Assessing support needs in children with intellectual disability and motor impairments: measurement invariance and group differences

V. Aguayo,1 M. A. Verdugo,1 V. B. Arias,1 V. M. Guillen2 & A. M. Amor1

1 Institute on Community Integration, Department of Personality, Assessment, and Psychological Treatments, Faculty of Psychology, University of Salamanca, Salamanca, Spain
2 Institute on Community Integration, Department of Education, Faculty of Education, University of Cantabria, Santander, Spain

Abstract

Background This study assessed the equivalence of the measurement of support needs between children with intellectual disability (ID) and children with intellectual and motor disabilities (IMD) and compared both groups in the different domains of support.

Method The Supports Intensity Scale-Children’s Version was used to assess the support needs of 713 children with ID and 286 children with IMD, mainly associated with cerebral palsy.

Results The results supported measurement invariance between the group of ID and IMD, which allowed to conduct comparison between them. Children with IMD scored higher on support needs than did children without IMD, suggesting that children with IMD needed more support than their peers without motor impairments. Furthermore, the ID levels interacted with motor impairments: at the highest levels of ID, groups tended to be similar in support needs, with high scores and low variability. The greatest differences were found in the domains of Home and Community activities.

Conclusions This study points to the across-condition of the construct of support needs in populations with intellectual and developmental disabilities. However, additional mobility impairments should be considered during the evaluation and planning of systems of support. In this regard, the Supports Intensity Scale-Children’s Version might have limitations when discriminating between samples with high support needs.

Keywords cerebral palsy, children, intellectual disability, motor impairments, SIS, support needs

According to the contemporary models of human functioning (World Health Organization 2001; Schalock et al. 2010), individuals’ health conditions are recognised to be the result of a dynamic interaction between people’s characteristics and the contexts in which they live. Support can moderate this relationship. In turn, it is assumed that the systematic and reasoned provision of support will improve the functioning of the individuals in their environment (Luckasson et al. 1992, 2002). Therefore, the evaluation and planning of required support become fundamental in intervention models within the field of intellectual and developmental disabilities (IDD).

Although every individual requires some support, the profile might vary, given that not all have the same characteristics, goals, abilities or accessibility to the
The intensity and the profile of support needed to participate in meaningful daily activities have been conceptualised as the psychological construct ‘support needs’ (Thompson et al. 2009). The support needs may differ across areas and activities of daily life, and in accordance with the type of limitations faced by individuals with IDD (Ferreira do Amaral et al. 2014; Arnkelsson and Sigurdsson 2016).

The presence of motor impairments could affect an individual’s functioning in a particular way. Major motor disabilities are often associated with severe impairments (Heineman et al. 2018). In addition, individuals with severe intellectual and motor disabilities (IMD) experience more health and behaviour problems and co-morbidities, greater restrictions on participation in significant activities and less social support (Ferreira do Amaral et al. 2014; van Timmeren et al. 2017; Ncube et al. 2018). In these cases, the assessment and provision of support that the children need become a complex process.

Individuals with cognitive and motor impairments might need specific support to promote functioning and participation, in order to overcome mobility limitations and achieve safety (Schalock et al. 2010). In adults, more severe levels of disability have been associated with higher levels of support needs (Seo et al. 2017; Shogren et al. 2017b). In children, higher degrees of cognitive impairments have been related to major disabilities in motor functioning (Yin Foo et al. 2013; van Timmeren et al. 2017). However, previous studies have not assessed how such limitations could impact the need for support for children with either mild or profound cognitive impairments.

Objectives of the present study

To analyse the impact of motor impairments on the support needs of children with IDD, two samples of children were selected: one with intellectual disability (ID; as the reference group) and one with IMD. For the IMD group, the principal diagnosis was cerebral palsy (CP), as it is one of the most frequent physical disabilities in childhood and has been associated with ID in half of the cases (Novak et al. 2012). Besides, all levels of ID are represented within the CP spectrum (Bertoncelli et al. 2019). The Supports Intensity Scale–Children’s Version (SIS-C; Thompson et al. 2016) was used to assess the support needs. The SIS-C has been widely used in the field of IDD (Thompson et al. 2018) to estimate the support that children or adolescents need to participate successfully in different areas of their daily lives (home, community, school participation, school learning, health, social and advocacy activities).

