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Abstract

Purpose: The search for new drugs that control the continuous
relapses of multiple myeloma is still required. Here, we report for
the first time the potent antimyeloma activity of amiloride, an old
potassium-sparing diuretic approved for the treatment of hyper-
tension and edema due to heart failure.

Experimental Design: Myeloma cell lines and primary sam-
ples were used to evaluate cytotoxicity of amiloride. In vivo
studies were carried out in a xenograft mouse model. The
mechanisms of action were investigated using RNA-Seq
experiments, qRT-PCR, immunoblotting, and immunofluores-
cence assays.

Results: Amiloride-induced apoptosis was observed in a broad
panel of multiple myeloma cell lines and in a xenograft mouse
model. Moreover, amiloride also had a synergistic effect when
combined with dexamethasone, melphalan, lenalidomide, and
pomalidomide. RNA-Seq experiments showed that amiloride not

Introduction

Despite improvements in the survival of multiple myeloma
patients thanks to the introduction of novel therapeutic agents
(1, 2), it remains an incurable disease (3). Multiple myeloma
initially responds to chemotherapy but relapse and chemoresis-
tance usually occur (4), so subsequent recurrences are part of its
natural history. Therefore, the search for new drugs that control
the disease continues to be required.

Great efforts to develop new agents against multiple myeloma
have been made in recent years, to the extent that a wide array of
new agents with different mechanisms of action have recently
been approved. These include new mAbs, proteasome inhibitors,
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only significantly altered the level of transcript isoforms and
alternative splicing events, but also deregulated the spliceosomal
machinery. In addition, disruption of the splicing machinery in
immunofluorescence studies was associated with the inhibition
of myeloma cell viability after amiloride exposure. Although
amiloride was able to induce apoptosis in myeloma cells lacking
p53 expression, activation of p53 signaling was observed in
wild-type and mutated TP53 cells after amiloride exposure.
On the other hand, we did not find a significant systemic toxi-
city in mice treated with amiloride.

Conclusions: Overall, our results demonstrate the antimye-
loma activity of amiloride and provide a mechanistic rationale
for its use as an alternative treatment option for relapsed
multiple myeloma patients, especially those with 17p deletion
or TP53 mutations that are resistant to current therapies.
Clin Cancer Res; 23(21); 6602-15. ©2017 AACR.

immunomodulatory drugs and histone deacetylase inhibitors,
among others (5). However, their approval processes required
several years of research and major investment. An interesting
alternative by which this long process might be shortened is the
drug-repositioning approach, which involves using old drugs
approved for noncancerous diseases (6). One of the advantages
of this strategy is that the pharmacokinetic and pharmacodynamic
properties and toxicity profiles tend to be well known. The diuretic
drug, amiloride, is one such agent.

Amiloride is a potassium-sparing diuretic that has been
employed clinically for more than three decades in the treatment
of hypokalemia, hypertension, edema and congestive heart
failure (7). Some studies demonstrated its significant antitumor
and antimetastasis activities that were initially associated with
the inhibition of Na™/H™ exchangers (8). Recently, amiloride
was found to modify alternative splicing (AS) in various human
cancer cells (9). Pre-mRNA alternative splicing is a highly reg-
ulated process, and numerous studies have demonstrated its
aberrations to be associated with cancer, tumor progression, and
metastasis. This mechanism has recently gained attention as a
potential therapeutic target for cancer due to the differential
splicing patterns identified in tumor cells and metastatic tumor
populations (10-14).

In this study, we evaluated for the first time the antimyeloma
(anti-multiple myeloma) effect of amiloride using in vitro, ex vivo,
and in vivo models. We found that amiloride had potent activity
against a broad panel of multiple myeloma cell lines regardless of
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Translational Relevance

The investigation of novel therapeutic agents is needed to
manage the multiple relapses arising from resistant clones in
multiple myeloma. In this study, we demonstrate for the first
time the antimyeloma activity of amiloride, a very well-known
drug used in the treatment of hypokalemia, hypertension, and
edema. This finding together with the manageable toxicity
profile of amiloride provide the rationale for conducting
clinical trials that support the repositioning of this old drug
for the treatment of multiple myeloma. Moreover, our results
showed that multiple myeloma cells either with WT or mutat-
ed TP53 were highly sensitive to amiloride, which makes this
drug an attractive candidate for high-risk myeloma patients
with TP53 abnormalities.

TP53 status. In addition, RNA-Seq experiments showed a strong
alteration of spliceosome functionality. These encouraging find-
ings, in conjunction with the manageable toxicity profiles of
amiloride, provide a framework for evaluating its utility in clinical
trials.

Materials and Methods

Reagents and multiple myeloma cells

The human myeloma cell lines, NCI-H929, MM1S, MM1R, and
U266 were acquired from ATCC, RPMI-8226, KMS12-BM,
KMS12-PE, and JIN3 from DMSZ (Deutsche Sammlung von
Mikroorganismen and Zellkulturen). RPMI-LR5 cell line was
kindly provided by Dr. W.S. Dalton (Moffitt Cancer Center,
Tampa, FL). All cell lines were cultured in RPMI1640 medium
supplemented with 10% FBS and antibiotics (Gibco). Cells were
routinely checked for the presence of mycoplasma with MycoAlert
kit (Lonza). Cell line identity was confirmed periodically by STR
analysis with PowerPlex 16 HS System kit (Promega) and online
STR matching analysis (www.dsmz.de/fp/cgi-bin/str.html). All
multiple myeloma samples from patients and cells from healthy
donors were cultured in AIMV medium supplemented with 20%
FBS (Thermo Fisher Scientific). CD138" plasma cells from bone
marrow samples of 8 patients with multiple myeloma were
isolated using an autoMACS separation system (Miltenyi-Biotec).
Clinical information of the patients included in the study is
summarized in Supplementary Materials.

