7.75

Example 5

Consider the circular domain

D9 = {(𝑥, 𝑦) ∈ R2|(𝑥− 2.3)2 + 𝑦2 ≤ 1.52}

and the boundary value problem given by the following partial differential equation

𝜕2𝑈

𝜕𝑥2
− 2

𝜕2𝑈

𝜕𝑥𝜕𝑦
+

𝜕2𝑈

𝜕𝑦2
+

𝜕𝑈

𝜕𝑥
− 𝜕𝑈

𝜕𝑦
= 0, (5.16)

with exact solution

𝑈(𝑥, 𝑦) =
1

𝑥 + 𝑦
. (5.17)

We solve (5.16) in D9 using an initial discretization with 488 points. The gradient

field obtained from the initial discretization is shown in Figure 5-8a. We denote by

CA3 the adapted discretization that can be seen in Figure 5-8b with 798 points. The

uniform discretizations CU3 and CU6 have 1579 and 1506 points, respectively. The

discretization CU3 is shown in Figure 5-8c.

Table 5.5 shows the results and the execution times of all discretizations. In the

adapted discretization CA3 we achieved similar accuracy with a decrease of approxi-

mately 50% in the number of points and with a speedup of approximately 3 relative

to the uniform discretization CU3.

91

1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Gradient field

1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(b) Discretization CA3

1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(c) Discretization CU3

Figure 5-8: Gradients, adapted and uniform discretizations for Example 5.

Table 5.5: Global error and execution times for Example 5

Discretization Total number of points (N) Error (%) Time (s)

CU6 1506 1.56e-1 10.13

CU3 1579 1.48e-1 13.30

CA3 (adapted) 798 1.54e-1 4.95

Example 6

Consider a circle with a lemniscate geometry inside it

D10 = 𝐶 − 𝐿,

where 𝐶 = {(𝑥, 𝑦) ∈ R2|𝑥2+𝑦2 <= 1.52} and 𝐿 = {(𝑥, 𝑦) ∈ R2|(𝑥2+𝑦2)2−(𝑥2−𝑦2) <

0}.

Consider the boundary value problem given by the following partial differential

equation

𝜕2𝑈

𝜕𝑥2
− 𝜕2𝑈

𝜕𝑦2
=

8𝑥2 − 8𝑦2

(𝑥2 + 𝑦2 + 0.01)3
(5.18)

92

with exact solution given in (5.13).

We solve (5.18) in the domain D10 using an initial discretization with 280 points.

The gradient field obtained from the initial discretization is shown in Figure 5-9a.

We denote by LA the adapted discretization that can be seen in Figure 5-9b with

493 points. The uniform discretizations LU1 and LU2 have 2032 and 2416 points,

respectively. The discretization LU2 is shown in Figure 5-9c.

Table 5.6 shows the errors and the runtime of all discretizations. In the adapted

discretization LA, we achieved a similar accuracy with a decrease of approximately

75% in the number of points and with a speedup of approximately 37 relative to the

uniform discretization SU4.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Gradient field

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(b) Discretization LA

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

interior points
boundary points

(c) Discretization LU2

Figure 5-9: Gradients, adapted and uniform discretizations for Example 6.

Table 5.6: Global error and execution times for Example 6 with fourth-order approx-

imations.

Discretization Total number of points (N) Error (%) Time (s)

LU1 2032 4.24e-1 23.50

LU2 2416 1.71e-1 73.40

LA (Adapted) 493 1.19e-1 1.61

Additionally, we evaluated the number of corrected stars. Considering the LA and

93

LU1 discretizations, approximately 57% and 13% of the number of internal points have

undergone a correction in their stars, respectively. Comparing the same discretizations

but using the ‖x𝑖−x0‖−2
2 , 𝑒−4‖x𝑖−x0‖22 , and 𝑒−9‖x𝑖−x0‖22 weighting functions, we obtain

approximately 7%, 8%, and 5% of modified stars in the adapted discretization, re-

spectively, and approximately 12%, 7%, and 7% in the uniform one, respectively.

Theses results indicate that the type of discretization (adapted or uniform) is not a

determining factor in the increase or decrease of the relative number of ill-conditioned

stars.

5.2.2 Influence of the parameters 𝜂 and 𝛽

Note that the parameter 𝜂 influences the distance between points within the area of

influence and, therefore, affects the accuracy of the derivatives. On the other hand,

the parameter 𝛽 controls the total amount of inserted points, the smaller the 𝛽, the

more points will be added.

Figure 5-10 shows the global errors resulting from the variation of the parameter

𝜂 in all adapted discretizations used in section 5.2.1. We varied 𝜂 between 0.1 and

0.4 with a step size equal to 0.05. In general, the results indicate that intermediate

values of 𝜂 provide more accurate results. In this thesis, we have taken 𝜂 = 0.25.

10−1

100

101

Er
ro
r (
%
) -
 lo

g
sc
al
e

SA1 SA2 CA1

0.1 0.2 0.3 0.4
η

10−1

100

101

Er
ro
r (
%
) -
 lo

g
sc
al
e

CA2

0.1 0.2 0.3 0.4
η

CA3

0.1 0.2 0.3 0.4
η

LA

Figure 5-10: Relationship between the value of 𝜂 and the global errors.

94

Figure 5-11 shows the global errors due to the variation of the parameter 𝛽. We

varied 𝛽 between 0 and 2 with a step size equal to 0.5. In general, values of 𝛽 lower

than 1 generate more accurate results. In this thesis, we have taken 𝛽 = 0.5.

10−1

100

101

er
ro
r (
%
) -
 lo

g
sc
al
e

SA1 SA2 CA1

0 1 2
β

10−1

100

101

er
ro
r (
%
) -
 lo

g
sc
al
e

CA2

0 1 2
β

CA3

0 1 2
β

LA

Figure 5-11: Relationship between the value of 𝛽 and the global errors.

5.2.3 Influence of the weighting functions

Since weighting functions are expected to influence the accuracy of derivatives, we

analyzed different weighting functions for Examples 1 and 3.

Table 5.7 shows the data for different weighting functions. In all cases, we used

the same initial coarse discretizations and parameters 𝛼 and 𝛽 of section 5.2.1. The

uniform discretizations considered satisfy that they have the smallest number of points

which makes the error smaller than that obtained with the adapted discretization.

In these two examples, the potential weighting function with exponent -4 per-

formed better in the adapted discretizations. Comparing the adapted and uniform

discretizations, the results show the satisfactory performance of the adapted dis-

cretization regardless of the weighting functions used.

95

0

5

10
Er
ro
r (

%
) -
 E
xa

m
pl
e
1 ||xi− x0||−22 ||xi− x0||−42 e−4||xi− x0||22

0.2 0.3 0.4
η

0

5

10

Er
ro
r (
%
) -
 E
xa

m
pl
e
3

0.2 0.3 0.4
η

0.2 0.3 0.4
η

Figure 5-12: Relationship between the value of 𝜂, weighing functions, and global
errors.

Table 5.7: Data for different weighting functions (𝜂 = 0.25, 𝛽 = 0.5).

Ex. 1 - adapted Ex. 1 - uniform Ex. 3 - adapted Ex. 3 - Uniform

Weighing functions Error (%) N Error (%) N Error (%) N Error (%) N

‖x𝑖 − x0‖−2
2 9.05e-1 596 8.65e-1 1516 1.08 696 1.04 1653

‖x𝑖 − x0‖−4
2 8.10e-1 596 7.93e-1 1681 0.94 696 6.17e-1 1799

𝑒−4‖x𝑖−x0‖22 1.25 596 1.15 1369 1.49 696 0.81 1653

𝑒−9‖x𝑖−x0‖22 1.25 596 1.15 1369 1.52 696 0.84 1653

Figure 5-12 shows the errors when we varied 𝜂 and the weighing functions for

Examples 1 and 3. It is evident that the accuracy of the results changes with different

weighting functions, however, the form of the histograms does not vary significantly in

Figure 5-12. Therefore, intermediate values of 𝜂 are an appropriate choice regardless

of the weighting functions tested.

5.2.4 Adapted discretizations with second-order approxima-

tions

We solve (5.8) and (5.10) using the second-order approximation and an initial dis-

cretization with 504 points.

96

We denote by SA3 and SA4 the adapted discretizations with 1134 and 1233 points,

respectively (see Figures 5-13a and 5-13c). The uniform discretizations SU5, SU6,

SU7, and SU8 have 2916, 3136, 5329 and 5476 points, respectively. The discretizations

SU6 and SU8 are shown in Figures 5-13b and 5-13d, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(a) Discretization SA3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(b) Discretization SU6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(c) Discretization SA4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

interior points
boundary points

(d) Discretization SU8

Figure 5-13: Adapted and uniform discretizations for Examples 1 and 2 with second-

order approximations

Tables 5.8 and 5.9 show the results and execution times of all discretizations.

In the adapted discretizations SA3 and SA4, we achieved a similar accuracy with

a decrease of approximately 65% and 75%, respectively, in the number of points

relative to the uniform discretizations SU6 and SU8, respectively. Comparing the

97

same discretizations, we get a speedups of approximately 5 and 15, respectively.

Table 5.8: Global error and execution times for Example 1 with second-order approx-

imation

Discretization Total number of points (N) Error (%) Time (s)

SU5 2916 1.38 6.86

SU6 3136 1.32 7.93

SA3 (adapted) 1134 1.32 1.48

Table 5.9: Global error and execution times for Example 2 with second-order approx-

imation

Discretization Total number of points (N) Error (%) Time (s)

SU7 5329 9.59e-1 22.55

SU8 5476 8.06e-2 25.85

SA4 (adapted) 1233 1.56e-1 1.75

98

Chapter 6

An h-adaptive method in 3D

6.1 Error indicator

In order to evaluate the performance of the adaptive procedure develop here, we will

consider problems whose exact solution is known. The indicator error 𝑒𝑖 was calculated

by

𝑒𝑖 =
|𝑈𝑖 − 𝑢𝑖|

𝑈𝑖

, (6.1)

where 𝑈𝑖 is the exact value of the solution at the point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 𝑢𝑖 is the

approximate solution provided by the GFDM at the same point.

6.2 An adaptive procedure

At each adaptive step, we compute the value of the error indicator for each interior

point using (6.1). Any point will be refined by adding new points if the corresponding

value of the error indicator 𝑒𝑖,𝑖 = 1, . . . ,NI, satisfies the following equation:

𝑒 + 𝜎𝑒 < 𝑒𝑖, (6.2)

where 𝑒 is the mean and 𝜎𝑒 is the standard deviation of the error indicators.

For each refined point, the number of points inserted will depend on the error

99

Table 6.1: Coordinates of the points to be added for each point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) to be refined
(𝑒𝑖 is the error indicator; 𝑒 and 𝜎𝑒 are the average and the standard deviation of the
error indicators, respectively; ∆ is the shortest distance between two points in all the
domain).

