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A B S T R A C T   

The impact of climate change on soil moisture (SM) dynamics is uncertain. Changes in the Earth’s SM during 
recent decades have been studied globally and in different regions, but little attention has been given to Europe. 
In addition, most previous works have just relied on a monotonic behavior of SM changes, which is a strong 
assumption and not always valid. We argue that this fact, together with the use of large temporal scales, has 
prevented the observation of clear patterns of SM trends over the continent. In this work, we study European SM 
trends for a 30-year period, from 1991 to 2020, using two complementary databases, one from reanalysis project 
ERA5-Land and the other from the model Lisflood. Both rank-based and empirical decomposition approaches 
have been considered and applied to monthly and annual series of SM anomalies. The Köppen-Geiger classifi
cation allowed us to analyze the distribution of SM anomaly trends in the separate European climates. The results 
obtained with both databases, methods and temporal scales were consistent, with the empirical decomposition 
method generally detecting more significant trends. Our results show a general decreasing trend of SM, 
regardless of climate type but more intense in Eastern and Central Europe. In addition, the rank-based method 
detected fewer positive trends, suggesting a non-monotonic behavior in changes to wetter conditions. The most 
notable differences were obtained with the empirical decomposition method when comparing the different 
temporal scales. Hence, an intramonthly analysis was conducted to provide insight into the different patterns. An 
increase in significant trends was observed in April and the autumn (September–October-November). Further
more, we conducted a similar analysis to study trends in extreme drought characteristics (annual duration, in
tensity and onset) and we obtained consistent results, with the empirical decomposition method detecting more 
significant trends. Our investigations show a general increase in the duration and intensity of extreme droughts 
over the European continent, tending to be delayed a few days per year in arid and temperate regions.   

1. Introduction 

Soil moisture (SM) is considered an essential climate variable (GCOS, 
2010). It exerts control on the water and energy exchange between the 
soil and the atmosphere, as it behaves as a storage component for pre
cipitation and induces persistence in the climate system (Martínez- 
Fernández et al., 2021; Piles et al., 2021; Seneviratne et al., 2010). 
Climate change is predicted to disrupt many environmental and, 
therefore, social and economic processes (Grillakis, 2019). Subse
quently, it is likely that SM dynamics will also be affected and thereby 
alter the availability of water for plants (Kramer, 1944), the runoff yield 
(Merz and Plate, 1997) or the intensity and frequency of droughts 

(Martínez-Fernández et al., 2015). However, the magnitude and extent 
of these changes are still uncertain (Cheng et al., 2017). 

There are several studies dedicated to the study of the SM trend, both 
on global (Albergel et al., 2013; Dorigo et al., 2012; Feng and Zhang, 
2015; Piles et al., 2019; Sheffield and Wood, 2007) and regional scales 
(An et al., 2016; Li et al., 2015; Qiu et al., 2016; Rahmani et al., 2016; 
Trnka et al., 2009; Zawadzki and Kȩdzior, 2014). Most of those studies 
just analyzed a monotonic trend, but SM, as many hydroclimatic vari
ables, exhibits nonlinear and non-stationary changes (Bai et al., 2015). 
Additionally, the computed trends are known to strongly depend on the 
period of study (Hänsel et al., 2019; Sang et al., 2014) and the temporal 
scale analyzed (Gudmundsson and Seneviratne, 2015; Sang et al., 2021), 
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especially when monotonic approaches are used. Hence, the extended 
use of methods that just account monotonic behavior to estimate SM 
changes has led in some cases to discrepancies between trends of series 
with different time scales or periods, which are difficult to interpret and 
reconcile (Dai, 2013). In particular, few trends have been observed in 
Europe when monotonic behavior is assumed (Albergel et al., 2013; 
Cammalleri et al., 2016; Dorigo et al., 2012; Zawadzki and Kȩdzior, 
2014). In contrast, trends in drought indices, runoff, temperature, pre
cipitation or evaporation have shown statistical significance in this re
gion (Gudmundsson and Seneviratne, 2015; Hänsel et al., 2019; Jaagus 
et al., 2021; Masseroni et al., 2021; Song et al., 2020; Vautard et al., 
2007), which suggests that the existence of similar trends in SM would 
be expected. Some studies have reported SM changes in recent decades 
throughout Europe. For example, Cammalleri et al. (2016) found dif
ferences between the year-average deficit water in most of the European 
soil surface. In regional studies, Almendra-Martín et al. (2021a) 
observed a general decreasing trend of SM in the Iberian Peninsula, and 
Trnka et al. (2008) analyzed SM derived by precipitation and temper
ature in situ series in the Czech Republic and found a larger number of 
climatic stations with significant trends. 

