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Étale Covers and Fundamental Groups of
Schematic Finite Spaces

J. Sánchez González and C. Tejero Prieto

Abstract. We introduce the category of finite étale covers of an arbitrary
schematic space X and show that, equipped with an appropriate natural
fiber functor, it is a Galois Category. This allows us to define the étale
fundamental group of schematic spaces. If X is a finite model of a scheme
S, we show that the resulting Galois theory on X coincides with the
classical theory of finite étale covers on S, and therefore, we recover
the classical étale fundamental group introduced by Grothendieck. To
prove these results, it is crucial to find a suitable geometric notion of
connectedness for schematic spaces and also to study their geometric
points. We achieve these goals by means of the strong cohomological
constraints enjoyed by schematic spaces.
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1. Introduction
Schematic (finite) spaces are finite ringed spaces (not locally ringed in most
cases of interest) admitting a «good »theory of quasi-coherent sheaves with
minimal natural conditions. They were first constructed in [7]. These spaces
can be used to study the category of quasi-compact and quasi-separated
(qcqs) schemes via the construction of «finite models»: that is, a projection
π : S → X from a scheme S to a schematic space X inducing an equiva-
lence of quasi-coherent sheaves. The scheme S is reconstructed from X via
a colimit that we denote Spec(X) and, actually, qcqs schemes are embedded
into a suitable localization—by qc-isomorphisms (defined before Proposition
2.4)—of the category of schematic spaces SchFin. However, SchFin contains
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objects X, such that Spec(X) is not a scheme (in particular, X does not arise
as a finite model of any scheme), but a locally ringed space obtained by gluing
affine schemes along flat monomorphisms. These generalized spaces, which we
shall study via their finite incarnations, are potentially useful in the study of
singularities and Prüfer spaces (see [3,11]). Besides that, while sheaf theory
on finite spaces admits a very simple description, schematic spaces still man-
age to retain a good deal of the «geometry»that other related constructions
(such as simplicial schemes) do not. This compromise makes them useful to
give an intuitive approach to Grothendieck’s Algebraic Geometry (see [9]).

Motivated by this setting and the fact that strictly topological finite
models play the role of the Čech nerve of a covering (inducing weak homo-
topy equivalences, see [6]), we construct the analogue of Grothendieck’s étale
fundamental group for schematic spaces via Galois Categories. There are two
preliminary steps: defining a notion of connectedness for a schematic space X
that is «geometric», not only in the sense of reflecting connectedness of the
associated locally ringed space Spec(X), but also in admitting constructions
such as decomposition into «connected»components; and describing geomet-
ric points of schematic spaces (in this paper, analogue to the scheme-theoretic
version, rather than from a topos-theoretic point of view), which are notably
well-behaved thanks to the schematic condition. For the first part, we de-
fine a subcategory of pw-connected spaces, SchFinpw, show that its objects
are well-behaved (for them, combinatorial and «algebraic»connectedness co-
incide) and prove that SchFinpw ⊆ SchFin admits a right adjoint pw, such
that pw(X) → X is a qc-isomorphism for all X schematic. This is covered
in Sects. 3 and 4.

In Sect. 5, we define the category of finite étale covers of a schematic
space X, denoted Qcohfet(X), as quasi-coherent sheaves of algebras that are
finite étale at stalks. If π : S → X is a finite model, FetS � Qcohfet(X)op

(where FetS is the category of finite étale covers of S, which are affine mor-
phisms, hence defined by quasi-coherent sheaves of OS-algebras). We also
prove that it is the subcategory of locally constant objects of a cosite X fppf

Qcoh

and—in Sect. 6—that it is stable under qc-isomorphisms (hence defined in
the localization of SchFin). Finally, in Sect. 7, for any given geometric point
x, we construct a fiber functor Fibx (via a fibered product in SchFinpw) and
prove the main result:
Theorem 7.3 If X is schematic and OX(X) has connected spectrum, for any
geometric point x of X, the pair (Qcohfet(X)op,Fibx) is a Galois Category.
Furthermore, if π : S → X is a finite model of a scheme and s the corre-
sponding geometric point (4.8), there is an isomorphism of profinite groups
πet
1 (S, s) � πet

1 (X, x), where πet
1 (X, x):=Aut[Qcohfet(X)op,Setf ](Fibx).

Due to space constraints, examples and further applications of the com-
binatorial structure of schematic spaces (in this context) will be provided in
future work. For instance, we will prove a very general version of Seifert–Van
Kampen’s Theorem with rather elementary technology, which will recover the
aforementioned theorem for the topology of flat monomorphisms of schemes;
introduce the pro-étale fundamental group [1] in this context or tackle Étale
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Homotopy (remember that topological finite models play the role of Čech
nerves). Unless stated otherwise, all ringed spaces are Noetherian. Given a
ring homomorphism ϕ : R → R′ to ease the notation, we just denote by ϕ�

the induced map Spec(ϕ) : Spec(R′) → Spec(R) between the corresponding
spectra.

2. Quick Overview of Schematic Finite Spaces
The content of this section is treated in [7] or is straightforward to prove. A
finite ringed space is a ringed space (X,OX) where X is a finite T0 topological
space or, equivalently, a finite poset; thus, X is an Alexandrov space: in
terms of the partial order, the minimal open neighborhood of x ∈ X is
Ux = {y ∈ X : x ≤ y}. We denote the closure of x by Cx = {y ≤ x}. In
particular, this implies that the stalks of any sheaf F are Fx = F(Ux). If one
sees X as a category (with arrows given by the order), a sheaf with values
in a category C is equivalent to a functor F : X → C. For (X,OX) and each
ordered pair x ≤ y, we denote the restriction map by rxy : OX,x → OX,y.

Proposition 2.1. A sheaf of OX-modules M is quasi-coherent iff for every
x ≤ y, the natural map Mx ⊗OX,x

OX,y
∼→ My is an isomorphism.

Now, given a qcqs scheme S and a finite covering U = {Ui}, such that the
intersections Us =

⋂
s∈Ui

Ui are affine, we introduce the equivalence relation
on S that establishes s ∼ s′ iff Us = Us′

. This relation defines the finite
model of S relative to U as the quotient π : S → X:=(S/ ∼, π∗OS). There
is an adjoint equivalence between the categories of quasi-coherent sheaves
(π∗, π∗) : Qcoh(S) ∼→ Qcoh(X).

Remark 2.1. Every equivalence between abelian categories is automatically
exact (and additive). In particular, all equivalences between categories of
quasi-coherent sheaves described throughout the paper preserve cohomology.

Conversely, we construct a functor Spec: FRS → LRS from finite
ringed spaces to locally ringed spaces, such that, if X is a finite model of
S, then Spec(X) � S. Explicitly, define the functor Spec(OX) : X → LRSop,
such that x 	→ Spec(OX,x) and define Spec(X) to be the limit of this functor.
If the rxy induce open immersions of schemes, we get a scheme by descent.

We define the subcategory of (finite) schematic spaces SchFin ⊂ FRS
as the category of spaces that admit a «good»theory of quasi-coherent sheaves.
In the process, we also define affine finite spaces:

Definition 2.2. A finite space (or Fr-space) is a finite ringed space with flat
restriction maps. It is said to be affine if π : X → (�,OX) induces an equiv-
alence (π∗, π∗) : Qcoh(X) ∼→ OX(X)-mod.