Condition
Number of
points added

Coordinates

𝑒 + 𝜎𝑒 < 𝑒𝑖 ≤ 𝑒 + 2𝜎𝑒 8 (𝑥𝑖 ±∆/2, 𝑦𝑖 ±∆/2, 𝑧𝑖 ±∆/2)

𝑒𝑖 > 𝑒 + 2𝜎𝑒 14
(𝑥𝑖 ±∆/2, 𝑦𝑖 ±∆/2, 𝑧𝑖 ±∆/2), (𝑥𝑖 ±∆/2, 0, 0),

(0, 𝑦𝑖 ±∆/2, 0), and (0, 0, 𝑧𝑖 ±∆/2)

indicator. Considering that ∆ is the shortest distance between two points in all the

domain, the proposed strategy is as follows:

- If 𝑒 + 𝜎𝑒 < 𝑒𝑖 ≤ 𝑒 + 2𝜎𝑒 we add 8 points, which are found at the vertices of a

cube with edge ∆ and geometric center at the point being refined.

- If 𝑒𝑖 > 𝑒 + 2𝜎𝑒 we add 14 points, eight of them located as in the previous case,

plus another six located in the centers of the faces of the cube.

Table 6.1 shows the coordinates of the points that are added in each case. Figure

6-1 illustrates the position of the added points in relation to the refined point.

At the end of each adaptive step, the algorithm will stop adding points if one of

the following conditions is true:

1. for each interior point the inequality 𝑒𝑖 ≤ 𝑒 + 2𝜎𝑒 is satisfied;

2. the global errors in two successive refinements are greater than the global error

in the current step. Suppose that the discretization in a step 4 has a global error equal

to E4, in the following step 5 an error equal to E5, and in step 6 an error equal to E6.

The stop occurs if E4<E5 and E4<E6. In this case, we accept as final discretization

the one corresponding to step 4.

If a large number of steps occur, the domain can have a large concentration of

points in a given region, so this may generate ill-conditioned stars. In this case, the

procedure adaptive is inefficient and produces unsatisfactory results. Stopping crite-

rion 2 gets us to abort before this problem occurs. Note that this criterion needs two

100

D

cube geometry

Added points

Refined point

D

0 0 0(, ,)x y z

geometric center

Figure 6-1: Position of the added points in relation to the refined point. On the left,
8 points are added; and on the right, 14 points are added.

extra steps before the stop, i.e, if the final discretization refers to step ’k’ then the

number of steps calculated was ’k+2’.

We impose a restriction for the distance between points in the h-adaptive method

to avoid ill-conditioned stars, in such a way that if the distance between the new point

and any point of the domain is smaller than 2∆/3, then, we do not add new points.

6.3 Procedure for adding boundary points

Since we do not have error indicators for the boundary points, each boundary point

searches the closest interior point. If this interior point was refined, then the respective

boundary point also must be refined.

We explain how to insert points into the boundary with an example: consider a

boundary point with coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) in the plane OXY, the four points inserted

will have coordinates: (𝑥𝑖 ± 2∆, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑖, 𝑦𝑖 ± 2∆, 𝑧𝑖); if the boundary point is

in the plane OYZ, the points inserted will have coordinates: (𝑥𝑖, 𝑦𝑖 ± 2∆, 𝑧𝑖) and

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ± 2∆); and so on. Note that the points are inserted in a cross shape with

center in (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), another procedure should be adopted if the boundary is curved.

101

6.4 Examples

In all Examples, we compared our adaptive procedure with the one developed in [75].

In [75], for each refinement point the new points are added halfway between it and

some points of the star. To do this, the algorithm selects the 8 furthest points of the

star and adds a single point. However, in fourth-order approximations, more points

per star are needed to improve the accuracy of the derivatives. Then, we selected the

14 farthest points from the star.

In all Examples, we used the weighting function 𝑤𝑖 = ‖x𝑖−x0‖−4
2 , 𝑖 = 1, 2, . . . ,𝑚,

and stars with 90 points formed by the distance criterion.

The number of adaptive steps in all Examples does not include the initial solution.

The global errors are given by

Error(%) =

⎯⎸⎸⎸⎷ NI∑︀
𝑖=1

(𝑈𝑖 − 𝑢𝑖)
2

NI
𝑢máx

· 100, (6.3)

where 𝑈𝑖 is the exact value of the solution at the point (𝑥𝑖, 𝑦𝑖) ∈ 𝑀 ∩ Ω, 𝑢𝑖 is the

approximate solution provided by the GFDM at the same point1, and 𝑢max is the

maximum value of the approximations given by the GFDM.

6.4.1 Example 1

Consider the domain given by

D11 = {(𝑥, 𝑦, 𝑧) ∈ R3|0.01 ≤ 𝑥, 𝑦, 𝑧 ≤ 1.01},

taking an irregular initial discretization with 125 points (see Figure 6-2a).

1For convenience, the numbering used here is global, as distinct from the local numbering 𝑢𝑖, 𝑖 =
0, 1, . . . ,𝑚, used for each star in section 2.

102

We consider the boundary value problem given by the partial differential equation

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑧2
= 0, (6.4)

with exact solution 𝑈 =
1√︀

𝑥2 + 𝑦2 + 𝑧2
. The boundary values are obtained from the

exact solution.

We call Hex the algorithm developed in section 6.2 and Dist the distance algorithm

previously explained in the introduction of the section 6.4. Table 6.2 shows the global

errors, the final number of points, the number of adaptive steps and the time in the

two algorithms. The algorithms stopped with final errors approximately equal, but

we achieved a decrease of approximately 50% in the number of points, less number

of steps, and a decrease of approximately 80% in the time compared to the Dist

algorithm.

Table 6.2: Errors, number of points, number of adaptive steps, and time in each

algorithm for Example 1.

Algorithm Initial error (points) Final error (points) Number of steps Time

Dist 3.426% (125) 0.286% (459) 7 68.25 s

Hex 3.426% (125) 0.280% (232) 5 13.40 s

Figure 6-2b shows the final discretization in the algorithm Hex with 232 points.

103

(a) Initial discretization with 125 points (b) Final discretization with 232 points

Figure 6-2: Discretizations in the adaptive algorithm for Example 1.

6.4.2 Example 2

Consider the same domain D11 and the initial discretization of Example 1.

We consider the boundary value problem given by the partial differential equation

𝜕2𝑈

𝜕𝑥𝜕𝑦
+

𝜕2𝑈

𝜕𝑥𝜕𝑧
= 0, (6.5)

with exact solution 𝑈 =
𝑦 − 𝑧

1 + 𝑥
. The boundary values are obtained from the exact

solution.

Table 6.3 shows the global errors, the final number of points, the number of adap-

tive steps, and the time in the two algorithms. The algorithms stopped with the same

number of steps and approximately the same time, but we achieved better accuracy

and a decrease of approximately 20% in the number of points compared to the Dist

algorithm.

104

Table 6.3: Errors, number of points, number of adaptive steps, and the time in each

algorithm for Example 2.

Algorithm Initial error (points) Final error (points) Number of steps Time

Dist 8.27e-1% (125) 6.70e-2% (198) 4 7.65 s

Hex 8.27e-1% (125) 5.54e-2% (163) 4 6.13 s

Figure 6-3 shows the final discretization in the algorithm Hex with 163 points.

(a) Initial discretization with 125 points (b) Final discretization with 163 points

Figure 6-3: Discretizations in the adaptive algorithm for Example 2.

6.4.3 Example 3

Consider the same domain D11 and the initial discretization of Example 1.

We consider the boundary value problem given by the partial differential equation

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑧2
= 12𝑒−2(𝑥+𝑦+𝑧), (6.6)

with exact solution 𝑈 = 𝑒−2(𝑥+𝑦+𝑧). The boundary values are obtained from the exact

solution.

Table 6.4 shows the global errors, the final number of points, the number of adap-

tive steps, and the time in the two algorithms. We achieved better accuracy, fewer

number of steps, and a decrease of approximately 10% and 50% in the number of

105

points and time, respectively, compared to the Dist algorithm.

Table 6.4: Errors, number of points, number of adaptive steps, and the time in each

algorithm for Example 3.

Algorithm Initial error (points) Final error (points) Number of steps Time

Dist 1.42e-1% (125) 5.20e-2% (427) 6 41.04 s

Hex 1.42e-1% (125) 1.98e-2% (382) 5 21.89 s

Figure 6-4 shows the final discretization in the algorithm Hex with 382 points.

(a) Initial discretization with 125 points (b) Final discretization with 382 points

Figure 6-4: Discretizations in the adaptive algorithm for Example 3.

6.4.4 Example 4

Consider a sphere with domain

D12 = {(𝑥, 𝑦, 𝑧) ∈ R3|𝑥2 + 𝑦2 + 𝑧2 ≤ 1},

taking a initial discretization with 276 points (see Figure 6-5a).

The boundary value problem is given by the following partial differential equation

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
+ 2

𝜕2𝑈

𝜕𝑧2
= 0 (6.7)

106

with Dirichlet boundary conditions and exact solution 𝑈(𝑥, 𝑦, 𝑧) = 𝑒𝑧 sin𝑥 cos 𝑦.

Table 6.5 shows the global errors, the final number of points, the number of adap-

tive steps, and the time in the two algorithms. We achieved better accuracy, fewer

number of steps, and a decrease of approximately 20% in the number of points and

time compared to the Dist algorithm.

Table 6.5: Errors, number of points, number of adaptive steps, and the time in each

algorithm for Example 4.

Algorithm Initial error (points) Final error (points) Number of steps Time

Dist 2.89e-2% (276) 2.25e-2% (440) 4 19.30 s

Hex 2.89e-2% (276) 8.89e-3% (342) 3 15.11 s

Figure 6-5b shows the final discretization in the algorithm Hex with 342 points.

(a) Initial discretization with 276 points (b) Final discretization with 342 points

Figure 6-5: Discretizations in the adaptive algorithm for Example 4.

6.4.5 Example 5

Consider the same domain D12 and the initial discretization of Example 4.

We consider a potential problem given by the partial differential equation

𝜕2𝑈

𝜕𝑥2
+
𝜕2𝑈

𝜕𝑦2
+
𝜕2𝑈

𝜕𝑧2
=
[︀
4− 4𝑧2

(︀
𝑥2 + 𝑦2

)︀]︀
sin
(︀
1 + 𝑧2

)︀
+2
(︀
𝑥2 + 𝑦2

)︀
cos
(︀
1 + 𝑧2

)︀
(6.8)

107

with Dirichlet boundary conditions and exact solution 𝑈(𝑥, 𝑦, 𝑧) = (𝑥2+𝑦2) sin(1+𝑧2).

Table 6.6 shows the global errors, the final number of points, number of adaptive

steps, and the time in the two algorithms. In this Example, the algorithm Dist failed

to reduced the initial error, i.e, the addition of points did not provide better accuracy

with respect to the error initial. On the other hand, we achieved a good performance

with Hex.

