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Abstract 

The growing concerns regarding the lack of fossil fuels, their costs, and their 
impact on the environment have led governmental institutions to launch energy 
policies that promote the increasing installation of technologies that use 
renewable energy sources to generate energy. The increasing penetration of 
renewable energy sources brings a great fluctuation on the generation side, 
which strongly affects the power and energy system management. The control of 
this system is moving from hierarchical and central to a smart and distributed 
approach. The system operators are nowadays starting to consider the final end-
users (consumers and prosumers) as a part of the solution in power system 
operation activities. In this sense, the end-users are changing their behavior from 
passive to active players. The role of aggregators is essential in order to empower 
the end-users, also contributing to those behavior changes. Although in several 
countries aggregators are legally recognized as an entity of the power and energy 
system, its role being mainly centered on representing end-users in wholesale 
market participation. 

This work contributes to the advancement of the state-of-the-art with 
models that enable the active involvement of the end-users in electricity markets 
in order to become key participants in the management of power and energy 
systems. Aggregators are expected to play an essential role in these models, 
making the connection between the residential end-users, electricity markets, 
and network operators. Thus, this work focuses on providing solutions to a wide 
variety of challenges faced by aggregators. 

The main results of this work include the developed models to enable 
consumers and prosumers participation in electricity markets and power and 
energy systems management. The proposed decision support models consider 
demand-side management applications, local electricity market models, 
electricity portfolio management, and local ancillary services. 

The proposed models are validated through case studies based on real data. 
The used scenarios allow a comprehensive validation of the models from 
different perspectives, namely end-users, aggregators, and network operators. 
The considered case studies were carefully selected to demonstrate the 
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characteristics of each model, and to demonstrate how each of them contributes 
to answering the research questions defined to this work.  

Keywords: Aggregator; Decision-support Models; Electricity Markets; 
Electricity End-users; Local Ancillary Services; Local 
Electricity Markets. 
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Resumen 

La creciente preocupación por la escasez de combustibles fósiles, sus costos 
y su impacto en el medio ambiente ha llevado a las instituciones 
gubernamentales a lanzar políticas energéticas que promuevan la creciente 
instalación de tecnologías que utilizan fuentes de energía renovables para 
generar energía. La creciente penetración de las fuentes de energía renovable trae 
consigo una gran fluctuación en el lado de la generación, lo que afecta 
fuertemente la gestión del sistema de potencia y energía. El control de este 
sistema está pasando de un enfoque jerárquico y central a un enfoque inteligente 
y distribuido. Actualmente, los operadores del sistema están comenzando a 
considerar a los usuarios finales (consumidores y prosumidores) como parte de 
la solución en las actividades de operación del sistema eléctrico. En este sentido, 
los usuarios finales están cambiando su comportamiento de jugadores pasivos a 
jugadores activos. El papel de los agregadores es esencial para empoderar a los 
usuarios finales, contribuyendo también a esos cambios de comportamiento. 
Aunque en varios países los agregadores están legalmente reconocidos como una 
entidad del sistema eléctrico y energético, su papel se centra principalmente en 
representar a los usuarios finales en la participación del mercado mayorista. 

Este trabajo contribuye al avance del estado del arte con modelos que 
permiten la participación activa de los usuarios finales en los mercados eléctricos 
para convertirse en participantes clave en la gestión de los sistemas de potencia 
y energía. Se espera que los agregadores desempeñen un papel esencial en estos 
modelos, haciendo la conexión entre los usuarios finales residenciales, los 
mercados de electricidad y los operadores de red. Por lo tanto, este trabajo se 
enfoca en brindar soluciones a una amplia variedad de desafíos que enfrentan los 
agregadores. 

Los principales resultados de este trabajo incluyen los modelos 
desarrollados para permitir la participación de los consumidores y prosumidores 
en los mercados eléctricos y la gestión de los sistemas de potencia y energía. Los 
modelos de soporte de decisiones propuestos consideran aplicaciones de gestión 
del lado de la demanda, modelos de mercado eléctrico local, gestión de cartera 
de electricidad y servicios auxiliares locales. 
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Los modelos propuestos son validan mediante estudios de casos basados en 
datos reales. Los escenarios utilizados permiten una validación integral de los 
modelos desde diferentes perspectivas, a saber, usuarios finales, agregadores y 
operadores de red. Los casos de estudio considerados fueron cuidadosamente 
seleccionados para demostrar las características de cada modelo y demostrar 
cómo cada uno de ellos contribuye a responder las preguntas de investigación 
definidas para este trabajo 

Palabras clave:  Agregador; Modelos de Apoyo a la Decisión; Mercados 
Eléctricos; Usuarios Finales de Electricidad; Servicios 
Auxiliares Locales; Mercados Eléctricos Locales
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Resumo 

As crescentes preocupações com a falta de combustíveis fósseis, com seus 
cuscos e seus impactos no meio ambiente têm levado instituições governamentais 
a criarem políticas energéticas que promovam a instalação cada vez maior de 
tecnologias que utilizam fontes renováveis de energia para gerar eletricidade. A 
crescente penetração de fontes de energia renovável traz uma grande flutuação 
na geração, o que afeta fortemente a gestão do sistema de energia. O controlo 
desse sistema está a mudar de uma abordagem hierárquica e central para uma 
abordagem inteligente e distribuída. Atualmente, os operadores do sistema 
começam a considerar os utilizadores finais (consumidores e prosumers) como 
parte da solução nas atividades de operação do sistema de energia elétrico. Nesse 
sentido, os utilizadores finais estão a mudar o seu comportamento de utilizadores 
passivos para ativos. O papel dos agregadores é realmente essencial para 
potencializar os utilizadores finais, contribuindo também para essas mudanças 
de comportamento. Embora em vários países os agregadores sejam legalmente 
reconhecidos como entidade do sistema de energia elétrico, o seu papel centra-se 
principalmente na representação dos utilizadores finais na participação no 
mercado grossista de eletricidade. 

Este trabalho contribui para o avanço do estado da arte com modelos que 
permitem o envolvimento ativo dos utilizadores finais nos mercados de 
eletricidade para se tornarem participantes-chave na gestão do sistema elétrico 
de energia. Espera-se que os agregadores desempenhem um papel essencial 
nestes modelos, fazendo a ligação entre os utilizadores finais residenciais, os 
mercados de eletricidade e os operadores de rede. Assim, este trabalho foca-se 
em fornecer soluções para uma ampla variedade de desafios enfrentados pelos 
agregadores. 

Os principais deste trabalho incluem a participação dos consumidores e 
prosumers nos mercados de eletricidade e na gestão dos sistemas de energia e 
energia. Os modelos de suporte desenvolvidos consideram aplicações de gestão 
do lado do consumidor, modelos de mercado local de eletricidade, gestão de 
portfólio de eletricidade e serviços auxiliares locais. 

Os modelos propostos são validados através de casos de estudo baseados 
em dados reais. Os cenários utilizados permitem uma validação abrangente dos 
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modelos a partir de diferentes perspetivas, nomeadamente utilizadores finais, 
agregadores e operadores de rede. Os casos de estudo considerados foram 
criteriosamente selecionados para demonstrar as características de cada modelo 
e demonstrar como cada um deles contribui para responder às questões de 
pesquisa definidas neste trabalho. 

Palavras-chave: Agregador; Modelos de Apoio à Decisão; Mercados de 
Eletricidade; Usuários Finais de Eletricidade; Serviços 
Auxiliares de Sistema Locais; Mercados Locais de 
Eletricidade. 
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1 Introduction 

The motivation for the development of this Doctor of Philosophy (Ph.D.) 
thesis is presented in section 1.1, which leads to the definition of the related 
research questions and objectives, presented in section 1.2. The key contributions 
of the developed work and the related publications are described in section 1.3. 
Finally, section 1.4 presents the outline and organization of the Ph.D. thesis 
document.   

1.1 Motivation 
Today’s societies are highly dependent on electrical energy consumption. 

Considering that societies are composed of rational beings, which always search 
for the best possible comfort, the electricity consumption needs to increase in 
order to satisfy them. Considering this behavior, the institutional government 
has been fighting the consequences that a drastic increase of electricity 
consumption brings, imposing and suggesting different actions. The European 
Union (EU) has shown great concern, from an early stage, regarding climate 
change, environmental and energy issues [1]. The reduction of greenhouse gas 
(GHG), the share of energy renewable-based generation, and the energy 
efficiency are considered by the EU as key aspects in the future of electric power 
systems. Still, they can also condition the consumption and production of 
electrical energy. In September of 2020, the EU published in [2] a revision of the 
defined targets of [3] maintaining the following trends: reduction of GHG 
emissions by at least 40% from the levels of 1990; the target of 32% of renewable 
energy consumption share; and the energy efficiency should be improved at least 
32,5% by 2030. The “European Green Deal” created on 1st December of 2019 [4] 
constitutes a collection of policy initiatives purposed by the European 
Commission (EC) with the propose of getting the EU climate neutral in 2050. To 
obtain neutrality, EU extends its goals for other different sectors, including 
construction, biodiversity, energy, transport, and food. More ambitious targets, 
aligned with the “European Green Deal” and defined in [5], identify goals for an 
economy with net-zero GHG emissions by 2050 [6]. By analyzing the EC report 
published on 26th October of 2021 [7], it is possible to conclude that the previously 
published directives are starting to show results. According to the report results, the 
power sources using fossil fuels were for the first time (2020) exceeded by power 
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sources using renewables; in specific 38% for renewables, 37% for fossil fuels and 
25% for others (nuclear fission). Regarding GHG emissions values, the report also 
presents encouraging results: in 2020 a value of 31% (compared with 1990 values) is 
registered as the verified reduction. This value is largely due to the Covid-19 
pandemic situation, but the pre-set target of 40% by 2030 is expected to be easily 
achieved. 

 The consequent large integration of renewable energy sources (RES) (e.g., 
wind, solar, among others) has variable production, and the installed power is often 
not an effective production. Since the behavior of RES differs from conventional 
energy sources, the integration of RES with particularities presented in reference [8] 
is reflected in the power and energy systems (PES) and brings different challenges 
to its normal operation [9]. The problems provoked by large scale-RES penetration 
in the PES can be mitigated by  installing of energy storage systems (ESS) [10], [11]. 
The integration of RES and ESS needs a sophistical energy management system 
(EMS) for successful integration [12], [13]. EMS can be oriented to obtain single or 
multiple objectives, still that the most common are economic objectives [14]. These 
objectives can be fulfilled at the transmission, distribution, or end-user level. In this 
way, the application of EMS at the end-user level can contribute to the empowerment 
of electricity end-users (consumers and prosumers) meeting EU guidelines.  

With higher distributed energy resources (DER) penetration and utilization, 
customers are becoming more active players in the electric grid, either as prosumers 
or by participating in demand-response (DR) programs offering a variety of system 
benefits [15], [16]. DR can be considered a tool to maintain the stability of PES from 
the demand side [17]. DR programs were initially designed and implemented for 
industrial and commercial customers, hence residential customers were out of this 
initial scope due to the small DR contribution that each one could offer [18]. 
Resources aggregation is one of the promising solutions identified to include the 
residential consumers as participants in DR events and markets and make use of 
their flexibility potential. In this sense, the aggregator entity gains a solid role in PES 
[19]. The application scope of aggregators is not just limited to aggregating DR. In 
fact, the literature offers several other different types, e.g., a load aggregator mainly 
gathers the load flexibility of residential customers; a production aggregator (e.g., 
virtual power plant (VPP)) groups small generation units [20]; an EV aggregator 
groups individual EVs [21]. In this way, an aggregator is a legal agent and can 
participate in electricity power market (intraday, day ahead, etc.), and in regulating 
or balancing markets.  
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With the increase of RES installation in small end-user facilities, households’ 
consumers have become prosumers with the ability not only to meet their needs but 
also to sell surplus energy, generating some profits. Given the impossibility of 
prosumers' surplus energy being sold on the wholesale market due to minimum 
quantity restrictions, aggregators play a fundamental role in this process [22]. 
Portfolio optimization appears as a management tool that can give support to 
electricity sellers and buyers. In a traditional portfolio optimization problem, the 
solution is composed of the allocation of capital within different investments 
opportunities. The portfolio application on EM allocates electricity within different 
markets (day-ahead markets, real-time markets, bilateral contracts, forward) [23].  
Aggregators can make the use of portfolio techniques to find the best schedule of 
their aggregated electricity to obtain the best transactions in the electricity market, 
considering all available options [24]. 

The RES installation also has an impact in the feed-in tariffs (FiT) value. Initially 
the creation of FiT aimed to increase the number of DER installations to meet the 
imposed environmental targets. This effect was also reflected at the household level 
with high adherence to the installation of small generation PV units. A gradual 
decrease in FiT has been observed over the years (e.g., in Portugal, in 2019, the FiT 
was 95 €/MWh, and in the current year (2022), the FiT is 45 €/MWh). As a result, 
these decreases may have an impact on RES companies’ profits or encourage higher 
levels of self-consumption, e.g. when consumers with PV systems have ESS installed 
[25], [26]. The main challenges arise during high generation periods, during which 
RES production surpasses a prosumer demand, and therefore, overall generation 
may not be fully utilized. If a ESS is not available, the surplus energy could be 
curtailed or fed back into the grid [27]. Curtailment can lead prosumers to invest in 
lower generation capacity and reduce the profitability of the installed capacity. 
Feeding into the grid brings other issues, such as the requirement for a fair price, 
since the existing heavily subsidized feed-in tariffs may not be viable as the number 
of prosumers increases. 

Consequently, a significant need for drastic changes in the EM emerges, 
comprising both the retail and wholesale markets. Accordingly, the EC promptly the 
restructuring and liberalization of EM in the EU. This process emerged in 1996 with 
the directive 96/92/EC of the European Parliament and Council, introducing 
competition in the electricity markets (EM) that could increase efficiency and reduce 
electricity prices. However, the market competition was threatened by 
discriminatory access to transmission and distribution networks and market 
dominance. To combat the previous situation, the EU introduced in 2003 the 
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2003/54/EC directive (replacing 96/92/EC). This directive guarantees transparency in 
electricity prices, non-discriminatory access to market and network and promotes 
the separation of entities related to the exploration of transmission and distribution 
systems. The third energy package introduced in 2009 (2009/72/EC) replaced the last 
2003/54/EC published directive. It reinforced the separation of legal ownership of 
network operation from suppliers and generation, emphasizes the consumers’ right 
to free choice of suppliers, and strengthens cross-border trading in the EU.  In 2019, 
Directive 2019/944 with the name “Common rules for the internal market for 
electricity” was published. It focuses on creating a truly integrated and competitive, 
consumer-centered, flexible, fair, and transparent electricity market in the EU. 
Directive 2019/944 imposes rules on consumer empowerment and protection. Also, 
this directive promotes the final end-user of electricity with the possibility to evolve 
from a passive player to an active player. Furthermore, it promotes their enrolment 
in the power system through the creation of new business opportunities [28].  

Endowing end-users with a more active role in the EM are leading to the 
emergence of Local Electricity Markets (LEM). LEM are arising as a prosumer-
centered model with the possibility for sellers and buyers to find the best market 
opportunities [29]. Furthermore, LEM can contribute to the empowering of users 
[30], as these are implemented locally and designed for the participation of 
consumers and prosumers, complying with the guidelines of the EU for the energy 
communities [31], [32]. LEM can have two main proposes, one of them being 
electricity trading [33], where prosumers and consumers can transact electricity 
without necessarily a central authority. The other propose is flexibility trading [34], 
where a central entity (e.g., aggregator, distributed system operator (DSO)) request 
flexibility in a specified local area to solve grid issues [35]. LEM could also support 
ancillary services (AS) provisions at the local level [36]. These types of models have 
come into great focus in the literature [37], and there is a need to create 
methodologies to support and guide the users in real-world applications.  

1.2 Objectives 
The need for electricity end-users (prosumers and consumers) to become 

active players in PES, and EM in particular; and the lack of suitable decision 
support methodologies that can enable them coping with the new challenges, 
especially via entities such as aggregators, are some of the relevant 
acknowledged constraints in the current state of the art. The research problems 
that arise from this gap highlight the need for improved solutions to assist the 
decisions and operation of aggregators. This enables consumers and prosumers 
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to adapt their behaviors in order to gain better benefits for themselves and for the 
system. As a result, it is essential to consider the participation of consumers and 
prosumers at different levels, namely: in the management of PES, participation 
in wholesale markets and AS markets, and in LEM participation. Normally, 
individual consumers or prosumers cannot meet the requirements to participate 
in the activities listed above or do not have the knowledge, capability, will or 
capacity to do so. In this context, the role of the aggregator becomes fundamental 
for the empowerment of the consumers and prosumers in EM and PES. In sum, 
the gaps are focused on aggregator, prosumer and consumer activities involving 
the participation in PES and EM. The main research question established in this 
Ph.D. was identified by the significant breakthroughs that are necessary to cover 
the identified gaps: 

Q0 - Can innovative aggregator-oriented business, market and flexibility models 
boost prosumers/consumers active participation in future PES? 

In order to respond to research question Q0, there is a need to divide the 
main question into different sub-research questions. Therefore, the following 
group of research questions arises:   

Q1 - How can consumption flexibility and demand response models enable the 
participation of prosumers/consumers in a fair and efficient way, with benefit for all the 
involved players and the system? 

