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labor como directores a lo largo de estos años. Gracias por dedicarme todo

vuestro tiempo, vuestra paciencia y transmitirme vuestro conocimiento y

pasión por la ciencia, pero, sobre todo, gracias por apoyarme a lo largo de
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Abstract

The dramatic evolution that the laser science has undergone in the last six

decades, and particularly in the field of ultrashort pulses, has been accom-

panied by breakthrough advances in the development of techniques for their

characterization. Despite the large number of characterization techniques

developed in the last two decades, it is still necessary to implement simpler

and more robust techniques that can also operate in multiple spectral ranges.

This Thesis is devoted to the study and development of temporal and

spatiotemporal characterization techniques with compact and stable config-

urations, which are versatile, e.g., to analyze ultrashort laser beams with

different temporal durations and in various spectral regions.

The structure of this Thesis is made up of four main blocks. Firstly,

a brief introduction to ultrafast optical metrology and the state of the art

of spatial, temporal and spatiotemporal characterization techniques is pre-

sented in Part I. Then, Part II is focused on the review and extension of

the capabilities of the amplitude swing temporal characterization technique,

demonstrating three key advances: operation in different spectral regions

from visible to near-infrared, with a tunability range spanning of more than

one octave; characterization of ultrashort pulses in the few-cycle regime; or

study of the implementation with different amplitude modulation schemes.

In addition, a new retrieval algorithm is developed to analyze the amplitude

swing traces based on differential evolution strategies. Thirdly, the funda-

mentals, operation range and experimental demonstration of a spatiotempo-

ral characterization technique based on bulk lateral shearing interferometry

are depicted in Part III. Furthermore, the technique is applied to character-

ize complex spatiotemporal couplings, like constant and time-varying optical
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vortices or the aberrations when focusing with astigmatic lenses. Finally, the

main conclusions of the work and future perspectives are discussed in Part

IV.
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Resumen

La drástica evolución que ha experimentado la ciencia láser en las últimas

seis décadas, y en particular en el campo de los pulsos ultracortos, ha ido

acompañada de grandes avances en el desarrollo de técnicas para su car-

acterización. A pesar de la gran cantidad de métodos de caracterización

desarrollados en las últimas dos décadas, aún es necesario implementar sis-

temas más simples y robustos que también puedan operar en múltiples rangos

espectrales.

Esta Tesis está dedicada al estudio y desarrollo de técnicas de caracteri-

zación temporal y espaciotemporal con configuraciones compactas y estables,

que sean versátiles para, por ejemplo, analizar haces láser ultracortos con

diferentes duraciones temporales y en diversas regiones espectrales.

La estructura de la Tesis está dividida en cuatro bloques principales. En

primer lugar, en la Parte I se presenta una breve introducción a la metroloǵıa

óptica ultrarrápida y los avances de las técnicas de caracterización espacial,

temporal y espaciotemporal a lo largo de los últimos años. Después, la Parte

II se enfoca en la revisión y extensión de las capacidades de la técnica de

caracterización temporal amplitude swing, demostrando tres avances clave:

operación en diferentes regiones espectrales desde visible hasta infrarrojo

cercano, con un rango de sintonizabilidad que abarca más de una octava;

caracterización de pulsos ultracortos en régimen de pocos ciclos; o estudio de

diferentes esquemas de modulación de amplitud. Además, se implementa un

nuevo algoritmo de reconstrucción para analizar las trazas del sistema ampli-

tude swing basado en las estrategias Differential Evolution. En tercer lugar,

en la Parte III se describen los fundamentos, el rango de operación y la de-

mostración experimental de una técnica de caracterización espaciotemporal
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basada en la interferometŕıa lateral compacta (bulk lateral shearing inter-

ferometry). Además, la técnica se emplea para caracterizar acoplamientos

espaciotemporales complejos, como son los vórtices ópticos constantes y vari-

ables en el tiempo o las aberraciones introducidas al focalizar haces láser con

lentes astigmáticas. Finalmente, en la Parte IV se resumen las principales

conclusiones y futuras ĺıneas de trabajo.
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Chapter 1

History of ultrafast lasers

Laser science has drastically evolved since its first experimental demonstra-

tion in 1960 [1]. Over these six decades of continuous development, new laser

sources have been implemented and laser science has been consolidated as

a relevant topic with multiple applications in various fields such as telecom-

munications [2], material processing [3], biomedicine [4], spectroscopy [5],

nonlinear optics [6] or strong field physics [7] , among many others [8–11].

The importance of laser sources increased considerably with the discovery

of efficient approaches of pulsed emission, which consist on concentrating

the energy of the laser beam in a short period of time, thus considerably

increasing the achievable peak power and hence the intensity. One of the

first successful strategies was the Q-switching method, firstly demonstrated in

[12]. This method is based on the introduction of a variable attenuator inside

the laser cavity to periodically control the losses, hence the quality factor

(Q) of the resonator. First, it introduces high losses to prevent feedback of

light inside the active medium and increase the stored pump energy. Then, it

drastically reduces the losses, thus enabling the feedback and the stimulation

of the emission process, generating an intense laser pulse. The Q-switching

approach produces short pulses, typically in the ns range (1 ns= 10−9 s), but

it could achieve shorter durations at the 100 ps range (1 ps= 10−12 s) [13].

On the other hand, in 1964 the mode-locking method was introduced [14],

which enables the generation of laser pulses in the sub-picosecond temporal

range. This method generates extremely short pulses by achieving a fixed
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1- HISTORY OF ULTRAFAST LASERS

phase relationship between the longitudinal modes of the laser cavity, making

them interfere constructively.

In particular, mode-locking lasers were the cornerstone of the drastic in-

crement of interest because their ultrashort laser pulses of tens of femtosec-

onds (1 fs= 10−15 s) opened the access to the so-called ultrafast regime. These

lasers are very interesting because their short duration allows extremely short

processes to be studied (e.g., processes in molecules or atoms [15]). Also, the

significant increment in the peak intensity enables the induction of many non-

linear processes [16, 17]. Another interesting application of ultrafast lasers

is material processing, because it can be done without significant thermal

effects, since heat transfers are done in nanosecond or longer temporal scales

[18].

Among all the advances experienced by ultrafast laser science in its his-

tory, we want to highlight the invention of the Chirped Pulse Amplifica-

tion (CPA) technology [19]. A typical CPA system, as the one shown in Fig.

1.1, consists of three different elements: stretcher, amplifier and compressor.

Fig. 1.1. Scheme of a CPA system obtained from [20].

First, the ultrashort laser pulse that is going to be amplified goes through

the stretcher. This system introduces a significant chromatic dispersion (dif-

ferent optical path depending on the optical frequency), thus temporally

3



1- HISTORY OF ULTRAFAST LASERS

stretching the pulse typically into hundreds of picoseconds. Therefore, the

stretched pulse presents a time dependent spectrum, what is called chirp. A

common configuration of the stretcher is composed by diffraction gratings,

separating the different spectral components and driving them by different

length paths before recombining them. Another possibility is to use prisms

instead of diffraction gratings or directly introduce high dispersion materi-

als. After the stretcher, it is obtained a lower peak power and longer pulse

that can be amplified in an active medium (amplifier) without risk of dam-

age due to its much longer temporal duration. Finally, the chromatic chirp

introduced by the stretcher, and any other that eventually could have been

acquired due to propagation, are compensated using a compressor, thus ob-

taining a high energy ultrashort pulse. The compressor typically is a system

similar to the stretcher but introducing dispersion of the opposite sign.

Before the invention of CPA, ultrafast lasers were only able to be ampli-

fied up to megawatt or gigawatt levels without damaging the amplification

medium. After the CPA, ultrafast laser power can be easily risen several

orders of magnitude into the terawatt or even petawatt level. Its discoverers,

Donna Strickland and Gérard Mourou, were awarded with the 2018 Physics

Nobel Prize.

A CPA system can be relatively compact, so it can be used to generate

terawatt table-top lasers like the ones used in this Thesis.

The continuous development of ultrafast lasers has given access to new

fields of science like micro-machining [21, 22], High-order Harmonic Genera-

tion (HHG) [23, 24], attoscience [25, 26], laser-plasma interaction [27, 28] or

electron/ion acceleration [29, 30], among many others.

Motivation of the Thesis

The development and optimization of new laser sources and their correct

use in different applications is sustained in the exhaustive knowledge of the

laser emission. For this purpose, since the development of the first laser,

many characterization techniques (e.g., polarization, temporal, spatial and

spatiotemporal) have been proposed to analyze them. In particular, this

4



1- HISTORY OF ULTRAFAST LASERS

Thesis is devoted to the temporal and spatiotemporal analysis.

Despite the broad variety of temporal and spatiotemporal characteriza-

tion techniques that have been developed in the last decades, which will be

mentioned later in Section 2.2, there is still a necessity of simpler and more

robust techniques that can be reliable even in less controlled conditions, as

in noisy environments or outside laboratory conditions.

In addition, there is an emerging need for characterization techniques ca-

pable to operate in different spectral regions due to the development of new

laser sources in the visible and infrared (IR) spectral regions, which present

interesting applications in various fields like spectroscopy, biomedicine, metrol-

ogy, micro-welding or telecommunications, among many others.

Taking into account the current needs of ultrafast characterization, this

Thesis is focused on the development, study and application of new proto-

types of simple, compact and ultra-stable characterization techniques. In

particular, we are going to characterize linearly polarized laser beams, so we

can assume the electric field is a scalar magnitude. Nevertheless, we will take

advantage of how materials interact with light at different states of polariza-

tion in order to generate certain special beams to be studied or to implement

our characterization techniques.

On one hand, Part II extends the studies of a recently published temporal

characterization technique, the amplitude swing [31], demonstrating that it

is able to operate in diverse spectral regions in the visible and IR (Chapter 5),

characterize ultrashort pulses in the few-cycle regime (Chapter 6) and to be

implemented with different configurations of the set-up (Chapter 7). More-

over, we implement a new retrieval algorithm based on genetic algorithms

(Chapter 4).

On the other hand, Part III presents a new compact and ultra-stable

spatiotemporal characterization technique, which solves the high complexity

and low stability problems of previous spatiotemporal techniques, enabling

even the possibility to operate in different spectral regions without modifica-

tion of the set-up. First, in Chapters 8-10 are settled the foundations of the

technique, including the analysis of its operability range. Then, in Chapter

11, the capabilities of the technique characterizing spectrally and temporally

5



1- HISTORY OF ULTRAFAST LASERS

beams with different types of spatiotemporal/spatiospectral distortions are

shown.

Finally, conclusions of the work and future perspectives are discussed in

Part IV.
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Chapter 2

Ultrafast characterization

As laser systems evolved, so did the techniques to characterize them. This

continuous evolution of the characterization techniques is essential to opti-

mize the laser performance and to correctly use them in their corresponding

applications.

The main challenge associated with the study and control of ultrafast

lasers is the difficulty to observe such brief events (femtosecond range), since

they are much shorter than the temporal response of the fastest electronic de-

vices (usually in the nanosecond-picosecond range). Thus, different methods

need to be used, in particular optical methods are very extended [32–34].

2.1 Basic concepts of ultrashort laser beams

This Section is focused on establishing the basic concepts of ultrafast lasers

that underlie the present Thesis.

2.1.1 Electric field: temporal and spectral domains

Ultrafast optical metrology is focused on the study of the electric field of

ultrashort laser pulses and their interaction with matter. It is well known

that the light electric field can be expressed, using complex number notation,

as the combination of an amplitude (A) and a phase term (Ω), being the

7



2- ULTRAFAST CHARACTERIZATION

electric field E = A · exp (iΩ).
In general, the electric field can be expressed as a function that depends

on the three spatial coordinates (x, y, z) and the time (t), so E = E(x, y, z, t).

Furthermore, by choosing the reference axis, z represents the propagation di-

rection and usually the electric field is characterized at a certain propagation

plane (z0), so E(x, y, z = z0, t) = E(x, y, t).

As a first approach, in order to understand the underlying physics, for the

moment we are going to assume that the electric field does not vary spatially.

In this case, the electric field in the temporal domain can be expressed as:

E(t) = A(t) exp [i (φ(t)− ω0t)] (2.1)

where the amplitude of the electric field is its modulus (A(t) = |E(t)|), ω0

represents the central or carrier frequency and φ(t) corresponds to phase

term varying in time (i.e., temporal phase relative to the carrier frequency

phase term).

From Eq. 2.1, it can be defined the temporal intensity, I(t), as the square

of the modulus of the electric field, I(t) = |E(t)|2 = [A(t)]2. Moreover,

from the temporal intensity it can be defined the temporal pulse duration,

which is usually done following the criterion of Full-Width at Half Maximum

(FWHM).

In addition to the temporal representation, the electric field can equiva-

lently be expressed in the spectral domain as:

Ẽ(ω) =
√

S(ω) exp [iφ(ω)] (2.2)

where S(ω) = |Ẽ(ω)|2 is the spectral power density (hereafter spectrum) and

φ(ω) the spectral phase term.

Furthermore, the temporal and spectral domains are related by the di-

rect/inverse Fourier Transform. Thus, if the electric field is known in one

domain, it can be calculated in the analogous just by:

E(t) = F
{
Ẽ(ω)

}
=

∫ +∞

−∞
Ẽ(ω) exp [−iωt]dω

Ẽ(ω) = F−1
{
E(t)

}
=

∫ +∞

−∞
E(t) exp [iωt]dt

(2.3)

8



2- ULTRAFAST CHARACTERIZATION

being, F the direct Fourier Transform (FT) and F−1 the Inverse Fourier

Transform (IFT).

Sometimes the spectral representation is done in wavelengths (λ) instead

of the angular frequencies (ω), but the change of variable from ω to λ (or

vice versa) is not only an axis change. In fact, it is also a reshape of the

spectrum because of the density conservation rule:∫ ∞

0

Sω(ω)dω =

∫ ∞

0

Sλ(λ)dλ (2.4)

Thus, since they are inversely proportionals (ω = 2πc/λ, being c the speed

of light) the relation between the spectrum of each parameterization is given

by Eq. 2.5. In addition, this reshape is specially relevant in few-cycle regime

due to the ultra-broadband spectra of these pulses.

Sω(ω) =
λ2

2πc
Sλ(λ) (2.5)

Moreover, since temporal and spectral domains are equivalent, the elec-

tric field can be represented indistinctly in each domain. However, from an

experimental point of view, it is useful to represent the electric field in the

spectral domain due to two main reasons. Firstly, the dispersion of materi-

als and optical elements will be manifested as different phases depending on

the frequency. Secondly, the spectral characterization is the easiest one be-

cause under linear processes the spectrum is not modified due to propagation

through a medium (apart from attenuation or some particular distortions),

whereas the temporal intensity and temporal phase are affected if the spec-

tral phase (or amplitude) changes. This idea is shown in Fig. 2.1, where the

temporal intensity has been calculated for a fixed spectrum with different

spectral phases.

In the examples of Fig. 2.1, the spectral phase has been parameterized

using a Taylor expansion series, like the one in Eq. 2.6, and the spectrum

corresponds to a Gaussian profile.

φ(ω) = ϕ0 + ϕ1(ω − ω0) +
1

2!
GDD(ω − ω0)

2 +
1

3!
TOD(ω − ω0)

3 + ... (2.6)

where ϕ0 corresponds to a constant term, ϕ1 is the coefficient of the linear

contribution and the GDD and TOD terms are the second and third spectral

derivatives of the phase, respectively
(
GDD = ∂2φ(ω)

∂ω2

∣∣∣
ω0

and TOD = ∂3φ(ω)
∂ω3

∣∣∣
ω0

)
.
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2- ULTRAFAST CHARACTERIZATION

Fig. 2.1. Representation of the effect of the spectral phase in the temporal in-

tensity for the same Gaussian spectrum. (a) Spectrum (black line) and spectral

phases. (b) Temporal intensities.

In this representation, the quadratic phase term is called Group Delay

Dispersion (GDD) and, when accounting for material dispersion, it is gen-

erated due to the accumulation of Group Velocity Dispersion (GVD) during

the propagation through a medium of a certain length (L), GDD = GVD ·L.
The GDD is translated into the temporal domain as an increment of the tem-

poral duration and, also, a reorganization of the frequencies. If GDD > 0,

it is said that the pulse has positive chirp and the redder frequencies arrive

before the bluer frequencies (the opposite if GDD < 0). Please notice that

both GDD signs depicted in Fig. 2.1(b) present the same temporal intensity

profile, but actually they have opposite chirp. This can be verified by looking

at the oscillations of the electric field shown in Fig. 2.2.

Fig. 2.2. Representation of the electric field temporal oscillations for a pulse with

(a) GDD>0 and (b) GDD<0.
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2- ULTRAFAST CHARACTERIZATION

On the other hand, the Third Order Dispersion (TOD) generates satellites

arriving before (pre-pulses) or after (post-pulses) the main pulse, if TOD < 0

or TOD > 0 respectively.

Furthermore, if φ(ω) is constant or linear dependent, in the temporal

domain it corresponds to the shortest pulse obtainable with that spectrum

and it is called Fourier Transform Limit (FTL) pulse.

Previously, it has been explained that spectral and temporal domains are

linked by Fourier Transform (Eq. 2.3), so the time-bandwidth product is

fixed (i.e., the product of the temporal duration and spectral bandwidth of

the pulse is constant). Therefore, to achieve shorter FTL pulses it is needed

a broader spectra.

2.1.2 Spatiotemporal couplings

As mentioned before, in general the electric field at a certain propagation

plane can be expressed as a function that depends on the transverse spatial

coordinates and the temporal or spectral variables (E(x, y, t) or E(x, y, ω)).

From this parameterization two concepts widely used in spatiotemporal

characterization can be defined. Firstly, in the spatiotemporal domain, the

surface containing the maxima of the temporal intensity for different spatial

positions is called pulse-front. Secondly, in the spatiospectral domain, the

spatial surface of constant phase is called wavefront and, in a general case,

it can be different for each wavelength.

In some situations, it is assumed that the spatial and temporal/spectral

properties are separable (E(x, y, t) = Exy(x, y) · Et(t)). If this assumption

is fulfilled, the spatial term could be studied using a spatial characterization

technique and the temporal term using a temporal characterization tech-

nique. Thus, combining both characterizations, the complete electric field

would be obtained.

However, in a general case, the temporal or spectral properties may

vary spatially, hence the beam presents the so-called SpatioTemporal Cou-

pling (STC). In those cases, the electric field dependences are not separable,

E(x, y, t) ̸= Exy(x, y) ·Et(t), and a new kind of techniques, called spatiotem-
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poral characterization techniques, are required.

Some examples of STCs are the pulse-front tilt (i.e., the arrival time of

the pulse depends on the spatial location within the beam profile, varying

linearly in a direction perpendicular to the beam propagation direction),

pulse-front curvature (e.g., the arrival time of the pulse varies quadratic in

the spatial dimension), spatial chirp (i.e., spatial dependence of the spectrum)

or chromatic aberrations, among many others [33, 34].

Fig. 2.3. Representation of different common cases of STCs. Images adapted

from the tutorials of [35].

Furthermore, the presence of STCs is not rare since it can be observed

in multiple common situations like the represented in Fig. 2.3. Firstly, Fig.

2.3(a) shows the spatial chirp introduced due to traveling through a tilted

window. Secondly, Fig. 2.3(b) represents the spatial chirp and pulse-front

tilt introduced after diffraction on a grating. Then, Fig. 2.3(c) shows the

pulse-front tilt due to propagation of a spatially chirped pulse through a

dispersive medium.

These are just some examples, but there are many other typical STCs

such as the frequency dependent focal length in chromatic lenses, spatial

chirp after propagation through a prism pair or complex STCs induced due to

nonlinear effects or diffractive optical elements (DOEs), among many others
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[33, 36]. One example of complex STCs are the optical vortices that will be

analyzed in Chapter 11.

It is crucial to characterize and control these spatiotemporal dependences.

On one hand, non-desired spatiotemporal couplings can introduce significant

changes in the laser beam characteristics (e.g., temporal lengthening or beam

aberrations), implying a critical reduction of the peak intensity and non-

optimal operation in the corresponding application. On the other hand,

their controlled manipulation can be used to generate beams with specific

distributions that can be interesting for certain applications [36, 37].

2.1.3 Spatial and spectral interference

Considering the coherence of laser emission, two superimposed electric fields

interfere depending on their relative phase. There are different ways of inter-

ference and here we are going to explore two types of interest for this Thesis:

spectral and spatial interference.

On one hand, from the spectral point of view, the resulting spectrum of

the combination of two collinear ultrashort laser pulses (E1 and E2) with the

same polarization and a certain delay (τ) between them is given by:

SSI(ω) = |F{E1(t) + E2(t− τ)}|2 =

= |Ẽ1(ω)|2 + |Ẽ2(ω)|2 + 2

√
|Ẽ1(ω)|2|Ẽ2(ω)|2 · cos (φ1(ω)− φ2(ω)− ωτ)

(2.7)

An example using this type of interference with ultrashort pulses is shown

in Fig. 2.4(a). Indeed, Eq. 2.7 is used in Spectral Interferometry (SI) [38, 39]

to obtain the relative phase between the interfering pulses. Thus, knowing

one of them, the phase of the other can be characterized.

On the other hand, from the spatial point of view, there are different pos-

sibilities. Firstly, if two beams with different wavefronts are superimposed,

the resulting combination will lead to a spatial interference pattern due to

the phase difference.

Secondly, there are some configurations that enable the combination of

a beam with a replica of itself encoding its information. For example, if

two beams are combined with a certain tilt angle, the combination will cre-
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ate a spatial interference pattern. Another interesting case is the shearing

interferometry, in which a beam interferes with a laterally sheared replica

of itself, generating a spatial interference pattern that contains the spatial

phase gradient. An example of a commercial system based on the shearing

interferometry with the resulting patterns for flat and convergent wavefronts

for a continuous wave laser is shown in Fig. 2.4(b).

Fig. 2.4. (a) Simulated example of spectral interferometry. (b) Scheme of a

commercial lateral shearing interferometer from Thorlabs (image from [40]).

Notice that, when using ultrashort pulsed beams, and depending on the

wavefront spectral dependence, these spatial patterns can be different for

each frequency of the beam. From the spectral point of view, the spectral

interference pattern can be different for each spatial position.

In this Thesis, we will combine the concepts of SI and lateral shearing
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interferometry to create a spatiotemporal characterization technique, which

will be explained in Part III.

2.1.4 Nonlinear effects: second harmonic generation

In general, characterization techniques based on linear processes can only

give information about the spectrum and the phase difference. It is true that,

provided a known reference pulse, a laser beam can be characterized using

linear processes like SI. However, that reference usually has been previously

calibrated with a technique based on nonlinear optics, as it will be shown in

Subsection 2.2.2.

Nonlinear processes are generated due to a nonlinear response of the

medium. As long as the pulse intensity is high enough, any medium can

present them, but there are some materials, called nonlinear materials, which

more likely present this type of processes [41]. Usually, anisotropic crystals

with nonlinear response of the refractive index are used as nonlinear media,

and they are called nonlinear crystals.

The main point of using nonlinear effects is that they are sensitive to

changes in the phase, so they can be used to codify all the information of

the electric field. There are many nonlinear processes that can be used in

ultrafast characterization like Sum-Frequency Generation (SFG), Difference-

Frequency Generation (DFG), Third Harmonic Generation (THG), Cross-

polarized wave generation (XPW) or Polarization gating (PG) [32, 41]. De-

spite the diversity of nonlinear processes, the majority of ultrafast character-

ization techniques are based on Second Harmonic Generation (SHG) because

it requires less intensity.

The SHG is a special case of SFG in which two photons of the same

fundamental frequency, ω, are ‘combined’ to produce one photon of double

frequency 2ω. This process was observed experimentally for the first time

in [42] and nowadays is widely used in many ultrafast characterization tech-

niques. As seen in [41], it is usually studied from a monochromatic point of

view using the following equation:

I2(L) =
8ω2

1d
2
effI

2
1

n2
1n2ε0c2

L2 sinc (∆kL/2) (2.8)
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where deff corresponds to the effective efficiency of the SHG process, L is the

nonlinear medium thickness, c the light velocity and ε0 the vacuum permit-

tivity. The subindices ‘1’ and ‘2’ refer to the fundamental and SHG variables

like the frequency (ω), the refractive index (n) and the intensity (I). The

term ∆k = k2 − 2k1 is called phase-matching (between the wavevectors) and

it must be close to zero to have an efficient SHG. Furthermore, it can be

expressed as a function of the refractive indices difference:

∆k =
2ω1

c
(n2 − n1) (2.9)

However, in ultrafast metrology the beams are broadband and, in gen-

eral, the problem cannot be directly solve studying independently each wave-

length.

In fact, when using ultrashort beams, the easiest way is to calculate the

SHG (actually, SFG) electric field in the temporal domain because, assuming

instantaneous response, it is directly the product of both fundamental electric

fields. Then, the spectral electric field can be calculated by simply using the

Fourier Transform:
ESHG(t) = E(t)2

ẼSHG(ω) = F−1{E(t)2}
(2.10)

To calculate the electric field directly in the spectral domain, the spectral

convolution of both fundamental fields has to be done.

Moreover, the SHG for a certain material is efficient if the phase-matching

condition is satisfied (∆k = 0), but that condition depends on the wavelength

and the angle of incidence with respect to the crystal axis. In the experiments

it is highly important to verify that the phase-matching is good along all

the spectrum to avoid distortions that can introduce artifacts in the pulse

characterization.

Furthermore, an anisotropic crystal is usually cut with the optical axis at

a certain angle so the phase-matching for the desired wavelength is perfect

under normal incidence. Thus, if the same nonlinear crystal is used in a dif-

ferent spectral range, it should be rotated to have the correct phase-matching

angle.

Notice that larger values of L in Eq. 2.8 increase the SHG intensity, at the
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expense of reducing the spectral bandwidth due to vanishing faster the ‘sinc’

term. Therefore, in ultrafast metrology thin nonlinear crystals are commonly

used, so the phase-matching condition for different frequencies is less restric-

tive. However, there are some situations, specially with ultra-broadband

pulses, in which it is not possible to have perfectly flat phase-matching for

all the spectrum, even for very thin nonlinear media. In those cases, it can

be used a SHG response function (RSHG) in the retrieval algorithms to take

into account this spectral dependence of SHG expressing the SHG spectrum

as:

SSHG(ω) = RSHG(ω) · ISHG(ω) = RSHG(ω)|F−1{E(t)2}|2 (2.11)

There are different ways of obtaining this SHG response, like experimental

calibration using a known broadband source, iteratively as a free parameter

in the retrieval algorithm, taking into account the frequency marginal of

the trace or theoretically considering the SHG equations and the material

parameters [43].

2.2 State of the art of ultrafast characteriza-

tion techniques

Ultrafast characterization techniques of scalar electric fields can be divided in

three groups taking into account the dependences that are studied. Firstly,

the spatial characterization techniques, which only pay attention to the spa-

tial dependences. Secondly, the temporal characterization techniques, which

assume the beam is spatially homogeneous (or characterize it at a certain

spatial position) and only pay attention to the temporal/spectral properties.

Finally, the spatiotemporal characterization techniques that fully character-

ize the spatial and temporal/spectral properties, taking into account the

possible couplings.
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2.2.1 Spatial characterization

The spatial characterization techniques are focused on the measurement of

the spatial dependence of the intensity and phase, disregarding the tempo-

ral/spectral dependences.

The characterization of the spatial intensity, I(x, y), can be easily done

using a camera. On the contrary, the spatial phase, φ(x, y), characterization

requires a wavefront sensor. There are different types of wavefront sensors,

for example, common-path interferometers [44], shearing interferometers [45],

multiwave interferometers [46], wavefront curvature sensors [47] or Shack-

Hartmann sensors [48].

Fig. 2.5. (a) Representation of the Shack-Hartmann characterization for plane

and distorted wavefront (image from [49]) (b) Scheme of a technique based on

spatial shearing interferometry from [45].
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On one hand, Shack-Hartmann is one of the most extended wavefront

sensors. This device focus over a camera the beam under test using a matrix

of micro-lenses obtaining a dot pattern, like in Fig. 2.5(a). Knowing the ref-

erence pattern for a flat wavefront, the deviation of each dot in the measured

pattern contains the information of the phase spatial derivative in that area

and, from it, it can be extracted the spatial phase profile.

On the other hand, we also want to highlight the shearing interferom-

eters, since the spatiotemporal technique proposed in Part III shares part

of their principles. They measure the interference pattern of two spatially

sheared replicas of the beam under test to extract information like the spatial

gradient. In particular, we are interested in a type of shearing interferometer

called polarization interferometry [50], because it uses uniaxial birefringent

elements to generate laterally sheared replicas. Fig. 2.5(b) shows an example

of this technique characterizing the wavefront of a continuous wave laser [45].

2.2.2 Temporal characterization

In its beginnings, the characterization of ultrafast lasers was quite rudimen-

tary and temporal techniques only gave partial information of the pulse. One

example of these techniques are the intensity autocorrelators [51], whose

scheme is shown in Fig. 2.6(a). This technique combines the pulse under

test with a delayed replica of itself inside a SHG medium and measures the

temporally integrated intensity for different delays.

Fig. 2.6. Representation of the set-up of intensity autocorrelation (a) with the

measurement of a Gaussian FTL pulse (b) and a Gaussian pulse with GDD (c).

Image extracted from [32].

Figs. 2.6(b,c) represent the intensity autocorrelator trace for a Gaussian

FTL pulse and for a Gaussian pulse with GDD, respectively. This technique
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only gives partial information of the pulse, like a FWHM estimation, as-

suming that the shape of the pulse is known. This assumption is necessary

because the pulse duration (FWHM) directly given by an autocorrelation

trace needs to be corrected by a shape factor. Despite its limitations, it is

still in use nowadays, specially at situations where there is no need of know-

ing the actual shape of the pulse, but it is required only an estimate of the

pulse duration or an optimization of it.

The previously mentioned technique is not able to fully measure the am-

plitude and phase of the electric field, but in the last three decades many

temporal techniques able to fulfill this necessity have been proposed, as we

mentioned below. Nevertheless, these temporal characterization techniques,

except those specifically designed to measure it, are insensitive to zero-th

order and the first order phase changes.

One of the most consolidated temporal characterization techniques is also

based on the autocorrelation schemes, but spectrally resolved. This technique

was introduced in 1993 and it is called Frequency Resolved Optical Gating

(FROG) [52]. There are different types of FROG systems but essentially they

are based on the scan of the pulse with a short optical gate (gate pulse) and

the generation of a nonlinear trace spectrally resolved given by Eq. 2.12,

which is analyzed with an iterative algorithm to obtain the electric field

(amplitude and phase).

SFROG(ω, τ) =

∣∣∣∣∣
∫ +∞

−∞
P (t)G(t− τ)eiωtdt

∣∣∣∣∣
2

(2.12)

In this equation, P (t) is the probe pulse under study and G(t− τ) the gate

pulse that scans it. Moreover, τ is the scanned variable and corresponds to

the temporal delay between both pulses.

The most common set-up is the SHG FROG [52], represented in Fig. 2.7.

In this case, the gate pulse is a delayed replica of the pulse under test and

the combination is produced with a non-collinear configuration inside a SHG

medium. Thus, the FROG trace for this configuration will be:

SSHG
FROG(ω, τ) =

∣∣∣∣∣
∫ +∞

−∞
E(t)E(t− τ)eiωtdt

∣∣∣∣∣
2

(2.13)
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being, E(t) the electric field of the pulse under test and E(t− τ) the delayed

replica.

Fig. 2.7. Representation of the SHG FROG technique with an inset of a FROG

measurement. Image from [35].

Although SHG FROG is the most extended version, there are many other

FROG systems based on other nonlinear processes or configurations like Po-

larization gating [52], Third Harmonic Generation [53], Self-diffraction [54]

or Transient Grating [55].

The FROG technique is, in principle, a multi-shot technique, since it

needs to scan different delays between the pulse and the gate. Neverthe-

less, it was implemented a single-shot version substituting the beamsplitter

and the delay line by a Fresnel biprism, and the thin nonlinear medium by a

thick one with narrow and angular dependent spectral phase-matching to spa-

tially resolve the frequencies. That single-shot version was called GRating-

Eliminated No-nonsense Observation of Ultrafast Incident Laser Light E-

fields (GRENOUILLE) [56].

Previously we have mentioned that the SI can be used to characterize

pulses provided a known reference pulse. Taking into account this idea, the

Self-Referenced Spectral Interferometry (SRSI) [57] uses the XPW nonlinear

process to generate a FTL replica to be used as a reference in the SI with the

pulse under test. Thus, the difference of phases extracted from the spectral

interference is actually the phase of the pulse under test.
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Another interferometric technique, and one of the most consolidated tem-

poral characterization techniques, is called Spectral Phase Interferometry for

Direct Electric-field Reconstruction (SPIDER), Fig. 2.8. This technique is

based on the interference of two delayed and spectrally sheared replicas. The

most usual configuration, firstly introduced in 1998 [58], uses a nonlinear

process (generally SFG) to combine two delayed replicas with an extremely

chirped pulse, so each replica observes a slightly different frequency of the

chirped pulse (ω0 and ω0 + Ω). Therefore, the spectral interference of the

replicas after the nonlinear process contains the spectral phase derivative

(∂φ/∂ω) and, by integration, the spectral phase can be extracted.