Several studies support the validity of the SIS-C for assessing support needs in children with ID (Seo et al. 2016; Verdugo et al. 2017; Shogren et al. 2017b); however, this result has not been replicated in children with IMD. To provide evidence of validity, the first research question asked whether the measurement of support needs varies between groups. A measure is invariant between groups if the scores depend on the level in the trait or state, and not on the group of membership (Wu et al. 2007). Thus, two individuals with the same level in the measured trait or state should obtain the same score, regardless of which group they belong to. Demonstrating measurement invariance is necessary to conduct unbiased and valid comparisons between groups (DeShon 2004; Sass 2011). Therefore, the first objective of this study was to test the measurement invariance to corroborate that scores obtained from SIS-C can be interpreted in the same way in children with ID and IMD.

Once the suitability of SIS-C for measuring the support needs of children with IMD has been verified, the second objective would be to investigate the impact of IMD on support needs by comparing children with and without IMD in each SIS-C dimension. We expected children with motor and cognitive impairments to have greater support needs than children with ID alone, especially in areas related to mobility and participation in home and community settings (Palisano et al. 2003; Wehmeyer et al. 2012; Heineman et al. 2018). Moreover, ID levels were expected to have some effect on the comparisons (Thompson et al. 2009), with less significant differences in support needs among children with severe or profound ID (which is also evidence of criterion validity). For children with higher support needs, the implications of the research rely on the practical utility of the SIS-C to differentiate the extent of support needs. Classifying people with IDD according to their support needs, rather than on limitations, would contribute to the promotion of the most efficient support strategies and resource allocation for support delivery services.
Method

Participants

Participants were selected through a convenience sampling procedure, in which the voluntary collaboration of Spanish centres and entities specialised in disabilities was requested. The inclusion criteria were (a) being a child or adolescent aged between 5 and 16 years and (b) having been diagnosed with ID and/or IMD. The sample was composed of 999 children and adolescents (age range = 5–16 years; M = 11; SD = 3.47) from 13 of the 17 Spanish regions. Of these participants, 63.06% were male, most lived with their parents (94.69%) and most attended special education schools (63.46%). Of the total number of children assessed, 29% had a related motor disability, mainly CP. Levels of intellectual functioning were collected from the participants’ medical records. The estimates of ID were described as mild (22.2%), moderate (32.4%), severe (26.9%) and profound (12.6%) or missing (5.9%). Another condition assessed was the presence of sensory disability, which was recorded in 5.1% of children with ID and 1.4% of children with IMD. The distribution of participants’ demographic characteristics is shown in Table 1.

Instrument

The scale used was the SIS-C (Thompson et al. 2016) adapted to Spanish (Verdugo et al. 2016; Verdugo et al. 2017). It aims to assess the extraordinary support that children or adolescents (aged 5 to 16 years) with ID, in comparison with their peers without disabilities, need to participate successfully in different activities of their daily lives.

The SIS-C consists of two sections. The first refers to extraordinary needs for medical and behavioural support. As this part of the assessment is not taken into account in the SIS-C summsscores, it will not be analysed in the present study. The second section refers to seven areas of the individuals’ lives, namely, Home living (nine items), Community and neighbourhood (eight items), School participation (nine items), School learning (nine items), Health and safety (eight items), Social activities (nine items) and Advocacy (nine items). SIS-C response format is divided into three indices: type (scores from 0 = no support up to 4 = total physical support); frequency (scores from 0 = never up to 4 = always); and daily support time (scores from 0 = less than 30 min up to 4 = more than 4 h). The total score is obtained by adding up the responses for each item; thus, higher scores reflect greater intensity of support needs.

The SIS-C is commonly administered by a qualified professional previously trained to use the scale. Respondents are informants who know the children or adolescents well. In our study, 63% of the questionnaires were answered by teachers of primary or secondary education.

Procedure

This research was conducted in accordance with the principles of the Declaration of Helsinki (World