Table 6.6: Errors, number of points, number of adaptive steps, and the time in each

algorithm for Example 5.

Algorithm Initial error (points) Final error (points) Number of steps Time

Dist 4.86e-1% (276) - - -

Hex 4.86e-1% (276) 1.74e-1% (620) 7 17.70 s

Figure 6-6 shows the final discretization in the algorithm Hex with 620 points.

(a) Initial discretization with 276 points (b) Final discretization with 620 points

Figure 6-6: Discretizations in the adaptive algorithm for Example 5.

108

Chapter 7

Seismic response in onshore wind

turbines

7.1 Partial differential equation of motion - beam

bending

A model for Euler-Bernoulli transverse beam vibration [17], of variable cross-section,

with elastic and homogenous material can be given by the fourth-order linear differ-

ential equation

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥)

𝜕2𝜈(𝑥, 𝑡)

𝜕𝑥2

)︂
+

𝜕

𝜕𝑥

(︂
𝑄
𝜕𝜈(𝑥, 𝑡)

𝜕𝑥

)︂
+ 𝜇(𝑥)𝜈(𝑥, 𝑡) = 𝑓𝑔(𝑥, 𝑡). (7.1)

Where 𝜈(𝑥, 𝑡) the transverse displacement, 𝐸 the Young’s modulus, 𝐼(𝑥) the cross-

sectional moment of inertia, 𝑡 is the time, the symbol (·) denotes derivative with re-

spect to time, 𝑓𝑔(𝑥, 𝑡) is the transversal force along the structure, 𝜇(𝑥) is the structural

mass per unit length, and 𝑄 is the axial force along the structure. The parameters of

(7.1) are represented in Figure 7-1.

Assuming 𝑄 constant and using the product rule for derivatives in (7.1) we get:

(︂
𝐸
𝑑2𝐼(𝑥)

𝑑𝑥2
+ 𝑄

)︂
𝜕2𝜈(𝑥, 𝑡)

𝜕𝑥2
+2𝐸

𝑑𝐼(𝑥)

𝑑𝑥

𝜕3𝜈(𝑥, 𝑡)

𝜕𝑥3
+𝐸𝐼(𝑥)

𝜕4𝜈(𝑥, 𝑡)

𝜕𝑥4
+𝜇(𝑥)𝜈(𝑥, 𝑡) = 𝑓𝑔(𝑥, 𝑡)

(7.2)

109

(,) () ()
g g
f x t x a tm= -

, (), ()E I x xm

(,)x tn

,
t

M J

Q

r
k

t
k

L

x

g
a

t

()
t t g
f M a t=

RNA

soil–structure interaction

Figure 7-1: Euler-Bernoulli beam with a top mass and cross section variable subjected
to a horizontal earthquake. The soil-structure interaction is modelled by two flexible
springs.

The equation (7.2) can represent an idealized model of a wind turbine. The RNA

(rotor-nacelle-assembly) of the wind turbine is idealized in the concentrated mass 𝑀𝑡

- perfectly centered horizontally and without vertical eccentricity at the top of the

structure - and in the rotary inertia 𝐽 . The axial-force is given by 𝑄 = −𝑀𝑡 · 𝑔, being

𝑔 the gravitational acceleration. The soil-structure interaction is represented by the

foundation lateral stiffness 𝑘𝑡 and the foundation rocking stiffness 𝑘𝑟.

The value of 𝑓𝑔 in (7.2) can be caused by various environmental effects, in this

case, we considered the action of an earthquake. Let us consider as 𝑎𝑔 the horizontal

acceleration caused by an earthquake at the base of a wind turbine, then we have the

relation 𝑓𝑔(𝑥, 𝑡) = −𝜇(𝑥) ·𝑎𝑔(𝑡), that way we transformed the acceleration at the base

in effective earthquake force applied in the structure.

Due to presence of a concentrated mass 𝑀𝑡, the acceleration in the base generates

a load point given by 𝑓𝑡(𝑡) = 𝑀𝑡 · 𝑎𝑔(𝑡) (note that 𝑓𝑡 and 𝑓𝑔 must be in opposite

directions).

The four boundary conditions of (7.2) are given by

110

𝐸𝐼(0)
𝜕3𝜈(0, 𝑡)

𝜕𝑥3
+ 𝑄

𝜕𝜈(0, 𝑡)

𝜕𝑥
+ 𝑘𝑡𝜈(0, 𝑡) = 0, (7.3)

𝐸𝐼(0)
𝜕2𝜈(0, 𝑡)

𝜕𝑥2
− 𝑘𝑟

𝜕𝜈(0, 𝑡)

𝜕𝑥
= 0, (7.4)

𝐸
𝑑𝐼(𝐿)

𝑑𝑥

𝜕2𝜈(𝐿, 𝑡)

𝜕𝑥2
+ 𝐸𝐼(𝐿)

𝜕3𝜈(𝐿, 𝑡)

𝜕𝑥3
+ 𝑄

𝜕𝜈(𝐿, 𝑡)

𝜕𝑥
−𝑀𝑡𝜈(𝐿, 𝑡) = 𝑓𝑡(𝑡), (7.5)

and

𝐸𝐼(𝐿)
𝜕2𝜈(𝐿, 𝑡)

𝜕𝑥2
+ 𝐽

𝜕𝜈(𝐿, 𝑡)

𝜕𝑥
= 0, (7.6)

where the set of equations (7.3)–(7.6) represents the bending moment and the shear

force at the base (𝑥 = 0) and at the top (𝑥 = 𝐿), being 𝐿 the height of the tower.

As for the initial conditions of (7.2), we have

𝜈(𝑥, 0) =
𝜕𝜈(𝑥, 0)

𝜕𝑥
= 0. (7.7)

The solution of (7.2) must, of course, satisfy the prescribed boundary conditions

(7.3)–(7.6) and the initial conditions (7.7).

7.2 Analysis of dynamic response

The domain is discretized considering NI internal points, two boundary points and

two virtual points (see Figure 7-2). Adopting by convenience the notation 𝑢 → 𝜈 in

(2.15) and using the approximations of second-, third- and fourth-order into (7.2), we

get

111

(︁
𝐸𝐼

′′

0 + 𝑄
)︁(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑖 +
𝑚∑︁
𝑖=1

𝑏2,𝑖𝜈𝑖

)︃
+ 2𝐸𝐼

′

0

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏3,𝑖 +
𝑚∑︁
𝑖=1

𝑏3,𝑖𝜈𝑖

)︃
+

𝐸𝐼0

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏4,𝑖 +
𝑚∑︁
𝑖=1

𝑏4,𝑖𝜈𝑖

)︃
+ 𝜇0�̂�0 = 𝑓0,

(7.8)

where 𝑓0, 𝐼0, 𝜈0, 𝜇0, and �̂�0 (�̂� is the approximate value of 𝜈) are the values of the

parameters 𝑓𝑔, 𝐼, 𝜈, 𝜇, and �̂� calculated at in central point, respectively. Note that 𝐼
′
0

and 𝐼
′′
0 are the values of the derivatives of 𝐼 at in central point.

Applying the approximations of first, second, and third-order of (2.15) to the

boundary conditions (7.3)-(7.5), three additional equations are generated:

𝐸𝐼(0)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏3,𝑖 +
𝑚∑︁
𝑖=1

𝑏3,𝑖𝜈𝑖

)︃
+ 𝑄

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏1,𝑖 +
𝑚∑︁
𝑖=1

𝑏1,𝑖𝜈𝑖

)︃
+ 𝑘𝑡𝜈0 = 0, (7.9)

𝐸𝐼(0)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑖 +
𝑚∑︁
𝑖=1

𝑏2,𝑖𝜈𝑖

)︃
− 𝑘𝑟

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏1,𝑖 +
𝑚∑︁
𝑖=1

𝑏1,𝑖𝜈𝑖

)︃
= 0, (7.10)

and

𝐸𝐼
′
(𝐿)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑖 +
𝑚∑︁
𝑖=1

𝑏2,𝑖𝜈𝑖

)︃
+ 𝐸𝐼(𝐿)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏3,𝑖 +
𝑚∑︁
𝑖=1

𝑏3,𝑖𝜈𝑖

)︃

+ 𝑄

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏1,𝑖 +
𝑚∑︁
𝑖=1

𝑏1,𝑖𝜈𝑖

)︃
−𝑀𝑡�̂�𝑡 = 𝑓𝑡,

(7.11)

where �̂�𝑡 is the approximate acceleration in at top of the tower (𝑥 = 𝐿).

Note that in (7.6) the derivative of the acceleration needs to be approximated. To

apply (2.15) in (7.6), we adopted by convenience 𝑢→ �̂� in the second term of (7.6),

then

112

NI equations

x

2 equations

2 equations

sparsity pattern of matrix K

sparsity pattern of matrix Mvirtual point
boundary point
internal point

Figure 7-2: Discretization with the GFDM and sparsity pattern of matrices K and
M.

𝐸𝐼(𝐿)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑖 +
𝑚∑︁
𝑖=1

𝑏2,𝑖𝜈𝑖

)︃
+ 𝐽

(︃
−�̂�0

𝑚∑︁
𝑖=1

𝑏1,𝑖 +
𝑚∑︁
𝑖=1

𝑏1,𝑖�̂�𝑖

)︃
= 0. (7.12)

Applying equation (7.8) to each internal point of the domain together with the

set (7.9)-(7.12), we obtain a system of equations with a stiffness matrix K formed by

the coefficients that multiply the displacements 𝜈 and a mass matrix M formed by

the coefficients that multiply the accelerations �̂�. In compact form we have

K𝜈 + Mâ = Fg (7.13)

where 𝜈 and â are the vectors formed by the approximate displacements and acceler-

ations in all points of the domain, respectively. Fg is the vector with the force applied

at each point. The sparsity pattern of matrices K and M is shown in Figure (7-2).

A solution of (7.13) can be given by any appropriate integration method. We chose

the Newmark Method [63], which is of easy programming and unconditionally stable

(implicit method). Details of its computational implementation can be seen in Algo-

rithm 4. We used the constant-average-acceleration method (also called trapezoidal

rule).

113

Note that the initial vectors of displacement 𝜈0, velocity v̂0, and acceleration â0

are consider equal to 0 to the seismic response.