Fig. 2.8. Representation of the SPIDER technique from [32].

A well known technique is Multiphoton Intrapulse Interference Phase

Scan (MIIPS) [59], which is based on the insertion of known GDD phase

amounts while generating a SHG trace. By scanning the maximum of the

trace, it measures the second derivative of the spectral phase and, integrating

it, extracts the phase without the zero-th and first order terms of the Taylor

expansion series.

Another temporal characterization technique is the dispersion-scan (d-scan)

[60], which has strongly risen to establish itself as a consolidated technique

in the characterization of few-cycle pulses (i.e., extremely short pulses with

durations close to a single oscillation of the electric field) and other pulse

ranges.

The d-scan technique, shown in Fig. 2.9, is based on adding different

dispersion values to a pulse under test and, thus, generating a nonlinear
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signal and measuring its spectrum. As a result, a trace of the nonlinear

spectrum for different added dispersion values is obtained. The pulse spectral

phase is extracted from the trace by using an iterative algorithm. Usually

the dispersion in a d-scan is simply introduced using two wedges over a

translation stage [60], slightly tuning a grating or prism compressor [61] or

even using an acousto-optic programmable dispersive filter [62].

In the simplest case, when the dispersion is introduced by two glass

wedges over a translation stage and SHG as nonlinear process (Fig. 2.9),

the d-scan trace can be expressed as:

S(ω, z) =

∣∣∣∣∣
∫ +∞

−∞

(∫ +∞

−∞
E(ω)eik(ω)ze−iωtdω

)
eiωtdt

∣∣∣∣∣
2

(2.14)

being z the material insertion, k(ω) the frequency dependent wavenumber in

the dispersive medium, k(ω)z the dispersion phase term added and E(ω) the

electric field of the pulse under test.

Fig. 2.9. Representation of the d-scan technique from [60].

Furthermore, the d-scan technique adds positive and negative dispersion

to the pulse around the spectral phase compensation, so that it is naturally

designed to measure almost compressed pulses. In particular, it is interesting

for the analysis of few-cycle pulses because, if the dispersion scan is large

enough (scanning a full trace), the frequency marginal of the trace (i.e.,

integral in the material insertion, z) does not depend on the pulse phase [63].
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Thus, knowing the spectrum, the marginal for the FTL pulse trace can be

simulated to calibrate the SHG signal. If the scan is not large enough, other

strategies such as optimization during the retrieval can be used, like in other

temporal techniques.

These are just some examples of temporal characterization techniques,

but there are many more due to the continuous evolution of the field. Some

recent techniques are time-domain ptychography [64], time-domain observa-

tion of an electric field (TIPTOE) [65], phase-matching-free pulse retrieval

based on transient absorption in solids [66] or amplitude swing [31]. From

this list of novel techniques we want to highlight the amplitude swing, which

will be used in this Thesis and deeply studied in Part II, due to its compact-

ness and robustness.

During the last decade, some strategies have been shown to identify some

pulse trains instabilities in conventional temporal characterization techniques

such as FROG [67, 68], MIIPS [69, 70] or d-scan [71, 72]. Nevertheless, in

this Thesis we will always assume that the pulse trains are stable and do not

change shot-to-shot.

2.2.3 Spatiotemporal characterization

During the last two decades, the importance given to spatiotemporal char-

acterization has increased considerably and, with it, multiple spatiotemporal

characterization techniques have emerged.

The main reason for the change in the approach towards the development

of spatiotemporal techniques is due to the continuous advances in the laser

field (e.g., new applications and possibility to have a greater control of the

laser emission) and the desire to correctly measure the laser beams, avoiding

distortions generated by the STCs or introducing them in a controlled manner

[33, 34, 36, 37].

One could think that any STC can be studied by simply performing

the temporal characterization, using one of the techniques mentioned in the

previous Subsection in multiple spatial positions. However, these temporal

techniques usually are insensitive to the zero-th and first orders of the spectral
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phase, so they are not sensitive to STCs as simple as pulse-front tilt or pulse-

front curvature. Although there are some exceptions like GRENOUILLE,

which has been proved to be sensitive to pulse-front tilt [73] and spatial

chirp [74], in general the commented techniques cannot measure any other

STC.

Therefore, for a complete and correct study of a beam with STCs it

is necessary to use a spatiotemporal characterization technique and, nowa-

days, there are many different configurations. Anyway, the spatiotemporal

characterization techniques usually measure relative phases and they need a

temporal characterization of a reference pulse to obtain the absolute profile,

so both types of techniques coexist.

One type of spatiotemporal characterization technique consists on mod-

ifying temporal techniques encoding the phase information in a 1D spectral

trace, while measuring it with a 2D-imaging spectrometer in order to ob-

tain the spatiotemporal characterization in a 1D spatial dimension. This is

the case of Spatially Encoded Arrangement Spectral Phase Interferometry

for Direct Electric-field Reconstruction (SEA SPIDER) [75], which uses the

spatial fringes of the spectrally sheared replicas to obtain in one direction

the phase spectral gradient (∂φ/∂ω) and, in the other direction, the phase

spatial gradient (∂φ/∂x).

Another type of spatiotemporal characterization technique uses the spec-

tral interferometry and monomode optical fibers to obtain the spatiospectral

phase. On one hand, Spatially Encoded Arrangement for Temporal Analy-

sis by Dispersing a Pair Of Light E-fields (SEA TADPOLE) [76] scans with

one fiber the beam under test, whereas another static fiber collects the ref-

erence beam. Then, both signals go out the fibers collimated in free space

propagation, spectrally angularly dispersed using a diffraction grating and

collimated with a tilt among them over a camera, so the camera records the

spatial interference among both pulses, reference and test, at a given spatial

position, spectrally resolved, Fig. 2.10(a).

On the other hand, Spatio-Temporal Amplitude-and-phase Reconstruc-

tion by Fourier-transform of Interference Spectra of Highly-complex-beams

(STARFISH) [77] introduces a certain delay between the reference and test
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arms, and uses a special monomode optical fiber coupler to measure the

spectral interference of each spatial position in a common spectrometer, Fig.

2.10(b). Both techniques give the relative phase with respect to the refer-

ence, so they need a temporal technique to measure the reference phase and

obtain the absolute spatiotemporal characterization.

Fig. 2.10. Representation of (a) SEA TADPOLE technique from [78] and (b)

STARFISH from [77].

There is another group of spatiotemporal techniques that is based on the

Fourier Transform Spectroscopy (FTS) method, changing slightly the imple-

mentation. Essentially, FTS enables measuring the spectrally-resolved rela-

tive phase between two interfering beams using a time-integrating detector,

provided that the delay between both beams is scanned with sub-cycle reso-

lution. Mathematically the signal measured by the time-integrating detector

(Ĩ(r⃗, τ)) can be expressed as:

Ĩ(r⃗, τ) =

∫ +∞

−∞
|ET (r⃗, t) + ER(r⃗, t− τ)|2dt (2.15)

where ET and ER correspond to the electric fields of the beam under test and

the reference beam, respectively. Moreover, r⃗, t and ω represent the space,

time and frequency coordinates, respectively, whereas τ indicates the delay

introduced among them. Then:

φT (r⃗, ω)− φR(r⃗, ω) = Arg

{
Ĩ(r⃗, ω)

}
= Arg

{
F−1

{
Ĩ(r⃗, τ)

}}
(2.16)

being φT (r⃗, ω) and φR(r⃗, ω) the spectral phase of the beam under test and

the reference beam respectively, and Arg a function to obtain the argument

of the complex number. Moreover, if |Ĩ(r⃗, ω)|2 is measured, it is equivalent

to measuring the product of both pulses spectra.
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2- ULTRAFAST CHARACTERIZATION

The main difference between the two principal spatiotemporal techniques

based on FTS is the reference beam. On one hand, in [79] a spherical beam

generated by spatially filtering a replica of the beam under test with a pinhole

is used as a reference, Fig. 2.11(a).

On the other hand, in the Total E-field Reconstruction using a Michelson

Interferometer TEmporal Scan (TERMITES) technique [80], it is used a

curved mirror in the reference arm of the interferometer, Fig. 2.11(b). Thus,

the beam under test is interfering with a diverging tiny part of itself, which

can be extracted within the algorithm, obtaining the spatiospectral phase of

the beam under test.

Fig. 2.11. Representation of the FTS based spatiotemporal techniques: (a) pin-

hole filtering of reference from [79], (b) TERMITES from [80] and (c) INSIGHT

from [81].

Furthermore, there is another widespread technique, INSIGHT [81], which

focuses the beam before the interferometer and measures the FTS at three

different propagation planes around the focal plane, Fig. 2.11(c). This tech-

nique uses a Gerchberg-Saxton algorithm [82] to obtain the spatiotemporal

characterization of the beam under test.

A fourth approach for the spatiotemporal characterization consists on

combining a wavefront sensor with a temporal characterization technique to

link the frequencies at a certain spatial point, as it is done in Shackled-FROG

[83], combining a Shack-Hartmann wavefront sensor with a FROG system.

Other possibilities are to use the Shack-Hartmann with programmable spec-

tral filters like is done in Hartmann–Shack-assisted, Multidimensional, Shaper-

based Technique for Electric-field Reconstruction (HAMSTER) [84] or nar-

row bandpass filters as done in [85].
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Finally, in another different group it is included Spatially and Temporally

Resolved Intensity and Phase Evaluation Device: Full Information from a

Single Hologram (STRIPED FISH) [86], Fig. 2.12. It uses a 2D tilted diffrac-

tion grating and an angle dependent spectral filter to generate over a camera

a spatial interference pattern for each frequency, encoding the spatiospectral

phase difference between the beam under test and a reference beam.

Fig. 2.12. Representation of the STRIPED FISH technique from [86] .

It is clear that there are multiple spatiotemporal techniques, but usu-

ally they require complex set-ups or present high dependence to external

perturbations. Consequently, there is still a necessity of developing new spa-

tiotemporal techniques that can be more robust and simple. Taking this into

account, in Part III of this Thesis we will focus on the development of a

compact, simple and ultra-stable spatiotemporal technique.
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Chapter 3

Amplitude swing technique

In the last decade, interest in developing more compact and simpler ultra-

short characterization techniques has aroused, which can also analyze a large

range of temporal durations with the same system. Moreover, the scientific

community is seeking for robust techniques that can operate in less controlled

conditions.

Following these motivations, few years ago it was developed the ampli-

tude swing technique [31] as a simple, compact and robust temporal char-

acterization technique that can be implemented with common and relatively

inexpensive optical elements (e.g., optical polarizers, retarder plates).

3.1 Fundamentals of amplitude swing

Amplitude swing is an in-line temporal characterization technique based on

the generation of two replicas, shifted by a given temporal delay, whose

relative amplitude is varied before a nonlinear process. The resulting inter-

ference pattern created by the relative amplitude changes depends not only

on the amplitude of the initial pulse, but also on its phase. Thus, a nonlinear

process, like SHG, can be used to encode this information in a spectrally re-

solved nonlinear trace that can be obtained by measuring SHG spectra while

scanning different relative amplitudes.

One simple and robust implementation of this technique [31] relies on
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3- AMPLITUDE SWING TECHNIQUE

using a rotating birefringent element with a given thickness and its optical

axis contained in the surface, also known as multi-order waveplate (MWP),

followed by a linear polarizer to generate the interference pattern in an in-

line configuration. This combination produces two replicas of the initial pulse

with a fixed temporal delay whose relative amplitude changes depending on

the MWP axes orientation.

3.1.1 Amplitude swing trace

Consider a horizontally polarized input pulse with normal incidence on the

MWP. Assuming that the MWP has its fast axis forming an angle θ with

the horizontal (x-) axis, after going through it, as seen in [31], the electric

field will be given by:Ex(ω) = E0(ω)
(
eiρf (ω) cos2 θ + eiρs(ω) sin2 θ

)
Ey(ω) = E0(ω)

(
eiρf (ω) − eiρs(ω)

)
cos θ sin θ

(3.1)

being ρf and ρs the phases introduced by the fast and slow axes of the MWP,

respectively, and E0(ω) the electric field of the initial pulse.

If the horizontal projection is selected using a linear polarizer, and prop-

agated through a SHG crystal for different rotation angles of the MWP, it

will be obtained:

SSHG
x (ω, θ) =

∣∣∣ESHG
x (ω, θ)

∣∣∣2 = ∣∣∣∫ (Ex(t, θ))
2eiωtdt

∣∣∣2 =
=
∣∣∣∫ (∫ Ex(ω

′, θ)e−iω′tdω′)2eiωtdt∣∣∣2 =⇒
SSHG
x (ω, θ) =

∣∣∣∫ (∫ E0(ω
′)
[
eiρf (ω

′) cos2 θ + eiρs(ω
′) sin2 θ

]
e−iω′tdω′)2eiωtdt∣∣∣2

(3.2)

where SSHG
x (ω, θ) is the spectrally resolved SHG trace for different angles of

the MWP.

Before presenting the analytical model for a specific case, we can simulate

the interference term (Eq. 3.1) and the corresponding SHG signal (Eq.

3.2) for some MWP rotation angles and different spectral phases to have

an idea of the amplitude swing concept. Fig. 3.1 shows the simulation

of the interference pattern (first row) and SHG signal (second row) for a
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3- AMPLITUDE SWING TECHNIQUE

given spectrum centered in 800 nm with a spectral phase with opposite GDD

sign: Figs. 3.1(a,c) and Figs. 3.1(b,d) correspond to GDD<0 and GDD>0,

respectively.

Fig. 3.1. Simulation of amplitude swing fundamental temporal intensity inter-

ference term (a,b) and SHG spectrum (c,d) for some rotation angles of the MWP

considering a pulse under test with the same spectrum but opposite chirp sign:

(a,c) GDD<0 and (b,d) GDD>0. The temporal intensities of (a,b) are colored

with the instantaneous wavelength. Images from [87].

Please notice that we only represent some angles of an amplitude swing

scan to understand the process. From Figs. 3.1, it can be extracted that the

SHG signal produced with amplitude swing is sensitive to the phase.

Analytical model

A first look at Eq. 3.2 indicates that the amplitude swing traces depend on

the electric field of the pulse under test (E0(ω)). In [31], it was presented

an analytical development to verify that amplitude swing traces depend on

the phase of the pulse under study. In that model [31], it was considered
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3- AMPLITUDE SWING TECHNIQUE

a Gaussian pulse with a given quadratic phase (b=GDD/2), whose electric

field is given by:

E0(ω) = A0e
−i·b(ω−ω0)2e−(ω−ω0)2/Γ2

(3.3)

where A0 corresponds to the amplitude, Γ is the Gaussian spectral bandwidth

and ω0 the central frequency.

In that study, it was shown that the horizontal projection of the electric

field in temporal domain after going through the MWP is given by Eq. 3.4.

Notice that, for simplicity, it was considered that the phase terms associ-

ated to the fast and slow axes are constant along the bandwidth and they

expressed them as a certain optical path difference δ = (ny − nx) · d, being
d the thickness and nx and ny the refractive indices of the two orthogonal

projections of the MWP.

Ex(t) =
A0√

2 (Γ−2 + ib)

(
e
−iω0t− 1

1+ibΓ2 ( tΓ
2 )

2

cos2 θ + e
−iω0(t− δ

c)−
1

1+ibΓ2 ((t− δ
c)

Γ
2 )

2

sin2 θ

)
(3.4)

From the interfering electric field of Eq. 3.4, in [31] the following expres-

sion for the amplitude swing trace of this pulse under study was obtained:

SSHG
x (ω, θ) =

A4
0e

−2
(ω−2ω0)

2

2Γ2

4
√
Γ−4+b2

·

[
cos8 θ+

+4e
− 1

2(1+b2Γ4)
(Γδ

2c )
2

cos
(

ωδ
2c

+ bΓ4

8(1+b2Γ4)

(
δ
c

)2)
cos6 θ sin2 θ+

+2 cos
(
ω δ

c

)
cos4 θ sin4 θ + 4e

− 1
(1+b2Γ4)

(Γδ
2c )

2

cos4 θ sin4 θ+

+4e
− 1

2(1+b2Γ4)
(Γδ

2c )
2

cos
(

ωδ
2c

− bΓ4

8(1+b2Γ4)

(
δ
c

)2)
cos2 θ sin6 θ + sin8 θ

] (3.5)

Therefore, as hinted in [31], the SHG signal contains the information of

the spectral phase (b in this simplified demonstration with quadratic depen-

dence). Moreover, all terms that contain b are linked with the optical path

difference (δ) of the MWP. On one hand, high values of δ imply a consid-

erable reduction of the terms depending on b, even vanishing, due to the

negative exponentials. On the other hand, extremely low values of δ make

the cosine terms tend to zero, decreasing or even fading the terms depending

on b. Moreover, in those dependences, δ is linked with the spectral band-
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width (Γ). Thus, if Γ is getting smaller, it is required bigger δ values to

conserve the terms that depend on b.

In conclusion, the MWP thickness and material must be selected to in-

troduce a temporal delay (δ/c, being c the speed of light) that balances all

the terms, efficiently encoding the phase information. From the analysis of

this simplified case, it can be extracted that the temporal delay of the MWP

(τ = δ/c, with c the speed of light) must be of the order of the FTL pulse

duration. Later in Section 3.3 we will explore the flexibility of this constraint.

Indeed, provided a MWP delay suitable for the FTL duration, chirped pulses

with temporal durations much longer than the delay introduced can be ana-

lyzed, as it will be shown later.

The phase dependence of the amplitude swing traces can also be observed

by simulating traces with different spectral dependences using Eq. 3.2, as

done in Fig. 3.2.

Fig. 3.2. Simulation of amplitude swing traces for a Gaussian spectrum centered

at 800 nm with a FTL duration of 100 fs and a MWP acting as HWP and intro-

ducing a delay equal to the FTL duration for different values of GDD and TOD

added. GDD cases: (a) -40000 fs2, (b) -5000 fs2, (c) 0 fs2, (d) 5000 fs2 and (e)

40000 fs2. TOD cases: (f) -4 · 106 fs3, (g) -106 fs3, (h) 0 fs3, (i) 106 fs3 and (j)

4 · 106 fs3.

In these examples we have considered a Gaussian spectrum centered at

800 nm with a FTL pulse duration of 100 fs to which is added a certain
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dispersion value. Moreover, we have assumed a MWP acting as a half-

waveplate (HWP) at 800 nm and introducing a 100-fs delay (equal to the

FTL duration).

Figs. 3.2(a-e) show the amplitude swing SHG traces when adding differ-

ent values of GDD to the pulse under test. On the other hand, Figs. 3.2(f-j)

depict the simulations using the same spectrum but adding TOD instead of

GDD.

From these simulations it can be extracted that the presence of GDD

introduces lobes, whereas the TOD produces a spectral narrowing in the

traces. Moreover, opposite signs of GDD and TOD are manifested differently

in the SHG traces. The change in the TOD sign is harder to see, but easily

retrieved with a comparative algorithm. Thus, amplitude swing is sensitive

to chirp sign, as expected from the analytical model.

The particular features of the traces will change depending on the incident

pulse and the used MWP, but it is clear that the trace will contain the electric

field information. Therefore, a retrieval algorithm can be used to obtain it,

as it will be discussed in Section 3.2.

Furthermore, analyzing the trace dependence with the rotation angle of

the MWP (examples of Fig. 3.2 and Eq. 3.2), it can be extracted that the

amplitude swing traces from 90°-180° are a mirror of the scan from 0°-90°. In
addition, the traces are repeated with a period of 180°. Therefore, amplitude

swing traces from 0°-180° contain all the information.

3.1.2 Experimental set-up

In Fig. 3.3 it is represented the scheme of the experimental implementation

of the amplitude swing technique for the characterization of horizontally

polarized pulses.

In this scheme, it can be observed the rotating MWP, whose fast axis

forms an angle θ with the horizontal axis, and the linear polarizer (LP) that

selects the horizontal projection. Sometimes, if the laser beam power is too

low, it could be necessary to use a lens (L) to focus the beam on the nonlinear

medium (NL) in order to increase the SHG signal, thus improving the signal
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Fig. 3.3. Scheme of the amplitude swing technique working with the input pulses

with horizontal polarization. Image from [31].

to noise ratio. After the nonlinear medium, it can be introduced a filter

(F) to select the SHG signal (removing the fundamental signal). This filter

can be either a color filter or, e.g., if the nonlinear medium presents Type-I

phase-matching, a linear polarizer (in that case, fundamental and SHG signal

will have orthogonal polarizations). This last option is specially interesting

if the fundamental and SHG signals spectrally overlap (e.g., the case of few

cycle pulses, exhibiting ultra-broadband spectra). Finally, the SHG signal is

measured with a spectrometer for different orientations of the MWP.

3.2 Retrieval algorithm

In Subsection 3.1.1, it has been mentioned some features of the pulse that can

be extracted from an amplitude swing trace (e.g., presence and sign of GDD

or TOD). However, these features are not general and depend on the pulse

under test and the MWP used. Nonetheless, the electric field information of

an arbitrary pulse is codified in the amplitude swing trace, so the full spectral

phase can be extracted using a retrieval algorithm to analyze them.

Expressing the electric field of the pulse under test as E0(ω) = A(ω)eiφ(ω),

the amplitude swing trace for a horizontally polarized pulse of Eq. 3.2 will

be:

SSHG
x (ω, θ) =

∣∣∣∣∣
∫ (∫

A(ω′)eiφ(ω
′)
[
eiρf (ω

′) cos2 θ + eiρs(ω
′) sin2 θ

]
e−iω′tdω′

)2

eiωtdt

∣∣∣∣∣
2

(3.6)
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As previously mentioned, ρf (ω) and ρs(ω) are the phases added by the

fast and slow axes, respectively. These phase terms can be calculated from

the refractive indices and thickness of the MWP, knowing the phase retar-

dation (i.e., zero-th order phase between fast and slow axes) at any certain

wavelength (e.g., the central wavelength). On one hand, the refractive indices

can be obtained using the Sellmeier equations. On the other hand, the phase

retardation can be given by the manufacturer or experimentally calibrated

(e.g., using the technique presented in [88]).

If the pulse spectrum is experimentally measured, what can be easily

done using a spectrometer, the only unknown variable in Eq. 3.6 will be

the spectral phase of the pulse. Thus, an iterative algorithm can be used to

obtain it.

Regarding the spectral phase function, there are different ways to pa-

rameterize it. Some examples are: Taylor expansion, Fourier expansion and

spectral phase or phase derivative discretized at certain frequencies, or com-

binations of them. Indeed, provided a phase parameterization, different al-

gorithms can be used to retrieve it [89, 90].

In particular, the amplitude swing works previous to this Thesis [31, 91]

used a gradient-based algorithm, Levenberg-Marquardt nonlinear optimiza-

tion algorithm. Knowing the fundamental spectrum it can retrieve the phase

that minimizes the differences between the experimental and the retrieved

traces.

Moreover, in its application to amplitude swing [31, 91] the authors used

the algorithm in two steps. The first one parameterized the phase as a

combination of second (GDD) and third (TOD) order terms of the Taylor

expansion to obtain a first approximation to the solution. The second one

optimized the first derivative of the discretized phase, using the first step

solution as a guess, to obtain the final optimized solution.

Despite the amplitude swing traces from 90° to 180° is a mirror of the

0° to 90°, the scans were done from 0° to 180° to have data redundancy.

Furthermore, the presence of any asymmetry of the pattern in the 0°-180°
scan will hint that something is not working correctly.

The Levenberg-Marquardt retrieval algorithm was tested with different
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pulses showing good convergence even with high GDD and TOD values. Fig.

3.4 shows some examples of retrievals presented in [31], which correspond to

the amplitude swing traces simulated in Fig. 3.2(a-e).

Fig. 3.4. Comparison of the electric fields retrieved from the amplitude swing

traces with GDD shown in Fig. 3.2 using the Levenberg-Marquardt algorithm and

the theoretical fields. (a-e) Spectrum (black) and spectral phases. (f-j) Temporal

intensity and phase. Simulated (solid blue) and retrieved (dashed orange). Image

from [31].

Apart from the GDD and TOD studies, the algorithm was numerically

tested with more complex structures, like a sinusoidal phase term, obtaining

good results. In addition, in its first work it was experimentally verified with

the well stablished techique self-calibrating d-scan [61].

3.3 Capabilities of the technique

The main advantages of amplitude swing over other conventional temporal

characterization techniques, such as FROG [52] or SPIDER [58], lie in its

capacity to characterize pulses with different temporal durations in various

spectral regions with a compact in-line system, which presents high stability

and direct alignment. In addition, in a recent work [91] it has been demon-
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strated that, due to the data redundancy in the trace, amplitude swing is also

robust under less controlled situations (e.g., noise or clipping in the trace).

In [31] it was observed that, provided an appropriate delay respect to the

FTL pulse duration, amplitude swing can characterize pulses much longer

than their FTL durations. This is shown in the limit cases of Fig. 3.4, in

which structures around 1-2 ps were measured for a FTL duration of 100 fs

and also in the TOD cases shown in [31].

To study other capabilities of the amplitude swing technique, in [91] sev-

eral simulations under different conditions were performed and it was used the

Levenberg-Marquardt algorithm previously mentioned to analyze the traces,

thus verifying a correct phase codification. The simulations of that study

were done for a theoretical pulse with a Gaussian spectrum (centered at 800

nm with FTL duration of 50 fs FWHM) and a spectral phase combining a

GDD of −8000 fs2 and a TOD of 20000 fs3, but the conclusions obtained can

be extended to a general case, as detailed below.

Previously, it has been mentioned that the delay introduced by the plate

should be of the order of the FTL pulse duration to efficiently codify the

phase information. In [91] the authors simulated amplitude swing traces for

different delays relative to the FTL pulse durations (τ/τFL) to see the range

of possible values that can be used. Fig. 3.5 shows some simulations of the

amplitude swing traces and the retrievals obtained for relative delays going

from one fifth to 4 times the FTL duration.

From this analysis, the authors concluded that, being conservative, a

MWP with a certain delay (τ) can characterize pulses with a FTL duration

up to three times bigger or smaller than τ .

Furthermore, the authors studied the effects of the phase retardation ob-

serving that the trace patterns change considerably depending on its value,

but always encoding efficiently the phase information. Thus, any value of

phase retardation can be chosen. In Fig. 3.6 there are shown some of the

simulations for different values of phase retardation used in [91] to demon-

strate this idea.
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Fig. 3.5. Simulation for different relative delay of the MWP compared to the

FTL duration (τ/τFL). (a) Simulated and (b) retrieved amplitude swing traces.

For each case it is shown the (c) spectral and (d) temporal comparison between the

simulations (gray) and retrievals (dashed blue and red). Image from [91].

Apart from studying the influence of the MWP parameters (delay and

phase retardation), in [91] they also analyzed the possibility to study noisy

or incomplete traces. On one hand, the authors observed that the infor-

mation redundancy in the trace is enough to correctly retrieved the pulse

information even with relatively noisy traces. In the cases presented in [91]

the convergence is acceptable for noise up to 5% root-mean-square (rms) of

the noise to signal.

On the other hand, different ways of spectral clipping were studied due

to their interest, since they can occur, for example, if part of the SHG signal

is absorbed by the optical elements or cannot be measured with the spec-

trometer. In [91], they observed that the retrievals can be done successfully

for moderate lateral (high or low frequencies) or central spectral clipping.
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Fig. 3.6. Simulation for different phase retardation of the MWP. (a) Simulated

and (b) retrieved amplitude swing traces. Moreover, for each case is shown the (c)

spectral and (d) temporal comparison between the simulations (gray) and retrievals

(dashed blue and red). Image from [91].

Related to the idea of spectral clipping, it can also happen that the phase-

matching can be incomplete or non-flat for all the spectral bandwidth. In

that case, it is necessary to calibrate the SHG response either experimentally,

theoretically or iteratively in the algorithm. In the study of [91], it was

analyzed the frequency marginal (i.e., integral of the amplitude swing trace

in the angular dimension), to see if it is phase invariant, but it was observed

that, in amplitude swing, that marginal depends on the initial pulse phase.

Despite the complete analysis of the operability of amplitude swing pre-

viously performed [91], further studies can be done in order to exploit all the

advantages of this technique. Taking this into account, in this Thesis we have

analyzed the possibility to operate in different spectral regions (Chapter 5),

with pulses in the few-cycle regime (Chapter 6) and using different configura-
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tions of rotating and fixed plates (Chapter 7). Moreover, in order to explore

new ways to analyze amplitude swing data, we have implemented a different

kind of algorithm based on genetic algorithms, which will be explained in

Chapter 4 and used in the retrievals of Chapter 5.
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Chapter 4

Differential evolution

amplitude swing algorithm

In Chapter 2, it has been explained that temporal characterization techniques

usually encode the pulse information in nonlinear traces, which have to be

analyzed using retrieval algorithms. Since the first characterization technique

was implemented, many different retrieval algorithms have been proposed.

For example, the analysis of FROG traces is usually done with a Gen-

eralized Projections (GP) algorithm [92] or its advanced version, Principal

Components Generalized Projections Algorithm (PCGPA) [93]. In the case

of d-scan, nonlinear optimization algorithms such as Nelder-Mead (NM),

Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Levenberg-Marquardt (LM)

[61, 94, 95] are widely used. Other strategies used to analyze the nonlin-

ear traces of these techniques have been Differential Evolution (DE) [96],

Ptychographic reconstruction [97] or, more recently, deep neural networks

[98, 99].

Regarding the amplitude swing, as mentioned before, the works previous

to this Thesis [31, 91] were done based on a Levenberg-Marquard nonlinear

optimization algorithm, but different approaches can be taken into account.

A quite interesting possibility are genetic algorithms and, in particular, the

DE algorithms, due to their low probability to stagnation in a local minima,

as shown using d-scan in [89].
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4.1 Fundamentals of differential evolution al-

gorithms

Differential evolution algorithms are a popular class of evolutionary algorithm

that were firstly introduced by Storn and Price at the end of the 20th century

[100]. These algorithms are based on Darwin’s theory of evolution and they

mimic the biological selection process to obtain the optimal solution mixing

a set of possible solutions, each called chromosome.

Since their introduction, various strategies have been proposed [96, 100,

101], but all of them are based on the same four processes: initialization,

mutation, crossover and selection. The initialization is done one time at the

beginning of the algorithm, whereas the other three processes are repeated

iteratively until a given convergence criterion (e.g., certain merit function

value or maximum number of iterations) is reached, Fig. 4.1.

Fig. 4.1. Flux scheme of a DE algorithm.

Usually the initialization consists on the creation of a starting population

of N possible solutions, each with D elements, generated by random selection

between some boundaries. Each possible solution is called target vector (x)

and can be expressed as:

xj
i = rand(Bounds) being j = 1, ..., N and i = 1, ..., D

The mutation process corresponds to the perturbation applied to each

target vector to generate a new offspring. The target vector after mutation

is called donor vector (v) and, during the last decades, many strategies have

been proposed for this mixing process. For simplicity, the different strategies

are called ‘DE/∗/n’, being ‘∗’ the target vector considered during mutation

and ‘n’ the number of difference vectors involved in the change (i.e., number

of target vectors differences taken into account to generate the perturbation).
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Some examples of mutation strategies are summarized in Table 4.1, where F

represents the scaling factor that weights the combination in the mutation,

which is typically in the range F ∈ (0, 2].

Strategy Mutation expression

DE/rand/1 vi = xr1 + F (xr2 − xr3)

DE/rand/2 vi = xr1 + F (xr2 − xr3) + F (xr4 − xr5)

DE/best/1 vi = xbest + F (xr1 − xr2)

DE/best/2 vi = xbest + F (xr1 − xr2) + F (xr3 − xr4)

Table 4.1: Examples of mutation strategies used in DE algorithms that can be used

to generate a new donor vector (vi) by combining different target vectors (xrl)

using the scaling factor (F ) to weight the mutation process.

In all the mutation strategies the mixing indices rl are selected randomly

from the D elements of the target vector verifying that r1 ̸= r2 ̸= r3 ̸=
r4 ̸= r5 ̸= i. Moreover, there are some strategies, referred as ‘DE/best’, in

which the modification is applied to the target vector with the lowest merit

function value, xbest (i.e., all modifications are applied to the best solution of

the population).

Once the donor vector is generated, it can be done the crossover process

in order to obtain the new offspring, which is called trial vector (u). Also

there are different strategies of crossover. One of the most common strategies

is called binomial crossover (‘bin’ ), which updates the element of the solution

if a random number in the range [0, 1] is lower than the crossover probability

(pc) and/or if the element index is equal to an integer δ randomly selected

from the set {1, 2, ..., D}:

uj
i =

{
vji if r ≤ pc or j = δ

xj
i if r > pc or j ̸= δ

(4.1)

where δ = rand{1, ..., D}, r = rand(0, 1) and pc ∈ (0, 1).