Q2 – How can electricity market models be improved to enable an efficient and 
intensive use of local resources (distributed generation, EV, demand flexibility, and 
storage)? 

Q3 - How can players improve their participation in future EM considering the 
new and evolving opportunities including, aggregators, energy communities, and LEM? 

Q4 - How can we take full advantage of local resources for implementing new 
models for AS provision with benefit(s) to distribution system operators and local players 
including prosumers and consumers? 

Q5 - How can prosumers/consumers use their flexibility in an efficient and 
advantageous way in their own installations and to respond to implicit and explicit 
flexibility requests?  

The hypothesis of this Ph.D. work aims at demonstrating that electricity 
end-users (prosumers and consumers), namely households, can have an active 
participation in PES and EM. This can bring benefits not only to themselves but 
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also to other stakeholders (e.g., DSO, aggregator, etc.) participating in the smart 
grid. In order to prove this hypothesis, four central topics are identified and will 
be the subject of study of this work: demand-side management, LEM, electricity 
portfolio management, and local ancillary services. 

The development of this Ph.D. must result in a decision support 
methodology capable of guiding consumers and prosumers in their daily energy 
management activities, considering the participation in EM and contributing to 
the management of PES. It is also needed to develop models that include the 
possibility of residential end-users (prosumers and consumers) executing 
demand-side management actions; the option of prosumers and consumers 
participating in LEM transacting electricity between them; the opportunity to use 
the portfolio management methods to find the best markets to allocate their 
transactions and the possibility of providing ancillary services to upper levels. 
The expected implementation models should consist mostly of optimization 
solutions, simulation models, and analyses. Exact methods (e.g., Mixed Integer 
Linear Programming (MILP)) or intelligent search algorithms (e.g., Particle 
Swarm Optimization (PSO)) should be applied to solve the optimization 
problems. 

The conclusions of this Ph.D. work will be supported by experiments based 
on real data provided from both laboratory and real environments. The hosting 
institution Research Group on Intelligent Engineering and Computing for 
Advanced Innovation and Development (GECAD) will provide all software and 
hardware necessary to develop and test the created models. 

Taking into account the previously explained hypothesis and ensuring the 
answers to the identified research questions, the following objectives are 
considered: 

1. Development of a methodology for optimization of demand response 
(flexibility) of residential households, 

a. Analyze different resources to support demand response such 
as, ESS, PV-systems, and controllable loads 

b. Evaluation of model scalability considering many households 
managed by an aggregator  

c. Explore the value of flexibility for the grid and distribution 
operator  
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2. Development of new electricity market models at the local level for 
households’ participation 

a. Analyze existing published models and solutions for LEM 
models  

b. Evaluate the benefits of local transactions for all involved 
players 

c. Comparing the centralized and distributed resolution 
methodologies 

3.  Development of methodology of portfolio optimization for an 
aggregator to enable the households’ participation in EM 

a. Examine the influence of the risk in the portfolio allocation 
assets (electricity in different markets) 

b. Analysis of the participation of an energy community in the 
wholesale market through an aggregator 

4. Investigate the possibility of households providing AS contributing 
with an active role in the distribution grid operation 

a. Simulation of an action-based market at the local level to 
negotiate the flexibility needed for solving problems in a 
distribution grid 

5. Optimization and Simulation of scenarios based on real and simulated 
data to test and validate the models 

a. Testing and validating different optimization methods  
b. Simulation of scenarios based on real EM’ data 
c. Analysis of the realistic scenarios simulation results using the 

developed system to support market players’ actions 

1.3 Contributions and Publications 
The realization of the defined objectives and the consequent success of 

responses to the specified research questions fully cover the goals defined in the 
Ph.D. scholarship (reference SFRH/BD/133086/2017 and 
COVID/BD/152167/2021) in the scope of the “Ph.D. Studentships and Post-
Doctoral Fellowships” and “Exceptional Grants to Mitigate the Impact of 
COVID-19” respectively, both from the programme of FCT (Fundação para a 
Ciência e a Tecnologia - Science and Technology Foundation). In addition, the 
results obtained in the scope of this thesis also partially cover the objectives and 
results of several national and international R&D projects with the participation 
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or coordination of GECAD, the hosting institution for the development of the 
research activities of this Ph.D. The considered projects are: 

• TradeRES – New Markets Design & Models for 100% Renewable 
Power Systems. Funded by the European Union’s Horizon 2020 
research and innovation program under grant agreement 864276; 

To TradeRes project (ongoing), the work of this Ph.D. contributed to 
developing electricity transaction models within energy communities. Although 
the results obtained will not be reported here, they are presented in the 
deliverables of the project. 

• CENERGETIC – Coordinated ENErgy Resource manaGEment under 
uncerTainty considering electrIc vehiCles and demand flexibility in 
distribution networks. PTDC/EEI-EEE/28983/2017; 

The models developed within the scope of this work related to EV and their 
integration into the local context also contributed to the CENERGETIC project 
(finalized). The results reported from the publications that constitute the work of 
this Ph.D. were also reported in the projects deliverables.  

• MAS-Society – Multi-Agent Systems SemantiC Interoperability for 
simulation and dEcision supporT in complex energY systems, 
reference no. PTDC/EEI-EEE/28954/2017; 

In the MAS-Society project (finalized), the work developed in this Ph.D. 
essentially contributed to the application of the portfolio theory to support 
participating players in the electricity markets. Therefore, the results reposted in 
this work, considering the portfolio theory application, are part of the projects 
results. 

• DOMINOES – Smart Distribution Grid: A Market Driven Approach 
for the Next Generation of Advanced Operation Models and 
Services, under the H2020 grant agreement no. 771066; 

For the DOMINOES project (finalized), this Ph.D. work contributed to 
models developed for acquiring AS at the local level using the available flexibility 
provided by small electricity end-users. Accordingly, the results obtained from 
the application of these models were reported in the deliverables of the project 
had a different case study from those presented in this document.  
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• CONTEST – Innovative CONsumer aggregation to improve demand 
response and Tariff design for Energy and Services Transactions, 
reference no. SAICT-POL/23575/2016; 

Considering the CONTEST project (finalized), the model that includes the 
aggregator as a DR service provider developed in this Ph.D. work contributed to 
the project’s outcomes. The presented results in this work are not reported in the 
projects deliverables.  

• DREAM-GO – Enabling Demand Response for short and real-time 
Efficient And Market Based smart Grid Operation – An intelligent 
and real-time simulation approach. Funded by the European Union’s 
Horizon 2020 research and innovation programme under the Marie 
Sklodowska-Curie grant agreement no. 641794; 

In the scope of DREAM-GO (finalized), the models developed in this Ph.D. 
work contributed to the DR actions implementation using metaheuristic 
algorithms. The results obtained with the DR models reported in this document 
were part of the projects results.  

The results and the work achieved during the development of this Ph.D. 
thesis ensured the publication of nineteen scientific papers. Ten papers were 
presented and published in the proceedings of top-level conferences in the fields 
of power systems and computer science; one book chapter has been published in 
a book dedicated to LEM; and ten journal papers have been published in JCR1 
indexed journals with impact factors. Seven of the published papers compose the 
core of this Ph.D. thesis (six published in scientific international journals and one 
in scientific international conference proceedings) by fulfilling the proposed 
objectives and answering the research questions. The seven papers are presented 
in Appendix A. Core Publications, and their fundamental contributions to cover 
this Ph.D. thesis’ objectives are presented in chapter 2. The seven core 
publications of this Ph.D. work are as follows: 

I. Faia, R., Faria, P., Vale, Z., & Spinola, J. (2019). Demand response 
optimization using particle swarm algorithm considering optimum 

 
 

1 Journal Citation Reports (JCR): https://jcr.clarivate.com/.  

https://jcr.clarivate.com/
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battery energy storage schedule in a residential 
house. Energies, 12(9), 1645. 

II. Lezama, F., Faia, R., Faria, P., & Vale, Z. (2020). Demand response of 
residential houses equipped with PV-battery systems: An application 
study using evolutionary algorithms. Energies, 13(10), 2466. 

III. Faia, R., Soares, J., Pinto, T., Lezama, F., Vale, Z., & Corchado, J. M. 
(2021). Optimal model for local energy community scheduling 
considering peer to peer electricity transactions. IEEE Access, 9, 
12420-12430.J 

IV. Faia, R., Soares, J., Ghazvini, M. A. F., Franco, J. F., & Vale, Z. (2021). 
Local Electricity Markets for Electric Vehicles: An Application Study 
Using a Decentralized Iterative Approach. Frontiers in Energy 
Research, 563. 

V. Faia, R., Pinto, T., Vale, Z., & Corchado, J. M. (2021). Portfolio 
optimization of electricity markets participation using forecasting 
error in risk formulation. International Journal of Electrical Power & 
Energy Systems, 129, 106739. 

VI. Faia, R., Pinto, T., Vale, Z., & Corchado, J. M. (2021). Prosumer 
community portfolio optimization via aggregator: The case of the 
iberian electricity market and portuguese retail market. Energies, 
14(13), 3747. 

VII. Faia, R., Pinto, T., Vale, Z., & Corchado, J. M. (2019, September). A 
local electricity market model for DSO flexibility trading. In 2019 16th 
International Conference on the European Energy Market (EEM) (pp. 
1-5). IEEE. 

In addition, there are three manuscripts submitted for publication in international 
journals with preprints available in public mode to complement and reinforce the 
realization of the proposed objectives. These papers are available in Appendix B. 
Preprints. 

I. Faia, R., Lezama, F., Pinto, T., Faria, P., Vale, Z., Terras, J., & 
Albuquerque, S. (2022). A Simulation of Market-based Non-
Frequency Local Ancillary Services Procurement Based on Demand 
Flexibility. 

II. Faia, R., Morais, H., Pinto, T., Lezama, F., Vale, Z. (2022). Indoor 
Temperature Evolution Modelling Through Computational 
Intelligence 
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III. Faia, R., Lezama, F., Vale, Z., Soares, J., Pinto, T., Corchado, J. M. 
(2022). Local Electricity Markets – Review 

The combinations of the contributions provided by the work developed in 
the scope of the Ph.D. work results in different models able to support the 
decisions of aggregators, prosumers and consumers in the participation of EM 
and management of PES. Figure 1-1 presents the conceptual overview of the 
study in this Ph.D. 

 
Figure 1-1 – Conceptual overview of the work developed 

Figure 1-1 presents the conceptual overview of the work developed in this 
Ph.D., with the representation of the prosumer in the center. This figure 
highlights the aggregator as an important entity to enable the prosumer 
participation in some activities and the key components that underlie the main 
activities that prosumers can participate or get involved in. The four main 
components presented in Figure 1-1 integrate the decision support features that 
enable: (i) demand-side management that includes the possibility of consumers 
and prosumers to modify their consumption demand (presented in Core Paper I 
[38] and Core Paper II [39]); (ii) the participation in LEM, considering the 
possibilities for electricity transactions with neighbors (presented in Core Paper 
III [40] and Core Paper IV [41]); (iii) the possibility of using electricity portfolio 
management techniques, choosing the best opportunities to perform the 
transactions (presented in Core Paper V [42] and Core Paper VI [43]); and the 
possibility of providing ancillary services from the local level through a novel 
market structure (present in Core Paper VII [44]).  

All developed modules are created with focus on consumer and prosumer 
activities, considering them as a central entity in the proposed system. 
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Generation resources (PV generators) and storage resources (home batteries and 
EV batteries) are considered on the prosumer or consumer side. Therefore, 
through optimization and simulation approaches, the implemented 
methodologies and models provide the best solution considering the available 
resources and the purpose for which they are intended.  

To support prosumers in demand side management (DSM) actions the 
models presented in Core Paper I [38] and Core Paper II [39] and Other Paper I-V in 
[45]–[49] have been proposed. Core Paper I and Core Paper II [39] consider the 
possibility of prosumers realizing DR in order to minimize the costs of energy 
usage. Core Paper I [38], provides a single application for the prosumers to realize 
DR without contracting other entities (e.g., aggregator). The solution is obtained 
considering two different approaches (exact and non-exact). Core Paper II [39] 
considers a service provision by an aggregator to perform DR, in which 
prosumers’ houses pay a fee to the aggregator as compensation for the provided 
service. This paper provides a model to schedule the best options to execute the 
DR. To obtain the solution, the aggregator solves the optimization problem by 
considering metaheuristic algorithms (non-exact resolutions).  

The support for the prosumers’ participation in LEM is presented in Core 
Paper III [40], Core Paper IV [41], and also in Other Paper VI-IX  [50]–[53]. In Core 
Paper III [40] a centralized solution is obtained considering that prosumers realize 
peer-to-peer (P2P) transactions and use the main grid as a backup. In this study, 
an exact solution was found to minimize the overall costs of the community 
members. Core Paper IV [41] presents a study of a LEM model that includes 
prosumers and EVs. An iterative and distributed solution was proposed to solve 
the problem. 

 Electricity portfolio management support was analyzed in Core Paper V [42] 
and Core Paper VI [43] and also Other Paper X [54] and Other Paper XI [55]. Core 
Paper V [42] considers the participation of an aggregator in different market 
possibilities supported by portfolio optimization analyses. The model proposed 
in Core Paper VI [43], comprises the aggregator participation in the wholesale 
electricity market (a spot market and six intraday market sessions) or the 
purchase of electricity from a retailer.  

Regarding the local AS participation, the support is given by the models 
proposed in Core Paper VII [44], Other Paper XII [56] and Preprint I [57]. These 
works comprise simulation studies. In Core Paper VII [44], a local market for AS 
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services provisions has been proposed, prosumers and consumers can respond 
to the flexibility request with offers of demand reductions. The offers are selected 
according to an asymmetric auction mechanism. Preprint I [57] also presents a 
local AS provision market for voltage bus and current lines control. This work 
analyses different types of consumers behaviors in submitting offers on the local 
AS provision market. 

1.4 Document Structure 
This thesis document contains three chapters. This chapter presents the 

introduction and exposes the motivation for developing this Ph.D. thesis, a 
background overview of the most significant subjects related to this work, the 
identified research questions and objectives, and a summary of the key 
contributions. 

Chapter 2 describes the contributions of this thesis, explaining the research 
questions and discussing how each core paper addresses these questions, 
accomplishing the determined objectives. The chapter contains the key 
contributions of this Ph.D. work, in which each subsection addresses a specific 
topic associated with a research question. 

Finally, chapter 3 presents the most relevant conclusions and findings 
completed from the developed work. Perspectives of future research are also 
presented in this final chapter. 
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2 Contributions 

This chapter presents the key contributions of the developed work and 
discusses how each of the core papers of this Ph.D. thesis addresses the presented 
research questions. The fulfilment of the Ph.D. objectives is also described as a 
result of several key contributions.  

2.1 Introduction 
Adequate models and methodologies are fundamental to provide support 

for the small electricity end-users (consumers and prosumers) in EM 
participation and PES management involvement. Using these models and 
methods, electricity end-users (consumers and prosumers) are able to obtain 
advantages from participating in the multiple activities discussed in the 
motivation of this work. The research questions stated in the introduction section 
and the subsequent characterization of the Ph.D. work's objectives were 
motivated by the current gap in the literature regarding this form of support for 
small electricity end-users in EM participation and PES management 
involvement. 

As a result of this Ph.D. research, several models and methods have been 
developed, which is crucial to overcome the field's limitations. Furthermore, the 
obtained results contribute to the progress of the current state of the art by 
offering solutions to the research questions that have been defined as relevant to 
such development.  

Table 2-1 presents the relation between each publication and the key 
contributions of this thesis. The identified key contributions are also associated 
with each related objective defined previously. Publication “Core Paper” I to VII 
[38]–[44] represents the core publications (six journal papers and one conference 
paper) of this Ph.D. work, previously introduced in section 1.3.  The “Other” 
column identifies supplementary scientific publications, in total twelve (seven 
conference papers, four journal papers and one book chapter), that have also been 
published in the scope of this Ph.D. research, complementing with additional 
results the achievements of the core publications. Additionally, the “Preprint” 
column considers important unpublished papers that give complementary 



 

 

Decision Support for Participation in Electricity Markets considering the Transaction of Services and 
Electricity at the Local Level 

20 2022 

support for this Ph.D. work, three in total; these papers have been submitted to 
JCR journals and were briefly presented in section 1.3. 

Table 2-1 - Ph.D. thesis key contributions, related objectives, publications, and preprints. 

Key 
Contributions 

Related 
Objectives 

Publications 
Preprint 

Core Other 
I II III IV V VI VII I-XII I II III 

[38] [39] [40] [41] [42] [43] [44] [45]-[56] [57] [58] [59] 

Demand Side 
Management 

1 
(see section 

2.2) 
X X      

[45]  
[46] 
[47]  
[48] 
[49] 

   

Local 
Electricity 
Markets 

2 
(see section 

2.3) 
  X X    

[50] 
[51] 
[52] 
[53] 

  X 

Electricity 
Portfolio 
Management  

3 
(see section 

2.4) 
    X X  

[54]  
[55]    

Local Ancillary 
Services  

4 
(see section 

2.5) 
      X [56] X   

Experiments  
5 

(see section 
2.6) 

X X X X X X X  X X  

As can be seen from Table 2-1, the key contributions are covered by at least 
one core publication. In addition, other publications and preprints resulted from 
this Ph.D. study and address particular issues on the related topics, complement 
and extend the core papers' achievements. The objectives of this Ph.D. work are 
completed or partially fulfilled by one of the contributions presented in Table 2-1. 
The research questions can be related to one or more key contributions. The 
following sections present each of the key contributions, the link with the 
respective research question(s), and specifics how the created core papers attend 
to the contributions that give response to the research questions of this Ph.D. 
work.        