Amiloride and melphalan were purchased from Sigma-Aldrich,
bortezomib was from LC Laboratories, dexamethasone was from
Merck KGaA, and lenalidomide and pomalidomide from Sell-
eckchem. All multiple myeloma patients as well as healthy donors
involved in the study provided written informed consent in
accordance with the Helsinki Declaration. The research ethics
committee of the University Hospital of Salamanca approved the
study.

Cell viability assays

Cell viability and proliferation were evaluated using CellTiter-
Glo (Promega) and 3 (4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) colorimetric assay (Sigma-Aldrich),
respectively, as described previously (15, 16). Synergism between
amiloride and other drugs was evaluated with CalcuSyn software
(Biosoft; ref. 17; Supplementary Material).

www.aacrjournals.org
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Apoptosis and cell-cycle assays

Apoptosis using Annexin V-FITC/propidium iodide (PI) dou-
ble staining, mitochondrial membrane depolarization using
DilC1(5) (Immunostep) and cell-cycle analysis, were performed
by flow cytometry using Infinicyt software (Cytognos S.L.), as
described previously (15). Caspases-3/7, 8, and 9 activities were
evaluated by Caspase Glo 3/7, Caspase-Glo 8, and Caspase-Glo 9
assays (Promega), respectively, according to the manufacturer's
protocol.

Ex vivo analysis of cytotoxicity in freshly total bone marrow cells

The experiments with patient's cells were performed in total
bone marrow samples from patients with multiple myeloma.
Immediately after extraction, total bone marrow samples were
lysed with ammonium chloride to remove red blood cells
(erythrocytes); the remaining white blood cells were maintained
for 48 hours in AIMV medium supplemented with 20% FBS
(Thermo Fisher Scientific) in the absence or presence of different
concentrations of amiloride. Then, the activity of amiloride was
investigated on plasma cells (PC) and on the main bone marrow
cell populations separately. To evaluate the cytotoxicity of
amiloride on PCs, samples were analyzed using Annexin V
(Immunostep) in combination with three markers that allowed
for the identification of pathologic PCs present in the sample.
With that aim, we used a fix combination of two mAbs (CD38
and CD45) plus a third one, chosen depending on the specific
phenotype of each patient's clonal plasma cells (usually CD56
or CD19). The cells were incubated for 15 minutes at room
temperature in the dark. A total of 5 x 10° cells were acquired on
a FACSCanto II flow cytometer (BD Biosciences). Finally, apo-
ptosis was analyzed in pathologic PCs (gated on CD38"" and
CD56", or CD19*/~ and FSC/SSC) using the Infinicyt soft-
ware. Annexin V-positive events among the target populations
were considered apoptotic cells.

Amiloride cytotoxicity on the other bone marrow cell popula-
tions, thatis B and T lymphocytes, NK cells and granulocytes, was
assessed with the same aforementioned protocol described, but
including a panel of 5 antibodies in combination with Annexin V
to identify T lymphocytes (CD3 ™), B lymphocytes (CD19"), NK
cells (CD56%/CD37), and granulocytes (SSC"8"/CD45+4im),
Among each of these populations separately, we identified as
apoptotic the percentage being Annexin V positive using the
Infinicyt software.

Multiple myeloma xenograft murine model

All animal experiments were performed according to the insti-
tutional guidelines and the protocol previously approved by the
ethical committee of the University of Salamanca (Salamanca,
Spain). For the human subcutaneous plasmacytoma model, 65
CB17-SCID mice (The Jackson Laboratory) were subcutaneously
inoculated into the right flank with 3 x 10® MM1S cells in 100 pL
of RPMI1640 medium and 100 pL of Matrigel (BD Biosciences).
Treatment was initiated immediately after tumor cell inoculation
and mice were randomized to the following treatment cohorts,
each of five animals: vehicle-alone PBS (C); amiloride, 10 mg/kg
(A10); amiloride, 15 mg/kg (A15); dexamethasone, 0.5 mg/kg
(D); melphalan, 2.5 mg/kg (M), dexamethasone + melphalan
(DM); dexamethasone + amiloride, 10 mg/kg (DA10); melpha-
lan + amiloride, 10 mg/kg (MA10); dexamethasone + melphalan
+ amiloride, 10 mg/kg (DMA10); dexamethasone + amiloride,
15 mg/kg (DA15); melphalan + amiloride, 15 mg/kg (MA15);
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and dexamethasone + melphalan + amiloride, 15 mg/kg
(DMAL15). Amiloride was administered orally daily, and dexa-
methasone and melphalan intraperitoneally (i.p.) two days a
week. Tumor burden estimation and toxicity monitoring were
performed as described previously (18).

