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Chapter 1

Introduction

Oblivious transfer, or OT, is a communication scheme that dates back to 1982. It was
Michael O. Rabin who presented the first OT protocol in [16]. He wanted to solve the
exchange of secrets problem. That mentioned problem is as follows: in a communication
scheme with a sender Alice and a receiver Bob, both parties wish to exchange some
secrets they own, because each one’s secret is owned by the other party. For example,
let us suppose that Alice has a secret sa, which is Bob’s password to a file, and Bob has
another secret sb, which is Alice’s password to a file. They want to open their files, but
if they use a wrong password, the file is destroyed. They wish to send those secrets to
the other party without no one else participating on the exchange, so there is no other
party who is able to know the value of the secrets. Rabin’s idea was to guarantee that
the secrets are received by the other party correctly, so they can open and read their
respective files. That is, Alice receives sb, and Bob sa. Therefore, he wanted to guarantee
that Alice does not change the value of sa, neither Bob changes the value of sb. If any of
them changed the value before sending it, and the other party tried to open its file with a
wrong password, then the file would be destroyed and the other party would notice about
it.

How to solve the problem looks simple, but just if Alice and Bob behave as it is
supposed they should. Nevertheless, both parties can cheat the other one in some different
ways. Let us suppose that Alice sends Bob a secret s ̸= sa, and Bob sends Alice his secret
sb. When Bob uses secret s for opening his file, it will be destroyed because the password
is incorrect. However, Alice will be able to open her file with the correct password and
read it. If this happened, Bob could open a case against Alice, and it seems like he would
win. But Alice could say that Bob did not use the secret she had sent him, and she could
also reveal the value of sa so that anyone could then open Bob’s file.

Also, any of the parties could decide to stop its participation on the protocol after
receiving its password, and that party would have received its secret, but the other party
would have not. We would be, indeed, in a similar situation as we were before.

Michael O. Rabin presented a protocol, that was called Oblivious transfer, for solving
this problem, the exchange of secrets problem. The protocol is called Oblivious transfer
because the involved parties do not know certainly if the other party opened the file or
not, that is, Alice is oblivious about Bob reading file or not, and Bob is oblivious about
Alice opening hers. Along the project, Oblivious transfer is studied as it evolved through
the years.

Firstly, in Chapter 2 we expose a brief introduction to cryptography, and we present
the main ideas that we are going to need and use in several occasions along this project.
They were all read on [4, 7, 15, 12].

In Chapter 3, the first OT protocol presented by Michael O. Rabin in [16] is explained.

1



CHAPTER 1. INTRODUCTION 2

Then, we present a development of that protocol, [17], which was defined for the first
time in 1985 in [5], by Shimon Even, Oded Goldreich, and Abraham Lempel, and uses
cryptographic algorithms. This protocol has a difference with the one presented by Rabin.
In this case, Alice has two secrets and sends them to Bob. Then, Bob can just look at one
of those values. Alice will know nothing about the value Bob selected, and Bob will know
nothing about the value of the other option he had. Moreover, we define the different
types of players: semi-honest players (they are not going to try to cheat, but if they can,
they will private information about other players) and malicious players (those who try
to cheat). Completely honest players are not considered in real life, but they will be part
on ideal models, where the theoretical ideas of the protocol are defined, and everything
is perfect. We will be considering Alice and Bob as semi-honest players until we define
all protocols secure against this type of player. Also, we implement OT as a two-party
computation, which consists on evaluating a function by Alice and Bob, such that neither
of them knows the other one’s input, Alice gets no output, and Bob gets the output of
the function. Later, an exclusive-or, XOR, function is evaluated, because it is going to
be used in other chapters.

Chapter 4 presents another development of the Oblivious transfer, the 1-out-of-n OT
protocol, [13, 18], in which Alice sends Bob n messages and he can just select one of them.
Since we are still defining an OT protocol, Alice knows nothing about the value that Bob
selected, and Bob knows nothing about the values of the messages he did not select. This
was presented for the first time in 1987 by G. Brassard, C. Crépeau, and J.-M. Robert
in [3]. In this chapter we show two different ways of implementing the protocol, and
conclude that one of them is computationally easier.

Chapter 5 introduces commitment protocols and zero-knowledge proofs, taken from [9].
With these procedures we explain how different Oblivious transfer protocols are defined
using these aspects. Although the constructions here shown are really interesting, I was
not able to find the extended version of the mentioned paper, [9], and the constructions
of the latter protocols are briefly defined due to the lack of bibliography.

As we have mentioned, we were going to consider Alice and Bob as semi-honest players
until we defined all protocols secure against semi-honest players. At this point we will have
already explained protocols secure against semi-honest players. Therefore, in Chapter 6
we focus on malicious players and how to deal with them, exposing how we can implement
any Oblivious transfer protocol that involves malicious players. We will show that, even
if any of the players tries to cheat, the player will not be able to do it. The main idea is
to force players to follow the steps of the protocol such that if they do not do it, they can
not participate in the execution. Therefore, our protocols are secure against any type of
players, which was read in [6].

Although all the theoretical ideas are interesting to study, Oblivious transfer protocols
can be implemented into daily life. Therefore, Chapter 7 shows some uses of the described
algorithms and how they are implemented. In short, Oblivious transfer has become really
useful for creating databases, and for polynomial evaluation ([13]).



Chapter 2

Preliminaries

The notions used along this chapter have been selected from [4, 7, 15, 12].

2.1 Cryptography

When we talk about crytography, we refer to a branch of information theory. It studies
how to transmit information between a sender and a receiver through a channel. Cryptog-
raphy transforms ordinary text into unintelligible text (encrypt) and vice-versa (decrypt).
With this process, a message is transmitted such that just the legitimate receiver can re-
ceive and read it. If any third party wishes to intercept the messages, it will not be able
to do it.

We can easily make a distinction: symmetric and asymmetric cryptography.

• Symmetric cryptography: this is the most ancient cryptography, and it is also called
secret key cryptography. In this type of cryptography a sender and a receiver share
a password which they use for encrypting and decrypting their messages. This pass-
word is unique for each pair of participants. That is, if we consider a protocol where
there are more than one pair, each one will have a shared secret password. Further-
more, for establishing that password, a secure channel must previously be defined.
Computationally, these protocols are usually easier to compute because the alge-
braic operations they need are simpler than the ones in asymmetric cryptography.
Nevertheless, they use a huge number of repetitions and the keys are enormous.

• Asymmetric cryptography: it is also called public key cryptography and the pro-
tocols we are working with belong to this section. The sender and the receiver
have got two keys each one. One of the keys is public, and everybody performing
the communication knows it. The other key is secret, and just the owner of the
key knows it. These protocols do not assume the existence of a secure channel for
sending information. Computationally, these type of protocols are more complex
because, although they use a lower number of operations, those operations are more
complex than the ones in symmetric cryptography, and that is what makes them
hard to compute.

Definition 2.1 (Public key cryptosystem scheme (PKCS)). A public key cryptosystem
scheme is an asymmetric cryptosystem for sending messages between a sender and a
receiver in which each participant has a private and a public key. The public key is
known by all participants, and it is used for encypting the messages they want to send
to the other participant. The secret key is just known by the owner, and it is used for
decrypting the messages it receives.

3



CHAPTER 2. PRELIMINARIES 4

A public key cryptosystem scheme consists of three algorithms, Gen,Encrypt and
Decrypt, that work as follows:

1. Gen is an algorithm that outputs (p, s), the public and secret key, respectively.

2. Encrypt(m, p) encrypts the message m using the public key p.

3. Decrypt(c, s) decrypts the cyphertext c using the secret key s.

PKCS are usually used for transmitting a message. The original message, without
the encryption, is sometimes called plaintext. A protocol is said to behave properly if it
verifies correctness and security.

Definition 2.2 (Correctness). A public key cryptosystem is correct if the decrypted
message is equal to the original one. That is, for every original message m, it verifies
that, for every pair of public-private key (p, s),

Decrypt(Encrypt(m, p), s) = m (2.1)

Definition 2.3 (Security). A public key cryptosystem is secure if just the receiver of the
message can read it. Also, no secret key is revealed to any party.

2.1.1 ElGamal Protocol

ElGamal is a PKCS we are going to be using this protocol along the project. It is
considered interesting in research and applications. The security of this method is based
on the Decisional Diffie-Hellman assumption, which is considered a hard problem.

Let us consider a multiplicative cyclic group Fp, where p is a prime number and
the order of the group, and let us denote g ∈ Fp as a generator. This means that
Fp = {1, g2, g3, ..., gp−1}, and gp = 1.

Definition 2.4 (Decisional Diffie-Hellman assumption). Suppose two numbers a, b ∈
Fp independently chosen. The decisional Diffie-Hellman (DDH) assumption states that,
given ga and gb, we can not distinguish them from the value of gab, and we say it is
indistinguishable from a random element in Fp.

ElGamal is a PKCS which a sender and a receiver use to exchange messages. We
will call the sender A(lice) and the receiver B(ob). Alice and Bob have, each one, a pair
public-secret key, and they wish to exchange some messages. This algorithm works as
follows:

Algorithm 2.5 (ElGamal cryptosystem).

1. A random prime number p and a generator g ∈ Fp are fixed.

2. Alice and Bob select their private key. They are random numbers sA and sB such
that 1 < sA, sB < p− 1.
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3. The elements gsA and gsB are the public keys for Alice and Bob. Those values and
g, p are published in a list.

4. Alice chooses randomly a value k ∈ Fp and sends a message to Bob, n ∈ sB. Alice
computes gk and, using the public key’s list, also computes n(gsB)k.

5. Alice sends (gk, n(gsB)k).

6. Bob receives two numbers, (x, y). Using his private key, he calculates xsB . Then,
he performs the operation y(xsB)−1. This value is the same as the original message.

This protocol guarantees correctness, because the decrypted message is the same as
the initial one, and it also guarantees security, which holds under the DDH assumption.

2.2 Turing Machines

We need to briefly define Turing machines because we will need them for defining some
other ideas in the following sections of this chapter. Moreover, Turing machines are some-
times used as an element of the communication scheme.

Definition 2.6 (Turing machine). A deterministic Turing Machine is a tuple T = (Q,Σ, δ, q0, s)
where:

• Q is a finite set of states, and q0 ∈ Q is a distinguished element called the initial
state.

• Σ = {0, 1,#} is the alphabet we are using and its elements are written on a tape,
where the symbol # means a blank space.

• δ is a function

δ : Q× Σ −→ Q× Σ× {L,R,N}
(q, i) 7−→ (q′, i′,m)

that, for each pair of inputs (q, i), associates a new state q′ ∈ Q, an overwrite symbol
i′ ∈ Σ, and a movement m ∈ {L,R,N} on the tape the machine is reading. L is a
movement to the left, R is a movement to the right, and N is not to move.

• s is a stop criterion.

The domain of the function δ is not the whole Q × Σ, therefore, there exist some
elements (q, i) ∈ Q × Σ for which δ(q, i) does not exist. Accordingly, a Turing Machine
can be defined as a finite set of elements (q, i, q′, i′,m) such that δ(q, i) = (q′, i′,m).

With the definition of a Turing machine, we have now to interpret what it means. The
machines have a tapehead that moves along a tape. The tapehead reads and writes over
that tape. Each tape has a finite number of elements from the alphabet Σ = {0, 1,#}.
Every tape can be filled with blank spaces on its sides, transforming it to an infinite tape.
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qi

↓

· · · # # 1 0 0 1 1 0 # # 1 0 # # · · ·

In each step, the tapehead in placed over a position, and there it reads a symbol i
from the tape. Suppose q is the state in which the tapehead is. Then, δ(q, i) = (q′, i′,m)
means that the tapehead writes i′ over i, makes a movement m (L, R or N), and changes
its state to q′. The tapehead will always start reading (or writing) in the leftmost symbol
different to the blank space from the tape. The final state of a Turing machine is an
element q ∈ Q such that (q, i) /∈ Dom δ, for any i ∈ Σ, and it verifies the stop criterion.
Moreover, a Turing machine recognizes a tape if, starting from its initial state q0, the
machine stops at some final state when reading (or overwriting) the tape.

Furthermore, there also exist nondeterministic Turing machines. The difference is that
in nondeterministic Turing machines there are two tapes, one that the machine reads and
it always moves to the right, and other one where it writes. The tape the machine reads
is called random tape, because the elements from the alphabet are randomly written over
it, but not the blank space, and it introduces a random decision for each step. Then, the
machine writes over the other tape, which it is simply called tape. The probability for the
machine to make a mistake, that is, it does not recognize the random tape, is called the
error probability and it is bounded by a constant. In nondeterministic Turing machines
there are a set of possible movements, because there is a probability of the random tape
to be recognized. Therefore, there will be a set of possible final states, so the computation
of the machine is a tree of states that can be reached from the initial one. An input is
accepted if there is at least one node of the tree which is an accepted final state, otherwise
it is not accepted.