Another strategy is called exponential crossover. In this case, the recom-

bination starts at a randomly selected element index i = rand{1, ..., D} and,

in cyclical order, for each element is calculated a random number in the range

(0, 1), so:
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• If rand(0, 1) ≤ pc, that element of the trial vector is equal to the

corresponding donor vector element.

• If rand(0, 1) > pc, the recombination is stopped and all the remaining

elements of the trial vector are equal to the target vector.

After the crossover, the merit function is evaluated for each trial vector

(offspring) and compared to the value of the target vector (parent), selecting

for each index j = 1, ..., N the solution with the lowest merit value. There

are different possible definitions of merit functions depending on the problem

under study and later, in Section 4.2, it will be explained the one used for

amplitude swing.

Finally, the mutation, crossover and selection processes are repeated iter-

atively until the desired convergence criterion is reached. After convergence,

the solution with the lowest merit function is selected as the optimal solution

to the optimization problem under study.

Notice that the most important parameters that control the DE algorithm

are the scaling factor (F ) and the crossover probability (pc), and it is crucial

to select them appropriately to correctly converge. Regarding the scaling

factor, extremely low values of F will allow only small changes, thus slowing

down the convergence and even implying stagnation into a local minima. On

the other hand, too large values of F may prevent an optimal convergence

in a reasonable time, since moderate changes are required when the solution

is close to the optimal value. Regarding the crossover probability, very low

values of pc may inhibit meaningful modifications in the new offspring, slow-

ing down the convergence significantly. Moreover, extremely high values of

pc may introduce strong changes at each iteration, hindering the convergence

into the optimal when the solution is close to it.

4.2 Differential evolution applied to ampli-

tude swing

The information known in an amplitude swing measurement is the SHG trace,

the system parameters and the fundamental spectrum, so the unknown term
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that must be retrieved is the spectral phase of the pulse under test. In a DE

algorithm it is required to parameterize that phase function as a chromosome

with D elements and there are many ways of doing it. Some examples are:

• Taylor expansion

In this case, the phase is parameterized as a Taylor expansion series,

being each element of the D length chromosome the coefficient of the

Taylor series. Moreover, since the amplitude swing is insensitive to the

phase offset and the linear term, we can express the phase starting the

Taylor series at the second order:

φ(ω) = x1 ·
(ω − ω0)

2

2!
+ x2 ·

(ω − ω0)
3

3!
+ ...+ xD · (ω − ω0)

D+1

(D + 1)!
(4.2)

where ω0 corresponds to the central frequency of the fundamental spec-

trum and xi to the element i of the target vector, being i ∈ [1, ..., D].

• Fourier expansion

In this case, the phase is parameterized as a Fourier series, being the

elements of the D length chromosome the coefficients of the expansion:

φ(ω) =

D/2∑
m=1

x(2m−1) cos

(
2πmω

ωmax − ωmin

)
+ x(2m) sin

(
2πmω

ωmax − ωmin

)
(4.3)

where ωmax and ωmin are the maximum and minimum frequencies of

the spectral bandwidth of adjustment, respectively. Moreover, xi cor-

responds to the element i of the target vector being i = (2m− 1) and

i = (2m) ∈ [1, ..., D]. Notice that the length of each chromosome (D)

has to be an even number to use this parameterization, since each order

of the series has two coefficients.

This strategy is interesting for pulses close to FTL, but it may present

convergence problems with pulses far from compression.

• Discretized phase

This parameterization consists of discretizing the fundamental spectral

range in D points, being each point the phase between 0 and 2π. It is

very interesting for pulses close to FTL, but it can present convergence

problems if the phase changes quickly.
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• Phase 1st derivative (DPhase)

This parameterization consists of discretizing the fundamental spectral

range inD points, where each point represents the first derivative of the

spectral phase. This is more robust than using the discretized phase

directly because bigger changes are easily retrieved.

The differential evolution retrieval algorithm for amplitude swing devel-

oped in this Thesis is based on two of the basic strategies mentioned before,

in particular the DE/rand/1/bin and the DE/best/1/bin. The merit func-

tion to be minimized in the selection process is the rms, also called sometimes

G-error, between the normalized experimental and retrieved traces.

This merit function for the 2D traces is calculated as:

Merit function =
1√

NωNθ

√∑
θ

∑
ω

(
SSHG
exp (ω, θ)− SSHG

retr (ω, θ)
)2

(4.4)

being SSHG
exp and SSHG

retr the experimental and retrieved amplitude swing traces,

respectively. Moreover, Nω and Nθ are the lengths of each dimension of the

amplitude swing traces: frequencies (ω) and orientation of the MWP (θ),

respectively. This merit function can be modified to pay more attention to

the minimum signal area, for example, computing the traces in logarithmic

scale up to a certain order or other strategies.

The algorithm can be used selecting one of the above mentioned param-

eterizations and the preferred strategy between DE/rand/1/bin or DE/best/

1/bin. Although this is possible for simple structures, we decided to develop

a 2-steps algorithm, mixing strategies and parameterizations to be able to

retrieve complex phase structures, as shown in Fig. 4.2.

The first step (blue box in Fig. 4.2), is a DE/rand/1/bin using the Taylor

expansion parameterization with a set of N1st = 12 solutions, each with 2

elements (D1st = 2). These two elements represent the GDD and TOD of

the Taylor series, respectively. This first step enables a coarse retrieval of

the main aspects of the amplitude swing trace.

After optimization, the best solution of the first step is used as guess for

the second step, in which the finest structure is retrieved. This second step

is a DE/best/1/bin using the phase derivative (DPhase) parameterization
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Fig. 4.2. Flowchart of the 2-steps DE algorithm adapted to retrieve amplitude

swing measurements.

done with a set of N2nd = 25 solutions, each with 19 elements (D2nd = 19).

Finally, the retrieved solution is the combination of the phase obtained at

each step.

As previously mentioned, in this type of algorithms it is crucial to choose

appropriated values for the scaling factor (F ) and the crossover probability

(pc). For the retrievals with the algorithm shown in this Thesis, we used

an F of 0.8 for the first step and 0.4 for the second step, and pc of 0.7 in

both cases. Notice that we use a bigger scaling factor in the first than in the

second step because the latest step is a finer adjustment and it is closer to

the optimal value, so small changes are better for an optimal convergence.

4.3 Numerical testing of the algorithm

This new algorithm was theoretically tested with different examples of ultra-

short pulses, obtaining satisfactory results.

For example, Fig. 4.3 shows the simulations and retrievals obtained for a
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50-fs FTL Gaussian spectrum centered at 800 nm with different combinations

of GDD and TOD contributions. In this case, we have simulated the traces

generated with a MWP that introduces a delay equal to the FTL pulse

duration and a phase retardation of π rad for the central wavelength.

Fig. 4.3. Simulation for different combinations of GDD and TOD. (Row 1)

simulated and (row 2) retrieved amplitude swing traces. (Row 3) Spectrum (black)

and spectral phase comparison: simulated (orange) and retrieved (blue). (Row 4)

Temporal intensity (black, purple) and phase (orange,blue) comparison: simulated

(black, orange) and retrieved (purple, blue).

First and second rows of Fig. 4.3 correspond to the simulated and re-

trieved traces, which show good agreement (biggest rms below 6 · 10−4). In
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addition, when compared, the retrieved and simulated electric fields in spec-

tral and temporal domains (third and fourth rows, respectively) are almost

indistinguishable.

Apart from GDD and TOD values, we also tested the algorithm with

other complex structures, like a moderate oscillatory spectral phase. Figs.

4.4(a,c) depict the simulated and retrieved amplitude swing traces for the

same FTL Gaussian spectrum centered at 800 nm, but with an oscillatory

phase of amplitude 0.3π rad, and using a MWP with 50-fs delay and 0.4π

rad phase retardation.

Fig. 4.4. Simulation of a moderate oscillatory spectral phase. (a) Simulated and

(c) retrieved amplitude swing traces. (b) Spectrum (black) and spectral phase com-

parison: simulated (orange) and retrieved (blue). (d) Temporal intensity (black,

purple) and phase (orange,blue) comparison: simulated (black, orange) and re-

trieved (purple, blue).

The retrieval presents good convergence with a G-error of 5.9 · 10−3. In

this case, the G-error is one order of magnitude bigger than the simulation of

GDD and TOD, but the retrieval is still very good. This good convergence

is also observed in the spectral and temporal comparison of Figs. 4.4(b,d),

respectively.

Notice that the differences observed in the temporal phase are associated

to π rad phase discontinuities introduced when the pulse intensity is null,
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but the same phase is retrieved shifted 2π rad.

In conclusion, the DE algorithm designed for the analysis of amplitude

swing traces is able to retrieve the pulse information even in complex cases.

This algorithm will be used in the experiment of Chapter 5 to retrieve the

spectral phase of amplitude swing traces at different spectral regions.
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Chapter 5

Amplitude swing across visible

to near-infrared

In the past few decades, the development of optical parametric oscillators and

amplifiers has derived into the creation of tunable ultrafast laser sources with

multiple applications in different spectral regions [102, 103]. However, most

of the temporal techniques mentioned in Subsection 2.2.2 are usually applied

to certain typical spectral regions (e.g., emission range of Ti:sapphire lasers

around 800 nm) and, sometimes, it is not trivial to adapt them to operate in

multiple spectral regions.

As seen before, amplitude swing produces the pulse replicas with a ro-

tating MWP to implement a compact and robust temporal technique. In

addition, the lack of spectral limitations associated to elements like beam-

splitters, stretchers or chirped mirrors, enables the possibility to operate in

different spectral ranges without significant modifications in the system. This

is possible because, in principle, the amplitude swing only depends on the

transparency window and the birefringence of its elements to generate the

amplitude varying replicas before the nonlinear medium and the detection.

Taking this into account, in this Chapter we use amplitude swing to

characterize ultrashort pulses tuned within a spectral range of more than an

octave across visible to near-infrared regions [104].
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5.1 Materials and Methods

The ultrashort laser source used in this experiment was a tunable system. In

particular, a CPA laser (Spitfire ACE from Spectra-Physics) and an optical

parametric amplifier (TOPAS-Prime from Light Conversion).

The TOPAS system is a two-stage parametric amplifier, which uses the

amplified output from the Spitfire ACE system (centered at 798 nm with

∼64-fs FWHM FTL duration and a repetition rate of 5 kHz) as pump. This

system relies on parametric amplification processes to generate two pulsed

beams called Signal and Idler. The central wavelength of these beams can

be tuned adjusting the angle of the nonlinear crystals and the arriving time

of each beam in the parametric processes. In the case of the Signal, it can

be efficiently tuned from 1160 nm up to 1600 nm, while the Idler can emit

from 1600 nm to 2600 nm.

Once the Signal and Idler are generated, the second stage of the TOPAS

system has a set of wavelength separators/combiners and nonlinear crystals in

which either the Signal, the Idler or the remnant pump beams are combined

to generate the ultrashort pulse in the desired spectral range. Table 5.1

summarizes the main processes used to produce the emission in the different

spectral regions of the system, and Fig. 5.1 shows the approximately pulse

energy at each spectral region.

Range (nm) Process

1600-2600 Idler
1160-1600 Signal
800-1160 Second harmonic Idler (SHI)
580-800 Second harmonic Signal (SHS)
533-580 Idler and pump sum-frequency (SFI)
470-533 Signal and pump sum-frequency (SFS)
400-470 Fourth harmonic Idler (FHI)
290-400 Fourth harmonic Signal (FHS)
267-290 Second harmonic of (Idler and pump sum-frequency) (SHSFI)
240-267 Second harmonic of (Signal and pump sum-frequency) (SHSFS)

Table 5.1: Spectral emission ranges and main processes of the TOPAS system

pumped with a pulse centered around 800 nm.
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Fig. 5.1. Specifications of the TOPAS-Prime approximate pulse energy at each

spectral and process involved in the generation taken from the manufacturer’s man-

ual. Acronyms of the parametric processes are summarized in Table 5.1.

The amplitude swing system used to characterize those pulses consisted of

a 2.1-mm-thick quartz MWP placed between two linear polarizers, and a 10-

µm Type I Beta-Barium Borate [β−BaB2O4] (BBO) cut at 29.2° as nonlinear
medium. The delay introduced by the MWP in the different spectral regions

studied in this Chapter goes from 64.8 fs up to 68.5 fs.

Moreover, at each spectral region we implemented a SHG FROG system

in non-collinear configuration with the same nonlinear medium in order to

validate the amplitude swing retrievals. This FROG system uses a Michelson

interferometer, conformed by a beamsplitter, a moving mirror and a roof-

mirror. After the interferometer, both delayed replicas of the pulse under

test are focused using an off-axis parabola over the BBO (same crystal as

the amplitude swing). The delay scan is done displacing the moving mirror

in steps of 1 µm, thus the temporal resolution of the scan is 6.7 fs.

Since the BBO is designed for optimal phase-matching under normal inci-

dence at 800 nm, at each spectral range it is necessary to orientate it searching

the optimal phase-matching for those wavelengths.
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Furthermore, we have used various spectrometers, whose specifications

are summarized in Table 5.2, for the characterization of the fundamental

and the SHG spectra in the different spectral ranges.

Spectrometer model λmin (nm) λmax (nm) ⟨∆λ⟩ (nm)

Ocean Optics HR4000 240 450 0.06
Avantes AvaSpec-2048 300 1100 0.56
StellarNet Dwarf-Star 1000 1700 1.50

Table 5.2: Summary of the specifications of the spectrometers used to measure the

SHG and fundamental spectra in this experiment. Minimum (λmin) and maximum

(λmax) wavelengths of operation and average spectral numerical resolution along

the spectral range (⟨∆λ⟩).

In addition, the amplitude swing retrievals were obtained using the two

step DE algorithm explained in Chapter 4 (DE/rand/1/bin andDE/best/1/bin

parameterizing the phase as Taylor series and discretized spectral phase

derivative), whereas the FROGmeasurements were analyzed using a Principal

Components Generalized Projections Algorithm (PCGPA) [93, 105]. Notice

that we had to measure the fundamental spectrum for the amplitude swing

algorithm, but the FROG algorithm does not required it to operate. Nev-

ertheless, we can use the experimental spectrum to correct the measured

FROG traces as will be explained later.

Moreover, we decided to both, calibrate the MWP phase retardation

(zero-th order phase), using the technique described in [88], and calculate

the spectral phase using the Sellmeier equations. This can be done with the

calibration of the phase-retardation at a certain wavelength (e.g., λ =800

nm) and, then, extrapolating with Sellmeier equations, but small errors in

the parameterization of the MWP (e.g., tiny error in the thickness) can in-

troduce significant errors in the phase retardation. Therefore, we decided to

calibrate the phase retardation at each spectral region analyzed.

Second harmonic response

In the experiments of this Chapter we used the same nonlinear crystal for

various spectral regions adjusting the phase-matching by rotating the crystal.
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However, this phase-matching tunability is limited and there can be situa-

tions in which the SHG response is not perfectly flat due to the dispersion

changes in different spectral regions, as it will happen in the extreme spectral

regions of Section 5.2. In order to deal with these non-ideal cases, we mod-

ified the retrieval algorithms to calculate the SHG responses of the systems

for both techniques, FROG and amplitude swing. Moreover, in order to im-

prove the FROG convergence and reduce the noise effect of the traces, we

took into account the second harmonic response correction for all the FROG

measurements.

Regarding the FROGmeasurement, we integrated the approach explained

in Chapter 10 of [106]. In that study of FROG, it is demonstrated that the

frequency marginal (i.e., integral of the FROG trace in the delay dimen-

sion) can be theoretically calculated as the convolution of the fundamental

spectrum S(ω):

M theo
FROG = S(ω) ∗ S(ω) =

∫ ∞

−∞
S(Ω)S(ω − Ω)dΩ (5.1)

Since we are measuring the fundamental spectrum, we can obtain the SHG

response of the FROG system as the ratio between the theoretical and ex-

perimental frequency marginals:

RFROG(ω) =
M theo

FROG(ω)

M exp
FROG(ω)

(5.2)

beingM exp
FROG(ω) the experimental marginal obtained by integrating the mea-

sured FROG trace in the delay dimension.

Regarding the amplitude swing, as mentioned in Chapter 3, in [91] it was

shown that the frequency marginal (i.e., integral of amplitude swing trace in

angular dimension) depends on the phase of the pulse under study. Despite

this, it can be computed a SHG response comparing the experimental and

retrieved frequency marginals at each iteration of the retrieval algorithm.

Moreover, to avoid introducing artifacts with the SHG response, the ratio is

strongly smoothed. Thus the amplitude swing SHG response (Raswing(ω)) at

each iteration of the algorithm will be given by:

Raswing(ω) = Smooth

{
M exp

aswing(ω)

M retr
aswing(ω)

}
(5.3)
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where M exp
aswing(ω) and M retr

aswing(ω) denoted the frequency marginals of the

experimental and retrieved amplitude swing traces.

5.2 Results and Discussion

As previously mentioned, there is a necessity to develop compact and simple

characterization techniques able to operate in different spectral regions. In

this Chapter we have studied various spectral regions of high interest as it is

explained below.

Fig. 5.2 shows the experimental (row 1 and 3) and retrieved (row 2 and

4) SHG traces of amplitude swing (row 1 and 2) and FROG (row 3 and 4)

for five different interesting spectral regions:

• Visible spectral region, Fig. 5.2(a) (carrier wavelength obtained as

the spectrum gravity center, λc = 619 nm): interesting applications in

biomedicine, micro-processing or telecommunications. [107–109].

• Ti:sapphire spectral range, Fig. 5.2(b) (λc = 821 nm): widely studied

during the last decades and multiple applications in micro-processing,

high-intensity, high-harmonic generation or microscopy, among others

[110–112].

• Ytterbium doped lasers, Nd:YAG and some semiconductor lasers emis-

sion spectral region, Fig. 5.2(c) (λc = 1063 nm): presents potential

biomedical and marking applications [113, 114].

• Spectral region of zero-dispersion wavelength (ZDW) of fused silica and

triplet to singlet molecular oxygen transition, Fig. 5.2(d) (λc = 1316

nm): interesting in different fields such as spectroscopy, biomedicine

and metrology [115–117].

• Spectral emission region of Erbium-doped lasers, Fig. 5.2(e) (λc =

1540 nm): specially interesting because it is a spectral region used in

telecommunication, but also due to applications in micro-welding or

optical coherence tomography [118, 119].
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Fig. 5.2. Experimental (rows 1 and 3) and retrieved (rows 2 and 4) SHG traces

of amplitude swing (rows 1 and 2) and FROG (rows 3 and 4) for five different

interesting spectral regions with carrier wavelengths around: (a) λc =619 nm, (b)

λc =821 nm, (c) λc =1063 nm, (d) λc =1316 nm and (e) λc =1540 nm. Notice

that the experimental FROG traces (row 3) have been corrected with the marginal

strategy, Eq. 5.2.

All the retrievals have good convergence with low G-errors (i.e., rms dif-

ference between experimental and retrieved traces), being the biggest value

in these retrievals 0.04. As said in the previous Section, in order to have

a good convergence at the amplitude swing measurements in the extreme

spectral range (λc equal to 619 nm and 1540 nm), we have to take into ac-

count the SHG response due to non-perfect phase-matching. In the case of

the FROG, we have applied the SHG response to correct all the measured

traces, thus improving the convergence and dealing with the noisy data.
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The spectral (row 1) and temporal (row 2) intensity and phase comparison

of the retrievals are shown in Fig. 5.3. Moreover, the FTL pulse intensity of

the measured spectrum have been included in the second row of Fig. 5.3.

Fig. 5.3. Spectral (row 1) and temporal (row 2) retrievals for the amplitude swing

(solid blue and orange lines) and FROG (dashed purple and red lines) measure-

ments shown in Fig. 5.2 for five different spectral regions of interest with carrier

wavelengths: (a) λc =619 nm, (b) λc =821 nm, (c) λc =1063 nm, (d) λc =1316

nm and (e) λc =1540 nm. Second row also includes a comparison with the tempo-

ral intensity of the FTL pulse (dotted yellow lines).

Observing the experimental retrievals of Fig. 5.3, there is a good agree-

ment between FROG and amplitude swing measurements, specially in the

phase terms. The small discrepancies in the extreme cases, Figs. 5.3(a,e),

may be originated from experimental error in the amplitude swing retrieval,

as well as small differences in the spectrum retrieved by FROG and the ex-

perimentally measured by the spectrometer, being this one the considered in

the amplitude swing measurement. Furthermore, the accuracy of FROG is

limited due to the smallest delay that can be introduced with our set-up (6.7

fs), which may also affect the retrieval.

Notice that the dispersion of the pump was not optimized changing the

grating compressor of the CPA laser to obtain the maximum emission. Never-

theless, it seems that the dispersion introduced after the generation is higher
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for shorter wavelengths than for higher wavelengths, suggesting this is due

to the material and optics dispersion.

In this experiment we can observe the high flexibility of amplitude swing

because with the same MWP, polarizer and BBO we are studying pulses

with FWHM in the range 29.8-49.4 fs for the FTL and 46.5-125.5 fs for the

pulse retrieval in spectral regions over more than an octave, as shown in Fig.

5.4 for each case.

Fig. 5.4. Spectral dependence of the MWP delay (green) and temporal FWHM

duration comparison of the FTL (black), amplitude swing (blue) and FROG (or-

ange) retrievals of the measurements shown in Fig. 5.3.

In Fig. 5.4 it has been included the FROG scale uncertainty, which in

our system is significant due to the minimum temporal step that our system

can introduce (6.7 fs). It is important to highlight that, for a complete

comparison between both techniques, FROG and amplitude swing retrievals,

we must pay attention to the full pulse intensity and phase comparison shown

in Fig. 5.3, because considering only one parameter, like the FWHM (as done

in Fig. 5.4), can lead to wrong conclusions about the retrievals similarity.

Please notice that comparing the spectral dependence of the MWP delay

with the FTL durations, shown in Fig. 5.4, all the measurement are in the

confidence range (MWP delay between 3 times bigger or smaller than the

FTL duration).

In principle, the spectral operation range of amplitude swing can be ex-
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tended to all the transparency range of its elements (the pulse replicas man-

agement), provided the nonlinear process and the detection reach that range.

In this experiment, the threshold was due to phase-matching limitations with

our nonlinear crystal. We think that this can be solved using different non-

linear media, such as BBO with a different cut angle, Potassium Titanyl

Phosphate (KTP) crystal or a crystal in quasi phase matching condition like

Periodically Poled Lithium Niobate (PPLN) [120] or poly-crystalline zinc

selenide [121].

Another specially interesting option is to use commercially available SHG

nanoparticles as nonlinear medium in the amplitude swing system. As shown

with the d-scan technique in [122], it is not required a specific phase-matching

angle, hence the amplitude swing system could operate at different spectral

ranges without any modifications. Moreover, if required, another option

could be to use a different nonlinear process like XPW or PG, which are

automatically phase-matched.

In conclusion, amplitude swing is a robust temporal technique that can

retrieve ultrashort pulses in various spectral regions with different temporal

durations without significant modifications in the system. Therefore, it can

be used in diverse applications of ultrashort lasers. Moreover, it is foreseeable

that the spectral region of application may be extended to the entire visible

and mid-IR by adapting the SHG medium.
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Chapter 6

Amplitude swing in the

few-cycle pulse regime

A regime of high interest of ultrashort laser beams is the few-cycle regime,

which presents applications in various fields like attoscience [123–126], high

field physics [127, 128] or extreme nonlinear effects [129], among others.

This regime includes pulses with a temporal duration no longer than

a small multiple of a single cycle of the electric field in the correspond-

ing spectral range (e.g., 2.67 fs at 800 nm). Characterizing these pulses is

challenging because extremely short temporal durations are associated with

ultra-broadband spectra, which can be troublesome due to the spectral de-

pendence of some elements of the characterization techniques.

Furthermore, the pulse characterization of few-cycle is highly important

for its applications due to its delicate handling (e.g., relatively small added

dispersion can stretch the pulses to much longer pulses).

During the last decades, some temporal techniques have been adapted to

operate in this regime (e.g., SPIDER [130], FROG [131] and more recently

SRSI [132]). Despite this, among all temporal techniques, there is one that

was developed in the scope of few-cycle pulses and presents some features

that make it particularly appropriate to characterize pulses in that range:

the d-scan technique explained in Subsection 2.2.2. No matter whether it is

the conventional d-scan technique [60] or one of its variants [61, 122, 133],
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all of them can deal with few-cycle pulses. For example, in [134] the authors

characterized a 2.2-fs FWHM pulse, which corresponds to a 1.04 cycles, using

d-scan.

Regarding the amplitude swing, its application in this regime would en-

able the characterization with a compact set-up without common interfer-

ometers or elements that could limit the bandwidth. In [91], a simulation to

theoretically demonstrate that, in principle, this technique is able to charac-

terize few-cycle pulses was shown. However, that work presented a simulated

situation and, since it is a complex regime, a complete study is required to

experimentally validate it. In the current Chapter, we will show this capa-

bility experimentally and, in order to verify the retrievals, we are going to

compare the results with the d-scan technique. Moreover, we will show that

amplitude swing is able to characterized non-compressed pulses.

The results presented here were obtained during an experimental cam-

paign at the Universidad Complutense de Madrid (UCM), in collaboration

with Prof. Rosa Weigand and Óscar Pérez.

6.1 Materials and Methods

The few-cycle laser source was a home-made Ti:sapphire oscillator pumped

with a Verdi-V6 laser. During the experimental campaign, its spectral band-

width was optimized searching the widest spectrum, while remaining stable,

in order to generate few-cycle pulses with the shortest temporal durations.

Fig. 6.1. (a) Spectrum of the few-cycle Ti:sapphire laser used in the experiments.

(b) FTL pulse of the laser spectrum with an inset of its duration (FWHM).
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The obtained spectrum is shown in Fig. 6.1(a) and has a FTL pulse

duration with FWHM of 5.50 fs, represented in Fig. 6.1(b). All the results

exhibited in this Chapter were done with this optimized situation.

The scheme of the experimental set-up used to characterize the few-cycle

laser combining both temporal characterization techniques, amplitude swing

and d-scan, is represented in Fig. 6.2.

Fig. 6.2. Scheme of the experimental set-up combining the d-scan and the ampli-

tude swing characterization techniques.

Firstly, the laser beam goes through two motorized BK7 wedges with

an angle of 8°, which are used for the d-scan measurement and to control

the pulse chirp to be measured with amplitude swing. Then, the dispersion

is compensated bouncing three times over each mirror of a pair of chirped

mirrors (DCMs, model DCM7 from Venteon), which introduce negative dis-

persion (−120 fs2 per reflection pair at 800 nm). After that, it is placed a

rotating 200-µm quartz plate (MWP), which introduces a 6.58-fs delay at

800 nm, that is used as MWP for the amplitude swing scan. After the MWP

a wire grid linear polarizer (LP) is placed, set at 0° to select the horizon-

tal projection. Then, the beam is focused using an off-axis parabolic mirror

(1-inch focal length) over a 10-µm Type-I BBO in order to produce SHG.

Finally, the SHG signal is filtered (F) using a neutral density filter and two

color filters (FGB37 from Thorlabs and BG12 from Schott), and collected
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with an UV-Grade Fused Silica lens (L) into an optical fiber connected to an

Ocean Optics spectrometer (model HR4000 from Ocean Optics Inc.), oper-

ating from 196 nm up to 660 nm.

Moreover, the fundamental spectrum can be measured introducing a dif-

fuser medium before the BBO crystal and collecting the diffused signal into

an Avantes spectrometer.

Since we use a hybrid set-up to validate the amplitude swing results

against the d-scan reconstructions, during the d-scan measurement the SHG

spectrum is recorded for different insertions of the motorized wedges, whereas

the MWP is fixed with its fast axis at 0°. During the amplitude swing mea-

surement, the wedges are fixed at a desired position and the SHG spectrum

is measured for different angles of the MWP. Furthermore, to compare both

retrievals it should be taken into account the phase introduced by the MWP,

which is typically withdrawn in the amplitude swing retrievals, but in this

configuration it will be kept because the d-scan measurement in this config-

uration takes it into account, since it measures the pulse after it. Anyway, it

could also be subtracted here if needed.

The amplitude swing retrievals were done using the Levenberg-Marquardt

algorithm [31] with two optimization steps. The first step optimizes the GDD

and TOD terms of a Taylor expansion and the second step performs a finer

adjustment fitting the combination of GDD, TOD and phase first derivative

at 22 spectral points. On the contrary, the d-scan retrievals were done using

a Quasi Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, as

in [122], characterizing the phase as a Fourier series with 15 sine and 15

cosine terms.

Notice that, since the few-cycle regime is related with ultra-broadband

pulses, the delay introduced by the MWP varies along the spectrum, as

shown in Fig. 6.3. Despite this spectral dependence, the delay is always

close to the FTL duration (delay ∼1.1-1.2 times the FTL pulse duration)

and its dispersion is taken into account in the algorithm. Therefore, the

delay introduced by amplitude swing can be non-constant, in contrast with

the delay of a common interferometer.
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Fig. 6.3. Spectral dependence of the delay introduced by the 200-µm-thick quartz

MWP used in amplitude swing.

Second harmonic response

Notice that, due to the large spectral bandwidth of the laser, the SHG re-

sponse must be properly calibrated for a correct characterization.

In the case of d-scan, the SHG response is directly obtained during the

iterative retrieval algorithm by comparison of the experimental and simulated

traces using the following equation:

Rdscan(ω) =

∑
k

Imeas(ω, zk) · Isim(ω, zk)∑
k

I2sim(ω, zk)
(6.1)

where Imeas(ω, zk) and Isim(ω, zk) are the experimentally measured and sim-

ulated d-scan traces, respectively.

Regarding the amplitude swing, the SHG response can be obtained in

the retrieval algorithm as explained in Section 5.1 and used in the experi-

ment shown in Section 5.2. This strategy can be used in few-cycle regime for

pulses relatively close to compression (dispersion compensation). However,

this approach, while working properly near FTL pulse conditions, can be

troublesome for highly chirped pulses with ultra-broadband spectra, as the

most chirped situations that will be studied in Subsection 6.2.2. This lim-

itation appears because the frequency marginals of the SHG traces present

huge null signal areas. To solve this issue, we decided to simulate the theo-
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retical SHG response of the system and consider it in the amplitude swing

algorithm.

The theoretical SHG response of the system can be obtained, following the

ideas presented in [43], combining the detection and the nonlinear medium

spectral dependence. On one hand, the detection response can be expressed

as the combination of the color and neutral filters used to select the SHG

signal (RFilters) and the spectrometer (RHR4000) responses, orange and yellow

curves of Fig. 6.4(a). In this case, the filters response was given by the

manufacturer and the spectrometer response was experimentally calibrated

measuring the emission spectrum of a known white lamp. On the other hand,

the theoretical nonlinear medium response, green curve of Fig. 6.4(a), in-

cludes the phase-matching efficiency (‘sinc’ term) dependence weighted with

the second order susceptibility of the refractive index (χ(2)). Therefore, the

theoretical SHG response of the system, as seen in [43], will be given by:

RTotal(2ω) ∝
ω3

ne(2ω)
·RFilters(2ω) ·RHR4000(2ω) · |χ(2)(2ω)|2 sinc2 [∆k(2ω)L/2]

(6.2)

where χ(2) ∝ [ne(2ω)
2 − 1]·[no(2ω)

2 − 1]
2
and ∆k = ωL/2 [ne(2ω)− no(ω)] is

the phase-mismatch, being no and ne the ordinary and extraordinary refrac-

tive indices of the BBO, which can be calculated using Sellmeier equations

[135] and knowing the crystal cut angle (θ = 29.2°), and L its thickness (10

µm in our case).

The resulting theoretical SHG response is compared with the obtained

using the d-scan technique in Fig. 6.4(b), showing good agreement but with

some differences. On one hand, the d-scan SHG response is represented for

a shorter spectral range because it is the optimization range of the d-scan

retrieval. On the other hand, the d-scan SHG response is lower around 425

nm, while this is not observed in the theoretical response. This difference

may be a small and non-significant artifact of the d-scan retrieval because

this area matches with the lowest fundamental signal region. In addition, the

theoretical response is based on the slowly varying envelope approximation

(SVEA) and considering monochromatic plane wave, thus the SHG response

can be slightly different. Anyway, the retrieval tolerates this kind of deviation

in the SHG response calibration, as shown in Subsection 6.2.1 by comparing
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Fig. 6.4. (a) Theoretical simulation of the system SHG response (blue), obtained

from the combination of the BBO theoretical response (green) and the spectral de-

pendence of the filters used to select the signal (orange) and spectrometer (yellow).