To estimate survival, mice were sacrificed when the diameter of
their tumor reached 2 cm or when they became moribund. Time
to endpoint (TTE) was estimated from the day of treatment
initiation. For in vivo mechanistic studies, six and four mice,
respectively, were subcutaneously inoculated in the right flank
with 3 x 10° MM1S cellsand 3 x 10° RPMI cells. When the tumor
attained a large volume, mice were randomized to receive the
vehicle-alone PBS (control group) or amiloride (20 mg/kg) orally
for two consecutive days. On the third day, mice were sacrificed
and the tumors retrieved for analysis.

RNA sequencing

Poly A" RNA from KMS12-BM and JIN3 cells untreated or
treated with amiloride (0.1 mmol/L and 0.4 mmol/L, respective-
ly) for 24 hours was isolated and prepared for RNA sequencing
(RNA-Seq). Libraries were constructed following a TruSeq Strand-
ed mRNA Sample Preparation Guide (Illumina). The final cDNA
library was sequenced using Illumina HiSeq 2500 in combination
of 100 Paired-End at Lifesequencing S.L. (Supplementary
Material).

RNA-Seq analysis

Paired-end FASTQ files for 12 samples were used in the RNA-
Seq analyses. We analyzed the data in three stages: gene expres-
sion, isoform level, and splicing events. First, in the analysis of
differential expression at the gene level, the genes were consid-
ered to be differentially expressed for an absolute n-fold change
(FC) of >2 and a false discovery rate (FDR) of <0.05. Second, in
the analysis of isoform level, we focused on the isoforms with an
absolute value of FC > 2 and that corresponded to genes
without altered total expression. The criteria used to assign
genes as "no-change" were FDR > 0.05 and an absolute value
of FC < 2, when the DESeq2 package was applied. Third,
differential alternative splicing events were detected using
MATS version 3.0.9 (19), classifying these events into five
major types of pattern: skipped exon (SE), alternative 5’ splice
site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive
exons (MXE), and retained introns (RI). rIMATS also calculates
the difference in the ratio of these events between two condi-
tions, and produces an estimate of the FDR. Finally, all the
enrichment analyses were conducted using the Webgestalt web
tool (20), employing the Gene Ontology and KEGG databases
as data sources. The dataset is available at the Gene Expression
Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/
geo) under the accession number GSE95077.

Further details are provided in the Supplementary Material.

RNA extraction and quantitative real-time PCR analysis

RNA was extracted using the RNeasy Plus Mini kit (Qiagen).
The RNA integrity was assessed with an Agilent 2100 Bio-
analyzer (Agilent Technologies). Total RNA (1 ug) was
reverse-transcribed to c¢DNA using High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). Gene expres-
sion was quantified by TagMan RT-PCR mRNA assays
(Applied Biosystems) and normalized relative to 18S5 using
the 274¢t method.

6604 Clin Cancer Res; 23(21) November 1, 2017

Immunoblotting and immunofluorescence analysis

Western blot methods and the preparation of protein lysates
have been described elsewhere (15). The sources of the mAbs are
described in the Supplementary Material.

For immunofluorescence, cells were fixed in 4% paraformal-
dehyde, permeabilized with 0.25% Triton X-100/PBS, stained
with primary mouse anti-SC35 (Abcam) and goat anti-mouse
IgG (H+L) secondary antibody, and Alexa Fluor 488 conjugate
(Thermo Fisher Scientific). Fluorescence was measured under a
Leica confocal microscope.

Statistical analysis

All statistical analyses were carried out with IBM SPSS Statis-
tics 22.0 (IBM Corp.) and the Simfit package (W.G. Bardsley,
University of Manchester, Manchester, UK; v7.0.9 Academic
32-bit, http://www.simfit.org.uk/). P values were corrected for
multiple testing using the FDR, with values of <0.05 being
considered to be statistically significant. Differences in the
in vitro experiments are expressed as the mean + SD of at least
three determinations and were assessed by the two-sided Stu-
dent ¢ test or the Mann-Whitney U test. Differences in tumor
volumes between groups were evaluated fitting an exponential
regression model and the regression parameters were compared
using a t test for unequal variances. Survival curves were
plotted using the Kaplan-Meier method, and compared using
the log-rank test.

Results

Amiloride is cytotoxic for multiple myeloma and potentiates
the efficacy of various antimyeloma agents

Amiloride exhibited potent in vitro antimultiple myeloma
activity in a dose- and time-dependent manner, as demonstrated
in a panel of seven myeloma cell lines with a wide range of
cytogenetic abnormalities and p53 status (Supplementary Table
S1; Supplementary Fig. S1A). The viability was significantly
reduced in both the TP53 wild-type (WT; H929, MM1S) and the
mutated TP53 cell lines (KMS12-BM, KMS12-PE, U-266, and
RPMI-8226) after exposure to amiloride (P < 0.01; Fig. 1A),
although viability reduction in the p53-null cell line JIN3 required
a higher dose and a longer time course (P < 0.01). The antimul-
tiple myeloma effect of amiloride was also observed in melpha-
lan- and dexamethasone-resistant cell lines, RPMI-LR5 and
MMIR, respectively (Supplementary Fig. S2A).

In the ex vivo study using bone marrow cells from 10
patients with multiple myeloma (six newly diagnosed and
four relapsed/refractory), we observed significant apoptosis
induction in plasma cells, even in three patients bearing
deletion of 17p, with minor cytotoxicity toward B and T
lymphocytes, NK cells, and neutrophils (Fig. 1B). Myeloma
cell cytotoxicity of amiloride was also confirmed on isolated
CD138" plasma cells from eight multiple myeloma patients
(Supplementary Fig. S1B). Interestingly, amiloride did not
induced cytotoxicity on normal plasma cells from healthy
donors (Supplementary Fig. S1C).