Definition 2.7 (Nondeterministic Turing machine). A nondeterministic Turing machine
is a tuple T = (Q,Σ, δ, q0, A, S) where:

• Q is a finite set of states, and q0 is the initial state.

• Σ = {0, 1,#} is the alphabet we are using and it is written on a tape, where the
symbol # means a blank space.

• A ⊆ Q is the set of accepted final states.

• δ is a function

δ : Q× Σ −→ Q× Σ× {R}
(q, i) 7−→ (q′, i′,m)

• s is a stop criterion.

Nondeterministic Turing machines are also called probabilistic Turing machines, due
to the fact that it depends on the tape it reads, which is fulfilled with random symbols
from the alphabet, and there is a probability of making a mistake.
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2.3 Complexity

Another important aspect we are interested in is the complexity of the algorithm, which
describes how the runtime of a protocol depends on the amount of input data. For com-
plexity, we use big O notation.

Definition 2.8. (Order of a function) Let f be a real or complex valued function whose
complexity we want to determine, and let g be another real valued function. Let both
functions to be defined on some unbounded subset of the positive real numbers, and g(x)
be strictly positive for all large enough x. Then:

f(x) ≈ O(g(x)) ⇔ |f(x)| ≤ Cg(x) for some constant C ∈ N

and we will say that the function f(x) is of order O(g(x)).

Definition 2.9 (Complexity). The complexity of an algorithm represents the amount of
temporal resources that the algorithm needs in order to solve a problem.

The complexity of a problem can not be calculated with exactitude, because we can
not calculate the number of operations done when a problem is solved. But that number
of operations can be bounded by a function that depends on the time that the operations
from the problem need to be solved.

There exist some different orders of complexity. Those can be observed in the following
chart, where they are organized by complexity hierarchy:

Order Name
O(1) Constant

O(logn) Logarithmic
O(n) Lineal

O(nlogn) Almost lineal
O(n2) Cuadratic
O(n3) Cubic
O(an) Exponential

These orders verify that

O(1) ⊂ O(logn) ⊂ O(n) ⊂ O(nlogn) ⊂ O(n2) ⊂ O(n3) ⊂ O(an) (2.2)

We are going to focus on the computability of problems, that is, if they are solvable
by an algorithm or a Turing machine (deterministic or nondeterministic). Since a Turing
machine can perform a huge number of computations, the most basic means for analyzing
this is to calculate the execution time of a model based on Turing machines. If a problem
can be modeled by a Turing machine, then the problem is said to be in class P , that is, it
has polynomial complexity. If a problem can not be modeled by a Turing machine, then
it does not have polynomial complexity, and it is said to be in class NP .
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Definition 2.10 (Probabilistic polynomial-time complexity (PPT)). A problem is in PPT
if it can be solved by a probabilistic Turing machine, with an error probability of less than
1/2 for all recognizable tapes.

Problems in PPT are going to be used along the project.

Moreover, we are using the so called Nick’s class. It was called this way after Nick
Pippenger, who had done several studies about this computational complexity. This class
includes the problems solvable by a deterministic Turing machine in some time bounded
by (log n)i, for a constant i ∈ N, using a polynomial number of parallel processors.
That is, the problem is separated into a polynomial number of smaller problems that are
executed simultaneously for solving the initial problem. The problems in Nick’s class are
denoted as problems of order O(login).

Definition 2.11 (Parallel computation). Parallel computation is a set of instructions
that are executed simultaneously and independently. Those instructions solve a problem
that can be separated into smaller problems such that the result is the same as the result
of the problem. The smaller problems are said to be solvable by parallel processors.

Definition 2.12 (NCi complexity). A problem is in NC i if there exists a constant k ∈ N,
such the problem can be solved in time O(login) using O(nk) parallel processors.

2.4 Multiparty Computation

Finally, we introduce the concept of multiparty computation (MPC). When we talk about
multiparty computation, we are referring to a protocol in which there is a fixed number of
participants, having some private data each one, who want to compute a function whose
inputs are those data, but without revealing their private data to any of the parties.

Let us fix a number n of participants in the communication, p1, p2, ..., pn, and their
private data, d1, d2, ..., dn, respectively. There is a public boolean function known by all
of them, and they wish to compute f(d1, d2, ..., dn) = x1,...,n, from which all participants
receive x1,...,n and their private data remain hidden.

Definition 2.13 (Multiparty computation). Multiparty computation is a process in which
a fixed number of participants possessing some private data evaluate a boolean function
using their data as inputs of the function. They all receive the output, but their private
data are not revealed.

We present the MPC because along the project we need to use a variant of this, the
two-party secure computation. That is, we have two participants, Alice and Bob, and a
function f that they want to compute with some private data they own. This process
must be secure, with no external party guessing Alice and Bob’s inputs neither the output
of the function. Besides, it must verify privacy for Alice and Bob, which means that they
can not know anything about each other’s input.
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MPC can be illustrated with Yao’s Millionaires’ problem, introduced in 1982 by An-
drew Yao. In this problem, two parties, Alice and Bob, are millionaires. They want to
know who is richer without revealing how much money they posses, so a two-party secure
computation would reveal the information they want to know, but not the amount of
money they own.
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Chapter 3

1-out-of-2 OT

The references for this chapter have been [16, 17].

3.1 General Definition

Oblivious transfer (OT) is a recent cryptosystem scheme that uses asymmetric cryptogra-
phy for the communication, that is, it uses PKCS. It was presented by Michael O. Rabin
for the first time in [16], with the aim of solving the Exchange of secrets(EOS) problem.
There are a sender and a receiver on the communication, whom we will call Alice and
Bob.

In the EOS problem, Alice has a secret sa that Bob needs to receive, and Bob has a
secret sb that Alice needs to receive. Then, when they receive the message, they will use
it, and if it is wrong, they will know it. Therefore, they will engage on a communication
scheme in which they send those messages to the other party such that Alice is oblivious
about if Bob receives the message, and Bob is oblivious about if Alice receives the message.
That is why the protocol we present was called oblivious transfer.

Moreover, Alice and Bob wish to exchange those secrets without involving any other
party. What we want is to define a protocol between Alice and Bob that verifies the men-
tioned ideas, without any other party involved. Although those secrets can be anything,
from now on we will consider that Alice and Bob exchange bits, for simplicity.

Accordingly, there are multiple scenarios in which Alice and Bob do not behave as they
are supposed to. If this happened, the messages could not be received by the legitimate
receiver, or they could be wrong. In order to avoid this, they will follow a procedure for
signing the messages they send. They can use the traditional digital signature, that is
presented in [15].

We want to define a protocol in which, if Alice receives her message, then Bob receives
his. This is the EOS problem, and it was solved by Michael O. Rabin when he defined
the first Oblivious Transfer protocol.

To present that protocol, we will assume that if Alice receives the message sb, she will
use it, and then Bob will know that she has used it. Also, if Bob receives the value of sa,
he will use it and Alice will know it too.

Firstly, we will also assume that Alice and Bob will have public keys, ka and kb,
respectively. They are going to use these keys for signing the messages using digital
signatures.

Algorithm 3.1 (Exchange of secrets).

11
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1. Alice and Bob choose two large primes each one. Alice chooses pa, qa, and Bob pb, qb,
and calculate single use keys

na = pa · qa
nb = pb · qb

2. Alice sends Bob a signed message with the value of na, and Bob sends Alice a signed
message with the value of nb.

3. Bob chooses a random value x < na, computes c = x2 mod na, and sends Alice a
message: “Ekb(x) is the encryption by my public key kb of my secret number, and c
is its square mod na. Signed, Bob”.

4. Alice knows the factorization of na. Therefore, she can calculate x1 such that x2
1 = c

mod na. Then, she sends Bob a signed message in which she tells him that x1 is a
square-root mod na of c.

5. Bob calculates (x− x1, na) = db. With probability 1/2, db = pa or db = qa. There-
upon, with probability 1/2 Bob knows the factorization of na.

6. They define

νb =


0 if (x− x1, na) = pa, qa

1 otherwise

Thus, if νb = 0, then Bob knows the factorization of na. Also, Alice’s bit νa is
defined similarly.

7. Bob computes εb = sb ⊕ νb, and sends it to Alice in a signed message.

8. Alice computes εa = sa ⊕ νa. Then, she sends εa to Bob in a signed message.

9. Alice chooses a random message ma and places her secret as the center bit of the
random message. Then, she encrypts ma using a PKCS that requires factor pa and
qa for decrypting. The encrypted message is da = Ena(ma), and Alice sends it to
Bob in a signed message.

10. Bob performs the same procedure using sb, and sends the encrypted message to
Alice in a signed message.

At the end of the step 5 from Algorithm 3.1, Alice does not know if Bob has the
factorization of na or not. Also, we need to say that the operator ⊕ denotes the exclusive
or operation (XOR), that is zero if both values, sb and νb, are equal, and one if sb and νb
are different (1 and 0).

The above protocol, Algorithm 3.1, was the first oblivious transfer protocol to be
presented and defined, [16].
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Theorem 3.2. ([16]) Algorithm 3.1 gives a solution for the exchange of secrets problem,
and the probability that neither party will obtain the other party’s secret is 1/4.

Proof. This proof will be made following the assumption that, if Alice uses the message
sb, then Bob will know it, and vice-versa. Then, if any of them cheated by sending a
different message, the other party would know it.

If Alice or Bob stop their participation in the protocol before the final phase, the
other one will notice about it and will also stop. Therefore, none of them would know
each other’s secret, so none of them would receive the message.

Suppose they participate in the protocol until the end. Assume that Alice sends
da = Ena(ma) to Bob. If Bob knows the factorization of na = pa ·qa, with probability 1/2,
then νb = 0, and he can decrypt da. Thereupon, he will know ma and sa. If Bob knows sa
with certainty, he will use it, and Alice will know it. Hence, since Alice knows that Bob
used the message she has sent him, then she knows that νb = 0, and then εb = sb⊕νb = sb.
Consequently, Alice also knows sb, because Bob had sent her the value of εb.

An analogous process could be followed if Bob gave Alice Enb
(mb) in the final phase.

So if Alice guessed the value of sb, then Bob would guess the value of sa.
In conclusion, if Alice knows sb, then Bob knows sa, and vice-versa. Then, when the

protocol is finished, the probability that neither of them knows each other’s secret is(
1

2

)2

=
1

4
. (3.1)

3.2 1-out-of-2 OT

OT developed in different ways from the initial Algorithm 3.1. Following the idea of
exchanging secrets, it is used to select one secret from a set of options. That is, the
sender has some options (secrets) and the receiver can just select one of them, providing
that Alice does not know what value was selected by Bob, and Bob does not know anything
about the values he did not select.

For the simplest case, we will consider that Alice keeps two inputs, which are the
options, and Bob can just look at one of them. This is what we call a 1-out-of-2 OT
protocol, and it was first presented by Shimon Even, Oded Goldreich, and Abraham
Lempel in 1985, in [5].

Hence, for this problem, Alice has two inputs, let’s say x0, x1 ∈ {0, 1}k, and Bob has
one input, b ∈ {0, 1}. Therefore, in a 1-out-of-2 OT protocol, Alice sends Bob her inputs,
and Bob can just look at xb, being b defined as above. Bob will know nothing about x1−b,
and Alice will know nothing about Bob’s input neither output.

We will define this procedure step by step, such that it becomes easy to understand.
We will first define it using a trusted third party. This party will be called Charlie, and
Alice and Bob will send him their messages. Furthermore, Charlie will not reveal each
other’s inputs to none of the parties. We can consider this trusted party as a function, say
f . This function will receive inputs from Alice and from Bob. When it is implemented,
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the output will be sent to Bob, and Alice will receive nothing. We can define a protocol
as follows:

Algorithm 3.3 (1-out-of-2 OT protocol with a trusted third party).

• Inputs: Alice’s inputs are x0, x1 ∈ {0, 1}k. Bob’s input is b ∈ {0, 1}.