© 2019 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd

Table 1 Descriptive statistics for the children’s characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Intellectual disabilities</th>
<th>Intellectual and motor disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td>238 (33.38%)</td>
<td>475 (66.62%)</td>
</tr>
<tr>
<td>Age cohorts</td>
<td>5–6</td>
<td>93 (13.04%)</td>
</tr>
<tr>
<td></td>
<td>7–8</td>
<td>92 (12.90%)</td>
</tr>
<tr>
<td></td>
<td>9–10</td>
<td>88 (12.34%)</td>
</tr>
<tr>
<td></td>
<td>11–12</td>
<td>126 (17.67%)</td>
</tr>
<tr>
<td></td>
<td>13–14</td>
<td>172 (24.12%)</td>
</tr>
<tr>
<td></td>
<td>15–16</td>
<td>142 (19.92%)</td>
</tr>
<tr>
<td>Home setting</td>
<td>Family home</td>
<td>685 (96.07%)</td>
</tr>
<tr>
<td></td>
<td>Residential homes</td>
<td>17 (2.38%)</td>
</tr>
<tr>
<td></td>
<td>Missing data</td>
<td>11 (1.54%)</td>
</tr>
<tr>
<td>School setting</td>
<td>Ordinary school</td>
<td>168 (23.56%)</td>
</tr>
<tr>
<td></td>
<td>Special classroom in</td>
<td>123 (17.25%)</td>
</tr>
<tr>
<td></td>
<td>ordinary school</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special education school</td>
<td>410 (57.30%)</td>
</tr>
<tr>
<td></td>
<td>Missing data</td>
<td>12 (1.68%)</td>
</tr>
<tr>
<td>Levels of intellectual disability</td>
<td>Mild</td>
<td>191 (26.79%)</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>275 (38.57%)</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>156 (21.88%)</td>
</tr>
<tr>
<td></td>
<td>Profound</td>
<td>33 (4.63%)</td>
</tr>
<tr>
<td></td>
<td>Missing data</td>
<td>58 (8.13%)</td>
</tr>
</tbody>
</table>
Medical Association 2013) and approved by the Bioethics Committee of the University of Salamanca, Spain. Personal data were collected, stored and protected (LOPD 15/1999), ensuring the confidentiality and anonymity of the participants.

For the collection of data, the research team contacted schools, nursing homes and early-care centres that worked with children with disabilities. Those interested in collaborating received detailed information about the project, and meetings were arranged to complete the scales. The informed consent was signed by the parents or guardians of each participating children at the beginning of the study. The members of the research team conducted most of the interviews, and in 20% of the cases, professionals from the organisations were also trained to be SIS-C interviewers. After the collaboration, reports with the profiles of the support needs of the children and adolescents assessed were returned whenever possible, together with a certificate of participation. This work was carried out over a 4-year project.

Data analysis

Missing data

The proportion of cases with missing data was 3.3% (data coverage of 99.6%). Consequently, pairwise deletion was used (Asparouhov and Muthén 2010).

Fit of base models and measurement invariance analysis

The measurement invariance of the SIS-C was assessed considering both item and parcels models. Regarding the item models, the complete factor model should include seven factors and 183 categorical indicators. Given the practical impossibility of fitting such a parametrised model (Morin et al. 2016), three models with 61 items each were estimated (Fig. 1): model 1A (for the items of support type), model 1B (support frequency) and model 1C (daily time of support). The models were estimated using weighted least squares with adjusted mean and variance and the software Mplus version 7.0 (Muthén and Muthén 2014). In Appendix A, we provide a sample of the Mplus syntax used to estimate the invariance models.

For the parcel model (Fig. 1, model 2), the items were grouped into parcels to analyse the complete SIS-C structure. We used parcels because of the technical difficulty of estimating a complete parameterised model (which would be defined by seven correlated dimensions, 183 loadings and 732 thresholds) and to avoid the cumulative effects of small errors of specification (Morin et al. 2016). Model 2 was estimated after verifying the correct functioning of each parcel, following the recommendations of Little et al. (2002). Each parcel was the sum of the responses to the items for each of the three measurement methods. This way, for example, the ‘Home’ dimension was measured by the sum of the responses to the items of type, frequency and daily support time required for household activities (according to the SIS-C manual to obtain raw scores of support needs; Thompson et al. 2016).

The analysis of model 2 was performed from a multitrait–multimethod (MTMM) approach, as used in Seo et al. (2016) and Verdugo et al. (2017), where seven dimensions of support needs and three method factors were specified. Each method factor was measured by the parcels referring to the method used (e.g. the method factor ‘frequency’ was measured by the parcels composed of frequency items, regardless of their substantive dimension). This model was estimated through robust maximum likelihood.

We assessed the fit of the models according to the usual recommendations (Browne and Cudeck 1992; Hu and Bentler 1999): comparative fit index (CFI) and Tucker–Lewis index (TLI) above 0.90 and 0.95 suggest good fit, respectively; and root mean square error of approximation (RMSEA) fit index below 0.08 and 0.05, indicating acceptable and good fit, respectively.