Next, we evaluated the cytotoxicity of double combinations
of amiloride with melphalan and dexamethasone, employing a
constant ratio between them. Subsequent isobologram analysis
revealed a combination index (CI) in the synergistic range for
the double combinations of amiloride with dexamethasone or
melphalan, ranging from 0.2 to 0.8, depending on the doses
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and cell lines used (Fig. 1C; Supplementary Fig. S2B). Further-
more, amiloride overcame the melphalan and dexamethasone
resistance of RPMI-LR5 and MM1R, respectively (Supplemen-
tary Fig. S2C and S2D). Amiloride was also combined with new
agents such as lenalidomide, pomalidomide and bortezomib. A
significant synergism was observed between amiloride and
lenalidomide or pomalidomide plus dexamethasone (Fig.
1D and E). In contrast, the combination of amiloride with
bortezomib was antagonistic in all cell lines tested (Supple-
mentary Fig. S2E).

To test whether amiloride was able to inhibit the protective
effect of the bone marrow microenvironment, MM1S-luc cells
were cocultured with mesenchymal stem cells (MSC) from six
multiple myeloma patients and treated with increasing concen-
trations of amiloride for 48 hours. Despite the proliferative
advantage to multiple myeloma cells conferred by MSCs, amilor-
ide abrogated the protective effect conferring by MSCs. In contrast,
MSCs were resistant to the cytotoxic effect of amiloride (Supple-
mentary Fig. S3).

Amiloride induces apoptosis and enhances mitochondrial
depolarization

To elucidate the mechanisms leading to the decrease of cell
growth induced by amiloride, we analyzed cell cycle and
apoptosis in multiple myeloma cell lines treated with increas-
ing concentrations of the drug (0.1-1.0 mmol/L). Amiloride
induced significant apoptosis after 24 and 48 hours in H929,
KMS12-BM and JIN3 cell lines (Fig. 2A; Supplementary
Fig. S4A), as well as in MM1S, U-266 and RPMI cell lines after
48 hours (Supplementary Fig. S4B). The apoptosis induction
was dose-dependent in all cell lines, with the highest levels in
the KMS12-BM cell line, even at 0.1 mmol/L after 24 hours of
treatment (Fig. 2A). It is of particular note that the apoptosis
induced by amiloride was also observed in cells with del(17p)
or TP53 mutations (JJN3 and KMS12-BM, respectively). No
significant effect of amiloride on cell cycle was observed (Sup-
plementary Fig. S5).

To evaluate the involvement of mitochondria in cell death, the
membrane potential (Ay,,) was measured. Amiloride caused a
decrease in Ay, particularly significantly in KMS12-BM, H929,
and RPMI-8226 cells (Fig. 2B; Supplementary Fig. S6). Using a
luminescent-proteolytic assay, we observed that the caspases 3/7,
8, and 9 were significantly activated in all the cell lines tested
(Fig. 2C; Supplementary Fig. S7A). The involvement of a caspase-
independent mechanism was also observed, as Z-VAD-FMK, a
pan-caspase inhibitor, was able to inhibit caspase-3/7 activity, but
unable to inhibit apoptosis induced by amiloride (Supplemen-
tary Fig. S7B).

In vivo antimyeloma efficacy of amiloride

We evaluated the in vivo efficacy of amiloride (A) in mono-
therapy and in combination with melphalan (M) and dexa-
methasone (D). As to the best of our knowledge, there are no
data concerning the antitumor efficacy of amiloride in the
animal model used here, we evaluated two doses of amiloride
(10 mg/kg and 15 mg/kg). Treatment of MM1S-inoculated
CB17-SCID mice with a double or triple combination of A
(regardless of the A dose applied), together with D and/or M,
enhanced tumor growth inhibition, although the differences
were only statistically significant for the combinations DA10,
DA15, and DMA15 (Fig. 3A; Supplementary Fig. S8A). With

www.aacrjournals.org
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respect to survival, we observed a significant improvement in
TTE in the group of mice treated with the double combinations,
DA10 and MA10, and the triple combination, DMA10, com-
pared with the D, M, and DM groups, respectively (P < 0.05;
Fig. 3B). The mice treated with the triple combination DMA10
had a median overall survival (OS) of 115 days compared with
99 days for the combination DM (P < 0.05; Fig. 3B). The double
combinations, DA15 and MA15, also showed a statistically
significant benefit (P < 0.01) in terms of OS compared with
the single drugs (Supplementary Fig. S8B). The triple combi-
nation DMA15 also had a longer OS (median, 110 days) than
the double combination DM (median, 99 days), although the
difference was not statistically significant (P = 0.053; Supple-
mentary Fig. S8B). No significant toxicity, measured as body
weight loss, was observed in the mice receiving combinations
with amiloride (Supplementary Fig. S8C).

