[bookmark: _Hlk88210394]Learning curve analysis on Adam, Sgd, and Adagrad optimizers on a Convolutional Neural Network model for cancer cells recognition

José David Zambrano Jara1*, Sun Bowen2 

1School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
macwolfz@gmail.com
2School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
1456174486@qq.com

Abstract. Cancer is considered one of the greatest problems worldwide, its prevention is nearly impossible since its cause yet remains unknown.  In countries where access to specialized health services is not affordable or easily accessible, a regular medical check-up is not frequent; the detection of cancer is more likely to be detected in more advanced stages when its symptoms are rather visible due to this, early detection is paramount. As a result of this, the creation of Deep Learning-based expert systems may become an asset to achieve an early detection, offering a previous medical diagnosis or second opinion as if it were a second specialist thus helping to reduce the mortality index of cancer patients. This paper studies the differences and impact of diverse optimizers and hyperparameters on a Convolutional Neural Network model, to then be tested on various datasets, analyze the results and propose the best method to achieve optimal results at the moment of detect accurately cancerous cells, thus saving lives.
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1 [bookmark: _Hlk88211337]Introduction
[bookmark: _Hlk83027797]Convolutional neural networks (CNNs) have proven useful and shown great promise in Computer-Aided Detection (CADe). The use of Deep Neural Networks will minimize the need for invasive procedures or testing, as well as preventing errors from missed diagnoses where a trained model will act as a second specialist observer double-checking the results with the benefit that it can bear massive loads of cases in a matter of seconds.
With each advancement in technology, new methods will arise and old methods will be refined, an example being CADe methods. Old methods are being more fine-tuned reaching new levels of precision and accuracy with the help of deep learning while new methods are being developed by people around the world which helps in the development of new algorithms for different models and architectures.    
In recent years new problems have risen where then new techniques are developed to counteract said problems. Some problems often when using datasets, such as having corrupted data, and or insufficient files. One way to solve this type of problem is by using Data Augmentation which has been proven to work by expanding datasets.