2.2 Demand Side Management  
 Section 2.2 responds to Q1 - How can consumption flexibility and demand 

response models enable the participation of prosumers/consumers in a fair and efficient 
way, with benefit for all the involved players and the system? 

DSM concept was introduced to enable energy demand adaptation from the 
consumers' side, avoiding high consumption peaks and enabling full use of 
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generation in times of surplus [60]. According to [61], DSM is defined as an 
arrangement of actions to encourage electricity end-users to modify their energy 
consumption pattern to match the demand with the available supply. Reference 
[62] states that DSM first promoted, in the past, the engagement of the consumers 
in a market that has historically been ‘invisible’ to them. Industrial large 
consumers were initially, the targeted players of DSM programs due to their 
ability to cause considerable adjustments on the system level. The adoption of 
smart metering infrastructures facilitates the transaction of DSM from the 
industrial to the residential sector [63]. However, applying these programs to 
residential customers is not as straightforward since the direct control of loads 
could compromise the user's privacy and affect the user's comfort [64]. Then an 
approach that considers a stand-alone DSM application where DR is performed 
is presented. 

Core Paper I [38] proposes a DSM methodology applied to a generic house 
to minimize the costs of energy usage. The methodology considers a DR 
optimization approach considering the availability of other resources. The users 
can perform DR actions in their facilities without any contracts with demand 
response service providers. Figure 2-1 presents the implementation scheme of 
work proposed in Core Paper I [38]. 

 
Figure 2-1 – Implementation scheme of the proposed work in Core Paper I [38] 

PV generation use is considered free of costs and thus a priority for the 
residential user. The connection with the grid is considered bidirectional (the 
electricity can flow both ways). In general, the consumer can benefit from the PV 
generation, ESS, and DR actions to minimize the cost of consumption from the 
main grid. The consumer can explore periods when electricity is cheapest to meet 
consumption and charge the ESS, and look for periods when electricity is most 
expensive to sell it to the main grid. An optimization based on the PSO 
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metaheuristic is executed to optimize the operation costs, considering that the 
user has storage units and is also enabled to apply DR in specific loads. 

Core Paper II [39] extends the concept from Core Paper I [38], by proposing a 
parallel-based approach to solve the problem by considering several houses. An 
energy service provision is considered, which performs the optimizations, and 
makes the results available for each house.  

 
Figure 2-2 – Parallel-based approach proposed in Core Paper II [39] 

To explore the scalability of the model presented in Core Paper I [38], the case 
study in Core Paper II [39] was expanded to twenty different houses with the 
possibility of each one controlling three different loads. In this work, the PV 
generation and ESS resources are also considered. Five different computation 
intelligence algorithms were used to solve the optimization problem. 
Considering the results, the computational intelligence (CI) algorithms using the 
parallel-based approach provide better solutions for a large number of 
households.  

In Other Paper III [47], a framework for aggregator and households 
interaction was proposed to aggregate flexibility from the demand side. As the 
central entity, the aggregator performs the optimization of the households’ 
resources. This optimization reduces its energy costs and gets revenues by selling 
the flexibility provided by the DR capabilities of households. In the case study, a 
set of 1000 households with PV generation and storage systems were considered. 
The distribution system operator (DSO) can also take advantage of the end-users’ 
flexibility. Other Paper IV [48] presents a model to minimize the investments cost 
in a distribution network expansion. Results regarding the use of flexibility from 
the end-users’ side show that a reduction in investment costs was achieved. Other 
Paper I [45] presents another model where DSO can take advantage of the 
flexibility available on the end-users side. The cost of the distribution network 
operation activity is minimized considering the costs of power losses and 
flexibility acquisition. Attending to the discomfort caused by the DR 
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implementations, a multi-objective model that minimizes both the energy bill 
and the demand response quantity (measured in kW) was proposed in Other 
Paper II [46]. A multi-objective PSO is used to solve the problem and find the 
optimal pareto frontier. With the solutions of the pareto front, the user can choose 
one of the solutions that meets its requirements. Whereas a greater comfort will 
lead to a higher energy bill value, and on the other hand, a lower energy bill value 
will lead to greater discomfort. 

The contribution of this part of the Ph.D. work is a model that provides to 
the prosumers or consumers the possibility of executing DSM actions in their 
facilities considering a single application (Core Paper I [38]) and provided by an 
energy service provider (Core Paper II [39] and Other Paper III [47]) (objective 1.a). 
The role of the aggregator is also a focus of the proposed model and acts as an 
intermediate to sell the flexibility provided by the consumers and prosumers 
through the DR actions (objective 1.b). DSO is another main entity considered in 
the developed model, showing the benefits that it can take from the flexibility of 
prosumers and consumers in the management of PES (objective 1.c). This 
contribution provides the answer to the research question considered in this 
section (Q1), partially covers the research question Q5, and fully accomplishes 
the first objective of this Ph.D. work. 

2.3 Local Electricity Markets 
Section 2.3 responds to Q2 – How can electricity market models be improved 

to enable an efficient and intensive use of local resources (distributed generation, EV, 
demand flexibility, and storage)? 

LEM is a new concept, and a coherent definition is not presented yet. 
Therefore, a consensual definition is necessary for the LEM implementation and 
related contributions. The models developed in the scope of this contribution are 
aligned with the definition of LEM provided by [65]:  

A local electricity market is a market platform for trading locally generated 
(renewable) electricity among residential agents within a geographically and socially 
close community. Security of supply is ensured through connections to a superimposed 
electricity system (e. g., national grid or adjacent local electricity markets).  

LEMs admit the direct participation of electricity end-users and small 
producers in the EM, thus promoting their empowerment [66] and the formation 
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of local energy communities. In comparison with the other markets, LEM 
requires sellers (producers and prosumers) and buyers (prosumers and 
consumers) and a backup system (main grid or retailer) in order to ensure the 
supply of electricity. With the possibility of prosumers increasing their sales with 
the transactions on LEMs, these structures can have an important impact on the 
local RES installation [67].  Furthermore, reducing energy costs is defined as the 
main objective for the local markets participants, increasing the independence 
from retailers’ companies [68]. 

Preprint III [59] conducts a literature review paper on the topic of research 
articles related to LEMs. The work presents a review that identifies and discusses 
the different proposed approaches regarding LEM structures. A survey on 
projects and publication addressing the LEM structures is realized for this 
purpose. Regarding regulation and legislation that encourage the LEM creation, 
an analysis is also executed in the review. The key contribution of the conducted 
review is the proposed classification of LEM structures, which is based on the 
content explored in the literature review.   

Core Paper III [40] proposes a mathematical optimization model to optimize 
the total community energy costs, considering the possibility of agents realizing 
P2P transactions in LEM. Figure 2-3 presents the conceptual structure presented 
by the Core Paper III [40].  

 
Figure 2-3 – Conceptual LEM proposed in Core Paper III [40] 

The proposed model considers a local energy community (LEC) with PV 
generators and ESS installed in each community member facility. The members 
characterized by prosumers have two different possibilities to buy electricity 
(retailer or in P2P mode) and two other possibilities for selling electricity (main 
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grid or P2P mode). The problem was modeled considering a MILP with the 
minimization of energy costs summation of each prosumer. A social welfare 
solution is set based on the best set of P2P transactions among the community 
members. Savings of up to 15% were obtained when scenarios with P2P 
transactions and without P2P transactions were compared.  

The inclusion of electric vehicles (EV) in LEM was explored in Other Paper 
VIII [52], and Core Paper IV [41]. The model proposed in Other Paper VIII [52] 
considers the inclusion of EVs as buyers in LEM with a peer-to-vehicle (P2V) 
market. Thus, the work considers an optimization model that simulates a LEM 
between prosumers and EVs with P2V electricity transactions. The case study 
considers an energy community composed of households, commercial and 
industrial prosumers, and EVs, totaling fifteen prosumers and twenty EV. Three 
prosumers’ households had an EV each, and it is considered that if the EV is 
parked at the house, it should charge the battery from the electricity provided by 
the prosumer. The rest of the EVs are parked at different points of the community 
grid and charge the battery with electricity from the retailer or the P2V market.  

Due to scalability problems that the Other Paper VIII [52] model presented, 
a distributed methodology was developed to solve the P2V market problem with 
a large number of members in the energy community. Core Paper IV [41] has 
presented this methodology. Figure 2-4 presents the methodology proposed in 
Core Paper IV [41]. 

The process presented in Figure 2-4 considers the prosumers, EVs, and one 
coordinator. The prosumers are the sellers, EVs the buyers, and the coordinator 
is responsible for ensuring the P2V market operation. Each prosumer and EV 
realize their own optimization considering the possibility of buying and selling 
electricity in the P2V market. The transactions of P2V market for each prosumer 
and EV are communicated to the coordinator, and the error (balance between 
sales and buys) is calculated. The convergence is tested according to the error 
value. If the balance condition is not verified, the coordinator must send the 
information to the prosumers and EV, which will limit the transactions in the P2V 
market. The process is repeated until convergence is verified. The presented 
methodology makes it possible to find results for a large energy community (50 
prosumers and 40 EVs) within an acceptable time. Comparing the results of 
centralized implementation presented in Other Paper VIII [52] with the 
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distributed application, the difference in total costs is minimal, but the 
optimization time difference is significantly higher. 

 
Figure 2-4 – Methodology proposed in Core Paper IV [41] 

Other Paper VI [50] consists of a book chapter and presents a review 
dedicated to the practical implementation of LEM. This review aims to identify 
the practical implementations of LEM that are currently deployed or ongoing and 
what these practical implementations consider as research directions for the 
future. Bidding strategies were identified as one of the research directions most 
enunciated in the list of works analyses. In this way, the works Other Paper VII 
[51] and Other Paper IX [53] were developed.  

In the scope of LEM, Other Paper VII [51] presents a day-ahead LEM bidding 
optimization. The LEM bidding is formulated as a bi-level optimization problem, 
where the upper-level problem is the agent’s profit maximization, and the lower-
level problem is the maximization of the energy transacted in LEM. A learning 
method is proposed, where each agent can learn with their submitted bids and 
offers in the LEM. In order to determine the bids and offers accepted and the 
clearing price, an auction-based symmetric model is implemented and run in 
each period. Ant Colony Optimization (ACO) was a computation intelligence 
method implemented in this work as provider of learning strategy capabilities. 
An extension of the previous work is presented in Other Paper IX [53], but with 
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the inclusion of an aggregator to enable the participation of the energy 
community members in the wholesale market. The problem was modeled as a 
multi-leader single-follower bi-level optimization problem. The same 
computation intelligence method (ACO) was used to solve the problem. With the 
day-ahead LEM bidding model it is possible to reduce the user costs and increase 
the profits of small producers according to the results of the two previous works. 
It is possible due to the small price obtained in the LEM compared to the one 
provided by the retailer or aggregator. 

The contribution of developed methodologies presented throughout this 
section of this Ph.D. work is the provision of different LEM models and related 
support to consumers, prosumers, and small producers in their participation. 
Objective 2.a. is covered by the two developed reviews, one of them already 
published and the other presented as a preprint. The accomplishment of 
Objective 2.b. is demonstrated in most of the publications enunciated in this 
section (excluding the review paper). Objective 2.c. is achieved by the two 
publications comparing of the centralized and distributed resolution. The LEM 
presented models show efficient and intensive use of the local resources, thus 
providing the answer to the research question addressed in this section (Q2). 

2.4 Electricity Portfolio Management 
Section 2.4 responds to Q3 – How can players improve their participation in 

future electricity markets considering the new and evolving opportunities including, 
aggregators, energy communities, and LEM? 

Traditional portfolio optimization consists in finding the optimal selection 
of various proportions of various assets. The portfolio selection problem was laid 
by Markowitz in 1952 [69], applying the problem to the finance field. The 
portfolio application in EM can be divided into two different variants, investor 
applications and management applications [23]. In the scope of this Ph.D. work, 
portfolio optimization is used for the management application. Reference [70] 
presents the first model of portfolio application to the EM as a management 
application. The authors investigate the energy allocation problem for a power 
producer allowing for three trading options. To measure the risk in portfolio 
application, reference [71] presents four different measures, based on a mean-
variance metric. These measures are based on the historical prices, however, in 
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recent markets such as LEM these metrics may not show good results as the price 
history is still very scarce. 

In order to overcome this issue, Core Paper V [42] presents a portfolio 
optimization for EM participation considering the forecasting errors as the 
measure of risk transactions. Figure 2-5 presents an overview of the proposed 
framework developed considering portfolio optimization.    

 
Figure 2-5 – Conceptual framework proposed in Core Paper V [42] 

As presented in Figure 2-5, the proposed framework considers a portfolio 
model with risk measurement based on the variability of EM prices. The risk 
measure is obtained considering the error of the forecast and estimation methods. 
Compared with the other considered risk measures where a risk value is assumed 
for each market, the proposal is formulated considering the accuracy of the 
forecast and estimation method for each market and each moment. In this sense 
there are moments of negotiation in the same market where the value of risk 
negotiation is different, reflecting the different volatility of prices in different 
time periods in each market.  

The proposed framework transforms the portfolio optimization problem 
from a multi-objective (two objectives) problem to a single objective (one 
objective) problem using an aggregated function. However, with the 
transformation to one objective, the user should define a trade-off coefficient, a 
requirement to specify the exposure to the risk/return. The case study considers 
an aggregator with the possibility to transact electricity within five different 
markets with different requirements. This aggregator only operates as an 
intermediary and does not control any of its members' assets. A PSO 
metaheuristic is proposed to solve the optimization problem, thus finding 
solutions in an acceptable execution time. The optimization process can be used 
as decision support to EM players.  

Core Paper VI [43] considers a portfolio optimization for an energy 
community represented by an aggregator. Compared to Core Paper V [42], in this 
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study, the aggregator has control over the individual assets of the community, 
namely PV and ESS. On the other hand, no metric is considered in the study to 
measure the risk of participating in the different markets. Figure 2-6 presents the 
proposed approach of Paper VI. 

 
Figure 2-6 – Approach proposed in Core Paper VI [43] 

As Figure 2-6  shows, the approach proposed in Core Paper VI [43] considers 
an energy community composed of prosumers, an aggregator, a retailer and 
wholesale market, and the main grid acting as a backup system. Prosumers can 
buy electricity from the retail or wholesale market (via aggregator) and sell to the 
main grid or the wholesale market (via aggregator). As participation in the 
wholesale market requires a minimum participation volume, the use of an 
aggregator acting as an intermediary is essential. In this way, the aggregator 
receives a fee from each prosumer of the community for the transactions carried 
out between the energy community and the wholesale market. The participation 
in the wholesale market is simulated considering the MIBEL possibilities with a 
wholesale market and an intraday market with six different sessions.  

The developed study intends to minimize the overall energy community 
costs and was formulated as a MILP model. The obtained solution considers the 
best scheduling of ESS installed in each household and the purchases and sales 
of electricity in the considered markets. A community with 50 prosumers is 
considered in the case study, and two different scenarios were compared (with 
and without wholesale participation). The scenario with the participation in the 
wholesale market presents the best results, demonstrating that the prosumers’ 
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participation in the wholesale market via aggregators brings significant 
advantages for the whole energy community. 

Two additional works were developed considering the portfolio theory 
application to EM participation and are presented in Other Paper X [54] and Other 
Paper XI [55]. In addition to representing a contribution to the application of 
portfolios in EM, these publications show how other types of metaheuristics can 
be successfully applied to the same problem. In Other Paper XI [55], the 
differential evolution (DE) method was applied and compared with PSO 
showing better results for solving the addressed problem.  

The presented models in Electricity Portfolio Management section address 
the research question Q3 and fully accomplish the third objective of this Ph.D. 
work. Objective 3.a. is covered by the study published in Core Paper V [42] 
demonstrating the influence of risk in the EM negotiations considering the 
portfolios theory. Objective 3.b. is fulfilled with the publication Core Paper VI [43], 
in which the aggregator represents an energy community in wholesale market 
negotiations. The Other Paper X [54] and Other Paper XI [55] presented in this 
section provide additional contributions by applying metaheuristics in solving 
the portfolio theory problems. In this contribution, the models presented 
highlight the role of the aggregator as an essential entity for facilitating small 
players’ participation in markets in which they cannot participate directly. 

2.5 Local Ancillary Services 
Section 2.5 responds to Q4 – How can we take full advantage of local resources 

for implementing new models for AS provision with benefit(s) to distribution system 
operators and local players including prosumers and consumers? 