Amiloride induces gene and transcript isoforms expression
changes

To determine the molecular basis of the anti-myeloma
activity of amiloride, we performed RNA-Seq analysis in
KMS12-BM and JJN3 cell lines, the most and the least sensitive,
respectively, at the beginning of apoptosis (15%-25% cell
death, assessed by CellTiter-Glo luminescent assays) after
amiloride treatment. The study design is shown in Supplemen-
tary Fig. S9. RNA-Seq data were analyzed at three levels: gene,
isoform and splicing events. Although there were clearly more
deregulated genes in KMS12-BM (almost 5,000) than in the
JIN3 cell line (almost 1,000; Fig. 4A), significant enrichment of
functional categories, such as metabolic, MAPK, and Jak-STAT
signaling pathways, and endocytosis (Supplementary Fig.
S10A), were found among the genes deregulated in both cell
lines after amiloride treatment. The analysis of differential
expression at the isoform level identified a similar number of
deregulated transcript isoforms (over 15,000) in both cell lines
(Supplementary Fig. S10B).

Next, we focused our analysis on those genes with a total
expression that was not differentially modified after amiloride
treatment, but whose transcript isoforms were differentially
expressed. We found a considerable number of genes that were
significantly deregulated at the isoform but not the gene level in
both cell lines (Fig. 4B). Among the most significantly enriched
pathways with deregulated transcript isoforms, in both cell lines,
were those of the spliceosome, apoptosis, metabolic pathways,
and those associated with protein-processing in ER, oxidative
phosphorylation, cell cycle, RNA transport, and endocytosis
(Fig. 4C). Transcript isoforms belonging to different compo-
nents of the spliceosome and that are involved in the assembly
and regulation of the spliceosomal machinery were significantly
deregulated after amiloride treatment (Supplementary Table
S3). For example, the transcript ENST00000269601, which
encodes the canonical protein TXNL44, is upregulated in mye-
loma cells treated with amiloride, whereas the transcript
ENST00000588162, which encodes a smaller protein, was only
expressed in untreated cells. Notably, the p53 pathway was only
highly enriched in p53-expressing cell line, KMS12-BM, but not
in the p53-null cell line, JIN3 (Fig. 4C; Supplementary Table S4).

Finally, using Multivariate Analysis of Transcript Splicing soft-
ware we identified thousands of alternative splicing (AS) events in
both cell lines after amiloride exposure (Fig. 4D). Most of the
significant AS events (FDR < 0.05) involved genes whose total

Clin Cancer Res; 23(21) November 1, 2017

92

2202 aunr $0 uo 1senb Aq Jpd-Z099/708 1 ¥0Z/Z099/| Z/EZ/4Pd-0I0NE/SBIB0UBOUII/BI0"S[EUINO[IOBE//:dNY WOl PapEojumoq

6605



TESIS DOCTORAL

Rojas et al.
120 24 Hours i5 48 Hours 120 - 72 Hours
< 100 ;@100 E g 100
z Z 80 z
8 2 g0 g
> 'S >
= = 40 | =
3 8 3
20 A
0 4 § i
0 01 03 05 1 0 01 03 05 1 0 0.1
Amiloride (mmol/L) Amiloride (mmol/L) Amiloride (mmol/L)
—A—H929 —>—JJN3 —e—KMS12-BM
- KMS12-PE —-U-266 -MM1S
—o—RPMI-8226
B Plasma cells (n=10) Lymphocytes B (n=12) Lymphocytes T (n=12) o
o
B
100 *IE as 51 NS 5 NS g
2 80 5 £ 4 & 4 g
£ £ £ . g
§ 607 8% 5% - g
£ 0 £ 2 £ 2 Z
< 40 < o < 2
2 20 i R ® 1 8
| 3
o T T T T 0= ¢ 5
0 03 05 1 0 03 05 1 0 03 05 1 3
@
Amiloride (mmol/L) Amiloride (mmol/L) Amiloride (mmol/L) o
(=}
g
Neutrophils (n=12) NK cells (1=12) 5
5
: NS 5 NS 8
@
e ‘ 2 4 5
c c o
£ 3 % 37 %
) @ " -
£ 2 £ 2 3
S < 8
® 1 e ® 1 N
>
0 o- g
N
0 03 05 1 0 03 05 1 g
Amiloride (mmol/L) Amiloride (mmol/L) g
g
Figure 1. %
Antimyeloma activity of amiloride in in vitro and ex vivo studies. A, The indicated multiple myeloma cell lines were incubated with increasing g:
concentrations of amiloride for 24, 48, and 72 hours. Cell viability was analyzed by CellTiter-Glo luminescent assays. The average luminescent values of -
the untreated control samples were taken as 100%. Results are the means of three independent experiments. The statistically significant differences é
between untreated and treated cell lines were determined with Student t test. B, Bone marrow cells from patients with multiple myeloma, were treated 2
ex vivo with increasing concentrations of amiloride for 48 hours. After the incubation period, cells were stained with the combination of Annexin V-FITC ]
and three mAbs (CD45-PerCP-Cy5.5, CD38-APC and CD56 or CD19-PE) for the analysis of apoptosis in plasma cells. A panel of five antibodies in e
combination with Annexin V was used for the analysis of apoptosis in T and B lymphocytes, NK cells, and granulocytes. Results are presented as ‘g
the percentage of Annexin V-positive cells. Statistically significant differences are represented as ***, FDR < 0.001 and **, FDR < 0.01 (Mann-Whitney e
U test). (Continued on the following page.) S
N

expression was not modified by amiloride, indicating that the
deregulation of alternative splicing could be a specific mechanism
of action of amiloride. The most common AS event in both cell
lines was the SE, which is the most common splice event in
mammalian pre-mRNAs.