• Outputs: Alice gets no output. Bob’s output is xb ∈ {0, 1}k

1. Alice sends x0, x1 to Charlie.

2. Bob sends b to Charlie.

3. Charlie computes the function f , that is, f((x0, x1), b) = xb. Then, he sends to Bob
the output xb.

Algorithm 3.3 must verify security and correctness, as we explained in the previous
chapter. It is clear that it guarantees correctness, because Bob receives the message xb.
Since no information is revealed to any party, it also guarantees security. This is because
of the assumption of Charlie being a trusted party. Unfortunately, this trusted players
do not really exist, so this algorithm can not be used in real life. We will consider two
types of players: a semi-honest (also called honest but curious) player, and a malicious
(also called Byzantine) player.

Definition 3.4 (Semi-honest player). A player is called semi-honest when it follows the
protocol correctly, but is eager to learn private information of the other players.

Definition 3.5 (Malicious player). A player is called malicious when it deviates from
the protocol in any way. That is, the player tries to cheat sending incorrect messages or
giving unreal information.

Firstly, we will consider all participants as semi-honest, because the malicious players
must be studied in a different way due to their different behaviour. When we define
the protocols secure against semi-honest players, we will focus on the malicious ones (in
Chapter 6).

Since the trusted party Charlie does not exist in real life, we want to focus on defining
a protocol in which he does not participate. The idea is to create a protocol in which
we can achieve similar security and correctness without using any other party. Before
exposing that protocol, we will define one which is divided into two phases, and Charlie
just participates in one of them. The first phase is the Setup phase, where Charlie partic-
ipates and creates the keys. The second phase is the Transfer phase, and it is completed
by Alice and Bob without Charlie’s help. Therefore, Charlie just participates on the first
phase, and the rest of the protocol is concluded by Alice and Bob. This is the first step
on removing Charlie. Then, after the protocol is defined, we will prove the correctness
and security and, if both are guaranteed, then a protocol completely without Charlie is
defined.
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Algorithm 3.6 (1-out-of-2 OT protocol with a trusted third party during Setup phase).

• Inputs: Alice’s inputs are x0, x1 ∈ {0, 1}k. Bob’s input is b ∈ {0, 1}.

• Outputs: Alice gets no output. Bob’s output is xb ∈ {0, 1}k

1. Bob sends b to Charlie.

2. Charlie generates two public-private key pairs, (p0, s0) and (p1, s1), using ElGamal’s
PKCS. Then, Charlie sends the public keys, p0 and p1, to Alice, and sb to Bob (his
secret key).

3. Alice, using ElGammal’s PKCS, computes

c0 = Encrypt(p0, x0) and c1 = Encrypt(p1, x1) (3.2)

and sends (c0, c1) to Bob.

4. Bob receives (c0, c1), and tries to decrypt both using the secret key that Charlie sent
him, sb. Bob keeps the plaintext he could correctly decrypt.

As we can see, Bob receives its output correctly, so correctness is guaranteed as before.
Besides, since Charlie is a trusted party and ElGamal is a protocol whose security has
already been proved, security is also guaranteed. Hence, we have defined a protocol where
Charlie just participates on the initial phase.

Let F∗
p be a multiplicative cyclic group of order p, g ∈ F∗

p a generator, and x ∈ F∗
p a

random element. To define a protocol without Charlie, Bob can generate his public and
secret keys as Charlie did in Algorithm 3.6, so the protocol without the third party can
be defined as follows:

Algorithm 3.7 (1-out-of-2 OT protocol without a trusted third party).

• Inputs: Alice’s inputs are x0, x1 ∈ {0, 1}k. Bob’s input is b ∈ {0, 1}.

• Outputs: Alice gets no output. Bob’s output is xb ∈ {0, 1}k

1. Bob generates his public and secret keys, (pb, sb), using ElGamal’s PKCS and his
input b ∈ {0, 1}, where

pb = gx and sb = x (3.3)

Bob randomly samples an element z1−b ∈ F∗
p and then sends (zb = pb, z1−b) to Alice.

2. Alice receives (z0, z1) and computes, with x0, x1 ∈ {0, 1}k,

c0 = Encrypt(z0, x0) and c1 = Encrypt(z1, x1) (3.4)

Then, Alice sends (c0, c1) to Bob.
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3. Bob receives (c0, c1) and decrypts cb using his secret key sb. Therefore, Bob obtains
the value of xb.

Again, Bob receives the value of xb correctly, so correctness is verified. Furthermore,
Alice knows nothing about that value, and Bob knows nothing about x1−b because, since
he is a semi-honest player, he just decrypted, therefore received, xb. Thus, security is also
guaranteed. Hence, we have defined a 1-out-of-2 OT protocol without a trusted third
party.

Although any other PKCS could have been used, I personally decided to use ElGamal
for the oblivious transfer protocols shown in this project, because is the one that has been
most used across the bibliography I read, [17]. The use of any other scheme would just
modify the beginning of Algorithm 3.7, where the keys are generated, and the encryption
and decryption of the messages, which would be done following that other scheme.

3.3 Two-party Secure Computation of Functions

Definition 3.8 (Boolean function). A boolean function is a function

f : {0, 1}k −→ {0, 1} (3.5)

where k ∈ N.

Oblivious transfer can be used with the aim of evaluating functions. Suppose each
party, Alice and Bob, has their private inputs, that is, Bob does not know Alice’s inputs
neither Alice knows Bob’s. Suppose there is a boolean function f they want to compute.

We will present a 1-out-of-2 OT protocol as a two-party secure computation. With
this procedure, we can define security more precisely. Therefore, Alice has two inputs,
x0, x1 ∈ {0, 1}k, and Bob has an input b ∈ {0, 1}. Let f be the boolean function they
want to compute. This function is defined as:

f : {0, 1}2k × {0, 1} −→ {0, 1}
((x0, x1), b) 7−→ f((x0, x1), b) = xb

(3.6)

Alice and Bob are able to compute f without revealing their inputs to the other party,
and Bob is the one who receives the output of the function, as a 1-out-of-2 OT protocol.

We want to define the security of a protocol that consists on the evaluation of the
above function with the mentioned requirements. For that purpose, we have to make a
comparison between the so-called real and ideal worlds.

The ideal world is the theoretical idea we have about how the protocol is going to
be performed. In this ideal world everything works as it should do, as in the definitions
made, and the run of the protocol has no mistakes. In an ideal world, the trusted third
party, Charlie, evaluates the function using Alice and Bob’s inputs without revealing
any information about them to the other party. Charlie, can participate in the ideal
model evaluation of the protocol because we can assume his existence in this ideal world.
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Moreover, both of them receive their respective outputs, but they will not see each other’s
output. In the 1-out-of-2 OT protocol, Bob will receive the output of the function and
Alice will receive nothing.

By real world we refer to the implementation of the theoretical concepts from the ideal
world. Obviously, when a protocol is performed in the real world it might run differently
from what it was supposed. In the real world, Charlie does not participate in the execution
of the protocol, so Alice and Bob interact with each other. Thereupon, it is Alice and
Bob who perform the protocol in order to compute the desired function. Remember the
fact that Alice and Bob are considered to be semi-honest. Therefore, they will follow the
protocol, but if they could guess something about the other party’s input, they would.
The amount of data that a participant see from the protocol is called participant’s view.

Definition 3.9 (View). Let P be a participant of a multiparty protocol. View of P is a
tuple (T, x), where x is P ’s input and T is the set of actions that the participant computes
and its output. T is going to be called transcript.

In case Alice or Bob knew extra information, like the other party’s input, then the view
of that party would be different in the real and ideal world, that is, it would see more in
the real than in the ideal world. If this happened, the real world protocol would differ from
the ideal one, and that means that the protocol would not be secure. We are trying to de-
fine a protocol in the real world which works similarly as it would work on the ideal world.

Since we want protocols to be secure, we will introduce a definition for secure two-party
computation.

Definition 3.10 (Security in MPC). A multi-party protocol is secure if participant P ’s
view in the real world run of the system is computationally indistinguishable from its
view in the ideal world run of the system.

Every OT protocol can be considered as a two-party secure computation, and its
security follows the above definition.

3.3.1 Simulators

As we want the real model to be as similar as possible to the ideal one, we want to avoid
what we mentioned earlier, that is, that participant P ’s view of the real world is different
as it is in an ideal world. To achieve that goal, we can use a simulator between the two
involved parties in order to define a protocol in the ideal world and his security. Therefore,
we can compare that protocol with the one we have in the real world.

Let P be a participant in the protocol whose input is x. If we consider the ideal world,
Charlie participates and evaluates the function f .

Definition 3.11 (Simulator). A PPT machine M in the ideal world that behaves as
participant P is called simulator when

OutputPreal
(f(x)) ≈ OutputM(f(x))
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where OutputM(f(x)) denotes the output of the simulator M when it computes f(x) in
the ideal world, and OutputPreal

(f(x)) the output of P ’s computation of f(x) in the real
world. Besides, ≈ means that those values are computationally indistinguishable.

Let us consider that we have a two-party protocol between Alice and Bob in the ideal
world and, at first, suppose our simulator is an Alice simulator. This means, a PPT
machine M (the simulator) will be an intermediary between Alice and Bob, and will
simulate Alice’s behavior. It is placed between Alice and Charlie, and interacts with
Charlie as if it were Alice. The idea is that Charlie’s interaction with the simulator is the
same as if it interacted with Alice.

Thus, since the simulator is a machine, it needs to know Alice’s inputs, so it receives
Alice’s inputs, encrypts them using a PKCS, and gives them to Charlie, who will compute
the function. Charlie also obtains Bob’s input b, and then computes f((x0, x1), b) = xb.
Then it sends this result to Bob. Alice receives no output, neither does her simulator.

Let the simulator be called S. We will define a 1-out-of-2 OT protocol using the
simulator. The procedure is going to be similar as what we described in the previous
paragraph, so the simulator is going to be placed between Alice and Charlie. This sim-
ulator S will use a PKCS and will interact with the ideal function. Since we have been
using ElGamal’s PKCS, suppose S uses that scheme. S behaves as follows:

Algorithm 3.12 (1-out-of-2 OT protocol using a simulator).

• Inputs: Alice’s inputs are x0, x1 ∈ {0, 1}k. Bob’s input is b ∈ {0, 1}.

• Outputs: Alice gets no output. Bob’s output is xb ∈ {0, 1}k

1. S obtains Alice’s inputs, (x0, x1).

2. S sends (x0, x1) to Charlie.

3. Charlie receives Bob’s input b. Then, it selects xb from the inputs it had received
from the simulator.

4. Charlie sends xb to Bob.

As we can observe, Algorithm 3.12 is a 1-out-of-2 OT protocol, but in the ideal world.
Security of the mentioned Algorithm is based on the idea of the indistinguishability of

views. Then, we need Alice’s views to be the same in both worlds, and Bob’s selections
to be also the same in the real and ideal worlds, because if he changed his selection from
the real and ideal world, then the output would be different, as his view would also be
different. Therefore, from Definition 3.9, his views must also be the same in both worlds.

Definition 3.13 (Security with simulators). An OT scheme involving participants Alice
and Bob is secure if there exists a simulator S behaving as Alice (like in Algorithm 3.12)
such that

(V iewAreal
, selectionBreal

) ≈ (V iewAideal
, selectionBideal

)
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where V iewAreal
, V iewAideal

denote to Alice’s views in the real and ideal world, respectively,
and selectionBreal

, selectionBideal
to Bob’s selection bit in those worlds.

With the definition of the real and ideal worlds, an OT protocol can be defined in both
worlds, using the simulators in the ideal one, and observe if security is verified or not. If
we consider Algorithm 3.7 and 3.12, it is easy to observe that Alice’s views are equal (in
the ideal world, Alice is her simulator), and Bob’s selection is also equal, because he is a
semi-honest player.

3.3.2 Two-party Computation of XOR

We will now consider a boolean function, and its implementation as a two-party secure
computation.

In this section, we implement the computation of the boolean function XOR, because
it is going to be used along the project. Therefore, we want to define a secure computation
of XOR, in which the previous definitions about security is verified. This is the exclusive-
or operation, which needs two inputs, and its computation is true if one of its inputs is
true, but not the other. That is, it is true if the inputs are different, and false if they are
equal. We can define the function as

XOR : {0, 1}2 −→ {0, 1} (3.7)

which verifies that

XOR(a, b) = a⊕ b =


0 if a = b

1 if a ̸= b
(3.8)

We want to define a two-party secure protocol that computes (3.8). As the XOR
function needs two arguments, let us suppose that Alice has an input a ∈ {0, 1}, and Bob
another input b ∈ {0, 1}. The simplest case would be that Alice sends her input to Bob,
and Bob evaluates a⊕ b. This contradicts the idea we had, in which none of the parties
knows the other party’s input. However, from the definition of XOR, Alice and Bob can
easily guess the other one’s input. For example, if a ⊕ b is given to Bob, he can simply
compute (a⊕ b)⊕ b = a, and Alice could do the same and she would guess Bob’s input.
Therefore, for this protocol we need to change this fact, and we are going to base the
security of the protocol in a comparison between the real and ideal worlds.