The analysis of measurement invariance of the SIS-C was performed comparing five nested models with increasing restrictions (Meredith 1993; Wu et al. 2007): (a) base model of the group of children with ID; (b) base model of the group of children with IMD; (c) configural invariance model, where the hypothesis tested was that the data had the same dimensionality and internal structure in the two groups; (d) metric invariance model, where factor loadings were equivalent between groups; and (e) scalar invariance model, where the intercepts (model 2 – parcels) or thresholds (model 1 – items) were equivalent between groups, so it was possible to compare the groups in an unbiased way. In the case of the item models (i.e. models 1A, 1B, and 1C), we...
compared the scalar model with the configural model given the ordinal nature of the raw data (Millsap and Yun-Tein 2004).

To decide on compliance with the invariance constraints, we evaluated the discrepancy in the fit of the metric and scalar models with respect to the configural model. Differences in CFI and TLI greater than −0.10 and in RMSEA greater than 0.015 suggest a substantial deterioration in the fit of the most restrictive model (Cheung and Rensvold 2002). We also consulted the Bayesian information criterion (BIC), where lower values indicate better fit, and the statistical significance of the change in the chi-square test.

Comparison of latent means

Given that the children in our study with IMD had higher levels of ID than those without motor impairments, the comparisons of support needs were performed by including the level of ID as a covariate.

Based on model 2 (parcels), we performed two types of contrast. First, we looked at a contrast...
through a model of multiple indicators and multiple causes (Brown 2006), where the presence of motor disability and the levels of ID (previously dummy coded) were used as predictors of the latent variables (Fig. 2). Second, we used specific t-tests to compare the standardised factor scores between children with ID and children with IMD for each level of ID. For the interpretation of mean differences, we consulted the statistical significance, the effect size and the distributions of the factor scores in each group.

Figure 2. Conceptual representation of the multiple indicators and multiple causes model. Note: Light-grey-shaded circles represent the seven substantive dimensions of the Supports Intensity Scale-Children’s Version; dark-grey-shaded circles represent the method factors; small white squares represent the composed parcels; and big white squares on the left represent the predictive factors. The group of children with mild intellectual disability is not represented graphically because it was the reference group for comparisons. For clarity, the error terms of the indicators have not been represented.

© 2019 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd
Results

Fit of base models and measurement invariance analysis

Table 2 shows the fit indices of model 1A (items of type), model 1B (items of frequency) and model 1C (items of daily time) in the analysis of measurement invariance. The base models for the two groups (ID and IMD) showed a good fit in type and frequency. Model 1C obtained a satisfactory fit in the case of children with IMD but was sub-optimal in the case of children with ID (RMSEA = 0.086; CFI = 0.928; TLI = 0.924). The modification indices and the standardised expected parameter changes did not reveal any source of local misfit that explained this result. The scalar invariance models did not show any relevant misfit with respect to the configurual models, suggesting the suitability of all items. The values of RMSEA, CFI and TLI did not change, nor did they improve, in models 1A and 1B. In model 1C (time), the worsening of the fit indices was irrelevant (ΔCFI = 0.001; ΔTLI = 0.002). All chi-square contrasts were significant; however, this result could be attributed to the sensitivity of the test to the sample size, rather than to the presence of substantial misfit.

The fit indices of the parcel model are shown in Table 3. Model 2 (parcels) of correlated traits–correlated methods fits reasonably well in the two groups (ID and IMD), suggesting that they were equivalent up to a scalar level. Achieving scalar invariance allows us to conduct comparisons of groups. The deterioration in fit of the scalar model with respect to the configurual one remained low (ΔRMSEA = 0.003; ΔCFI = −0.003; ΔTLI = −0.003; ΔBIC = 9); however, the chi-square value suggested that the model fit had worsened.

Comparison of latent means

The fit of the multiple indicators and multiple causes model was sufficient to allow the interpretation of the results (RMSEA = 0.063; CFI = 0.973; TLI = 0.961). The differences of means in each factor expressed in effect sizes can be observed in Figure 3.

The differences between children with ID and children with IMD were significant and varied according to the support domains. The effect sizes ranged from 1.14 in the A factor (Home) to 0.65 in the G factor (Advocacy). This result suggests that the presence of motor disabilities affects the support needs scores, increasing them significantly. These differences remained significant ($P < 0.05$) when the levels of ID were included as a covariate. Age did not show any significant effect ($P < 0.05$). The differences in effect sizes between children with ID and children with IMD ranged between moderate (factors Home, Community and School participation), low (School learning and Health) and very low (Social and Advocacy).

Specific contrasts were made to compare the standardised means of support needs of children with ID and children with IMD, considering the different types of support needs: Daily time, Frequency, Type. The differences of means in each factor expressed in effect sizes can be observed in Table 4.