If X is affine, exactness of π∗ means that Hi(X,M) = 0 for all i > 0 and
M ∈ Qcoh(X). Furthermore, OX(X) → ∏

x∈X OX,x is faithfully flat, which
can be shown to characterize affine subspaces of an affine space (see [8]).
Additionally, for M ∈ Qcoh(X), we have M(X) ⊗OX(X) OX,x

∼→ Mx for
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all x. Combined with the previous faithful flatness condition, this also proves
that, for all affine open subspaces U ⊆ X, M(X) ⊗OX(X) OX(U) ∼→ M(U).

For any (finite) ringed space X, let Dqc(X) denote the derived category
of sheaves of OX -modules with quasi-coherent cohomology.

Definition 2.3. A morphism of finite spaces f : X → Y is affine if f−1(Uy)
is affine for all y ∈ Y and it preserves quasi-coherence: Rf∗M ∈ Dqc(Y )
for M ∈ Qcoh(X). It is schematic if its graph Γf : X → X × Y preserves
quasi-coherence for the structure sheaf: RΓf∗OX ∈ Dqc(X × Y ), that is

Hi(Ux ∩ f−1(Uy),OX) ⊗OX,x
OX,x′

∼→ Hi(Ux′ ∩ f−1(Uy),OX)

Hi(Ux ∩ f−1(Uy),OX) ⊗OX,y
OX,y′

∼→ Hi(Ux ∩ f−1(Uy′),OX)

for all (x, y) ≤ (x′, y′). By [7, Theorem 5.5], schematic morphisms preserve
quasi-coherence. A finite space X is schematic if Id : X → X is schematic.

Remark 2.2. It follows that schematic spaces have flat epimorphisms of rings
as restrictions maps, which are local isomorphisms [4, Prop 2.4].

SchFin has finite fibered products and the forgetful SchFin → FRS
preserves them. A schematic morphism f : X → Y is a qc-isomorphism if it is
affine and OY � f∗OX . The qc-isomorphisms define a multiplicative class of
arrows of SchFin and we denote the corresponding localization by SchFinqc.
The Spec functor factors through SchFinqc. Note that all finite models of
the same scheme are qc-isomorphic, so their construction is functorial into
this localization and qcqs schemes are embedded fully faithfully in SchFinqc.

Proposition 2.4. A schematic morphism f : X → Y is a qc-isomorphism iff
it induces an equivalence (f∗, f∗) : Qcoh(X) � Qcoh(Y ).

Proof. The «only if»part is proven in [7, Theorem 5.26]. For the converse:
from the equivalence of categories, we have f∗f∗OY � OY , so f∗OX � OY .
To prove that f−1(Uy) is affine for every y ∈ Y , we have to check that taking
global sections induces an equivalence of categories. This follows from the
fact that Uy is affine, that OY,y � OX(f−1(Uy)) by the previous argument,
and that the equivalence of the hypothesis restricts to Qcoh(f−1(Uy)) �
Qcoh(Uy) by the extension theorem for quasi-coherent sheaves [7, Theorem
4.4]. �

3. Connectedness
Topological—combinatorial—connectedness of a schematic space X does not
reflect the geometry of the locally ringed space Spec(X) that it represents.
We enhance it in this section.

Definition 3.1. Let X be a schematic space. We say that
• X is top-connected if its underlying poset is connected.
• X is connected if Spec(OX(X)) is connected.
• X is pw-connected if Spec(OX,x) is connected for every x ∈ X.
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• X is well-connected if it is connected and pw-connected.

Recall that the prime spectrum of a non-zero ring is connected if and
only if the ring has no non-trivial idempotent elements. A schematic space X
is connected if and only if Spec(X) is connected in the usual sense, since X
and Spec(X) have the same global sections. The empty set ∅ is not considered
connected. In particular, a pw-connected space has non-zero stalks.

Example 3.2. Given two rings A,B with connected spectrum, the finite space
(�,A × B) is top-connected, but not pw-connected; while (�,A)  (�,B) is
pw-connected, but not top-connected. However, (�,A)  (�,B) → (�,A × B)
is a qc-isomorphism. None of these spaces is connected or well-connected.

Proposition 3.3. A schematic space X is well-connected iff it is top-connected
and pw-connected.

Proof. The «only if»part is clear. The converse holds, because a connected
colimit of connected topological spaces {Spec(OX,x)}x∈X is connected. �

Let π0 : Top → Set denote the connected components functor. For any
finite ringed space X, we construct a pw-connected space as follows:

• As a set, pw(X) =
∐

x∈X π0(Spec(OX,x)). This set comes with a natural
projection π : pw(X) → X.

• pw(X) is endowed with the partial order defined as follows: for every
x ≤ y in X, let ϕxy : π0(Spec(OX,y)) → π0(Spec(OX,x)) denote the
map induced by the restriction morphism. Now, for α, β ∈ pw(X) with
π(α) = x and π(β) = y, we define

α ≤ β ⇐⇒ x ≤ y and ϕxy(β) = α.

This partial order makes π : pw(X) → X monotone, hence continuous.

For every x ∈ X, consider π−1(x) = {α1, . . . , αn} = π0(Spec(OX,x)).
Each connected component is affine (connected components of a locally Noe-
therian topological space are open), so αi corresponds to a non-zero ring with
connected spectrum: Aαi

x . There is a decomposition OX,x � Aα1
x ×· · ·×Aαn

x .
Furthermore, for each x ≤ y, since the continuous image of a connected

topological space is connected, the morphism ϕxy induces a unique ring ho-
momorphism Aαi

x → A
βj
y for every βj ∈ π−1(y) and αi = ϕxy(βj).

• We endow pw(X) with the sheaf of rings that for all αi with π(αi) = x

Opw(X),αi
= Aαi

x ,

and, for every αi ≤ βj with π(αi) = x and π(βj) = y, we define the
restriction morphism as the ring map Aαi

x → A
βj
y described above.

• The projection π : pw(X) → X becomes a morphism of (finite) ringed
spaces with π#

αi
: OX,x → Aαi

x being the natural projection for all αi

with π(αi) = x. If X is pw-connected, π is clearly the identity.
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This construction is functorial: given a morphism f : X → Y , the maps
f#

x : OY,f(x) → OX,x induce ψx : π0(Spec(OX,x)) → π0(Spec(OY,f(x))) for
every x ∈ X. Their disjoint union defines a continuous map

pw(f) : pw(X) → pw(X ′),

such that the following diagram is commutative:

pw(X)
pw(f) ��

πX

��

pw(Y )

πY

��
X

f �� Y.

We turn this into a commutative diagram of ringed spaces by endowing pw(f)
with the morphism of sheaves of rings, such that, with the previous notation,
for each γj ∈ π−1

Y (f(x)) and αi = ψx(γj) = pw(f)(γj)

pw(f)#γj
: Aαi

f(x) → Aγj
x

is the unique ring homomorphism defined by the same connectedness argu-
ment as the restriction morphism.

Remark 3.1. Minimal open neighborhoods are well-behaved with respect to
the projection π. Indeed, for each x ∈ X we have rx : OX,x → ∏

x′≥x OX,x′ in-
ducing a continuous map π0(r�

x) :
∐

x′≥x π0(Spec(OX,x′)) → π0(Spec(OX,x)),
where both spaces are topologized as subspaces of pw(X); hence, the target
is discrete. Now, for all α ∈ π−1(x)

Uα = π0(r�
x)−1(α).