Remember that all parties are considered to be semi-honest, so what we want is that
the computation of XOR (which would be considered as an ideal function in an ideal
world) remains similar to the protocol we are presenting (which would be implemented in
the real world).

The implementation in the ideal world computation is simple. The ideal function is
the defined XOR, 3.8. It receives an argument from Alice, a ∈ {0, 1}, and another one
from Bob, b ∈ {0, 1}. The output XOR(a, b) = a⊕ b is sent to both parties. This would
be the ideal function in an ideal world. Also, as it is an ideal world, simulators can also
participate and behave as one of the parties.
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A protocol that computes the XOR function between Alice and Bob in real world can
be described as follows:

Algorithm 3.14 (Two-party computation of XOR).

• Inputs: Alice’s input is a ∈ {0, 1}. Bob’s input is b ∈ {0, 1}.

• Outputs: Alice’s outputs are b and a⊕ b. Bob’s outputs are a and a⊕ b.

1. Alice sends a to Bob.

2. Bob sends b to Alice.

3. Alice and Bob output the value of

XOR(a, b) = a⊕ b =


0 if a = b

1 if a ̸= b
(3.9)

Theorem 3.15. ([17]) Algorithm 3.14 is indistinguishable from the computation of func-
tion XOR from the perspective of a semi-honest player. Specifically,

∃ simulator SA/(V iewAreal
, outputBreal

) ≈ (V iewAideal
, outputBideal

) or

∃ simulator SB/(V iewBreal
, outputAreal

) ≈ (V iewBideal
, outputAideal

)

where SA is a Bob simulator and SB an Alice simulator.

Proof. Let us consider a PPT simulator in the ideal world SA placed between Alice and the
function XOR. This simulator will behave as Alice. Therefore, Alice sends her input a to
SA, and SA sends it to the function, which receives Bob’s input also. Then, the simulator
receives the value of a ⊕ b computed by the function. SA calculates a ⊕ (a ⊕ b) = b and
sends it to Alice. Therefore, Alice will know the value of b.

With this procedure, we achieve that V iewAreal
≈ V iewAideal

, because in the real world
Alice knows her input value a and learns the value b (step 2 from Algorithm 3.14), as
in the ideal world. Besides, outputBreal

≈ outputBideal
, because in the ideal world, Bob’s

output is the computation of XOR function. In the real world, since Bob is semi-honest
he will follow the steps defined in Algorithm 3.14, and his output will be the same, a⊕ b.

Similarly, there exists a simulator SB placed between Bob and the function XOR that
performs a similar procedure, because Alice and Bob behave similarly in this protocol.
Accordingly, Bob will always send the value of b, and will always learn the value of a.

With this, we can conclude that a XOR protocol has been correctly defined, and this
XOR function will be used along the project.



Chapter 4

1-out-of-n OT

4.1 General Definition

We have been discussing the simplest OT case in the previous chapter, the 1-out-of-2
OT protocol. After that protocol, a development of that work was presented in 1987 by
G. Brassard, C. Crépeau, and J.-M. Robert in [3]. This method was called 1-out-of-n
OT, and following the notation we used in the previous chapter, now Alice has n inputs,
x1, x2, ..., xn ∈ {0, 1}k, and Bob has one, b ∈ {1, 2, ..., n}. Alice sends Bob all her inputs,
and Bob can just look at one, denoted xb. With this procedure, Bob knows nothing about
the rest of the elements that Alice sent him, and Alice knows nothing about Bob’s output.

Any 1-out-of-n OT protocol must verify the next properties:

1. Correctness: Both sender and receiver obtain what they are supposed to obtain at
the end of the protocol. That is, Bob obtains the output xb of the function, while
Alice gets no output.

2. Receiver’s security: We know that Alice does not get an output in an oblivious
transfer protocol. Therefore, for any of Alice’s inputs, x1, x2, ..., xn ∈ {0, 1}k, and
any b, b′ ∈ {1, 2, ..., n}, Alice’s views in case Bob tries to obtain the value of xb or
xb′ are computationally indistinguishable.

3. Sender’s security: The sender’s security is defined by making a comparison between
the real and the ideal model exposed in the previous chapter. As Charlie is a trusted
party, he can participate in the ideal model run of the protocol. Now, Alice sends
her n messages to Charlie, and Bob sends his input value b to Charlie too. Then,
Charlie computes the function and sends the output xb to Bob. We discussed this
was the most secure way of implementing the protocol, because Bob has no choice
of receiving any extra information than the output. If Bob were a malicious player,
Alice’s security would be guaranteed if there exists a simulator S that interacts
with Charlie and its output is computationally indistinguishable from Bob’s out-
put. That is because in the ideal model, where we use the simulator and Charlie
participates, the sender’s security is guaranteed. Therefore, if we had a real world
run of the protocol where Bob’s output is computationally indistinguishable from
Charlie’s output, then the real world run of the protocol would be computationally
indistinguishable to its run in the ideal world. We define sender’s security differently
from receiver’s security because the receiver gets some information from the sender,
and we do not want the receiver to obtain any extra information from the sender.

21
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If a protocol does not verify the above requirements, it is not useful for communica-
tion because it would not be secure. Therefore, across this chapter, we prove that each
defined protocol verifies all properties. The material presented along the chapter has been
consulted in [3, 8, 13, 18].

4.2 1-out-of-n OT Protocols

We will assume that now on, it is n = 2l for simplicity, because we will use pairs of
elements. To implement a 1-out-of-n OT protocol, we can call the 1-out-of-2 OT protocol
several times, but the operating cost would be huge. This implementation would have a
difference with the one we described in the previous chapter, in Algorithm 3.7. Since the
idea is that Bob receives n = 2l messages, in step number 2, in which Alice sends Bob
her encrypted messages, she will send him the n encrypted messages instead of just two.
Then, Bob will select the one he wishes and decrypt it.

We present two 1-out-of-n protocols in this chapter, and both will verify correctness,
sender’s security and receiver’s security. One of the protocols is closely similar to El-
Gamal’s protocol, but Alice encrypts n messages. The other protocol uses hash keyed
functions, whose complexity is lower and they are defined along the project. In both
protocols, we consider a sender Alice and a receiver Bob, with no trusted third party. Al-
ice’s inputs are x1, x2, ..., xn ∈ {0, 1}k, Bob’s input is b ∈ {1, 2, ...n}, and it is n = 2l, l ∈ N.

4.2.1 1-out-of-n OT Protocol as a Variant of ElGamal

Let F∗
p be a multiplicative cyclic group of order p, where p is a large prime. Consider two

generators, fixed by Alice, g, h ∈ F∗
p, g ̸= h. It is evident that both generators are different

to 1. Moreover, since Alice is a semi-honest player, she will not select h as a power of
g, so the discrete logarithm loggh is unknown to all participants in the communication.
Therefore, g and h are going to be used repeatedly over the communication. Also, since
we consider all players as semi-honest, they will follow the steps of the protocol and they
will not try to cheat. With this ideas, we can describe the first 1-out-of-n OT protocol.

Algorithm 4.1 (1− out− of − n OT protocol).

• Inputs: Alice’s inputs are x1, x2, ..., xn ∈ {0, 1}k, and Bob’s input is b ∈ {1, 2, ..., n}.

• Outputs: Alice gets no output, and Bob’s output is xb ∈ {0, 1}k.

1. Alice chooses g, h ∈ F∗
p and sends them to Bob.

2. Bob, that has received g, h ∈ F∗
p, verifies that g ̸= 1 and h ̸= 1.

3. Bob selects a random value k ∈ Fp, and computes y = gkhb mod p. Then, Bob
sends y to Alice.
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4. Alice computes, for all i ∈ {1, 2, ..., n}, ci = (gki , xi(yh
−i)ki), where ki ∈ F∗

p for all
i ∈ {1, 2, ..., n}, and all ki are chosen randomly by Alice. Then, Alice sends all ci to
Bob.

5. Bob receives c1, c2, ..., cn, and selects cb = (a, r). To decrypt the message, Bob
computes xb = ra−k.

As we can see, this protocol is the same as computing ElGamal’s protocol several
times. The encryption and decryption of the messages are done as in ElGamal, the only
difference is that Alice encrypts n messages, not just one. As encryption and decryption
follow the same steps as ElGamal, it is easy to see that Bob receives the initial message
correctly. That is, Bob receives the encrypted message

cb = (a, r) = (gkb , xb(yh
−b)kb) (4.1)

Then, to decrypt the message, Bob computes

ra−k = xb(yh
−b)kb(g−kb)k = xb (4.2)

Therefore, since Bob obtains the initial value of xb correctly, then correctness is verified
by the previous protocol.

Theorem 4.2 (Receiver’s security, [18]). Bob’s choice b is unconditionally secure.

Proof. As we defined, Bob’s input is an element b ∈ {1, 2, ..., n}, and he computes y =
gkhb, so there exists a random value k ∈ Fp that Bob selects and satisfies that y = gkhb.
Thereupon, following the DDH assumption, even if Alice had unlimited computer power,
she could not get any information about Bob’s input b. In conclusion, receiver’s security
is guaranteed.

Theorem 4.3 (Sender’s security, [18]). If the DDH assumption is verified, then for all
i ∈ {1, 2, ..., n} , where i ̸= b, each ei = (g, h, ci) is computationally indistinguishable from
eb = (g, h, cb) with g, h ∈ Fp and g ̸= 1, h ̸= 1, and the sender’s security is verified.

Proof. Following the notation we used in the protocol, we can denote ci = (ai, ri), and
cb = (a, r), where ai, ri, a, r ∈ Fp.

We know that Bob has two values, his input b and a random value k. By the DDH
assumption, it is easy to see that Bob can not select any different pair (k′, b′) verifying
that y = gkhb = gk

′
hb′ . If Bob could do this, he would be able to compute the discrete

logarithm logg(h). This would be a contradiction because we have assumed that the
discrete logarithm is unknown by both, Alice and Bob.

Again, by the DDH assumption, we can see that for all i ∈ {1, 2, ..., n}, i ̸= b,
ei = (g, h, ci) is computationally indistinguishable from a variable calculated as Ei =
(g, h, gki , xi(g

khb−i)ki), where ki ∈ Fp, g, h ∈ Fp two generators.
Let R = (r1, r2, r3, r4) be a set of random elements where r1, r2 ∈ F are generators,

and r3, r4 ∈ Fp. If Ei and R are computationally distinguishable by a probabilistic
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polynomial time machine M , then some random elements of the form (g, ga, gb, gab) would
be distinguishable from elements of the form (g, ga, gb, gc), where g ∈ Fp is a generator,
and a, b, c ∈ Fp. This is a contradiction with the DDH assumption, so the mentioned PPT
machine M will never exist. Consequently, for any i ∈ {1, 2, ..., n}, i ̸= b, it verifies that
each ei = (g, h, ci) is computationally indistinguishable from eb = (g, h, cb). Thereupon,
we conclude that sender’s security is also guaranteed.

4.2.2 1-out-of-n OT Protocol Using Pseudo-random Functions

For this protocol we have to consider some new definitions that we are going to use. In
these following definitions we need to use the concept of black box. A black box is a sys-
tem from which we do not know its functioning, we can just know its inputs and outputs,
but not how it operates with them.

Definition 4.4 (Random functions). A random function or random oracle is a theoretical
black box which answers to every question with a random response from its output domain.

Definition 4.5 (Pseudo-random functions). A pseudo-random function is a function that
can not be distinguished from a random function by an observer that has access to the
function in a black box manner. That is to say, the observer does not know how the
function works, just its inputs and outputs. A pseudo-random function answers the same
to the same question.

Definition 4.6 (Hash functions). A hash function is a function which takes an string of
bits of an arbitrary length as input and transforms it into a fixed-size string of bits. A
hash function is a one-way function, i.e., it is easy to compute, but its inverse is difficult
to calculate.

In the 1-out-of-n OT protocol we present in this section, we use pseudo-random func-
tions in order to encrypt the messages. We use those functions because their complexity
is lower than the complexity of any PKCS, so the protocol described here has a lower
complexity than the one presented in the previous section. We will assume that one-way
hash functions can be modeled as pseudo-random functions, which is justified in [8].