Algorithm 4 A pseudocode to Newmark method.
Initialize 𝜈0, v̂0, â0, and ∆𝑡. ◁ 𝜈0 = v̂0 = â0 = 0 to the seismic response.
Calculate Fg𝑖 to each time discretization
Assemble the matrices K and M
Calculate 𝑐1 and 𝑐2 ◁ Equation (7.15)

C = 𝑐1M + 𝑐2K ◁ save C

K
′
=

(︂
K +

4

∆𝑡2
M +

2

∆𝑡
C

)︂−1

◁ save the inverse

for 𝑖 = 1, 2 . . . number of time instants do

Fg′ = Fg𝑖 + M

(︂
â𝑖−1 +

4

∆𝑡
v̂𝑖−1 +

4

∆𝑡2
𝜈𝑖−1

)︂
+ C

(︂
v̂𝑖−1 +

2

∆𝑡
𝜈𝑖−1

)︂
𝜈𝑖 = K′ · Fg′

◁ multiplication of a matrix by a vector

v̂𝑖 = −v̂𝑖−1 +
2

∆𝑡
(𝜈𝑖 − 𝜈𝑖−1)

â𝑖 = −â𝑖−1 +
4

∆𝑡2
(𝜈𝑖 − 𝜈𝑖−1 − v̂𝑖−1∆𝑡)

end for

Another advantage of the Newmark Method is the possibility of introducing the

damping matrix C. The damping matrix can be calculated with the following linear

combination:

C = 𝑐1K + 𝑐2M. (7.14)

The proportionality constants 𝑐1 and 𝑐2 are determined from the damping ratios

of two natural vibration modes:

⎧⎨⎩ 𝑐1

𝑐2

⎫⎬⎭ = 2
𝜔𝑖𝜔𝑗

𝜔2
𝑗 − 𝜔2

𝑖

⎡⎣ 𝜔𝑗 −𝜔𝑖

−1/𝜔𝑗 1/𝜔𝑖

⎤⎦⎧⎨⎩ 𝜉𝑖

𝜉𝑗

⎫⎬⎭ , (7.15)

where the damping ratios 𝜉𝑖 and 𝜉𝑗 are related to i-th (𝜔𝑖) and the j-th (𝜔𝑗) vibration

modes, respectively, that correspond to the first and to the least of the higher modes

that contribute significantly to the dynamic response.

114

These vibration modes can be calculated by the GFDM using the procedure ex-

plained in the next section.

7.3 Procedure to calculate the natural vibration modes

Consider the same model of (7.1), but in terms of the natural frequency 𝜔 [17]:

𝑑2

𝑑𝑥2

(︂
𝐸𝐼(𝑥)

𝑑2𝜈(𝑥)

𝑑𝑥2

)︂
+ 𝑄

(︂
𝑑2𝜈(𝑥)

𝑑𝑥2

)︂
− 𝜇(𝑥)𝜔2𝜈(𝑥) = 0. (7.16)

Developing (7.16) with the product rule for derivatives, we get:

𝐸
𝑑2𝐼(𝑥)

𝑑𝑥2

𝑑2𝜈(𝑥)

𝑑𝑥2
+ 2𝐸

𝑑𝐼(𝑥)

𝑑𝑥

𝑑3𝜈(𝑥)

𝑑𝑥3
+ 𝐸𝐼(𝑥)

𝑑4𝜈(𝑥)

𝑑𝑥4
+ 𝑄

𝑑2𝜈(𝑥)

𝑑𝑥2
− 𝜇(𝑥)𝜔2𝜈(𝑥) = 0,

(7.17)

which is a fourth-order linear differential equation, with variable coefficients, for free

undamped vibrations.

The four boundary conditions associated to (7.17) can be given as follow

𝐸𝐼(0)
𝑑2𝜈(0)

𝑑𝑥2
− 𝑘𝑟

𝑑𝜈(0)

𝑑𝑥
= 0, (7.18)

𝐸𝐼(0)
𝑑3𝜈(0)

𝑑𝑥3
+ 𝑄

𝑑𝜈(0)

𝑑𝑥
+ 𝑘𝑡𝜈 = 0, (7.19)

𝐸𝐼(𝐿)
𝑑2𝜈(𝐿)

𝑑𝑥2
− 𝐽𝜔2𝑑𝜈(𝐿)

𝑑𝑥
= 0, (7.20)

𝐸
𝑑𝐼(𝐿)

𝑑𝑥

𝑑2𝜈(𝐿)

𝑑𝑥2
+ 𝐸𝐼

𝑑3𝜈(𝐿)

𝑑𝑥3
+ 𝑀𝑡𝜔

2𝜈 = 0, (7.21)

where the equation set (7.18)–(7.21) represents the bending moment and the shear

force at the base (𝑥 = 0) and at the top of the turbine (𝑥 = 𝐿).

Adopting again the notation 𝑢 → 𝜈 in (2.15) and using the approximations of

second-, third- and fourth-order into (7.17), we get:

115

(︁
𝐸𝐼

′′

0 + 𝑄
)︁(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑗 +
𝑚∑︁
𝑖=1

𝑏2,𝑗𝜈𝑖

)︃
+ 2𝐸𝐼

′

0

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏3,𝑗 +
𝑚∑︁
𝑖=1

𝑏3,𝑗𝜈𝑖

)︃
+

𝐸𝐼0

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏4,𝑗 +
𝑚∑︁
𝑖=1

𝑏4,𝑗𝜈𝑖

)︃
− 𝜇0𝜔𝜈0 = 0.

. (7.22)

As for the boundary conditions, we use the approximations of first-, second-, and

third-order of (2.15) in (7.18)-(7.21) which results in

𝐸𝐼(0)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑗 +
𝑚∑︁
𝑖=1

𝑏2,𝑗𝜈𝑖

)︃
− 𝑘𝑟

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏1,𝑗 +
𝑚∑︁
𝑖=1

𝑏1,𝑗𝜈𝑖

)︃
= 0. (7.23)

𝐸𝐼(0)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏3,𝑗 +
𝑚∑︁
𝑖=1

𝑏3,𝑗𝜈𝑖

)︃
+ 𝑄

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏1,𝑗 +
𝑚∑︁
𝑖=1

𝑏1,𝑗𝜈𝑖

)︃
+ 𝑘𝑡𝜈0 = 0, (7.24)

𝐸𝐼(𝐿)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑗 +
𝑚∑︁
𝑖=1

𝑏2,𝑗𝜈𝑖

)︃
− 𝐽𝜔2

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏1,𝑗 +
𝑚∑︁
𝑖=1

𝑏1,𝑗𝜈𝑖

)︃
= 0, (7.25)

𝐸𝐼
′
(𝐿)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏2,𝑗 +
𝑚∑︁
𝑖=1

𝑏2,𝑗𝜈𝑖

)︃
+ 𝐸𝐼(𝐿)

(︃
−𝜈0

𝑚∑︁
𝑖=1

𝑏3,𝑗 +
𝑚∑︁
𝑖=1

𝑏3,𝑗𝜈𝑖

)︃
+ 𝑀𝑡𝜔

2𝜈0 = 0,

(7.26)

A system of equations is formed by considering together (7.22)-(7.26)

Ku + 𝜔u = 0, (7.27)

where 𝜔 is the frequency matrix. Note that the same stiffness matrix K of section

7.2 is formed here. The equation (7.27) can be rewritten as follows

116

Eu = 0, (7.28)

where E = K+𝜔. The eigenvalues can be found by expanding det(E) = 0 (non-trivial

solution) and finding the roots of a polynomial of degree 2(N+2), which is called the

characteristic equation (we recall that N is the total number of real points). Solving

the characteristic equation yields 2(N+2) eigenvalues 𝜔𝑘, 𝑘 = 1 . . .2(N+2). We used

the two smallest eigenvalues in (7.15) because they are the modes that contribute the

most to the dynamic response of the turbine.

7.4 Turbine NREL

The National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind

turbine has been used to establish the reference specifications for a number of research

projects supported by the U.S. DOE’s Wind and Hydropower Technologies Program

[3].

The data of the NREL 5MW [47] are present in Table 7.1 . The density of 8,500

𝑘𝑔/𝑚3 was meant to be an increase over the typical steel value of 7,850 𝑘𝑔/𝑚3 to

account for paint, bolts, welds, and flanges that are not accounted for in the tower

thickness data. The radius and thickness of the tower were assumed to be linearly

tapered from the base of the tower to its top.

The constant value of 5% in the damping ratio was based on an estimate of the

seismic response for operating conditions in the fore-aft direction (direction parallel

to the hub) [6, 80]. We used this damping ratio for all modes of vibration.

The values of lateral stiffness 𝑘𝑡 and rocking stiffness 𝑘𝑟 were obtained from a

circular foundation in soil stratum over bedrock [48].

7.4.1 External force applied - earthquake

Earthquake chosen in the transient analysis was the Loma Prieta that struck the

United States on October 18, 1989. The recording station is the 47381 [35], Figure

117

Table 7.1: Summary of Baseline Wind Turbine Properties (NREL- 5 MW)
Properties Values

Rated power 5MW
Tower height 87300 mm

Tower bottom diameter 6000 mm
Tower top diameter 38700 mm
Tower wall thickness 27 - 19 mm

Tower density 8,500 𝑘𝑔/𝑚3

Mass of rotor-nacelle assembly 350 𝑡
Tower Head moment of inertia about rotor-parallel axis through c.m. 43700 𝑡 𝑚2

Tower Head moment of inertia about lateral axis through c.m. 23500 𝑡 𝑚2

Damping ratio 5 %
Lateral stiffness of foundation 1.303e5 N/m
Rocking stiffness of foundation 2.607e5 N/rad

0 5 10 15 20 25 30 35 40
t [seg]

3

2

1

0

1

2

3

a g
 [m

/s
²]

Figure 7-3: Accelelogram for the Loma Prieta earthquake.

7-3 shows the accelelogram in the horizontal direction of PGA=0.37g.

7.4.2 Result of dynamic response

As explained in section 7.2, to consider the damping ratio in the transient analysis

it is necessary to calculate the natural frequencies of the structure. Table 7.2 shows

the results of the natural frequencies in three different algorithms: (i) the algorithm

Bmodes developed by Bir and Jonkman (2008) [47] uses a sophisticated approxima-

tion in finite element with an analytical linearization. The results are shown with 50

118

elements and each element with 15 degrees of freedom; (ii) A model based in the FEM

using the software ABAQUS [1] with a uniform discretization of 20 elements of beam

(B33 - cubic 2-node) to model the tower. A point mass and the rotational inertias are

placed at the tip of the model representing the RNA; iii) The proposed strategy using

the GFDM, which leads to the system (7.28). Here, we used the weighting function

𝑤𝑖 = ‖x𝑖 − x0‖−6
2 , 𝑖 = 1, 2, . . . ,𝑚, the distance criterion, stars with six points, and a

uniform discretization with 20 points.

Note that the modes are specified in terms of the tower fore-aft (FA) bending

stiffness and side-side (SS) bending stiffness. In the first case, we used the moment of

inertia with respect to the axis parallel to the RNA rotor, and in the second case, the

moment of inertia about the lateral axis of the RNA. We have included the values of

the Bmodes in Table 7.2 only to validate the proposed models in the FEM (ABAQUS)

and in the GFDM. All the results are in good agreement.