The variability behavior of RES, which often results in a mismatch between 
the available generation and consumption needs, increases the reserve 
requirements of power systems. These reserves are usually guaranteed by AS 
acquisition. Considering the “Directive on common rules for the internal market for 
electricity” [72], ASs are necessary for the operation of transmission and 
distribution systems, including frequency and non-frequency (e.g., voltage 
control, black start capabilities, and  reactive power compensations) services [73]. 
European Transmission System Operator Network (ENTSO-E) focuses on DER 
as important assets that must be offered for the DSOs and transmission system 
operators (TSO) using active system management techniques to access the 
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flexibility in the distribution grid [74]. This procurement of DER (such as ESS) as 
AS could expand these technologies and provide opportunities for them in the 
future grid planning and stability. Therefore, the term Local Ancillary Services 
was mentioned in [75] as the services obtained by DSO aggregating resources in 
the operation of the local market and transferring them to the TSO. The role of 
the aggregator is once again critical to enable connected DERs, prosumers, and 
consumers located at the low level of networks to provide AS to DSO, as 
discussed by [76]. 

Core Paper VII [44] presents a local market model to trade AS in order to help 
DSO to avoid problems with network operation. Figure 2-7 presents the case 
study proposed in Core Paper VII [44].  

 
Figure 2-7 – Case study proposed in Core Paper VII [44] 

Figure 2-7 is used to explain the proposed methodology. According to the 
figure, a set of prosumers constituting a LEC is presented, and an aggregator is 
available to represent the LEC. DSO is responsible for ensuring the network's 
normal operation and activating the AS when needed. The proposed approach 
of Core Paper VII [44] considers the possibility of DSO acquiring the necessary AS 
in the LEC to keep the network in normal operation. The necessary ASs for each 
period is determined by DSO based on the forecasts of demand and generation. 
After this step, DSO communicates to the aggregator the required amount. The 
aggregator is responsible for organizing the LEM for AS acquisitions with its 
members. An asymmetric pool-based market model is used, in which the 
aggregator defines the quantity needed, and the community members submit 
their offers with a respective price and energy amount. The offers are ordered 
from the lowest to the highest price, and the quantity is accumulated. When the 
accumulated amount exceeds the quantity desired by the aggregator, all offers 
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up to that point are accepted, and this intersection determines the market price 
(clearing price). After carrying out this procedure for the periods indicated by the 
DSO, the aggregator communicates the results, where it identifies the elements 
that will provide the services. During operation, the DSO may request these 
services if necessary. 

In the case study of Core Paper VII [44], the DSO used AS to realize 
congestion management activities. In this way, DSO identifies two periods when 
the total demand of LEC exceeds the rated power of connection with the main 
grid (transformer 15/0.4 kV), and aggregator realizes two auction sessions in LEM 
for selecting the AS providers. In the operation mode, to avoid the congestion in 
transform, the DSO actives the AS avoiding the problems.   

Other Paper XII [56] expands on the core idea of Core Paper VII [44], but the 
transacted AS is used to control the bus voltage magnitudes. A coordination 
mechanism between prosumers, aggregator, and DSO is proposed for AS 
acquisition at low voltage levels. The case study is based on low voltage network 
with 26 buses, five prosumers and seven consumers. Once the DSO finalizes the 
day-ahead analysis, six periods are identified to perform the AS procurement. 
The procurement is done considering an asymmetric pool model where the bids 
with lower prices are accepted until the amount of electricity is sufficient to solve 
the problem. This process is repeated for each period identified by the DSO. The 
activation of the contracted AS is realized in real-time. From the presented 
results, the problems were solved considering the active participation of the 
consumers and prosumers.     

Preprint I [57] presents an extended version of Core Paper VII [44] and Other 
Paper XII [56]. In this study, the DSO intends to solve the problem with bus 
voltage levels and maximum current lines. In this sense, DSO executes analyses 
for a day-ahead operation based on forecasts of demand and generation, 
identifying the periods with foreseen problems. The aggregator is also 
considered and executes the procurement of AS also based on the asymmetric 
pool market model. Finally, the DSO communicates the results, and the selected 
offers are activated during the operation mode. Compared with Core Paper VII 
[44], the case study was increased from 17 to 237 buses, 12 to 98 connected 
electricity users, and the price definition of offers was created considering three 
different strategies. In one of these strategies, it is considered a random behavior 
of the user. In the other two, some intelligence is introduced in players’ offers, 
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which allows defining the offer price by taking into account the offer amount. 
Analyzing the results, the problems detected by DSO were avoided by using the 
AS contacted at the local level, since the strategy used by the users in the price 
offer definition impacts the operational network costs.  

Preprint II [58] presents a study that is fundamental for further extending 
and developing the models related to the key contribution presented in this 
section. The Preprint II [58] presents a temperature emulation model in an office 
room considering the heat transaction between adjacent rooms and the exterior. 
The model also includes Heating, Ventilation, and Air Conditioning (HVAC) 
control in order to introduce energy into the room so that the temperature level 
desired by the user is reached. This model can be used for future development of 
models to optimize the energy spent by HVAC on temperature control and use 
the flexibility that the model allows to obtain to participate in the supply of AS. 
The temperature model was tested and validated in eleven different parts of an 
office building. In this way, the flexibility of the eleven aggregated rooms could 
participate in the AS market through an aggregator. 

The implementation of the auction-based market model (asymmetric pool) 
for the negotiation of AS inside of LEC constitutes the key contribution of this 
section, being achieved in the works presented by Core Paper VII [44] and Preprint 
I [57]. In the presented methodologies, the role of the aggregator is essential not 
only to establish the connection between the LEC and the network operator, in 
this case, the DSO, but also for organizing the market sessions where AS are 
acquired. In this sense, it is possible to show that the end-users can play an active 
role in the management of the PES. Therefore, the contributions fulfill objective 
4, answering the research question presented at the beginning of this section (Q4), 
and also partly covering the research question Q5. 

2.6 Experiments 
This section aggregates relevant contributions related to the analysis of the 

results achieved from the models and methods proposed in each of the key 
contributions mentioned in this Ph.D. work. Additionally, this section fully 
covers objective 5 of this thesis. Table 2-2 presents an overview of the 
characteristics of the main models developed in this Ph.D. work.  
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Table 2-2 – Models characteristics. 

Publication Ref. Field Problem 
Decision 
technique 

Solution 
type 

Method 

Paper I [38] PES DSM Optimization Non-exact PSO 
Paper II [39] PES DSM Optimization Non-exact CI 
Paper III [40] EM P2P Optimization Exact MILP 
Paper IV [41] EM LEM Optimization Non-exact Iterative 
Paper V [42] EM Portfolios Optimization Non-exact PSO 
Paper VI [43] EM Portfolios Optimization Exact MILP 
Paper VII [44] EM/PES LEM-AS Simulation Non-exact  

Other I [45] PES 
Operation (AC OPF 

model) 
Optimization Exact NLP 

Other II [46] PES DSM Optimization Non-exact MOPSO 
Other III [47] PES DSM Optimization Exact MILP 

Other IV [48] PES 
Expansion 

planning (DC OPF 
model) 

Optimization Exact MILP 

Other V [49] EM 
Optimal coalition 

formation 
Optimization Non-exact 

HyDE-
DF 

Other VII [51] EM Strategic bidding Optimization Non-exact ACO 
Other VIII [52] EM P2P Optimization Exact MILP 
Other IX [53] EM Strategic bidding Optimization Non-exact ACO 
Other X [54] EM Portfolios Optimization Non-exact Hybrid 
Other XI [55] EM Portfolios Optimization Non-exact DE 
Other XII [56] EM/PES LEM-AS Simulation  Non-exact  
Preprint I [57] EM/PES LEM-AS Simulation  Non-exact  

Preprint II [58] PES 
Temperature 

emulation model 
Optimization Non-exact 

HyDE-
DF 

*Publications Other Paper VI [50] and Preprint III [59] are excluded because are review works 

Table 2-2 lists all developed models and respective publications. When 
compared to Table 2-1, this table is missing two publications, related to literature 
reviews works, as they do not propose new specific models. As previously 
identified in the introductory section, the fields (PES and EM) of application of 
this Ph.D. work are also the fields where the models presented in Table 2-2 were 
developed. Seven of the models are applied on general PES problems, ten in the 
EM domain, and two include both fields. These (Core Paper VII [44] and Preprint 
I [57]) are identified with both fields since they consider activity in PES using the 
flexibility of end-users to support the operation of the network, and in EM 
because this flexibility is obtained through a market-based pool model.  

The problems addressed by the models are categorized into ten groups, 
being that DSM and Portfolios are the topics addressed by a larger number of 
publications, with four appearances each one. In this categorization publications 
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Other Paper I [45] and Other Paper IV [48] are highlighted, which are considered 
applications of optimal power flow (OPF), being that in one of them the 
alternated current (AC) model is applied and in the other the direct current (DC) 
model. The Other Paper V [49] presents a non-common problem type inside of the 
developed models. Optimal coalition formation considers the creation of groups 
for flexibility provision considering a metric of fairness (Shapley value) for the 
price of coalition definition. Considering the used decision technique, the 
majority of models consider optimizations, and only two consider simulations. 
The two models of simulation decision technique also addressed the same LEM-
AS problem. Both are used in the negotiation of AS at the local level. Strategic 
bidding as optimization methodologies could be applied to these works, e.g. as 
applied in models Other Paper VII [51] and Other Paper IX [53].  

Solution type is categorized into two different categories, exact (six entries) 
providing the best solution (optimal) respecting all problem constraints, and non-
exact (thirteen entries) when typically, a near-optimal but always feasible 
solution is obtained. In the method column, different possibilities are considered, 
although they can be grouped into mathematical and metaheuristic resolution 
methods. The MILP and NLP are mathematical resolution methods, ACO, DE, 
HyDE-DF, and PSO are metaheuristic resolution methods. Core Paper II [39] 
method label is considered CI since, in this work, five different metaheuristics 
are implemented and compared, highlighting the vortex search algorithm for the 
best results. Core Paper VI [41] considers an iterative method, in this specific case, 
the proposed model is solved iteratively, and in each iteration, a MILP is realized. 
The difference between iteration to iteration is the bounds of some variables. 
Other Paper X [54] presents a hybrid method that uses a metaheuristic (PSO) and 
a mathematical method (MILP).  

 The use of metaheuristics to find solutions to the problems modeled in this 
work constitutes an additional contribution. In several cases, metaheuristics were 
applied due to the characteristics of the tackled problems and the flexibility those 
techniques provide regarding modelling and application (objective function and 
constraints), they are adaptable to any type of problem (linear and non-linear), 
they allow a reliable solution to be obtained in a short execution time, are free to 
use and can be implemented in any programming language. They can also be 
programmed in any hardware device (e.g., Arduino). 
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Different case studies are created based on real conditions and scenarios to 
test and validate the implemented models. The experiments and validations 
under real or near-real environments are essential to validate models’ 
acceptability and precision in PES real-world application. Therefore, the 
characteristics of the analyzed case studies are summarized in Table 2-3, 
highlighting the main involved players and markets.         

Table 2-3 – Summary of case studies’ characteristics. 

Publication 

Players EMs types 

DR 
Network 
Analyses End-

users 
Aggregator DSO LEM Retailer Wholesale 

Core I X - - - X - X - 
Core II X X - - X - X - 
Core III X X - X X - - - 
Core IV X X - X X - - - 
Core V - X - - - X - - 
Core VI X X - - X X - - 
Core VII X X X X - - - X 
Other I X - X - X - X X 
Other II X - - - X - X - 
Other III X X - - X - X - 
Other IV X - X - X - X X 
Other V X - X - - - - - 
Other VII X X - X - X - - 
Other VIII X X - X X - - - 
Other IX X - - X X - - - 
Other X - X - - - X - - 
Other XI - X - - - X - - 
Other XII X X X X - - - X 
Preprint I X - X X - - - X 
Preprint II X - - - - - - - 

*Publications Other Paper VI [50] and Preprint III [59] are excluded because are review works 

Analyzing Table 2-3 is possible to see a clear picture of the involved players, 
considered EMs, DR usage, and also the inclusion of the power network in the 
experiments. These case studies are categorized based on the characteristics 
presented in Table 2-3; which have been selected with respect to the key 
contributions presented in Table 2-1.  

 The first group of characteristics regards the number of players involved in 
the case studies. The group includes different types of end-users, the inclusion of 
aggregator and DSO. The inclusion of end-users is presented in sixteen of 
nineteen entries. For this classification, end-users include the consumers, 
prosumers, and producers. In Core Paper V [42], Other Paper X [54], and Other 



 

 

2. Contributions 

Ricardo Faia  37 

Paper XI [55] the end-users are considered as aggregated elements, which is why 
they are not marked in this category. Regarding the inclusion of aggregator in the 
carried-out simulations, it is present in 58% of them. The main function of the 
aggregator is to provide services to end-users, such as DR controlling loads and 
ESS management (Core Paper II [39] and Other Paper III [47]), providing the best 
schedule of LEM transactions (Core Paper III [40], Core Paper IV [41] and Other 
Paper VIII [52]), representing end-users in the wholesale market (Core Paper V [42], 
Core Paper VI [43], Other Paper VII [51] and Other Paper XI [55]), and acting as a 
LEM operator (Core Paper VII [44] and Preprint I [57]). The involvement of DSO in 
the simulations is related to the control of the network operations, as in Core Paper 
VII [44], in which the DSO manages the congestion of the grid or in Preprint I [57], 
in which it controls the magnitude voltage of the buses and the maximum 
admissible current in the lines.  

Regarding EMs, three types have been considered in the case studies of the 
thesis papers. Seven papers include LEM options, from which two simulate P2P 
transactions, and the others simulate community-based markets with pool-based 
models. Eleven papers consider the inclusion of retail markets. The retail market 
is important because it ensures electricity supply when other options (LEM or 
wholesale) are unsuccessful. Thus, consumers and prosumers establish long-
term contracts with retailers. Wholesale market options are included in five 
papers. In this set of works, Core Paper VI [43] is highlighted because it simulates 
the MIBEL wholesale market, since this Ph.D. work has been developed in 
Portugal and Spain, which are the two members of MIBEL. 

The use of DR in six considered papers has two purposes, namely, 
minimizing the costs of electricity acquisition (Core Paper I [38], Core Paper II [39], 
Other Paper II [46] and Other Paper III [47]), and minimizing the costs of DSO 
operation and planning investments (Other Paper I [45] and Other Paper IV [48]). 
The network analyses were done in four papers; these analyses consist of the 
application of power flow to obtain the values of network variables (Core Paper 
VII [44] and Preprint I [57]) and the optimal power flow application to minimize 
the operational costs (Other Paper I [45] and Other Paper VI [50]). 

Table 2-4 presents the number of end-users and assets considered in the case 
studies of the Papers elaborated in this Ph.D. work. The number of end-users is 
divided into three elements, the consumers, prosumers, and producers. The 
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number of assets considers the PV, ESS, EV, controllable loads, and small 
combined heat and power (CHP) units.  

Table 2-4 – Assets considered in case studies’. 

Publication 

Number of end-users Number of assets 

Consumers Prosumers Producer PV ESS EV 
Con. 

Loads 
Small 
CHP 

Core I - 1 - 1 1 - 3 - 
Core II - 20 - 20 20 - 60 - 
Core III - 20 - 20 20 - - - 
Core IV - 50 - 50 50 40 - - 
Core V - - aggregated - - - - - 
Core VI - 50 - 50 50 - - - 
Core VII 8 4 - 4 - - - - 
Other I 94 2 - 2 - - - - 
Other II - 1 - 1 1 - 3 - 
Other III - 1000 - 1000 1000 - 3000 - 
Other IV 9  - - 2 - - - - 
Other V - 12 - - - - - - 
Other VII 5 20 5 20 - - -- 5 
Other VIII - 15 - 15 16 20 - - 
Other IX 3 3 3 3 - - - 3 
Other X - - aggregated - - - - - 
Other XI - - aggregated - - - - - 
Other XII 7 5 - 5 - - - - 
Preprint I 63 33 - 33 - - - - 
Preprint II 11 rooms - - - - - - - 

*Publications Other Paper VI [50] and Preprint III [59] are excluded because are review works 

When analyzing the number of end-users from Table 2-4 it is possible to see 
that prosumers are the most explored entity. Other Paper III [47] is worth 
highlighting due to the inclusion of 1000 prosumers in the case study. However, 
the consumers are also considered in the case studies in smaller numbers when 
compared to the number of prosumers. The producers considered in the case 
studies are few in number and are only present in 2 papers (Other Paper VII [51] 
and Other Paper IX [53]). This is because it is not common to use small generators 
connected to the system without being associated with a consumer (e.g., the 
actual prosumers). Core Paper V [42], Other Paper X [54] and Other Paper XI [55] 
consider aggregated producers, and the aggregator is only aware of the amount 
of energy, not knowing or having control over how many elements compose it. 
Considering the number of assets, the most used is the PV generators, but ESS is 
also widely used. In most cases, the end-users that consider PV-ESS systems have 
great saving costs compared to using one asset (PV or ESS) alone.  The use of EV 
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is only explored in two papers. Still, their integration proved efficient in LEM's 
operation, allowing them to participate as a player and thus increase market 
liquidity. The column of controllable loads means that it is possible to reschedule 
the consumption of some specific loads depending on some reason related to DR. 
The Other Paper III [47] work is highlighted as it uses 3000 controllable loads 
managed by an aggregator in order to respond to a DSO flexibility request. 
Considering the small CHP units presented in the two case studies (Other Paper 
VII [51] and Other Paper IX [53]), both are considered in small numbers. This type 
of asset is modeled by a non-linear mathematical function, which makes it 
difficult to find an optimal solution in an acceptable time for the process. In both 
papers that contain the CHP units, the optimization process is performed by 
metaheuristics to overcome the difficulties that the CHP modeling adds. 