Table 2 Fit indices for the measurement invariance models of the items

<table>
<thead>
<tr>
<th>Measure</th>
<th>Model</th>
<th>RMSEA (CI)</th>
<th>CFI</th>
<th>TLI</th>
<th>χ^2</th>
<th>χ^2 diff. test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base ID</td>
<td>0.062 (0.060–0.062)</td>
<td>0.975</td>
<td>0.973</td>
<td>6489</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Base IMD</td>
<td>0.042 (0.039–0.045)</td>
<td>0.988</td>
<td>0.987</td>
<td>2632</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Configural</td>
<td>0.053 (0.052–0.055)</td>
<td>0.981</td>
<td>0.980</td>
<td>8427</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Scalar</td>
<td>0.051 (0.050–0.052)</td>
<td>0.982</td>
<td>0.982</td>
<td>8561</td>
<td>557 ($P < 0.01$)</td>
</tr>
<tr>
<td>Frequency</td>
<td>Base ID</td>
<td>0.054 (0.053–0.056)</td>
<td>0.979</td>
<td>0.978</td>
<td>5412</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Base IMD</td>
<td>0.037 (0.033–0.040)</td>
<td>0.990</td>
<td>0.990</td>
<td>2417</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Configural</td>
<td>0.045 (0.044–0.047)</td>
<td>0.986</td>
<td>0.985</td>
<td>7105</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Scalar</td>
<td>0.043 (0.042–0.045)</td>
<td>0.986</td>
<td>0.986</td>
<td>7186</td>
<td>417 ($P < 0.01$)</td>
</tr>
<tr>
<td>Daily time</td>
<td>Base ID</td>
<td>0.086 (0.084–0.088)</td>
<td>0.928</td>
<td>0.924</td>
<td>10 944</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Base IMD</td>
<td>0.060 (0.057–0.063)</td>
<td>0.976</td>
<td>0.975</td>
<td>3528</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Configural</td>
<td>0.075 (0.074–0.076)</td>
<td>0.952</td>
<td>0.950</td>
<td>13 286</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Scalar</td>
<td>0.073 (0.072–0.074)</td>
<td>0.951</td>
<td>0.952</td>
<td>13 647</td>
<td>966 ($P < 0.01$)</td>
</tr>
</tbody>
</table>

Note: ID, intellectual disability; IMD, intellectual and motor disability; RMSEA (CI), Root mean square error of approximation (confidence interval); CFI, comparative fit index; TLI, Tucker–Lewis index; χ^2, chi-square; χ^2 diff. test, χ^2 difference testing.
Children with IMD scored higher on support needs than children without IMD, suggesting that children with IMD needed more support than their peers without motor impairments. The differences between groups varied depending on the support domain: higher in Home, Community and School Participation and moderate in the case of School Learning and Health, while the two groups could not be statistically differentiated on Social and Advocacy.

Furthermore, the differences in latent means were based in part on an interaction with the levels of ID. The greatest discrepancies between groups were found for mild ID and moderate ID, much less for severe ID and mostly absent for profound ID, indicating that groups tended to be similar in support needs at the highest levels of ID. The variability of the SIS-C scores provided additional information to interpret this finding. At the mild level, the dispersion of the IMD group was greater than that of the ID group; however, in the cases of profound ID, all scores were concentrated in a range of only 0.5 standard deviations. This fact leads to an alternative interpretation of the non-existence of mean differences: the SIS-C has a strong ceiling effect, so it may not be sensitive to true variations in support needs at higher levels of ID.

Discussion

In the first part of the present study, we assessed the equivalence of the support needs of children with ID and children with IMD in terms of measurement invariance. The results indicated invariance at the scalar level, in both item and parcel models, suggesting that the two groups answered similarly to the SIS-C and that the same items could be used to assess support needs in both samples. This result suggests that the SIS-C is a valid instrument to assess the support needs of people with IDD, regardless of levels of ID. Figure 4 shows the effect sizes and the distributions of the factor scores. Appendix B includes the differences in effect sizes and their statistical significance, according to the results of the \(t \)-tests.