Table 7.2: Modal frequencies to the Bmodes, FEM and GFDM in the turbine NREL

Frequency (Hz)

Mode Number Mode Type Bmodes FEM GFDM

1 1st SS 0.329 0.329 0.329

2 1st FA 0.332 0.332 0.332

3 2st SS 1.880 1.878 1.874

4 2st FA 2.243 2.278 2.277

From the values obtained in Table 7.2, the transient analysis with damping ratio

can be evaluated. We adopted ∆𝑡 = 0.01 in all results. In Figure 7-4, we compared the

history of transversal displacement of the GFDM together with the FEM (ABAQUS)

when we applied the seismic of Figure 7-3. The results are essentially identical and

show the validity of the model proposed in the GFDM.

119

0 5 10 15 20 25 30 35 40
t [seconds]

0.20

0.15

0.10

0.05

0.00

0.05

0.10
[m

]

FEM
GFDM

(a) 𝑥 = 𝐿

0 5 10 15 20 25 30 35 40
t [seconds]

0.15

0.10

0.05

0.00

0.05

0.10

[m
]

FEM
GFDM

(b) 𝑥 = 𝐿/2

Figure 7-4: History of transversal displacement considering soil-structure interaction

and damping ratio in the turbine NREL-5 MW.

7.5 Turbine Senvion MM92

The turbine Senvion MM92 is a variable speed wind turbine with a rated power of

2,050 kW. Like the entire MM series, it is based on the platform of the successful

Senvion MD70/77.

Data of the Senvion MM92 [69] are present in Table 7.3. The MM92 tower consists

of three sections assembled with two intermediate L flange connections. The variation

of the radius along the structure is very similar to a linear variation, so we assumed

that the radius of the tower is linearly tapered from the base of the tower to its

top. In relation to the thickness, there is complexity because it has a non-linear

variation throughout the tower, so we consider a constant thickness equal to 18 mm

(approximate average thickness).

120

Table 7.3: Summary of Baseline Wind Turbine Properties (Senvion MM92- 2,050 kW)

Properties Values

Rated power 2,050 kW

Tower height 76150 mm

Tower bottom diameter 4300 mm

Tower top diameter 2965 mm

Tower wall thickness 30 - 12 mm

Tower density 8,500 𝑘𝑔/𝑚3

Mass of rotor-nacelle assembly 108,800 t

Tower Head moment of inertia about rotor-parallel axis through c.m. N/A

Tower Head moment of inertia about lateral axis through c.m. N/A

Damping ratio 1.32 %

Lateral stiffness of foundation 1.44e1 MN/m

Rocking stiffness of foundation 3.20e3 MN/rad

The constant value of 1.32% in the damping ratio was based in an estimate of

the viscous damping identified in [81]. We used this damping ratio for all modes of

vibration.

The values of lateral stiffness 𝑘𝑡 and rocking stiffness 𝑘𝑟 were obtained from a

circular foundation in compact sand [36].

Note that here the rotational inertia of the RNA was not provided by the manu-

facturer, so we consider in the numerical models 𝐽 = 0.

7.5.1 External force applied - earthquake

The 1992 Cape Mendocino earthquakes occurred along the Lost Coast of Northern

California and was chosen in transient analysis. The recording station is the 89005

[35], Figure 7-5 shows the accelelogram in the horizontal direction of PGA=1.50g.

121

0 10 20 30 40 50 60
t [seg]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

a g
 [m

/s
²]

Figure 7-5: Accelelogram for the Cape Mendocino earthquake.

7.5.2 Result of dynamic response

For reference, we used again the software ABAQUS to compare with the results of the

GFDM. In both cases, the discretizations and the parameters related to the methods

were the same as in section 7.4.

We show the natural frequencies in Table 7.4. Considering three decimal points,

in the first mode the frequencies are in perfect agreement, while in the second mode

there is a relative difference of approximately 7 %.

Table 7.4: Modal frequencies in the FEM and the GFDM to the turbine Senvion

MM92.
Frequency [Hz]

Mode Number FEM GFDM

1 0.337 0.337

2 2.953 2.759

We adopted ∆𝑡 = 0.01 in all transient analyses. In Figure 7-6 we compared the

history of transversal displacement of the GFDM together with the FEM (ABAQUS)

when we applied the seismic of Figure 7-5. The results are essentially identical and

show again the validity of the model proposed in the GFDM.

122

0 5 10 15 20 25 30 35 40
t [seconds]

0.4

0.2

0.0

0.2

0.4

[m
]

FEM
GFDM

(a) 𝑥 = 𝐿

0 5 10 15 20 25 30 35 40
t [seconds]

0.10

0.05

0.00

0.05

0.10

[m
]

FEM
GFDM

(b) 𝑥 = 𝐿/2

Figure 7-6: History of transversal displacement considering soil-structure interaction

and damping ratio in the turbine Senvion MM92.

123

124

Chapter 8

Conclusions and future lines of

research

8.1 Conclusions

The main achievements obtained throughout the research related to the thesis com-

pletion are described below.

∙ We have provided a number of points per star as a reference in third-

and fourth-order approximations.

For this purpose we have used irregular discretizations with a defined pattern

and adaptable to any domain, but also irregular discretizations with a random

distribution of points. In 2D, we have established 20 and 30 points as reference

values for third- and fourth-order approximations, respectively, and in 3D, we

have established 50 and 90 points as reference values for third- and fourth-order

approximations, respectively.

∙ We have reduced the computational cost in different stages of the

calculation.

For this we have introduced appropriate programming practices using higher-

order approximations in the generalized finite difference method.

125

The algorithm includes efficient strategies with the assembly of sparse matrices

and the parallel programming to distribute the work between processors and to

obtain the stars and the coefficients of the derivatives.

However, even with the use of sparse matrix and parallel process, the algorithm

can still have a high computational cost due to the loop needed to compute the

derivatives for each point of the domain. So, we have presented a new version of

the algorithm using a vector language, where this loop has been eliminated. The

main idea is to transform 2D arrays into 3D arrays, where we used the additional

dimension to store the matrices of each star in the domain. Broadcasting rules

in Python facilitate the operations with 3D arrays.

Considering the steps of calculating the derivatives and assembling the system

of equations, we have compared the computational times in the two versions

(vectorized and non-vectored). In 2D, the results show that the vectorized al-

gorithm has been at least 150 times faster than the non-vectorized algorithm.

In 3D, the vectorized algorithm has been at least 15 times faster.

The results have shown that vectorization of the derivatives provides much faster

results compared to the parallel process of the derivatives. However, we indicate

parallel processing in the formation of the stars, since it is easy to implement

and vectorization is not possible at this stage.

∙ We have presented a new approach to deal with ill-conditioned stars.

The idea is to use the condition number of some regular stars as a threshold to

detect stars that may be ill-conditioned and act only on these stars.

Specifically, we have used auxiliary regular stars to establish the tolerances of

those stars with a minimum distance to the central point similar to the minimum

distance to the central point of an auxiliary regular star. In order not to have

to calculate an auxiliary regular star for each star in the domain, we have built

a set of intervals, which contain the set of minimum distances, so that all those

stars whose minimum distance is in the same interval are represented by the

same auxiliary regular star. In addition, we have analyzed the influence of the

126

number of these intervals on the global error and on the number of modified

stars, and the influence on the number of modified stars when applying different

weighting functions.

To treat stars with a condition number greater than the established tolerance,

we have followed a strategy with a maximum of two stages. Firstly, we changed

the star formation criterion to that of the quadrant (2D) or of the octant (3D).

And If that is not enough, secondly, we double the number of starting points in

2D or triple them in 3D.

In both 2D and 3D cases, the results of the application of this strategy show

that simply using a number of points per star close to the minimum necessary,

lower errors are obtained than using many more points per star. Furthermore,

the number of auxiliary regular stars has been negligible and the percentage of

ill-conditioned stars decreases rapidly with only a few points added to the star.

Above all, we highlight the good behavior of the condition number of the deriva-

tive matrix to detect ill-conditioned stars, regardless of the process followed to

treat those stars. People working with the GFDM usually use a fixed number of

points per star and the same selection criterion for all stars in the discretization.

If the discretization is fairly regular, they usually use the distance criterion and

a low number of points per star, while if the discretization is irregular, even if it

is only irregular in some regions, they usually use the quadrant (octant) crite-

rion and a much larger number of points. We would like to encourage the use of

the proposed strategy because in this way everyone can continue to apply their

own strategies for star formation, but now they will not have to worry about

how the discretization is.

∙ We have designed a strategy to generate a discretization adapted to

the problem to be solved in a general way.

Given a problem for which it is necessary to solve a differential equation in

a domain employing the GFDM, the discretizations performed in such a do-

main generally have an approximately constant point density. Possibly, the most

127

widespread ways of discretizing are by means of mesh-based preprocessors or

simply in a regular way, allowing for irregularities where this is not possible.

However, these forms of discretization do not allow to capture the characteristics

of the problem and to take advantage of the benefits of GFDM. There are

particular cases where the authors use discretizations with non-constant density

in the domain to obtain higher accuracy using a smaller number of points.

However, in such cases, there is prior knowledge.

We have proposed in this thesis to use discretizations adapted to the problem in

general. To do this, we solve the problem in two stages. In the first stage, we solve

the problem to compute the gradients using a regular coarse discretization. Once

the gradients are calculated, we distribute the points according to the gradient

values. Finally, we solve the problem considering the adapted discretization.

We have shown the performance of the proposed strategy for fourth-order ap-

proximations, but we have also shown some examples with second-order ap-

proximations where the results have been similar.

We have considered different weighting functions in the proposed strategy. The

results show that the intermediate values chosen for 𝜂 (expansion percentage of

influence areas) are appropriate regardless of the tested weighting functions.

Furthermore, we would like to highlight two issues. On the one hand, the

adapted discretizations provide the same accuracy as a regular discretization,

but with a smaller number of points, with reductions above 50% in all our exam-

ples. In addition, the initial coarse discretization, that automatically generates

the adapted discretization, has required between 9% and 27% of the points of

the regular discretization.

On the other hand, the computational time required to solve the problem with

these adapted discretizations, taking into account the whole process, is less,

with reductions above 50% in all our examples.

∙ We have developed a 3D adaptive algorithm with fourth-order ap-

128

proximations on irregular initial discretizations.

The idea is to add points on the vertices and faces of a cube with a geometric

center at the point that must be refined. The edge of the cube is the minimum

distance between two points of the domain. This minimum distance is previously

obtained from the star formation, which is a mandatory step in the method.

Thus, there is no additional computational effort in forming the cubes.

We have established an adaptive algorithm that seeks to generate smooth tran-

sitions in different regions of the domain. The number of points inserted for each

point refined depends on the error indicator values. The points with the largest

error indicators are refined using 14 points. Points with indicator errors greater

than the average and less than those previously selected are refined using 8

points.

We have compared the results with the algorithm of points added halfway. In

all applications, we have achieved better accuracy with a decrease in the final

number of points and time.