2.7 Summary  
The core publications of this Ph.D. work represent the response to the main 

research question presented in this thesis, Q0 - Can innovative aggregator-oriented 
business, market and flexibility models boost prosumers/consumers active participation 
in future PES? 

The work developed in this Ph.D. work answers the specific research 
questions placed in this thesis, ultimately resulting in the developed decision 
support models. The decision support models contribute to the improvement of 
end-users’ participation in EM and PES management. The capabilities of the 
decision support models developed in the scope of this Ph.D. have been 
evaluated through the tests and validations using case studies based on scenarios 
created with realistic data. The positive achievements resulting from realistic 
simulation conditions support the thesis that aggregator-oriented models can 
empower end-users in active participation in the future of PES. Table 2-5 presents 
a summary of the key contributions of this thesis, including the specific 
contributions within each main addressed topic. 
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Table 2-5 – Ph.D. contributions overview. 

Key 
Contributions 

Specific 
Contribution 

Publications 
Preprint 

Core Other 
I II III IV V VI VII I-XI I II III 

Demand Side 
Management 

Minimize 
energy costs 

X X      [46] [47]     

Curtailment        [45] [48]    

Local Electricity 
Markets 

P2P   X     [50] [52]    X 

Auction-based        
[50] [51] 

[53] 
  X 

Community-
based 

   X    [50]   X 

Electricity 
Portfolio 
Management  

Risk-free      X  [54] [55]    
Risk-

constrained 
    X       

Local Ancillary 
Services  

Voltage control        [56] [57] X   
Congestion 

management 
      X [57] X   

Auction-based       X [56] [57] X   

Experiments  

Optimizations X X X X X X  

[45] [46] 
[47] [48] 
[49] [51] 
[52] [53] 
[54] [55] 

   

Simulations       X [56] [57] X   

Metaheuristics X X   X   
[46] [49] 
[51] [53] 
[54] [55] 

 X  

MILP   X X  X  
[45] [47] 
[48] [52]  

   

The key contributions also identified in Table 2-5 are covered at least by one 
of the core papers, being complemented by the other papers and the preprints. 
Then, as Table 2-5 shows, the specific contributions are identified inside each key 
contribution. Thirteen different groups were identified, where Optimization, 
Metaheuristics, and MILP are the most evidenced. All defined objectives inside 
the scope of this Ph.D. are fulfilled by the results achieved in the realized 
experiments. Furthermore, the defined specific research questions are answered 
with the presented contributions in the scope of this Ph.D. work, which together 
achieve the answer to the main research question. 
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3 Conclusions and Future Work 

This chapter concludes the thesis document by presenting the most relevant 
conclusions of this work in section 3.1, and identifying the perspectives for future 
development in section 3.2. 

3.1 Main Conclusions and Contributions 
The large-scale integration of RES, such as solar and wind energy, boosted 

as means to minimize the carbon footprint, has leading to a change in the 
operation and control of worldwide PES. This change has led to the adoption of 
approaches to control the demand, minimizing the unbalance between 
generation and demand brought by RES production fluctuation. Recent EC 
guidelines suggest a significant involvement of electricity end-users (consumers 
and prosumers) in PES. For this, they must be involved in the electricity system's 
management and planning and play an active role in the EM. The emergence of 
the aggregator allowed electricity end-users to benefit from advantages they did 
not have before, such as participation in wholesale markets. In this way, the 
aggregator allows the electricity end-users to have greater importance, as, 
through an intermediary, they became able to participate in the system actively. 
In the field of EMs, changes are also occurring to introduce a competitive 
behavior in the electricity wholesale market and, more recently, the liberalization 
of the retail market.  Bringing small players to the market is paving the way to 
the emergence of LEM. Current LEM approaches found in the literature have 
been very successful and are beginning to appear in practice, bringing electricity 
end-users to greater involvement in the system. They allow electricity end-users 
to transact their own electricity locally and also to negotiate services that network 
operators can use to operate the system. 

In this context, with the new possibilities for electricity end-users active 
participation in the system, novel decision support and simulation models are 
necessary to deal with new challenges. This thesis work contributed with the 
proposal of new models and methods focusing on the referred difficulties, 
oriented to support the end-users decisions in the future activities that the new 
EM models provide and in the possible active participation in the PES 
management. As core contribution, this work focused on the study of aggregator-
oriented models to boost the electricity end-users’ (prosumers and consumers) 
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active participation in future PES. Therefore, it addressed the consumers or 
prosumers as the central entity of the activities. 

Four key contributions, including demand-side management, LEM, 
electricity portfolio management, and local ancillary services, have been 
addressed. In addition, other specific contributions can be highlighted, such as 
using mathematical techniques to solve linear models, and metaheuristics for 
non-linear and complex optimization, and creating different case studies to 
evaluate the proposed models.  

Although the LEM concept is considerably new, the literature related to it 
is increasing significantly. A relevant additional contribution of this Ph.D. work 
is related to the LEM concept with the development of two literature reviews 
papers. One of these works, which is already published, has provided a review 
of the practical LEM implementations. The other, provided as a pre-print in this 
thesis, presents an analysis about currently proposed LEM structures, projects 
including LEM and legislation to encourage LEM appearance. It was evidenced 
that a common definition and description of LEM should be adopted, e.g., some 
authors consider P2P as the name for local electricity commerce and other LEM. 
Another identified issue is the structures that may exist within this market 
segment and the diverse proposals for their organization. 

The contributions of this work are based on different models addressing 
mainly the consumers and prosumers through the aggregator. From the 
consumer and prosumer side, different aspects have been addressed, such as the 
inclusion of PV generation, ESS units, and EVs. Some of the developed models 
also consider the inclusion of small CHP units as an individual entity to produce 
electricity to be transacted in LEMs. However, some aspects arising with CHP 
operation are necessary to create or improve the developed methodologies. On 
the other hand, the role of the aggregator in PES has been widely discussed both 
in the literature and in real-world applications. However, new business models 
must be developed or adjusted in order to enable the widespread of LEM 
applications in practice.  

This thesis work contributed with approaches to help the electricity end-
user in their empowerment inside of the PES and EM scope. The proposed 
models are focused on the aggregator's role and are oriented to support the 
electricity end-user in its PES and EM activities. The research results addressed 
the research question (Q0) and the five research questions (Q1 to Q5), presented 



 

 

3. Conclusions and Future Work 

Ricardo Faia  45 

in section 1.2. At least one model was developed for each of the four main 
activities identified. These models are constructed to address specific problems 
and, at the same time, possibly overcome the initially identified gap. As such, 
Core Paper II, III, IV, V and VI present different models that simulate activities 
where the aggregator is the provider, and the electricity end-user's are the 
customers. In this sense, the gap was identified, namely where there was a lack 
of models and solutions that assist the aggregator in the provision of services. For 
the literature, the implemented and published models are also an asset, as they 
allow interested parties to follow and implement them. 

The findings resulting from the development of models and methods, from 
the achievement of responses to the research questions, and from the consequent 
accomplishment of all the defined objectives, enabled the test and the validation 
of the identified hypothesis. Therefore, it is possible to conclude that several of 
the models developed in this thesis can be applied in real environments. 
However, others still cannot since the activity they intend to address lacks 
legislation and regulation aligned with the current and future needs for 
continuous PES and EM evolution. The work developed in the scope of this thesis 
has resulted in the publication of nineteen main papers, ten of them published in 
JCI journals, and contributed to six projects in total, which three are nationals and 
three are international.   

3.2 Perspectives of Future Work 
The results achieved in the scope of the work developed in this thesis 

provide several advances for the development of methodologies where the 
electricity end-user is considered a central entity. In this sense, the developments 
that have been carried out can enhance different lines of future research, namely 
the following: 

- Demand-side management  
• Elaborate an optimization model for demand-side management 

considering different shiftable assets in order to minimize the total 
electricity costs; 

• Apply demand-side management techniques considering the 
emulation of different thermal loads, e.g, heat pumps  

- Local electricity markets 
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• Explore the applications of distributed optimization methods to 
simulate the LEM behaviors. Considering mathematical approaches, 
alternating direction method of multipliers (ADMM) or 
metaheuristics in distributed format; 

• Investigate the application of the blockchain approach in the LEM 
payments layer to ensure the security and privacy; 

• Employ new sources of generation in the electricity end-users to 
increase the liquidity of LEM structures, e.g., the use of hydrogen fuel 
cells for power generation; 

• Further detail the considered network constraints in LEM 
simulations to investigate the influence of local transactions in the 
network power flow analyses. 

- Electricity portfolio management 
• Improve the proposed method to include LEM as a different market 

option for electricity end-users to allocate electricity; 
• Apply robust optimization in portfolio management problems to 

deal with the variability of price forecasting. 
- Local ancillary services  

• Development of an optimization model for flexibility provision of AS 
participation considering time-shiftable assets (clothes washing and 
dryer machine, dishwasher, microwave, blender, and others) and 
power-shiftable assets (EVs and HVAC load); 

• Application of bidding optimization strategies to simulate electricity 
end-users’ participation in new developed local AS structures. 

Some of the presented future work has been considered not only as further 
research directions of this work, but it is also compliant with the core of ongoing 
national and international research projects hosted by GECAD, namely the 
following: 

• TradeRES – New Markets Design & Models for 100% Renewable 
Power Systems. Funded by the European Union’s Horizon 2020 
research and innovation program under grant agreement 864276; 

The development of electricity trading models within an energy community 
and how the energy community can provide services to the grid operator, will be 
the topics to be studied within the scope of the TradeRES project. 
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• RETINA - REal-Time support Infrastructure and Energy 
management for Intelligent carbon-Neutral smArt cities. Funded by 
Fundação para a Ciência e a Tecnologia, NORTE-01-0145-FEDER-
000062; 

For the RETINA project, the study of EVs in the provision of AS will be the 
focus of this study. For future developments, decentralized approaches based on 
bender decomposition will be taken into account. 

• PRECISE - Power and Energy Cyber-Physical Solutions with 
Explainable Semantic Learning, Funded by Fundação para a Ciência 
e a Tecnologia, NORTE-01-0145-FEDER-000062. 

The DSM models, suggested as future works, can be included in the 
PRECISE project to contribute to the development of oriented solutions for  the 
management of building energy systems. 
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Resumen 

La respuesta a la demanda (demand response en inglés) como recurso 
distribuido ha demostrado su importante potencial para los sistemas de energía. 
Es capaz de proporcionar una flexibilidad que, en algunos casos, puede ser una 
ventaja para suprimir la imprevisibilidad de la generación distribuida. La 
capacidad para participar en programas de respuesta a la demanda para 
pequeñas o medianas instalaciones ha sido limitada; con las nuevas regulaciones 
de la política, esta limitación podría ser sobrepasada. Los prosumidores son una 
nueva entidad que se considera al mismo tiempo productor y consumidor de 
energía eléctrica, y que pueden aportar excedentes de producción a la red. 
Además, la toma de decisiones en instalaciones con diferentes recursos de 
generación, sistemas de almacenamiento de energía y flexibilidad de la demanda 
se vuelve más compleja según el número de variables consideradas. Este artículo 
propone una metodología de optimización de la respuesta a la demanda para su 
aplicación en una casa residencial genérica. En este modelo, los usuarios pueden 
realizar acciones de respuesta a la demanda en sus instalaciones sin ningún 
contrato con proveedores de servicios de respuesta a la demanda. El modelo 
considera casas residenciales que cuentan con los dispositivos necesarios para 
llevar a cabo las acciones de respuesta a la demanda. La generación fotovoltaica, 
la capacidad de almacenamiento disponible y la flexibilidad de las cargas se 
utilizan como recursos para encontrar la programación óptima de mínimos 
costos de operación. Los resultados presentados se obtienen utilizando una 
optimización de enjambre de partículas (particle swarm optimization en inglés) 
y se comparan con una solución determinista para probar el rendimiento del 
modelo. Los resultados muestran que el uso de la respuesta a la demanda puede 
reducir el costo operativo diario. 
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Abstract: Demand response as a distributed resource has proved its significant potential for power
systems. It is capable of providing flexibility that, in some cases, can be an advantage to suppress the
unpredictability of distributed generation. The ability for participating in demand response programs
for small or medium facilities has been limited; with the new policy regulations this limitation might
be overstated. The prosumers are a new entity that is considered both as producers and consumers
of electricity, which can provide excess production to the grid. Moreover, the decision-making in
facilities with different generation resources, energy storage systems, and demand flexibility becomes
more complex according to the number of considered variables. This paper proposes a demand
response optimization methodology for application in a generic residential house. In this model,
the users are able to perform actions of demand response in their facilities without any contracts
with demand response service providers. The model considers the facilities that have the required
devices to carry out the demand response actions. The photovoltaic generation, the available storage
capacity, and the flexibility of the loads are used as the resources to find the optimal scheduling of
minimal operating costs. The presented results are obtained using a particle swarm optimization and
compared with a deterministic resolution in order to prove the performance of the model. The results
show that the use of demand response can reduce the operational daily cost.

Keywords: demand response; distributed generation; particle swarm optimization; prosumer

1. Introduction

The future of power systems has been guided of a new structure where consumers (end-users)
are considered as a central entity. This vision is presented in the Strategic Energy Technology (SET)
plan of the European Union [1]. The transformation of end-users’ roles allows these entities to have
an active contribution in electric power systems. The prosumer is a new concept that has its origin
in the proliferation of Distributed Generation (DG) in end-user facilities. The Prosumer definition is
presented in Reference [2], where prosumers are considered agents that can either consume or produce
energy. The integration of renewable energy sources (RESs) and energy storage systems results in the
increase the complexity of energy management. In Reference [3], some methods to optimize renewable
energy systems management are revised.

Regarding demand response (DR) programs, the potential for participation in facilities is
significantly increased by the distributed energy resources and especially the energy storage systems.
With the participation in DR programs, the roles of the consumers change from a passive entity to
an active entity that manages both local consumption and generation resources [4]. DR constitutes
a modification of load profile in response to monetary or price signals, and thus provides flexibility
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and aims to help power systems during peak hours of demand or contingencies cases [5]. As the DR
programs are able to reschedule part of the load, the use of these programs is a way to increase the
flexibility of the grid management, avoiding the need to invest in more capacity [6].

Categorizing DR programs, it can be divided into two main categories: incentive-based DR
programs and price-based DR programs. The incentive-based DR programs are referred to as the first
category for DR programs, where the consumers can offer an incentive to change their consumption
patterns. Direct load control programs, load curtailment programs, demand bidding programs,
and emergency demand reduction programs are examples of incentive-based DR programs. The
“price-based DR programs” are the second category of DR programs, where the consumers are charged
with different rates at different consumptions times. Therefore, the retail electricity tariff is affected by
the cost of electricity supply. The price-based DR programs types are a time of use pricing, critical peak
pricing, real-time pricing, and inclining block rate [7]. Advanced infrastructure metering is needed to
implement DR programs at the residential, commercial, or industrial level. Such infrastructure (i.e.,
smart meters) is able to measure and store energy utilization at different times and also obtain the
current usage information remotely.

The European Union has shown significant interest in the concept of smart metering. According
to [8], it is expected by 2020 to invest ~45 million euros for 200 million smart electricity meters and
45 million smart meters of natural gas. This facilitates the application of DR programs in most
electrical facilities.

Regarding the formulation of DR optimization problems, linear programming (LP) or nonlinear
programming (NLP) can be used. Frequently the DR problems are able to use binary decision variables
for determining the status (ON or OFF) of various consumers or appliances; in these situations,
mixed-integer linear programming (MILP) or mixed-integer nonlinear programming (MINLP) may be
used. In Reference [9], the authors use MILP to optimize DR and generate scheduling in a residential
community grid using renewable energies, batteries, and electric vehicles. In this optimization, a
minimization problem of purchased energy costs of the residential community has been solved. In
Reference [10] a cost minimization in smart building microgrid considering DR optimization and
day-ahead operation is implemented using MILP. This case study is composed of two different
smart buildings with 30 and 90 houses. During the optimization process, the optimal schedule
of house appliances is found. Another MILP approach is applied in Reference [11], showing how
strategies like DR can achieve suitability in any region considering the presence of high penetration of
renewable-based generation.

An example of NLP applied for DR optimization is presented in Reference [12], where the unit
commitment problem for a microgrid is solved. The optimization problem finds the amount of load
reduction and paid incentives for each time interval. Another example of MINLP has been presented
in Reference [13], which considers the minimization of purchase gas and electricity from the grid by
including the consumption of different loads at different periods. The optimal day-ahead scheduling
of resources in energy hubs is determined.

The DR application in end consumers has been over time applied through an aggregator. It
works as a service provider, and the DR services must be paid to this provider. In Reference [14],
an aggregation of thermostatically controlled loads for performing DR is presented. In this case, the
air conditioning consumption is considered as the load. The aggregation services are not restricted
to the application of DR programs, in Reference [15] an aggregation of generalized energy storage
can be found. The aggregator storage is used to participate in the energy and regulation market. DR
programs targeting independent users, without the need of contracts or service providers, are also
possible [16,17]. These applications are considered independent because the user is not connected to
any aggregator. Usually, when the application is independent the user has a device installed in its
house to control the loads. In Reference [16], the controller is a PV inverter, while in Reference [17], a
home energy management system is used. The controllable loads can be divided into passive (i.e., air
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conditioning, fridges, washing machine) and active (i.e., DG, ESS, vehicle-to-grid, PV) loads [18]. In
References [16,19] the DR is applied on discrete loads, which only have two states: on or off.