Table 3 Fit indices for the measurement invariance models of the parcels

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSEA (CI)</th>
<th>CFI</th>
<th>TLI</th>
<th>SB-(\chi^2) diff. test</th>
<th>BIC</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base ID</td>
<td>0.056 (0.051–0.062)</td>
<td>0.984</td>
<td>0.977</td>
<td>—</td>
<td>84,674</td>
<td>—</td>
</tr>
<tr>
<td>Base IMD</td>
<td>0.076 (0.067–0.085)</td>
<td>0.956</td>
<td>0.936</td>
<td>—</td>
<td>31,652</td>
<td>—</td>
</tr>
<tr>
<td>Configural</td>
<td>0.062 (0.058–0.067)</td>
<td>0.976</td>
<td>0.965</td>
<td>—</td>
<td>116,498</td>
<td>Yes</td>
</tr>
<tr>
<td>Metric</td>
<td>0.062 (0.058–0.067)</td>
<td>0.973</td>
<td>0.965</td>
<td>95 (32) (P < 0.01)</td>
<td>116,465</td>
<td>Yes</td>
</tr>
<tr>
<td>Scalar</td>
<td>0.065 (0.061–0.070)</td>
<td>0.970</td>
<td>0.962</td>
<td>164 (43) (P < 0.01)</td>
<td>116,474</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: ID, intellectual disability; IMD, intellectual and motor disability; RMSEA (CI), root mean square error of approximation (confidence interval); CFI, comparative fit index; TLI, Tucker–Lewis index; \(\chi^2 \), chi-square; SB-\(\chi^2 \) diff. test, Satorra–Bentler \(\chi^2 \) difference test; BIC, Bayesian information index; CT, constraint tenable.
the presence of secondary disabilities. Similar findings have been observed in studies conducted on adults (Bossaert et al. 2009; Kuppens et al. 2010; Smit et al. 2011; Arnkelsson and Sigurdsson 2016) and children with ID and autism (Shogren et al. 2017a; Shogren et al. 2017b).

In the second part of the study, we compared the samples of children with ID and children with IMD to explore the influence of motor impairment on support needs. As differences in support needs could result from other factors, such as age or level of ID (Thompson et al. 2009; Kuppens et al. 2010; Shogren et al. 2015), we controlled for their effect before making comparisons. We observed that age affected the two samples similarly, which corroborates the results of previous studies conducted with children (e.g. Shogren et al. 2017b). However, the level of ID had an interaction effect in the presence of motor disability. In general terms, we observed that the support needs were higher in children with IMD, but at the more severe level of ID, these effects were less apparent.

The effect of the interaction between ID levels and motor disability on support needs might be explained in two main ways. First, it is possible that the SIS-C has a ceiling effect, such that children with severe/profound ID all receive very high scores on the scale, thus making it impossible to discriminate scores of support needs. A second possible explanation is that more severe levels of disability are associated with higher levels of support needs, as has been concluded in other investigations (Seo et al. 2017; Shogren et al. 2017b; Bertoncelli et al. 2019). In severe impairments, motor and cognitive limitations appear much related to each other (Heineman et al. 2018); support needs are extensive, and support must be provided on an...
ongoing basis. However, in lower levels of severity, the support needs of children with IMD could be higher than in children with ID, requiring more support from the environment than the ID group need. This might explain the differences according to mild or profound ID levels.

The scores of the group with IMD were higher than those of the group with ID, but these discrepancies were shown in specific support domains: moderate differences in Home and Community; moderate low differences in School Participation, School Learning and Health; and non-significant differences in Social and Advocacy. This finding is consistent with those obtained in adult populations. Wehmeyer et al. (2012) found that their participants with physical disabilities scored higher in ‘Home Living’, ‘Community Living’ and ‘Health and Safety’. Riches et al. (2009) used the I-CAN, another measure of support needs, and found that three of the domains with the greatest support needs were ‘Self-Care and Domestic Life’, ‘Community’ and ‘Social and Civic Life’.

The main differences in support needs occurred in those domains that were most related to mobility and participation in home and community. This result emphasises the role of the environment in the evaluation of supports for children with motor impairments, where the use of assistive technologies could be decisive to ensure independence. However, several studies have observed the lack of use of these technologies (Boot et al. 2018). Palisano et al. (2003) found that a large percentage of children with CP and reduced mobility were transported at home, suggesting total needs of support in that setting, and Bryant et al. (2012) concluded that individuals with IDD did not have assistive technology devices at their disposal as support. The higher need of technology for mobility, but lack of availability, might explain the differences between children with high and low levels of ID.

The findings in the other domains can be considered in diverse ways. Discrepancies in the Health domain may be because individuals with mild/moderate ID have a different physical health pattern than those with higher ID levels, who also exhibit other disabilities (e.g. epilepsy) (van Timmeren et al. 2017). As most of the sample (63.4%) attended segregated special education schools, the minor differences found in the areas related to the school context could have been influenced, given that the majority in the sample of children with IMD was part of this group and this fact limited variability related to environments. Fewer discrepancies in social support needs can be attributed to the fact that these activities are more related to the level of cognitive impairments than to motor impairments (Tan et al. 2016).