The adaptive algorithm developed here contributes to providing an efficient

alternative in the three-dimensional scenario. On one hand, the algorithm does

not require any mesh preprocessor. On the other hand, the results indicate a

better performance compared to the strategy of inserting points halfway.

∙ We have presented the evaluation of seismic responses in onshore

wind turbines using the GFDM coupled with the Newmark method.

The mathematical model is governed by a partial differential equation with vari-

able coefficients (nonuniform cross-section). The problem is particularly chal-

lenging because it involves complex boundary conditions: rotary inertia and

mass at the top of the tower, elastic supports at the base, and geometric non-

linearity provided by the RNA mass.

The strategy employed consists of obtaining equations of motion by the GFDM,

i.e., we have obtained the stiffness and mass matrices after approximating the

129

derivatives by GFDM. Once these two matrices are obtained, we have applied

the Newmark method to perform the time integration.

We have compared the history of transversal displacement with a model based

on the FEM using the ABAQUS software. The results are essentially identical

and show the validity of the model proposed in the GFDM.

We want to highlight a few points:

- We have included in the seismic response the Rayleigh damping, which is

obtained by a linear combination of the mass and stiffness matrices.

- The verification of stability in the transient analysis is not necessary because

the Newmark method is unconditionally stable. The choice of the stepsize inte-

gration is determined uniquely by accuracy considerations.

- In the transient analysis, only in the first interaction a system of equations

has been solved. In the following interactions, only matrix-vector multiplication

has been performed.

- The strategy employed here, where the mass and stiffness matrices are found

using the GFDM, can be extended to the solution of other partial differential

equations involving the time variable.

8.2 Future developments

This thesis investigated several aspects of high-performance programming using the

generalized finite difference method. Topics that could be explored in the future are

given below.

∙ Obtaining a hybrid method using the classical finite difference method with the

GFDM. This combination can reduce the computational time in several steps

of the code.

∙ The multiplication of 3D arrays in the vectorized algorithm can be accelerated

with the NVIDIA’s CUDA Python.

130

∙ Apply the discretizations adapted in equations with Neumann and Robin bound-

ary conditions.

∙ Extend the adapted discretizations to 3D problems.

∙ Adopt an 3D adaptive procedure with the addition of points on curved bound-

ary.

∙ Combine the multipoint technique with the high-order approximation. The idea

is to further improve the accuracy of the higher-order approximations without

increasing the number of points of the discretization.

131

132

Chapter 9

Conclusiones y futuras líneas de

investigaciones

9.1 Conclusiones

Se describe a continuación los principales logros a lo largo de la investigación rela-

cionados con la realización de la tesis.

∙ Se ha propuesto un número de puntos por estrella como referencia

en las aproximaciones de tercer y cuarto orden.

Para ello hemos utilizado discretizaciones irregulares con un patrón definido y

adaptable a cualquier dominio, pero también discretizaciones irregulares con

una distribución aleatoria de puntos. En 2D, hemos establecido 20 y 30 puntos

como valores de referencia para las aproximaciones de tercer y cuarto orden,

respectivamente, y en 3D, hemos establecido 50 y 90 puntos como valores de

referencia para las aproximaciones de tercer y cuarto orden, respectivamente.

∙ Se ha reducido el coste computacional en diferentes etapas del cálculo.

Para ello hemos introducido buenas prácticas de programación utilizando aprox-

imaciones de orden superior en el método de diferencias finitas generalizado.

El algoritmo incluye estrategias eficientes con el ensamblaje de matrices disper-

133

sas y programación paralela para distribuir el trabajo entre los procesadores y

obtener las estrellas y los coeficientes de las derivadas.

Sin embargo, incluso con el uso de matrices dispersas y procesos paralelos, el

algoritmo puede seguir teniendo un alto coste computacional debido al bucle

necesario para calcular las derivadas para cada punto del dominio. Por ello,

hemos presentado una nueva versión del algoritmo utilizando un lenguaje vec-

torial, en el que se ha eliminado este bucle. La idea principal es transformar

matrices 2D en matrices 3D, donde empleamos la dimensión adicional para al-

macenar las matrices de cada estrella del dominio. Las reglas de transmisión en

Python facilitan las operaciones con matrices 3D.

Teniendo en cuenta los pasos necesarios para el cálculo de las derivadas y el

ensamblaje del sistema de ecuaciones, hemos comparado los tiempos computa-

cionales en las dos versiones (vectorizada y no vectorizada). En 2D, los resul-

tados muestran que el algoritmo vectorizado ha sido al menos 150 veces más

rápido que el algoritmo no vectorizado. En 3D, el algoritmo vectorizado ha sido

al menos 15 veces más rápido.

Los resultados han demostrado que la vectorización de las derivadas proporciona

resultados mucho más rápidos en comparación con el proceso paralelo de las

derivadas. Sin embargo, aconsejamos el procesamiento paralelo en la formación

de las estrellas, ya que es fácil de implementar y la vectorización no es posible

en esta etapa.

∙ Se ha presentado un nuevo enfoque para tratar las estrellas mal condi-

cionadas.

La idea es utilizar el número de condición de algunas estrellas regulares como

umbral para detectar las estrellas que pueden estar mal condicionadas y actuar

solamente sobre estas estrellas.

En concreto, hemos usado estrellas regulares auxiliares para establecer las tol-

erancias de aquellas estrellas con una distancia mínima al punto central similar

a la distancia mínima al punto central de una estrella regular auxiliar. Para no

134

tener que calcular una estrella regular auxiliar para cada estrella del dominio,

hemos construido un conjunto de intervalos, que contienen el conjunto de dis-

tancias mínimas, de forma que todas aquellas estrellas cuya distancia mínima

está en el mismo intervalo están representadas por la misma estrella regular

auxiliar. Además, hemos analizado la influencia del número de estos intervalos

en el error global y en el número de estrellas modificadas, así como la influ-

encia en el número de estrellas modificadas al aplicar diferentes funciones de

ponderación.

Para tratar las estrellas con un número de condición superior a la tolerancia

establecida, hemos seguido una estrategia con un máximo de dos etapas. En

primer lugar, hemos cambiado el criterio de formación de estrellas por el del

cuadrante (2D) o el del octante (3D). Y si eso no es suficiente, en segundo

lugar, duplicamos el número de puntos de partida en 2D o los triplicamos en

3D.

Tanto en el caso 2D como en el 3D, los resultados de la aplicación de esta es-

trategia muestran que, simplemente utilizando un número de puntos por estrella

cercano al mínimo necesario, se obtienen errores menores que utilizando muchos

más puntos por estrella. Además, el número de estrellas regulares auxiliares ha

sido despreciable y el porcentaje de estrellas mal condicionadas disminuye ráp-

idamente con solamente unos pocos puntos añadidos a la estrella.

Sobre todo, destacamos el buen comportamiento del número de condición de

la matriz de la derivada para detectar estrellas mal condicionadas, indepen-

dientemente del proceso seguido para tratar esas estrellas. Las personas que

trabajan con el MDFG suelen utilizar un número fijo de puntos por estrella y

el mismo criterio de selección para todas las estrellas de la discretización. Si

la discretización es bastante regular, suelen utilizar el criterio de la distancia

y un número bajo de puntos por estrella, mientras que si la discretización es

irregular, aunque solo lo sea en algunas regiones, suelen utilizar el criterio del

cuadrante (octante) y un número mucho mayor de puntos. Nos gustaría animar

135

el uso de la estrategia propuesta porque de esta manera todos pueden seguir

aplicando sus propias estrategias para la formación de estrellas, pero ahora no

tendrán que preocuparse de cómo es la discretización.

∙ Se ha desarrollado una estrategia para generar una discretización

adaptada a problemas concretos.

Dado un problema en el que es necesario resolver una ecuación diferencial en un

dominio empleando el MDFG, las discretizaciones realizadas en dicho dominio

suelen tener una densidad de puntos aproximadamente constante. Posiblemente,

las formas más conocidas de discretización son mediante pre-procesadores basa-

dos en mallas o simplemente de forma regular, permitiendo irregularidades

cuando esto no es posible.

Sin embargo, estas formas de discretización no permiten captar las caracterís-

ticas del problema y aprovechar las ventajas del MDFG. Existen casos partic-

ulares en el que los autores utilizan discretizaciones con densidad no constante

en el dominio para obtener una mayor precisión utilizando un menor número

de puntos pero se trata de casos en los que existe un conocimiento a priori.

Hemos propuesto en esta tesis utilizar discretizaciones adaptadas al problema en

general. Para ello, resolvemos el problema en dos etapas. En la primera etapa,

resolvemos el problema para calcular los gradientes utilizando una discretización

regular gruesa. Una vez calculados los gradientes, distribuimos los puntos en

función de los valores de los gradientes. Finalmente, resolvemos el problema

considerando la discretización adaptada.

Hemos mostrado el rendimiento de la estrategia propuesta para aproximaciones

de cuarto orden, pero también hemos mostrado algunos ejemplos con aproxi-

maciones de segundo orden donde los resultados han sido similares.

Hemos considerado diferentes funciones de ponderación en la estrategia prop-

uesta. Los resultados muestran que los valores intermedios elegidos para 𝜂 (por-

centaje de expansión de las áreas de influencia) son adecuados independiente-

mente de las funciones de ponderación probadas.

136

Además, nos gustaría destacar dos cuestiones. Por un lado, las discretizaciones

adaptadas proporcionan la misma precisión que una discretización regular, pero

con un menor número de puntos, con reducciones superiores al 50% en todos

los ejemplos tratados. Además, la discretización gruesa inicial, que genera au-

tomáticamente la discretización adaptada, ha requerido entre el 9% y el 27% de

los puntos de la discretización regular.

Por otro lado, el tiempo computacional requerido para resolver el problema con

estas discretizaciones adaptadas, teniendo en cuenta todo el proceso, es menor,

con reducciones superiores al 50% en todos los ejemplos que se han considerado.

∙ Se ha desarrollado un algoritmo adaptativo en 3D con aproximaciones

de cuarto orden para discretizaciones iniciales irregulares.

La idea es añadir puntos en los vértices y en las caras de un cubo con centro

geométrico en el punto que debe ser refinado. La arista del cubo es la distancia

mínima entre dos puntos del dominio. Esta distancia mínima se obtiene previa-

mente en la formación de las estrellas, que es un paso obligatorio en el método.

Así, no hay ningún esfuerzo computacional adicional en la formación de los

cubos.

Hemos establecido un algoritmo adaptativo que busca generar transiciones suaves

en diferentes regiones del dominio. El número de puntos insertados para cada

punto refinado depende de los valores del indicador de error. Los puntos con los

mayores indicadores de error se refinan con 14 puntos. Los puntos con errores

de indicador mayores que la media y menores que los seleccionados previamente

se refinan utilizando 8 puntos.