Data Augmentation is only able to help to improve the dataset to an extent, after that it might require different techniques for it to work and interpret an unrepresentative dataset in case one exists.
In this study, the effects and interactions of parameters and tuning will be presented, one of these parameters is the “Optimizer”, which updates the weight during the Backpropagation.
The Optimizers chosen for this study were ADAM, ADAGRAD, SGD with momentum, and SGD+ Nesterov. The best result from these four optimizers will be tested further, tuning its parameters for optimal results, allowing the creation of a more robust Lung Cancer Recognition Model.
1.2	Datasets 
[bookmark: _Hlk82430048]The main Dataset that was used on this research was “Mastorides SM. Lung and Colon Cancer Histopathological Image Dataset”, which is a collection of benign and cancerous tissue slides divided on 5 classes for Lung and Colon cells. [1]
In addition, a collection of other two datasets related to cancerous cells, were tested during this study, which are the Collection of Textures in Colorectal Cancer Histology “Kather_texture_2016_image_tiles_5000” [2], and Histological Images of Human Colorectal Cancer and Healthy Tissue “NCT-CRC-HE-100K” [3]
1.3	Problem Approach 
For this approach, the first step was researching about different optimizers as background study, and select the best options that would be used during this paper, this is, those who suites the most according to the selected database.
After selecting the optimizers, the next step was to prepare the information on a structure valid for the model to use. Started by separating the slides of each class into a new subset of Training, Validation, and Test, and pre-process the images that will be used to train and feed our model.
Then, while defining the structure of the model, a set of hyperparameters will be tuned to seek the most effective values. During the research a set of different optimizers were used as well as various set of hyperparameters values on the previously mentioned Datasets until optimal results are achieved.
Once the model reaches a desirable amount of accuracy and loss, it will be able to classify the different types of cells of the dataset, separating them into different folders according to his prediction.
Finally, a confusion matrix was created to display the results of the final model classifying performance after the test, showing a chart according the right predictions and errors on our Dataset.
2	Optimizers
2.1	Stochastic Gradient Descent (SGD) 
[bookmark: _Hlk82429888]The main feature of the optimizer is that unlike the original algorithm, which was based on (Gradient Descent), where a series of calculations are made on the entire dataset, it takes into consideration a small subset of randomly chosen data examples. As a result, the computing speed will increase as well as the storage requirements will decrease. [4]  
SGD updates the weights after seeing each data point instead of the entire dataset but will make rather noisy jumps away from the optimal values since it is influenced by every individual input. The formula for every epoch and every sample on this algorithm is:
					(1)
The training environments of high complexity in which Gradient Descent methods fail to work properly has led to the development of several new algorithms that complement technological advances. [5] 
One disadvantage of SGD is how it evenly scales the gradient in every direction; turning the process of tuning the learning rates α fairly arduous. [6] Besides, SGD Algorithm convergence rate is rather slow, due to the inherent propagate process that goes backward and forward for every record. [7]
Another way of decrease the noise of SGD is to add the concept of Momentum. The hyperparameters of the model may have the tendency of changing in one direction; with Momentum, the model can learn faster by minimizing the attention paid to details on the few examples that are being shown to it.
[bookmark: _Hlk80905781]				(2)
					(3)
But choosing to blindly ignore samples because it they don’t show typical features will be reflected on a higher loss; for this, an acceleration term is added.
			(4)
					(5)
This Nesterov acceleration presents some advantages over normal SGD with Momentum, in other words, when the model is training gaining momentum, so when it finds an odd example, because of the added momentum it won’t pay too much attention to this, but in this case, discarding it will lead to a loss decrease that won’t be too abrupt as it was with normal SGD + Momentum, this is where the weight updates are decelerated, so them will become small again, allowing future examples to fine-tune the current model updating the weights and bias rather dynamically.(Fig. 1) [7]
[image: enter image description here]
Fig. 1 Nesterov method process (https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc)
2.2	Adagrad 
In this algorithm, the learning rate is divided by the square root of all gradients obtained previously, and the momentum concept is removed, but parameter learning rates can be adjusted according to the parameters.  So, for each epoch T, and every parameter θi:
				(6)
				(7)
or
		(8)
In this optimizer update, the  is the sum of squares of the gradients with respective θi parameter until that point, the drawback in this algorithm is that this  is monotonically increasing over iterations, causing the learning rate to decay to a point where the parameter will no longer update, in other words will stop learning.
2.3	Adam 
This method incorporates the momentum concept from "SGD with momentum" and adaptive learning rate from "Ada delta", as well as the best features of AdaGrad and RMSProp practices, making Adam a suitable to handle sparse gradient gradients easily on noisy problems. [8]
Sparse gradients are in essence a way to shift the approach of the Original Past Gradient (OPG) from calculating gradient vectors only at observed points to computing gradients over the entire domain. [9] This algorithm can obtain better results than many other optimizers in the field of deep learning. This was demonstrated (Fig. 2) when applied to an analysis using logistic regression and CNN on the MNIST dataset and CIFAR-10 dataset respectively. [8]
[image: Comparison of Adam to Other Optimization Algorithms Training a Multilayer Perceptron]
[bookmark: _Hlk82469669]Fig. 2 Different optimization methods graph on a Multilayer perceptron training, taken from https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.
A crucial aspect of ADAM's competitive performance is that it can solve practical deep learning problems with large datasets and models while having minimal tuning [10], as well as epochs to achieve such results. Although having such good performance, later works have suggested the possibility of lacking the ability of adaptive methods to outperform SGD when measured by their skill to generalize [11]. This is, that the model can display proper adaptation when new pieces of information are added to it from the same dataset as the original input. 
3	Training the network and result analysis
3.1	Lung and Colon Cancer Histopathological Images Dataset
[bookmark: _Hlk82469532][bookmark: _Hlk82468841]For the present study, the main dataset selected was “Lung and Colon Cancer Histopathological Images” [1], which was used on a model of CNN based on Xception’s algorithm Architecture.
The optimizers ADAM, ADAGRAD, SGD+momentum, and SGD+Nesterov were respectively tested, resulting in their learning curves charts for a better view and easier understanding as it is observable (Fig. 3) 