Amiloride modulates alternative splicing machinery

Given that RNA-Seq results showed deregulation of alterna-
tive splicing and spliceosome components in myeloma cells,
we next evaluated whether the antimyeloma effect of amiloride
was associated with modulation of the splicing machinery. The
immunofluorescent staining for the SR (serine/arginine-rich)

6606 Clin Cancer Res; 23(21) November 1, 2017

protein SC35 demonstrated the amiloride-induced modulation
of the splicing machinery in myeloma cells with distinct TP53
status. Thus, the modulation of the splicing machinery was
accompanied by a reduction in cell viability in the H929 and
JIN3 cell lines (Fig. 5). In both settings, the number of speckles
was reduced but the remaining speckles increased in size and
intensity. This finding was confirmed in vivo (Supplementary
Fig. S11A) using xenografts inoculated with other multiple
myeloma cell lines. Structural changes of the nuclear speckles
induced by amiloride were also observed in CD138™ cells from
one newly diagnosed multiple myeloma patient (Supplemen-
tary Fig. S11B). In addition, mRNA levels of the spliceosome
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(Continued.) RPMI-8226 cell line was treated with the indicated double combinations of amiloride with melphalan or dexamethasone (C) and triple combinations
with pomalidomide or lenalidomide plus dexamethasone (D, E). Cell viability was assessed by MTT assay, as represented in the graphs. The combination indexes (CI)
were calculated with the CalcuSyn software. Cls of <0.3, 0.3-0.7, 0.7-0.85, 0.85-0.90, 0.90-1.10, and >1.10 indicate strong synergism, synergism, moderate
synergism, slight synergism, additive effect, and antagonism, respectively. C, control; A, amiloride; D, dexamethasone; M, melphalan; P, pomalidomide;

L, lenalidomide; d1, d2, and d3, drug concentrations used in the study; CR, constant ratio.
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Days of treatment

Days of treatment

The triple and double combination of dexamethasone and melphalan with amiloride displays superior anti-multiple myeloma activity and improves
median survival compared with single agents and double combinations in a subcutaneous plasmacytoma model. CB17-SCID mice subcutaneously

inoculated with 3 x 10° MMIS cells in the right flank were randomized to recei
2 days per week), melphalan (2.5 mg/kg, i.p., 2 days per week) in monotherapy

ve vehicle, amiloride (10 mg/kg, oral, daily), dexamethasone (0.5 mg/kg, i.p.,
and the respective double and triple combinations (n = 5/group). A, Evolution

of tumor volumes of the plasmacytomas. Statistical differences between groups were evaluated fitting an exponential regression model and the
regression parameters were compared using a t test for unequal variances. Bars indicate SEM. B, Kaplan-Meier curves representing the survival of
each treatment group. Mice were sacrificed when their tumor diameters reached 2 cm or when they became moribund. Statistically significant differences

were analyzed by the log-rank test, and are represented as *, P < 0.05.

components (SNRNP27, SRSF4, SF3B1, LSM3, LSMI14A,
PRPF3, and PRPF4) were significantly overexpressed in mye-
loma cells from patients after amiloride treatment (Supple-
mentary Fig. S11C). Altogether, these results suggest the poten-
tial association between the antimyeloma activity of amiloride
and the modulation of spliceosomal machinery.

Antimyeloma activity of amiloride is associated with functional
p53 signaling

Our results showed that multiple myeloma cells either with WT
or mutated TP53 were highly sensitive to amiloride, although
higher doses and longer exposure to amiloride were required for
p53-null cells. Moreover, pathway enrichment analysis from
RNA-Seq data in mutated TP53 cells revealed a subset of deregu-
lated transcript isoforms involved in the p53 pathway. These
findings suggest an activation of p53 signaling pathway in mul-
tiple myeloma cells after treatment with amiloride. To test this
hypothesis, we used qRT-PCR to measure the expression of p53
targets, such as BAK1, BBC3, TNFRSF10B, FAS, CDKN1B, and
CDKN1A in multiple myeloma cell lines with different TP53
status. We observed a normal functional p53 response in the

WT/WT cell line (MM18S), whereas p53 signaling was abrogated
in JJN3 cells with no basal p53 expression (Fig. 6A). Interestingly,
the mutated TP53 cell lines (KMS12-BM and U-266) also
showed overexpression of p53 targets. Similar results were found
by RNA-Seq data analysis (Supplementary Fig. S12). The activa-
tion of p53 signaling pathway was confirmed in CD138™ cells
from eight multiple myeloma patients after treatment with
amiloride (Supplementary Fig. $13)

The cell lines with mutated TP53 showed deregulation of p53
targets after treatment with amiloride, so we decided to confirm
the involvement of p53 in amiloride-induced cytotoxicity of
multiple myeloma cells. The functionality of p53 signaling path-
way in mutated TP53 cell lines was confirmed using p53 activity
inhibitors: pifithrin-o. (PFTa), a reversible inhibitor of p53-medi-
ated apoptosis and p53-dependent gene transcription (21), and
pifithrin-it (PFTW), an inhibitor of the p53-Bcl-xL interaction that
directly inhibits p53 binding to mitochondria (22). Amiloride
cytotoxicity was reduced in WT and mutated TP53 multiple
myeloma cell lines when used with p53 inhibitors. As expected,
the inhibitors had no effect on the death of JJN3 cells, which lack
p53 expression (Fig. 6B). These results imply that p53 signaling