Although some studies have analyzed nonlinear trends of hydro
climatic variables (Adarsh and Janga Reddy, 2019; Bordi et al., 2009; 
Carmona and Poveda, 2014; Wei et al., 2018), only a few are focused on 
SM series. Deng et al. (2020) found a change in the SM trend at the 
global scale in 2001 with a changing rate twice that of the previous 
period. Pan et al. (2019) proposed a nonlinear approach to estimate 
trends based on a polynomial fit. However, the general best fit they 
obtained was a first-degree polynomial, namely, a linear approach. 
Trend identification in hydrologic time series is not a trivial task (Bordi 
et al., 2009; Sang et al., 2013), and many novel methods have been used 
to accurately identify components in its series (Sang et al., 2014), but 
very few of them have accounted for nonlinear SM behavior (Bueso 
et al., 2020; Cheng and Huang, 2016; Piles et al., 2019). 

Unlike other hydroclimatic variables, the study of SM trends has not 
received special attention until recent years due to a lack of long-term 
and continuous databases. For the stable records of climate, it is 
considered that a climatological-length series is needed (Merchant et al., 
2014), and few databases of SM have that length. Remote sensing da
tabases, such as the European Space Agency Climate Change Initiative 
(CCI) SM, provide spatial-temporal continuous series. However, some 
limitations are found in such databases, such as data gaps (Almendra- 
Martín et al., 2021b) or breaks due to its merging algorithm (Pre
imesberger et al., 2020). In contrast, the latest advances in land surface 
modelling and assimilation of observations in reanalysis ensure the 
completeness of separate variables at the global scale, such as SM, to 
enhance research in climate change studies (Muñoz-Sabater et al., 
2021). 

The main objective of this work is to study the trend of SM in Europe 
during the last three decades (1991 to 2020). The studies published thus 
far on the SM trend have been on a global scale, focusing the analysis on 
areas of special interest such as the Sahel, Australia, India or North 
America (Sheffield and Wood, 2007). However, too little attention has 
been given to Europe despite the expected increased risk of drought on 
the continent (Naumann et al., 2021). The second objective of the study 
is the comparison between a rank-based and an empirical decomposition 
approach in the analysis of SM trends. For these purposes, SM trends 
from two databases, one from modelling and the other from reanalysis, 
have been studied over Europe. Two methods were used: a widely used 
method based on monotonic behavior, the Mann-Kendall (MK), and a 
novel nonlinear method, the empirical mode decomposition (EMD). The 
statistical significance of trends and their signs were evaluated in the 
different types of climate, according to the Köppen-Geiger classification. 
In addition, the study was conducted at different time scales (monthly 
and annually) to gain a full understanding of the changes in temporal SM 
temporal dynamics that occurred in Europe during the last 30 years, 
from 1991 to 2020. 

2. Dataset and methods 

2.1. Soil moisture data 

Two different SM databases were used, both provided by the 
Copernicus Climate Change Service (C3S) but with different sources and 
characteristics. On the one hand, the European Centre for Medium- 
Range Weather Forecasts (ECMWF) reanalysis project ERA5-Land pro
vides several land variable series, including SM. The land surface 
reanalysis describes the water and energy cycles over land by using the 
Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land 
(HTESSEL) (Balsamo et al., 2009), and derives the atmospheric forcing 
from ERA5 (Muñoz-Sabater et al., 2021). ERA5-Land (for simplicity, 
hereafter ERA5L) is indirectly influenced by several sources of assimi
lated observations, satellite and in situ (Hersbach et al., 2020), through 
the atmospheric forcing. The series are provided from 1981 to the pre
sent with hourly temporal resolution and a regular grid of 0.1◦. SM is 
estimated in 4 depth layers from 0 to 289 cm. In this work, only surface 
(0–7 cm) SM was studied; thus, only the first layer of the product and the 
data at 12 am and 12 pm were used. 