[bookmark: _Hlk82469546]Fig. 3 Comparison of learning Curves from Different optimization Algorithms on “Lung and Colon Cancer Histopathological Images” Dataset (from left to right: ADAM, ADAGRAD, SGD+NESTEROV, SGD)
Taken together, from the results from using different optimizers on one dataset for recognizing Cancerous Lung cells, is easily noticeable that Adam works the best on Accuracy and Loss overall. To corroborate these results, the same optimizers were tested on different datasets, to verify and compare the results with those shown on Figure 3.
3.2	Kather 2016 Dataset
[bookmark: _Hlk82469710][bookmark: _Hlk82470986]After the training process done on “Kather_texture_2016_image_tiles_5000” [2] Dataset, the results from the learning curves are  on Figure 4

Fig. 4 Comparison of learning Curves from Different optimization Algorithms on “Kather_texture_2016_image_tiles_5000” Dataset (from left to right: ADAM, ADAGRAD, SGD+NESTEROV, SGD)
On the current dataset results (Fig. 4), through the learning curve is observable that ADAM outperform other optimizers, with a better precision where the training and validation accuracy were higher and the Loss rate was stable as well.
Also is noticeable how ADAGRAD optimizer, despite having peaks sometimes gets closer to an ideal model, never stabilizes, especially on the Loss Learning Curve. On the other hand, SGD and SGD + Nesterov didn’t show as good results as those visible on Figure 3, still SGD + Nesterov Loss Learning Curve remained low and stable.
3.3	NCT-CRC-HE-100K Dataset
Finally, the results (Figure 5) confirm how ADAM optimization method performed the best at the end of training from “NCT-CRC-HE-100K” [3] Dataset, followed by SGD+Nesterov 
Fig. 5 Comparison of learning Curves from Different optimization Algorithms on “NCT-CRC-HE-100K” Dataset (from left to right: ADAM, ADAGRAD, SGD+NESTEROV, SGD)
Similar to the results obtained from the previous datasets, is noticeable how ADAM performed the best, despite the peaks shown, there is a tendency to a convergence point, for this reason, this optimizer was chosen for further experiments in order to obtain an optimal model with efficient predictions, which is paramount on the moment of detect cancerous cells on early stages saving lives.
[bookmark: _Hlk88140302]Table 1 Performance Results and Comparison for Optimizers on custom model on Kather, CRC-VAL-HE-7K, and LC25000 Datasets
	 
	LOSS
	ACC
	VAL LOSS
	VAL ACC
	MIN LOSS
	MAX ACC
	MIN VAL LOSS
	MAX VAL ACC
	AVG LOSS
	AVG ACC
	AVG VAL LOSS
	AVG VAL ACC
	Sum of Speed

	KATHER
	ADAM
	48
	50
	39
	44
	0.0061
	0.993
	0.0135
	1
	0.063276
	0.97764
	0.103282
	0.96893
	1720

	
	ADAGRAD
	29
	47
	29
	35
	0.0624
	0.9803
	0.0366
	0.9895
	0.102746
	0.96352
	0.110252
	0.958314
	1720

	
	SGD +
Nesterov
	12
	27
	0
	0
	0.0638
	0.9815
	0.1351
	0.9474
	0.174932
	0.939612
	79.008334
	0.561362
	1576

	
	SGD
	50
	50
	50
	50
	0.0063
	1
	0.0052
	1
	0.016194
	0.994618
	0.027376
	0.991774
	1733

	
	ADAM 
(0.2 Dropout)
	79
	89
	19
	34
	0.016
	0.9954
	0.0228
	0.9947
	0.089106
	0.970348
	0.679409
	0.852684
	9297

	
	ADAM 
(0.5 Dropout)
	1
	30
	0
	4
	0.0945
	0.9678
	0.1226
	0.9575
	0.172607
	0.940304
	0.650614
	0.8614
	4303