In particular, for α, β ∈ pw(X) with π(α) = π(β) = x, Uα ∩ Uβ = ∅, that is

π−1(Ux) = Uα1  · · ·  Uαn
.

Proposition 3.4. If X is a schematic space, pw(X) is a schematic space and
the projection π : pw(X) → X is schematic and a qc-isomorphism.

Proof. First, note that π will be affine, because, by Remark 3.1, for every
x, such that π−1(x) = {α1, . . . , αn}, we have π−1(Ux) = Uα1  · · ·  Uαn

.
Furthermore, the definition of the structure sheaf of pw(X) yields

(π∗Opw(X))x = Opw(X)(Uα1 � · · · � Uαn) = Opw(X),α1 × · · · × Opw(X),αn � OX,x.

We now show that pw(X) and π are schematic (so π is a qc-isomorphism).
We begin with the former. If α, α′ ∈ pw(X) (α �= α′) verify π(α) = π(α′),
then Uα ∩ Uα′ = ∅ by Remark 3.1, and we also have that Uα ∩ Uα′ = ∅
whenever Uπ(α) ∩Uπ(α′) = ∅; so we only need to check that, for all α, α′ with
π(α) �= π(α′), Uπ(α) ∩ Uπ(α′) �= ∅ and any α′′ ≥ α′, one has

Hi(Uα ∩ Uα′ ,Opw(X)) ⊗Opw(X),α′ Opw(X),α′′
∼→ Hi(Uα ∩ Uα′′ ,Opw(X)).
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To see this, we compare the standard resolutions of Opw(X) and OX [7, After
Remark 2.14]. Denote all intersections of minimal sets by Ua ∩Ub = Uab (a, b
generic notation for points), x = π(α) and x′ = π(α′). We have

π−1(Uxx′) =
∐

αj∈π−1(x)

α′
k∈π−1(x′)

Uαjα′
k
.

For every i, denoting by CiOX the i-th degree term of the standard resolution
described in [7, Section 2.3], we have the decomposition (compatible with
differentials)

(CiOX)(Uxx′) =
∏

ti>···>t0∈Uxx′

OX,ti
�

∏

ti>···>t0∈Uxx′
βi∈π−1(ti)

Opw(X),βi

=
∏

αj∈π−1(x)

α′
k∈π−1(x′)

∏

ti>···>t0∈Uxx′
βi∈π−1(ti)
βi∈Uαjα′

k

Opw(X),βi

=
∏

αj∈π−1(x)

α′
k∈π−1(x′)

∏

βi>···>β0∈Uαjα′
k

Opw(X),βi

=
∏

αj∈π−1(x)

α′
k∈π−1(x′)

(CiOpw(X))(Uαjα′
k
),

where we have used that, by definition of π : pw(X) → X, there is an iden-
tification

{βi > · · · > β0 ∈ Uαjα′
k
} ≡ {ti > · · · > t0 ∈ Uxx′ : π(βi) = ti and βi ∈ Uαjα′

k
}.

Indeed, each βi > · · · > β0 clearly produces a chain π(βi) > · · · > π(β0)
verifying the conditions. Conversely, given π(βi) > ti−1 > · · · > t0 with
βi ∈ Uαjα′

k
, we define βj = π0(r

�
tjti

)(βi) for all j < i.
Now, since X is schematic, Hi(Uxx′ ,OX)⊗OX,x′ OX,x′′

∼→ Hi(Uxx′′ ,OX)
for all x′′ > x′, and the previous discussion implies that we have

Hi(Uxx′ ,OX) �
∏

αj∈π−1(x)

α′
k∈π−1(x′)

Hi(Uαjα′
k
,Opw(X)),

Hi(Uxx′′ ,OX) �
∏

αj∈π−1(x)

α′′
k ∈π−1(x′′)

Hi(Uαjα′′
k
,Opw(X)),

and thus, for all α, α′ < α′′ with π(α) = x, π(α′) = x′, π(α′′) = x′′

Hi(Uαα′ ,Opw(X)) ⊗OX,x′ OX,x′′ � Hi(Uαα′′ ,Opw(X)).

Since OX,x′ � ∏
α′∈π−1(x′) Opw(X),α′ , OX,x′′ � ∏

α′′∈π−1(x′′) Opw(X),α′′ , fi-
nite direct products are isomorphic to direct sums, so they commute with
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tensor products; and, by construction of π : pw(X) → X, the tensor prod-
uct Hi(Uαα′ ,Opw(X)) ⊗OX,x′ Opw(X),α′′ is non-zero—and isomorphic to the
desired one—only when α′′ ≥ α′, we conclude.

To prove that π is schematic it suffices to see that Rπ∗M is quasi-
coherent for any quasi-coherent module M [7, Theorem 5.6], i.e., that for all
x ≤ x′ in X, the morphism Hi(π−1(Ux),M)⊗OX,x

OX,x′
∼→ Hi(π−1(Ux),M)

is an isomorphism for all i. Since quasi-coherent modules on the affine space
π−1(Ux) = Uα1  · · ·  Uαn

are acyclic, the only non-trivial case is i = 0

M(Uα1 � · · · � Uαn) ⊗OX,x
OX,x′ �

( n∏

j=1

M(Uαj )

)

⊗OX,x
OX,x′

�
n∏

j=1

M(Uαj ) ⊗OX,x
OX,x′ �

n∏

j=1

∏

α′ ∈π−1(x′)∩Uαj

M(Uα′ ) � M(�α′∈π−1(x′)Uα′),

where M(Uαj
) ⊗OX,x

OX,x′ � M(Uαj
) ⊗Opw(X),αj

( ∏
α′∈π−1(x′) Opw(X),α′

)

and, as before, the only non-zero components of this tensor product are those
with α′ ≥ αj . �
Proposition 3.5. If f : X → Y is a schematic morphism between schematic
spaces, the induced morphism pw(f) : pw(X) → pw(Y ) is schematic.

Proof. The proof is routinary and similar to the last part of the previous one.
If πX and πY are the corresponding natural projections, we have to see that
for all α < α′ ∈ pw(X), β < β′ ∈ pw(Y ), denoting g = pw(f)

Hi(Uα ∩ g−1(Uβ), Opw(X)) ⊗Opw(Y ),β
Opw(Y ),β′ � Hi(Uα ∩ g−1(Uβ′), Opw(X)),

Hi(Uα ∩ g−1(Uβ), Opw(X)) ⊗Opw(X),α
Opw(X),α′ � Hi(Uα′ ∩ g−1(Uβ), Opw(X))

for all i. Since πY ◦ g = f ◦ πX , we have that

π−1
X (f−1(Uy)) = g−1

⎛

⎝
∐

β∈π−1
Y (Uy)

Uβ

⎞

⎠ =
∐

β∈π−1
Y (Uy)

g−1(Uβ).

Now, as in Proposition 3.4, one relates the sections of the standard resolution
of OX on UπX(α) ∩ f−1(UπY (β)) with those of Opw(X) on Uα ∩ g−1(Uβ).
Finally, the proof concludes using the hypothesis that f is schematic and
the decomposition of the stalk rings of OX and OY at each point. Explicit
computations are left to the dedicated reader. �

Let SchFinpw denote the subcategory of pw-connected schematic spaces.
We have seen that there is a functor pw : SchFin → SchFinpw.

Theorem 3.6. The functor pw : SchFin → SchFinpw is right adjoint to
i : SchFinpw ↪→ SchFin. The map pw(X) → X is a qc-isomorphism for
all X and verifies pw ◦ i = Id. In particular, SchFinpw

qc � SchFinqc.