(b) Comparison of the theoretical SHG response (blue) and the experimentally ob-

tained in the d-scan retrieval (purple).

the amplitude swing retrieval using both responses, obtaining similar pulse

reconstructions.

In the amplitude swing retrievals, we used the theoretical SHG response

and optimized them in the spectral range with significant signal (322.5-520.0

nm) avoiding areas with low signal where the theoretical response can differ

from the experiment. By doing so, the amplitude swing reconstructions are

self-consistent and do not depend on the response obtained from the d-scan

measurement, which is used here just to validate the amplitude swing results.

Indeed, it is easy to estimate it, since the phase-matching curve of a BBO

crystal is well known and the spectral response of the filters is usually given

by the manufacturer. Nevertheless, other strategies can be used to obtain

the SHG response. For example, it can be experimentally calibrated using a

known reference pulse with equal or bigger bandwidth. Another possibility is

to directly use the response obtained from other temporal charactererization

technique like the d-scan. This last approach will be demonstrated at the

end of Subsection 6.2.1 as a verification that different SHG responses can be

used.
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6.2 Results and Discussion

The versatility of amplitude swing, as explained in Chapter 3, enables to

characterize pulses with different bandwidths. In addition, provided that the

MWP delay is appropriate for the FTL temporal duration, amplitude swing

can characterize highly chirped pulses. Taking this into account, firstly we

will characterize the beam for the insertion of the wedges that gives the most

compensated dispersion (the best pulse compression position), Subsection

6.2.1, and then for different wedge insertion positions, Subsection 6.2.2.

6.2.1 Compressed pulse

In this Subsection, the electric field is measured at the position of the wedges

that produces the shortest possible pulse (closest to the FTL pulse condi-

tions). As shown later, at this position the pulse is not a FTL pulse due

to the residual phase that cannot be compensated by the dispersion of the

wedges.

Fig. 6.5 shows the characterization obtained with both techniques, be-

ing the amplitude swing measurement done at the compensated dispersion

position of the wedges.

Firstly, Figs. 6.5(a1,a2) show the experimental and retrieved amplitude

swing traces taking into account the theoretical SHG response. Secondly,

Figs. 6.5(b1,b2) correspond to the experimental and retrieved d-scan traces

using the SHG response obtained by the d-scan measurement. The glass

insertion axis is shown with respect to the compressed position (i.e., the best

compensation dispersion position is 0 mm). Logically, positive insertion of

material correspond to positively chirped pulses, and vice versa. Finally,

Figs. 6.5(c1,c2) correspond to the spectral and temporal comparison of both

retrievals for the compensation dispersion position.

There is very good agreement between both retrievals, which is also man-

ifested in the similar temporal FWHM, 5.98 fs and 5.99 fs for the amplitude

swing and d-scan, respectively. Regarding the temporal duration of a single

cycle for the carrier wavelength of the spectrum, calculated as the gravity
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Fig. 6.5. Experimental (a1,b1), retrieved (a2,b2) amplitude swing (a1,a2) and

d-scan (b1,b2) traces and electric field at insertion 0 comparison in spectral (c1)

and temporal (c2) domains, being the solid lines the amplitude swing and the dashed

lines the d-scan retrieval. An inset of the temporal intensity FWHM of amplitude

swing (blue) and d-scan (purple) is included in (c2).

center of the spectrum (2.71 fs at 817 nm), the retrieved pulse corresponds

to a 2.2-cycles pulse. Furthermore, these FWHM values are close to the FTL

temporal FWHM, which in this case is 5.50 fs.

The previous amplitude swing retrieval has been done using the theoret-

ical SHG response, but, as previously suggested, it can also be done using

the d-scan response. Fig. 6.6 shows the amplitude swing retrieval for the

same compensated dispersion position using the d-scan SHG response and

compares it with the result obtained with the theoretical SHG response.

The convergence of the amplitude swing retrieval algorithm using the

d-scan SHG response is also very good. The spectral and temporal retrievals

of Figs. 6.6 present the same dependences as the ones obtained using the

theoretical SHG response and the FWHM only differs in 0.02 fs.

Therefore, both strategies for obtaining the SHG response are valid. Tak-

ing this into account, we are going to retrieve the measurements of Subsection

6.2.2 using the theoretical SHG response, so that the amplitude swing recon-

structions do not rely on any other technique.
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Fig. 6.6. Experimental (a), retrieved (c) amplitude swing traces using the d-scan

SHG response and electric field comparison in spectral (b) and temporal (d) do-

mains, being the solid lines and dashed lines the amplitude swing retrievals obtained

with the theoretical SHG response and the d-scan SHG response, respectively. An

inset of the temporal FWHM obtained using the theoretical response (blue) and the

d-scan response (green) is included in (d).

6.2.2 Non-compensated dispersion cases

In addition to characterizing the pulse at the compensated dispersion position

of the wedges, the versatility of amplitude swing enables to measure the pulse

with different dispersion values. To demonstrate this, in this Subsection the

pulse is characterized for different insertion of the wedges.

For the validation of amplitude swing results out of compression, it can

be obtained the d-scan retrieval for each glass insertion by adding to the

compensated spectral phase the corresponding dispersion phase, which can

be calculated taking into account the material thickness and the Sellmeier

coefficients of the refractive index of the BK7 wedges. Please notice that,

in the case of d-scan, it is necessary to scan the dispersion around compres-

sion position of the pulse and then, from the full trace, it can be extracted

the pulse at different insertions. On the contrary, with amplitude swing

no compression is required because it can directly measure the pulse at the

corresponding insertion.
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In Fig. 6.7 there are shown the experimental (first and third rows) and

retrieved (second and fourth rows) amplitude swing traces, obtained intro-

ducing a dispersion with respect to the material insertion position for the

compensated dispersion in steps of 40 fs2 from -160 fs2 (Fig. 6.7(a)) up to

+160 fs2 (Fig. 6.7(h)). Actually, we refer each material insertion position

(i.e., material thickness relative to the compensate dispersion position) with

the added GDD, but the glass dispersion is not a pure GDD and it also

includes higher order phase terms.

Fig. 6.7. Experimental (first and third rows) and retrieved (second and fourth

rows) amplitude swing traces for different insertion of the wedges corresponding to

a relative added dispersion respect to the compensated position of (a) -160 fs2, (b)

-120 fs2, (c) -80 fs2, (d) -40 fs2, (e) +40 fs2, (f) +80 fs2, (g) +120 fs2 and (h)

+160 fs2.

All the amplitude swing traces have been retrieved using the theoretical

SHG response of the system shown in Fig. 6.4.

On one hand, Figs. 6.8(a1-h1) depict the spectral phase comparison

between the amplitude swing and d-scan retrievals for each added dispersion

case. On the other hand, the temporal electric field comparison is shown in

Figs. 6.8(a2-h2). Moreover, for each case an inset of the FWHM temporal

duration is added to easily compare each insertion observing the very good

agreement.
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Fig. 6.8. Spectral (first and second rows) and temporal (third and fourth rows)

electric field comparison obtained with amplitude swing (solid lines) and d-scan

(dashed lines) for the relative added dispersion values of (a) -160 fs2, (b) -120 fs2,

(c) -80 fs2, (d) -40 fs2, (e) +40 fs2, (f) +80 fs2, (g) +120 fs2 and (h) +160 fs2.

Moreover, for each temporal retrieval is shown an inset of the FWHM temporal

duration of amplitude swing (blue) and d-scan (purple).

Both, spectral and temporal electric field comparisons, present excellent

agreement for each dispersion value, even far from compensated dispersion.

Notice that the pulse is stretched up to ∼15-20 times its FTL pulse duration

(FWHM).

In conclusion, amplitude swing is able to characterize few-cycle laser

pulses without modifying the original scheme, and the only points to take

into account are to use a MWP introducing a delay of the order of the pulse

74



6- AMPLITUDE SWING IN THE FEW-CYCLE PULSE REGIME

FTL and a good calibration (either experimental or theoretical) of the SHG

response. In addition, its versatility enables the possibility to characterize the

ultra-broadband pulses even if the dispersion is not perfectly compensated,

as shown with the pulse reconstructions far from compression.
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Chapter 7

Generalizing amplitude swing

Previously, in Chapter 3, the fundamentals of the amplitude swing technique

have been discussed, and a compact implementation has been presented,

based on a rotating MWP and a linear polarizer, to generate two delayed

replicas of the pulse under test with varying amplitude [31].

The current Chapter is focused on the generalization of the amplitude

swing concept to other configurations that could be implemented, modulat-

ing the amplitude with different evolutions and ratios between the relative

amplitude of the pulse replicas. In fact, it is also possible to use modulations

with complex amplitudes, as it will be shown later, including the case of

relative phase variation introduced in addition to the amplitude variation.

In particular, here it is studied the possibility of using a rotating zero-

order waveplate (ZWP) before a static MWP and a linear polarizer. This

configuration is interesting because it enables different ways to introduce the

varying amplitude and, depending on the phase retardation of the ZWP,

also a varying phase term, thus presenting various strategies to apply the

amplitude swing concept.

Moreover, in Chapter 3 and previous works [31, 91], it has been demon-

strated that the amplitude swing needs to introduce a delay of the order of the

FTL duration (less than 3 times greater or smaller) to efficiently codify the

spectral phase. For this reason, sometimes it may be necessary to combine

multiple MWP to have the appropriate delay. Another interesting possibility
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is to use a pair of birefringent wedges, so the delay can be tuned modifying

the optical path length. In this sense, rotating these systems (set of MWP

or wedges) can be complex or awkward. Therefore, the configuration with

rotating ZWP and fixed MWP could also be useful in these situations.

7.1 Theoretical analysis

The original amplitude swing implementation, explained in Chapter 3 and

represented in Fig. 7.1(a), is based on a rotating MWP followed by a hori-

zontal linear polarizer (LP) and a SHG crystal. Previously, it has been shown

that, for a horizontal linearly polarized electric field, its SHG trace with this

conventional configuration is:

SSHG
M (ω, θM) =

∣∣∣∣∣
∫ (∫

A(ω′)eiφ(ω
′)
[
eiΦf (ω

′)GfM(θM)+

+eiΦs(ω′)GsM(θM)
]
e−iω′tdω′

)2

eiωtdt

∣∣∣∣∣
2 (7.1)

where A(ω) and φ(ω) are the spectral amplitude and phase of the pulse under

test, respectively, and Φf and Φs correspond to the phase terms acquired by

the fast and slow components after propagation through the MWP, respec-

tively. In this representation, GfM(θM) and GsM(θM) are the modulation

factors of the fast and slow components due to the rotating MWP and the

linear polarizer: GfM(θM) = cos2 θM

GsM(θM) = sin2 θM
(7.2)

being θM the azimuthal angle of the fast axis of the MWP with the horizontal

axis.

The alternative configuration studied in this Chapter, and represented in

Fig. 7.1(b), consists on a rotating ZWP followed by a fixed MWP with its

fast axis at 45°, a horizontal linear polarizer (LP) and a SHG crystal. Firstly,

in Subsection 7.1.1 we will present the general formalism and, after that, we

will focus on two cases of particular interest of ZWP: half-waveplate (HWP)

and quarter-waveplate (QWP) in Subsections 7.1.2 and 7.1.3, respectively.
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Fig. 7.1. (a) Original amplitude swing based on a rotating MWP and (b) proposed

configuration based on a rotating ZWP with a fixed MWP.

7.1.1 General formalism

Let’s consider a initial pulse horizontally polarized given by E(ω) = A(ω)eiφ(ω),

being A(ω) and φ(ω) the spectral amplitude and phase, respectively. Using

the Jones calculus matricial formalism, this field can be expressed in the

laboratory system (XY) as:

E⃗
(XY)
ini (ω) = E(ω)

(
1

0

)
(7.3)

This input pulse can be expressed in the system of coordinates of the ZWP

axes (fast and slow, respectively), by rotating the coordinates the azimuthal

angle between the fast axis of the ZWP and the horizontal axis (θZ):
E⃗

(ZWP)
ini (ω) = R(θZ) · E⃗(XY)

ini (ω)

R(θZ) =

 cos θZ sin θZ

− sin θZ cos θZ

 =⇒

E⃗
(ZWP)
ini (ω) = E(ω)

(
cos θZ

− sin θZ

)
(7.4)
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During the propagation through the ZWP, this element introduces a

phase retardation, Φr, between the fast and slow components. Thus, the

electric field after it will be:
E⃗

(ZWP)
ZWP (ω) = M

(ZWP)
ZWP · E⃗(ZWP)

ZWP (ω)

M
(ZWP)
ZWP =

1 0

0 eiΦr

 =⇒

E⃗
(ZWP)
ZWP (ω) = E(ω)

(
cos θZ

−eiΦr sin θZ

)
(7.5)

being, M
(ZWP)
ZWP the matrix of the ZWP in its coordinate system.

After the ZWP, the electric field will go through a fixed MWP whose fast

axis forms an azimuthal angle θM = 45° with respect to the horizontal axis.

Before applying the MWP matrix, for simplicity, we project the electric field

of Eq. 7.5 onto the MWP axes:
E⃗

(MWP)
ZWP (ω) = R(θZM) · E⃗(ZWP)

ZWP (ω)

R(θZM) =

 cos θZM sin θZM

− sin θZM cos θZM

 =⇒

E⃗
(MWP)
ZWP (ω) = E(ω)

(
cos θZ cos θZM − eiΦr sin θZ sin θZM

− cos θZ sin θZM − eiΦr sin θZ cos θZM

)
(7.6)

being, θZM = (θM − θZ) the relative azimuthal angle between the fast axes

of both retarder plates (please remember that along the present discussion

θM = 45° is considered to be constant).

Now that the electric field is expressed in the MWP axes system, we can

directly apply the MWP matrix obtaining:
E⃗

(MWP)
MWP (ω) = M

(MWP)
MWP · E⃗(MWP)

ZWP (ω)

M
(MWP)
MWP =

eiΦf (ω) 0

0 eiΦs(ω)

 =⇒

E⃗
(MWP)
MWP (ω) = E(ω)

( [
cos θZ cos θZM − eiΦr sin θZ sin θZM

]
eiΦf (ω)[

− cos θZ sin θZM − eiΦr sin θZ cos θZM

]
eiΦs(ω)

)
(7.7)
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where, Φf and Φs are the phase terms added to the fast and slow components

due to the propagation through the MWP, respectively, and M
(MWP)
MWP is the

matrix of the MWP in its coordinate system.

This electric field in the MWP system can be expressed in the laboratory

system (XY) rotating −θM . Since in this case θM = 45°, the electric will be:
E⃗

(XY)
MWP(ω) = R(−45°) · E⃗(MWP)

MWP (ω)

R(−45°) = 1√
2

1 −1

1 1

 =⇒

E⃗
(XY)
MWP(ω) = E(ω)

(
Gf (θZ , φr)e

iΦf (ω) +Gs(θZ , φr)e
iΦs(ω)

Gf (θZ , φr)e
iΦf (ω) −Gs(θZ , φr)e

iΦs(ω)

)
(7.8)

where, Gf (θZ , φr) and Gs(θZ , φr) are the modulation factors of the fast and

slow components defined as:Gf (θZ , φr) =
1√
2

[
cos θZ cos θZM − eiΦr sin θZ sin θZM

]
Gs(θZ , φr) =

1√
2

[
cos θZ sin θZM + eiΦr sin θZ cos θZM

] (7.9)

Therefore, if the horizontal projection is selected with a linear polarizer,

the amplitude swing fundamental electric field will be:

Ef (ω) =
E(ω)√

2

([
cos θZ cos θZM − eiΦr sin θZ sin θZM

]
eiΦf (ω)+

+
[
cos θZ sin θZM + eiΦr sin θZ cos θZM

]
eiΦs(ω)

) (7.10)

From this analysis it can be observed that the initial pulse, E(ω), is di-

vided into two replicas, corresponding to the fast and slow components in

the MWP. The replicas are delayed due to an appropriate choice of birefrin-

gence and thickness in the MWP, as happens in the original amplitude swing

configuration. In addition, these replicas are modulated as a function of the

ZWP orientation, θZ , (please remember θZM = θM − θZ and θM = 45°) and
the phase retardation of the ZWP, Φr.
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Finally, using this electric field to produce SHG signal, the amplitude

swing trace for the horizontal projection will be:

SSHG
Z (ω, θZ) =

∣∣∣∣∣
∫ (∫

A(ω′)eiφ(ω
′)
[
eiΦf (ω

′)Gf (θZ ,Φr)+

+eiΦs(ω′)Gs(θZ ,Φr)
]
e−iω′tdω′

)2

eiωtdt

∣∣∣∣∣
2 (7.11)

where, the modulation factors, Gf (θZ , φr) and Gs(θZ , φr), can be simplified

taking into account θM = 45°:Gf (θZ ,Φr) =
1
4
(1 + cos 2θZ + sin 2θZ) +

1
4
(1− cos 2θZ − sin 2θZ)e

iΦr

Gs(θZ ,Φr) =
1
4
(1 + cos 2θZ − sin 2θZ) +

1
4
(1− cos 2θZ + sin 2θZ)e

iΦr

(7.12)

We find that the modulation factors are complex but, in our case, a

global phase term can be disregarded. Thus, to analyze the dependence of

the amplitude swing trace with these factors, we focus our attention on their

amplitudes and their relative phase, being the last one defined as:

ΦGs−Gf
(θZ ,Φr) = Arg

{(
1 + cos (4θZ) + 2 cosΦr sin

2(2θZ)
)
+i (4 cos θZ sin θZ sinΦr)

}
(7.13)

where Arg is a function to obtain the argument of the complex number.

The modulation introduced in a scan of θZ for different Φr values of the

ZWP is shown in Fig. 7.2. In particular, Figs. 7.2(a,b) correspond to the

amplitudes of Gf and Gs, respectively, whereas Fig. 7.2(c) represents the

relative phase introduced between the slow and fast replicas. Please notice

that the maximum possible amplitude value for each modulation factor is

1/
√
2. In addition, Fig. 7.2(d) depicts the contrast between the modulation

factors for each θZ and Φr, defined as the difference between maximum and

minimum amplitude value of the modulation factors divided by the maximum

value (i.e., (MG −mG)/MG, being MG and mG the maximum and minimum

value between the amplitude of the modulation factors at the corresponding

θZ and Φr).

Regarding the amplitudes, Figs. 7.2(a,b), the fast and slow modulation

factors exhibit alternate maxima and minima, thus presenting maximum
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Fig. 7.2. Simulation of modulation factors dependences with the ZWP orientation

(θZ) for different retardation phases (Φr). (a,b) Amplitude of the fast (Gf ) and

slow (Gs) modulation factors, respectively. (c) Relative phase between the fast and

slow components due to the ZWP (ΦGs−Gf
). (d) Contrast between the amplitude

of the modulation factors.

contrast at some particular θZ scan angles (22.5° + m · 45°, being m an

integer). In contrast, there are some θZ positions (multiples of 45°) that

present equal amplitude of Gf and Gs, thus having null contrast. In the

case of HWP (Φr = π rad), the contrast goes from 0% to 100%, whereas for

a ZWP with Φr = 0 or 2π rad the contrast is always null and there is no

amplitude modulation.

Regarding the relative phase between the fast and slow replicas, Fig.

7.2(c), it varies along the ZWP scan and it also changes depending on the

value Φr of the ZWP. Indeed, there are some ZWP azimuthal angles (θZ

multiples of 90°) where ΦGs−Gf
= 0 regardless the value of Φr. The maximum

(+π rad) and minimum (−π rad) relative phases are observed for a phase

retardation of Φr = π rad (i.e., HWP) and the relative phase introduced

tends to zero when approaching to Φr = 0 or 2π rad.

To identify suitable phase retardations of the ZWP, it can be calculated

the maximum contrast between the modulation factors and the maximum

dephase excursion (i.e., difference between maximum and minimum relative
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phase among the fast and slow components) along a θZ scan as a function of

Φr, Figs. 7.3(a,b) respectively. From this representation, it can be easily ob-

served that using Φr close to 0 or 2π rad will hardly introduce any amplitude

or phase modulation. The best contrast situation corresponds to Φr = π rad

(i.e., HWP). Regarding Φr = ±π/2 rad (i.e. QWP), which will be studied

later, it presents a maximum contrast of 42% (i.e., none replica reaches zero

amplitude) and the maximum dephase excursion is π rad.

Fig. 7.3. Representation of the maximum amplitude contrast (a) and dephase

excursion (b) of Gf and Gs for a scan of the ZWP as a function of the ZWP

phase retardation (Φr).

Therefore, the modulation of amplitude swing traces will change depend-

ing on the phase retardation of the ZWP. Fig. 7.4 depicts some examples

of amplitude swing traces obtained with different configurations for a 50-fs

FTL Gaussian spectrum pulse centered at 800 nm with a spectral phase of

GDD=40000 fs2 and TOD= 2 · 105 fs3. In this example, we have assumed

a 2-mm-thick quartz MWP with a phase retardation of π rad for the cen-

tral wavelength, which introduces a ∼60-fs delay. Fig. 7.4(a) corresponds

to the original amplitude swing configuration rotating the MWP, whereas

Figs. 7.4(b-j) show the here proposed configuration (rotating ZWP and fixed

MWP at 45°) for different values of Φr from 0 to 2π rad in steps of 0.25π

rad.

The new configuration with Φr = 0 or 2π rad, Figs. 7.4(b,j), does not

present any modulation, as previously discussed. Moreover, for this specific

case, the configuration with rotating ZWP with Φr ̸= 0 or 2π rad presents a

more intricate structure of interference compared to the rotating MWP.
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Fig. 7.4. Example of amplitude swing for (a) rotating MWP and (b-j) rotating

ZWP with fixed MWP at 45° for different phase retardations of the ZWP: (b) 0

rad, (c) 0.25π rad, (d) 0.50π rad, (e) 0.75π rad, (f) 1π rad, (g) 1.25π rad, (h)

1.50π rad, (i) 1.75π rad and (j) 2π rad.

7.1.2 Rotating HWP

In previous Subsection, the amplitude swing formalism has been explained

for a general case, but here we will focus on what happens if the ZWP is a

HWP (i.e., Φr = π rad). As mentioned before, this case is interesting because

it corresponds to the best contrast situation of the modulation factors.

For this particular situation, the modulation factors can be expressed as:Gf (θZ , π) =
1√
2
cos (2θZ − π/4)

Gs(θZ , π) = − 1√
2
sin (2θZ − π/4)

(7.14)

being θZ the angle of the HWP with the horizontal axis. In this case, the

ZWP rotates the orientation of the initial linear polarization that is decom-

posed on the MWP axes.

Comparing the amplitude of the modulation factors for the rotating HWP,

Eqs. 7.14 and solid lines (blue and orange for the fast and slow components)

of Fig. 7.5, with the ones of the original configuration, Eq. 7.2 and dashed

lines of Fig. 7.5, they are similar but now the cosine and sine are non-squared

and they vary with θZ (instead of θM). In addition, a 22.5° shift appears in
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the amplitude modulation of trace. From these dependences it can be ex-

tracted that, in this configuration, the trace is repeated twice during a 180°
scan in θZ , whereas for the original amplitude swing the trace is symmetrical

with respect to 90°. Please notice that we have normalized the modulation

factors of the original amplitude swing in Fig. 7.5 to have the same maximum

amplitude as the rotating HWP, easing the visualization.

Fig. 7.5. Amplitude (blue and orange for the fast and slow components) and rel-

ative phase (green) of the modulation factors for a rotating HWP (solid lines) and

rotating MWP (dashed lines). Please notice that the relative phase with rotating

MWP is always zero and it is not represented to clarify the comparison.

Furthermore, paying attention to the relative phase difference for the

HWP, green line of Fig. 7.5, there is a 0 or π rad phase difference between

the fast and slow replicas depending on θZ . The 0 dephase corresponds to

positions where both modulation factors are positive or negative, whereas

the π rad dephase is associated to positions where they have opposite sign.

One interesting feature of the rotating HWP configuration is that, as

happens with the conventional amplitude swing, along an azimuthal angle

scan the amplitude evolves from having only one replica to present only the

other one. The main differences between configurations are the rate of the

change, the phase shift and the 0 or π rad dephase in the rotating HWP.

Paying attention to the positions with 0 dephase, θZ ∈ (0°−22.5°, 62.5°−
112.5°, 157.5°−180°), it can be found that this area of a rotating HWP trace

contains the equivalent information to the rotating MWP trace (if the scan
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were performed instead rotating the same MWP from 0° to 180°). This is due
to, as said before, the amplitude modulation is similar in both cases (from 0

to 100% contrast), but at a different rate. In order to obtain conversion to the

corresponding MWP trace, we first impose the condition that the amplitude

ratio of the replicas is the same:

|Gs(θZ , π)|
|Gf (θZ , π)|

=
|GsM(θM)|
|GfM(θM)|

⇒ tan(2θZ − π/4) = − tan2(θM) (7.15)

From this, it can be extracted the following reshaping function, which

has been represented with a blue line in Fig. 7.6(a), taking into account that

the chosen scan ranges are from 0° to 180°:

θZ =


mod

{
π
8
+ arctan (− tan2(θM ))

2
, π

}
for θM ∈ [0, π/2) rad

mod

{
π
8
+ arctan (− tan2(θM ))+π

2
, π

}
for θM ∈ [π/2, π) rad

(7.16)

being mod{a, b} a function that returns the remainder after division of a and

b. Notice that a π rad term is added to the result of the arctan function in the

second equation in order to correctly resolve the arctan ambiguity according

to our problem (considering that the arctan function gives the result between

−π/2 rad and +π/2 rad).

To complete the transformation and obtain the corresponding rotating

MWP trace, in addition to the pulse replica ratio equality at the given po-

sition, the pulse intensity modulation rate should be the same too. Since

the replica amplitude ratio has been fixed, it is enough to adjust now the

amplitude of one replica. We select here the fast replica, but choosing the

slow one would also give the same condition. Thus, for each angle θM , we

apply the following rescaling function, which has been represented with a

blue line in Fig. 7.6(b):[
GfM(θM)

Gf (θZ , π)

]4
=

[
cos2(θM)

cos(2θZ − π/4)

]4
(7.17)

where θZ is given by Eq. 7.16. Please notice that the 4th power comes

from considering the spectrum (squared complex modulus) of the SHG of

the interfering replicas.
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Fig. 7.6. (a) Reshaping and (b) rescaling functions to transform a rotating HWP

amplitude swing trace into a rotating MWP trace with phase retardation ΦM (blue

lines) or ΦM + π (orange and dashed orange lines).

Notice that for this transformation we have only used the areas of the

rotating HWP with 0 dephase. The rest of the HWP trace, which presents π

rad dephase, is equivalent to a rotating MWP trace but with an additional

phase retardation term of π rad (ΦM −→ ΦM + π, being ΦM the phase

retardation of the employed MWP). Using an analogous study, taking into

account the sign change in the reshaping condition, it can be obtained the re-

shaping function for this case, which is collected in Eq. 7.18 and represented

with orange line in Fig. 7.6(a).

θZ =


mod

{
π
8
+ arctan (+ tan2(θM ))

2
, π

}
for θM ∈ [0, π/2)

mod

{
π
8
+ arctan (+ tan2(θM ))+π

2
, π

}
for θM ∈ [π/2, π)

(7.18)

The rescaling function for this case, represented with dashed orange line

in Fig. 7.6(b), is the same as the 0 dephase situation.

From Fig. 7.6(b) it can be concluded that the rescaling function evolves

from 1, for HWP angles where there is only one replica, to 0.25, for posi-

tions where the replicas have the same amplitude. Therefore, the signal to

noise ratio can be up to 4 times better in the region of the trace where the

interfering replicas have similar amplitudes.

To show an example of this transformation, we have used a 50-fs FTL

Gaussian spectrum pulse centered at 800 nm with a spectral phase of GDD=
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40000 fs2 and TOD= 2 · 105 fs3. In this example we have assumed a 2-mm-

thick quartz MWP, which introduces a ∼60-fs delay with a phase retardation

of ΦM = 0.8π rad for the central wavelength.

On one hand, Figs. 7.7(a,b) represent the original amplitude swing traces

calculated with the rotating MWP configuration using as phase retardation

ΦM and ΦM + π, respectively. Fig. 7.7(c) corresponds to the amplitude

swing trace simulated with a rotating HWP, considered achromatic in all

the spectral range.

Fig. 7.7. Amplitude swing traces for 50-fs FTL Gaussian spectrum pulse centered

at 800 nm with GDD=4000 fs2 and TOD=2·105 fs3. (a,b) Simulated rotating MWP

traces for a retardation phase ΦM of (a) 0.8π rad and (b) 1.8π rad. (c) Simulated

rotating HWP trace with a fixed MWP of ΦM = 0.8π rad. (d,e) Calculated rotating

MWP traces for retardation phase ΦM (d) 0.8π rad and (e) 1.8π rad, using the

reshaping and rescaling of the rotating HWP trace shown in (c).

On the other hand, Figs. 7.7(d,e) correspond to the rotating MWP traces

obtained applying the reshaping and rescaling factors to the rotating HWP

trace of Fig. 7.7(c). In particular, Fig. 7.7(d) is obtained from the 0 dephase

information using Eqs. 7.16-7.17, whereas Fig. 7.7(e) is calculated with the

π rad dephase area using Eqs. 7.17-7.18.

There is very good agreement between the rotating MWP simulated and

reshaped amplitude swing traces. Therefore, the transformation is possible

and a single rotating HWP trace contains the information of two conventional
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amplitude swing traces.

7.1.3 Rotating QWP

Another interesting case of rotating ZWP is when it is a QWP (i.e., Φr = π/2

rad). In this situation, the modulation factors can be expressed as:Gf (θZ , π/2) =
1
4
(1 + cos(2θZ) + sin(2θZ)) +

1
4
(1− cos(2θZ)− sin(2θZ)) i

Gs(θZ , π/2) =
1
4
(1 + cos(2θZ)− sin(2θZ)) +

1
4
(1− cos(2θZ) + sin(2θZ)) i

(7.19)

being θZ the angle of the QWP with the horizontal axis. The dependence of

the amplitudes and the relative phase of the modulation factors for this case

are represented in Fig. 7.5 as a function of θZ .

Fig. 7.8. Amplitude (blue and orange for the fast and slow components, respec-

tively) and relative phase (green) of the modulation factors for a rotating QWP.

In this case, the contrast between the pulsed replicas evolves from null

contrast, for those positions where the QWP preserves the input linear po-

larization or converts it into circular polarization (having the same relative

amplitude), to a maximum of 42% in the intermediate elliptical polarization

positions.

Moreover, in contrast to the conventional amplitude swing or the rotating

HWP configurations, both replicas are always interfering during a scan (i.e.,

there is not a position of θZ where there is only one replica).
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Regarding the relative phase added by the rotating QWP, it varies in the

range −π/2 to π/2 rad depending on the QWP orientation. This implies

that, in addition to the varying amplitude modulus, it is also introduced a

continuously varying dephase. Thus, the trace in this configuration could be

interpreted as several portions of conventional amplitude swing traces with

different phase retardations. Furthermore, the periodicity of the scans with

this configuration is 180°.

7.2 Numerical simulation

In the previous Section, we have presented the analytical study of new config-

urations of amplitude swing based on a rotating ZWP before a fixed MWP,

and we have compared some features with the original amplitude swing con-

figuration (rotating MWP).

The current Section compares the robustness against noise of various

configurations simulating and reconstructing different amplitude swing traces

for four set-ups: rotating MWP, rotating HWP with fixed MWP, rotating

QWP with fixed MWP and rotating ZWP of Φr = 0.75π rad with fixed

MWP, being the fixed MWP always at θM = 45°.

In particular, we are going to study each retrieval with the Levenberg-

Marquardt retrieval algorithm used in [31], upgraded to include the shaping

elements that perform the amplitude swing modulation presented in this

work (e.g., fixed or rotating MWP and rotating ZWP). The dispersion of

the different elements of each amplitude swing configuration is considered

within the reconstruction algorithm, so that the input pulse is retrieved and

the results from each configuration can be directly compared.

All configurations presented in this Section use the same MWP (either

rotating or static), 2-mm-thick quartz with π rad phase retardation, which

introduces a ∼60-fs delay around 800 nm. Regarding the HWP, QWP and

ZWP, without lack of generality, we will assume that all of them can be

considered achromatic and non-dispersive in the bandwidth of the pulses

under test.

Here we present the analysis of a pulse with Gaussian spectrum centered
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at 800 nm with 50-fs FTL duration FWHM and a spectral phase that com-

bines GDD=1000 fs2, TOD=2000 fs3 and an oscillatory term (0.3π·cos[50(ω−
ω0) + 0.25π]). To study the behavior of the different configurations against

various noise level, the ideal amplitude swing traces for each configuration

have been simulated and different white Gaussian noise levels (defined as the

rms of the noise with respect to the normalized trace) from 0 to ∼15% have

been added to them.

An example with a noise level of 4.3% rms is shown in Fig. 7.9 and the

complete study for different levels of noise is depicted in Appendix A.