Consider F : {0, 1}m −→ {0, 1}r to be a hash function, and k to be a key that we will
use for encrypting the input of the function F , which we call to key the function. The
keyed function is denoted Fk. Moreover, we have mentioned that the inverse of a hash
function is difficult to calculate, so we have the same for keyed hash functions. That is,
with keyed hash functions we can encrypt a value with a key, as we do with PKCS, but the
operations are easier, so the complexity is lower, and those functions verify Correctness
and Security (for the sender and the receiver). These latter properties will be studied
after the definition of the protocol. By keying the function F , we construct a pseudo-
random function that is applied to a value x from the input domain of F , and it verifies
that Fk(x) = F (x, k) ∈ {0, 1}r. That is the encryption of value x under key k.

We will encrypt each input with a combination of keys, such that for each input xi,
1 ≤ i ≤ n, n ∈ N, we will encrypt xi by computing Fk(i) and xoring it with xi. To
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simplify, we assume that i is represented by log2n bits, {i1, i2, ..., in}. This representation
can be, for example, the binary representation of i− 1. Therefore, for this protocol Alice
sends Bob a set of keys, and her inputs encrypted with those keys. Bob selects one of
the keys, and he can calculate the inverse of the function keyed with the same key he has
chosen.

Algorithm 4.7 (1− out− of − n OT protocol with pseudo-random functions).

• Inputs: Alice’s inputs are x1, x2, ..., xn ∈ {0, 1}m, and Bob’s input is b ∈ {1, 2, ..., n}.

• Outputs: Alice gets no output, and Bob’s output is xb ∈ {0, 1}m.

1. Alice generates l random pairs of keys. That is,

(K0
1 , K

1
1), (K

0
2 , K

1
2), ..., (K

0
l , K

1
l )

2. Alice computes yi = xi ⊕ (⊕l
j=1FKj

ij (i)) for all 0 ≤ i ≤ n, where ij ∈ {i1, i2, ..., in},
the bit representation of i.

3. Alice and Bob participate in a 1-out-of-2 OT protocol on the pairs of strings
(K0

j , K
1
j ), for all j ∈ {1, 2, ..., l}. Bob selects K

ij
j .

4. Alice sends y1, y2, ..., yn to Bob.

5. Bob computes xb = yb ⊕ (⊕l
j=1FKj

ij (b)).

In the protocol, each Kr
j is a t-bit key to the pseudo-random function FK , for all

1 ≤ j ≤ l, and r ∈ {0, 1}. Note that Bob could not compute any other value xi ̸= xb

because he just has the key Kj
ij selected on step 3, and that is the only key with which

he can calculate the function.
The implementation of this protocol allows Bob to obtain any value he wishes. More-

over, since we defined n = 2l, then, as we have l pairs of keys which are exchanged in a
1-out-of-2 OT protocol, we perform that protocol log2n times in the 1-out-of-n OT algo-
rithm. We already know that the 1-out-of-2 OT protocol verifies the receiver’s security,
thus, as we implement that protocol log2n times, we can conclude that it also maintains
the receiver’s security. We have to prove that the sender’s security is also maintained,
and in order to prove that we need to introduce a lemma.

Lemma 4.8. ([13]). If the sender’s security is not preserved in the previous protocol,
then either the 1-out-of-2 OT protocol does not provide sender’s security or the function
F is not a pseudo-random function.

Proof. Suppose the 1-out-of-2 OT protocol guarantees the sender’s security. Thus, since
the sender’s security is verified in the 1-out-of-2 OT protocol, then the receiver can just
look one of the two inputs of the sender. From the definition of the sender’s security, we
have to make a comparison between the real and ideal model. We have to prove that, for
every PPT machine MR substituting the receiver in the real model, there exists a PPT
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machine MI in the ideal model playing the receiver role such that MR and MI ’s outputs
are computationally indistinguishable.

We are going to show how, given a black-box access to the receiver MR, we can extract
the indices of the keys he has learned in step 3 of Algorithm 4.7. Knowing these indices
allows us to identify the item from the server’s inputs that has been learned by MR

in Algorithm 4.7. Thus, we can construct a PPT machine MI in the ideal model that
plays the receiver’s role and whose output is computationally indistinguishable from MR’s
output.

To extract the mentioned indices, we will implement the protocol until the end of step
3. Then, fix the state of MR by that time, and run different experiments (closely similar
to the algorithm) that start in that state. To find the keys that the receiver learned, we
will run 2l experiments, and those will be called {Ei,j/i ∈ {0, 1}, 1 ≤ j ≤ l}.

In each experiment Ei,j choose a random key r and replace the values FKi
j
(I) in the

generation of the yI ’s (Alice’s encrypted inputs), with Fr(I). Suppose the receiver learns
Ki

j in Step 3 of the protocol. Then, his view of the experiment, where the random key is
used, is different by a non-negligible difference from his view in the runs of the protocol
that use the original keys. That is because the functions are pseudo-random. Note that,
for every j, this will happen at most to one of the experiments E0,j and E1,j (if this
happened for both experiments, then the sender’s security were not guaranteed in the
1-out-of-2 OT protocol). Therefore, in at most one of the experiments E0,j and E1,j the
output’s distribution of the receiver is different (by a non-negligible difference) than his
output in the original protocol.

Let tj0 ∈ {0, 1} be equal to the index i ∈ {0, 1} for which the above phenomenon hap-
pens. After we finish the experiments, we can define t0 ∈ {1, ..., n} as the concatenation
of the bits tj0, being j ∈ {1, ..., l}.

Now, with this procedure and the algorithm of MR, we will construct an algorithm
for the PPT machine MI that runs in the ideal model and acts as the receiver. Since it
is the ideal world, then Charlie can participate in the protocol. It behaves as follows:

1. MI generates a set of keys as in step 1 from the protocol, and then it engages in a
1-out-of-2 OT protocol with MR.

2. MI extracts t0, as we described above, which corresponds to the keys that MR

learned.

3. MI asks Charlie for the value of xt0 .

4. MI sends y1, y2, ..., yn to MR. Here, yt0 is the encryption of the keys whose index is
t0, and any other yJ is an encryption of a random value with the keys corresponding
to the index J .

5. MI sends y1, y2, ..., yn to MR. yt0 is the encryption of xt0 with the keys correspond-
ing to t0, and the rest of the values are encryption of random values with keys
corresponding to their index.

We have to prove that MR and MI ’s outputs are computationally indistinguishable.
Suppose they are computationally distinguishable.
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There exist l keys that MR did not learn, let’s say, Ku1
1 , ..., Kul

l . We can define l + 1
elements, which we call hybrids, H1, ..., Hl+1. A hybrid Hi corresponds to running the
protocol and, in Step 4, sending the values y1, ...yn to the receiver with one difference:
for all J ̸= t0, yJ is generated with random values instead of F ’s outputs keyed by
Ku1

1 , ..., Kul
l .

Hence, Hl+1 corresponds to running the receiver in the original protocol. Then, if F
is pseudo-random, then H1 corresponds to running MR using the algorithm MI . This is
due to the fact that the difference between two instances is that in H1 each yJ , J ̸= t0, is
generated by xoring xJ with a random value, and in the invocation of MR, those values
are generated by xoring the real outputs of F with random values.

Consequently, H1 andHl+1’s outputs are computationally distinguishable. Thus, there
are two hybrids Hi and Hi+1, 1 ≤ i ≤ l, which are computationally distinguishable. This
means that there exists a distinguisher between random values and the output of F when
it is keyed by Kui

i . This way, F would not be a pseudo-random function.

With this, we conclude that the protocol defined above provides sender’s security.
Therefore, it is proven that the protocol is secure and correct.

Furthermore, the complexity of the protocol corresponds to n log2 n evaluations of
the function FK in the preprocessing of the step 1, and log2 n calls of the 1-out-of-2 OT
protocol in the step 3.
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Chapter 5

OT On Commitment Protocols and
Zero-knowledge Proofs

References from this chapter have been taken from [9].

5.1 Introduction

In this chapter, we introduce some new concepts to define commitment protocols and
zero-knowledge proofs. As in the previous chapters, we consider a sender and a receiver
in the communication, Alice and Bob.

A commitment protocol is a procedure in which two players, Alice and Bob, partic-
ipate. An activity is going to be performed by one of the parties. Before the activity
occurs, one of the parties is going to commit to a result and is going to send the commit-
ment to the other party, but this party will not be able to know that commitment until
the end. At the end of the action, they both will know the result of the activity. For
example, suppose that event is to flip a coin. If they are in the same room, face to face,
Bob can make a prediction (a commitment) about how the coin is going to end, that is,
heads or tails, while Alice is flipping the coin. At the end of the procedure, Alice will show
Bob the result and they will see if it matches the commitment that Bob made. They can
not cheat, because they are in the same room, seeing how the event happens, so they will
see the result together. But if they were in different rooms, cities, or even countries, Bob
could select a value without telling Alice and, after Alice told him the result, Bob could
cheat and say that it is what he had thought or not. Or contrary, after Bob told Alice
the selected value, Alice could lie to Bob and say that it was the result obtained on the
activity or it was not, such that she could benefit from it. Therefore, with a commitment
protocol we achieve the goal of performing an action between two participants providing
that none of the participants cheat to the other one.

A zero-knowledge proof is a protocol in which one of the participants (the prover)
proves to the other participant that a statement is true (or false) without revealing any
extra information about the statement. This second participant will just be able to know
that the statement is true (respectively, false). For instance, using again the coin flipping
example, Alice could prove Bob that she knows the result of the action of flipping the
coin, but she would not tell him the result. That would be a zero-knowledge proof.

At the end of this chapter we explain two different oblivious transfer protocols: Obliv-
ious circuit evaluation and Oblivious decommital of strings. Both of them use also Al-
gorithm 3.7, or any of the 1-out-of-n OT protocols we presented in Chapter 4. Before
this, we need to define some new ideas and properties that we are going to use in order

29
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to implement these mentioned protocols.

5.2 Width 5 Permutation Branching Programs

In order to implement the commitment protocol and zero-knowledge proofs we described
above, we need first to define an element that is going to be used. That is the width 5
permutation branching programs (denoted W5PBP) of length k, [9], in which we are going
to use permutations of 5 elements, denoted S5.

Also, we will have a function E : S5 → {0, 1} that is used for the evaluation of the
W5PBP and it verifies that

E(x) =


0 if x = Id

1 if x ̸= Id
(5.1)

where Id is the identity permutation of order 5.

Moreover, we will use two functions Π and V such that:

Π : {1, 2, ..., k} × {0, 1} → S5 and V : {1, 2, ..., k} → {1, 2, ..., n} (5.2)

Definition 5.1 (Width 5 permutation branching programs). A width 5 permutation
branching program M of length k with inputs x1, x2, ..., xn ∈ {0, 1}

M : {0, 1}n → {0, 1} (5.3)

whose evaluation is defined as:

M(x1, x2, ..., xn) = E(Π(1, xV (1)) ◦ Π(2, xV (2)) ◦ ... ◦ Π(k, xV (k))) (5.4)

Since it is of length k, there exist k variables from the input domain of the W5PBP
that will be seen. W5PBP are used because they can recognize any language in class
NC1, which is proved in Barrington’s theorem in [1]. Therefore, if we have a function
of order NC1, there exists at least one width 5 permutation branching programs whose
evaluation is the same as evaluating the mentioned function.

Π designates the permutations of 5 elements in each level (1, 2, ..., k) of the W5PBP,
and V designates which k variables are looked by an observer. That is, Π(i, xV (i)) is a
permutation of five elements in level i, and xV (i) is the ith variable which is looked. That
means, we have n variables which are the inputs of the W5PBP, and the program has
length k ≤ n, so an observer from the communication scheme will see just k variables.

By using a vector R = {r1, r2, ..., rk−1}, ri ∈ S5, the permutations defined by Π can be
randomized such that the evaluation of its randomization is the same as the evaluation
of the W5PBP. Let us consider a W5PBP M , a new one can be defined, called the
randomized program of M .
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Definition 5.2 (Randomized W5PBP). The randomized program of M , denoted MR =
(ΠR, V ), is a W5PBP such that

ΠR(i, a) = r−1
i−1 ◦ Π(i, a) ◦ ri (5.5)

for i ∈ {1, 2, ..., k}, a ∈ {0, 1}, and r0, rk are defined as the identity permutation.