Finally, it is necessary to address the sub-optimal fit of model 1C (time of support). One interpretation of this result may refer to the content of the items. Support time for activities that follow a stable routine (e.g. dressing) may be easier to estimate accurately than for occasional activities (e.g. shopping). This could cause systematic noise and, consequently, a worsening of the model fit. Likewise, items involving the person being transported appear to depend more on the time the caregiver performs the activity than on the needs of the child. Another interpretation is related to the rating scale of the SIS-C. Some authors (e.g. Verdugo et al. 2017) have suggested that it is possible that the response categories need to be revised to reflect shorter increments of time or even transformed into continuous open-ended scales.

Limitations

The present study had some limitations. We only considered children with CP as a comparison group, because this is the most frequent physical disability in childhood (Novak et al. 2012). We did not find other diagnoses of IDD. The reason is that serious cognitive impairments appear highly related to motor impairments (Heinemann et al. 2018; Bertoncelli et al. 2019), and it is difficult to establish a clear diagnosis between them (Appleton and Gupta 2019; McKenzie et al. 2019). However, when evaluating support needs, functional assessments should be prioritised, as their objective is the development of individualised plans. In this sense, our work is novel, given that it identifies support needs associated with the presence of motor disabilities in addition to ID.

The second limitation is that we did not assess the variation of motor involvement in the CP group. The most recognised classifications for this purpose are the Gross Motor Function Classification System (Palisano et al. 2008), which classifies the children’s mobility performance, and the Manual Ability Classification System (Eliasson et al. 2006), which classifies children’s ability to handle objects in daily life. Different studies had associated the highest levels

© 2019 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd
of motor impairment with moderate/severe ID. As we know that the highest levels of cognitive impairment are associated with greater motor impairments (Delacy and Reid 2016; Reid et al. 2018), it was expected that our group would mostly exhibit high levels of functional limitation (i.e. Gross Motor Function Classification System III/V and Manual Ability Classification System II/VI).

We did not assess the influence of environmental factors on support needs. Several studies demonstrated that the participation of children with CP is affected by the presence of negative attitudes, inadequate social support and lack of transport accessibility (Imms 2008; Shih et al. 2018). In addition, for children with severe motor impairments, the lack of stimulation in the environment and exploration behaviours can influence cognitive and social competence. These factors probably provide a better explanation of the differences in support needs than the disability conditions.

Implications for practices and future research

The practical implications of our work relate primarily to the use of SIS-C for classification purposes and the development of individualised support plans. First, our results suggest that SIS-C is a valid tool for assessing the support needs of children with ID and IMD, so support teams can use it when developing individualised plans. Second, we provide evidence that support needs can be measured equivalently in children with ID and IMD. Consequently, the SIS-C results may be used to make comparisons or classifications between those groups, not defined by the deficit, but based on the level of supports they need. Third, while the evaluation of supports does not guide an effective provision of supports, the translation of that evaluation into support strategies does. Thus, the fact that the greatest mean differences are related to the home and the community settings emphasises the need for adaptations in these environments to ensure the participation of all children. Complementary assessments of environmental factors and individual and family quality of life should be added to the SIS-C to ensure the achievement of the child’s meaningful goals.

The present study underpins the need of standardised assessment tools for children with greater support needs. Further studies should evaluate the validity of sets of items for high support needs in different domains, especially those related to participation in home and community life. The knowledge about their needs is useful to inform work teams and provide support strategies that improve the quality of life of individuals with IDD (Schalock and Verdugo 2012; Mensch et al. 2019; Schalock 2018). Likewise, we consider that efforts should be made to identify the support required for children with high needs to enhance their participation in the daily environments.

Acknowledgements

We are thankful to the effort and time of professionals and families who have voluntarily collaborated and participated in the present study.

Conflict of interest

No conflicts of interest have been declared.

Source of Funding

This work was supported by the Ministry of Education and Professional Training, Spain (Ministerio de Educación y Formación Profesional FPU14/01468) and the Ministry of Economy, Industry and Competitiveness, Spain (Ministerio de Economía y Competitividad PSI2012/36278 and PSI2015/65193-P).