On the other hand, the SM series from the hydrological rainfall- 
runoff model Lisflood (LF) were also used. This model was developed 
by the floods group of the Natural Hazards Project of the Joint Research 
Centre (JRC) of the European Commission (Van Der Knijff et al., 2010) 
and is used in the Copernicus European Drought Observatory (EDO) 
(https://edo.jrc.ec.europa.eu) and the European Flood Awareness Sys
tem (EFAS) (Smith et al., 2016). The model can simulate the long-term 
water balance by considering several processes such as snow melt, 
infiltration, interception of rainfall, evaporation or soil moisture ex
change between the soil layers, among others (van Der Knijff et al., 
2010). In this work, the dataset produced by EFAS was used, which was 
produced with gridded observational meteorological data (Smith et al., 
2016). The SM series are provided daily since 1991 to present with a 
spatial resolution of 5 × 5 km (de Roo et al., 2000). SM is estimated for 3 
depth layers, but only the first layer, which refers to the first 5 cm of the 
soil, was considered in this study. 

Both databases have been validated (Laguardia and Niemeyer, 2008; 
Li et al., 2020) and widely used for several applications (González- 
Zamora et al., 2021; Zhang et al., 2021), including the study of SM 
trends (Almendra-Martín et al., 2021a; Cammalleri et al., 2016). Vali
dation studies have shown accurate estimations of SM for both products 
in the region of study except for high latitudes and the Alps because of 
the poor performance in heterogeneous landscapes and topography re
gions, the presence of ice cover and the limited availability of satellite 
data (Laguardia and Niemeyer, 2008; Li et al., 2020). In this work, a 
comparison between both products was conducted (results not shown). 
The LF database was resampled into the ERA5L grid by calculating the 
spatial average, and the series were compared. A good correlation was 
obtained, with a median value of Pearson correlation coefficient of 0.67. 
The poorest values were obtained for the Alps and the Scandinavian 
Peninsula, in line with previous works (Laguardia and Niemeyer, 2008; 
Li et al., 2020). Therefore, these regions were filtered using auxiliary 
databases. 

Taking all of this into account, trends of SM anomaly series were 
evaluated for the study period, 1991–2020, and the monthly and annual 
temporal scales were analyzed. Thus, first, the daily series of both 
products were averaged into these scales. Then, anomalies were calcu
lated by subtracting the monthly and annual mean calculated using the 
entire period of study for each pixel. 

2.2. Auxiliary data and mask 

Some regions were excluded from the study due to different factors, 
such as irrigation management, areas with permanent or seasonal ice 
cover or regions where estimations of SM are not such accurate. For this 
reason, ancillary databases were used to create a mask that filters these 
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areas. 
For the irrigated areas, the Digital Global Map of Irrigation Areas of 

the Food and Agriculture Organization (FAO) was used. It consists of a 
global map with a spatial resolution of 5 arc minutes that provides the 
percentage area irrigated (Siebert et al., 2005). In this study, pixels with 
>10% irrigation area were masked. 

The Köppen-Geiger classification was used both to study the distri
bution of SM anomaly trends in the different European climates and to 
mask regions with less accurate SM values due to the presence of ice 
cover. This classification uses 3 categories to describe the various types 
of climates worldwide (Peel et al., 2007). The first category contains 5 
main classes that are subdivided into 30 different types of climates. In 
this work, the map developed by Beck et al. (2018) with a spatial res
olution of 1 km was used. This map was resampled into LF and ERA5L 
grids using a majority filter. The rest of the climate subdivisions were 
merged into their more general categories until each class represented at 
least 1% of the area of study. 

Therefore, the mask was created by incorporating all the pixels 
considered irrigated areas and those with polar and cold – without dry 
season – very cold winter climate. In this way, those regions with low 
accuracy SM estimations for both products are excluded. The final 
classification used to study the SM trend distribution is shown in Table 1, 
and a map with the spatial distribution of each class is shown in Fig. 1. 

2.3. Drought attributes series 

Since SM changes have a direct impact on the various types of 
droughts, their trends were also studied by analyzing the main attributes 
that characterize drought, namely, onset, duration and intensity. Ac
cording to Sheffield and Wood (2007), a drought is defined as a period 
with SM quantile values below an arbitrary threshold. In this study, the 
threshold was set in the 10th percentile (q10) of the daily series of each 
pixel, corresponding to severe drought (Sheffield and Wood, 2008). 
Annual series were obtained for each attribute. Thus, duration (D) was 
calculated as the number of days in a year that SM had values below q10. 
Onset series were calculated as the first day of the year on which SM 
presented a value below the threshold and was maintained for at least 
seven consecutive days. The 7-day criterium was chosen to avoid a flash 
drought ocurring before the dry season from setting the representative 
onset of a specific year. Finally, intensity series were calculated as the 
mean magnitude over the drought duration of each year, with the 
magnitude of the deviation below the threshold. 