Proof. It only remains to check the adjunction. If Y is pw-connected and X
arbitrary, there is a bijection HomSchFin(Y,X) � HomSchFinpw(Y,pw(X)).
Indeed, given f : Y → X, we apply pw and obtain Y = pw(Y ) → X. Con-
versely, any g : Y → pw(X) induces πX ◦g : Y → X, where πX : pw(X) → X
is the natural projection. �
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Lemma 3.7. A schematic space X is connected if and only if pw(X) is top-
connected (hence well-connected), i.e., in SchFinpw, connectedness, well-
connectedness, and top-connectedness are equivalent.

Proof. It follows from the definition of pw, Proposition 3.3 and the fact that
qc-isomorphisms preserve global sections. �
Definition 3.8. (Well-connected components) The topological connected com-
ponents of pw(X) are called the well-connected components of X. We denote
by πwc

0 (X):=π0(pw(X)) the set of well-connected components of X.

If ik : Xk ↪→ pw(X) → X is a connected component of pw(X), it is
straightforward to see that OX � ∏

k ik∗OXk
. We can adapt this construction

for sheaves of quasi-coherent algebras: let A be a quasi-coherent OX -algebra
and (X,A) → X the corresponding schematic space, which is affine over X.
The same argument gives us a decomposition A � ∏

k Ak.

Definition 3.9. (Well-connected components of a sheaf of algebras) The alge-
bras Ak just introduced are called the well-connected components of A. In
this sense, A is connected iff for every A � A1×A2, either A1 = 0 or A2 = 0.

Theorem 3.10. A schematic space X is well-connected iff for all decompo-
sitions X = X1  X2 in SchFin, either X1 or X2, are qc-isomorphic to
∅.
Proof. If X = X1X2 and X is well-connected, pw(X) = pw(X1)pw(X2)
with pw(X) top-connected by Lemma 3.7. We conclude that pw(Xi) = ∅
for i = 1 or i = 2, i.e., that Xi is qc-isomorphic to ∅. Conversely, X admits
a decomposition X = (X,O1)  · · ·  (X,Ok) with O1, . . . ,Ok the well-
connected components of OX . By the hypothesis, only one of them is non-
zero. �

4. Geometric Points
We introduce geometric points of schematic spaces. In this paper, we employ a
straightforward analogy with Scheme Theory rather than the topos-theoretic
approach. From now on, we consider spaces over (�, k) with k a field. The
functor of points of a schematic space X is its image X• in [SchFinop,Set]
via Yoneda. For any ring A we denote X•(A) ≡ X•((�,A)).

Definition 4.1. Given a schematic space X and an algebraically closed field
Ω, a geometric point (with values in Ω) is a point x ∈ X•(Ω).

Proposition 4.2. (Characterization of geometric points) A morphism
of ringed spaces x : (�,Ω) → X(� 	→ x) is a geometric point if and only
if the prime ideal p:= ker(OX,x → Ω) does not «lift»to any x′ > x; i.e., for
every x′ > x there is no prime p′ ⊆ OX,x′ , such that r−1

xx′(p′) = p.

Proof. It is a simply consequence of the definition of schematic morphism for
this particular case. The only non-trivial condition is that Ω⊗OX,x

OX,x′ = 0
for every x < x′. In other words, that the fiber of the morphism of schemes
Spec(OX,x′) → Spec(OX,x) at the point Spec(Ω) ↪→ Spec(OX,x) is empty. In
terms of rings, this is exactly the «lifting»condition of the proposition. �
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Consider pairs (x, p), where x ∈ X and p ⊆ OX,x is a prime ideal. For
every such pair, we define its residue field κ(x, p) as

κ(x, p):=(OX,x)p/p(OX,x)p. (4.1)

Proposition 4.3. If X is schematic and (x, p), (x′, p′) are pairs, such that
x ≤ x′ and p = r−1

xx′(p′), then the natural map κ(x, p) → κ(x′, p′) is an
isomorphism.

Proof. Restriction maps are local isomorphisms (Remark 2.2). �

We define the following binary relation in the set of these pairs:

(x, p) ∼ (y, q) ⇐⇒ ∃(z, r) s.t. z ≥ x, y and r−1
xz (r) = p, r−1

yz (r) = q. (4.2)

We prove that it is the equivalence relation realizing Spec(X) as a quo-
tient set of

∐
x∈X Spec(OX,x). This relies on X being schematic.

Lemma 4.4. For any (x, p) and (y, q), such that x, y ≥ s for some s ∈ X and
r−1
sx (p) = r−1

sx (q), we have (x, p) ∼ (y, q).

Proof. First, we see that Ux ∩ Uy �= ∅: otherwise, since X is schematic, we
would have OX,x⊗OX,s

OX,y = 0, i.e. Spec(OX,x)×Spec(OX,s)Spec(OX,y) �= ∅;
by Proposition 4.3, the underlying set of this scheme-theoretic fiber product
is the set-theoretic fiber product, which contradicts r−1

sx (p) = r−1
sx (q). Next,

we see that Ux ∩ Uy ⊆ Us is affine: by [7, Corollary 4.11], it suffices to prove
that it is acyclic (Hi(Ux ∩ Uy,OX) = 0 for i > 0), which holds, because
Hi(Ux ∩ Uy,OX) � Hi(Ux,OX) ⊗OX,z

OX,y � 0 for i > 0 (see comments
below Definition 2.2). This implies that the natural morphism

R� :
∐

t≥x,y

Spec(OX,t) → Spec(OX(Ux ∩ Uy))

is surjective, so there is a point z ≥ x, y and a prime r ∈ Spec(OX,z), such
that R�(r) = (p, q). The pair (z, r) verifies (4.2). �

Lemma 4.5. The binary relation of Eq. (4.2) is an equivalence relation.

Proof. Transtivity holds by Lemma 4.4. The rest is obvious. �

Corollary 4.5.1 If (x, p) ∼ (x, p′), then p = p′. Each class of pairs (x, p) has a
unique maximal representative, i.e., all (y, q) in its class verify y ≤ x.

Proof. The first part follows, since restriction maps are flat epimorphisms.
The last statement is proved by contradiction with Lemma 4.4. �

Definition 4.6. A schematic point of X is an equivalence class of pairs (x, p).
Unless stated otherwise, we identify them with their maximal representatives.

Remark 4.1. By Proposition 4.3, the residue field of a schematic point (x, p)
is well-defined up to isomorphism. We still denote it κ(x, p).



MJOM Étale Covers and Fundamental Groups Page 11 of 22 229

Proposition 4.7. Let X be schematic and Ω be an algebraically closed field.
There is a correspondence

{Morphisms of ringed spaces (�,Ω) → X} 1:1↔ {Pairs (x, p) and κ(x, p) → Ω}
that restricts to the schematic category as

X•(Ω) 1:1←→ {Schematic points (x, p) and κ(x, p) → Ω}.

Proof. For every x : (�,Ω) → X, we define x:=x(�), p:= ker(OX,x → Ω) and
the extension is obtained by factoring the map Ox,x → Ω through κ(x, p).
Conversely, for every schematic point (x, p), we define (�, κ((s, p))) → X
as � 	→ x at the level of sets and as the natural map OX,x → κ(x, p) at
the level of rings; thus, composing with (�,Ω) → (�, κ(x, p)), we obtain the
desired morphism. The second part follows from the fact that every schematic
point (x, p) has a unique maximal representative, so the morphism of ringed
spaces constructed using this representative is a geometric point according
to Proposition 4.2. �

We see that schematic points are analogous to points in the sense of
schemes. Let S be a qcqs scheme and π : S → X a finite model.