Hemos comparado los resultados con el algoritmo de puntos añadidos a media

distancia. En todas las aplicaciones, hemos conseguido una mayor precisión con

una disminución del número final de puntos y del tiempo.

El algoritmo adaptativo aquí desarrollado contribuye a proporcionar una al-

ternativa eficiente en el escenario tridimensional. Por un lado, el algoritmo no

requiere ningún pre-procesador de malla. Por otro lado, los resultados indican

137

un mejor rendimiento en comparación con la estrategia de insertar puntos a

media distancia.

∙ Se ha calculado la respuesta sísmica en aerogeneradores terrestres

utilizando el MDFG acoplado con el método de Newmark

El modelo matemático se rige por una ecuación diferencial parcial con coefi-

cientes variables (sección transversal no uniforme). El problema es particular-

mente desafiante porque implica condiciones de contorno complejas: inercia y

masa rotatoria en la parte superior de la torre, soportes elásticos en la base y

no linealidad geométrica proporcionada por la masa del RNA.

La estrategia empleada consiste en resolver las ecuaciones de movimiento me-

diante el MDFG, es decir, hemos obtenido las matrices de rigidez y de masa

tras aproximar las derivadas mediante el MDFG. Una vez obtenidas estas dos

matrices, hemos aplicado el método de Newmark para realizar la integración

temporal.

Hemos comparado el histórico del desplazamiento transversal con un modelo

basado en el MEF utilizando el programa ABAQUS. Los resultados son esen-

cialmente idénticos y muestran la validez del modelo propuesto en el MDFG.

Queremos destacar algunos puntos:

- Hemos incluido en la respuesta sísmica el amortiguamiento de Rayleigh, que

se obtiene mediante una combinación lineal de las matrices de masa y rigidez.

- La verificación de la estabilidad en el análisis transitorio no es necesaria porque

el método de Newmark es incondicionalmente estable. La elección del tamaño

de integración de los pasos se determina únicamente por consideraciones de

precisión.

- En el análisis transitorio, solo en la primera iteracción se ha resuelto un sistema

de ecuaciones. En las siguientes iteracciones, únicamente se ha ejecutado la

multiplicación matriz-vector.

138

- La estrategia empleada aquí, donde las matrices de masa y rigidez se encuen-

tran utilizando el MDFG, puede extenderse a la solución de otras ecuaciones

diferenciales parciales que involucran la variable tiempo.

9.2 Desarrollos futuros

En esta tesis se han investigado varios aspectos de la programación de alto rendimiento

mediante el método de las diferencias finitas generalizadas. A continuación se indican

algunos temas que podrían explorarse en el futuro.

∙ Obtención de un método híbrido utilizando el método de las diferencias finitas

clásico con el MDFG. Esta combinación puede reducir el tiempo de cálculo en

varios pasos del código.

∙ La multiplicación de matrices 3D en el algoritmo vectorizado se puede acelerar

con el CUDA Python de NVIDIA.

∙ Aplicar las discretizaciones adaptadas en ecuaciones con condiciones de contorno

de Neumann y Robin.

∙ Extender las discretizaciones adaptadas a problemas en 3D.

∙ Adoptar un procedimiento adaptativo en 3D con la adición de puntos en con-

tornos curvos.

∙ Combinar la técnica multipunto con la aproximación de alto orden. La idea

es aumentar la precisión de las aproximaciones de alto orden sin aumentar el

número de puntos de la discretización.

139

140

Bibliography

[1] ABAQUS. Abaqus 6.11.

[2] Sondipon Adhikari and S Bhattacharya. A general frequency adaptive framework
for damped response analysis of wind turbines. Soil Dynamics and Earthquake
Engineering, 143:106605, 2021.

[3] P Agarwal and L Manuel. Simulation of offshore wind turbine response for
extreme limit states. In International Conference on Offshore Mechanics and
Arctic Engineering, volume 42681, pages 219–228, 2007.

[4] SJ Ang, KS Yeo, CS Chew, and C Shu. A singular-value decomposition (svd)-
based generalized finite difference (gfd) method for close-interaction moving
boundary flow problems. International journal for numerical methods in en-
gineering, 76(12):1892–1929, 2008.

[5] Marino Arroyo and Michael Ortiz. Local maximum-entropy approximation
schemes: a seamless bridge between finite elements and meshfree methods. Inter-
national journal for numerical methods in engineering, 65(13):2167–2202, 2006.

[6] ASCE and AWEA. Recommended practice for compliance of large land-based
wind turbine support structures, 2011.

[7] Juan José Benito, A García, L Gavete, M Negreanu, F Ureña, and Anto-
nio Manuel Vargas. On the numerical solution to a parabolic-elliptic system
with chemotactic and periodic terms using generalized finite differences. Engi-
neering Analysis with Boundary Elements, 113:181–190, 2020.

[8] Juan José Benito, F Ureña, and L Gavete. Influence of several factors in the gen-
eralized finite difference method. Applied Mathematical Modelling, 25(12):1039–
1053, 2001.

[9] Juan José Benito, F Urena, and L Gavete. Solving parabolic and hyperbolic
equations by the generalized finite difference method. Journal of computational
and applied mathematics, 209(2):208–233, 2007.

[10] Juan José Benito, F Urena, L Gavete, and R Alvarez. An h-adaptive method in
the generalized finite differences. Computer methods in applied mechanics and
engineering, 192(5-6):735–759, 2003.

141

[11] Juan José Benito, Francisco Ureña, L Gavete, and B Alonso. Application of
the generalized finite difference method to improve the approximated solution of
pdes. Computer Modelling in Engineering & Sciences, 38:39–58, 2009.

[12] Juan José Benito, Francisco Ureña, Luis Gavete, and Beatriz Alonso. A poste-
riori error estimator and indicator in generalized finite differences. application
to improve the approximated solution of elliptic pdes. International Journal of
Computer Mathematics, 85(3-4):359–370, 2008.

[13] Juan José Benito, Francisco Ureña, Miguel Ureña, Eduardo Salete, and Luis
Gavete. A new meshless approach to deal with interfaces in seismic problems.
Applied Mathematical Modelling, 58:447–458, 2018.

[14] Michael ZQ Chen, Zengmei Li, Haoyu Wang, and Yinlong Hu. Seismic response
mitigation of a wind turbine via inerter-based structural control. Bulletin of
Earthquake Engineering, pages 1–28, 2021.

[15] Youping Chen, James D Lee, and Azim Eskandarian. Meshless methods in solid
mechanics, volume 9. Springer, 2006.

[16] Ni Chi-Mou. A quadrilateral finite difference plate element for nonlinear transient
analysis of panels. Computers & Structures, 15(1):1–10, 1982.

[17] RW Clough and J Penzien. of Structures. McGraw-Hill, 1975.

[18] Lothar Collatz. Numerische behandlung von differentialgleichungen. Springer-
Verlag, 1955.

[19] Lothar Collatz. The numerical treatment of differential equations. Springer Sci-
ence & Business Media, 2012.

[20] François Cuvelier, Caroline Japhet, and Gilles Scarella. An efficient way to as-
semble finite element matrices in vector languages. BIT Numerical Mathematics,
56(3):833–864, 2016.

[21] Chia-Ming Fan, Yu-Kai Huang, Po-Wei Li, and Chia-Lin Chiu. Application
of the generalized finite-difference method to inverse biharmonic boundary-value
problems. Numerical Heat Transfer, Part B: Fundamentals, 65(2):129–154, 2014.

[22] Augusto César Albuquerque Ferreira and Paulo Marcelo Vieira Ribeiro.
Reduced-order strategy for meshless solution of plate bending problems with
the generalized finite difference method. Latin American Journal of Solids and
Structures, 16(1):1–21, 2019.

[23] George Elmer Forsythe and Wolfgang Richard Wasow. Finite-difference methods
for partial differential equations. 1960.

142

[24] Zhuo-Jia Fu, Ai-Lun Li, Chuanzeng Zhang, Chia-Ming Fan, and Xiao-Ying
Zhuang. A localized meshless collocation method for bandgap calculation of anti-
plane waves in 2d solid phononic crystals. Engineering Analysis with Boundary
Elements, 119:162–182, 2020.

[25] Zhuo-Jia Fu, Zhuo-Yu Xie, Shun-Ying Ji, Chia-Cheng Tsai, and Ai-Lun
Li. Meshless generalized finite difference method for water wave interac-
tions with multiple-bottom-seated-cylinder-array structures. Ocean Engineering,
195:106736, 2020.

[26] Miguel A. García-March, Miguel Arevalillo-Herráez, Francisco R. Villatoro, Fer-
nando Giménez, and Pedro Fernández de Córdoba. A generalized finite dif-
ference method using coatmèlec lattices. Computer Physics Communications,
180(7):1125–1133, 2009.

[27] L Gavete, JJ Benito, and F Ureña. Generalized finite differences for solving 3d
elliptic and parabolic equations. Applied Mathematical Modelling, 40(2):955–965,
2016.

[28] L Gavete, ML Gavete, and Juan José Benito. Improvements of generalized fi-
nite difference method and comparison with other meshless method. Applied
Mathematical Modelling, 27(10):831–847, 2003.

[29] Luis Gavete, María Lucía Gavete, Francisco Ureña, and Juan José Benito. An
approach to refinement of irregular clouds of points using generalized finite dif-
ferences. Mathematical Problems in Engineering, 2015, 2015.

[30] Luis Gavete, Francisco Ureña, Juan José Benito, and Eduardo Salete. A note on
the dynamic analysis using the generalized finite difference method. Journal of
Computational and Applied Mathematics, 252:132–147, 2013.

[31] Luis Gavete, Francisco Ureña, Juan Jose Benito, Miguel Ureña, and Maria Lucia
Gavete. Solving elliptical equations in 3d by means of an adaptive refinement in
generalized finite differences. Mathematical Problems in Engineering, 2018, 2018.

[32] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Monthly Notices of the Royal Astronom-
ical Society, 181(3):375–389, 12 1977.

[33] Yan Gu, Qingsong Hua, Chuanzeng Zhang, and Xiaoqiao He. The generalized
finite difference method for long-time transient heat conduction in 3d anisotropic
composite materials. Applied Mathematical Modelling, 71:316–330, 2019.

[34] Yan Gu, Wenzhen Qu, Wen Chen, Lina Song, and Chuanzeng Zhang. The
generalized finite difference method for long-time dynamic modeling of three-
dimensional coupled thermoelasticity problems. Journal of Computational
Physics, 384:42–59, 2019.

143

[35] Hamid Haddadi, A Shakal, C Stephens, W Savage, M Huang, W Leith, and
J Parrish. Center for engineering strong-motion data (cesmd). In Proceedings of
the 14th World Conference on Earthquake Engineering, Beijing, October, pages
12–17, 2008.