2.4. Trend analysis 

Hydrological trend identification is a challenging task usually 
investigated under the assumption of monotonic behavior in their 
interannual changes (Sang et al., 2013), but hydroclimatic series are 
known to change nonmonotonically. Linear trends can be heavily 
influenced by the period and the temporal scale of the study (Pan et al., 
2019; Sang et al., 2018). Monotonic approximations, in turn, have also 
been proposed to study hydroclimatic series trends in the literature and 
have shown consistent results (Albergel et al., 2013; Dorigo et al., 2012; 
Li et al., 2015). In this work, two methodologies were considered to 
evaluate SM anomaly trends to consider both strategies, monotonic and 

nonmonotonic. Both methods were applied to the entire annual and 
monthly series of SM anomaly. In addition, interannual changes were 
computed for SM anomaly series by separately analyzing trends for each 
month. 

2.4.1. Mann-Kendall test 
The MK test (Kendall, 1948; Mann, 1945) is a nonparametric test 

widely used to detect trends. It identifies the monotonic upwards or 
downwards trend of a series and determines if it has statistical signifi
cance at a given level. The null hypothesis assumes that a given series 
has no trend, i.e., it is independently distributed. To accept or reject the 
null hypothesis, the statistic S, which determines the sign of the trend, is 
calculated of the following form: 

S =
∑n− 1

i=1

∑n

j=i+1
sgn

(
xj − xi

)
(1)  

where x refers to the points of a series of lengths n, and sgn() is the sign 
function that makes the test robust against outliers (Asfaw et al., 2018). 
The significance of the trend at a given significance level is given by the 
Z parameter obtained as follows: 

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ S > 0

0 S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ S < 0

(2)  

where var refers to the variance. In this study, the significance level was 
set to 0.05, which implies that with absolute values of Z >1.96, the null 
hypothesis is rejected, and the trend can be considered significant. One 
limitation of the MK is the chance of obtaining a significant trend with 
autocorrelated series (Hamed and Rao, 1998); however, we deal with 
this problem here by analyzing the anomalies of SM series, which is a 
common practice to avoid seasonal effects when analyzing SM trends 
(Albergel et al., 2013). 

2.4.2. Empirical Mode Decomposition 
The EMD is a method developed by Huang et al. (1998) for the 

analysis of nonlinear and nonstationary data. It allows the decomposi
tion of a series into a number of intrinsic mode functions (IMFs) by 
empirically identifying the intrinsic oscillatory modes (Fig. 2a). An IMF 
meets that (i) its number of extrema and its number of zero crossings 
must either be equal or differ at most by one, and that (ii) at any point, 
the mean value of the envelopes defined by the local maxima and by the 
local minima is zero (Narayanankutty et al., 2010). The decomposition 
is performed through a shifting process using only local extrema. For a 

Table 1 
Percentages of coverage in Europe of each Köppen-Geiger climate type and the 
mask used in the study in both SM databases spatial resolution.  

Köppen-Geiger LF (%) ERA5L (%) 

Cold - without dry season - warm summer (Dfb) 44 46 
Cold - without dry season - hot summer (Dfa) 3 3 
Temperate - without dry season (Cf) 22 22 
Temperate - dry summer (Cs) 9 8 
Arid (B) 5 5 
Mask 18 17  

Fig. 1. Spatial distribution of the Köppen-Geiger climate types and the mask 
used in the study. 
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signal x(t), first, all the local extrema are identified. These local maxima 
and minima are connected with a suitable curve-fitting method. In this 
work, the piecewise-cubic Hermite interpolation polynomials method 
was used. The first component is obtained by subtracting the local mean 
curve of the upper and lower envelopes. The obtained component is 
treated as the original signal, and these steps are repeated until the 
envelopes are symmetric with respect to zero mean under certain 
criteria (Wu and Huang, 2009). The final component is designated as 
one IMF (Ci), and it is defined as follows: r0 = x(t) − Ci. The shifting 
process is repeated using r0 as the signal, and it is completed when the 
last component obtained becomes a monotonic function, the residual 
(Rn), from which no more IMF can be extracted. Thus, the EMD de
composes a signal x(t) of the following form: 

x(t) =
∑n

i
Ci +Rn (3)  

where the residual Rn represents the monotonic trend of the entire 
period of the series. This resulting trend is analyzed, as in the MK 
method, by its sign and its significance. 