Fig. 7.9. Comparison of amplitude swing configurations analyzing traces with

4.3% rms noise added. (a) Ideal, (b) noisy and (c) retrieved amplitude swing

traces. (d) Spectral and (e) temporal comparison of the retrieved (blue and red)

and theoretical (gray) pulses. The configurations studied are: (column 1) rotating

MWP, (column 2) rotating HWP, (column 3) rotating QWP, and (column 4)

rotating ZWP with Φr = 0.75π rad.
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Figs. 7.9(a-c) correspond to the ideal, noisy and retrieved amplitude

swing traces, respectively. From this representation, it can be observed that

the agreement of the retrieved and ideal traces is good, even with the high

noise level of the simulated traces analyzed with the algorithm, Fig. 7.9(b).

The good agreement is also observed in the spectral and temporal intensity

and phase comparison depicted in Figs. 7.9(d,e), respectively, where the

theoretical dependences are shown in gray lines.

Some parameters that can be taken into account to compare the robust-

ness for different noise levels are depicted Fig. 7.10. On one hand, Fig.

7.10(a) represents the rms between the ideal and retrieved traces (solid lines)

for different noise levels using the four configurations. Notice that we com-

pare the retrieved trace with the ideal one, instead of the noisy trace, because

it gives a better quantification of the quality of the retrieval. In addition,

Fig. 7.10(a) also includes the rms between the temporal intensities of the

ideal pulse used to simulate the traces and the retrieved from the noisy trace

(dashed lines). On the other hand, the retrieved temporal pulse duration

(FWHM) of each case is compared with the theoretical value (dashed gray

line) in Fig. 7.10(b).

Fig. 7.10. Comparison of (a) rms between the ideal and retrieved amplitude

swing traces (solid lines) and temporal intensities (dashed lines), and (b) pulse

duration (FWHM) for different noise levels. The amplitude swing configurations

are: (blue) rotating MWP, (orange) rotating HWP, (green) rotating QWP, and

(purple) rotating ZWP with Φr = 0.75π rad. The theoretical FWHM (dashed gray

line) is depicted in (b).

From the analysis of this specific case, it seems that, with high noise val-
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ues, all the new configurations are slightly better than the original amplitude

swing, highlighting the rotating ZWP with Φr = 0.75π rad. Nevertheless,

the behavior may change depending on the pulse under study, the phase re-

tardation of the MWP, the merit function used for the optimizations and

the retrieval algorithm itself. Thus, depending on the specific situation one

configuration may be better than the others.

One general feature that we have observed simulating different situations

is that, for low and moderate noise levels, all the configurations present

good convergence. Indeed, the noise levels in which some differences can be

observed are very high and, if seen in experiments, are usually considered

as too high and some other experimental strategies to improve the signal to

noise ratio are seeked.

7.3 Experimental demonstration

In this Section we present the experimental demonstration of different am-

plitude swing configurations.

The laser system used in this experiment was a Titanium:sapphire CPA

laser (Spectra-Physics, model Spitfire ACE) that provides pulses centered

at 798 nm with a FTL of ∼56-fs FWHM and a repetition rate of 5 kHz.

The compressor of this system allows to modify the output pulse GDD, thus

generating compressed or chirped pulses. We used it to study an almost

compressed pulse and a chirped pulse with different amplitude swing config-

urations.

In particular, the pulses were characterized using three different configura-

tions of amplitude swing. All of them were implemented using a 2-mm-thick

quartz MWP, which introduces a delay between replicas of ∼60 fs and has a

phase retardation of 0.34π rad at 800 nm. One configuration was the original

amplitude swing based on a rotating MWP, firstly presented in [31] and ex-

plained in Chapter 3. The other two configurations were based on a rotating

ZWP before a fixed MWP at 45°. In particular, we have used a HWP and

a QWP (from Eksma Optics), which can be considered achromatic in the

bandwidth of the laser system. The SHG medium was a 20-µm Type-I BBO
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with perfect phase-matching for the pulse bandwidth. Moreover, the SHG

signal was measured with a spectrometer (HR4000 from Ocean Optics Inc.)

for different positions of the retarder plates and the fundamental spectrum

was measured before the amplitude swing system using another spectrometer

(AvaSpec 2048-USB1 from Avantes Inc.).

The traces were analyzed with the upgraded Levenberg-Marquardt re-

trieval algorithm used in Section 7.2. As done before, the dispersion of the

different elements is taken into account within the retrieval algorithm in order

to directly obtain the input pulse with each configuration.

Fig. 7.11 depicts the amplitude swing experimental (columns 1 and 3) and

retrieved (columns 2 and 4) traces for the characterization of a compressed

(columns 1 and 2) and a chirped (columns 3 and 4) pulse.

Fig. 7.11. Amplitude swing experimental (columns 1 and 3) and retrieved

(columns 2 and 4) traces for a compressed (columns 1 and 2) and a chirped

(columns 3 and 4) pulses using three different configurations of the technique: (a)

conventional amplitude swing rotating MWP, (b) rotating HWP with fixed MWP

and (c) rotating QWP with fixed MWP.
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Fig. 7.11(row a) shows the traces for the conventional amplitude swing

configuration, whereas Figs. 7.11(rows b,c) depict the traces for the rotating

HWP and QWP, respectively.

Notice that the convergence is good for all the strategies showing rms

differences between the experimental and retrieved traces lower than 1.2·10−3.

The retrieved pulses with the different amplitude swing configurations

are shown in Figs. 7.12(a,c) for the compressed pulse and Figs. 7.12(b,d)

for the chirped pulse. The gray shaded areas in the retrievals correspond

to the standard deviation from the mean phase of each retrieval with the 3

configurations in the spectral and temporal domains.

Fig. 7.12. (a,b) Experimental spectrum (black) and retrieved spectral phases

and (c,d) retrieved temporal intensities and phases for the compressed (a,c) and

chirped (b,d) pulses of Fig. 7.11. Retrievals obtained for amplitude swing trace with

rotating MWP (blue), rotating HWP with fixed MWP (orange) and rotating QWP

with fixed MWP (green). The gray shaded areas represent the standard deviation

from the mean of each retrieval with the 3 configurations.

Regarding the spectral comparison, Figs. 7.12(a,b), the retrievals present

the same spectral phases in each situations (compressed and chirped pulse),

regardless the amplitude swing configurations. This good agreement is also

observed in the temporal intensity and phase, Figs. 7.12(c,d), and the tem-

poral FWHM for each pulse. The retrieved FWHM for the compressed pulse
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are: 57.0 fs with the rotating MWP, 57.4 fs the rotating HWP and 57.3 fs

the rotating QWP. The retrieved temporal FWHM durations for the chirped

pulse also agree between them: 93.4 fs with the rotating MWP, 93.2 fs the

rotating HWP and 93.0 fs the rotating QWP.

We can also use the experimental traces with the rotating HWP and

MWP to verify the reshaping strategy explained in Subsection 7.1.2. Fig.

7.13 demonstrates this process comparing the rotating MWP trace experi-

mentally measured, Figs. 7.13(a,b), and the calculated, Figs. 7.13(c,d), for

the compressed and chirped pulses, respectively, using Eqs. 7.16-7.17 with

the information of 0 dephase of the rotating HWP trace of Fig. 7.11(b).

Fig. 7.13. (a,b) Experimental rotating MWP (orange) and (c,d) calculated rotat-

ing MWP from the analysis reshape of the rotating HWP with fixed MWP traces

shown in Fig. 7.11. (a,c) Compressed pulse and (b,d) chirped pulse.

In conclusion, we have demonstrated that, based on the amplitude swing

concept, different strategies to modulate the amplitude can be implemented

in order to characterize ultrashort laser pulses.
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Chapter 8

Bulk lateral shearing

interferometry technique

In Section 2.2, we have mentioned many spatiotemporal techniques that

have been implemented during the last decades. However, these techniques

are usually based on complex set-ups to be implemented in the laboratory

and/or present low stability due to their high sensitivity to external pertur-

bations. In this Chapter, we present the compact, simple and ultra-stable

spatiotemporal technique developed during this Thesis [136], whose high sta-

bility enables to retrieve the spectrally and temporally resolved wavefronts

of complex ultrashort laser beams. The compact implementation of the de-

veloped technique was firstly hinted as a possible optimization in [137], but

it was not demonstrated.

8.1 Concept and fundamental ideas

The spatiotemporal technique proposed in this Thesis is based on the com-

bination of spectral and lateral interferometry. In particular, it relies on the

properties of uniaxial birefringent crystals to implement this combination in

a compact and ultra-stable system.

Specifically, the technique takes advantage of two particular properties of

uniaxial birefringent media, the delay and the walk-off among polarization
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components, to obtain two temporally delayed and laterally sheared replicas

of the beam, whose interference encodes the spatiospectral information. The

properties of these media, which will be explained in Chapter 9, depend on

the medium thickness, the optical axis orientation, the birefringent refractive

indices and the angle of incidence. In a first approach, to understand the

concept, we will assume that we are working with collimated beams under

normal incidence conditions. Thus, the properties of the uniaxial birefringent

crystals will follow the simplified model that will be explained in Subsection

9.2.3. Moreover, later in Section 10.2 we will study what happens with non-

collimated beams with a given numerical aperture using the general model

that will be explained in Section 9.2.

Under normal incidence conditions, we can distinguish two types of uni-

axial birefringent crystals according to the optical axis orientation. On one

hand, if the optical axis (O.A.) is not contained in the crystal interface, as

considered in Fig. 8.1(a), the incident beam is split into two temporally

delayed and laterally sheared replicas (ordinary and extraordinary beams,

being the last one the laterally displaced beam) through its propagation in

the medium. Crystals with this configuration will be called walk-off crystals

and constitute the pillar of the spatiotemporal technique proposed in this

Thesis.

Fig. 8.1. Representation of the delay (τ) and walk-off (∆) properties experienced

by an incident pulsed beam (purple) due to traveling through an uniaxial birefrin-

gent medium in (a) walk-off crystal and (b) retarder plate configuration. The blue

and red lines represent the ordinary and extraordinary beams, respectively. Nota-

tion: L corresponds to the crystal thickness and the arrow indicates the orientation

of the optical axis (O.A.).
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On the other hand, if the optical axis is contained in the crystal interface,

Fig. 8.1(b), the original beam will split into two temporally delayed replicas

(ordinary and extraordinary beams) without lateral shearing. The crystals

with this configuration will be called retarder plates and, in the spatiotem-

poral technique, they can be used to adjust the delay between the replicas.

In both cases, the ordinary and extraordinary beams will be linearly po-

larized in orthogonal directions. In addition, since we are considering normal

incidence and plane-parallel crystals, in both configurations the output beams

will be parallel to the input beam.

Taking into account the above mentioned properties, uniaxial media can

be used to combine the spectral and lateral interferometry by generating two

delayed and laterally sheared replicas of the beam under test. Thus, as we

will demonstrate in this Section, the spectral interference pattern, obtained

from the projection of both replicas into a common direction by using a linear

polarizer, encodes the spatiospectral phase gradient.

The technique can retrieve 1D or 2D structures but, for simplicity, we

will explain the fundamentals with a 1D approach and later extend it to 2D.

Since more than one uniaxial birefringent crystals can be simultaneously

used to implement the technique (e.g., to adjust the walk-off and delay val-

ues), whose ordinary and extraordinary components can be different, we will

always refer to the laterally sheared replica as walk-off beam (WB) and the

non-sheared replica as ordinary beam (OB), regardless of whether the WB

or OB play the opposite role on the additional retarder plate. Moreover, we

have chosen the criterion that the first component to arrive to the detection

is the walk-off beam for the SI. If the ordinary beam arrives before the walk-

off beam, the same formalism of this Section can be used, but conjugating

the extracted relative phase or filtering the −τ satellite peak in the Fourier

Transform Spectral Interferometry (FTSI) algorithm that will be explained

below.

Taking into account the notation and criterion above mentioned, if the

two linearly polarized replicas are projected onto a common polarization

projection, the spectrum of the spectral interferometry (SSI) at the detection
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stage will be:

SSI(rj, ω) = SOB(rj, ω) + SWB(rj, ω) + 2
√

SOB(rj, ω)SWB(rj, ω)·

· cos
[
(φOB(rj, ω)− φWB(rj, ω))meas

] (8.1)

where, S and φ are the spectrum and spectral phase at the spatial point

rj with the subindices ‘OB’ and ‘WB’ referring to the ordinary or walk-off

beam, respectively. Moreover, ω and rj represent the angular frequency of

the light and the spatial position of the measurement.

The (φOB(rj, ω)− φWB(rj, ω))meas term corresponds to the relative phase

between the walk-off and ordinary beams, which is a combination of the

relative phase of the beams itself (beam) and the phase acquired due to

traveling through the birefringent crystal (crys):

(φOB(rj, ω)− φWB(rj, ω))meas =

= (φOB(rj, ω)− φWB(rj, ω))beam + (φOB(ω)− φWB(ω))crys
(8.2)

presenting (φOB(ω)− φWB(ω))crys only spectral dependence, not spatial, be-

cause the birefringent crystals used in the technique are plane-parallels (i.e.,

the relative phase introduced by the crystal is the same regardless the posi-

tion). This relative phase term must be known from the crystal specifications

or experimentally calibrated. In our case we choose the latter option because

a theoretical estimation requires a highly accurate calibration of the system

parameters, in particular the thickness.

The key point of the technique is that the ordinary and walk-off beams

are two delayed and laterally sheared replicas of the same initial beam, so

Eq. 8.1 can be expressed in terms of the initial beam spectrum (S(r, ω)) and

phase (φ(r, ω)). Assuming that the lateral shear is introduced in the positive

direction, and the incident and final polarizations are linearly polarized at

an intermediate direction between both replicas (45° with respect to the

projection of the O.A. onto the crystal interface), Eq. 8.1 is equivalent to:

SSI(rj, ω) =
1

2
S(rj, ω) +

1

2
S(rj−1, ω) +

√
S(rj, ω)S(rj−1, ω)·

· cos
[
(φ(rj, ω)− φ(rj−1, ω))meas

] (8.3)

Notice that the incident and the final polarizations presents the best

contrast in the SI because each beam has the same energy, but any linear
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polarization state oriented in a common direction between both replicas is

possible.

If we measure in steps equal to the walk-off, the phase term of Eq.

8.3 represents the spatiospectral phase gradient in the walk-off direction:

∇meas
φ = (φ(rj, ω)− φ(rj−1, ω))meas. Please notice that the phase gradi-

ent array ∇meas
φ also includes the phase introduced by the birefringent el-

ements of the system, as explained in Eq. 8.2. Thus, it must be cali-

brated to extract the phase gradient information of the beam under test:

∇beam
φ = ∇meas

φ − ∇crys
φ . The calibration can be done using an average flat

wavefront (pulsed) beam. We have observed that it is useful to average the

calibration at different spatial points, so small fluctuations in the wavefront

are compensated and the calibration is less restrictive in terms of quality of

the calibration plane beam. Despite we have used this strategy, it can be

accomplished alternatively, for example, using a conventional wavefront sen-

sor to calibrate certain wavelengths and then extrapolating the result for the

whole pulse bandwidth or theoretically from the manufacturer specifications.

Once ∇beam
φ is known, the relative spatiospectral phase can be obtained

(i.e., spectrally resolved wavefronts without linking between wavelengths).

Nevertheless, in order to obtain the absolute spatiospectral or spatiotemporal

phase, it is necessary to know the spectral or temporal phase at a given spatial

point (rj0), which can be measured with any temporal technique, for example

one of those shown in Subsection 2.2.2. In our case, we find interesting to use

amplitude swing for measuring the reference, since it is also a simple, compact

and ultra-stable technique, as shown in Chapter 3. Therefore, the absolute

spatiospectral phase of the pulse under study can be obtained integrating

from the known point using the following equation (the spectral dependence

is omitted and the spatial position rj is referred as a subindex j in order to

clarify the expressions, i.e., φ(rj, ω) ≡ φj):

φj+1 = φj + {∇φj+1}beam if rj > rj0

φj−1 = φj − {∇φj}beam if rj < rj0
(8.4)

In case the walk-off is introduced in the negative direction, it can be

done an analogous extraction, but taking into account that the spatiospectral

phase gradient will be defined as: ∇φ = [φ(rj, ω)− φ(rj+1, ω)].
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When the spatiospectral phase profile is extracted, it is necessary to know

the spatiospectral amplitude to have the complete spatiospectral or spa-

tiotemporal characterization. On one hand, this spatiospectral amplitude

can be obtained by measuring the spectrum at different spatial positions

using a linear polarizer to select only the ordinary beam. Notice that the

walk-off beam can also be measured, but it should be taken into account that

it is laterally displaced. On the order hand, the spatiospectral amplitude can

also be extracted by filtering the τ = 0 peak in the FTSI, if the condition of

slowly spatially varying spectrum (S(rj, ω) ∼ S(rj±1, ω)) is satisfied.

The 1D retrieval process analytically explained above can be summarized

in the diagram shown in Fig. 8.2, in which a simulated divergent beam is

analyzed.

Fig. 8.2. Scheme of the retrieval process of 1D measurements using the spa-

tiotemporal technique.

Firstly, in Fig. 8.2(a) it is shown an example of the spectral interferom-

etry pattern along the spatial dimension. Secondly, Figs. 8.2(b-d) show the

process done at each spatial point in order to obtain the spatiospectral gradi-

ent of the beam. In Fig. 8.2(b), the SI in the spectral domain is represented

for the corresponding spatial point. Then, in Fig. 8.2(c) it is shown the SI in
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the temporal domain (blue line) and the filtered satellite (orange line). Once

the satellite is filtered, the algorithm goes back to the spectral domain and

obtains the phase gradient of the beam extracting the calibrated term, Fig.

8.2(d). The spatiospectral gradient along the spatial position is represented

in Fig. 8.2(e). Finally, the full spatiospectral phase profile, Fig. 8.2(f), is ob-

tained from the integration in the spatial dimension (r) of the spatiospectral

gradient, knowing the phase at a reference point (in this example, we have

chosen a flat phase at the center of the beam, for simplicity), following Eq.

8.4.

Retrieval process of 2D structures

Now that we know how the technique works in a 1D approach, we can extend

it to a 2D approach. The main difference is that, in the 2D approach, it is

necessary to obtain the spatiospectral phase gradient in two non-collinear

directions. We usually use the X and Y directions, and the change in the

walk-off direction is done by azimuthally rotating the walk-off crystal around

the longitudinal direction. Notice that the second measurement is necessary

to link the different 1D slices.

In addition, during the Thesis we have implemented different ways of inte-

grating the 2D measurements and we select the most appropriate depending

on the beam structure.

On one hand, the simplest way consists in a matrix scan in one walk-off

direction and a 1D array in the orthogonal direction to connect different 1D

sections/slices. Depending on which direction is introduced the walk-off for

the 2D scan, we call the approach 2DMx or 2DMy for the 2D scan done with

walk-off in the X or Y directions, respectively. An example of this strategy is

shown in Fig. 8.3, where a convergent wavefront is retrieved using the 2DMx

approach.

Firstly, the spatial grid of measurement with the reference point (purple

star) at position (x0, y0) is represented in Fig. 8.3(a). The horizontal blue

lines represent the slices that will give the phase gradient in the horizontal

direction, whereas the green line represents the 1D vertical array used to link
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Fig. 8.3. Example of the phase retrieval of a simulated convergent wavefront

using the 2DMx approach measuring the 1D array to link all the heights at x0 and

knowing the spectral phase at (x0, y0).

all the x-scans performed for different y values (in this case it is measured at

x0). Secondly, Fig. 8.3(b) depicts the measured SI spectra and the retrieved

phase gradients with the walk-off introduced in the horizontal, Fig. 8.3(b.1),

and vertical, Fig. 8.3(b.2), directions. Finally, the complete spatiospectral

phase profiles obtained from the integration of both spatiospectral gradients

are shown in Fig. 8.3(c).

On the other hand, more complex approaches can be done to avoid null

signal points, which can introduce noise, by measuring the 2D matrix in both

walk-off directions and changing the integration path.

For example, in Fig. 8.4 we show a strategy called 2D4Quad, which

retrieves the spatial phase combining the retrieval of 4 quadrants using 2DMx

or 2DMy and knowing that in the spatial overlapping points (diagonal lines

of the final scheme of Fig. 8.4) the phase must be the same. This strategy

retrieves each quadrant separately imposing FTL phase reference at different

points (triangles in Fig. 8.4). Then, the relative phase between quadrants is

fixed, imposing that the phase of each retrieval must be the same at a certain

position of the diagonals called ‘phase set point ’ (red stars in Fig. 8.4). The

other spatial positions of the diagonal, which are not ‘phase set point ’, are

obtained by averaging the two adjacent quadrants and, in the central position

of the grid, by averaging the four quadrants. Finally, it is corrected the offset
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of the whole spatiospectral phase profile knowing the spectral phase at a

reference point, thus obtaining the complete spatiospectral characterization.

Fig. 8.4. Scheme of the 2D retrieval approach called 2D4Quad.

Another possibility is to perform the retrieval combining two quadrants

instead of four, what we call it 2D2Quad. These strategies are interesting to

avoid null signal points at the center of the spatial profile, as it will happen

in some examples studied in Chapter 11.

Besides these strategies, any other integration path can be used to avoid

null signal points (e.g., integrating following a specific path to avoid some

null signal areas) or somehow improve the reconstruction.

8.2 Spatial scan prototype

Once the fundamental concepts of the spatiotemporal technique have been

introduced, we can focus on the experimental set-up. In Fig. 8.5, we show

the scheme of the technique for 2D measurements introducing the walk-off

in the X and Y directions.

In this scheme, the axis of the birefringent media (walk-off crystal and

retarder plate) are in the horizontal and vertical directions, rotating 90° from
Fig. 8.5(a) to Fig. 8.5(b). Thus, the walk-off is introduced in the vertical

direction, while the delay remains constant. Notice that it can be done by
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Fig. 8.5. Scheme of the technique for 2D measurement with the walk-off intro-

duced in: (a)X-direction and (b)Y-direction.

rotating only the walk-off crystal and taking into account the corresponding

delay for the FTSI algorithm at each situation.

Firstly, a linear polarizer selects the light 45° projection in order to have

the same energy in the X and Y polarization projections. Then, a walk-off

crystal delays and laterally shears both projections, obtaining after it the

ordinary and walk-off beams with orthogonal polarizations (vertical and hor-

izontal). If the delay is not suitable for the spectrometer resolution, it can be

adapted using a retarder plate with the appropriate orientation and thick-

ness. Afterwards, it is placed another polarizer that selects the interference

pattern, if the transmission axis is set at 45°, or the ordinary/walk-off beam

(depending on the optical axis direction), if it is set at 0° or 90°. Finally, an
optical fiber, which collects the signal into a spectrometer, is placed in a 2D

motorized stage to scan the beam.

The prototype implemented in the laboratory is shown in Fig. 8.6. In this
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prototype, we are using two linear polarizers (LP1 and LP2, black and gray

boxes respectively), a walk-off crystal (blue box), a retarder plate (green box)

and a XY motorized stage with an optical fiber connected to a spectrome-

ter (AvaSpec 2048-USB1, from Avantes Inc.). In this case the XY-stage is

controlled by two Kinesis K-cubes (Thorlabs).

Fig. 8.6. Two different views of the laboratory prototype for 2D measurements

implemented with a XY-motorized stage and a fiber spectrometer.

Other configurations can be implemented just by changing the detection

stage. For example, it can be used an imaging spectrometer over a 1D mo-

torized stage instead of the 2D motorized stage with the fiber connected to

a spectrometer.
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Chapter 9

Uniaxial birefringent crystals

The spatiotemporal characterization technique developed in this Thesis, which

has been explained in Chapter 8, is based on the properties of uniaxial bire-

fringent crystals in order to obtain a compact and ultra-stable set-up.

Previously, we have briefly introduced the main properties of the uniaxial

birefringent media used by our spatiotemporal technique (delay and walk-

off). In the current Chapter, we are going to focus on developing different

theoretical models to deeply study these media. These models have been the

key to understand the behavior of the principal elements used in our char-

acterization technique, and they are based on the theoretical developments

reported in [138, 139].

Firstly, in Section 9.1, we will study the propagation of monochromatic

plane waves inside an uniaxial birefringent crystal. Then, in Section 9.2, we

will analyze how the propagation changes if the uniaxial birefringent crystal

is immersed in an isotropic medium. After that, in Section 9.3, we will gen-

eralize the application of the model to non-plane waves. Finally, in Section

9.4, we will explain the strategy that we have used to calibrate the uniaxial

birefringent crystals.
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9.1 Plane wave propagation inside uniaxial

medium

Let’s consider that we have a monochromatic plane wave with a wavevector

k⃗ traveling inside an uniaxial birefringent medium that is non-magnetic, non-

conductor and non-absorbent. Then, the constitutive relations between the

displacement (D⃗) and electric field (E⃗) vectors and the magnetic induction

(B⃗) and magnetic field (H⃗) vectors are:

D⃗ = εE⃗ (9.1)

B⃗ = µ0H⃗ (9.2)

where ε and µ0 correspond to the medium electric permittivity tensor and

the vacuum magnetic permeability, respectively.

Since we are in an uniaxial birefringent medium, the ε can be expressed in

the crystal principal axes basis, (ẑ1, ẑ2, ẑ3), in which the electric permittivity

tensor is diagonalized. Considering the optical axis is in the direction ẑ3,

then:

ε =

εo 0 0

0 εo 0

0 0 εz

 (9.3)

Taking into account the relation between the velocity in the medium and

the permittivity and permeability, it is possible to define the following phase

velocities associated with the two different values of the medium electric

permittivity tensor:

u2
o =

1

µ0εo
(9.4)

u2
z =

1

µ0εz
(9.5)

Thus, if the relation between D⃗ and E⃗ shown in Eq. 9.1 is expressed in

the crystal principal axes basis, it is equivalent to:
E1 = µ0u

2
oD1

E2 = µ0u
2
oD2

E3 = µ0u
2
zD3

(9.6)
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where E⃗ = (E1, E2, E3) and D⃗ = (D1, D2, D3) are the electric field and

displacement vectors in the basis (ẑ1, ẑ2, ẑ3).

The Maxwell’s equations in the MKS system (i.e., physical system of

measurement that uses the meter, kilogram, and second as base units) for this

non-magnetic, non-conductor and non-absorbent medium can be expressed

as: 
∇× H⃗ = ∂D⃗

∂t

∇× E⃗ = −µ0
∂H⃗
∂t

∇ · D⃗ = 0

∇ · H⃗ = 0

(9.7)

As we have previously mentioned, we want to study the propagation of

plane waves, so the following solutions for the Maxwell’s equations can be

proposed:

E⃗ = E⃗∗e
iϕ D⃗ = D⃗∗e

iϕ H⃗ = H⃗∗e
iϕ (9.8)

with

ϕ =
2π

λ
n [ŝ · r⃗ − ut] + ϕ0 (9.9)

being ŝ = k⃗
∥k∥ the unitary wavevector, r⃗ the vector from the input in the crys-

tal to the output of the crystal where the field is calculated, λ the wavelength

in vacuum, n the refractive index of the medium and u the phase velocity.

The amplitude term of each variable is denoted as E⃗∗, D⃗∗ and H⃗∗.

Introducing the solution indicated in Eq. 9.8 in the Maxwell’s equation

system 9.7, we obtain: 
ŝ× H⃗ = −uD⃗

ŝ× E⃗ = µ0uH⃗

ŝ · D⃗ = 0

ŝ · H⃗ = 0

(9.10)

Substituting the second equation into the first equation of the system

9.10, we obtain the following relation:

µ0u
2D⃗ = E⃗ − (ŝ · E⃗)ŝ (9.11)
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From the relation between components of D⃗ and E⃗ shown in the equation

system 9.6, we can express the relation 9.11 as:
[u2 + u2

o (s
2
1 − 1)]D1 + u2

os2s1D2 + u2
zs3s1D3 = 0

u2
os1s2D1 + [u2 + u2

o (s
2
2 − 1)]D2 + u2

zs3s2D3 = 0

u2
os1s3D1 + u2

os2s3D2 + [u2 + u2
z (s

2
3 − 1)]D3 = 0

(9.12)

being s1, s2 and s3 the components of ŝ in the crystal principal axes basis.

There are two possible solutions of the phase velocity, u, for the system

9.12:

u′ = uo (9.13)

u′′ =
√

u2
z + (u2

o − u2
z)s

2
3 (9.14)

These phase velocities are associated with two plane waves, the ordinary

wave and the extraordinary wave, which travel with u′ and u′′ velocities,

respectively. Moreover, as explained in [139], the propagation of each plane

wave has to be studied separately and, since they are infinite, we can focus

on the study of the propagation of one individual plane wave to later see how

they propagate.

9.1.1 Ordinary ray

The ordinary ray travels with a phase velocity of u = uo. Knowing this,

we can extract the components of D⃗ substituting the phase velocity in the

system 9.12:

D⃗o = (Do1, Do2, Do3) =

(
−s2
s1
, 1, 0

)
Do2 (9.15)

Now, we can obtain the electric field using the relation 9.6:

E⃗o = (Eo1, Eo2, Eo3) =

(
−s2
s1
, 1, 0

)
Eo2 (9.16)

Finally, using the second equation of the system 9.10 we obtain that:

H⃗o = (Ho1, Ho2, Ho3) =

(
s1
s2
, 1,

s23 − 1

s2s3

)
Ho2 (9.17)
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Moreover, we can calculate the Poynting vector (S⃗), which corresponds

to the propagation vector of the energy, and proof that for the ordinary wave

is parallel to the unitary wavevector (ŝ).

S⃗o = E⃗o × H⃗o =
Ho2Eo2(s

2
3 − 1)

s1s2s3
ŝ (9.18)

9.1.2 Extraordinary ray

The extraordinary ray travels with a phase velocity of u′′ =
√

u2
z + (u2

o − u2
z)s

2
3,

which is between uo and uz.

As done before, we can calculate D⃗ substituting the phase velocity in the

system 9.12 and we also obtain the relations for E⃗ and H⃗ substituting in

9.6 and the second equation of 9.10:

D⃗e = (De1, De2, De3) =

(
s1
s2
, 1,

s23 − 1

s2s3

)
De2 (9.19)

E⃗e = (Ee1, Ee2, Ee3) =

(
s1
s2
, 1,

u2
z(s

2
3 − 1)

u2
os2s3

)
Ee2 (9.20)

H⃗e = (He1, He2, He3) =

(
−s2
s1
, 1, 0

)
He2 (9.21)

In this case, if we calculate the Poynting vector, Eq. 9.22, we observe

that it will be not parallel to the unitary wavevector, except for s1 = s2 = 0

(i.e., propagation along s3) or s3 = 0 (i.e., propagation in the perpendicular

plane to s3). Thus, the energy and the phase of the extraordinary wave can

follow different trajectories.

S⃗e = E⃗e × H⃗e =
He2Ee2(1− s23)

s1s2s3

u2
z

u2
o

(
s1, s2, s3

u2
o

u2
z

)
(9.22)

This non-parallelism of S⃗e and ŝ produces the spatial displacement, called

walk-off, between the ordinary and extraordinary rays. This displacement

can also be null if uo = uz, which corresponds to the previously mentioned

situation where the plane wave is propagating along the O.A. of the uniaxial

birefringent crystal (i.e., ŝ = (0, 0,±1)).
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9.2 Plane wave propagation through uniaxial

medium immersed in isotropic medium

In the case of Section 9.1, the initial plane wave is split into two plane waves,

both having the same unitary wavevector (ŝ) but different Poynting vectors

(S⃗o and S⃗e). In the current Section, we are going to see how this propagation

is modified if the uniaxial birefringent crystal is immersed in an isotropic

medium of refractive index ‘n’ from which the wave impinges.

Now, the plane wave will be refracted, when going from the isotropic

medium to the birefringent medium and, from it, again to the isotropic

medium, and the phase direction of the refracted wave will be given by Snell’s

Law. The Snell’s Law in the incidence plane (i.e., plane formed by the inci-

dent wavevector and the normal to the interface) can be expressed as:

n1 sin θ1 = n2 sin θ2 (9.23)

where θ1 and θ2 are the incidence and refraction angles, respectively, and n1

and n2 correspond to the refractive indices of the incidence and transmitted

media, respectively. Since the ordinary and extraordinary waves experience

different refractive indices, no and ne respectively, the unitary wavevectors

inside the uniaxial medium will be different.

9.2.1 Notation and working coordinate systems

First of all, we will assume that the uniaxial birefringent medium is a plane-

parallel crystal, while their interfaces are always parallel to the measurement

plane of the spatiotemporal characterization technique proposed in this The-

sis. In addition, for simplicity we will consider that the crystal can be az-

imuthally rotated but will not be tilted, as said before.