With focus on artificial intelligence (AI), its application in power systems has increased in the
past years. The metaheuristics are a very popular part of AI for solving optimization problems.
These techniques have acceptable performance in order to solve engineering problems by finding a
near-optimal solution with a limited computation burden. Metaheuristics can be applied in problems
with a large number of decision variables and easily adapted to a problem that has several constraints [20].
A PSO variant is used in Reference [17] for finding the optimal operation of price-driven demand
response with a load shifting dispatch strategy for photovoltaic, storage battery, and power grid systems.
The optimization algorithm is implemented on Home Energy Manage System. In Reference [21], the
PSO algorithm is also used. The DR is optimized considering the variation of electricity price imposed
by DSO to provoke a consumption reduction. In the microgrid environment [22], a PSO is used for
solve the DR optimization problem. In this case a dynamic pricing model is considered for increase the
profit of costumers. In Reference [23] a PSO algorithm is proposed to optimize the performance of
a smart microgrid in a short term to minimize operating costs and emissions. Other algorithms like
genetic algorithm [24], simulated annealing [25], and differential evolution [26] are frequently used
algorithms to solve DR optimization problems.

The present paper proposes DR optimization considering the optimal battery schedule in a
residential house with Photovoltaic (PV) generation. A PSO approach is implemented to solve the
optimization problem (MILP), and the results are compared with a deterministic resolution (CPLEX
solver). The consumer (residential house) is provided with independent management that approaches
the several resources capabilities and contributions for the minimization of energy bought from the
grid. The main contributions of this paper are as follows.

(1) To perform DR without any contract with the DR service provider—this presented methodology
allows the user to perform DR actions without any connection with DR services provider. The
consumer is provided with independent management that approaches the several resources
capabilities and contributions for the minimization of bought energy from the grid.

(2) The implementation of PSO which is a very simple metaheuristic to implement, open access,
multiplatform (Windows, MacOS, Linux, etc.), executable from an Arduino/Raspberry and
also is the cheapest implementation option. Referring to the presented solution in [16], which
uses a CPLEX solver for MATLAB/TOMLAB platform, the implementation of the PSO is a
much affordable solution, once that MATLAB and TOMLAB are non-open access. PSO can be
implemented in an open access environment and can be executed in free simple platforms, such
as Python.

(3) The proposed methodology represents an optimization problem that can considerably improve
the consumer’s energy savings—the combined use of resources (PV production, storage capacity,
and loads flexibility) allows for a significant reduction in daily operation costs. The optimal
solution obtained by PSO has a daily cost of 3.28 €, while an operation without PV production,
storage capacity and loads flexibility has a cost of 16.83 € per day, which is five times higher than
PSO result for best scenario. If one considers a base scenario that was obtained by using a simple
management mechanism considering the PV production and storage capacity, the daily cost is
9.33 €, which is three times higher than PSO result for the best scenario. The assessment of PSO
can be verified in the comparison of the base scenario and the optimized base scenario with the
PSO. The daily costs with PSO decreases 1.38 €.

The paper is structured into seven sections: In Section 1 an introduction about DR and how
to solve DR problems is presented. Section 2 presents the proposed methodology; in Section 3 the
problem formulation is presented. Section 4 presents the algorithm (PSO) and its adaptation to the
problem formulation. In Section 5, the case study is presented as well as all input variables and PSO
parameters. Section 6 presents the results, and the conclusions are presented in Section 7.
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2. Proposed Methodology

With the goal to reduce the electricity bill of the end consumers is introduced the presented
methodology. This methodology aims to minimize the operation costs considering the batteries and
flexibility provided by the DR actions. The costs minimization considered the grid, the PV systems,
energy storage batteries, and consumption flexibility through load scheduling. The end consumer
is connected to the grid, and has a tariff contract that allows selling energy in the grid in exchange
for monetary payment. This methodology is able to be expanded to other consumers with different
conditions and with different numbers of resources. Figure 1 presents the context scheme of the
idea proposed. This scheme is typical for a household prosumer. The scheme of Figure 1 has a unit
generation (PV), energy storage system (ESS) (battery), one inverter module, the controllable and
noncontrollable loads, and a smart meter.
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For household, the use of PV generation is considered free (the generation unit is household
property). In this paper, the PV generation is considered priority above all others, meaning that when
it is available it will always be used either by load’s necessities, battery charge, or injection in the grid.
The connection with the grid is considered bidirectional. The PV rated power is usually limited by a
contract between retailer and household. This limitation occurs because it can be a source of problems
for the physical grid. In this way, it is difficult to reach a situation in which, as limit case if no injection
to the grid is allowed, the PV is higher than the load plus the energy that can be used to charge the
battery. However, if it happens, the inverter will disconnect the PV in order to avoid overvoltage. In
Figure 1 one can see power flows and information flows. The information flows are connected to the
inverter and controllable loads. In this case, the inverter is enabled with a control and management
system that allows controlling loads, adding DR actions in household installation.

In general, the consumer can take advantage of the use of PV generation, ESS, and DR actions
to minimize the cost of consumption from the grid. The consumer can look for the periods where
electricity is cheaper to satisfy the consumption and charge the ESS, and the periods where the electricity
price is most expensive to sell the excess electricity from the facility. Thus, it can be considered as a
management system for the consumer to improve his energy bill.

Figure 2 is a representative illustration of the load’s control using relays. The controller, in this
case, is a component of the inverter. Each controllable load must have one relay associated with it,
which allows for its control. So, when the controller sends the signal to the relay, the load is connected
or disconnected from the electrical circuit. In this case, this control is considered a DR cut (direct load
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control). The scheme in Figure 2 considers only one relay for simplification; however, the proposed
methodology is able to consider several relays, one for each load in the facility.Energies 2019, 12, x FOR PEER REVIEW 5 of 17 
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3. Problem Formulation

The mathematical formulation is presented throughout this section. With the formulation
presented it is intended to simulate the interaction of a consumer with the grid. The main goal is to
minimize the operation costs, considering that the user has storage units and is also enabled to do
DR in specific loads. The presented optimization model is considered a mixed-integer linear problem.
Equation (1) presents the objective function.

Minimize f = Energy Bill + DR Curtailment (1)

Equation (1) is comprised of the sum of two different parcels: the energy bill present in Equation (2)
and the DR curtailment present in Equation (3). The Energy Bill represents the cost of buying and
selling energy, and the DR curtailment refers to cost weighting associated with kWh curtailment.

In Equation (2) the variable Pgrid
t represents the flow of energy between household and grid,

Igrid in
t is an indicator variable for power flow into the grid and control the energy buy

(
Igrid in
t = 1

)
and energy sell

(
Igrid in
t = 0

)
, Cgrid in

t represents the cost of buying electricity and Cgrid out
t represents

the cost of selling electricity. The Energy bill in Equation (2), consider the costs of buying electricity(
Igrid in
t × Pgrid

t

)
×Cgrid in

t and the revenues of selling electricity
((

1− Igrid in
t

)
× Pgrid

t

)
×Cgrid out

t . In each
period (t) the user can make a single operation (buy or sell).

Energy Bill =
T∑

t=1

[((
Igrid in
t × Pgrid

t

)
×Cgrid in

t −

((
1− Igrid in

t

)
× Pgrid

t

)
×Cgrid out

t

)
×

1
∆t

]
+ DCP (2)

Igrid in
t =

 1, i f Pgrid
t > 0

0, otherwise
∀t ∈ {1, . . . , T}

Also, in Equation (2) the term
((

1− Igrid in
t

)
× Pgrid

t

)
represents the power sent to the network. The

term ∆t is used for to adjust the consumption to the tariff price because normally the tariff is available in
€/kWh and the optimization can be scheduled at different time intervals (e.g., 15 min). DCP represents
the daily contracted power cost. If the term Pgrid

t has a positive value during optimization it means
that there is electricity consumption from the network. However, if it has a negative value it means
that there is a sale of electricity to the network. Equation (3) presents the DR curtailment.
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DR Curtailment =
T∑

t=1

 L∑
l=1

Pcut
l,t ×Xcut

l,t ×Wcut
l,t

 (3)

If the DR curtailment equation is implemented the cost of load is cut with the use of weights, and
in fact does not have cost for the user. The variable Pcut

l,t represents the cut energy of load (l) in period
(t), the Xcut

l,t represents the decision binary variable to active the cut of load (l) in period (t), and Wcut
l,t

represents the cut weight of load (l) in period (t). The term
(
Pcut

l,t ×Xcut
l,t ×Wcut

l,t

)
shows the interest of

the user to perform cut in load (l) in period (t).
Equation (4) represents the balance between load and generation, Pbat

b,t represents the energy

charged or discharged by baterry (b) in period (t). If the value of Pbat
b,t is less than 0 the battery is

discharging, otherwise, if the value of Pbat
b,t is greater than 0, the battery is charging. The variable PPV

p,t

represents the photovoltaic production of unit p at period t, and Pload
t corresponds to the value of load

at period t.

Pgrid
t = Pload

t +
B∑

b=1

Pbat
b,t −

L∑
l=1

Pcut
l,t ×Xcut

l,t −

P∑
p=1

PPV
p,t , ∀t ∈ {1, . . . , T} (4)

The Equation (5) shows the balance of battery systems.

Estor
b,t = Estor

b,t−1 + Pbat
b,t ×

1
∆t

, ∀t ∈ {2, . . .T}, ∀b ∈ {1, . . . , B} (5)

Variable Estor
b,t represents the state of the battery b in period t, in other words, it represents the

amount of energy it has available. So, by Equation (5) the current battery state is obtained by adding the
previous state Estor

b,t−1 to the value of the variable Pbat
b,t .The power term Pbat

b,t in Equation (5) is multiplied

by 1
∆t to convert power into energy units. The system is governed by the following constraints

(Equations (6)–(10)).
− Pgrid min

t ≤ Pgrid
t ≤ Pgrid max

t ∀t ∈ {1, . . . , T} (6)

Pcut
l,t = Pcut max

l,t ∀l ∈ {1, . . . , L}, ∀t ∈ {1, . . . , T} (7)

0 ≤ Estor
b,t ≤ Estor max

b,t ∀b ∈ {1, . . . , B}, ∀t ∈ {1, . . . , T} (8)

− Pdch max
b,t ≤ Pbat

b,t ≤ Pch max
b,t ∀b ∈ {1, . . . , B}, ∀t ∈ {1, . . . , T} (9)

Xcut
l,t =

{
1
0
∀l ∈ {1, . . . , L}, ∀t ∈ {1, . . . , T}. (10)

In Equation (6), the variable Pgrid min
t and Pgrid max

t represent the limit values for variable Pgrid
t .

Equation (7) identifies that Pcut
l,t can only take the maximum value Pcut max

l,t . The Pbat
b,t variables can take

a value between −Pdch max
b,t and Pch max

b,t ; if the value of Pbat
b,t is less than zero it represents a discharge

and if the value is greater than zero it represents a charge. The variable Xcut
l,t is a binary variable and

represents a decision variable. When Xcut
l,t is equal to 1 the cut of load (l) at period (t) is active.

4. Particle Swarm Optimization

PSO was proposed by Kennedy and Eberhart in 1995, and it is a random search algorithm that
simulates the foraging and flocking of birds in nature [27]. When birds look randomly for food in a
given area, each bird can be associated with a single solution and can be considered as a particle in
the swarm.

For PSO implementations assume that it has j particles in the n-dimensional search space and
each particle represent a solution in the search space. Equation (11) presents the position vector of
particle j and in Equation (12) the velocity vector for particle j.
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→
x

j
i =

(
x j

i,1, x j
i,2, . . . , x j

i,n

)
(11)

→
v

j
i =

(
v j

i,1, v j
i,2, . . . , v j

i,n

)
(12)

where,
→
x

j
i . represents the position vector of particle j for n. variables at iteration i. The

→
v

j
i represents the

velocity vector of particle j for n variables. When the search process starts, both vectors are generated
randomly between the respective limits of the n variables.

Equation (13) represents the velocity update equation. This equation is composed of three

different components: the w j
i
→
v

j
i component represents the previous positions in memory search,

c1 j
i r1 j

i

(
P j

best −
→
x

j
i

)
corresponds to the cognitive learning component, and c2 j

i r2 j
i

(
Gbest −

→
x

j
i

)
is a global

learning component. Equation (14) represents the position update.

→
v

j
i+1 = w j

i ×
→
v

j
i + c1 j

i × r1 j
i ×

(
P j

best −
→
x

j
i

)
+ c2 j

i × r2 j
i ×

(
Gbest −

→
x

j
i

)
(13)

→
x

j
i+1 =

→
v

j
i+1 +

→
x

j
i (14)

where,
→
v

j
i+1 is the velocity vector at iteration i + 1; w j

i represents the inertia weight obtained through

Equation (15); c1 j
i and c2 j

i are acceleration coefficients, which are obtained by Equations (16) and (17),

respectively; and r1 j
i and r2 j

i are two uniformly distributed random numbers independently generated

within [0,1] for the n-dimensional search space. P j
best =

(
x j

pbest,1, x j
pbest,2, . . . , x j

pbest,n

)
denotes the historical

best position and Gbest =
(
xgbest,1, xgbest,2, . . . , xgbest,n

)
denotes the population historical best position.

Equation (15) presents an inertia weight.

w j
i = wmax

−

(
wmax

−wmin

imax

)
× i (15)

where, wmax is the maximum value for inertia weight, wmin is the minimum value for inertia weight,
and imax represents the maximum value of iterations. The inertia weight present in Equation (15) is a
linear decreasing method during the search process. The inertia weight reduction ensures strong global
exploration properties in the initial phase and strong local exploitation properties in the advanced
phase. The inertia weight is calculated at each iteration and is the same for the set of particles at each
iteration [28]. Equations (16) and (17) present the acceleration coefficients calculation:

c1 j
i = cmax

1 −

cmax
1 − cmin

1

imax

× i (16)

c2 j
i = cmin

2 +

cmax
2 − cmin

2

imax

× i (17)

where, cmax
1 and cmin

1 are the maximum and minimum values for the personal acceleration coefficient,

respectively. c1 j
i decreases over the iterations, which means that the acceleration component for the

personal position at the beginning of the search is high allowing exploration. The parameters cmin
2 and

cmax
2 represent the minimum and maximum values for the global acceleration coefficient. c2 j

i increases
over the iterations, which means that the acceleration component for the global position at the end of
the search is high allowing exploitation. The encoding of the solutions is crucial for the success of the
algorithm. Equation (18) shows the encoded vector used for solving the problem present in Section 2.

→
x

j
i =

[{
Pbat

1.1, . . . , Pbat
B,T

}
,
{
Xcut

1.1 , . . . , Xcut
L,T

}]
(18)
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where,
{
Pbat

1.1, . . . , Pbat
B,T

}
is a group of continuous variables representing the electricity amount of charge

or discharge in each battery (b) at period (t) and
{
Xcut

1.1 , . . . , Xcut
L,T

}
are binary variables to enable the

possibility of performed cut action in load (l) at period (t). Therefore, particle
→
x has dimensions of

n = B× T + L× T. This encoding allows a direct evaluation in Equation (1).
The PSO implementation starts by defining the search space limits by setting the lower and upper

bounds of each variable. In Equation (19), xlb j represents the lower limits for the solution of j particle
and xub j in Equation (20) represent the upper limit for j particle.

xlb j =
[{
−Pdch max

1.1 , . . . , −Pdch max
B,T

}
,
{
Xcut min

1.1 , . . . , Xcut min
L,T

}]
(19)

xub j =
[{

Pch max
1.1 , . . . , Pch max

B,T

}
,
{
Xcut max

1.1 , . . . , Xcut min
L,T

}]
(20)

→
x

j
1 = rand

[
xlb j, xub j

]
(21)

Equation (21) presents the process of initialization where the initial solution was created. In this
case, a random process into allowed bounds is executed. rand

[
xlb j, xub j

]
is a random number within

the lower xlb j and the upper xub j bounds of j particle for n variables.
Equation (22) presents the boundary constrains method. The search process over the iterations

will generate new solutions that may not be within the initially stipulated limits. To address this
issue the boundary control strategies are used to repair infeasible individuals. In this paper is used a
boundary control technique known as bounce-back [20].

→
x

j
i =


rand

(
xlb j,

→
x

j
i

)
i f
→
x

j
i < xlb j

rand
(
→
x

j
i , xub j

)
i f
→
x

j
i > xub j

→
x

j
i otherwise

(22)

In contrast to random reinitialization (the most used control technique), bounce-back uses the
information on the progress towards the optimum region by reinitialized the variable value between
the base variable value and the bound being violated. Making use of domain knowledge about the
problem, the Equations (23) and (24) is proposed as a direct repair equation. The Equation (23) concerns
the direct repair of Estor

b,t .