To differentiate the IMFs that provide a physically meaningful rep
resentation of the fundamental processes from those that represent the 
inherent noise in the data, characteristics of noise need first to be 
established (Wu and Huang, 2005). Wu and Huang (2004, 2005) studied 
the characteristics of white noise by using EMD and proposed a method 
to test the statistical significance based on deduced analytic expressions 
that describe the statistical characteristics of white noise. Thus, as the 
IMFs separate physical processes of a series at various time scales and 
give its temporal variation without a linear assumption, the mean period 
of the nth IMF (Tn) can be estimated as the ratio between the number of 
data (N) and the number of extrema of the series: 

Tn =
N

N◦ extrema
(4) 

And the energy density (En) of the nth IMF (Cn) is defined as: 

En =
1
N
∑N

j=1
[Cn(j) ]2 (5) 

The authors established the spread of the energy densities of white 
noise by using the Monte Carlo method for different series of length (N). 
With this, they studied the relationship between the mean period (Tn) 
and the energy density (En) and defined its spread function. In this way, 
they designed a test to evaluate the significance of each IMF. First, the 
normalized series (between − 1 and 1) is decomposed using EMD 
(Fig. 2a), and the mean period and the energy density of each compo
nent is obtained. Then, the upper and lower lines of the spread function 
(black lines in Fig. 2b) of the energy distribution at a confidence level are 
calculated using the analytical expressions defined in Wu and Huang 
(2004). Finally, the energy density of the IMFs and the spread function 
are compared (blue stars in Fig. 2b), if the energy is located between the 
upper and lower limits should be considered to contain just noise. 
However, this is an a priori test, in which the noise level of the data is 
unknown. For series in which it can be established that an IMF is just 
noise as it contains little useful information (IMF1), its energy can be 
assigned to the 99% confidence upper line (Wu and Huang, 2005). With 
its energy, the energies of the other IMFs are rescaled (red stars in 
Fig. 2b). In this a posteriori tests, the upper line of the spread function 
(upper black line in Fig. 2b) sets the significance threshold. The IMFs 
with an energy above the threshold have physically meaningful repre
sentation. The a posteriori test has been verified and is widely used to lay 
the significance down when using the EMD (Adarsh and Janga Reddy, 
2019; Lee and Ouarda, 2011; Wu and Huang, 2005). To evaluate the 
significance of the trend, this test was applied to the residual as in Sang 
et al. (2014). 

3. Results and discussion 

3.1. Annual and monthly soil moisture anomalies trends 

The results for both trend analysis (MK and EMD) and SM products 
(ERA5L and LF) consistently agree on a general prevalence of negative 
trends, regardless of the type of climate, which implies a change to drier 
conditions in most parts of the European continent during the last 30 
years (Figs. 3 and 4). In general, the EMD method detects more signif
icant trends than MK, and the increase in significant trends when using 

Fig. 2. EMD is applied to an annual SM anomaly series as an example. (a) IMFs C1, C2 and C3 and the residual Rn (blue) obtained in the decomposition of a series x 
(black). (b) Representation of the a priori (blue stars) and a posteriori (red stars) significance tests with the spread lines at a 95% confidence level (black lines). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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EMD is associated with an increase in positive trends. This fact could be 
related to the magnitude of these trends, since the MK does not have the 
power to detect small trends masked by other components of the series 
(Sang et al., 2014). This may imply that in regions showing an increase 

of SM with the EMD but not with MK, the components of the series with 
a nonmonotonic behavior have more weight than its long-term trend. 

The spatial distribution of the obtained trends (Fig. 3) indicates great 
consistency between the methods and temporal scales of the analysis. 

Fig. 3. Spatial distribution of soil moisture anomaly trends obtained with ERA5L and LF for monthly and annual series using MK and EMD methods.  