In this theoretical study we are going to work with three different co-

ordinate systems (laboratory, incidence and crystal), being all of them in

the Cartesian coordinates space and related by rotations. The selection of

these specific systems significantly eases the study of the propagation. On

one hand, the laboratory system is fixed regardless of the direction of the
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initial wavevector, and it is useful to visualize the global propagation. On

the other hand, the incidence system enables to directly apply the Snell’s

Law (Eq. 9.23) during the refraction without the necessity to use the vector

Snell’s Law [140]. Finally, the crystal system is the natural basis to calculate

the propagation inside a birefringent medium, since the dielectric tensor is

diagonalized in it (as seen in Section 9.1).

Laboratory system

Firstly, we define the laboratory system (lab or xyz) as a fixed system with

the unit vector ẑ normal to the crystal and pointing to the measurement

plane. Moreover, x̂ and ŷ correspond to the unit vectors of the laboratory

system in the horizontal and vertical directions, respectively, and the crystal

surface will be always parallel to the xy plane. This system is represented in

Fig. 9.1.

Fig. 9.1. Representation of the laboratory coordinate system.

A monochromatic plane wave will have a wavevector in the laboratory

system, defined as
−→
klab = ∥k∥ · ŝlab, being ŝlab the unitary wavevector in this

system:

ŝlab = (sx, sy, sz) (9.24)

Incidence system

Secondly, we designate the incidence system (inc or x′y′z′) in such a way that

the x′z′ plane is the incidence plane of the wave traveling from the isotropic
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medium to the uniaxial crystal. This system, in contrast to the laboratory

system, depends on the wavevector direction, so it is not fixed for different

wavevectors. Moreover, we choose z′ = z because z is always in the incidence

plane (notice that it is normal to the interface).

The incidence system is related to the laboratory system by the rotation

of an angle Φi along the ẑ axis, as shown in Fig. 9.2. This angle will be given

by the initial wave.

Fig. 9.2. (a) Representation of the incidence coordinate system (blue) and az-

imuthal angle (Φi) with respect to the laboratory system (black). (b) Definition of

the incidence angle (θ) of a plane wave with wavevector (k⃗) in the incidence plane

(x′z′).

A wavevector in the incidence system can be expressed as
−→
kinc = ∥k∥· ŝinc,

being ŝinc the unitary wavevector in the incidence system:

ŝinc = (sin θ, 0, cos θ) (9.25)

where θ is an angle of incidence in the x′z plane respect to the ẑ axis defined

positive in counter-clockwise direction.

Moreover, since incidence and laboratory systems are related by a simple

rotation about the ẑ axis, a vector in one system can be easily transformed

into the other system by applying a rotation matrix:

R(β) =

cos β − sin β 0

sin β cos β 0

0 0 1

 (9.26)
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where β corresponds to the rotation along the ẑ axis and it is defined positive

for counter-clockwise rotations, as indicated by the arrow in Fig. 9.2(a).

Therefore, the unit wavevector in the incidence system variables (Φi and θ)

can be expressed in the laboratory system as:

ŝlab = R(−Φi) · ŝinc = (cosΦi sin θ,− sinΦi sin θ, cos θ) (9.27)

On the other hand, for a given wavevector in the laboratory system (
−→
klab =

(kx, ky, kz)), the angles of the incidence system can be calculated using Eqs.

9.28 and 9.29.

Φi = arctan

(
−ky
kx

)
= arctan

(
−sy
sx

)
(9.28)

θ = arccos

(
kz
∥k∥

)
= arccos (sz) (9.29)

Crystal system

Thirdly, we define the crystal system (cry or z1z2z3) as the uniaxial crystal

principal axes basis mentioned in Subsection 9.1.

The wavevector of a monochromatic plane wave in this system can be

defined as
−−→
kcry = ∥k∥ · ŝcry, being ŝcry the unitary wavevector in the crystal

system:

ŝcry = (s1, s2, s3) (9.30)

This system will be determined by the direction of the O.A. of the uniaxial

birefringent medium. In particular, we can describe this direction as an

azimuthal angle ΦOA, which represents the rotation of the O.A. about the ẑ

axis, and an insertion angle θOA, which represents the rotation of the O.A.

about the ŷ axis. Fig. 9.3 represents these angles that are always defined

positive for counter-clockwise rotations.

Therefore, as we have previously done with the incidence system, it can be

determined the relation between the crystal and the laboratory systems, so

a wavevector in one system can be expressed in the other. For this purpose,

the basis z1z2z3 can be expressed in the laboratory system:

z1z2z3 = ẑcry1 + ẑcry2 + ẑcry3 ≡ ẑlab1 + ẑlab2 + ẑlab3 (9.31)
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where each unitary vector of the crystal system in the laboratory system can

be defined as:
ẑlab1 = (cosΦOA cos θOA, sinΦOA cos θOA,− sin θOA)

ẑlab2 = (− sinΦOA, cosΦOA, 0)

ẑlab3 = (cosΦOA sin θOA, sinΦOA sin θOA, cos θOA)

(9.32)

Please notice that the projection of each unit vector of the z1z2z3 in the

laboratory system is normalized and also they are all orthogonal between

them.

Fig. 9.3. Representation of the crystal coordinate system (green) and rotation

angles with respect to the laboratory system (black): (a) azimuthal angle (ΦOA)

and (b) insertion angle (θOA).

Therefore, if the unitary wavevector is known in the laboratory system,

it can be projected into the crystal system to obtain the expressions of s1,

s2 and s3 of Eq. 9.30 just by doing the scalar product:
s1 = ŝlab · ẑlab1

s2 = ŝlab · ẑlab2

s3 = ŝlab · ẑlab3

(9.33)

Then, substituting Eqs. 9.27 and 9.32 into the previous equation system,

we obtain the components of the unitary wavevector in the crystal system as
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a function of the incidence and O.A. angles.
s1 = cosΦi sin θ cosΦOA cos θOA − sinΦi sin θ sinΦOA cos θOA − cos θ sin θOA

s2 = − cosΦi sin θ sinΦOA − sinΦi sin θ cosΦOA

s3 = cosΦi sin θ cosΦOA sin θOA − sinΦi sin θ sinΦOA sin θOA + cos θ cos θOA

(9.34)

In addition, it is interesting to express the unit vector of the O.A. (ẑ3) in

the incidence system, because it will ease the calculation of the extraordinary

refractive index (ne) in the following Subsection. Taking into account the

relation between systems:

ẑinc3 = (cos (ΦOA − Φi) sin θOA, sin (ΦOA − Φi) sin θOA, cos θOA) (9.35)

9.2.2 Propagation theory

Let’s consider a monochromatic plane wave with a certain azimuthal inci-

dence angle (Φi) and incidence angle (θi) in the interface of the isotropic-

uniaxial media. The unitary wavevector of this initial wave in the laboratory

system will be:

ŝlabi = (cosΦi sin θi,− sinΦi sin θi, cos θi) (9.36)

Firstly, the wave will be refracted at the isotropic-uniaxial interface and

this process will be governed by Snell’s Law. Thus, it is necessary to express

its initial unitary wavevector in the incidence system:

ŝinci = (sin θi, 0, cos θi) (9.37)

Since the initial wave will be split into two waves (ordinary and extraor-

dinary), we are going to study them separately.

Ordinary wave

The ordinary wave will see a refractive index no that does not depend on

the incidence angles. Thus, the application of Snell’s Law is direct and the
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refraction angle of the ordinary wave inside the uniaxial medium will be given

by:

θo = arcsin

(
n

no

sin θi

)
(9.38)

The refraction does not modify the azimuthal angle of the incidence plane

(Φi), so after the isotropic-uniaxial interface the ordinary unitary wavevector

in the laboratory system will be:

ŝlabo = (cosΦi sin θo,− sinΦi sin θo, cos θo) (9.39)

In the case of the ordinary ray, the Poynting vector will be parallel to the

unitary wavevector, Eq. 9.18, so the energy and phase will follow the same

trajectory. Furthermore, the ordinary ray will be laterally displaced on the

exit interface of the crystal with respect to the entry face and it will strike at

the second interface of the crystal at position (rox, roy, L), in the laboratory

system, being L the thickness of the uniaxial medium.

Using trigonometric relations and knowing the refraction angles, we can

calculate the lateral displacement that the ordinary ray will suffer:

• Displacement in X direction:

rox = L cosΦi tan θo = L cosΦi tan

[
arcsin

(
n

no

sin θi

)]
(9.40)

• Displacement in Y direction:

roy = −L sinΦi tan θo = −L sinΦi tan

[
arcsin

(
n

no

sin θi

)]
(9.41)

In addition, during the travel inside the uniaxial medium, the ordinary

ray will acquire a phase term given by
−→
ko ·−→ro , being

−→
ko the wavevector of the

ordinary wave and −→ro the vector from the input position of the ray at the

first interface to the output position at the second interface of the crystal.

These vectors in the laboratory system, assuming that the input position is

at the coordinate origin (0, 0, 0), can be expressed as:
−→
klab
o = 2π

λ
noŝlabo = 2π

λ
no (cosΦi sin θo,− sinΦi sin θo, cos θo)

−→
rlabo = (rox, roy, L) = L (cosΦi tan θo,− sinΦi tan θo, 1)

(9.42)
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For simplicity and briefness, we indicate the expressions as a function of θo.

Thus, the phase acquired by the ordinary beam will be:

φo =
2π

λ
no

L

cos θo
(9.43)

Finally, the ordinary ray will come out the uniaxial crystal going through

the uniaxial-isotropic interface. This refraction is the opposite as the en-

trance, thus the output angle (θout) will be the same as the initial beam (θi),

as expected:

no sin θo = n sin θout −→ θout = θi (9.44)

Therefore, the ray that comes out the crystal is parallel to the incidence one,

as expected since the crystal is plane-parallel.

Extraordinary ray

The extraordinary wave will experience an extraordinary refractive index ne

and Snell’s Law will be expressed in the incidence system as:

n sin θi = ne(θe,Φi) sin θe (9.45)

being θe the refraction angle of the extraordinary beam inside the uniax-

ial medium. Thus, the unitary wavevector of the extraordinary ray in the

incidence system can be expressed as:

ŝince = (sin θe, 0, cos θe) (9.46)

However, Snell’s Law cannot be analytically resolved to obtain θe in a

general case due to the extraordinary refractive index dependence with the

refracted angle:

ne =
nzno√

n2
o + (n2

z − n2
o)(s⃗e · z⃗3)2

(9.47)

The scalar product (s⃗e · z⃗3) can be easily calculated in the incidence system

combining Eqs. 9.35 and 9.46, thus obtaining:

ne =
nzno√

n2
o + (n2

z − n2
o) [cos (ΦOA − Φi) sin θOA sin θe + cos θOA cos θe]

2

(9.48)
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If no simplification can be done, we recommend to obtain θe numerically

solving the system of equations 9.45 and 9.48, as we do in this Thesis. From

this point, we continue the theoretical development assuming θe is known.

As explained before, the refraction does not modify the azimuthal angle

Φi of the wavevector, so the extraordinary unitary wavevector inside the

uniaxial crystal can be expressed in the laboratory system as:

ŝlabe = (cosΦi sin θe,− sinΦi sin θe, cos θe) (9.49)

In contrast to the ordinary ray, as seen in Section 9.1, the extraordi-

nary energy and phase do not follow the same trajectories inside an uniaxial

medium because the Poynting vector and the unitary wavevector are not par-

allel. Therefore, we want to express the Poynting vector at the laboratory

system and this can be done using Eq. 9.22 and expressing the unit vectors

of the crystal system in the laboratory system using Eq. 9.32:

−−→
Slab
e ∝ se1ẑlab1 + se2ẑlab2 + n2

z

n2
o
se3ẑlab3 =⇒

−−→
Slab
e ∝


se1 cosΦOA cos θOA − se2 sinΦOA + n2

z

n2
o
se3 cosΦOA sin θOA

se1 sinΦOA cos θOA + se2 cosΦOA + n2
z

n2
o
se3 sinΦOA sin θOA

−se1 sin θOA + n2
z

n2
o
se3 cos θOA

 (9.50)

where se1, se2 and se3 are the components of the extraordinary unitary

wavevector in the crystal system, which using Eq. 9.34 can be expressed

as a function of incidence, refraction and O.A. angles:
se1 = cosΦi sin θe cosΦOA cos θOA − sinΦi sin θe sinΦOA cos θOA − cos θe sin θOA

se2 = − cosΦi sin θe sinΦOA − sinΦi sin θe cosΦOA

se3 = cosΦi sin θe cosΦOA sin θOA − sinΦi sin θe sinΦOA sin θOA + cos θe cos θOA

(9.51)

Knowing the direction of the wavevector and the Poynting vector, we are

going to calculate separately the spatial position where each of those vectors

will go out through the second crystal interface in the laboratory system,(
rφex, r

φ
ey, L

)
and

(
rEox, r

E
oy, L

)
, respectively.
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• Displacement in X direction:

– Phase:

rφex = L cosΦi tan θe (9.52)

– Energy:

rEex = L
se1 cosΦOA cos θOA − se2 sinΦOA + n2

z

n2
o
se3 cosΦOA sin θOA

n2
z

n2
o
se3 cos θOA − se1 sin θOA

(9.53)

• Displacement in Y direction:

– Phase:

rφey = −L sinΦi tan θe (9.54)

– Energy:

rEey = L
se1 sinΦOA cos θOA + se2 cosΦOA + n2

z

n2
o
se3 sinΦOA sin θOA

n2
z

n2
o
se3 cos θOA − se1 sin θOA

(9.55)

The phase acquired by the extraordinary ray due to traveling inside the

uniaxial medium has to be calculated at the position where the energy is.

Thus the phase acquired will be given by
−→
ke · −→re , being

−→
ke the wavevector

of the extraordinary wave and −→re the vector from the input position of the

ray at the first interface to the output position of the energy at the second

interface of the crystal. As before, these vectors can be expressed in the

laboratory system as:
−→
klab
e = 2π

λ
neŝlabe = 2π

λ
ne (cosΦi sin θe,− sinΦi sin θe, cos θe)

−→
rlabe =

(
rEex, r

E
ey, L

)
Therefore, the acquired phase will be:

φe =
2π

λ
ne

[
rEex cosΦi sin θe − rEey sinΦi sin θe + L cos θe

]
(9.56)

After propagation, the extraordinary ray will go out the uniaxial crystal,

going through the uniaxial-isotropic interface. This refraction, as happened

before with the ordinary ray, is the opposite as the entrance, so the out-

put/exit angle will be the same as the initial beam (θi).
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9.2.3 Plane wave with normal incidence

In the previous Subsection, it was explained the general propagation model

for an incident monochromatic plane wave. In this Subsection, we want to

particularize it to a plane wave with normal incidence on the crystal (i.e.,

θi = 0).

This specific situation is very useful to understand the physics of the

spatiotemporal technique and enables the obtention of a simplified model,

which can be used in the majority of situations, where collimated beams are

characterized.

The first simplification that is observed with normal incidence is that,

to fulfill Snell’s Law, the ordinary and extraordinary refraction angles have

to be null (θo = θe = 0°). This implies that the unitary wavevector of the

ordinary (Eq. 9.39) and extraordinary (Eq. 9.49) rays in the laboratory

system will be the same and parallel to the ẑ axis.ŝlabo = (0, 0, 1)

ŝlabe = (0, 0, 1)
(9.57)

Moreover, in this situation the lateral displacement in the laboratory

system of the extraordinary phase (rφex and rφey) and the ordinary phase and

energy (rox and roy) due to traveling inside the uniaxial medium will be

null. Although the extraordinary phase is not displaced, the extraordinary

energy ray will be laterally sheared (except if the O.A. is contained in the

interface plane or parallel to the interface normal). The simplified expressions

of the extraordinary energy ray lateral displacement for this case, after some

calculations imposing θe = 0° at Eqs. 9.51, 9.53 and 9.55, are:

• Displacement in X direction:

rEex =
L

2
cosΦOA sin (2θOA)

n2
z − n2

o

n2
z cos

2 θOA + n2
o sin

2 θOA

(9.58)

• Displacement in Y direction:

rEey =
L

2
sinΦOA sin (2θOA)

n2
z − n2

o

n2
z cos

2 θOA + n2
o sin

2 θOA

(9.59)
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Finally the expression of the phase acquired by each wave, Eqs. 9.43 and

9.56, in this simplified case will be:φo =
2π
λ
noL = ω

c
noL

φe =
2π
λ
neL = ω

c
neL

(9.60)

Two examples of the propagation under normal incidence, assuming that

the O.A. is in the horizontal plane (ΦOA = 0°), are shown in Fig. 9.4.

On one hand, Fig. 9.4(a) represents the propagation for θOA ̸= 0° or 90°,
showing the walk-off property. As previously mentioned in Chapter 8, we

call the uniaxial crystals with this configuration walk-off crystals. On the

other hand, Fig. 9.4(b) shows the case for θOA = 90° (i.e., O.A. contained in

the crystal surface). Following the notation of Chapter 8, the crystal in this

configuration corresponds to a retarder plate.

Fig. 9.4. Representation of the ordinary and extraordinary ray propagation under

normal incidence on an uniaxial birefringent medium with ΦOA = 0 and different

configurations of θOA, which is immersed in an isotropic medium. (a) θOA ̸= 0°
or 90° and (b) θOA = 90°.

From the analysis of this simplified case, it can be extracted that the

lateral displacement will be larger for materials with higher birefringence.

Looking at Eqs. 9.58 and 9.59 it is also observed that for θOA = 90° (i.e.,
O.A. contained in the crystal surface) the lateral displacement is null, as

seen in Fig. 9.4(b), but the propagation through the birefringent medium

introduces a phase difference between the ordinary and extraordinary waves.

Furthermore, since the relative phase between extraordinary and ordinary
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waves depends on the frequency, they will be delayed:

τ(ω) =
∂

∂ω
(φe − φo) (9.61)

being τ(ω) the delay introduced. Notice that, when using pulses, the beams

will be composed by multiple frequencies and the refractive indices (no and

ne) will also depend on them.

9.3 General propagation theory of non-plane

waves

So far, we have seen how monochromatic plane waves propagate through

an isotropic medium with an uniaxial birefringent crystal inside it (Section

9.2). The current Section is focused on the generalization of the model to

non-plane waves, and it will lay the foundations for the walk-off angular

dependence study of Section 10.2.

Here, we will present the principles of the propagation model and how to

implement it numerically (Subsection 9.3.1) and, after that, we will verify it

with a known case (Subsection 9.3.2).

9.3.1 Principles of the propagation model

Firstly, it is well known that every beam in the spatial domain can be de-

composed in a set of plane waves in the spatial Fourier space. Thus, a beam

in the laboratory coordinate system (x, y, z) will correspond to a distribution

of (kx, ky, kz), corresponding each combination of (kx, ky, kz) to a plane wave

with the corresponding amplitude and phase obtained by Fourier Transform:

E(kx, ky, kz) = F
{
E(x, y, z)

}
E(x, y, z) = F−1

{
E(kx, ky, kz)

} (9.62)

being kz =
√
∥k∥2 − k2

x − k2
y and ∥k∥ = 2π/λ. Notice that the components

kx, ky and kz used in the model are defined in the vacuum.

126



9- UNIAXIAL BIREFRINGENT CRYSTALS

In particular, in this propagation model we are going to decompose the

beam in a set of plane waves at a certain propagation distance (z = zi) using

the 2D spatial Fourier Transform:kx = 2π/x

ky = 2π/y
(9.63)

An example of this decomposition for a Gaussian monochromatic conver-

gent wave is shown in Fig. 9.5.

Fig. 9.5. Example of decomposition of a Gaussian monochromatic convergent

beam into plane waves. (a1) Intensity and (a2) phase profiles in XY coordinates.

(b1) Intensity and (b2) phase in spatial frequencies coordinates.

On one hand, the intensity and phase profiles in spatial domain (x, y; zi)

are shown in Figs. 9.5(a1,a2), respectively. On the other hand, the intensity

and phase distributions in the corresponding Fourier space (kx, ky; zi) are

presented in Figs. 9.5(b1,b2), respectively.

Moreover, if the losses and the reflection are negligible, after traveling

a certain distance in the spatial Fourier space, the amplitude of each plane

wave does not vary and it only changes the phase. Thus, by calculating

the phase acquired by each plane wave during the travel and inverting the
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Fourier Transform, it can be obtained the beam in the Cartesian space after

the propagation to z = zf .

Please note that, depending on the incidence angle, the refractive index

and applying the Fresnel laws, it could be some loses via reflection, different

for each plane wave and the polarization components parallel and perpendic-

ular to the incidence plane. In the sake of simplicity, we have not considered

it. This approximation will be acceptable for low incidence angles, as the

cases simulated in this Thesis (e.g., maximum transmission variation with

the maximum Numerical Aperture (NA) analyzed is ∼±0.1%). Otherwise,

the Fresnel laws should be added to the model.

Following the notation of Section 9.2, each plane wave can be associated

with two incidence angles that, in our case, are the same before and after

traveling through an uniaxial birefringent crystal:Φi = arctan
(
−ky

kx

)
θi = arccos

(
kz
∥k∥

) (9.64)

On one hand, the phase acquired by each plane wave due to the travel in

an isotropic medium of refractive index n and thickness disotrop can be easily

calculated using Eq. 9.65. Notice that this phase term will be the same

for the ordinary and extraordinary beams, since the medium is isotropic and

outside the uniaxial crystal each beam presents the same Φi and θi (despite

being laterally displaced).

φisotrop = k⃗ · r⃗ = 2π

λ
n
disotrop
cosθi

(9.65)

On the other hand, when going through an uniaxial birefringent crystal of

thickness L, each ordinary and extraordinary plane wave will acquire different

phases. In the case of the ordinary waves, the phase term gained by each

plane wave (φo) will be given by Eq. 9.43. In the case of the extraordinary

wave, we know that each plane wave will acquire a phase term (φe) given by

Eq. 9.56, but also there is a change in the coordinate system from the phase

to the energy due to the relative lateral displacement (rE − rφ). This last

term, using the properties of Fourier Transform, can be expressed as a phase
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term in the Fourier space:

φlat = ei[kx(r
E
x −rφx )+ky(rEy −rφy )] (9.66)

being kx and ky the horizontal and vertical components of the Fourier space

variables in which the beam is decomposed. The lateral displacement of the

energy (rEx and rEy ) and the phase (rφx and rφy ) can be calculated using Eqs.

9.52-9.55 for each pane wave.

Therefore, the phase acquired by each extraordinary plane wave due

to propagation inside the uniaxial birefringent crystal will be computed as

(φe + φlat). Moreover, this combination will encode also the lateral shearing

introduced in case of using a walk-off crystal.

Please notice that φlat corresponds to a lateral displacement of each indi-

vidual plane wave and it was not considered in Section 9.2 because it makes

no difference for an individual infinite plane wave. Nevertheless, it is impor-

tant in this model because the lateral displacement will be different for each

plane wave and the relative change encodes information of the beam.

Numerical model

Taking all of this into account, we can develop a simple model based on Fast

Fourier Transform (FFT), which, for a given beam electric field in an initial

propagation position (zini), can simulate its propagation to a certain position

(zf ). The numerical model is summarized in Fig. 9.6 and, in it, following the

notation of the bulk lateral shearing interferometry technique, we will call the

extraordinary beam walk-off beam. Therefore, OB and WB correspond to

the ordinary and walk-off beams, respectively. Notice that in this case with

only one birefringent crystal there is no confusion, but we want to maintain

the notation and avoid misunderstandings.

To correctly propagate the beams it is necessary to have a good dis-

cretization in both spaces, spatial space and spatial frequencies space. This

implies that the spatial resolution (∆r) and wavevector resolution (∆k) must

be good enough. Moreover, the grid should be large enough to contain the

beam without introducing edge artifacts during the FFT. In order to fulfill

these requirements, the simulations of the study shown in this Section and
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Fig. 9.6. Summary of the propagation model conceptualization based on plane

wave decomposition using spatial Fourier Transform. Notice that n′ of φprop cor-

responds to n, no and ne for the isotropic, ordinary and walk-off cases, respectively.

in Section 10.2 were done with the working space parameters summarized in

Table 9.1.

N rmax (mm) ∆r (µm) ∆k (mm−1)
8192 9 2.2 0.3491

Table 9.1: Summary of space parameters used in the simulation.

Furthermore, if no action is taken, it could be a bottleneck in the simu-

lations caused by calculation of the extraordinary angles inside the uniaxial

crystal (i.e., numerical resolution of Eqs. 9.45 and 9.48). This bottleneck is

created because each position of the grid corresponds to one plane wave that

has to be calculated, and in a 8192x8192 grid there are more than 67 million

positions. In order to minimize the computational time making it affordable,

we decided to obtain that extraordinary angles dependence in a grid with

lower resolution (256x256) and then interpolate the solution in the desired

one (8192x8192). This reduces considerably the problem since the 67 million

numerical resolutions of Eqs. 9.45 and 9.48 are substituted by 65536 and a
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2D interpolation. This can be done without introducing any artifact because

the extraordinary angles vary slowly along our spatial grid and in a reduced

range.

For example, for the incidence angles associated with space parameters

mentioned in Table 9.1, a calcite (CaCO3) crystal with θOA = 45° and ΦOA =

180° presents extraordinary refraction angles from 0° to 9.6° for 800 nm. This

case is represented in Fig. 9.7, where Figs. 9.7(a,b) correspond to the angles

of each incident plane wave and Fig. 9.7(c) shows the extraordinary refraction

angles.

Fig. 9.7. Incidence angles (a) Φi and (b) θi associated with the Fourier space of

the numerical model using the parameters of Table 9.1 and (c) refraction angle of

the extraordinary wave (θe) numerically resolved for a calcite crystal with θOA =

45° and ΦOA = 180°.

9.3.2 Verification of the model

In this Subsection, we are going to test the numerical model studying the

propagation of a finite monochromatic beam with Gaussian intensity profile

and oblique incidence on a calcite crystal (uniaxial birefringent medium)

immersed in air (isotropic medium). Moreover, the results are going to be

compared with the propagation of a monochromatic plane wave with the

same oblique incidence to verify the model.

The uniaxial medium in this simulation will be a 1-mm-thick calcite with
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θOA = 45° and ΦOA = 0°, whose refractive indices for λ = 800 nm are

no = 1.6488 and ne = 1.4819 [141]. The isotropic medium will be air, so we

can consider a refractive index of n = 1.

In this example, we are going to consider a finite incident electric field to

the calcite crystal with a Gaussian intensity profile given at the a certain z

by:

E(x, y) = A · e
−x2+y2

w2
0 · e−i 2π

λ
x sinΘi (9.67)

where A is the maximum amplitude, w0 = 1 mm is the waist of the beam

(defined as the spatial width over 1/e2 the maximum intensity) and Θi = 5°
is the oblique horizontal incidence angle of the monochromatic beam. In

addition, x and y correspond to the transverse spatial dependences and λ

the wavelength of the monochromatic beam (in our case 800 nm).

This beam in the initial propagation distance will have the intensity pro-

file shown in Fig. 9.8(a) at the laboratory Cartesian coordinate system and

the decomposition in the spatial Fourier space shown in Fig. 9.8(b). Please

notice that the set of plane waves of Fig. 9.8(b) is not centered at kx = 0

because of the oblique incidence in the horizontal direction.

Fig. 9.8. Intensity profiles of the initial beam used in the example of the propa-

gation model in (a) laboratory Cartesian coordinate system and (b) Fourier coor-

dinate system.

Using the numerical model to propagate the beam to the other side of the
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crystal (i.e., zf = Lcrys = 1 mm), we obtain the corresponding ordinary and

walk-off beams after propagation. Looking at the spatial intensity profile

of the ordinary (Fig. 9.9(a)) and the walk-off (Fig. 9.9(b)) beams, it can

be observed that they are laterally displaced. We have added the x and y

axes (dotted white lines) in Fig. 9.9 to ease the visualization of the lateral

displacement of each beam.

Fig. 9.9. Intensity profile of the (a) ordinary and (b) walk-off beams in the

laboratory Cartesian coordinates after being propagated through the 1-mm-thick

calcite with θOA = 45° and ΦOA = 0° using the numerical model.

On one hand, the ordinary beam is centered at (xf , yf ) = (53, 0) µm with

an uncertainty of ±2.2 µm due to the spatial resolution of the numerical

model. On the other hand, the center of the walk-off beam is displaced to

(xf , yf ) = (−49.0, 0)± 2.2 µm.

In order to verify the numerical model we can consider that, instead of

the finite Gaussian beam, we have an infinite monochromatic plane wave

with the same angles of incidence as the oblique beam, θi = Θi = 5° and

Φi = 0°. In this case we can use the theoretical model of Section 9.2 to

calculate the lateral displacement. Using Eqs. 9.40 and 9.41 we obtain that

the ordinary plane wave presents a lateral displacement due to the oblique

incidence of (xf , yf ) = (53, 0) µm, whereas the walk-off plane wave will be

displaced (xf , yf ) = (−51, 0) µm, as given by Eqs. 9.53 and 9.55.
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Therefore, the lateral displacements for the infinite plane wave with the

same oblique incidence fit with the results obtained with the finite beam

using the numerical model. This comparison for verification is possible since

the width of the wavevector distribution that compose the beam is small.

9.4 Calibration of uniaxial crystals

The uniaxial birefringent crystals are the principal element of the spatiotem-

poral technique implemented in this Thesis. Thus, it is crucial to correctly

calibrate them in order to avoid high errors and artifacts during the beam

characterizations.

It is very important to calibrate the crystal thickness with precision, be-

cause small changes in the manufacturer value can drastically change the

crystal properties. In particular, it highly affects to the integration of the

phase gradient explained in Section 8.1. Knowing the thickness and the other

crystal parameters given by the manufacturer (material type and optical axis

orientation angle, also called θOA in Subsection 9.2.3), we can calculate all the

properties using the models shown in the previous Sections and the refractive

indices (ordinary and extraordinary) given by Sellmeier equations.

Among all the possible ways of calibration, we decided to use an interfer-

ence method based on SI using an ultrashort collimated flat wavefront laser

beam under normal incidence. The calibration process used is the following:

i. Calibration of optical axis azimuthal angle direction in labo-

ratory system (ΦOA)

The uniaxial birefringent plate is azimuthally rotated between two

crossed polarizers (e.g., horizontal and vertical) searching the azimuthal

direction in which a minimum is observed. That direction corresponds

to the projection of the O.A. onto the crystal surface parallel to one of

the polarizers axes.

Then, it is necessary to differentiate the direction of the O.A. between

the two options (e.g., horizontal or vertical). One possibility is to use

a external technique like STARFISH [77]. It can also be done rotating
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the initial and final polarizer 45° and comparing the SI of the uniaxial

crystal and the SI of the combination of the uniaxial crystal and another

one previously calibrated.

In case the manufacturer indicates the direction of the O.A., we rec-

ommend to do the calibration in order to improve the precision due to

the importance of this parameter.

ii. Calibration of crystal thickness

Keeping the projection O.A. in the horizontal or vertical plane, the

polarizers are rotated to +45°, so the spectral interferences due to the

propagation through the fast and slow axis can be observed. Analyzing

the SI using a FTSI algorithm, the delay introduced by the uniaxial

medium under test can be extracted and, by comparing it with the

theoretical delay given by Eq. 9.61, the thickness can be estimated.

Note: if the delay introduced is not appropriate to observe the inter-

ferences with the spectrometer resolution or it is too low for the pulse

spectral bandwidth, it can be introduced a known retarder plate between

the polarizers to optimize it.

iii. Walk-off direction

In case we are calibrating a walk-off crystal, it is necessary to know

whether the O.A. is oriented at +θOA or −θOA. One way to do this, is

to use a sharp object (e.g., a blade) to block part of the beam before the

walk-off crystal and comparing the spatial profile for the horizontal and

vertical projection of the last polarizer it can be observed the direction

in which the walk-off beam (i.e., laterally displaced beam) is deviated.

The previously described process is one way to do it, but there are other

possibilities, like using a technique such as STARFISH [77] or any standard

interferometer to calibrate the material thickness.
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Chapter 10

Operability range and

limitations

This Chapter analyzes, from a theoretical point of view, the operability range

of the spatiotemporal characterization technique proposed in this Thesis.

Firstly, Sections 10.1 and 10.2 are focused on the study of the spectral and

angular dependences of the walk-off property, respectively. Then, Section

10.3 mentions other general limitations that should be taken into account

when using the technique.

10.1 Walk-off spectral dependence

As hinted before, the walk-off is one of the most important parameters in

the bulk lateral shearing interferometry technique developed in this Thesis,

and the uniaxial medium thickness must be calibrated in order to correctly

characterize it. Nevertheless, when dealing with ultrashort pulsed beams,

it is also important to take into account the spectral range of operation

because the walk-off, like any other optical property of birefringent media,

can spectrally vary due to the wavelength dependence of the ordinary and

extraordinary refractive indices.

For simplicity, in this Section we are going to suppose that we are working

under normal incidence conditions, so it can be used the simplified model of
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Subsection 9.2.3.