Proposition 4.8. There is a 1:1 correspondence between topological points of
S and schematic points of its finite model X

|S| 1:1←→ {Schematic points (x, p)}.

Moreover, for any algebraically closed field Ω, the projection π induces a
residue field-preserving bijection HomLRS(Spec(Ω), S) ∼→ X•(Ω).

Proof. Let s ∈ S be a point and ps ∈ Spec(OS(Us)) the ideal it defines as an
element of the affine open Us. Then, (π(s), ps) is a schematic point of X. Con-
versely, given a schematic point (x, px) of X, we have that px ⊆ OX(Ux) =
OS(Us) for any s ∈ π−1(x). This ideal determines a point of S independent
of the chosen representative of (x, px). These correspondences are mutually
inverse. From the definitions, it also follows that κ(s) = κ(π(s), ps).

Since Spec(Ω) = (�,Ω) in LRS, the second bijection is explicitly given
by composition with S → X, with inverse defined by the Spec functor. �

In general, schematic points describe |Spec(X)| = |colimx Spec(OX,x)|:

Proposition 4.9. If X is schematic, |Spec(X)| 1:1←→ {Schematic points (x, p)}.

Theorem 4.10. Let f : X → Y be a schematic morphism over k. If f is a
qc-isomorphism, then, for every algebraically closed field extension k ↪→ Ω,
the natural morphism X•(Ω) → Y •(Ω) is an isomorphism.

Proof. Consider Ψ : {Schematic points of X} → {Schematic points of Y }
with (x, p) 	→ (f(x), (f#

x )−1(p)). By Proposition 4.9, this is just the map
|Spec(f)| : |Spec(X)| → |Spec(Y )|, which is a bijection when f is a qc-iso ([7,
Proposition 6.6], where qc-isomorphisms are called weak equivalences). �
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5. The Category of Finite Étale Covers

Étale morphisms and ring maps are of finite presentation, and hence not well-
suited to work with general schematic spaces if one intends to obtain results
that mimic scheme theory (this is because the notion is not stable under qc-
isomorphisms, so functors will not factor through SchFinqc). There are two
initial ways of avoiding this problem: working with weakly étale morphisms
and defining the pro-étale topology (à la Scholze and Bhatt [1]), or exploiting
the fact that finite étale covers are affine and thus can be interpreted as
sheaves of algebras, which will behave well, because the restriction maps of
our spaces are local isomorphisms. We proceed with the second approach.

Definition 5.1. We say that a ring homomorphism A → B is pointwise-étale
if, for every prime p ⊂ A, B ⊗A κ(p) is an étale κ(p)-algebra, i.e., it is a finite
direct product of finite separable field extensions of κ(p).

Proposition 5.2. [2, I, 5.9] A ring homomorphism A → B is étale if and only
if it is flat, of finite presentation and pointwise-étale.

Remark 5.1. If A is Noetherian, an A-algebra is flat and of finite presentation
if and only if it is finite and locally free. This will be assumed to be the case.

Recall the definition of étale morphism in terms of ring homomorphisms:

Definition 5.3. A morphism of schemes f : T → S is said to be étale if for all
affine open subsets U ⊆ S and V ⊆ T , such that U ⊆ f−1(V ), the natural
ring homomorphism OS(U) → OT (V ) is étale.

It is well known that the fibers of an étale morphism f are disjoint
unions of spectra of finite separable field extensions of the residue field (which
actually characterizes étale morphisms among all flat morphisms that are of
finite presentation). Clearly, if f has compact fibers, these disjoint unions are
finite. In particular, finite morphisms of schemes have compact fibers.

Let S be a scheme and denote by FetS the category of finite and étale
morphisms to S, also known as the category of finite étale covers of S, which is
a full and faithful subcategory of Schemes/S ; and let Qcohalg(S) denote the
category of quasi-coherent OS-algebras (we shall use this notation for any
ringed space S with its natural topology). The classical relative spectrum
functor Spec

S
: Qcohalg(S) → (SchemesAffine

/S )op induces an isomorphism of
categories between Qcohalg(S) and the opposite category of affine morphisms
to S, whose inverse is given by (f : T → S) 	→ f∗OT . Since finite morphisms
are affine, this gives us a fully faithful functor

FetopS → Qcohalg(S). (5.1)

Let Qcohfet(S) denote the essential image of this functor. From the definition
of étale morphisms of schemes and the local characterization of étale algebras:
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Lemma 5.4. Let S be a scheme. A quasi-coherent algebra A lies in Qcohfet(S)
iff it is finite, flat and As ⊗OS,s

κ(s) is a finite étale κ(s)-algebra for every
s ∈ S. If this holds, then for every affine U ⊆ S, OS(U) → A(U) is étale.

Remark 5.2. It is well known that Qcohfet(S) � FetopS � Loc(Set), where
the latter is the category of finite, locally constant sheaves of sets on the
small étale site of S (which may also be considered as sheaves of Z-modules).
We will partially bring the last point of view back in Sect. 5.2.

Definition 5.5. Let X be a schematic space. A ∈ Qcohalg(X) is an étale cover
sheaf (or simply an étale cover) if it is finite, flat, and for each schematic
point (x, p), Ax ⊗OX,x

κ(x, p) is a finite étale κ(x, p)-algebra. Equivalently
(by Proposition 5.2), if OX,x → Ax is finite étale for every x ∈ X.

By Remark 2.2, this notion is well-defined. Since we are assuming quasi-
coherence, finiteness is a condition at stalks (c.f. [7, Theorem 2.8]).

Given a schematic space X, let Qcohfet(X) denote the subcategory of
Qcohalg(X) whose objects are étale cover sheaves.

Theorem 5.6. Let S be a qcqs scheme and π : S → X a finite model. The
equivalence (π∗, π∗) : Qcoh(S) � Qcoh(X) restricts to

Qcohfet(S) � Qcohfet(X).

Proof. It follows from Proposition 4.8, Lemma 5.4, the definition of étale
cover sheaf and a straightforward computation at stalks. �

5.1. Finite Locally Free Sheaves on Schematic Finite Spaces
Let A → B be a morphism of rings, such that B is finitely generated and
locally free over A. Once again, if A is Noetherian, this is equivalent to B
being finite and flat. The degree (or rank) of A → B is classically defined
to be the map deg(B) : Spec(A) → Z

+ with p 	→ rankApBp. It is continuous
and locally constant, and hence can be identified with a non-negative integer
if Spec(A) is connected. We wish to extend this notion to schematic spaces.

Now, let X be a schematic A ∈ Qcohalg(X). We know that Ax → Ay

(x ≤ y) are flat epimorphisms of rings, hence local isomorphisms. We leave
Lemma 5.7 below as an algebra exercise, which states that they are also local
isomorphisms with respect to localization at primes of OX,y.

Lemma 5.7. Let X be schematic and A ∈ Qcohalg(X). For every x ≤ y and
p ∈ Spec(Oy), one has (Ax)r−1

xy (p) � (Ay)p.