Let us see if with this definition it is verified thatM(x1, x2, ..., xn) = MR(x1, x2, ..., xn).
We know, from Definition 5.1, that

M(x1, x2, ..., xn) = E(Π(1, xV (1)) ◦ Π(2, xV (2)) ◦ ... ◦ Π(k, xV (k))) (5.6)

.
Also, from Definition 5.2, we have that

MR(x1, x2, ..., xn) = E(ΠR(1, xV (1)) ◦ ΠR(2, xV (2)) ◦ ... ◦ ΠR(k, xV (k))) =

E(r−1
0 Π(1, xV (1))r1 ◦ r−1

1 ◦ Π(2, xV (2)) ◦ r2 ◦ ... ◦ r−1
k−1 ◦ Π(k, xV (k)) ◦ rk) = (5.7)

E(r−1
0 ◦ Π(1, xV (1)) ◦ ... ◦ Π(k, xV (k) ◦ rk)) =

E(Π(1, xV (1)) ◦ Π(2, xV (2)) ◦ ... ◦ Π(k, xV (k)))

So, as we can see, the result is the same in both cases.

5.3 Committal Protocol Using Oblivious Transfer

Each committal protocol has two phases: a commit phase and a decommit one. During
the commit phase, Alice commits to a value x, and Bob learns nothing about that value
during the protocol execution of that phase. It is in the decommit phase when Bob learns
the value of x and is sure that the value he has learned is indeed the value of x.

5.3.1 Simple Committal Protocol

First of all, we present a simple committal protocol, which is used in order to commit to
a single bit b. This protocol consists on two algorithms, one for the commitment to the
bit, and another one for the decommitment.

In the commit algorithm we will use an OT channel, which is a channel by which not
all the bits are received by the sender. It is called OT channel because some of the bits
will not be received, but Alice will not know which of them were correctly received or not
by Bob, and Bob will know nothing about the bits he did not receive. We will denote p
the probability of a bit to be transmitted correctly through the OT channel, and k will be
the security parameter, a large enough number that verifies that the protocol is secure.
A set of bits will be sent through an OT channel.

In the decommit phase we will use a clear channel, which is a channel by which all
elements are received correctly by Bob. In this decommit phase, Bob will know the value
of the bits he did not receive.



CHAPTER 5. COMMITMENT PROTOCOLS AND ZKP 32

Algorithm 5.3 (Simple-Commit(b, k, p)).

• Inputs: Alice’s input is b, the bit to which she commits. Bob has no input. p is
the probability for a bit to be transmitted correctly through the OT channel.

• Outputs: Alice gets no output, and Bob’s output is the value of the vector received
by the OT channel, b⃗′ ∈ {0, 1,#}k, where # means that that bit was not received.

1. Alice selects a random vector b⃗c = b1, b2, ..., bk, such that b = b1 ⊕ b2 ⊕ ...⊕ bk.

2. Alice sends b⃗c to Bob by the OT channel.

3. Bob receives b⃗′ = b′1, b
′
2, ..., b

′
k.

Algorithm 5.4 (Simple-Decommit(b⃗c, b⃗′, k)).

• Inputs: Alice’s input is b⃗c = b1, b2, ..., bk, the vector she sent on the simple-commit.
Bob’s input is b⃗′ = b′1, b

′
2, ..., b

′
k.

• Outputs: Alice gets no output, and Bob’s output is the value of b.

1. Alice sends b⃗c = b1, b2, ..., bk to Bob through a clear channel.

2. Bob receives b⃗c = b1, b2, ..., bk. If bi ̸= b′i for any i ∈ {1, 2, ..., k}, b′i ̸= #, then Bob
will stop the communication because Alice would have changed the bit bi.

3. If bi = b′i for every i ∈ {1, 2, ..., k}, then Bob computes b = b1 ⊕ b2 ⊕ ... ⊕ bk. The
bits he did not receive are substituted by the bits he receives now.

We would like that the probability of Bob recovering b before the decommit phase to
be zero, and the same with the probability of Alice causing Bob to compute a different
bit from the one she committed to. Unfortunately, this is almost impossible because it
always exists a small probability of any of the parties cheating (they are semi-honest), so
we would like both probabilities to be low.

Lemma 5.5. At the end of Simple-Commit(b, k, p), the probability that Bob can recover b

is pk. In Simple-Decommit(b⃗c, b⃗′, k), the probability that Alice can cause Bob to compute
a different bit (without Bob noticing about this) than the one she committed to is at most
1− p.

Proof. In Simple-Commit(b, k, p), Alice sends b⃗c = b1, b2, ..., bk through the OT channel to
Bob. The probability that Bob receives bi, 1 ≤ i ≤ k, is p for all i. Thus, the probability
that Bob receives all bits bi is p

k.
In Simple-Decommit(b⃗c, b⃗′, k), Alice sends b⃗c to Bob through a clear channel. As p is

the probability that a bit is transmitted by the OT channel, then 1− p is the probability
that a bit is not transmitted by the OT channel.
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If Alice decides to change the value of a bit bi, for some i such that 1 ≤ i ≤ k, then,
since the probability that Bob did not receive that bit is 1 − p, then the probability for
Alice cheating on that bit is 1− p.

If Alice decides to change the value of n bits, 1 ≤ n ≤ k, the probability for Alice to
be successful is at most (1− p)n.

Therefore, as (1− p)n ≤ 1− p, the probability that Alice can cause Bob to recover a
bit different than what it committed is as most 1− p.

Therefore, when k is bigger, the previous probabilities are lower.

5.4 Permutation Randomizers, Condensors, and Tableaus

Some new definitions and ideas are introduced in this section, [9]. These ideas will let us
define some other commitment protocols along with zero-knowledge proofs.

Definition 5.6 (Permutation randomizer). Fix m,n ∈ N, with n = 2k, k ∈ N. A permu-
tation randomizer, denoted R ∈ Rm

n , is an (m(n−1)+1)×n array of permutations in S5.
We denote Ri,j the element in the ith row and jth column from the randomizer R, and
Rm

n is the set of randomizers with the mentioned dimensions. R ∈ Rm
n is a randomizer if

it verifies that for all 0 ≤ i < m, and 0 ≤ j < n− 1 then:

1. If k ̸= j, j + 1, then Ri(n−1)+j,k = Ri(n−1)+j+1,k. (5.8)

.
2. For l = i(n− 1) + j, then

Rl+1,jRl+1,j+1 = Rl,jRl,j+1. (5.9)

Definition 5.7 (Distribution on permutation randomizers). Let a sequence of elements of
S5 be denoted as S = s0, s1, ..., sn−1. The uniform distribution of permutation randomizers
is defined as

Rm
n [S] = {R/R ∈ Rm

n , R0,i = si ∀i, 0 ≤ i < n} (5.10)

Definition 5.8 (Permutation condensor). Fix n = 2k, where k ∈ N. A permutation
condensor, C ∈ Cn, is an (k + 1)× n array of permutations in S5 verifying that

Ci+1,j = Ci,2jCi,2j+1 (5.11)

where 0 ≤ i ≤ k and 0 ≤ j < n−1
2
.

Definition 5.9 (Permutation tableau). Fix m,n = 2k, where m,k ∈ N. A permutation
tableau, T ∈ τmn , is a tuple T = (R,C), where R ∈ Rm

n , C ∈ Cn, and it verifies that for
every i, 0 ≤ i < n, C0,i = Rm(n−1),i.
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Definition 5.10 (Distribution on permutation tableaus). Let a sequence of elements of S5

be denoted as S = s0, s1, ..., sn−1. The uniform distribution of the permutation tableaus
is defined as

τmn [S] = {T/T = (R,C) ∈ τmn , R ∈ Rm
n [S]}. (5.12)

5.5 Introducing Zero-knowledge Proofs on Commit-

ment Protocols

In this section, we show another commitment protocol, with a commit and a decom-
mit phase, as before, and a zero-knowledge proof. Due to the fact that we also perform
a zero-knowledge proof, this protocol will be separated into three phases: a commit
phase, a decommit phase, and a check proof. Moreover, this time it is called Strong-
commit/decommit, because if the zero-knowledge proof is not accepted, then the com-
mitment either. Also, in contrast to the first protocol described in this chapter, the
Simple-commit protocol, now Alice performs a Strong-commit algorithm along with a
zero-knowledge proof over those bits, that are denoted X = {x1, x2, ..., xn}. Later, a
Strong-decommit algorithm is performed, so Bob will receive the decommitment to the
set of bits that Alice had committed to. Finally, the zero-knowledge proof is verified
(or not), and if it fails, then Bob rejects the complete protocol. Which Alice proves is
a predicate (or property) of the mentioned bits, and Bob verifies that proof on the last
phase of the protocol. Proving this predicate using zero-knowledge proof has order NC1,
and we will say that it is the order of the predicate. That predicate, denoted P , could
be, for example, that the bits of X represent an even number. Furthermore, in order to
verify the zero-knowledge proof that Alice proves to Bob, the randomizers, condensors
and tableaus that we have previously defined are used, and Alice will select a tableau as
the ones we explained above.

Each bit xi from X can be written as a XOR operation over a sequence of bits, that
is, xi = xi,1⊕xi,2⊕ ...⊕xi,k. We will denote [X] the matrix, that we will call bit-committal
matrix, formed by the values xi,j, where 1 ≤ i ≤ n and 1 ≤ j ≤ k.

[X] =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
...

xn,1 xn,2 · · · xn,k


Let us consider a predicate P onX, and let us consider that its proved has a complexity

of order NC1. The corresponding predicate on [X] can be denoted P ′, and its proved
has also a complexity of order NC1, because the order of the XOR operation xi =
xi,1 ⊕ xi,2 ⊕ ... ⊕ xi,k is O(1), so it does not increase the order of the predicate. Thus,
because of Barrington’s theorem mentioned at the beginning of the chapter, [1], there
exists at least one W5PBP that evaluates P ′ on [X]. That W5PBP can be denoted
MP ′ = (Π, V ), and it has size m = 2l, nk ≤ m ≤ (nk)c, for some c ∈ N. The W5PBP
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can be forced to have its length as a power of 2 by padding it. Π is the same as it was
before, and V is a function such that denotes the element from the matrix that is looked
at, defined as

V : {1, 2, ...,m} → {1, 2, ..., n} × {1, 2, ..., k} (5.13)

Definition 5.11. (S(M, [X])). Let [X] be a n × k matrix whose elements are bits, and
M = (Π, V ) a W5PBP on [X] of length m = 2l. We define S(M, [X]) as the sequence
s1, s2, ..., sm, where si = Π(i, xV (i)).

We now can describe the Strong-commit/decommit protocol. We define, as before, a
set of bits X = {x1, x2, ..., xn}, the predicate P ′ on [X], and the W5PBP that evaluates
P ′ on [X], MP ′ = (Π, V ), of length m = 2l. Again, we are going to be using an oblivious
transfer channel along the protocol. In this case, the probability of a bit to be transmitted
across the OT channel is p.

Algorithm 5.12 (Strong-Commit(X, k, p)).

• Inputs: Alice’s input is X = {x1, x2, ..., xn}. Bob has no inputs. The probability
that a bit is transmitted through the OT channel is p.

• Outputs: Alice gets no output. Bob’s output is a n × k boolean matrix [X ′] and
a tableau T ′, from which some elements have been lost in the transmission.

1. Alice selects a random n× k boolean matrix [X], where xi = xi,1 ⊕ xi,2 ⊕ ...⊕ xi,k,
and a random tableau T ∈ τm

′
m [S], where m′ ∈ N.

2. Alice sends ([X], T ) to Bob through the OT channel.

3. Bob receives ([X ′], T ′).

Algorithm 5.13. (Strong-Decommit(i, [X], [X ′])).

• Inputs: Alice’s inputs are the the rows of the boolean matrix,Xi = {xi,1, xi,2, ..., xi,n},
for all i ∈ {1, 2, ..., n},and the tableau ([X], T ). Bob’s input is [X ′].

• Outputs: Alice gets no output. Bob’s output is xi = xi,1 ⊕ xi,2 ⊕ ... ⊕ xi,k, for all
i, 1 ≤ i ≤ n.

1. Alice sends, now through a clear channel, the rows xi = xi,1, xi,2, ..., xi,k, for all
i, 1 ≤ i ≤ n, to Bob.

2. Bob receives the rows clearly. If xi,j ̸= x′
i,j for any i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤ k,

then he stops the protocol. If not, he computes xi = xi,1 ⊕ xi,2 ⊕ ...⊕ xi,k for every
i.
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As we mentioned, this protocol included a zero-knowledge proof. For that reason,
there is another part of the protocol, which is a check proof. Entry x′

i,j from the matrix
[X ′] will be called again, and it may or not be defined, because it could have or not been
received by Bob through the OT channel. Elements R′

i,j and C ′
i,j may be defined, if Bob

has received all their bits, or undefined, if Bob has received just some bits or none of
them. This check protocol will be run by Bob, because Alice is the one who made the
proof, and Bob tries to verify it.