	CRC-VAL-HE-7K

	ADAM
	40
	47
	4
	10
	0.0265
	0.9913
	0.0492
	0.9855
	0.076972
	0.972408
	0.773822
	0.848666
	9696

	
	ADAGRAD
	10
	29
	0
	1
	0.0872
	0.9718
	0.1286
	0.9571
	0.154862
	0.939204
	0.629188
	0.77994
	8158

	
	ADAM 
0.2 DROPOUT
	90
	96
	15
	26
	0.0061
	0.9981
	0.0072
	0.9965
	0.05107
	0.981726
	0.923743
	0.839584
	17947

	
	ADAM 
0.5 DROPOUT
	100
	100
	31
	51
	0.0127
	0.9969
	0.0191
	0.9947
	0.04181
	0.9862
	0.42132
	0.928086
	6501

	
	SGD +
MOMENTUM
	41
	45
	2
	2
	0.0154
	0.9941
	0.0876
	0.9744
	0.071768
	0.97306
	1.127848
	0.752724
	7800

	LC25000
	ADAM
	40
	47
	4
	10
	0.0265
	0.9913
	0.0492
	0.9855
	0.076972
	0.972408
	0.773822
	0.848666
	9696

	
	ADAGRAD
	10
	29
	0
	1
	0.0872
	0.9718
	0.1286
	0.9571
	0.154862
	0.939204
	0.629188
	0.77994
	1720

	
	SGD +
Nesterov
	41
	45
	2
	5
	0.0238
	0.9913
	0.068
	0.9792
	0.079746
	0.970302
	0.80578
	0.807776
	1576

	
	SGD
	41
	45
	2
	2
	0.0154
	0.9941
	0.0876
	0.9744
	0.071768
	0.97306
	1.127848
	0.752724
	1733

	
	ADAM (0.2 Dropout)
	90
	96
	15
	26
	0.0061
	0.9981
	0.0072
	0.9965
	0.05107
	0.981726
	0.923743
	0.839584
	9297

	
	ADAM (0.5 Dropout)
	88
	96
	15
	27
	0.0074
	0.9971
	0.0434
	0.9841
	0.052853
	0.98102
	0.46387
	0.889964
	4303


The Experimental results are summarized on Table 1, as a comparison between optimizers on the proposed classification method on different datasets, providing initial results on the present projected classification pipeline, so is observable the improvement between each Optimizer on the Xception-based Model in all these datasets. The model achieved on its performance a peak of 99.8% and 99,7 of accuracy on Adam with 0.2 Dropout and 0.5 Dropout respectively, and a loss of 0.006% and 0.0074%. The overall result displayed of the proposed model is able to capture features from cell slides to detect cancerous cells in patients in real-world scene scenarios.
From the table was evident which models performed the best, and by diagnosing the properties of their Learning curves, the datasets can be analyzed as well as the model behavior during the fitting process, in this case sudden jumps and drops shown on the Learning Curves suggest that the validation dataset is unrepresentative
3.3	Unrepresentative Dataset
This definition applies to datasets with a small number of samples compared to a large, representative dataset. Resulting into a poor feature extraction by the model that is in training, thus a low accuracy and high error rate on our model, regardless the quality of it. 
The two most common cases that could arise during the fitting process are:
3.4	Unrepresentative Training Dataset
The training dataset lacks sufficient information to facilitate learning compared to the validation dataset, which prevents a learner or model from achieving high accuracy and a smaller loss rate.
This situation can be easily identified by a learning curve of training loss that shows improvement and similarly to the learning curve for validation loss that also shows improvement, but a large gap remains between both curves. (Fig. 6)
[image: Example of Train and Validation Learning Curves Showing a Training Dataset That May Be too Small Relative to the Validation Dataset]
Fig. 6 Unrepresentative Training Dataset Learning Curve
3.5. Unrepresentative Validation Dataset
This case occurs when it is not possible to evaluate the generalization ability of the model from the validation dataset, which is to say when there are too many examples from the validation dataset in contrast with the training dataset.  This can be observed in a learning curve that appears to fit the training loss well (or other fitting curves) and a learning curve that appears to fit the validation loss well but is characterized by noise. On the learning curves from Loss training, excellent results seem to appear evident, and yet, show unstable changes as is observable on sudden high and low peaks on the validation loss. (Fig. 7)
[image: Example of Train and Validation Learning Curves Showing a Validation Dataset That May Be too Small Relative to the Training Dataset]
Fig. 7 Unrepresentative validation dataset
In this second example is noticeable the same jumps and drops as those from the learning curve in the model of study, since during the training the data was rather limited and after using different techniques such as Data Augmentation for increasing the number of samples, the validation data was still unrepresentative compared to the training data.
This model’s training was made on a Dropout of 0.5, this means that during the training process (it doesn’t use this during the validation process) 50% of features nodes or neurons are set to 0 because they won’t be used.
Dropout helps with generalizing the model and avoids the models enter into a state called overfitting.
This dropout technique is not used during the testing, since here all the neurons will be used, that is why the accuracy and loss during on the training dataset didn’t show abrupt peaks as the Validation did.
After performing this exploratory testing on Lung Cancer Database and using different Hyperparameters on the best performing optimizer so far (ADAM), the input values for these Dropouts were 0.5 and 0.2 respectively, which after plotting the learning curve, produced similar results on after a larger number of Epochs (Fig. 8) (Fig. 9)