Fig. 4. Percentage of pixels with significant trends (S, black line) and percentage of positive (P, blue bar) or negative (N, orange bar) trends regarding the significant 
ones, of each SM database and Köppen-Geiger climate regions in Table 1. The results are shown for the two methods, EMD and MK, and the two temporal scales, 
monthly and annual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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With both SM products, positive trends are mainly obtained in Scotland 
and northern Ireland, which implies a change to wetter conditions, 
similar to what Bordi et al. (2009) obtained. Changes to drier conditions 
are located in central and eastern Europe, in line with previous studies 
(Jaagus et al., 2021; Trnka et al., 2009). Thus, regions that show a 
wetting trend are generally located at higher latitudes, in areas where 
the average moisture content is higher, and drying trends are generally 
located in central and southern Europe. This is in line with the “dry gets 
drier, wet gets wetter” trend paradigm studied by Feng and Zhang 
(2015). In contrast, very few and limited regions show distinct trends 
depending on the SM product used, such as Bulgaria, where a positive 
trend dominates with LF, and a negative trend with ERA5L or the Italian 
Peninsula, where a negative trend is observed in monthly series with LF 
but positive with ERA5L. 

At temporal scales, the MK method shows more trends that are sig
nificant in monthly series than in annual series. This could be related to 
the fact that the MK depends on the sample size as well as on the 
magnitude of the trend to be identified (Adamowski et al., 2009; Sang 
et al., 2014). However, this difference is also observed when using EMD. 
This implies fewer interannual changes in this variable, similar to what 
Piles et al. (2019) and Vicente-Serrano et al. (2021) saw when they 
analyzed SM and droughts trends respectively. In the literature, trends 
have usually been analyzed at annual or seasonal scales and assuming 
monotonic behavior; thus, significant long-term trends have barely been 
observed in Europe (Albergel et al., 2013; Dorigo et al., 2012; Feng and 
Zhang, 2015). 

The distribution of trends according to the type of climate is quite 
similar. Although some patterns are observed, in all cases, they imply a 
change to drier conditions (Fig. 4). In general, higher percentages of 
significant trends are located in regions with cold climates (Dfa and 
Dfb). When using MK, regions with temperate climates (Cs and Cf) 
present the lowest percentages of significant trends, while with the 
EMD, this pattern is not observed. Attending to products, higher per
centages of significant trends in arid climate areas (B) and temperate 
with dry summer climate areas (Cs) are observed with LF. Finally, when 
comparing temporal scales, at monthly scale Cs region shows an 
abnormal positive trend percentage with ERA5L associated with positive 
trends obtained in Italy; however, although the number of significant 
trends is very low, a high percentage of positive trends are also obtained 
with this product at monthly scale with EMD. 

Comparative tables were elaborated to quantify the differences be
tween the results obtained with two methodologies (Table 2), temporal 
resolutions (Table 3), and products, similar to Qiu et al. (2016), but 
analyzing only pixels with a significant trend. The match rate is always 
higher than the discrepancies, with the negative trends being more 
consistent. On the one hand, when comparing both methods, it is 
observed that EMD tends to detect positive trends that MK considers 
negative (Table 2). Sang et al. (2014) obtained similar results when 
analyzing precipitation series, and they observed that the MK test 
underestimated the upwards trend. On the other hand, trends obtained 
with various temporal scales applying MK present no discrepancies; 
however, the number of coinciding significant trends is very low. In 
contrast, with EMD, higher values of significant trends are obtained, and 

therefore, discrepancies increase, with its total percentage being greater 
than that of positive coincident trends. These discrepancies again sug
gest that changes to wetter conditions are occurring slightly enough to 
be masked by nonmonotonic components of the series. 

3.2. Monthly pattern of soil moisture anomalies trends 

Despite the general consistency between results when using different 
approaches, some variations have been observed that deserve particular 
attention. The most notable ones were obtained when studying trends of 
the series with different temporal resolutions using the empirical 
decomposition method. To clarify these differences, a dedicated analysis 
of monthly changes and trends was performed. This approach revealed 
that most changes in SM are not uniform among the year. For simplicity, 
only results obtained with the EMD are shown (Figs. 5 and 6), since very 
few significant trends were obtained with MK for this analysis. 

Again, trends obtained with both SM products are consistent. An 
increase in significant negative trends is obtained in April over almost 
the entire continent with both products, which implies a general 
decrease in SM during this month. These results are in concordance with 
several studies that have detected drier springs in Europe over the last 
decades (Jaagus et al., 2021; Trnka et al., 2009; Vautard et al., 2007). In 
contrast, an increasing trend of SM is obtained in the Iberian Peninsula 
for that same month, similar to what Almendra-Martín et al. (2021a) 
observed using a rank-based approach. The same wet pattern in the 
Iberian Peninsula (IP) and dry pattern elsewhere in Europe were ob
tained when analyzing precipitation trends of climatic research unit 
(CRU) monthly anomaly series (Fig. S1), which reinforces our obtained 
results with SM time series, i.e., a change in trend to wetter conditions in 
April and May in the IP. 