Check-Proof([X ′], T ′,MP ′): Bob checks if:

• for k ̸= j, j + 1, then Ri(n−1)+j,k = Ri(n−1)+j+1,k.

• for q = i(m2 − 1) + j, then Rq+1,jRq+1,j+1 = Rq,jRq,j+1.

• Ci+1,j = Ci,2jCi,2j+1, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m−1
2

.

• C0,i = Rm2(m−1),i, 1 ≤ i ≤ m− 1.

• R0,i = Π(i, xV (i)), 1 ≤ i ≤ m− 1.

• Cl,0 ̸= Id, 1 ≤ l ≤ k + 1.

If all of these properties are verified, then Bob accepts the proof and the commitment.
If any of them is not verified, Bob does not accept the proof neither the commitment.

Let us now consider that Bob always receives k-bits, and that he can designate in
advance Q = q1, q2, ..., qk−1 positions that he will look. Those positions can be in [X] or
in the tableau T . In those positions, Bob can see the content in the matrix and the tableau.

Definition 5.14 (Bob’s view). Let [X] be a bit-committal boolean matrix chosen by
Alice, as we described before. Let Q = q1, q2, ..., qk−1 be a set of positions that can be in
the bit-committal matrix or in a tableau T . V iew([X], Q) is the distribution of views that
Bob sees, obtained by choosing the tableau T according to the strong-commit protocol,
and sending Bob the values of [X] and T at the position specified by predicate Q.

5.6 Oblivious Transfer

After having discussed all of these ideas, let us show how some oblivious transfer protocols,
different to those that we have previously defined, can be performed. Unfortunately, the
bibliography was limited and the extended paper of [9] was not found, so we show a brief
explication of the procedures.
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5.6.1 Oblivious Circuit Evaluation

Randomized branching programs will be used for evaluating functions in an oblivious
transfer way, that is what we call Oblivious circuit evaluation.

Suppose f is a boolean function whose complexity is of order NC1, and Bob and
Alice wish to compute f(x1, ..., xn), from which Alice knows some inputs, and Bob knows
the rest. Since the function is of order NC1, there exists a W5PBP for evaluating the
function. The evaluation of the function using the W5PBP is the same as computing
f(x1, ..., xn).

Therefore, Alice and Bob agree on a W5PBP for evaluating f , of size k, and we denote
it as M f = (Π, V ). This W5PBP is defined by a permutation in S5. Its corresponding
randomized program is M f

R = (ΠR, V ), chosen randomly by Alice. Then, for all i, 1 ≤
i ≤ k, such that Alice knows xV (i), she sends over ΠR(i, xV (i)) to Bob. Besides, for all i,
1 ≤ i ≤ k, such that Bob knows xV (i), Alice and Bob invoke a 1-out-of-2 OT protocol, for
example Algorithm 3.7. With this procedure, Alice’s secrets are ΠR(i, 0) and ΠR(i, 1), for
all i, 1 ≤ i ≤ k. Bob selects just ΠR(i, xV (i)), from which Bob knows the value of xV (i),
for all i, 1 ≤ i ≤ k. This way, Alice and Bob learn nothing about each other’s inputs
because they are using a 1-out-of-2 OT protocol.

Thereupon, for every i, 1 ≤ i ≤ k, such that Bob knows xV (i), Bob receives the value
of ΠR(i, xV (i)). These values are permutations, and Bob can just multiply all of them and
verify if the result is the same as the W5PBP they both had agreed on, the canonical one.

Since they invoke a 1-out-of-2 OT protocol for every i, 1 ≤ i ≤ k, then Alice does not
know the values that Bob selected, neither the result of the product. Moreover, let us infor-
mally show that Bob does not learn any other value. Let us denote V iewB(R, x1, x2, ..., xn)
to the random variables that Bob learns after invoking the 1-out-of-2 OT protocol, that
is, the values ΠR(i, xV (i)), for i, 1 ≤ i ≤ k, such that Bob knows the value of xV (i),
and the result of f(x1, x2, ..., xn). It is easy to see that Bob’s view corresponds to those
variables he knows (his inputs), the ones he learns, and the evaluation of the function,
f(x1, x2, ..., xn). Thereupon, he knows no information about Alice’s inputs.

In conclusion, any function f in NC1 can be evaluated using this method, in which
Alice learns nothing about Bob’s inputs and the output of the function, and Bob learns
nothing about Alice’s inputs.

5.6.2 Oblivious Decommittal

We can define anOlivious decommittal of strings. It is a decommitment algorithm in which
Bob receives the decommitment from Alice, and Alice does not know what decommitment
Bob receives. We can do it by combining the Strong-committal protocol and the 1-out-of-2
OT protocol or the 1-out-of-n OT protocol.

Alice commits to a set of strings (it can be 2 strings or n) using the Strong-commit Al-
gorithm, and a property over those strings that she will prove to Bob by a zero-knowledge
proof. Then, Alice and Bob engage in a 1-out-of-2 OT protocol or a 1-out-of-n OT proto-
col, depending on the number of strings she sends. Therefore, Bob will choose one string
from the set he has received. We know that Bob will know nothing about the rest of
strings, and Alice will know nothing about the string that Bob chooses.
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Alice will later decommit the strings she had sent using the Strong-decommit algorithm
and, again, a 1-out-of-2 OT protocol or a 1-out-of-n OT protocol. Therefore, Bob will
be able to select the decommitment to the string he had selected on the commit phase,
and he will receive the bits of the string he has. He will then perform a check-proof for
accepting the string (or not). Moreover, since they have engaged on an oblivious transfer
protocol, Alice will know nothing about the value that Bob selected, and Bob will know
nothing about the values he did not select.



Chapter 6

Dealing with Malicious Players

Until now, we have considered all players to be semi-honest. We are now going to focus on
malicious players, that have to be studied in a different way because of their behaviour.
Just to remember, a malicious player is a player that does not follow the protocol and
tries to cheat. It can send incorrect inputs, try to discover private information from other
players, or even try to change the behaviour of the rest of players. Consequently, any
player that acts differently from the protocol instructions is considered as malicious.

A malicious player can also take control over other parties, and those parties are called
corrupted parties. In case there exists any corrupted party, it will be a fixed number that
will not change over the execution of the protocol, and will maintain corrupted. Also, the
malicious players will maintain their behaviour along the execution too. The malicious
players can also be called adversaries. The parties that are not corrupted or malicious are
going to be semi-honest along all the protocol execution.

The bibliography for this chapter has been taken from [6, 11].

6.1 Two-party Secure Computation Against Malicious

Players

We showed that functions can be implemented with oblivious transfer. In order to deal
with malicious players, we want to firstly define a protocol secure in the ideal model, so
we will consider the evaluation of a function, defined as follows:

f : {0, 1}n × {1, 2, ..., n} −→ {0, 1}
(a, b) 7−→ f(a, b) = xb

where a = (x1, x2, ..., xn) is a string of bits an b is a value 1 ≤ b ≤ n. Alice will get no
output and Bob will receive the value of f(a, b) = xb.

Security will be defined as before, considering the real and ideal world. That is, we
want the real world execution of the protocol to be the same as the ideal world execution of
the protocol. We already know that in the ideal world a trusted third party can participate
in the protocol. When we deal with malicious players we have to add that Charlie is also
an incorruptible party, not just a trusted one, and no malicious player can take control
over him. Let us suppose that f is the function that the sender and the receiver wish to
compute. Each one has its own inputs, and they send them to Charlie, the trusted third
party. Then, Charlie will evaluate the function with the values he receives from Alice and
Bob. In this ideal protocol, a malicious player can deviate from the protocol by choosing
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a different input and sending it to Charlie. Therefore, the output of the function would
be computed with that different choice made by the malicious player, but, since Charlie
is honest, the computation would be calculated correctly. Moreover, the malicious party
could abort the execution of the protocol at any time.

Since just two parties participate in this protocol, we are going to consider that one
of them is honest and the other is malicious. What we pretend is to protect the honest
party against its adversary (the malicious party). To achieve this, we must first consider
all the possible actions that a malicious player can do. That is, a malicious player can
decide not to participate in the protocol, it can change its local inputs, and it can abort
the protocol execution before it is finished. These are unpredictable actions that the ma-
licious players can perform in an ideal model. Consequently, we describe an ideal model
run of the protocol for malicious players that includes this unpredictable actions.

Algorithm 6.1 (Ideal model for malicious players).

1. Both parties send their inputs to Charlie. If Alice is a honest party (respectively
Bob), she will send a (respectively b). If Alice is a malicious party (respectively
Bob), she can send a or a′ (respectively b or b′).

2. If Charlie does not receive a pair (a, b), then he sends a special symbol ⊥ to both
parties. If he receives a pair (a, b), then he sends f(a, b) to Bob.

3. If Alice (respectively, Bob) is the malicious party, she might decide to stop Charlie
before the end of the protocol. If this happens, Charlie sends Bob (respectively,
Alice) the special symbol ⊥. If Alice (respectively, Bob) decides not to stop Charlie,
he sends f(a, b) to Bob (respectively, Alice).

Suppose the function f is as we described above, and consider that M = (M1,M2) is
a pair of PPT machines that represents both parties participating in the protocol. Since
one of the parties is honest, for a i ∈ {1, 2}, Mi will follow the protocol instructions, that
is, it is the honest party. These pairs of machines, in which one of them is honest but
not the other, are said to be admissible. Then, we will denote as IDEALf,M(a, b) the
joint distribution of f under M in the ideal model. This represents the output from the
execution of the above Algorithm 6.1. For example, if we suppose that the first player
(M1) is the malicious party, we know that it can change its input, abort before finishing,
or continue until the end with its real input or another different. If it decided to change its
input and to send a′ to Charlie, then the joint distribution would be (M1(a

′, ·), f(a′, b)).
If it decided to abort before the end of the protocol, the joint distribution would be
(M1(a, ·),⊥). Also, if it decided not to abort the execution, the joint distribution would
be (M1(x, ·), f(x, b)), where x is the input that M1 decided to send, and it can be the
real input or a different one. If the malicious player were the second party, it would be
analogous.

In the real world, Charlie does not exist, so Alice and Bob will run the protocol. A real
world protocol is considered to be secure if its output is the same as in the ideal model.
We know that no malicious player can compute a successful attack in the ideal world.
Therefore, it does not exist any secure protocol run in the real world where a malicious
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player cheats successfully, because the output would be different from the output in the
ideal world.

In the real world, malicious parties can follow any strategy, so we are not able to make
a list of their possible actions. Therefore, we can not describe a precise algorithm with
all their possible responses. We will have the same function f that both parties wish
to compute, and we will consider the same pair of PPT machines M = (M1,M2) that
represents the first and second party in the real model, in which one of them is honest and
the other one is malicious. A protocol P will be followed by the honest party in order to
perform the evaluation of the function f . As before, we denote the execution of P by M
in the real model as REALP,M(a, b), and it is the output that results from the evaluation
of f following protocol P in the real model by M1 and M2.

After we have defined how real and ideal models are implemented, we can finally define
the security of a two-party computation with malicious players. We discussed above that
a two-party computation in the real world is secure if its output is similar to the output
on the ideal model, so we can now write a formal definition. Therefore, let us consider a
function f and a protocol P as above.

Definition 6.2 (Security in the malicious model). P computes f securely in the malicious
model if for every pair of admissible PPT machines A = (A1, A2) in the real model, there
exists a pair of admissible PPT machines B = (B1, B2) in the ideal model, such that

{IDEALf,A(a, b)} ≈ {REALP,B(a, b)}. (6.1)

Therefore, we have defined the security for a two-party secure computation against
malicious players. Note that this two-party computation is the same as an oblivious
transfer protocol. What we want is to define an algorithm for a protocol like this against
malicious players in the real world. Remember that we mentioned that we do not know
the possible actions the malicious party can perform, so to solve this problem we will use
the GMW compiler.

6.2 GMW Compiler

GMW compiler will let us implement a protocol in which the malicious players participate.

Definition 6.3 (GMW compiler). The GMW compiler is the set of steps that the par-
ticipants must follow if they wish to perform a protocol. They will not be able to perform
the protocol if they do not follow the steps.

To implement the compiler, we first need a protocol secure against semi-honest players.
This protocol will be the compiler’s input. Along the project we have defined several
protocols and all of them are secure against semi-honest players. Therefore, any of those
protocols could be used as the input of the compiler.