Proposition 5.8. If X is pw-connected and A ∈ Qcohalg(X) has finite locally
free stalks, there is a locally constant «degree»function deg(A) : X → Z

+,
such that deg(A)(x) = deg(Ax). In particular, if X is connected, the degree
of A is identified with an integer deg(A) ∈ Z

+.

Proof. We have to prove deg(Ax) = deg(Ay) for any two points x, y in the
same connected component. By transitivity, it is enough to see it for x ≤ y.
The result follows from Lemma 5.7 and the hypothesis on X. �
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5.2. Étale Cover Sheaves Are Locally Trivial
We use ideas of Lenstra [10, Proposition 5.2.9, p. 155] as a guide, proceeding
fiberwise with an eye on connectedness and quasi-coherence.

Definition 5.9. Let X be schematic. We say that B ∈ Qcohalg(X) is a «cov-
ering»if it is finite and faithfully flat (OX,x → Bx faithfully flat for all x ∈ X).
Equipped with this family of coverings, Qcohalg(X) becomes a cosite X fppf

Qcoh.

Remark 5.3. Cosite means that the opposite category is a site and X fppf
Qcoh is

the analogue of the fppf site of (Noetherian) schemes.

Given A ∈ Qcohalg(X), the natural morphism f : (X,A) → X induces

f∗ : X fppf
Qcoh → Afppf

Qcoh:=pw(X,A)fppfQcoh

B 	→ B ⊗OX
A.

Remark 5.4. For simplicity, we omit the pullback via pw(X,A) → (X,A).

Let X be schematic and O1, . . . ,Ok the well-connected components of
OX (Definitions 3.8, 3.9). Given a finite set F , consider the constant functor:
F : X fppf

Qcoh → Set (with A 	→ F ) and its (co)sheafification, denoted F#,
which sends A to

∐
πwc
0 (X,A) F , where πwc

0 (X,A) is the set of well-connected
components (Definition 3.8) of (X,A). Just as in the case of constant covers
in ordinary theories, it follows that F# is representable (in the sense of the
covariant functor of points) by

∏
1≤j≤k

∏
F Oj = O×n

1 × · · · × O×n
k � O×n

X ,
which is called a constant object of cardinality F (or degree n = #F ).

Remark 5.5. If X is pw-connected, pw(X,O×n
X ) → X is just X  n)· · ·  X →

X.

Definition 5.10. An object A in X fppf
Qcoh is locally constant if there exists a

covering B, such that, if B � B1×· · ·×Bn denotes the decomposition into well-
connected components of B, A ⊗OX

Bj is constant of degree nj in (Bj)
fppf
Qcoh.

Lemma 5.11. If X is well-connected, A is locally constant if and only if there
exists a covering B, such that A ⊗OX

B � Bn for some n ≥ 0 in Bfppf
Qcoh.

Proof. The «if»part is trivial. For the converse, recall that well-connectedness
implies top-connectedness and pw-connectedness (Proposition 3.3). Using the
notation of Definition 5.10, assume that n = 2, so pw(X,B) has two con-
nected components (for n > 2, the idea is identical, but the argument is
longer). We denote by B1 and B2 the corresponding connected components
of B (Definition 3.9). We have to prove that n1 = n2. Notice that, since B is
faithfully flat and X is pw-connected, (X,B) has non-zero stalks.

Claim 1 There exists some x ∈ X, such that both B1x and B2x are non-zero.
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Proof of Claim 1. Consider π : X1
B  X2

B = pw(X,B) → (X,B) → X, with
Xi

B the connected components of pw(X,B). Note that Bi = πi∗OXi
B

with
πi : Xi

B → X for i = 1, 2 and that π is surjective, because B has non-
zero stalks. Let us prove that it is injective. Assume that either B1x = 0
or B2x = 0 for all x ∈ X. Note that both cannot be zero at the same time,
because Bx �= 0. In this case π−1(x) has exactly one element for all x ∈ X by
construction, so π is injective and thus a homeomorphism. In particular, X
would be homeomorphic to a disjoint union of non-empty topological spaces,
contradicting the top-connectedness of X. We conclude that there is some
x ∈ X, such that both B1x,B2x �= 0. �
Claim 2 B1 ⊗OX

B2 �= 0.

Proof of Claim 2. Let fx : OX,x ↪→ B1x × B2x denote the natural faithfully
flat structure morphism and let fix : OX,x → Bix (for i = 1, 2) denote its
composition with the natural projections. We have a surjective morphism
f �

x : Spec(B1x)  Spec(B2x) → Spec(OX,x) and f �
ix : Spec(Bix) → Spec(OX,x)

with closed and open image for i = 1, 2. By Claim 1, there exists some
x ∈ X, such that both B1x,B2x �= 0. If for such an x, B1x ⊗OX,x

B2x = 0,
taking spectra, we would obtain f �

1x(p1) �= f �
2x(p2) for any pi ∈ Spec(Bix)

(i = 1, 2), which would imply that Spec(OX,x) = Im(f �
x) � Im(f �

1x) Im(f �
2x),

contradicting the pw-connectedness of X. �
Finally, since B1 ⊗OX

B2 �= 0, we have isomorphisms of OX -modules

(B1 ⊗OX
B2)×n1 � B×n1

1 ⊗OX
B2 � A ⊗OX

B1 ⊗OX
B2 � (B1 ⊗OX

B2)×n2 ,

from which it follows that n1 = n2, which proves the lemma. �
Lemma 5.12. Let f : A → B be a morphism of rings with ΩA|B = 0 and
I = ker(B ⊗A B → B) finitely generated. Then, there is a decomposition
B ⊗A B = C × D (of rings) with I ⊗B⊗AB C � 0, where C is a B ⊗A B-
algebra via the natural projection. Furthermore, C � B.

Proof. Since ΩA|B = I/I2 = 0, by Nakayama, there is a non-zero idempotent
e ∈ I, such that I = (e). Then, C = (B ⊗A B)/I and D = (B ⊗A B)/(1 −
e). �
Proposition 5.13. (Local triviality of étale cover sheaves) Let X be
well-connected and schematic, and then, A ∈ Qcohalg(X) is a degree n étale
cover sheaf iff it is finite locally constant (of cardinality n) as an object of
X fppf

Qcoh.

Proof. Assume A ⊗OX
B � B×n for some n > 0 (otherwise A = 0) and some

faithfully flat algebra B ∈ Qcohalg(X) (Lemma 5.11). Note that this also
implies that Ax �= 0 for all x ∈ X.

Since for every x ∈ X, OX,x → Bx is finite locally free and finiteness is
a local condition, we can assume that it is finite and free, Bx � O⊕m

X,x. Since
Ax ⊗OX,x

Bx is a finite OX,x module and it is also a finite Ax-module, Ax

is a finite OX,x-module for all x ∈ X. Finally, for a schematic point (x, p),
Ax ⊗OX,x

κ(x, p) � (Ax ⊗OX,x
Bx)⊗Bx

κ(x, p) � B×n
x ⊗Bx

κ(x, p) � κ(x, p)
×n

.
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Conversely, if A �= 0 is finite étale, it is locally trivial of constant positive
degree n. By induction over n: if n = 1, A � OX and there is nothing to
say. In general, if I = ker(A ⊗OX

A → A), which is a quasi-coherent sheaf
of ideals (Qcoh(X) is abelian) both as a sheaf of OX -modules and of A-
modules; I/I2 is the sheaf of relative differentials of OX → A, which is
trivial (at stalks) by étaleness. Since Ax is finite and finitely presented, Ix

is finitely generated, and hence, Lemma 5.12 applies and Ix = (ex) for some
non-trivial idempotent ex ∈ OX,x and Ax ⊗OX,x

Ax � Ax ×Cx for some ring
Cx. Since both the natural morphism Ax → Ax ⊗OX,x

Ax and Ax ×Cx → Cx

are finite étale, Cx is a finite étale Ax-algebra for all x ∈ X.
We sheafify the situation: define a sheaf of ideals J by Jx:=(1−ex) and

setting, for every x ≤ y, Jx → Jy to be the obvious map induced by Ix → Iy

(note that A = I⊕J as OX -modules). Since I is quasi-coherent, J is readily
seen to be quasi-coherent. Now, we consider the quotient C:=(A ⊗OX

A)/J ,
which is quasi-coherent and verifies Cx = Cx, so it is an étale cover sheaf.