Figure 2.
Amiloride induces apoptosis, activates caspases, and deregulates mitochondri

ial potential in multiple myeloma cell lines. H929, JIN3, and KMS12-BM

cells were treated with increasing concentrations of amiloride for 24 hours. A, The induction of apoptosis was analyzed by flow cytometry after
Annexin-V/PI staining. B, Mitochondrial membrane depolarization was examined by flow cytometry after DilC1(5) staining. C, The activity of caspase-8,

caspase-9, and caspase-3/7 was analyzed by luminescent caspase assays. Re:
Statistically significant differences between untreated and treated cell lines a

www.aacrjournals.org

sults are expressed as the mean + SD of three independent experiments.
re represented as **, P < 0.01 and ¥, P < 0.05 (Student ¢ test).
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Amiloride induces gene and isoform
expression changes and modulates
alternative splicing. RNA sequencing
analysis was conducted on Poly A+
RNA from KMS12-BM and JJN3 cell
lines, treated, or untreated with
amiloride (0.1 mmol/L and

0.4 mmol/L, respectively) for

24 hours. A, Distribution of
differentially expressed genes
induced by amiloride (overexpressed
with FC > 2 and FDR < 0.05;
underexpressed with FC < -2 and FDR
< 0.05 and not deregulated genes),
identified using the DESeg2 R
package. B, Distribution of
differentially expressed transcript
isoforms contained in genes without

expression changes, identified using
Cuffdiff. Only the isoforms that have a
|FC|> 2 were considered as
differentially expressed. C, Summary
of the biologically relevant pathways
among the top 50 significantly
enriched pathways in KEGG
enrichment analysis for amiloride-
deregulated isoforms detected in
KMS12-BM (left) and JIN3 (right) cell
lines. Statistical significance of the
enrichment is expressed as -log10
(Benjamini-Hochberg adjusted P
value). (Continued on the following
page.)
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has an important role in amiloride-induced apoptosis of multiple
myeloma cells that express either WT or mutated TP53. On the
other hand, the involvement of a mechanism other than p53
signaling activation would explain the antimyeloma effect of
amiloride on p53-null cells.

Discussion

In this study, we demonstrate for the first time the antimyeloma
activity of amiloride, an antihypertensive drug, through two novel
mechanisms of action, spliceosome deregulation and p53 signal-
ing pathway activation. Initially, we observed potent in vitro
antimyeloma activity of amiloride, both in TP53 wild-type and
mutated TP53 cells. Even in p53-null cells, viability was reduced
by using higher doses and longer exposures. The ex vivo study of

6610 Clin Cancer Res; 23(21) November 1, 2017
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myeloma cells from patients indicated that amiloride induced
cytotoxicity in plasma cells, including three cases bearing deletion
of 17p, whereas viability of other bone marrow cell populations
was not affected. Furthermore, amiloride in combination with
dexamethasone and melphalan was clearly synergic in vitro. A
synergic effect was also observed when amiloride was combined
with lenalidomide or pomalidomide plus dexamethasone. In this
context, amiloride has been described as potentiating synergisti-
cally the antiproliferative effect of other drugs like imatinib, the
first-line therapy for patients with chronic myeloid leukemia
(CML; refs. 23, 24). However, we did not find synergism between
amiloride and bortezomib, which could limit the use of amiloride
in bortezomib-based induction regimens.

The induction of apoptosis by amiloride in CML was accom-
panied by the increase in levels of caspases 9 and 3. Our results
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showed that the apoptosis induced by amiloride was mediated
by both caspase-dependent and caspase-independent mechan-
isms, which is consistent with other studies in glioblastoma
and breast tumor cells (25-27). Moreover, we observed
increased survival of mice bearing human subcutaneous plas-
macytomas treated with double or triple combinations includ-
ing amiloride compared with treatment with melphalan and/or
dexamethasone.

The anticancer effect of amiloride has previously been
described in several tumors, using in vitro and in vivo models
(9, 23-33). There is evidence for multiple mechanisms of
action of amiloride, including TRAIL-induced cytotoxicity
associated with the PI3K-Akt pathway (24, 28, 30, 33) and
alternative splicing deregulation of apoptotic genes (9, 23, 28).
The RNA-Seq allowed us to study its mechanism of action in
myeloma cells more extensively. In fact, RNA-Seq analysis in
two cell lines with distinct patterns of response to the drug, the
most and the least sensitive, revealed that amiloride signifi-
cantly altered the level of transcript isoforms and the alterna-
tive splicing events. It should be pointed out that the signif-
icant impact on the differential expression of isoforms from
genes whose total expression was not changed. In other words,
the traditional gene expression profiling would have over-
looked the substantial modifications of more than 10,000
transcript isoforms by amiloride treatment. These results are
consistent with the reported advantage of the analysis at the
genome-wide isoform level compared with gene expression in
cancer research (34, 35).