References

Motor impairments and support needs

© 2019 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd

Appendix A.: Example of Mplus Syntax Used to Estimate the Invariance Models

!MPlus syntax for CTCM configural model

VARIABLE:
NAMES ARE PC
 A_T A_F A_D
 B_T B_F B_D
 C_T C_F C_D
 D_T D_F D_D
 E_T E_F E_D
 F_T F_F F_D
 G_T G_F G_D;
USEVARIABLES ARE
 A_T A_F A_D
 B_T B_F B_D
 C_T C_F C_D
 D_T D_F D_D
 E_T E_F E_D
 F_T F_F F_D
 G_T G_F G_D;
MISSING ARE ALL (99);
GROUPING IS CP (0 = NO 1 = YES);
MODEL:
 FA BY A_T* A_F* A_D*;
 FB BY B_T* B_F* B_D*;
 FC BY C_T* C_F* C_D*;
 FD BY D_T* D_F* D_D*;
 FE BY E_T* E_F* E_D*;
 FF BY F_T* F_F* F_D*;
 FG BY G_T* G_F* G_D*;
 TIME BY A_D* B_D* C_D* D_D* E_D* F_D* G_D*;
 FREQUENCY BY A_F* B_F* C_F* D_F* E_F* F_F* G_F*;
 TYPE BY A_T* B_T* C_T* D_T* E_T* F_T* G_T*;
[A_T-G_D];
[FA-FG@0];
[TIME-TYPE@0];
FA-FG@1;
TIME-TYPE@1;
TIME WITH FA-FG@0;
FREQUENCY WITH FA-FG@0;
TYPE WITH FA-FG@0;
ANALYSIS:
 TYPE IS GENERAL;
 ESTIMATOR IS MLR;
 ITERATIONS = 1000;
 CONVERGENCE = 0.00005;
 OUTPUT: STANDARDIZED;

!MPlus syntax for CTCM metric model

MODEL:
 FA BY A_T A_F A_D;
 FB BY B_T B_F B_D;
 FC BY C_T C_F C_D;
 FD BY D_T D_F D_D;
 FE BY E_T E_F E_D;
 FF BY F_T F_F F_D;
 FG BY G_T G_F G_D;
 TIME BY A_D B_D C_D D_D E_D F_D G_D;
 FREQUENCY BY A_F B_F C_F D_F E_F F_F G_F;
 TYPE BY A_T B_T C_T D_T E_T F_T G_T;
 [A_T-G_D];
 [FA-FG@0];
 [TIME-TYPE@0];
FA-FG@1;
TIME-TYPE@1;
TIME WITH FA-FG@0;
FREQUENCY WITH FA-FG@0;
TYPE WITH FA-FG@0;
ANALYSIS:
 TYPE IS GENERAL;
 ESTIMATOR IS MLR;
 ITERATIONS = 1000;
 CONVERGENCE = 0.00005;
 OUTPUT: STANDARDIZED;
FA-FG@0; TIME-TYPE@0;!

MPlus syntax for CTCM scalar model

MODEL:
FA BY A_T A_F A_D;
FB BY B_T B_F B_D;
FC BY C_T C_F C_D;
FD BY D_T D_F D_D;
FE BY E_T E_F E_D;
FF BY F_T F_F F_D;
FG BY G_T G_F G_D;
TIME BY A_D B_D C_D D_D E_D F_D G_D;
FREQUENCY BY A_F B_F C_F D_F E_F F_F G_F;
TYPE BY A_T B_T C_T D_T E_T F_T G_T;
TIME WITH FA-FG@0;
FREQUENCY WITH FA-FG@0;
TYPE WITH FA-FG@0;
A_T-G_D;
[FA-FG@0];
[TIME-TYPE@0];
MODEL YES:
A_T-G_D;
[FA-FG*];
[TIME-TYPE*];

Appendix B.: Effect Sizes of Latent Mean Differences in Support Needs

<table>
<thead>
<tr>
<th>Factors</th>
<th>Levels of intellectual disability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>A. Home</td>
<td>0.72 (0.00)</td>
</tr>
<tr>
<td>B. Community</td>
<td>0.55 (0.00)</td>
</tr>
<tr>
<td>C. School participation</td>
<td>0.59 (0.00)</td>
</tr>
<tr>
<td>D. School learning</td>
<td>0.36 (0.00)</td>
</tr>
<tr>
<td>E. Health</td>
<td>0.48 (0.00)</td>
</tr>
<tr>
<td>F. Social</td>
<td>0.22 (0.21)</td>
</tr>
<tr>
<td>G. Advocacy</td>
<td>0.28 (0.12)</td>
</tr>
</tbody>
</table>

Note: Numbers between brackets refer to statistical significance of the latent mean differences.

Accepted 2 August 2019