By construction, C (since X is well-connected) has constant degree n−1
as a finite locally free A-algebra (and n2 − n as an OX -algebra). Consider
the qc-isomorphism pw(X,A) → (X,A) and denote by C′ the pullback of
C, which also has constant degree n − 1. By induction, there is a faithfully
flat finite algebra B′ in Qcoh(pw(X,A)) with C′ ⊗Opw(X,A) B′ � B′×n−1. Let
B be its push-forward to (X,A), which verifies C ⊗A B � B×n−1. Finally,
A ⊗OX

B � (A ⊗OX
A) ⊗A B � (A × C) ⊗A B � B × B×n−1 � B×n. �

Lemma 5.14. (Triviality of morphisms) Let X be well-connected and consider
A � O×F

X , B � O×E
X for some finite sets F,E. Any morphism f : A → B in

Qcohfet(X) is induced by composition with some map φ : F → E.

Proof. Pick x ∈ X and consider fx : Ax → Bx. Since OX,x is connected (it
has no non-trivial idempotents), it is an exercise of basic algebra to check
that fx is indeed induced by a morphism φ : F → E [5, ex. 5.11(d)]. This
pointwise argument is compatible with restrictions maps. �

6. Stability by qc-Isomorphisms

Let X be schematic. This section will reduce our study to SchFinpw.

Lemma 6.1. If A ∈ Qcohalg(X), U ⊆ X is an affine open and x ∈ U , then
A(U) → Ax is a flat ring epimorphism with A(U) → ∏

x∈U Ax faithfully flat.

Proof. It follows, since (X,A) → X is schematic and affine [7, Ex. 5.25]. �

Lemma 6.2. A sheaf A ∈ Qcohalg(X) is flat (resp. finite, étale, faithfully
flat) if and only if for every affine open U ⊆ X, the natural morphism
OX(U) → A(U) is flat (resp. finite, étale, faithfully flat). These properties
can be checked on an affine open cover.
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Proof. We prove it for flatness. The rest are carried out in a similar fashion
and left to the reader. For every such U , we have a commutative diagram

OX(U) ��

ϕ

��

A(U)

ψ

��∏
x∈U OX,x

�� ∏
x∈U Ax

,

where ϕ and ψ are faithfully flat by the previous Lemma, and thus, the result
follows, since surjectivity and exactness, hence flatness, are compatible with
direct products. For the final statement, note that if x ∈ U with U affine, we
have Ax � A(U) ⊗OX(U) OX,x and we conclude by the stability under base
change of flat and faithfully flat morphisms. �

Theorem 6.3. If f : X → Y is a qc-iso, (f∗, f∗) : Qcohalg(X) ∼→ Qcohalg(Y )
gives an adjoint equivalence of cosites f∗ : X fppf

Qcoh
∼→ Y fppf

Qcoh with adjoint f∗.

Proof. We know that (f∗, f∗) is an adjoint equivalence of categories. Further-
more, these functors preserve coverings: if A ∈ X fppf

Qcoh and A → B is a cover-
ing (finite and faithfully flat), since qc-isomorphisms are affine, f∗A → f∗B is
a covering of f∗A on Y fppf

Qcoh by Lemma 6.2. Conversely, let A → B be a cover-
ing in Y fppf

Qcoh. Since f∗A � f−1A and f∗B � f−1B due to the qc-isomorphism
assumption, f∗A → f∗B is a covering in X fppf

Qcoh. �

Corollary 6.4. If f : X → Y is a qc-iso, (f∗, f∗) : Qcohfet(X) ∼→ Qcohfet(Y ).

Proof. Apply Theorem 6.3 and Proposition 5.13; or directly Lemma 6.2. �

7. Fiber Functors and Main Result
Let X be schematic and x ∈ X•(Ω) a geometric point. We define the fiber
functor of X at x as follows, via a product in SchFinpw:

Fibx : Qcohfet(X)op → Setf

A → |pw((�,Ω) ×X (X,A))|.
This functor coincides with the one coming from schemes.

Proposition 7.1. One has the equality Fibx(A) = |Spec(Ω ⊗OX,x
Ax)|.

Proof. By étaleness, (�,Ω)×X (X,A) = (�,Ω⊗OX,x
Ax) = (�,

∏
I Ω), I finite.

Now, |pw(�,
∏

I Ω)| = |∐I(�,Ω)| = |Spec(
∏

I Ω)| = |Spec(Ω⊗OX,x
Ax)|. �

Remark 7.1. Notice that | − | : SchFinpw → Set does not factor through
SchFinpw

qc . A related and interesting open question is the following rigidifica-
tion problem: is there a subcategory C ⊆ SchFinpw such that the restriction
of | − | to C factors through the localization by qc-isomorphisms?

Let us see now that (Qcohfet(X)op,Fibx) is a Galois category. First, we
recall the general definition, whose main properties are compiled in [2,5].
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Definition 7.2. (Galois Category) Let C be a category and F : C → Setf a
covariant functor to the category of finite sets. We say that (C, F ) is a Galois
category with fundamental functor F if:

1. C has a terminal object and finite fibered products.
2. C has finite sums, in particular an initial object, and the quotients by a

finite group of automorphisms exist for every object of C.
3. Any morphism u in C can be written as u = u′ ◦ u′′ where u′′ is an epi-

morphism and u′ a monomorphism. Additionally, any monomorphism
u : X → Y in C is an isomorphism of X with a direct summand of Y .

4. F preserves terminal objects and epimorphisms, and commutes with
fibered products, finite sums, and quotients by finite groups of auto-
morphisms.

5. F is conservative.

Theorem 7.3. If X is a connected schematic space and x ∈ X•(Ω) is a geo-
metric point, then (Qcohfet(X)op,Fibx) is a Galois Category. Furthermore,
if π : S → X is a finite model and s ∈ S•(Ω) is the corresponding geometric
point (Proposition 4.8), then we have an isomorphism of profinite groups

πet
1 (S, s) � πet

1 (X, x) (7.1)

where πet
1 (X, x):=Aut[Qcohfet(X)op,Setf ](Fibx).

Proof. We can assume that X is well-connected due to Theorems 3.6, 4.10
and Corollary 6.4. For such an X, we have a well-defined notion of degree
of A ∈ Qcohfet(X) (identified with an integer). Sects. 7.1 and 7.2 below
prove that, indeed, the axioms of Definition 7.2 are satisfied in this case. The
good behaviour of quasi-coherent sheaves on schematic spaces allows us to
reduce the proof to one at stalks, where we (essentially) invoke a contravariant
version of the usual ideas for scheme theory shown in [2,5] or [10]. As such,
we just give the general idea and suitable remarks. �

7.1. Verification of the Axioms on the Category
Proposition 7.4. The category Qcohfet(X) has an initial object, finite direct
sums and products, and contravariant quotients by finite subgroups of auto-
morphisms; thus, Qcohfet(X)op verifies axioms 1 and 2 of Definition 7.2.