In addition, the percentage of significant trends rises during autumn 
(September–October-November) for both products and in the winter 
(December–January-February) for the LF product (Fig. 6). Between 
these months, there is a fluctuation in the sign of the trends obtained, 
which emphasizes the nonmonotonic behavior of SM at this temporal 
scale. November and January show a predominance of decreasing trends 
in most of the European territory, while for December and February, 
increasing trends in SM anomalies are mainly observed. However, a 
constant pattern of increase in SM trends is obtained for the winters in 
the northeastern region (Estonia, Latvia, Lithuania and Belarus), in 
concordance with what Cammalleri et al. (2016) obtained and with the 
increase in the winter precipitation observed by Jaagus et al. (2021) in 
this region. A decrease in significant trends is observed in the summer 
(June–July-August) months; however, there is a predominance of 
negative trends. 

3.3. Drought attribute trends 

Trends in SM anomaly series have been detected; thus, changes in 
related drought characteristics could be expected. To verify this, a 
similar analysis using MK and EMD was conducted on drought attributes 
annual series of ERA5L and LF to identify their changes during the last 
three decades. The EMD method also detected more significant trends 

Table 2 
Comparison of the percentage of trends obtained with the two methods, MK and 
EMD, for the two SM databases used at annual and monthly time scales. Sign “+” 
indicates positive and significant trends, and sign “-” indicates negative and 
significant trends.    

ERA5L LF   

MK + MK - MK + MK - 

Monthly EMD + 9 7 11 11 
EMD - 1 83 1 77 

Annual EMD + 3 2 12 7 
EMD - 0 95 0 81  

Table 3 
Comparison in percentage of trends obtained for the two timescales, annual (A) 
and monthly (M), for the two methods and SM databases used. Sign “+” in
dicates positive and significant trends, and sign “-” indicates negative and sig
nificant trends.    

ERA5L LF   

M + M - M + M - 

EMD A + 15 9 16 12 
A - 12 64 11 61 

MK A + 3 0 10 0 
A - 0 97 0 90  
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than MK, but more importantly, our results obtained with both methods 
show a general increase in the duration and intensity of extreme 
droughts over the European continent (Fig. 7). These results are in 
agreement with the expected evolution based on climate change models 
under different scenarios (Giorgi and Lionello, 2008; Grillakis, 2019; 
Spinoni et al., 2018). In addition, our results indicate that the onset of 
extreme drought events, in general, tends to be delayed a few days per 
year in some regions, especially with ERA5L in arid and temperate re
gions (Fig. S2). 

In this analysis, the increase in significant trends when using EMD is 
associated with a slightly increase in negative trends for intensity and 
duration attributes, which implies a change to shorter and less intense 
droughts in some regions, mainly in Cf and Dfb climates. Again, we 
could only detect these changes with the empirical decomposition 
method and not with the MK approach, which suggests the convenience 
of using methods that account with nonmonotonic behavior to analyze 
the trend in soil moisture anomalies. 

When each type of climate trend is analyzed, different patterns in 
drought trends are observed. Cf, Dfa and Dfb refer to climates without a 
dry season; therefore, lower changes in droughts should be expected. 
Indeed, the results obtained with the intensity series present the lowest 
percentages of significant trends, and almost half of them show a 
decreasing trend in intensity with EMD in Cf and Dfb. However, there is 
a general increase in the duration of droughts in these regions, and the 
start of drought events tends to advance in temperate climate Cf and 
some regions with a Dfb climate. A clear pattern is observed in arid 
regions and regions with more intense, longer and increasingly delayed 
extreme droughts, although the number of significant results depends 
upon the SM product used, as LF detects more trends in duration series 
but less in onset than ERA5L. Similar results were obtained in regions 
with a Cs climate. 

This general increase in the duration and intensity of extreme 

droughts is consistent with several changes observed in the precipitation 
behavior over Europe in prior studies (de Luis et al., 2011; Hänsel et al., 
2019; Hynčica and Huth, 2019), alongside the rise of average temper
ature (Trenberth, 2011) and the consequent increase in potential 
evapotranspiration, which, in turn, causes an increase in extreme events 
such as droughts (Hänsel et al., 2019; Jaagus et al., 2021). 