One of the most significantly enriched pathways in the
analysis of differentially expressed isoforms after amiloride
treatment was spliceosome. We found that amiloride induced
a general deregulation of spliceosomal machinery at the gene

www.aacrjournals.org

and transcript isoform levels that affected the early and late
stages of spliceosome assembly and several spliceosome-asso-
ciated proteins, including the catalytic steps of the splicing.
These findings, together with the large quantity of total tran-
script isoforms modified by amiloride, prompted us to inves-
tigate further the influence of amiloride in the pre-mRNA
splicing machinery. The small nuclear ribonucleoproteins
(snRNP) and splicing factors, like the SR protein family, are
organized in nuclear speckles (36). The changes in protein
SC35-staining speckles are used as a marker for the disruption
of the splicing machinery (37-40). Upon the inhibition of the
splicing machinery, the number of nuclear speckles decreases
but those remaining increase in size and intensity (36, 41).
Using this marker, after amiloride treatment, we identified a
similar pattern of nuclear speckle modifications that was asso-
ciated with cell viability inhibition. This finding indicates that
amiloride provokes the disruption of the splicing machinery
and that this could, in turn, induce cytotoxicity.

The RNA-Seq analysis at the transcript isoform level also
identified the p53 pathway as one of the most significantly
enriched functional categories. Remarkably, the p53 pathway was
highly overexpressed only in the cell line expressing mutated
TP53, and not in the p53-null cell line. In addition, upregulation
of p53 targets was observed in WT and mutated TP53 myeloma
cells treated with amiloride. These results, together with the fact
that the inhibition of p53 protein activity prevents amiloride-
induced cell death, even in two mutated TP53 cell lines, demon-
strate that amiloride-induced apoptosis in myeloma cells is
dependent on p53 activation and is independent of the muta-
tional status of TP53. Apart from that, the reduction in cell
viability in the amiloride-treated p53-null cell line supports the
notion that other mechanisms independent of p53, such as the

Clin Cancer Res; 23(21) November 1, 2017
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Figure 5.

Amiloride affects the pre-mRNA splicing machinery in myeloma cells in vitro, independently of TP53 status. H929 (TP53 WT) and JJN3 (TP53 null) cells were treated
with increasing concentrations of amiloride. SC35-staining nuclear speckles were detected by immunofluorescence after 24 hours. Cell viability was analyzed
by CellTiter-Glo luminescent assays and expressed as the mean + SD. Statistically significant differences between amiloride-treated and untreated cells are
presented. P values were assessed by the two-sided Student ¢ test.
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Figure 6.

The p53 signaling pathway is activated in TP53 WT and MUT, but not in p53-null multiple myeloma cells. A, MM1S, KMS12-BM, JJN3, and U-266 cells were
treated with increasing concentrations of amiloride. mRNA levels of BBC3 (PUMA), BAX, BAKI, CDKNIA (p21), CDKNIB, TNFRSFI0B, and FAS (CD95),
were assessed by qRT-PCR 24 hours after amiloride treatment. The results are shown as the magnitude of change between treated and untreated cells
and correspond to the average of three experiments after normalization with 18S rRNA. Statistically significant differences between untreated and
treated cell lines are represented as **, P<0.01and *, P < 0.05 (Student ¢ test). B, Cell viability upon amiloride (KMS12-BM at 0.1 mmol/L; H929 at 0.2 mmol/L;
JIN3 and U-266 at 0.3 mmol/L), pifithrin-o. (10 nmol/L) or pifithrin- (2.5 nmol/L) treatment was analyzed by CellTiter-Glo luminescent assays, 24 hours
after amiloride treatment. Results are the mean of at least three independent experiments. Asterisks indicate statistically significant differences
between amiloride-treated cells and amiloride-pifithrin-a./u-treated cells; **, P < 0.01; ¥, P < 0.05; N.S., no significant (Student ¢ test).
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spliceosomal machinery disruption observed in JIN3 cell line, are
involved in amiloride activity.

Amiloride has been used for many years as adjuvant treat-
ment with thiazide diuretics in congestive heart failure and
hypertension (42-45). Here, we demonstrate for the first time
the therapeutic potential of amiloride in multiple myeloma.
The concentration of amiloride used in the in vivo experiments
is higher than that commonly used as a potassium-sparing
diuretic, suggesting that a higher dose would be needed to
produce the anti-multiple myeloma effect. The toxicity profile
of this drug is very well known and the main side effect is
hyperkalemia, which could be the main factor that limits the
use of amiloride as an antimyeloma drug. To minimize this risk,
a careful electrolyte monitoring along with the coadministra-
tion of a kaliuretic agent or the use of new oral agents for the
hyperkalemia treatment, such as patiromer calcium (46-48)
and ZS-9 (zirconium cyclosilicate; refs. 48-50), could be
required. Moreover, attempts to develop amiloride analogues
that show reduced diuretic and antikaliuretic effects retaining or
enhancing anticancer activity are currently underway in differ-
ent laboratories. On the other hand, as reported in other studies
(23, 32), we did not find any significant systemic toxicity in the
mice treated with amiloride, and the viability of the lymphocyte
population either from multiple myeloma patients or healthy
donors was not affected, even at the highest dose.

Our results also revealed that the antimyeloma activity of
amiloride was mediated through spliceosome modulation
and involved the p53 pathway. In fact, p53 signaling was
activated after amiloride exposure, independently of the
mutational status of TP53. On the other hand, amiloride was
also able to induce apoptosis in myeloma cells that did not
express p53.

In conclusion, these findings together with the possibility of
combining amiloride with melphalan, dexamethasone, or lena-
lidomide or pomalidomide, support the initiation of clinical
trials including amiloride for patients with relapsed and refrac-
tory multiple myeloma, particularly for those with 17p deletion
or TP53 mutations who display a poor prognosis.
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