The idea of the compiler is to force the malicious parties to behave properly and follow
the protocol. Again, we have two parties in the computation, and each one has, at least,
one input, which is a string of bits.
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Definition 6.4 (Coin-tossing protocol). A coin-tossing protocol is a protocol that gener-
ates a random bit with uniform distribution.

The compiler starts by having each party committed to its own input. Then, a coin-
tossing protocol is run by the parties. That coin-tossing protocol must be secure against
malicious players, and it is explained in [2]. The possible results of the coin-tossing
protocol, heads or tails, are associated with a bit. For example, if the result is heads, it
will be a number 1, and if it is tails, it will be a number 0 (or contrary). The protocol will
be repeated several times for both parties, and the result will be a string of bits owned by
Alice, and a string of bits owned by Bob. Alice will know nothing about Bob’s string, and
Bob will know nothing about Alice’s string. Then, each party will commit to its string.
Therefore, each party will have a commitment to the other party’s input, its string of
bits, and a commitment to the other party’s string generated in the coin-tossing protocol.
Thus, with the committed input and random string, each party can be forced to follow the
protocol. In order to force them to behave correctly, the parties will use zero-knowledge
proofs in each step to verify that they are following the protocol. Therefore, a malicious
player could not deviate from the protocol because it would be detected. Thereupon,
if the protocol is secure against semi-honest players, it will be secure against malicious
players.

Let us now present the compiler procedure in a more precise way:

1. Input commitment: Let x ∈ {0, 1}k be the party’s input string. This party
computes C(x), which is the commitment to the value of x, and sends it to the
other party, along with a zero-knowledge proof of x. This proof will be denoted as
λ. That is, the parties execute the following function

x 7−→ (λ,C(x)) (6.2)

2. Coin-tossing: Let us assume that to commit to a t-bit string, the commitment
protocol needs t · n random bits. The parties generate the mentioned string by
computing a coin-tossing protocol

(t, t · n) 7−→ (Ut, C(Ut·n)) (6.3)

where they generate a t-bit long random string (Ut), and its corresponding commit-
ment, C(Ut). That is, one party receives a t-bit long random string, and the other
party receives the commitment to that value, C(Ut·n).

3. Protocol perform: Now, the parties can run any protocol secure against semi-
honest players such as the ones we have been showing along all the project, any of the
1-out-of-2 OT protocols, 1-out-of-n OT protocols, or two-party secure computation.
They will perform the chosen protocol sending zero-knowledge proofs of each step,
their input strings and random strings generated in the coin-tossing protocol.

Each step in the compiler is committed or proven by zero-knowledge proof. Therefore,
a malicious player could not cheat in this protocol, because if it changed one step, it would
be detected. Hence, it can just behave as a semi-honest player or abort the execution of
the protocol.
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In addition, the commitment protocols mentioned along the chapter can be any of
the proven commitment protocol, or the Simple-commitment protocol described in the
previous chapter. Also, as a zero-knowledge proofs are also executed in some steps of the
compiler procedure, the Strong-commitment protocol could be used too.

The protocols already described for semi-honest players in the previous chapters can
be implemented this way, where each party’s input would be its initial input, the string of
bits. Therefore, we can conclude that, for implementing an OT protocol against malicious
players, we can use the GMW compiler and, on its third step, implement the selected
oblivious transfer protocol: the 1-out-of-2 OT, 1-out-of-n OT protocols, and two-party
computation using OT.
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Chapter 7

Uses of Oblivious Transfer

After the definition of some OT protocols, we will now illustrate some application of this
method. Bibliography was taken from [13, 14].

7.1 PIR to SPIR Transformation

Suppose there is a person who owns a database that consists in n words, and another
person, a searcher, wants to search in that database, without the owner noticing about it.
This is called Private Information Retrieval, or PIR. The difference with oblivious transfer
is that in PIR schemes there is a database where the values the searcher wants, it is not
the owner who has them. If the searcher could just look one (or a fixed number) of those
words, it is called Symmetric Private Information Retrieval. It is called symmetric because
the database and the searcher have a privacy requirement. This can be constructed using
a 1-out-of-n OT protocol combined with a PIR one.

PIR schemes has been studied a lot, and has received much attention over the last
years, due to the development of technology. At first it was constructed such that the
searcher had to communicate with several servers, achieving that those servers could not
send information between them, neither to the owner of the database. Kushilevitz and
Ostrovsky proposed a PIR scheme, in [10], in which the searcher had to communicate just
with one server. After that, they suggested to adapt their protocol with a single server
in which the searcher could look as many words as it wanted, to a protocol with a single
server in which the searcher could just look one word (or a fixed number of words smaller
than the amount of words in the database). This is a SPIR scheme.

Since PIR schemes are focused on communication complexity (of order O(n)), and
1-out-of-n OT protocols are focused on sender’s privacy, combining both protocols we
achieve the idea of having a communication complexity of order O(n) in which searcher’s
privacy is guaranteed. Therefore, for a SPIR scheme we can use Algorithm 4.7.

Following the notation we have been using along the project, let us suppose that Alice
is the owner of the database and Bob is the one who wants to select a word. Also, we
will denote the words on the database as x1, x2, ..., xn, and Bob wants to look at xb. In
the SPIR protocol, Bob does not need to receive all the values y1, y2, ..., yn that Alice
encrypted. Now it is enough for Bob to receive xb. Therefore, in step 4 of Algorithm
4.7, Alice and Bob perform a PIR reading for y1, y2, ..., yn, [10]. With this, Bob has
information enough for receiving yb, that he can decrypt and guess the value of xb.
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7.2 Polynomial Evaluation

Oblivious transfer is also used for Oblivious polynomial evaluation. Again, there are a
sender, Alice, and a receiver, Bob.

Let us consider a finite field Fq, where q ∈ N is the number of elements of the field.
Alice and Bob want to evaluate a polynomial P (.) of degree dP over Fq, and Alice is the

one who knows the polynomial. Bob has an input b ∈ Fq. The output of the evaluation
will be P (b), and Bob is the one who will receive it. Alice will receive no output, and
none of them will know each other’s input.

If we consider a small integer n, the idea for evaluating polynomial P (b) is that Alice
chooses another bivariate polynomial for hiding hers, and then performs a 1-out-of-n OT
protocol with Bob. Therefore, let us suppose that the random polynomial selected by
Alice for hiding P is Q(x, y), also over the considered field. This new polynomial verifies
that:

• The degree of variable y on Q, denoted dQ,y, is the same as dP , the degree of P .

• The degree of x in Q is dQ,x, a multiple of dP .

• ∀y ∈ Fq, it is P (y) = Q(0, y).

As Alice hides the polynomial, Bob will also hide his input b in another polynomial.
Let us suppose that he selects a polynomial S(x) of degree dS over the finite field Fq

verifying that:

• S(0) = P (b).

• dS = dQ,x/dP .

The polynomial in which Bob wants to hide b is defined as R(x) = Q(x, S(x)), and,
from the previous properties, it is easy to see that

R(0) = Q(0, S(0)) = S(0) = P (b) (7.1)

and then the degree of polynomial R(x) is dR = dQ,x + dPdS = 2dQ,x.

Then, Bob chooses m = dR + 1 points, all different to zero. Those points are de-
noted as x1, x2, ..., xm. For all i, 1 ≤ i ≤ m, Bob chooses n − 1 random elements
yi,1, yi,2, ..., yi,n−1 from Fq. After this selection, he sends to Alice the values of xi and the
list (yi,1, yi,2, ..., yi,n−1, S(xi)),for all 1 ≤ i ≤ m. The elements from the list are permuted
randomly, that is, Bob sends them with a different order. Let us denote the permuted list
as (zi,1, zi,2, ..., zi,n−1, zi,n).

Now, they perform a 1-out-of-n OT protocol in which Alice sends Bob the n values
of Q(xi, zi,1), Q(xi, zi,2), ..., Q(xi, zi,n), for all 1 ≤ i ≤ m. From these values, Bob chooses
to look one Q(xi, S(xi)) = R(xi). This procedure is done m times, until Bob receives m
messages. Thereupon, at the end Bob will know {R(xi)}mi=1. With the m values, Bob can
interpolate polynomial R(x), and then calculate R(0) = P (b).

With this process, Alice has not revealed the polynomial she owned, and Bob has not
revealed his input value b, but he has guessed the value of P (b).



Chapter 8

Conclusions

Oblivious transfer is a developed scheme that has been studied along the last 30 years.
Michael O. Rabin presented a revolutionary idea for exchanging secrets, and it gave rise
to some different studies and different models from the initial one. Moreover, a really
important aspect from the OT protocol is that participants’ security and correctness is
verified in all the algorithm.

The most studied branches of this protocol are the ones of 1-out-of-2 OT and 1-
out-of-n OT, that have been explained in Chapters 3 and 4. Both of those protocols
have been implemented in different ways, from which I personally selected those that I
considered interesting to expose in this project. Nevertheless, there exist more definitions
of the mentioned protocols that were also considered to expose. Moreover, for those
representations we have considered semi-honest players, because presenting the protocol
in the first place with players like that is much easier (to explain and to understand).

In addition, the ideas described in Chapter 5 show more possibilities in which oblivious
transfer can be performed, with the use of more complex arguments. Also, if the extended
version of the consulted paper, [9], had been found, some precise protocols could have been
described. Nevertheless, the main ideas for those protocols have been exposed.

With the complete ideas about the main protocols, malicious players could finally be
considered. This type of players are basically forced to follow the steps in the commu-
nication, with the GMW compiler, so they can not make any illegal movement without
the other player noticing it. The main ideas that helped us to force malicious players to
follow the steps were the coin-tossing protocol along with the commitment protocols and
zero-knowledge proofs the participants have to perform in each step, and which are very
useful in cryptography.

As well, we showed some implementations of the oblivious transfer protocol. It is
very useful for selecting a value from a database, and also for polynomial evaluation.
These implementations have evolved along with technology and digitization, and more
applications are developed nowadays, such as signing contracts, particular cases of zero-
knowledge proofs, or constructions of black-boxes.

Due to the available space in the project, some other studies about oblivious transfer
were not explained. For example, that is the case of k-out-of-n OT. Following the explained
ideas and protocols, it is easy to see that it refers to a communication scheme between
Alice and Bob in which Alice sends n messages to Bob, and Bob can just look k of
those messages. For this protocol, one of the ideas is to repeat Algorithm 4.7, but the
complexity would be huge. The other idea is to define a 1-out-of-n OT protocol with
a lower complexity than the ones we have studied, and to repeat the first step of that
algorithm until a desired value is reached.

In conclusion, there are a lot of possibilities in order to implement oblivious transfer.
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Although it is a recent communication scheme, it has evolved fruitfully and there are
different studies about how to implement it.
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[3] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert, All-or-nothing disclosure
of secrets, Conference on the Theory and Application of Cryptographic Techniques,
Springer, 1986, pp. 234–238.

[4] Nicholas Carlini, Lecture 9: Public key encryption, October 2014.

[5] Shimon Even, Oded Goldreich, and Abraham Lempel, A randomized protocol for
signing contracts, Communications of the ACM 28 (1985), no. 6, 637–647.

[6] Oded Goldreich, Silvio Micali, and Avi Wigderson, How to play any mental game, or
a completeness theorem for protocols with honest majority, Providing Sound Founda-
tions for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, 2019,
pp. 307–328.

[7] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman, An
introduction to mathematical cryptography, vol. 1, Springer, 2008.

[8] Russell Impagliazzo and Steven Rudich, Limits on the provable consequences of one-
way permutations, Proceedings of the twenty-first annual ACM symposium on Theory
of computing, 1989, pp. 44–61.

[9] Joe Kilian, Founding crytpography on oblivious transfer, Proceedings of the twentieth
annual ACM symposium on Theory of computing, 1988, pp. 20–31.

[10] Eyal Kushilevitz and Rafail Ostrovsky, Replication is not needed: Single database,
computationally-private information retrieval, Proceedings 38th annual symposium
on foundations of computer science, IEEE, 1997, pp. 364–373.

[11] Yehuda Lindell, Foundations of cryptography 89-856, Electronic document (April
2006) (2010).

[12] Wenbo Mao, Modern cryptography: theory and practice, Pearson Education India,
2003.

[13] Moni Naor and Benny Pinkas, Oblivious transfer and polynomial evaluation, Pro-
ceedings of the thirty-first annual ACM symposium on Theory of computing, 1999,
pp. 245–254.

49



BIBLIOGRAPHY 50

[14] Abhishek Parakh, Oblivious transfer based on key exchange, Cryptologia 32 (2008),
no. 1, 37–44.
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