[36] Ma Hongwang. Seismic analysis for wind turbines including soil-structure inter-
action combining vertical and horizontal earthquake. In 15th World Conference
on Earthquake Engineering, Lisbon, Portugal, 2012.

[37] Seyed Mahmoud Hosseini. Analysis of elastic wave propagation in a functionally
graded thick hollow cylinder using a hybrid mesh-free method. Engineering
analysis with boundary elements, 36(11):1536–1545, 2012.

[38] Seyed Mahmoud Hosseini. Application of a hybrid mesh-free method based on
generalized finite difference (gfd) method for natural frequency analysis of func-
tionally graded nanocomposite cylinders reinforced by carbon nanotubes. Com-
puter Modeling in Engineering and Sciences-CMES, 95(1):1–29, 2013.

[39] Wen Hu, Yan Gu, and Chia-Ming Fan. A meshless collocation scheme for inverse
heat conduction problem in three-dimensional functionally graded materials. En-
gineering Analysis with Boundary Elements, 114:1–7, 2020.

[40] I Jaworska. The multipoint meshless finite difference method for analysis of
boundary value problems of mechanics. PhD thesis, Ph. D. Thesis, Cracow Uni-
versity of Technology, Cracow, 2009.

[41] Irena Jaworska and Janusz Orkisz. Higher order multipoint method–from collatz
to meshless fdm. Engineering Analysis with Boundary Elements, 50:341–351,
2015.

[42] Irena Jaworska and Janusz Orkisz. On nonlinear analysis by the multipoint
meshless fdm. Engineering Analysis with Boundary Elements, 92:231–243, 2018.
Improved Localized and Hybrid Meshless Methods - Part 1.

[43] Paul S Jensen. Finite difference techniques for variable grids. Computers &
Structures, 2(1-2):17–29, 1972.

[44] Wenyu Jiang, Cheng Lin, and Min Sun. Seismic responses of monopile-supported
offshore wind turbines in soft clays under scoured conditions. Soil Dynamics and
Earthquake Engineering, 142:106549, 2021.

[45] Xin Jin, Hua Liu, and Wenbin Ju. Wind turbine seismic load analysis based
on numerical calculation. Strojniski Vestnik/Journal of Mechanical Engineering,
60(10), 2014.

[46] E Jones, T Oliphant, and P Peterson. Scipy community, 2001. scipy: Open source
scientific tools for python.

144

[47] Jason Jonkman, Sandy Butterfield, Walter Musial, and George Scott. Definition
of a 5-mw reference wind turbine for offshore system development. Technical
report, National Renewable Energy Lab.(NREL), Golden, CO (United States),
2009.

[48] Eduardo Kausel. Forced vibrations of circular foundations on layered media.
MIT research report, 1974.

[49] Fuat Korkut, Turgut Tokdemir, and Yalçın Mengi. The use of generalized finite
difference method in perfectly matched layer analysis. Applied Mathematical
Modelling, 60:127–144, 2018.

[50] Jun Lei, Yanjie Xu, Yan Gu, and Chia-Ming Fan. The generalized finite differ-
ence method for in-plane crack problems. Engineering Analysis with Boundary
Elements, 98:147–156, 2019.

[51] Po-Wei Li, Zhuo-Jia Fu, Yan Gu, and Lina Song. The generalized finite differ-
ence method for the inverse cauchy problem in two-dimensional isotropic linear
elasticity. International Journal of Solids and Structures, 174:69–84, 2019.

[52] Tadeusz Liszka and Janusz Orkisz. The finite difference method at arbitrary
irregular grids and its application in applied mechanics. Computers & Structures,
11(1-2):83–95, 1980.

[53] T.J. Liszka, C.A.M. Duarte, and W.W. Tworzydlo. hp-meshless cloud method.
Computer Methods in Applied Mechanics and Engineering, 139(1):263–288, 1996.

[54] Gui-Rong Liu and YuanTong Gu. A point interpolation method for two-
dimensional solids. International Journal for Numerical Methods in Engineering,
50(4):937–951, 2001.

[55] Wing Kam Liu, Sukky Jun, and Yi Fei Zhang. Reproducing kernel particle
methods. International journal for numerical methods in fluids, 20(8-9):1081–
1106, 1995.

[56] YY Lu, T Belytschko, and Lu Gu. A new implementation of the element
free galerkin method. Computer methods in applied mechanics and engineer-
ing, 113(3-4):397–414, 1994.

[57] Hasan Malaeke and Hamid Moeenfard. Analytical modeling of large amplitude
free vibration of non-uniform beams carrying a both transversely and axially
eccentric tip mass. Journal of Sound and Vibration, 366:211–229, 2016.

[58] Cristina Medina, Guillermo M Álamo, and Román Quevedo-Reina. Evolution of
the seismic response of monopile-supported offshore wind turbines of increasing
size from 5 to 15 mw including dynamic soil-structure interaction. Journal of
Marine Science and Engineering, 9(11):1285, 2021.

145

[59] Sławomir Milewski. Selected computational aspects of the meshless finite differ-
ence method. Numerical Algorithms, 63(1):107–126, 2012.

[60] Sławomir Milewski. Development of simple effective cloud of nodes and triangu-
lar mesh generators for meshless and element-based analyses-implementation in
matlab. Computer Assisted Methods in Engineering and Science, 24(3):157–180,
2018.

[61] Sławomir Milewski and Roman Putanowicz. Higher order meshless schemes ap-
plied to the finite element method in elliptic problems. Computers & Mathematics
with Applications, 77(3):779–802, 2019.

[62] Bernard Nayroles, Gilbert Touzot, and P38504470764 Villon. Generalizing the fi-
nite element method: diffuse approximation and diffuse elements. Computational
mechanics, 10(5):307–318, 1992.

[63] Nathan M Newmark and Emilio Rosenblueth. Fundamentals of earthquake en-
gineering. prentice-hall, inc. Englewood Cliffs, New Jersey, 1971.

[64] E. Oñate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, and C. Sacco. A stabilized
finite point method for analysis of fluid mechanics problems. Computer Methods
in Applied Mechanics and Engineering, 139(1):315–346, 1996.

[65] J Orkisz. Finite difference method. Handbook of Computational Solid Mechanics,
pages 336–432, 1998.

[66] Janusz Orkisz and Slawomir Milewski. A’posteriori error estimation based on
higher order approximation in the meshless finite difference method. In Meshfree
Methods for Partial Differential Equations IV, pages 189–213. Springer, 2008.

[67] Nicholas Perrone and Robert Kao. A general finite difference method for arbi-
trary meshes. Computers & Structures, 5(1):45–57, 1975.

[68] Python. multiprocessing — process-based parallelism, 2021.

[69] Senvion SE. Senvion mm92 - product description. Technical report, Senvion SE,
Hamburg (Germany), 2015.

[70] Pratik Suchde and Joerg Kuhnert. A meshfree generalized finite differ-
ence method for surface pdes. Computers & Mathematics with Applications,
78(8):2789–2805, 2019.

[71] Francesca Taddei, Marco Schauer, and Lisanne Meinerzhagen. A practical soil-
structure interaction model for a wind turbine subjected to seismic loads and
emergency shutdown. Procedia engineering, 199:2433–2438, 2017.

[72] AA Tseng and SX Gu. A finite difference scheme with arbitrary mesh systems
for solving high-order partial differential equations. Computers & structures,
31(3):319–328, 1989.

146

[73] A.A. Tseng and S.X. Gu. A finite difference scheme with arbitrary mesh systems
for solving high-order partial differential equations. Computers & Structures,
31(3):319–328, 1989.

[74] M. Ureña. Método de las diferencias fi

nitas generalizadas en tres dimensiones. PhD thesis, Universidad Nacional de
Educación a Distancia, 2014.

[75] F Ureña, JJ Benito, R Alvarez, and L Gavete. Computational error approxima-
tion and h-adaptive algorithm for the 3-d generalized finite difference method.
International Journal for Computational Methods in Engineering Science and
Mechanics, 6(1):31–39, 2005.

[76] F Ureña, L Gavete, A García, Juan José Benito, and Antonio Manuel Vargas.
Solving second order non-linear hyperbolic pdes using generalized finite difference
method (gfdm). Journal of Computational and Applied Mathematics, 363:1–21,
2020.

[77] Francisco Ureña, Juan José Benito, Eduardo Salete, and Luis Gavete. A note on
the application of the generalized finite difference method to seismic wave propa-
gation in 2d. Journal of Computational and Applied Mathematics, 236(12):3016–
3025, 2012.

[78] Miguel Ureña, Juan José Benito, Francisco Ureña, Ángel García, Luis Gavete,
and Luis Benito. Adaptive strategies to improve the application of the generalized
finite differences method in 2d and 3d. Mathematical Methods in the Applied
Sciences, 41(17):7115–7129, 2018.

[79] Miguel Ureña, Juan José Benito, Francisco Ureña, Eduardo Salete, and Luis
Gavete. Application of generalised finite differences method to reflection and
transmission problems in seismic sh waves propagation. Mathematical Methods
in the Applied Sciences, 41(6):2328–2339, 2018.

[80] V Valamanesh and AT Myers. Aerodynamic damping and seismic response
of horizontal axis wind turbine towers. Journal of Structural Engineering,
140(11):04014090, 2014.

[81] Milan Veljkovic, Christine Heistermann, Wylliam Husson, Marouene Limam,
M Feldmann, J Naumes, D Pak, T Faber, M Klose, KU Fruhner, et al. High-
strength tower in steel for wind turbines (HISTWIN). European Commission
Joint Research Centre, 2012.

[82] Zhaoyang Wang and HongGuang Sun. Generalized finite difference method with
irregular mesh for a class of three-dimensional variable-order time-fractional
advection-diffusion equations. Engineering Analysis with Boundary Elements,
132:345–355, 2021.

147

[83] Jianguo Wei, Song Wang, Qingzhi Hou, and Jianwu Dang. Generalized finite
difference time domain method and its application to acoustics. Mathematical
Problems in Engineering, 2015, 2015.

[84] MJ Wyatt, Taylor, G Davies, and C snell. A new difference based finite element
method. Proceedings of the Institution of Civil Engineers, 59(3):395–409, 1975.

[85] Qiang Xi, Zhuojia Fu, Yudong Li, and He Huang. A hybrid gfdm–sbm solver for
acoustic radiation and propagation of thin plate structure under shallow sea en-
vironment. Journal of Theoretical and Computational Acoustics, 28(02):2050008,
2020.

[86] Mi Zhao, Zhidong Gao, PiguangWang, and Xiuli Du. Response spectrum method
for seismic analysis of monopile offshore wind turbine. Soil Dynamics and Earth-
quake Engineering, 136:106212, 2020.

[87] X Zhao and P Maisser. Seismic response analysis of wind turbine towers including
soil-structure interaction. Proceedings of the Institution of Mechanical Engineers,
Part K: Journal of Multi-body Dynamics, 220(1):53–61, 2006.

148