Estor
b,t =


0

Pch max
b,t
Estor

b,t

i f Estor
b,t < 0

i f Estor
b,t > Estor max

b,t
otherwise

∀b ∈ {1, . . . , B}, ∀t ∈ {1, . . . , T} (23)

Although boundary control is used it can only control the variables Pbat and Xcut, the variable Estor

is a variable of control and balance, and when it is repaired other variables are necessarily changed. For
the repair process Estor is needed to test two different conditions, Estor

b,t < 0 represents a greater discharge
than the allowed one, being that it fixes the variable to the minimum value. Estor

b,t > Estor max
b,t means that

the battery has a charge greater than the allowed, the value of maximum energy in the battery is fixed
in maximum that can accumulate. Equation (24) presents the direct repair for Pbat variable.

Pbat
b,t =


Estor

b,t − Estor
b,t−1

Estor
b,t − Estor

b,t−1
Pbat

b,t

i f Estor
b,t < 0

i f Estor
b,t > Estor max

b,t
otherwise

∀b ∈ {1, . . . , B}, ∀t ∈ {2, . . . , T} (24)

Pbat is repaired in Equation (22), but with the direct repair used in Equation (23) the variable Pbat

may not be correct, and it is necessary to perform direct repair on it. So, a battery power level test
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is performed, if Estor
b,t < 0 the value for Pbat

b,t is equal to the difference between the battery power level
in the previous period Estor

b,t−1 and the current period Estor
b,t . The same rule is applied when the battery

power level is greater than the allowed maximum Estor
b,t > Estor max

b,t .

The particles should be evaluated according to a fitness function f ′
(
→
x
)
, Equation (25), including

objective function f
(
→
x
)

Equation (1) and constrains violation p f
(
→
x
)
.

f ′
(
→
x
)
= f

(
→
x
)
+ p f

(
→
x
)

(25)

p f
(
→
x
)
=


T∑

t=1
t× ρ i f Pgrid

t ≤ Pgrid min
t ∩ Pgrid

t ≥ Pgrid max
t

0 otherwise
∀t ∈ {1, . . . , T} (26)

where, p f
(
→
x
)

in Equation (26) represents the penalty value for a solution
→
x . Despite the application of

bounce-back method Equation (22) and direct repair methods (23) and (24), the solution may still be
infeasible. The penalty value is obtained checking the limits of variable Pgrid

t for every period. In each
period that the variable is out of limit is counted and multiplied by a penalty amount ρ, the sum of all
individual (per period) penalties represents the total penalties per each solution.

Pseudocode of the PSO algorithm is presented in Algorithm 1.

Algorithm 1. PSO pseudocode.

INITIALIZE
Set control parameters wmax,wmin,cmax

1 ,cmin
1 ,cmax

2 ,cmin
2 , jmax, and imax.

Create an initial Pop (Equation (21)) and initial velocities.
IF Direct repair is used THEN

Apply direct repair to unfeasible individuals
END IF
Evaluate the fitness of Pop (Equation (25)).
Create a Pbest vector for every particle.
Create a Gbest vector of the swarm.
FOR i = 1 to imax

FOR j = 1 to jmax

Velocity update (Equation (13))
Position update (Equation (14))
Update wi, c1i and c2i (Equations (15)–(17))
Verify boundary constraints for Pbat (Equation (9))and Xcut (Equation (10))
IF Boundary constraints are violated THEN

Apply boundary control (Equation (22))
END IF
Verify boundary constraints for Estor (Equation (8)) and Pbat (Equation (9))
IF Boundary constraints are violated THEN

Apply direct repair (Equations (23) and (24))
END IF
Evaluate fitness of

→
x (Equation (25)).

Verify boundary constraints for Pgrid (Equation (6))
IF Pgrid is out of limits THEN

Apply penalty function (Equation (26))
Update fitness value (Equation (25))

END IF
Update Pbest vector for i particle.

END FOR
Update Gbest vector of the swarm.

END FOR
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Basically, if in the evaluation process constraints violations are identified, the individual is
randomly repaired using the initialization process from Equation (22). The pseudocode of Algorithm 1
is displayed step-by-step, starts with the definition of the parameters related to the PSO. The search
begins with the creation of the initial population. After being evaluated, the best position of each
particle and the best position of the population are defined. The main cycle starts, and at each iteration
of the main cycle, another cycle is performed for each particle. For each particle a new velocity is
generated, updated, verified, and evaluated. When all particles repeat the process, the value of the
best personal position of each particle and the best overall position of the population is updated.

5. Case Study

This section presents the case study. The optimization problem was solved using PSO metaheuristic
and compared to a solution obtained by a CPLEX solver in MATLAB™/TOMSYM™ environment to
compare the results.

The proposed methodology addresses a Portuguese consumer and complies with actual Portuguese
legislation, which allows small producers (consumers with local generation) to use the energy produced
to satisfy the own load necessities and sell it to the grid. The consumer has a supply power contract of
10.35 KVA with the retailer, and it is characterized by three different periods: peak, intermediate, and
off-peak [29]. The prices applied to a consumer operation are present in Table 1. The input prices in
Table 1 are real values of a Portuguese retailer (https://www.edp.pt/particulares/energia/tarifarios),
which provides a realistic case study. The prosumer can inject his excess production into grid, but a
limit is imposed by the retailer. The maximum value injected into grid is half of its contracted power,
approximately 5.1 kW. The real prices and real condition inclusion in this problem contribute to more
accurate in this study and prove the real value of the methodology application.

Table 1. Prices of the different periods and contracted power.

Parameter
Energy (€/kWh) Contracted Power

(€/Day)Peak Intermediate Off-Peak

Buy from grid 0.2738 0.1572 0.1038
0.5258

Periods 10.30 h–13 h
19.30 h–21 h

08 h–10.30 h
13 h–19.30 h, 21 h–22 h

22 h–02 h
02 h–08 h

Sell to grid 0.1659 *
−

DR weight 0 0.2 0.4

* is used for all periods.

The DR weights present in Table 1 are defined by the consumer taking into account the energy
price variation within the day, adapted from [16]. The use of DR is more appreciated when the energy
is cheaper, so the weight of 0 is given in peak periods (highest price). With this weight distribution, the
DR actions are expected to be executed during peak periods. Equation (3) gives the amount of DR
actions contributing to the objective function. It does not represent costs for the consumer, but is rather
a consumer’s preference that influences the scheduling. In Table 2 are presented the problem input
variables adapted from [16].

The system has two PV panels with different production, one has a maximum production of 7.5
kW and other has a maximum production of 2.5 kW. This PV panels and the battery storage unit
are connected to the inverter. The battery can receive power from the PV production or the grid. In
this case study, the inverter has two functionalities: the first is to convert the power from DC to AC
and vice versa; the other functionality is to give the signal to manage certain loads. In this study,
three different loads are considered: a dishwasher, an air conditioner, and a water heater. Figure 3
shows the disaggregated consumption and PV generation forecasts. In this case study, the forecast is
performed for the next 24 h. In real-time operation, the forecast can be updated at every instant. Each
time that user update the forecast can perform a new optimization. Regarding the influence of the

https://www.edp.pt/particulares/energia/tarifarios
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forecasting results on optimization, in the case that the presented day-ahead forecasting strategies in
References [30,31] are considered, the forecasting error, using Supporter Vector Machine algorithms to
predict the values for the next 24 h, will be 9.11%.

Table 2. Problem input variables.

Parameters Symbol Value Units

Maximum power injected to grid −Pgrid min
t

−5.1 kW
Maximum power required from grid Pgrid max

t
1000 kW

Maximum power accumulated in battery Estor max
b,t 12 kW

Maximum energy of battery discharge −Pdch max
b,t −6/4 kWh

Maximum energy of battery charge Pch max
b,t 6/4 kWh

Total Periods T 96 −

Total of controllable loads L 3 −

Total of batteries B 1 −

Total of PV units P 2 −

Adjust parameter ∆t 4 * −

* The factor of 4 comes from the fact that there are four 15-min periods in an hour.
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Figure 3. Disaggregated consumption by appliance and photovoltaic (PV) generation.

Figure 3 presents a typical load profile with a peak of 11.5 kW at ~11.45 h. The consumption per
controllable load is present in Figure 3 with different colors. The total consumption includes the sum
of all loads and the same situation for PV but is the sum of two PV units. The peak of production is
forecasted between the 12.00 h and 13.30 h with 6 kW. In some periods, such as 10:30, the sum of the
controllable loads corresponds to the total consumption. Table 3 presents the parameters for PSO; they
were obtained from a previous study.
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Table 3. Particle swarm optimization (PSO) parameters used.

Parameters Symbol Value

Population size jmax 500
Maximum numbers of iterations imax 500

Maximum inertia weight wmax 0.4
Minimum inertia weight wmin 0.9

Maximum cognitive weight cmax
1 1.5

Minimum cognitive weight cmin
1 0.5

Maximum global weight cmax
2 1.5

Minimum global weight cmin
2 0.5

Number of evaluations − 250,000
Number of trials − 30

The member of evaluation is equal to jmax
× imax and presents the number of fitness function is

evaluated during the search process. Considering that the PSO is an algorithm of a random nature,
a group of 30 trials is performed. With a sample of 30 results, it is possible to extract a more robust
conclusion from the application of the PSO to the problem in question.

6. Results

This section presents the results and analysis obtained from the implementation of the proposed
methodology and respective case study. Table 4 presents the results for Equation (1) in both the
CPLEX (deterministic) obtaining the optimal value, and PSO obtained an approximate resolution.
Four different scenarios were created considering the resources combination: the scenario “PV + Bat +

DR” combine the all available resources (PV production, the storage capacity and loads flexibility),
scenario “PV + Bat” combines the PV production and storage capacity resources and “PV” scenario
only considers the PV production resource. The nonoptimized value is used as a base case scenario
and was obtained by using a simple management mechanism; the scenario “PV + Bat” considers
PV production and storage capacity, and the “Without resources” scenario does not consider any
resource. Analyzing the results of CPLEX for the set of scenarios can conclude that “PV + Bat + DR”
presents the smallest fitness function. It can be said with resources combinations brings benefits for
household management.

Table 4. Results for Equation (2) (€/day).

Resources Combination Scenarios CPLEX
PSO

Min Mean STD

Values optimized
PV + Bat + DR 3.1874 3.2771 3.3381 0.0469

PV + Bat 7.8652 7.9454 8.0595 0.1169
PV 8.8478 8.8478 8.8478 0

Nonoptimized values PV + Bat 9.3298
Without resources 16.8570

The analysis of results is performed for the “PV + Bat + DR” scenario. The results present in
Table 4 of PSO correspond to 30 trials. The minimum value that the PSO reached is 2.8% higher
when compared with CPLEX value. Analyzing the standard deviation (std) value for the sample of
PSO results is possible to conclude that it is relatively small and the values of the 30 trials should be
relatively close to the mean value. The STD analysis is important because it is a measure that expresses
the degree of dispersion of 30 trials solutions. Figure 4 presented the results related to the DR actions
applied to the profile shown in Figure 3.
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Figure 4. DR result regarding initial profile.

In Figure 4, the positive values correspond to the consumption of appliances that had no changes
with the application of the methodology. Negative values are energy that has been reduced due to cut
of loads. With the loads cut, reduction of 63% in the total consumption of three loads (dish washer, air
conditioner, and water heater) was obtained. The DR actions are performed during 10.00 h to 13.00 h
and 19.00 to 21.00. Crossing this information with Table 1, one can see that these periods correspond
to a peak hour, precisely when energy is more expensive. During peak hours the consumption with
the present optimization methodology is 44.8 kW, without its application and not considering PV
generation and energy storage systems, the consumption will be 115.4 kW. This reduction represents
20% reduction of total daily consumption. In this way, it is concluded that the present methodology
has an impact on the consumption of peak hours. In Figure 5 are presented the total load consumption
(controllable and noncontrollable loads), the battery actions (charge and discharge), and the final load
(load consumption plus battery charge).
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Figure 5 shows that due to this condition, the generation (see Figure 3) exceeds the consumption
needs, and in this case, the energy surplus will either be used to charge the battery or sell to the grid. In
this way, the user avoids buying energy from the grid to charge the battery and to meet consumption
necessities. The battery discharge cycles are mostly represented between 11.00 and 21.00 periods that
correspond to a peak and intermediate hour. Table 5 presents a summary of the results obtained by
both methods applied.

Table 5. Summary of results.

Scenario Method Equation (1) Equation (2) Equation (3) Daily
Costs (€)

Daily
Revenues (€)

Monthly
Costs (€)

PV + Bat + DR CPLEX 3.1874 3.1874 0 6.9380 3.7505 95.6233
PV + Bat + DR PSO * 3.2771 3.2771 0 6.0565 2.7794 98.3140

PV + Bat PSO * 7.9922 7.9922 0 8.5136 0.5683 239.7661
PV + Bat Nonoptimized 9.3298 9.3298 0 9.3298 0 279.8928

* represent the values of trial with the minimum fitness value.

With the proposed methodology, the daily cost of operation for CPLEX is 3.18 (€) and 3.28 (€)
for PSO, but if the PV system, battery and DR do not exist and the daily costs are 16.83 (€). When
compared the results of Table 5 is possible to observe that daily cost for CPLEX is larger compared to
PSO daily cost, but the value of revenues in CPLEX are also large than PSO values. With the case study
present in Section 5, the value of Equation (1) is equal to Equation (2) in both of methods, which means
that the value of Equation (3) is zero because Equation (1) is the sum of Equation (2) and (3). When
Equation (3) has the value zero represents that the DR is performed on periods with weight equal to
zero and do not have a contribution to Equation (1). Table 5 also presents the monthly costs, which are
calculated considering that the profile present in Figure 3 is repeated for the 30 days of the month. The
value obtained for PSO is 2.96 (€) higher.

7. Conclusions

The present work addresses a methodology for resource scheduling (PV battery, storage capacity,
and load flexibility) in a residential house that has not any contract with a DR service provider. Usually,
the DR services for residential consumers are available using a DR service provider. In contrast, in the
presented methodology the user is independent of applying his preferences in decision-making. In
this case, the PV inverter, installed to convert the PV production into DC to AC, can control the charge
or discharge of the battery system and the interruption of the loads. The optimization results for Pbat

b,t
and Pcut

l,t are the inputs for the PV inverter control to act on the battery system and controllable loads.
The optimization problem was solved using a stochastic method (PSO) and a deterministic method

(CPLEX). The results obtained by PSO have a close approximation to the deterministic results. The
simple implementation and open access possibility of programming PSO over different platforms are
factors that potentiate its use in this type of problems. In fact, in the present work, it was possible to
demonstrate the results of running a PSO-based algorithm on a connection with the inverter of the PV
system for control of the connected loads and the charge or discharge of the battery storage system.

The numerical results presented demonstrate that it is possible to obtain advantages by using the
optimal combination of available resources. Table 4 presents the fitness function value for different
resources combination, showing that the scenario that combines the all available resources is the best.
Although PSO can obtain near-optimal solutions, its solution using the best combination resource
scenario is better than the normal operating solution. With the comparison between the base scenario
and the same scenario with PSO optimization, it is possible to make the assessment of the PSO approach.
The daily cost optimized by PSO for the base scenario is 14% lower compared with the obtained in the
nonoptimized base scenario.

As the presented methodology was built for been applied in an independent agent, the agent
facility (residential house) needs to be prepared with equipment to perform the actions that the
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presented method imposes. This condition may be a weakness of the methodology, as it will increase
the initial investment in equipment. Assuming that the DR program is implemented efficiently, such
investment can be recovered over time, as the user does not need to pay fees to any service provider to
use the service. The use of PSO instead of CPLEX can make the initial investment more appealing, for
reasons already discussed in the introduction.