Proof. The initial object is OX . The direct sum is the tensor product of
algebras. Finite direct products are direct products of algebras. To construct
quotients, one may assume that X is pw-connected and consider a subgroup
G ⊆ AutOX

(A) ⊆ ∏
x∈X AutOX,x

Ax. Then, one defines

Q(A, G) : Qcohfet(X)op → Set

B 	−→ HomOX
(B,A)G,

where HomOX
(B,A)G:={f ∈ HomOX

(B,A) : φ ◦ f = f∀φ ∈ G} is the subset
of G-invariant morphisms. Up to isomorphism, the categorical quotient is a
representing object for this functor. In this case, the sheaf AG of invariant
elements defined via AG

x :={a ∈ Ax : φx(a) = a for every φ ∈ G} ⊆ Ax for
every x ∈ X; where φx : Ax → Ax is the stalk of φ at x. The proof of étaleness



MJOM Étale Covers and Fundamental Groups Page 19 of 22 229

is carried out via local triviality (Proposition 5.13), because the action of G
translates to a permutation of the fibers. �

For the third axiom, recall the following standard results:

Lemma 7.5. Let A be a ring and let C be a clopen subset of Spec(A), such
that I = I(C). Then, for every p ∈ C, (A/I)p � Ap.

Lemma 7.6. If f : A → B is étale, Supp(B) (as an A-module) is clopen.

We say that a morphism of sheaves of rings is injective (resp. surjec-
tive) if it is injective (resp. surjective) at stalks. It is clear that they are
monomorphisms (resp. epimorphisms) in Qcohalg(X), so:

Lemma 7.7. Let f : A → B be a morphism in Qcohfet(X). If f is injective
(resp. surjective), then it is a monomorphism (resp. an epimorphism).

If f : A → B is a morphism of sheaves of rings on X, then for every
x ∈ X, one has ker(f)x = Ann(Bx) (where Ann(Bx) is the annihilator ideal
of the Ax-module Bx, i.e., Ann(Bx) = I(Supp(Bx)), because Bx is a finite
Ax-module. Finally, if A and B are quasi-coherent, ker(f) is quasi-coherent.

Proposition 7.8. Any f : A → B in Qcohfet(X) can be written as f = h ◦ g
with g an epimorphism and h a monomorphism.

Proof. We have the ordinary factorization A g→ A/ ker(f) h→ B. Since ker(f)
is quasi-coherent, A/ ker(f) is a quasi-coherent algebra, g is an epimorphism
(because it is a quotient map), and h is injective at stalks by the first isomor-
phism Theorem, thus a monomorphism by Lemma 7.7. Étaleness is checked
at stalks via Lemmas 7.5 and 7.6. �

Next, we characterize monomorphisms and epimorphisms in Qcohfet(X).

Lemma 7.9. A morphism f : A → B in Qcohfet(X) is an epimorphism if
and only if for every x ∈ X, fx : Ax → Bx is an epimorphism in the category
of (flat, finite) étale algebras over OX,x.

Proof. If all the local rings verify the condition, it is clear that the global
morphism also verifies it. For the converse, it suffices to see that for any x ∈ X
and any morphism g : Bx → R (with R finite, flat, and étale over OX,x), there
exists a morphism of sheaves f : B → R, such that Rx = R, fx = g and
R ∈ Qcohfet(X). Every R determines a sheaf of algebras Rx on Ux defined as
Rx

y :=R ⊗OX,x
OX,y, with a natural morphism i∗B → Rx (where i : Ux ↪→ X

is the inclusion). By the «extension theorem»[7, Theorem 4.4], we obtain
i∗i∗B → R:=i∗Rx; which composed with B → i∗i∗B gives us the desired
map. Moreover, R ∈ Qcohfet(X), because, for y ≥ x, Ry = R ⊗OX,x

OX,y,
for any other y, Ry = Rx(Ux∩Uy) = R⊗OX,x

OX(Ux∩Uy); all the conditions
are stable under base change. �

From this Lemma and the classical theory of étale OX,x-algebras, we
get the following:
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Proposition 7.10. A morphism f : A → B in Qcohfet(X) is an epimorphism
iff fx is surjective for every x ∈ X, i.e., iff f is surjective.

Proposition 7.11. A morphism f : A → B in Qcohfet(X) is a monomor-
phism iff fx is injective for every x ∈ X, i.e., iff f is injective.

Proof. One direction is Lemma 7.7. Conversely, since Supp(Bx) (as an Ax-
module) is open and closed, then for every x ∈ X, Cx = Spec(Ax)\Spec(Bx)
defines an ideal I(Cx) ⊆ Ax . These define a quasi-coherent ideal I ⊆ A,
such that Ix = I(Cx) and A � A/ ker(f) × A/I. Denoting A0 = A/ ker(f)
and A1 = A/I, we use the fact that f is monic in

A0 × A0 × A1

π1

⇒
π2

A0 × A1 � A f→ B

to conclude that ker(f) = 0. �

Proposition 7.12. Any epimorphism f : A → B in Qcohfet(X) induces C ∼→
B, such that A � C × D.

Proof. It is the decomposition of Proposition 7.11 with C = A0, D = A1. �
Corollary 7.13. The category Qcohfet(X)op satisfies axiom 3 of Definition
7.2.

7.2. Verification of the Axioms on the Category and Functor
Proposition 7.14. The pair (Qcohfet(X)op,Fibx) verifies axiom 4 of Defini-
tion 7.2.

Proof. All the conditions are straightforward (note that Fibx has the same
expression as the fiber functor for schemes, where all these properties hold).
For the quotient, note that Spec(A)/G is Spec(AG). �
Lemma 7.15. Let X be well-connected and let f : A → B be injective in
Qcohfet(X). If deg(A) = deg(B) as OX-modules, then f is an isomorphism.

Proof. Take non-zero finite and locally free OX -modules C and D trivializ-
ing A and B as in Proposition 5.13. Their tensor product as OX -modules,
denoted G, is a covering (i.e., a faithfully flat OX -module) trivializing both
modules simultaneously. Lemma 5.14 yields that A⊗OX

G → B⊗OX
G, which

is injective due to faithful flatness, is an isomorphism. We win by faithful flat-
ness. �
Corollary 7.16. If X is well-connected, (Qcohfet(X)op,Fibx) verifies axiom
5 of Definition 7.2.

Proof. Consider u : A → B, such that Fibx(u) is an isomorphism. We have
A = A0 × A1 → A1 → B, with the first morphism surjective and the sec-
ond one injective. Since Fibx sends direct products in Qcohfet(X) to disjoint
unions, the hypothesis implies that Fibx(A1) → Fibx(A0)  Fibx(A1) is sur-
jective; hence, Fibx(A0) = ∅. Since the degree of A is constant, A0 = 0
and, in particular, u : A = A1 → B is injective. Now, since Fibx(u) is an
isomorphism, Fibx(A) and Fibx(B) have the same number of elements, i.e.,
deg(A) = deg(B) as OX -modules. We conclude by Lemma 7.15. �
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