4. Conclusions 

In this work, the trend of SM in Europe in the last three decades was 
investigated using rank-based and empirical decomposition approaches. 
For this, two SM databases, one from modelling (LF) and the other from 
reanalysis (ERA5L), were used. Anomaly series of SM were calculated at 
monthly and annual temporal scales and were analyzed using two ap
proaches: monotonic (MK) and nonmonotonic (EMD). Strong consis
tency was observed between the results of both databases, methods and 
temporal scales. The distribution of SM anomaly trends in the different 
European climates was also studied, and no clear pattern was identified. 
The results showed a general change trend to drier conditions, mainly 
located in Central and Eastern Europe. Although the MK method has 
been widely used to study the trends of SM, the empirical decomposition 
approach detected more significant trends. The patterns in SM that could 
be identified only with EMD are in accordance with changes observed in 
other hydroclimatic variables on this continent during recent decades, 
such as temperature, precipitation or evaporation. Furthermore, many 
of the trends observed with EMD and not with MK are positive, while 
negative trends are more consistent with both methods. This suggests 
that changes to wetter conditions can be masked by a nonmonotonic 
behavior of the series. 

The most notable differences in SM trends were obtained when 
comparing the results at monthly and annual scales, especially when 
using the EMD method. Less significant trends were observed at annual 

Fig. 5. Spatial distribution of SM anomaly trends (EMD) obtained with monthly ERA5L series for each month.  
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Fig. 6. Spatial distribution of SM anomaly trends (EMD) obtained with monthly LF series for each month.  

Fig. 7. Percentage of pixels with significant trends (S, black line) and percentage of positive (P, blue bar) or negative (N, orange bar) trends regarding the significant 
ones, of duration, intensity and onset annual series of each SM database in each Köppen-Geiger type of climate. The results obtained with the two methods, EMD and 
MK. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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than at monthly scales, but significant ones showed in some regions 
different signs depending on the temporal scale. To further scrutinize 
this mismatch, interannual changes for each month series were analyzed 
using the EMD method. A general decreasing trend in SM anomalies was 
obtained in April over the entire continent, which implies a trend to
wards drier springs in Europe. Just the Iberian Peninsula showed the 
opposite behavior with an increasing trend of SM in April. Autumn and 
winter months showed a fluctuation in the sign of the trends, which 
emphasizes the nonmonotonic behavior of changes in this variable in the 
months when the average SM is the highest. In contrast, summer months 
showed fewer significant trends; however, the significant trends indicate 
a trend towards drier conditions. 

As several changes were observed in the SM series, related changes in 
the characteristics of drought events could also be expected. To evaluate 
this hypothesis, the duration, intensity and onset annual trends of 
extreme droughts in Europe were studied. The results showed a preva
lence of an increase in the duration and intensity of extreme droughts 
and a few days of delayed onset per year. However, some change pat
terns in the different climate regions of Europe could be observed only 
with the EMD method. Areas with climates without dry season (Cf, Dfa 
and Dfb) showed the lowest percentage of significant trends in intensity 
series, and almost half of the area showed a decreasing trend. However, 
the duration of extreme droughts showed a general increasing trend, 
especially in the coldest regions (Dfb). In arid regions, a clear pattern of 
increasingly longer, more intense and delayed extreme droughts was 
observed. In this analysis, the EMD method again detects more trends 
than MK, in particular, the negative (drier conditions) trends. 

SM trends have been commonly studied through approaches that just 
account for the monotonic change and at large temporal scales. This has 
resulted in few to no changes in patterns being detected when analyzing 
this variable in Europe during recent decades. However, trends in 
related variables such as temperature or precipitation have been 
observed due to the impact of climate change, so changes could also be 
expected in SM. The empirical decomposition approach used in this 
work has revealed a large number of trends that show a general 
decreasing SM pattern in Europe, reconciling the results previously re
ported in the literature when analyzing the trends in intimately linked 
variables such as temperature, precipitation or evaporation. The results 
of this work prove that empirical decomposition approaches allow to 
account for the nonmonotonic behavior of the series and can be a suit
able tool to understand the changes in SM dynamics, as well as the 
impact of climate change on this variable, which could be instrumental 
to better understand subsequent changes in the Earth’s water cycle. 
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Rimkus, Semenova I., Stonevičius, E., Štěpánek, P., Trnka, M., Vicente-Serrano, S., 
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