As it will be shown later in Chapter 11, in the experiments performed

during the Thesis we have used two different types of walk-off crystals with

a thickness in the mm-scale: BBO with θOA = 29.2° and calcite with θOA =

45°. Accordingly, we can use the theoretical model to calculate the walk-

off spectral dependence for those walk-off crystals. The walk-off spectral

dependence for a 1-mm-thick crystal of each material over more than an

octave span, from 500 nm up to 1100 nm, is shown in Fig. 10.1.

Fig. 10.1. Walk-off spectral dependence under normal incidence for a 1-mm-thick

calcite with θOA = 45° (blue) and for a 1-mm-thick BBO with θOA = 29.2° (orange)
walk-off crystals. Notice that each crystal is represented in different scale.

As it can be observed in Fig. 10.1, the walk-off along this large spec-

tral range presents non-negligible variation in both cases, [103.7− 111.4] µm

and [61.9− 65.9] µm for the 1-mm-thick calcite and BBO, respectively. This

could be troublesome if the spatiotemporal technique is directly used to char-

acterize an ultra-broadband beam (e.g., in the few-cycle regime), because the

integration step would be significantly different for each frequency and the

variation may be of the order of the resolution signal collection system size

(e.g., in our case, 4 µm for the single mode fiber in the fiber spectrometer

set-up of Section 8.2). Nonetheless, the spectral variation can be negligible

for a multi-cycle laser in which the spectral bandwidth will be smaller.

For example, the spectral variation in the emission range of the ultrashort

lasers used in Chapter 11 (from 785 nm up to 815 nm) is less than 0.1 µm for
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both crystals, which is much smaller than the walk-off introduced in these

experiments (around 100 µm) and also smaller than the core of the fiber used

to scan them (4 µm).

Therefore, at each experiment it must be ensured that the walk-off spec-

tral variation is not significant compared with the walk-off mean value and

the spatial resolution of the collection element.

Achromatization

During the experiments performed in this Thesis, it was not necessary to

improve the spectral response of the spatiotemporal technique. Despite not

being experimentally implemented yet, here we want to theoretically study

how it could be addressed if it were necessary.

One possibility could be to implement an iterative retrieval algorithm,

which takes into account the distortions introduced due to the spectral de-

pendence. However, this would complicate the reconstruction algorithm,

which is currently straightforward and simple, as it is only based on Fourier

Transform analysis.

Another highly interesting possibility could be to implement an achro-

matic prototype or, at least, with a nearly flat spectral response. Here we

are going to study this possibility since, in principle, it could be easily done

following the ideas previously stated in polarization interferometry [142, 143].

Based on these previous works, one possibility could be to combine two dif-

ferent walk-off crystals in order to compensate the birefringence spectral

dependence, while obtaining a certain desired walk-off value. Knowing the

analytical expressions for the walk-off introduced by a uniaxial crystal (given

for the normal incidence case by Eqs. 9.58 and 9.59), we can simulate the

combination of different uniaxial birefringent crystals in order to find what

configurations optimize the spectral dependence.

In this study we are going to take into account four different commercially

available walk-off crystals, also known as beam displacers: calcite (CaCO3),

BBO (β−BaB2O4), Yttrium orthovanadate (YVO4) and Rutile (TiO2). De-

spite being possible to select the angle θOA for custom crystals, in this sim-
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ulation we are going to study the spectral dependence if all of them are cut

with the optical axis at |θOA| = 45°. This angle is commonly commercially

available since the walk-off maximum value is generally close to it, as it is

shown in Fig. 10.2, where the angular dependence of the walk-off introduced

per mm of uniaxial crystal is shown for negative (no > nz) and positive

(no < nz) uniaxial birefringent media. In the simulation of Fig. 10.2 we

have assumed the refractive indices values of calcite for 800 nm in the case

of the negative uniaxial (no = 1.6488 and nz = 1.4819) and the same values

exchanged for the positive uniaxial.

Fig. 10.2. Angular dependence of the walk-off introduced per mm of uniaxial

crystal under normal incidence conditions for negative (no > nz) and positive

(no < nz) uniaxial birefringent media as a function of the optical axes insertion

angle (θOA). The simulation takes into account the birefringent values of calcite at

800 nm for the negative case and the same values exchanged for the positive case.

The implemented program searches for each pair of walk-off crystals

(among all the possible combinations), the thicknesses and azimuthal an-

gles that minimize the relative standard deviation of the walk-off dispersion

and, after that, it calculates the optimal configuration to obtain a certain

walk-off value. To simulate the different possible combinations, the program

assumes that each crystal of the pair can vary its thickness from 0 to 2 cm.

Regarding the azimuthal angle of the uniaxial media (ΦOA), we consider two

possibilities, ΦOA and (ΦOA +180°), because we want to introduce the walk-

off in the same axis. Notice that this is the same as assuming a certain ΦOA
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and +θOA or −θOA, respectively. In this simulations we are going to assume,

without lack of generality, that ΦOA = 0°, so the walk-off will be given by

Eq. 9.58.

The walk-off spectral dependence for each individual walk-off crystal, as

well as each optimal combination in order to obtain a walk-off mean value

of 100 µm in the positive horizontal direction along more than an octave

spanning spectrum (from 500 nm up to 1100 nm) are shown in Fig. 10.3.

Fig. 10.3. Walk-off spectral dependence for different combinations of walk-off

crystals with θOA = ±45° that minimize the walk-off spectral variation, obtaining

a walk-off mean value of +100 µm. Each individual crystal is referred by one

reference letter and each combination is referred by the two crystal letters, being:

calcite (C), BBO (B), YVO4 (Y) and Rutile (R).

The configurations, including materials, thicknesses (L) and O.A. angles

(θOA), and the differences between minimum and maximum walk-off values

(Diff.) within the considered spectral range of the simulations shown in Fig.

10.3 are summarized in Table 10.1.

From this simulation, it can be observed that the configurations with

only one walk-off crystal present higher spectral variations with a maximum

difference above 6.1 µm in the best situation. On the other hand, the spectral

response can be considerably improved combining two walk-off crystals.

The calcite and BBO combination (CB) is quite interesting, since it has

a maximum variation in the simulated spectral range of only 1.5 µm. More-

over, the other pairs of combinations are also interesting and, depending on
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CRYSTAL 1 CRYSTAL 2
Name Material θOA(°) L(mm) Material θOA(°) L(mm) Diff.(µm)

C Calcite -45 0.94 - - - 7.2
B BBO -45 1.40 - - - 6.1
Y YVO4 +45 0.96 - - - 9.4
R Rutile +45 0.97 - - - 11.3
CB Calcite +45 4.92 BBO -45 8.70 1.5
CY Calcite -45 3.25 YVO4 -45 2.38 3.8
CR Calcite -45 2.36 Rutile -45 1.47 3.4
BY BBO -45 3.51 YVO4 -45 1.46 2.9
BR BBO -45 2.83 Rutile -45 1.00 2.8
YR YVO4 +45 5.99 Rutile -45 5.07 3.5

Table 10.1: Summary of the configurations shown in Fig. 10.3 and difference

between maximum and minimum walk-off value (Diff.) within the considered spec-

tral range to obtain the best spectral response while having a 100-µm walk-off mean

value.

the size of the signal collection element, they could be suitable. We want

to highlight also the BBO and rutile combination (BR), which presents a

maximum variation of 2.8 µm and requires relatively thin crystals implying

a cost reduction.

In conclusion, the spectral dependence of the spatiotemporal technique

can be considerably improved combining two different walk-off crystals. Al-

though these crystals must be thicker than in the individual configuration,

the dispersion will not be a problem since the SI measures the relative dis-

persion between each replica, and it will be calibrated when using the flat

calibration beam.

10.2 Walk-off numerical aperture dependence

As we have seen before, when using collimated beams under normal incidence,

the physics that rules our spatiotemporal technique, in particular the walk-off

crystal, is quite simple and the main critical point is to pay attention to the

walk-off spectral dependence. However, when using non-collimated beams

(e.g., convergent or divergent beams), the complexity increases because the

walk-off crystal properties can vary with the angle of incidence.

Taking this into account, in this Section we want to study how non-
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collimated beams are affected due to traveling a certain distance in an isotropic

medium (e.g., air) with a walk-off crystal immersed in it. In particular, we

will compare the ordinary and walk-off beam profiles after the propagation

to see if there is any significant difference between them, which could lead to

errors in the measurement of the spatiospectral gradient.

10.2.1 Methods: beam under study

We are going to use the model explained in Subsection 9.3.1 (with the same

discretization parameters of Table 10.2) to study the propagation of focus-

ing Gaussian beams with different NA that propagate through air (isotropic

medium of n ≈ 1) and a 1-mm-thick calcite with θOA = 45° (walk-off crystal).

We decided to perform the simulations from a monochromatic point of

view because the spectral dependence has already been studied in Section

10.1 and, also, due to the computational requirements of the simulation and

complexity of the full problem to extract conclusions.

In these simulations the beams under test are Laguerre-Gauss modes

[144], whose electric field analytical definition is well known:

Eℓp(x, y, z) =
Aℓp

w(z)

(√
2(x2 + y2)

w(z)

)|ℓ|

L|ℓ|
p

{
2(x2 + y2)

w(z)2

}
e
− (x2+y2)

w(z)2 ·

· ei
[
ℓ arctan y

x
+ kr2

2R(z)
+Φℓp(z)+kz

]
(10.1)

where L
|ℓ|
p represents the corresponding generalized Laguerre polynomial of

index p and ℓ, also known as associated Laguerre polynomial [145]. The

variables w(z), R(z) and ϕℓp(z) correspond to the beam width, the curvature

radius and a phase term along the propagation position, respectively. These

parameters depend on the beam waist (w0), the wavelength (λ) and the

propagation position with respect to the focus (z), and they are given by the
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following equations:

w(z) = w0

[
1 +

(
λz
πw2

0

)2]1/2
R(z) = z

[
1 +

(
πw2

0

λz

)2]1/2
ϕℓp(z) = −(2p+ |ℓ|+ 1) arctan

(
λz
πw2

0

) (10.2)

In particular, we want to study Laguerre-Gauss modes of ℓ = p = 0

(LG00) with a 5-mm waist (w′
0) and λ =800 nm, which have been focused by

thin lenses with different focal lengths (F ). In order to calculate the electric

field just after being focused, including the focusing term, it can be used Eqs.

10.1 and 10.2, knowing that the waist has changed due to the focusing:

w0 =
λF

πw′
0

1√
1 +

(
Fλ
πw′2

0

)2 (10.3)

In addition, it will also change the propagation reference because the waist

will be at a different position. For simplicity, we are going to assume that

each lens is placed in the waist of the initial beam (z = 0), so, if we calculate

the electric field just after going through the lens, it should be calculated at

the propagation distance z = zini, being zini the new waist position, which

can be calculated as in [146]:

zini = −F

(
1− w2

0

w′2
0

)
(10.4)

Furthermore, if different focal lengths are simulated for the same initial

beam, essentially each focused beam can be associated to a certain NA:

NA =
nλ

πw0

(10.5)

where w0 corresponds to the waist after being focused, which will be given

by Eq. 10.3 and different for each focal length.

10.2.2 Results and Discussion

We have simulated the propagation at various distances for a set of four

different focal lengths whose values and corresponding NA are collected in
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Table 10.2. The range of focal lengths goes from a soft focusing situation

(NA= 0.005) to a moderate focusing situation like the typical numerical

aperture of a single-mode optical fiber (around 0.10-0.15).

Beam pre-focus
LG00, w0 = 5 mm and λ = 800 nm

F (cm) 100 50 10 5
NA 0.005 0.01 0.05 0.1

Table 10.2: Summary of focal lengths and corresponding NA.

In order to evaluate the differences between ordinary and walk-off non-

collimated beams, we decided to decompose the wavefronts in a Zernike basis

up to n = 4 order (Appendix B), which is commonly used in wavefront

sensing. Since the Zernike basis is defined for a pupil of radius unity, and in

order to follow the same criteria for each measurement, we defined the pupil

normalizing by the radius at the 25% of the maximum ordinary intensity

value.

We decided to study different propagation distances before (zF < 0) and

after (zF > 0) the focus of each lens. The three Zernike terms (excluding the

piston or offset term) that present non-null values for either the ordinary or

walk-off beams are depicted in Fig. 10.4.

Notice that in the convergent part (zF < 0) there is no simulation for

absolute values of propagation greater than each focal length, since physically

it makes no sense to calculate the focused beam at a position before the

focusing lens. Regarding the propagation distances after the focus (zF >

0), in principle, it should be possible to study the divergent behavior in

propagation distances longer than the focal length. Nevertheless, this will

expand the beam size in the XY coordinate space, reaching the edges of the

grid and introducing artifacts. Thus, we decided to study for each NA only

the values contained in the range given by its focal length (−F,+F ), since

the physics is the same and the computational demanding is reasonable.

In Fig. 10.4 it can be observed that, at each propagation distance, all

the Zernike coefficients are the same for each ordinary and walk-off beam,

respectively, regardless of the NA value. This implies that the wavefront of

both beams is the same for each propagation distance.
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Fig. 10.4. Non-null Zernike contributions obtained for the ordinary (OB) and

walk-off (WB) beams focused by different focal length (F) lenses for various prop-

agation distances relative to the focus of each lens (zF ). (a) X-Tilt, (b) defocus

and (c) vertical astigmatism.

The nearly constant value of X-Tilt, observed in Fig. 10.4(a), encodes the

lateral shearing introduced due to the walk-off property. Moreover, in Fig.

10.4(c) it can be observed that, for all distances, the walk-off beams present a

very small and nearly constant vertical astigmatism distortion. Nevertheless,

the distortion is negligible in the range studied since the biggest vertical

astigmatism contribution is 0.017.

The defocus contribution, represented in Fig. 10.4(b), is roughly the same

for the ordinary and walk-off beams for each propagation distance (notice

that they are overlapping). Actually, there is a small difference between the

ordinary and walk-off beams whose relative value (i.e., (Cw −Co)/|Co| being
Co and Cw the ordinary and walk-off contributions) becomes bigger close to

the focus, Fig. 10.5. In addition, close to focus there is a slight asymmetry

in the relative defocus.

Although the relative difference between ordinary and walk-off defocus

increases when the beam is closer to focus, in the majority of situations it is

negligible (biggest absolute value lower than 0.52%).

In conclusion, the spatiotemporal technique can be used without further
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Fig. 10.5. Evaluation of the relative defocus between the walk-off and ordinary

wavefronts ((Cw − Co)/|Co| being Co and Cw the ordinary and walk-off contri-

butions), which have been focused by different focal length (F) lenses for various

propagation distances relative to the focus (zF ).

considerations for propagation distances far from focus, provided a good

spatial resolution of the signal collection element and good overlapping of

both replicas. If the measurement needs to be done in focus or very close

to it, there could be distortions in the spatiospectral gradient or even no

combination due to lack of overlap. A possible solution may be to measure

the beam before the focus and then propagate the retrieval to the focus

numerically.

10.3 Other limitations

In addition to the walk-off spectral and numerical aperture dependences,

which have been analyzed previously, there are other additional considera-

tions that should be known concerning the operation of the technique.

Firstly, since the technique is based on SI, the spatiospectral phase gradi-

ent from point to point cannot change more than 2π rad to correctly retrieve

the phase. This can be easily solved using thinner walk-off crystal or, if not

possible, using oversampling strategies.
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Regarding the temporal duration, the shortest limit is given by the spec-

tral dependence of the technique that can be improved using the achroma-

tization strategy. On the other hand, the longest duration is limited by the

spectral resolution required for the FTSI algorithm, which can be adapted

using the appropriate spectrometer.

Moreover, as we will show in Chapter 11, in this Thesis we have usually

characterized beams with a mm-scale size (2-3 mm), but larger or smaller

beams can also be studied. On one hand, to analyze larger beams, it can

be used bigger uniaxial elements or implement an aberration-free imaging

system to reduce the beam to a suitable size for our set-up. On the other

hand, to characterize smaller beams, it should be verified that the spatial

resolution is enough to correctly measure the spatiospectral gradient. In the

version used in the Thesis, the spatial resolution is given by the walk-off

distance, since we are directly scanning in walk-off steps, but this can be re-

duced using thinner elements or uniaxial materials with lower birefringence.

Although there are thinner walk-off crystals commercially available, other

interesting strategies can solve this point, for example expanding the beam

with an aberration-free system or maybe using oversampling strategies. Fur-

thermore, it is essential to verify that the spatial resolution of the collection

is much smaller than the detection step. In the fiber spectrometer prototype

this will be approximately the fiber core. Thus, 4 µm for the experiments

presented in Chapter 11.

Another point to take into account is the time required to measure the

spatial grid. In the spatial scan prototype with a fiber spectrometer used in

this Thesis, each spatial grid is composed by N2 dots that should be scanned

one by one. Thus, it is interesting to adapt the walk-off in order to have

the best balance between spatial resolution and measurement time. One

possibility to reduce the acquisition time is to use an imaging spectrometer

1-D spatial, so the N2 grids could be reduced to N measurements at different

lateral or vertical positions. Furthermore, another promising possibility is to

use a hyperspectral camera [147–149] to measure each spatial grid in one

acquisition/shot.

Computationally, the current version of the retrieval algorithm is simple,
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fast and straightforward because it is only based on Fourier Transforms and

the integration of the gradient. The only critical point is to follow an inte-

gration path avoiding null signal points (exclusively in case of existing) that

could introduce noise in the retrieval, as discussed in Section 8.1. Moreover,

if the beam presents strong spectral bandwidth changes across the spatial

profile, it is necessary to follow an integration path from the points showing

broader spectra to the points with narrower ones.
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Chapter 11

Application of bulk lateral

shearing interferometry

Previously, in Chapters 8 and 10, we have studied the concept and operation

range of the spatiotemporal technique implemented in this Thesis. In the cur-

rent Chapter, we present the experimental proof of concept of the technique

and we focus on its application to study various complex spatiotemporal

structures generated with ultrashort lasers, like constant and time-varying

optical vortices or astigmatic beams, using the spatial scan prototype intro-

duced in Section 8.2.

11.1 Optical vortices in collimated beams

Optical vortices are a type of complex spatiotemporal structures that have

gained great interest in the last decades due to their multiple applications,

such as optical communications, optical tweezers for particle trapping or laser

machining, among others [150].

Essentially, an optical vortex is a beam with an azimuthal variation of the

phase associated with an Orbital Angular Momentum (OAM) or ℓ defined

as exp (−iℓΦ), being Φ the azimuthal angle, which presents a singularity at

the center. For example, the Laguerre-Gauss modes with p = 0 and different

values of ℓ are optical vortices.
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In particular, Fig. 11.1 presents the simulation of the intensity and phase

profiles of some optical vortices with different OAMs.

Fig. 11.1. Intensity (first row) and phase (second row) profiles of optical vortices

with different OAMs.

During the last decades, different ways have been proposed to create and

characterize optical vortices. For example, in [151] the authors used a spatial

light modulator to generate them and a Shack-Hartmann wavefront detector

with a FROG system for the characterization. Alternatively, a multi-pinhole

plate can be used for the generation, as in [152], where the characterization

was done analyzing the common fork interference pattern with a plane wave.

Another example is [153], where the authors generated few-cycle optical vor-

tices with a spiral phase plate (i.e., a glass plate with thickness depending

linearly on the azimuthal angle) and studied them with spatially-resolved

Fourier Transform spectrometry.

In this Thesis, we have used a type of nanostructured plates [154], called

s-waveplates, which depending the incident polarization can generate radially

polarized vortices
(
Rℓ0

m

)
with m polarization azimuthal index and ℓ0 input

OAM.

Rℓ0
m = e−iℓ0Φ

(
cos (−mΦ)

sin (−mΦ)

)
(11.1)

where Φ corresponds to the azimuthal angle.

In [154] it was demonstrated that the generated radially polarized vortex(
Rℓ0

m

)
can be expressed as a combination of two vortices of ℓ1 = ℓ0 + m
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and ℓ2 = ℓ0 − m with right-circular polarization (RCP) and left-circular

polarization (LCP), respectively:

Rℓ0
m =

e−iℓ1Φ

√
2

RCP +
e−iℓ2Φ

√
2

LCP (11.2)

Therefore, using a zero-order QWP, we can turn the circular polarizations

into linear polarizations and select the desired OAM (ℓ1 or ℓ2) with a linear

polarizer. We measured the resulting scalar beams with our technique.

In the laboratory we used two different s-waveplates: SP1 and SP2. On

one hand, SP1 operates as a HWP with spatially varying fast axis (Φfast =

Φ/2, being Φ the azimuthal angle), which turns incident linear polarization

into radial polarization R0
1. Thus, with SP1 we can generate ℓ = ±1 optical

vortices.

On the other hand, SP2 acts as a QWP with spatially varying fast axis

(Φfast = Φ, being Φ the azimuthal angle), which converts incident circular

polarization in radial polarization vortex of R1
1. So, with SP2 we can generate

ℓ = +2 and ℓ = 0 optical vortices.

Figs. 11.2(a,b) represent the spatial distribution of the fast axis orienta-

tion for the vortex plates SP1 and SP2, respectively.

Fig. 11.2. Representation of the fast axis spatial orientation in (a) SP1 and (b)

SP2. Image adapted from [155].

In addition, if we combine SP1 and SP2 with an achromatic HWP be-

tween them, we can generate radial polarization vortex of R2
1 that can be

decomposed into ℓ = +3 and ℓ = +1 optical vortices. In this case, it is nec-

essary a HWP between both plates to change the helicity sign of the circular
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polarization, thus avoiding the cancellation of OAM and the generation of a

R0
1 state instead of the desired R2

1 [154].

11.1.1 Proof of concept of the spatiotemporal tech-

nique

The first experiment that we performed with the new spatiotemporal tech-

nique was a proof of concept consisting on characterizing a constant optical

vortex of ℓ = +2, generated using the SP2, with two configurations of the

technique [136]. The scheme of the experiment is shown in Fig. 11.3.

Fig. 11.3. Scheme of the experimental set-up used to generate an ℓ = +2 vortex

for the proof of concept and the two variants of the characterization set-ups with

BBO and calcite as walk-off crystals.

Both configurations used two polarizing beamsplitter cubes (from Thor-

labs), LP1 and LP2, a 3-mm-thick calcite with its fast axis in the Y-axis as

retarder plate, which introduced a 1.8-ps delay at 798 nm, and a spectrom-

eter (AvaSpec 2048-USB1, from Avantes Inc.) with an optical fiber coupler

placed on a motorized XY-stage.

The difference between both configurations was the used walk-off crys-

tal. On one set-up, we used a 1.12-mm-thick BBO cut with its O.A. at

θOA = 29.2°, which introduces a 71-µm walk-off and 120-fs delay at 798 nm.

The other system used a 1.06-mm-thick calcite cut with θOA = 45°, which
introduces a 113-µm walk-off and 350-fs delay at 798 nm.
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Moreover, in this experiment the temporal reference was measured de-

viating the beam before LP1 with a flip mirror to an amplitude swing sys-

tem, and characterizing the beam in the lateral of the vortex at position

(x, y) = (0,−0.5) mm. In particular, we used the same system with the

2.1-mm-thick quartz rotating MWP utilized in Chapter 5. The measured

amplitude swing trace with its retrieval are shown in Fig. 11.4. In this case,

the retrieval was obtained using the Levenberg-Marquardt algorithm of [31],

which has been mentioned in Chapter 3.

Fig. 11.4. Characterization of the temporal reference with amplitude swing at

position (x, y) = (0,−0.5) mm. (a) Experimental trace, (b) retrieved trace, and

(c) retrieved pulse. Temporal FWHM of 77.8 fs and a rms difference between

experimental and retrieved traces of 0.024.

In order to characterize a grid of similar size (≥ 2 mm) but with the

walk-off steps corresponding to each walk-off crystal, we performed a 29 x

29 grid scan with a spatial step of 71 µm with the BBO, and a 19 x 19 grid

scan with spatial step of 113 µm with the calcite crystal.

In Fig. 11.5 it is shown the intensity (first row) and phase (second row)

for the central wavelength of the pulse (λ = 798 nm) using the two charac-

terization systems: BBO (first column) and calcite (second column). The

complete spatiospectral retrieval is depicted in Appendix C.1.1. Notice that

the graphics have been interpolated in a common grid with a 10-µm step to

smooth the retrieval and ease the visualization.

153



11- APPLICATION BULK LATERAL SHEARING INTERFEROMETRY

Fig. 11.5. Intensity (a) and phase (b) profiles of the spatiospectral characteriza-

tion for the central wavelength (λ = 798 nm) of the same optical vortex using the

2D4Quad approach and measuring the spatial spectrum of the ordinary beam with

two walk-off crystal: BBO (first column) and calcite (second column). Note: the

retrievals are shown interpolated with a spatial step of 10 µm.

As it is observed in Fig. 11.5, both retrievals agree and correctly retrieve

the ℓ = +2 optical vortex (as seen in the phase and the intensity singular-

ity). This is also observed in Fig 11.6, in which it is shown the azimuthal

phase dependence for a ring of 600-µm radius, that has been calculated by

splining the measured XY-maps in polar coordinates and comparing it with

the theoretical phase of an ℓ = +2 optical vortex.

The small discrepancies between theory and experiment could be associ-

ated to a non-perfect generation of the vortex in the s-waveplate and/or the

spatial resolution before interpolating into polar coordinates. Despite the

small differences, the agreement is very good between experiments and the

theory. Besides, the measurements are done with two different set-ups, so we

corroborate the validation of the spatiotemporal technique.
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Fig. 11.6. Comparison of the azimuthal phase retrieved for a 600-µm radius for

each walk-off crystal (BBO and calcite) with the theoretical azimuthal phase of an

ℓ = +2 optical vortex (Theo.).

Notice that the optical vortex is generated with an achromatic set-up. We

have chosen to depict the results for the central wavelength, but the same

results are found if representing them for a different wavelength (or for a

particular time of the pulse). In Section 11.2 we will show time-dependent

vortices and how the technique can resolve them both, in time and frequency.

11.1.2 Vortices in the visible and near-infrared

Once the technique was demonstrated, we used one configuration to charac-

terize optical vortices of different OAM, thus observing how the technique

operates with different complex beams. Taking into account that both con-

figurations (BBO and calcite walk-off crystals) work properly, we decided

to use the 1.06-mm-thick calcite walk-off crystal because the walk-off step

(113 µm) is bigger than the one of the BBO (71 µm), so less points are

needed to properly scan the full spatial profile of the beam implying faster

measurements.

At the beginning of Section 11.1, it was shown how to generate optical

vortices with different OAMs depending on the incident polarization and

what s-waveplate is used. Taking this into account, we used the SP1 and

the combination of SP1+SP2 to generate vortices with ℓ = ±1 and ℓ = +3.

These vortices were measured in walk-off steps (113 µm) and the retrievals

for the central wavelength (λ = 798 nm) are summarized in Fig. 11.7.
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Fig. 11.7. Intensity (a) and phase (b) profiles of the spatiospectral characteriza-

tion for the central wavelength (λ = 798 nm) of three optical vortices with different

topological charges: ℓ = −1 (first column), ℓ = +1 (second column) and ℓ = +3

(third column). Note: the retrievals are shown interpolated with a spatial step of

10 µm.

The complete spatiospectral retrieval of each optical vortex is depicted

in Appendix C.1, corresponding the videos of C.1.2, C.1.3 and C.1.4 to the

ℓ = −1, ℓ = +1 and ℓ = +3 near-infrared optical vortices, respectively.

For each case, we used the amplitude swing technique to retrieve the

spectral reference measured at position (x, y) = (0,−0.5) mm, but in these

situations we have used the Differential Evolution algorithm described in

Chapter 4 for the retrievals.

As it can be observed in Fig. 11.7, the spatial intensity profiles of these

vortices are somehow distorted due to a non-perfect generation. This spatial

distortion is not observed in the proof of concept with the ℓ = +2 vortex

shown in Fig. 11.5, so it may be associated with the SP1. Despite this

intensity distortion, the phase profiles are not affected, showing clearly each

vortex OAM. In fact, these intensity distortions were also observed using the

same s-waveplates in [154].

Furthermore, apart from its compactness and high stability, another in-

teresting advantage of the spatiotemporal technique is that it can operate
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in all the transparency range of the uniaxial birefringent crystal. The only

requirement to operate in a different spectral range is to calculate the walk-

off in the new region. This estimation can be done using the theoretical

model shown in Chapter 9 and the Sellmeier coefficients of the walk-off crys-

tal material. For example, for the 1.06-mm-thick calcite walk-off crystal with

θOA = 45° the walk-off around 400 nm is 123 µm, 10 µm bigger than the value

at λ = 800 nm.

Although our s-waveplates are made to operate around 800 nm, we can

generate optical vortices in the visible by doubling the frequency of the 800-

nm vortices using a SHG crystal. Taking this into account, we used a SHG

BBO in order to transform the ℓ = ±1,+2 IR-vortices into visible vortices.

Moreover, in order to obtain the complete spatiospectral or spatiotem-

poral characterization, it is required to characterize a temporal reference of

the visible vortices in a single spatial position. However, if we use a conven-

tional temporal technique based on SHG, the nonlinear trace will be in the

ultraviolet spectral range (around 200 nm) and up to now we do not have

a spectrometer to measure it in the laboratory. Besides, in this case it will

even reach the vacuum ultraviolet (i.e., ultraviolet region from 100 nm to 200

nm in which is necessary to work in vacuum).

Despite not being able to directly characterize the visible vortex spectral

phase reference, we can calculate it. In particular, we can measure the IR

generating vortex and obtain the SHG pulse as the square of the fundamental

pulse in the temporal domain, as done for the spectral references of Fig. 11.8.

Fig. 11.8. Spectral reference of the visible vortices simulated from the optical

vortices in the IR range: (a) ℓ = −2, (b) ℓ = +2, and (c) ℓ = +4.
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Knowing the spectral references and measuring the spatiospectral gradi-

ents with the technique, the complete characterization for the visible vor-

tices can be obtained. The spatiospectral retrieval for the central wavelength

(λ = 396.7 nm) for each vortex is shown in Fig. 11.9. The complete spa-

tiospectral retrievals are depicted in Appendix C.1, being C.1.5, C.1.6 and

C.1.7 the characterizations of the ℓ = −2, ℓ = 2 and ℓ = 4 optical vortices in

the visible range.

Fig. 11.9. Intensity (a) and phase (b) profiles of the spatiospectral characteri-

zation for the central wavelength (λ = 396.7 nm) of three optical vortices in the

visible spectral range with different topological charges: ℓ = −2 (first column),

ℓ = +2 (second column) and ℓ = +4 (third column). Note: the retrievals are

shown interpolated with a spatial step of 10 µm.

On one hand, according to the spatiospectral phase profiles (second row

of Fig. 11.9), the OAM has been doubled, in agreement with the angular

momentum conservation rule [156]. This rule indicates that OAM of the q-th

order of the harmonic generation nonlinear process is ℓq = qℓ0, with ℓ0 the

OAM of the fundamental frequency. In our case we observe doubled OAMs

because the nonlinear order is q = 2.

On the other hand, according to the spatiospectral intensity profile (first
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row of Fig. 11.9), the ℓ = ±2 vortices are asymmetric and highly distorted

compared to the ℓ = +4 vortex. In the case of ℓ = −2 the distortion is even

embodied in the phase profile.

Comparing the visible and IR vortices, we observe that those generated

with SP1 are more distorted in the visible range, but this makes sense, since

the SHG magnifies the intensity distortions because it scales quadratically

with the fundamental intensity. Thus, we can conclude that the SP2 imprints

a better spatial distribution than SP1.

In conclusion, our spatiotemporal technique is able to characterize com-

plex spatiotemporal couplings, like optical vortices with different topological

charges, in different spectral regions just by changing the step size to the

walk-off value in the spectral range. Please notice that the spectral reference

is only required to link all the wavefronts or measure the spatiotemporal pro-

file, but each individual wavefront (and amplitude) can be measured without

it.

11.2 Time-varying optical vortices in collimated

beams

In the previous Section, we have demonstrated that our spatiotemporal tech-

nique is able to accurately measure the spectrally-resolved wavefronts of

beams with complex STCs, like the constant optical vortices. In this Section,

we want to increase the complexity and to characterize time-varying optical

vortices [136].

In fact, what we characterized is the spatiotemporal profile of the com-

bination of two delayed optical vortices of different OAM. As it was ex-

plained in Section 11.1, when a circular polarized beam crosses the SP2, two

circularly polarized optical vortices are generated with different topological

charges (ℓ = +2 and ℓ = 0) and opposite helicity (RCP and LCP, respec-

tively). Thus, as shown in the experimental set-up of Fig. 11.10, we can turn

the RCP and LCP into horizontal and vertical polarization using a zero-order

QWP with the appropriate orientation. Then, we introduce between them
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a small delay (∼65 fs) of the order of the pulse duration (∼75 fs) using a

2-mm-thick quartz plate. Thus, if we project both components into a com-

mon polarization state (e.g., linearly polarized at 45°), we will observe the

superposition of both optical vortices using our spatiotemporal technique.