Fig. 8 Learning Curve for ADAM optimization with 0.5 Dropout
  
Fig. 9 Learning Curve for ADAM optimization with 0.2 Dropout
In the current study case (Fig. 9) the learning curves showed how a higher Dropout of 0.5 resulted in a rather stable Validation Loss in comparison with 0.2, which makes sense as the model by discarding half of the neurons allow itself to avoid wrong weights or paths easier, but this also has affected the Validation Accuracy where a lower dropout value of 0.2 (Figure 9) exposed better results on validation accuracy, which is acceptable in this model since it got a positive outcome during the evaluation of this model, delivering a Validation Accuracy of 0.9965 and a Validation loss of 0.0072.
Thus, in this study case, the chosen optimizer for this model was Adam on a Dropout of 0.2 since the overall proved to be better as its observable while transposing the learning curve results as it’s shown on Fig. 10

[bookmark: _Hlk82436933]Fig. 10 Juxtaposition of learning rates from different Dropout values on ADAM optimization method
Other studies suggest the possibility a different approach of SGD actually outperforming ADAM in later stages or epochs during the training of the model by Switching from ADAM to SGD (SWATS).
This strategy was tested in cases such as Tiny-ImageNet problem, where the switches from Adam to SGD lead to significant though temporary degradation in their performance. This is, after an abrupt drop from 80% to 52% caused by this switch, the model eventually recovered, achieving an even better peak on testing accuracy compared to Adam, which in some cases lead to a stagnation in performance.[6]
4	results of the research and model
Once the best model was chosen from the training made on our model, the next step was to set a Classification Report as well as a Confusion Matrix to measure its performance (Fig. 11), showing on the center the accurate predictions it made on the dataset. (Fig. 12) 
[image: ]
Fig. 11 Classification Model Performance
[image: ]
Fig. 12 Classification Model Performance
5	Conclusions
In this research, several methods for improving performance were proposed, testing them and proving their effectiveness on the selected datasets.  The result of this study hope will allow to save exploration time at the moment of create new models for cancer detection, as well as get a better performance in practical applications on real life.
The use of Deep Learning on medical fields such as Cancer recognition models have many challenges; since every cell is different and cancer works randomly on cells, improving input data will allow to overcome these challenges as well as many limitations, turning into a higher accuracy as well as a better generalization ability despite the quality of the cell slice images.
Still, the algorithm proposed on the current study has shown promising features, such as high precision and low loss rate, runs relatively fast, combining different techniques and approaches as a deep learning algorithm.
Targeting to solve the problems of low detection accuracy of cancerous targets since there are lives at stake; the use of Depthwise Separable Convolutions was selected for this CNN model, since its architecture has having fewer parameters than those on commonly used, thus will be less prone to overfitting.
There are still many shortcomings in this paper. Although the accuracy of cancer detection is improved to a certain extent, further studies can be made to improve and perfect these models and techniques to achieve better and optimal results on this task.
The success of this research motivates future deeper exploration into the dynamics with different optimizer and generalization in later epochs where the optimal convergence is harder to reach.
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A picture of the Nesterov method

+ First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.
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