Fig. 11.10. Scheme of the experimental set-up used to generate two delayed

optical vortices of ℓ = +2 and ℓ = 0 with a temporal delay of ∼65 fs and the

spatiotemporal technique used for the characterization.

Firstly, we characterized the temporal reference of the beam under test at

position (0,−0.5) mm using the amplitude swing technique with the 2.1-mm-

thick quartz rotating MWP mentioned in previous Sections. In Fig. 11.11

it is shown the retrieval obtained using the Levenberg-Marquardt retrieval

algorithm developed in [31].

Fig. 11.11. Characterization of the temporal reference using amplitude swing at

position (x, y) = (0,−0.5) mm. (a) Experimental trace, (b) retrieved trace, and (c)

retrieved temporal pulse intensity and phase. Temporal duration FWHM of 78.4

fs and rms of 0.027.
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In this experiment we used the spatiotemporal technique with the 1.06-

mm-thick calcite walk-off crystal performing a spatial scan grid of 19x19 with

a spatial step of 113 µm (walk-off size around 800 nm). Moreover, taking into

account the complexity of the spatiospectral profile, the retrieval was done

using the 2D2Quad approach, explained in Section 8.1. The spatiotemporal

characterization for three different temporal snapshots, which correspond

to the center (t2 = 0 fs) and the tails of the average pulse (t1 = −45 fs

and t3 = +45 fs), is shown in Fig. 11.12. The complete spatiotemporal

characterization is depicted in Appendix C.2.1.

Fig. 11.12. Retrieved spatiotemporal intensity (a) and phase (b) of the combina-

tions of two optical vortices of ℓ = +2 and ℓ = 0, delayed 65 fs, analyzed using the

2D2Quad approach and measuring the spatial spectrum of the ordinary beam for

three temporal snapshots: t1 = −45 fs (first column), t2 = 0 fs (second column),

and t3 = +45 fs (third column). Note: the retrievals are shown interpolated with

a spatial step of 10 µm.

Observing the spatiotemporal phase Fig. 11.12(b), we can distinguish

different structures along the pulse. On one hand, in the leading edge (t1)

and the trailing edge (t3) of the pulse we can observe the contribution of only

one optical vortex of ℓ = +2 and ℓ = 0, respectively. On the other hand, at
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the pulse center (t2) it is shown the interference of both vortices. There, the

phase and intensity distributions depend on the relative amplitude and the

relative phase of the delayed vortices.

In order to evaluate the results obtained in the experiment, we have simu-

lated the two optical vortices superposition, obtaining the temporal evolution

shown in Fig. 11.13. The full spatiotemporal dependence is depicted in Ap-

pendix C.2.2. We have assumed that each beam corresponds to a Laguerre-

Gauss spatial mode (LG20 and LG00 for the ℓ = +2 and ℓ = 0 optical

vortices), with the temporal profile retrieved in Fig. 11.11, and adding the

calibrated phase introduced by the 2-mm-thick quartz retarder plate used

for delaying the vortices. In addition, we have imposed that the energy of

each spatial mode is similar, and the waist of the LG00 mode is defined as√
2 the waist of the LG20 mode to have a good spatial overlapping like in the

experiment.

Fig. 11.13. Simulated spatiotemporal intensity (a) and phase (b) of the combina-

tions of two optical vortices of ℓ = +2 and ℓ = 0 delayed 65 fs for three temporal

snapshots: t1 = −45 fs (first column), t2 = 0 fs (second column), and t3 = +45 fs

(third column).
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The experimental spatiotemporal retrieval, Fig. 11.12, and the numerical

simulation, Fig. 11.13, show a good agreement. According to the phase

profile, we observe the same OAM evolution, specially at the central time

(Fig. 11.12(b2) and Fig. 11.13(b2)). The small deviations can be originated

due to imperfections on the vortex generation using the s-waveplates or the

lack of homogeneity of the input laser beam. Another source of discrepancy

is the fact that the experimental ℓ = 0 vortex is not a perfect LG00 spatial

mode, since it has a minimum of transmittance at the center due to the

design and manufacturing constraints of the s-waveplate.

Despite the small discrepancies, the good agreement of the experiment

with the numerical simulation demonstrates that our spatiotemporal tech-

nique is able to characterize complex ultrashort laser beams.

Moreover, from this experiment it can be calculated the average tem-

poral intensity profile obtained by spatial integration of the spatiotemporal

intensity profile, Fig. 11.14.

Fig. 11.14. Temporal intensity obtained from the spatial integration of the ex-

perimental spatiotemporal intensity of Fig. 11.12. Temporal duration of 133 fs

FWHM.

It is observed that the average temporal intensity is completely different

from the measured at the reference spatial point, shown in Fig. 11.11, and

the FWHM is much bigger (133 fs for the whole beam and 78.4 fs in the

reference point). Thus, with this experiment it is highlighted the importance

of spatiotemporal characterization when having STCs, because using only a
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temporal characterization could give unreal values of the whole temporal du-

ration. In fact, the temporal pulse profile varies spatially, hence the temporal

duration at each spatial position is different.

11.3 Non-collimated astigmatic beams

In previous Sections, we have experimentally demonstrated that the spa-

tiotemporal technique developed in this Thesis can characterize collimated

beams with complex STCs. Specifically, in Section 10.2 we demonstrated

theoretically that it is also able to analyze non-collimated beams, provided

that the characterization is not performed close to focus.

Taking this into account, in this Section we want to experimentally mea-

sure the spatiospectral distribution of an ultrashort laser beam after being

focused with an astigmatic lens. We decided to use astigmatic lenses in-

stead of a spherical lens because they present a more complex spatiospectral

distribution since they have two different focal lengths for two orthogonal

axes.

As done in previous Sections, we used a Ti:sapphire laser spectrally cen-

tered at 800 nm as the ultrashort light source and the bulk lateral shearing

interferometer as the spatiotemporal technique to analyze them. According

to the spatiotemporal technique, as a walk-off crystal we used the 1.06-mm-

thick calcite cut with θOA = 45° (113-µm walk-off and 350-fs delay around

800 nm) and, to adjust the delay, a 3-mm-thick calcite retarder plate (1.8 ps

delay at 800 nm) with its fast axis in vertical direction.

In order to test the spatiotemporal system with a non-collimated beam,

we used an astigmatic lens with 100-cm and 197-cm focal lengths, repre-

sented in Fig. 11.15. Furthermore, we measured the spatiospectral profile

at two different propagation planes, 49 cm and 137 cm from the lens, rep-

resented in Fig. 11.15 as da and db respectively. Please notice that the

spatiotemporal technique has a certain longitudinal size due to the elements

required to implement it, but the measurement plane is the scanned by the

fiber spectrometer placed over the XY-stage.
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Fig. 11.15. Representation of the experiment visualizing the focal lengths of the

astigmatic lens (f1 and f2) and the two analyzed planes shown in red at distances

da and db after the lens.

Fig. 11.16 shows the spatiospectral characterization for the central wave-

length (799.6 nm) for both propagation distances, Figs. 11.16(a1,b1) for da

and Figs. 11.16(a2,b2) for db. Considering the experimental parameters (e.g.,

spectral bandwidth and NA), there is not any important chromatic effect, so

here we only represent the central wavelength and later we will do the spec-

tral analysis of the wavefront curvature. The full spatiospectral intensity and

phase profiles for each measurement are depicted in Appendix C.3.

Figs. 11.16(a1,a2) show the spatial intensity distribution for the central

wavelength for the measurements at da = 49 cm and db = 137 cm, respec-

tively. From here, it can be observed that the beam at db is more spatially

concentrated than at position da, in which the technique scans only part of

the beam.

The spatial phase profiles, represented for the central wavelength in Figs.

11.16(b1,b2), have been obtained using the 2DMx strategy for each case. On

one hand, in Fig. 11.16(b1) it can be observed that the beam at da = 49 cm

corresponds to a bi-convergent (in two orthogonal axes) wavefront, since the

used lens presents two different lens powers in two orthogonal directions and

the observation plane is before both focal planes. On the other hand, the

beam wavefront at db = 137 cm, Fig. 11.16(b2), is converging in one plane

and diverging in the orthogonal one. This behavior can be corroborated
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taking into account the position of each measurement plane, since the first

distance (da) is placed before both focal planes and the second distance (db)

is place between both focal planes.

Fig. 11.16. Spatial intensity (a) and phase (b) profiles and Zernike wavefront

decomposition (c) for the central wavelength (λ = 799.6 nm) of the spatiospectral

characterization at two propagation distances after the astigmatic lens: (a1,b1,c1)

da =49 cm and (a2,b2,c2) db =137 cm.

166



11- APPLICATION BULK LATERAL SHEARING INTERFEROMETRY

Moreover, the rotation of the phase distributions from the XY directions

at Figs. 11.16(b1,b2) points out a possible rotation of the astigmatic lens.

To further analyze the STCs of the beams, the Zernike decomposition

was performed up to n = 4 for each case (following the formalism explained

in Appendix B), obtaining the contributions shown in Figs. 11.16(c1,c2) for

da =49 cm and db = 137 cm, respectively. According to the Zernike analysis,

the beams only present STCs up to order n = 2, and the main contributions

(excluding the piston or offset term) correspond to the defocus (Z0
2), vertical

astigmatism (Z+2
2 ) and oblique astigmatism (Z−2

2 ). The presence of both

types of astigmatism could be associated to an out of axis propagation, which

naturally introduces oblique astigmatism even with spherical lenses, or also

due to a small azimuthal rotation of the lens respect to the XY-axes, as

suggested by the rotation of the phase distribution at Figs. 11.16(a2,b2)

from the XY directions.

The Zernike analysis can be used to find out what kind of STCs the lens

introduces but, in order to estimate the real physical values, like the radius

of curvature, further analyses are required. For this purpose, we decided to

model each wavefront using:

φ(X, Y ) = C0+2C1X+2C2Y+
π(X cosϕ+ Y sinϕ)2

λR1

+
π(−X sinϕ+ Y cosϕ)2

λR2

(11.3)

where, R1 and R2 represent the two orthogonal radii of curvature of the

wavefront and ϕ the azimuthal angle between the R1 axis and the horizontal

axis. Moreover, C0 corresponds to the wavefront offset, whereas C1 and C2

represent the horizontal and vertical tilts respectively.

In order to fit each wavefront using the parameters shown in Eq. 11.3,

we have used a nonlinear optimization algorithm (Levenberg-Marquardt al-

gorithm), that compares the fitted wavefront with the experimental one.

Moreover, we have applied it along the bandwidth of the laser source for

each measurement plane, obtaining the spectrally resolved radii of curvature

distribution shown in Fig. 11.17.

In that figure, the fitted radii of curvature are also compared with the

theoretical values taking into account the distance of the measurement plane

from the lens and the calibrated focal lengths. Furthermore, the iterative
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Fig. 11.17. Spectral analysis of the radii of curvature for the two measurement

planes (da and db referred in the legend as (a) and (b)), modeling the wavefronts

using Eq. 11.3 (dots) and theoretical value (lines).

optimization process has been done 10 times per wavelength. The statistical

study shows that the standard deviation of all the fitted radii of curvature

(for each wavelength) is lower that 0.01 mm and the rms difference of the

fitted and experimental wavefronts lower than 10−4.

The spectral mean and deviation of the radii of curvature shown in Fig.

11.17 are summarized in Table 11.1.

Measurement plane: da = 49 cm Measurement plane: db = 137 cm
Theo. (cm) Exp. (cm) Theo. (cm) Exp. (cm)

R1 -148 -149 ± 2 -60.0 -57.0 ± 0.8
R2 -51 -50.4 ± 0.7 37 35.1 ± 0.2

Table 11.1: Summary of the theoretical (Theo.) and the experimental (Exp.) spec-

tral dependences of the radii of curvature obtained by fitting the wavefronts using

Eq. 11.3.

There is a good agreement between the theoretical and the experimental

values, with slight deviation for the measurement at db. This small deviation

can be associated with an error in the determination of the experimental

distance of the lens, since it is large and highly curved. Another possibility

could be a small tilt or lateral positioning (i.e., being not perfectly centered)

of the lens.

From the fit to Eq. 11.3, it can also be extracted that the astigmatic
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wavefronts are azimuthally rotated respect to the XY-axes an angle 9.1° and
4.7° for the measurements at da and db, respectively. The difference in angle

could be introduced due to small rotations during the change in lens position

from one measurement to the other, or because the lens is not perfectly

centered at the same transversal position.

In conclusion, the bulk lateral shearing interferometry technique can char-

acterize convergent and divergent beams, even with more complex depen-

dences. Therefore, the theoretical study of Section 10.2, which explained the

possibility to measure these type of beam, provided the characterization is

done far from focus, has been here experimentally demonstrated.
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Chapter 12

Conclusions and Perspectives

We have studied temporal and spatiotemporal compact ultrashort laser beam

characterization techniques, which can analyze pulses of different temporal

durations at various spectral regions, being able to operate under less con-

trolled conditions because of their robust configuration. In particular, we

have extended the applications of the recently introduced amplitude swing

technique and we have developed and applied a new spatiotemporal tech-

nique called bulk lateral shearing interferometry. Both techniques rely on

uniaxial birefringent crystals to implement bulk interferometers, which can

be used in different spectral regions easily and with high stability due to their

in-line configurations.

Regarding the temporal characterization, we have analyzed the extension

of different capabilities of the amplitude swing technique, and, in addition, we

have implemented a Differential Evolution retrieval algorithm to analyze the

amplitude swing traces. On one hand, we have experimentally demonstrated

that amplitude swing can operate at different spectral regions over more than

an octave spectral range from visible to near-infrared without a significant

modification of the set-up. This is possible because the amplitude swing only

relies on the birefringence of its elements, without any spectral limitation due

to, for example, beam splitters, chirped mirrors or grating compressors. In

addition, we expect that this operation range can be extended to the entire

visible and mid-infrared spectral regions.

On the other hand, we have experimentally proved that amplitude swing
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can analyze pulses in the few-cycle regime, regardless of whether they are per-

fectly compressed or moderately chirped. The advance over other techniques

is that its less restrictive spectral limitation enables an easy adaptation to

ultra-broadband pulses.

Furthermore, we have theoretically studied and experimentally demon-

strated different ways of amplitude modulation, thus extending the amplitude

swing concept to other configurations. Different implementations have been

compared between them, as well as with the original configuration, subjected

to different measurement conditions to study their capabilities, showing all

of them similar results.

Regarding the spatiotemporal characterization, we have proposed a new

technique based on the combination of spectral and spatial interferometry

using birefringent uniaxial crystals, as well as a temporal measurement at

a single spatial position used as a reference. The bulk implementation of

the technique using birefringent media gives it robustness and simplicity.

We have presented the concept of the bulk lateral shearing spectral interfer-

ometry explaining how the spatiospectral phase information is encoded and

different strategies that can be used to extract it.

Moreover, we have studied the operation of the technique using numerical

models, taking into account the light propagation theory within uniaxial me-

dia in order to study the operability of the system. Using these models, we

have analyzed the potential limitations of the technique, due to the aberra-

tions and chromatic effects that could be introduced by the light propagation

in the birefringent media, for beams with different numerical apertures and

spectral content. The introduced aberrations seem to be negligible except

in the near focus region. In the experimental cases studied in this Thesis

there is no relevant chromatic limitations affecting the measurements. How-

ever, since it could be important in broader spectral bandwidth cases (i.e.,

few-cycle pulse regime), we have also proposed a strategy to achromatize the

spectral response of the technique in case it were necessary.

Furthermore, we have used the bulk lateral shearing interferometer to

analyze beams with complex spatiotemporal dependences. On one hand, we

have characterized optical vortices in the visible and infrared spectral regions
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with diverse orbital angular momenta (from -2 to +4), both constant and

variable in time, showing very good agreement with the expected results. On

the other hand, we have analyzed different propagation planes of astigmatic

beams presenting good agreement with the expected evolution.

In sum, amplitude swing and bulk lateral shearing interferometry are com-

pact, robust, and versatile characterization techniques, which can be easily

applied in different scenarios due to their in-line and simple configuration, as

well as their adaptability.

In the future, we expect that both techniques will ease the temporal

and spatiotemporal characterization at different applications (e.g., charac-

terization of materials at different spectral regions, bio-systems or nonlinear

optical processes). Possible future works with both techniques may extend

their capabilities, for example, improving the acquisition time and proposing

single-shot configurations (especially interesting for the PW laser facilities),

exploring different spectral ranges or enabling the analysis of vector beams.
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12.1 Conclusiones y perspectivas futuras

Hemos estudiado técnicas de caracterización temporales y espaciotemporales

compactas para el análisis de haces láser ultracortos, las cuales pueden medir

pulsos de diferentes duraciones temporales en varias regiones espectrales,

pudiendo incluso operar en condiciones menos controladas debido a su con-

figuración robusta. En particular, hemos ampliado las aplicaciones de la

técnica amplitude swing, y hemos desarrollado y aplicado una nueva técnica

espaciotemporal denominada bulk lateral shearing interferometry. Ambas se

basan en el uso de cristales birrefringentes uniáxicos para implementar inter-

ferómetros compactos, que se pueden usar en diferentes regiones espectrales

fácilmente y con alta estabilidad debido a sus configuraciones en ĺınea y en

volumen.

Respecto a la caracterización temporal, hemos analizado la extensión de

diferentes capacidades de la técnica amplitude swing y, además, hemos imple-

mentado un algoritmo de reconstrucción de tipo Differential Evolution para

analizar las trazas. También hemos demostrado experimentalmente que la

técnica puede operar en diferentes regiones espectrales, en un rango espectral

de más de una octava desde el visible hasta el infrarrojo cercano, sin ninguna

modificación significativa de la configuración. Esto es posible porque ampli-

tude swing solo se basa en la birrefringencia de sus elementos y, por tanto,

no presenta limitaciones espectrales asociadas a, por ejemplo, divisores de

haz, chirped mirrors o compresores de redes. Además, esperamos que este

rango de operación pueda extenderse a todas las regiones espectrales desde

el visible hasta el infrarrojo medio.

Asimismo, hemos demostrado experimentalmente que amplitude swing

puede analizar pulsos láser en el régimen de pocos ciclos, independientemente

de si están perfectamente comprimidos o presentan un chirp moderado. Esto

supone un avance respecto a otras técnicas, puesto que amplitude swing puede

adaptarse fácilmente al estudio de pulsos con anchos de banda muy grandes

debido a su menor limitación espectral.

Además, hemos estudiado tanto teóricamente como experimentalmente la

extensión del concepto de amplitude swing demostrando diferentes estrate-
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gias para modular la amplitud. Las diferentes configuraciones analizadas han

sido comparadas entre śı, aśı como con la configuración original, bajo difer-

entes condiciones de medida demostrando que todas ellas obtienen resultados

similares.

Respecto a la caracterización espaciotemporal, hemos propuesto una nueva

técnica basada en la combinación de interferometŕıa espectral y espacial us-

ando cristales uniáxicos, aśı como la medida de una referencia temporal en

un punto espacial. La configuración en volumen, gracias al uso de medios

birrefringentes, le confiere una gran robustez y simplicidad. Hemos presen-

tado el concepto de bulk lateral shearing interferometry explicando como se

codifica la fase y las diferentes estrategias que pueden emplearse para ex-

traerla.

Asimismo, hemos empleado modelos numéricos para considerar la propa-

gación de los haces láser a través de los medios uniáxicos, y aśı poder estudiar

el rango de operatividad de la técnica. Gracias a estos modelos hemos anal-

izado posibles limitaciones asociadas a aberraciones o efectos cromáticos, los

cuales pueden introducirse cuando haces de diferentes aperturas numéricas

o contenidos espectrales atraviesan medios birrefringentes. A partir de este

estudio, hemos comprobado que las distorsiones introducidas en los casos es-

tudiados, en general, son despreciables, excepto si la medida se realiza muy

cerca del foco. En los experimentos realizados en la Tesis no se ha obser-

vado ningún efecto cromático limitante. A pesar de ello, se ha propuesto

una estrategia para acromatizar el sistema en caso de ser necesario, ya que el

efecto cromático podŕıa ser significativo para anchuras espectrales mayores

(por ejemplo, en el régimen de pocos ciclos).

Hemos usado la técnica bulk lateral shearing interferometry para analizar

haces láser con complejas dependencias espaciotemporales. Por un lado, se

han caracterizado vórtices ópticos en el visible e infrarrojo cercano con diver-

sos momentos angulares orbitales (desde -2 hasta +4) constantes o variables

en el tiempo. Los resultados se han comparado con simulaciones teóricas

mostrando una gran similitud. Por otro lado, hemos analizado la propa-

gación de haces astigmáticos en diferentes planos de propagación verificando

que presentan gran concordancia con la evolución esperada.
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En resumen, amplitude swing y bulk lateral shearing interferometry son

técnicas compactas, robustas y versátiles que pueden ser fácilmente em-

pleadas en diferentes condiciones debido a su configuración simple y en ĺınea,

aśı como su gran adaptabilidad.

Esperamos que en un futuro ambas técnicas faciliten la caracterización

temporal y espaciotemporal en diferentes aplicaciones (por ejemplo, caracter-

ización de materiales en diferentes rangos espectrales, bio-sistemas o procesos

no lineales). Futuras ĺıneas de trabajo con ambas técnicas pueden ampliar sus

capacidades, por ejemplo, mejorando el tiempo de adquisición y proponiendo

configuraciones mono-tiro (especialmente interesantes para las instalaciones

de láser petavatio), explorando diferentes rangos espectrales o permitiendo

el análisis de haces vectoriales.
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Appendix A

Noise study for generalizing

amplitude swing

In Chapter 7, different configurations of the amplitude swing technique have

been studied. In particular, in Section 7.2, it was simulated the effect of noise

to the retrievals and it was presented an example of the complete study for

a noise level of 4.3% rms. Here it is depicted the complete evolution of the

example pulse with the noise. We present a link to Drive in order to ease the

visualization of the video, but it is also available in the institutional repository

of the Universidad de Salamanca, Gestión del Repositorio Documental de la

Universidad de Salamanca (GREDOS).

Noise analysis video

• Contextualization: the current study analyzes the effect of noise in

the range from 0% to ∼15% added to the ideal traces of four differ-

ent amplitude swing configurations (rotating MWP, HWP, QWP and

ZWP). The simulated pulse presents Gaussian spectrum centered at

λ = 800 nm with 50-fs FTL duration FWHM and a spectral phase

that combines GDD=1000 fs2, TOD=2000 fs3 and an oscillatory term

(0.3π · cos[50(ω − ω0) + 0.25π]).
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APPENDIX A- NOISE STUDY GENERALIZING AMPLITUDE SWING

• Thumbnail:

• Caption: Comparison of amplitude swing configurations analyzing

traces with different levels of numerical white Gaussian noise added.

(a) Ideal, (b) noisy and (c) retrieved amplitude swing traces. (d) Spec-

tral and (e) temporal comparison of the retrieved (blue and red) and

theoretical (gray) pulses. The configurations studied are: (column 1)

rotating MWP, (column 2) rotating HWP, (column 3) rotating QWP,

and (column 4) rotating ZWP with Φr = 0.75π rad.

• External link: VideoThesis GeneralizingAswing Noise.avi 1

1https://drive.google.com/file/d/1tOZlPKeZyIZvIYdSTMZtaifZYOKIytBX/

view?usp=sharing
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Appendix B

Zernike Polynomials

Zernike polynomials is a mathematical polynomial series widely used in dif-

ferent fields like optometry, astronomy or photonics to evaluate distortions

in the optical wavefronts [157].

These polynomials are associated with two indices called azimuthal degree

(m) and radial degree (n), being the Zernike polynomial of order (n,m)

defined as:

Zm
n =

R
|m|
n · sin (mΦ) form < 0

R
|m|
n · cos (mΦ) form ≥ 0

(B.1)

where Φ is the azimuthal angle dimension, n is an integer with n ≥ 0 and m

is an integer in the range m ∈ [−n, n] defined in steps of 2. Rm
n is the radial

polynomial calculated as:

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k (n− k)!

k!
(
n+m
2

− k
)
!
(
n−m
2

− k
)
!
ρn−2k (B.2)

being ρ the radial dimension.

The components of the Zernike basis are orthogonal over the unit disk,

so they satisfy the following relation:∫∫
circle

Zm
n (r,Φ)Zm′

n′ (r,Φ)rdrdΦ =
1

2n+ 1
δn,n′δm,m′ (B.3)

Usually a characterization up to n = 4 gives enough information of the

principal wavefront distortions. The expressions of each Zernike polynomial
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and the classical names used to designate them are depicted in Table B.1.

In addition, Fig. B.1 qualitatively represents each Zernike polynomial of the

series up to n = 4.

Zm
n Math. expression Classical name

Z0
0 1 Piston or offset

Z−1
1 ρ sinΦ Y-Tilt

Z+1
1 ρ cosΦ X-Tilt

Z−2
2 ρ2 sin (2Φ) Oblique astigmatism

Z0
2 2ρ2 − 1 Defocus

Z+2
2 ρ2 cos (2Φ) Vertical astigmatism

Z−3
3 ρ3 sin (3Φ) Vertical trefoil

Z−1
3 (3ρ3 − 2ρ) sinΦ Vertical coma

Z+1
3 (3ρ3 − 2ρ) cosΦ Horizontal coma

Z+3
3 ρ3 cos (3Φ) Oblique trefoil

Z−4
4 ρ4 sin (4Φ) Oblique quadrafoil

Z−2
4 (4ρ4 − 3ρ2) sin (2Φ) Oblique secondary astigmatism

Z0
4 (6ρ4 − 6ρ2 + 1) Primary spherical

Z+2
4 (4ρ4 − 3ρ2) cos (2Φ) Vertical secondary astigmatism

Z+4
4 ρ4 cos (4Φ) Vertical quadrafoil

Table B.1: Mathematical expressions and classical names of Zernike polynomials

up to n = 4.

A general wavefront over the unit circle pupil (φ(ρ,Φ)) can be decomposed

in the Zernike polynomials basis, and the coefficient (amn ) of each polynomial

(Zm
n ) will give information of the presence and relevance of aberrations.

φ(ρ,Φ) =
∑
n,m

amn Z
m
n (r,Φ) (B.4)

Notice that the Zernike polynomial basis only is orthogonal over the unit

circle, Eq. B.3, so to do the wavefront decomposition above mentioned it is

necessary to normalize the spatial dimensions.
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Fig. B.1. Representation of the Zernike polynomials (Zm
n ) up to n=4.
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Appendix C

Spatiotemporal and

spatiospectral complete

retrievals

The spatiotemporal characterization technique proposed in this Thesis is able

to retrieve the temporally and spectrally resolved wavefronts. In each corre-

sponding application of Chapter 11, we have presented either the retrievals

for a specific wavelength of the spatiospectral characterization or some tem-

poral snapshots of the spatiotemporal characterization. In this Appendix,

the links to the videos of the complete characterization obtained with the

bulk lateral shearing interferometer are collected. Here, we present links

to Drive in order to ease the visualization of the videos, but they are also

available in the institutional repository GREDOS.

C.1 Optical vortices

Here we present the spatiospectral intensity (a) and phase (b) profiles ob-

tained for the full spatiospectral characterization of optical vortices shown in

Section 11.1.
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C.1.1 Proof of concept video

• Contextualization: spatiospectral characterization of a known opti-

cal vortex of ℓ = +2 using two configurations with different walk-off

crystals, 1.12-mm-thick BBO cut with θOA = 29.2° and 1.06-mm-thick

calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Intensity (a) and phase (b) profiles of the spatiospectral

characterization. (a1,b1) and (a2,b2) corresponds to the spatiospectral

retrievals obtained with the calcite and BBO walk-off crystals, respec-

tively.

• External link: VideoThesis Vortices ProofOfConcept.avi 1

1https://drive.google.com/file/d/19FwLrLxVrCqbLtvslfDcKVKjynUNjcMA/

view?usp=sharing
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C.1.2 Near-infrared vortex video: ℓ = −1

• Contextualization: spatiospectral characterization of an optical vor-

tex of ℓ = −1 in the near-infrared spectral range characterized using a

1.06-mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Vortex NIR Lneg1.avi 2

2https://drive.google.com/file/d/1r1ehJe2nlje1rUBA0tGjqQeyRAqS--Af/

view?usp=share_link
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C.1.3 Near-infrared vortex video: ℓ = +1

• Contextualization: spatiospectral characterization of an optical vor-

tex of ℓ = +1 in the near-infrared spectral range characterized using a

1.06-mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Vortex NIR L1.avi 3

3https://drive.google.com/file/d/1F3136doAxMoX_yPB0eanup3UYee9qzAN/

view?usp=share_link
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C.1.4 Near-infrared vortex video: ℓ = +3

• Contextualization: spatiospectral characterization of an optical vor-

tex of ℓ = +3 in the near-infrared spectral range characterized using a

1.06-mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Vortex NIR L3.avi 4

4https://drive.google.com/file/d/1ZLG57pQPRR9ugPmoTf_AOOGM7y2SIpF6/

view?usp=share_link
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C.1.5 Visible vortex video: ℓ = −2

• Contextualization: spatiospectral characterization of an optical vor-

tex of ℓ = −2 in the visible spectral range characterized using a 1.06-

mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Vortex VIS Lneg2.avi 5

5https://drive.google.com/file/d/1eQIQRwuxv-DG1cI7pNha4UHEZo62-3dN/

view?usp=share_link
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C.1.6 Visible vortex video: ℓ = +2

• Contextualization: spatiospectral characterization of an optical vor-

tex of ℓ = +2 in the visible spectral range characterized using a 1.06-

mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Vortex VIS L2.avi 6

6https://drive.google.com/file/d/1PQx5CRm0crsGXb-b4xfo4UcxkwJy1w8c/

view?usp=share_link
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C.1.7 Visible vortex video: ℓ = +4

• Contextualization: spatiospectral characterization of an optical vor-

tex of ℓ = +4 in the visible spectral range characterized using a 1.06-

mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Vortex VIS L4.avi 7

7https://drive.google.com/file/d/1enBrPf10RB6ze8j8hfLADXpjR7KKbw_M/

view?usp=share_link
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C.2 Time-varying optical vortices

Here we present the complete spatiotemporal characterizations of the inter-

ference of two delayed vortices explained in Section 11.2.

C.2.1 Time varying vortex video: Experiment

• Contextualization: experimental spatiotemporal characterization of

the interference pattern generated by combining two optical vortices of

ℓ = +2 and ℓ = 0 with a 65-fs delay. Characterization done using a

1.06-mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiotemporal intensity (a) and phase (b) profiles evolu-

tion.

• External link: VideoThesis TimeVarying Vortex Exp.avi 8

8https://drive.google.com/file/d/1BmwQHe7q3Di7rDdGzdK3wwrGq28oo-hg/

view?usp=share_link
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C.2.2 Time varying vortex video: Simulation

• Contextualization: simulation of spatiotemporal dependence of the

interference pattern generated by combining two Laguerre-Gauss modes

(ℓ1 = +2 and ℓ2 = 0 for each beam and p = 0 for both) with a 65-fs

delay.

• Thumbnail:

• Caption: Spatiotemporal intensity (a) and phase (b) profiles evolu-

tion.

• External link: VideoThesis TimeVarying Vortex Sim.avi 9

9https://drive.google.com/file/d/1KfMUs0OfXLpYyDwnVAbmKC-mPA_RZ5MH/

view?usp=share_link
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C.3 Non-collimated astigmatic beams

Here we present the spatiospectral characterization of the focusing beams of

Section 10.2.

C.3.1 Astigmatic beam video: z = da = 49 cm

• Contextualization: spatiospectral characterization of a beam focused

with an astigmatic lens (100-cm and 197-cm focal lengths). Measure-

ment done after 49 cm of propagation from the lens and characterized

with a 1.06-mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Astigmatic Biconvergent.avi 10

10https://drive.google.com/file/d/1xOR1rqQobXkwQFUTkG2JQIUzfV92lFsE/

view?usp=share_link
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C.3.2 Astigmatic beam video: z = db = 137 cm

• Contextualization: spatiospectral characterization of a beam focused

with an astigmatic lens (100-cm and 197-cm focal lengths). Measure-

ment done after 137 cm of propagation from the lens and characterized

with a 1.06-mm-thick calcite cut with θOA = 45°.

• Thumbnail:

• Caption: Spatiospectral intensity (a) and phase (b) profiles evolution.

• External link: VideoThesis Astigmatic ConvDiv.avi 11

11https://drive.google.com/file/d/1uleDhW7OlC1l9d3YOAMj_zHdHUvKzGFc/

view?usp=share_link
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Murnane, M. A. Porras, A. Chong, C. Wan, K. Y. Bliokh, M. Yessenov,

A. F. Abouraddy, L. J. Wong, M. Go, S. Kumar, C. Guo, S. Fan, N.

Papasimakis, N. I. Zheludev, L. Chen, W. Zhu, A. Agrawal, S. W. Jolly,

C. Dorrer, B. Alonso, I. Lopez-Quintas, M. López-Ripa, I. J. Sola, Y.
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