For future work, an analysis incorporating more DR actions (e.g., reduction and shifting capabilities)
in the presented methodology can be done. Also, robust optimization considering the forecast error in
PV production and domestic consumption can also be made to analyze the impact of forecasts errors
in the electricity bill.
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Glossary/Nomenclature

Abbreviations
AI Artificial Intelligence
DR Demand Response
DG Distributed Generation
ESS Energy Storage System
LP Linear Programming
MATLAB Matrix Laboratory
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Nonlinear Programming
NLP Nonlinear Programing
PSO Particle Swarm Optimization
PV Photovoltaic
RESs Renewable Energy Sources
SET Strategic Energy Technology
Indices
b Battery unit
n Dimension
i Iteration
l Load unit
j Particle
t Period
p Photovoltaic unit
Parameters

Cgrid in
t Cost of buying electricity to the grid

Cgrid out
t Cost of selling electricity to the grid

Wcut
l,t Cut weight of load

DCP Daily contracted power cost

xlb j Lower bond for
→
x

j

Pgrid max
t Maximum limit for Pgrid

t
imax Maximum number of iterations
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jmax Maximum numbers of particles
Pcut max

l,t Maximum value for cut load
Pch max

b,t Maximum value for energy charge
Pdch max

b,t Maximum value for energy discharge
cmax

2 Maximum value for global acceleration coefficient
wmax Maximum value for inertia weight
cmax

1 Maximum value for personal acceleration coefficient
Estor max

b,t Maximum value of accumulated energy in battery

Pgrid min
t Minimum limit for Pgrid

t
cmin

2 Minimum value for global acceleration coefficient
wmin Minimum value for inertia weight
cmin

1 Minimum value for personal acceleration coefficient
∆t Multiplicative factor related with the time to calculate energy
B Number of batteries
L Number of controllable loads
T Number of Periods
ρ Penalty value
PPV

p,t Photovoltaic production

xub j Upper bond for
→
x

j

Pload
t Value of load

Variables

Igrid in
t Binary variable for control the flow direction

Pcut
l,t Cut power of load

Xcut
l,t Decision binary variable to active the cut of loads

Pbat
b,t Energy charged or discharged by battery

f
(
→
x
)

Fitness function

f ′
(
→
x
)

Fitness function with penalty

Pgrid
t Flow of energy between household and grid

P j
best

Historical best position

w j
i

Inertia weight

p f
(
→
x
)

Penalty function

c1 j
i and c2 j

i
Personal and global acceleration coefficients

Gbest Population historical best position
→
x

j
i Position vector

Estor
b,t State of the battery

r1 j
i and r2 j

i
Uniform distribution random numbers

→
v

j
i Velocity vector
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Resumen 

Los hogares equipados con recursos energéticos distribuidos, como unidades de 
almacenamiento y renovables, abren la posibilidad de autoconsumo de 
generación in situ, vender energía a la red, o hacer ambas cosas según el contexto 
de operación. En este artículo se desarrolla un modelo para optimizar los recursos 
energéticos de los hogares por parte de un proveedor de servicios de energía. 
Consideramos viviendas dotadas de tecnologías que apoyen la reducción real de 
la factura energética y por tanto realicen acciones de respuesta a la demanda. Se 
desarrolla una formulación matemática para obtener la programación óptima de 
los dispositivos domésticos que minimice la factura de energía y las acciones de 
reducción de respuesta a la demanda. Además del modelo de programación, el 
enfoque innovador de este documento incluye algoritmos evolutivos utilizados 
para resolver el problema bajo dos enfoques de optimización: (a) el enfoque no 
paralelo combina las variables de todos los hogares a la vez; (b) el enfoque 
paralelo aprovecha la independencia de las variables entre los hogares utilizando 
un mecanismo multipoblacional y optimizaciones independientes. Los 
resultados muestran que el enfoque basado en paralelo puede mejorar el 
rendimiento de los algoritmos evolutivos probados para instancias más grandes 
del problema. Por lo tanto, mientras aumenta el tamaño del problema, es decir, 
aumenta el número de hogares, la metodología propuesta será más ventajosa. En 
general, el algoritmo búsqueda de vórtice (vortex search en inglés) supera a todos 
los demás algoritmos probados (incluida la conocida evolución diferencial y la 
optimización de enjambre de partículas) logrando alrededor de un 30 % mejor 
desempeño en todos los casos, lo que demuestra su eficacia para resolver el 
problema propuesto.  
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Abstract: Households equipped with distributed energy resources, such as storage units and
renewables, open the possibility of self-consumption of on-site generation, sell energy to the grid,
or do both according to the context of operation. In this paper, a model for optimizing the energy
resources of households by an energy service provider is developed. We consider houses equipped with
technologies that support the actual reduction of energy bills and therefore perform demand response
actions. A mathematical formulation is developed to obtain the optimal scheduling of household
devices that minimizes energy bill and demand response curtailment actions. In addition to the
scheduling model, the innovative approach in this paper includes evolutionary algorithms used to
solve the problem under two optimization approaches: (a) the non-parallel approach combine the
variables of all households at once; (b) the parallel-based approach takes advantage of the independence
of variables between households using a multi-population mechanism and independent optimizations.
Results show that the parallel-based approach can improve the performance of the tested evolutionary
algorithms for larger instances of the problem. Thus, while increasing the size of the problem, namely
increasing the number of households, the proposed methodology will be more advantageous. Overall,
vortex search overcomes all other tested algorithms (including the well-known differential evolution and
particle swarm optimization) achieving around 30% better fitness value in all the cases, demonstrating
its effectiveness in solving the proposed problem.

Keywords: demand response; energy service provider; energy storage system; evolutionary
algorithms; optimization; photovoltaic generation

1. Introduction

In the current environmental world scenario, countries are adopting a series of counter measures
in what regards to the use of energy, renewable sources and DG (Distributed generator) [1]. In fact, the
European Union, according to the EU (European Union) renewable energy directive (2009/28/EC),
is pushing to their country members to achieve strict targets such as the of penetration of 20% of
renewables into the energy mix by 2020, and increase the quantity up to by 100% by 2050. Thus, in order
to achieve such ambitious targets, it is expected a systematic and elaborated transformation of the
electrical grid, in line with the ambitions of the EU [2].

In this scenario, new technologies such as PV (Photovoltaic) panels and battery systems emerge
as a viable solution to promote the penetration of renewables at the local level of the distribution
networks. Households equipped with PV generation and storage units became small producers
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(the so-called prosumers due to their condition of consumer and producer at the local level) and
provide a new source of flexibility to the systems [3]. Also, prosumers allow the implementation of
innovative energy management mechanisms to take advantage of DR (Demand Response) and on-site
generation. The correct coordination and use of such devices, through effective management and
optimization approaches, promises several benefits such as the reduction of energy bills for households
and the reduction of carbon-emission footprints in general.

Different approaches have been proposed to address the optimization of households equipped
with PV-battery systems. For instance, a MILP (Mixed-integer Linear Programming) problem was
formulated in [4] for the management of a residential community grid with renewables, batteries,
electric vehicles, and DR capabilities. This formulation searched for the minimization of purchased
energy cost. In [5], a similar approach was used to minimize operation cost of a smart building
considering DR and day-ahead energy resource management. In [6], the capabilities of MILP
were tested again under a similar problem formulation, showing that DR can be very effective in
different scenarios when a high penetration of renewables is available. On the other hand, some
MINLP (Mixed-integer Non-linear Programming) have extended the mathematical formulation to
include non-linearities and make the models close to real-world situations. For instance, in [7] a unit
commitment problem of a microgrid is formulated to optimize the amount of load reduction and
incentives given due to DR at different time intervals. Also, in [8], gas and electricity are included into
the energy mix model, and the day-ahead energy scheduling is optimized for energy hubs. Some other
approaches have explored the idea of an aggregator that works as an energy service provider. In this
case, households can apply DR actions following incentives or responding to a direct control signals
dictated by the aggregator. For instance, in [9], an aggregation of air conditioning loads is considered
to perform DR actions. The study in [10] is not only limited to DR actions but also considers storage
units to participate in energy and regulation markets. Also, in [11], a demand response simulator
to study actions and schemes of users in distribution networks was proposed. The study took into
account the technical validation of solutions including load reduction using a consumer-based price
elasticity approach supported by real time pricing.

Finally, due to the complexity of the problem, EA (Evolutionary Algorithms) has been proposed
in the literature trying to face issues such as scalability, memory requirements, time constraints,
and other related problems that arise in the context of demand response and hybrid PV-battery
systems. For instance, in [12], a bi-level formulation for optimal day-ahead price-based DR is proposed
and solved by a hybrid approach in which a multi-population genetic algorithm is used for the upper
level and distributed individual optimization algorithm for the lower level. Another hybrid genetic
algorithm is used in [13] to consider the interaction of electricity retailers and DR. More recently,
in [14] a PSO (Particle Swarm Optimization) algorithm is used for load shifting of appliances and
the scheduling of PV and storage equipment using a home energy management system. In [15],
the performance of evolutionary algorithms is compared solving a flexibility management model in
which home appliances can perform DR actions. In addition, evolutionary algorithms have been used
not only to optimize hybrid renewable energy systems [16] but also to coordinate the scheduling of
PV-storage systems [17–19].

In this paper, we extend the model proposed in [20], for optimization of households equipped
with PV-battery systems and DR capabilities. Different EAs, including DE (Differential Evolution, PSO,
VS (Vortex Search, and other variants, are implemented to solve the optimization problem (MILP),
and their performance and results are compared under two novel frameworks (one following the
typical framework of EAs and another taking advantage of parallel computing). Households are
provided with an independent management of resources minimizing energy bills and optimizing
DR curtailment. With the objective of improving the minimization of electricity costs for households,
with the support of an energy service provider, the contributions of this paper are as follows:

• An optimization framework for the optimization of PV-battery system of households minimizing
energy bills and DR actions.
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• A MILP formulation to optimize the resources of several households.
• Implementation of different EAs under two optimization approaches, one based on standard

evolutionary computation and a second one taking advantage of parallel computing.
• Assessment of the effectiveness of EAs and the optimization framework under a case study

considering up to 20 households.

The paper is organized as follows: after the introduction in Section 1; the proposed methodology
and the mathematical formulation is presented in in Section 2; Evolutionary algorithms applied in
this work are introduced in Section 3; Section 4 presents the two proposed optimization approaches
employed with the use of EAs to make use of parallel computing; the case study and results are provided
in Sections 5 and 6 respectively; and finally, the conclusions of this work are presented in Section 7.

2. Households Demand Response Optimization

In this section, is provided the description of the proposed optimization model, which aims to
minimize the energy bill and the user discomfort. The change in the consumption pattern is considered
to be a way of user discomfort. Since it is a rather complex problem to be computed at house level,
the proposed methodology considers an Energy Service Provider that performs the optimization for a
large set of households, and makes the results available for each one.

In each house, distributed energy resources are available, like PV generation, storage, and DR.
Accordingly, each household is a prosumer (a consumer able to produce electricity), equipped with a
PV and an energy storage system. Three appliances can be controlled by the optimization algorithm
to reduce the consumption in periods when the electricity price is higher. For this, it is assumed that
the household owns the needed control devices (e.g., plc). The PLC (Programmable Logic Controller)
controller unit manages the consumption and generation resources in the houses according to the
schedule received from the Energy Service Provider.

The mathematical formulation of the problem is an extension of [20] to consider up to I households
(unlike the original model designed to target only one household). Thus, the formulation corresponds
to a MILP model having as OF (Objective Function) Equation (1):

Minimize OF = Energy Bill + DR Curtailment Weight , (1)

where Energy Bill represents the costs of buying and selling electricity, while DR Curtailment Weight
quantifies the weight of the curtailment of loads due to DR. Thus, Equation (2) represents the energy
bill that households must pay due to the flow of energy exchanged with the main grid:

Energy Bill =
I

∑
i=1

(
T

∑
t=1

(
PGrid In

i,t × CGrid In
i,t − PGrid Out

i,t × CGrid Out
i,t

)
× 1

∆t

)
+ Fix Costi , (2)

where PGrid In
i,t represents the energy flow from the grid to the household, CGrid In

i,t represents the cost of
buying energy, PGrid Out

i,t is the energy flow from household to the grid, CGrid Out
i,t corresponds to the

revenue of selling energy to the grid, 1
∆t is a term that considers the modification of hourly values

to another time interval (e.g., 15 min in this article), Fix Costi represents the fixed tariff costs pay
by each household. i = {1, ...I} is used to identify households, and t = {1, ..., T} for the periods.
Notice that Equation (2) includes the sum of energy bill over all households. Therefore, minimizing
this overall value corresponds to reduce the bill for each particular household. Moreover, the energy
consumption/generation from households is independent, and thus, finding the minimum value for
Equation (2) guarantees that the minimum possible bill for each household is obtained.

On the other hand, Equation (3) is used to calculate the weight of DR actions:

DR Curtailment Weight =
I

∑
i=1

(
T

∑
t=1

(
L

∑
l=1

(
PCut

i,t,l × XCut
i,t,l ×WCut

i,t,l

)))
, (3)
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where PCut
i,t,l represents the energy load cuts, XCut

i,t,l are binary decision variables indicating a DR action,
WCut

i,t,l represents the weight of energy cuts, l = {1, ..., L} is used to represent loads available for DR.
It is important to point out, as explained in [20] that the energy bill (first term) and DR curtailment

(second term) can be seen as opposite objectives in Equation (1). This is because the curtailment of
loads reduces energy bills, but at the same time affects user comfort in different ways depending on
user preferences. In this work, however, we decided to select the DR weights of energy cuts following
a trend contrary to the buy from grid tariff to promote the use of DR when the price of energy is higher.
Other assumptions and targets can be explored in future work.

Equation (4) represents the energy balance at each period:

PGrid
i,t = PLoad

i,t + PBat
i,t −

L

∑
l=1

(
PCut

i,t,l × XCut
i,t,l

)
− PPV

i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (4)

where PGrid
i,t represents the energy flow between grid and household, PLoad

i,t represents consumption
from non-controllable loads, PBat

i,t corresponds to energy charge/discharge of batteries (charge or
discharge) and PPV

i,t represents the energy generated by PV panels.
Equation (5) is applied to obtain the flow of energy between the grid to household:

PGrid In
i,t = PGrid

i,t ≥ 0, ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} . (5)

Equation (6) is applied to obtain the energy flow from households to the grid (exported energy):

PGrid Out
i,t = PGrid

i,t < 0, ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} . (6)

Equation (7) represents the balance of the batteries for all households at all periods:

EBat
i,t = EBat

i,t−1 + PBat
i,t ×

1
∆t

, ∀i ∈ {1, ..., I}, ∀t ∈ {2, ..., T} , (7)

where EBat
i,t is the state of the battery of household i at period t, and EBat

i,t−1 represents the previous state
of the battery of household i at period t− 1. Equation (7) is applied from the second to the last period
of optimization, while EBat

i,1 is an input parameter of the case study.
Equation (8) is used to represent the bounds of PGrid

i,t variable:

PGridmin
i,t ≤ PGrid

i,t ≤ PGridmax
i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (8)

where PGridmin
i,t corresponds to the lower bond and PGridmax

i,t to the upper bound values of PGrid
i,t .

Equation (9) represents the upper bound (maximum cut capacity) for the variable PCut
i,t,l :

PCut
i,t,l = PCutmax

i,t,l , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T}, ∀l ∈ {1, ..., L} . (9)

Equation (10) presents the bonds for the variable EBat
i,t .

0 ≤ EBat
i,t ≥ EBatmax

i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (10)

where EBatmax
i,t are the upper bound of variables EBatmax

i,t .
Equation (11) presents the bound for the variable PBat

i,t :

− PBatdch
i,t ≤ PBat

i,t ≥ PBatch
i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (11)

where −PBatdch
i,t and PBatch

i,t are the lower and upper bounds of the variable PBat
i,t .
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Equation (12) represents the bounds for the variable XCut
i,t,l .

XCut
i,t,l =

{
1
0

, ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T}, ∀l ∈ {1, ..., L} , (12)

where variable XCut
i,t,l can takes the value of ‘1’ when the cut is active and the ‘0’ when the cut is

not active.

3. Evolutionary Computation

EC (Evolutionary Computation) is one of the three pillars of computational intelligence (along with
artificial neural networks and fuzzy systems). EC includes a set of algorithms for optimization inspired
in biological and evolutionary processes [21]. In fact, there are in the literature now a huge set of
algorithms available for optimization, but in general, they can be grouped in some popular categories
such as EA, SI (Swarm Intelligence), nature-inspired algorithms, natural computation, etc.

In this paper, we focus our attention in a class of algorithms that share some common mechanisms.
This choice eases the experimental analysis since a fair comparison can be performed between the
algorithms. Figure 1 illustrates the evolutionary mechanism employed by the selected EAs. Thus,
in a first stage, an encoding of solutions and a fitness function are defined for a particular problem.
The EAs act over an initial set of candidate solutions encoded as vectors (i.e., a population) that is
iteratively updated through generations. The way in which new solutions are created from the initial
population is what distinguish each EAs (i.e., each of the selected EAs has its own variation operator).
Solutions’ performance is measured by the fitness function, and at each generation, solutions with
inferior performance are replaced by the new solutions with better performance. It is empirically
proved that by the principles of natural selection (or artificial selection in this case), the population
will gradually evolve towards an optimal fitness value.

Evolutionary

cycle

Best solution

Scheduling

Stop

?

Variation 

operators

New 

solutions

Current

solutions

Evaluation

Replacement

Initialization

Evaluation

(fitness)

Selection

Yes

No

Different for 

each EA

Algorithm:

Encoding

Fitness function

Parameters

Case Study Input:

Initial battery SoC

PV and load forecast

Energy tariffs

DR weights

For each household:

Batteries’ state

Load curtailment

Figure 1. Typical optimization scheme of evolutionary algorithms. All the evolutionary algorithms
used in this work follow this scheme.

We describe the solution encoding and fitness function shared by the selected EAs in Section 3.1.
After that, a brief description of the chosen algorithms is provided in Section 3.2.
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3.1. Solution Encoding and Fitness

The optimization problem searches for the optimal scheduling of charging and discharging cycles
of batteries and the choice of which loads are used for DR curtailment, for each user (as stated in
Section 2).

Therefore, the selected encoding should include all the information to validate a solution, and it
is very similar to that used in [20], but generalized for I users. Figure 2 shows the structure of a
given solution in our framework. The solution first include continues variables representing the
charging/discharging state (positive for charging, and negative for discharging) of the users’ battery,
at all periods t, for each user i. Therefore, this set includes T× I variables Then, a second set of binary
variables is used to indicate a cut action in all load l (‘1’ if load l is curtailed, and ‘0’ if not), at all
periods t, for each user i. Therefore, this second set includes L× T × I binary variables. In general,
a complete given solution to the problem is of dimension D = T × I × (1 + L). The variables are
bounded by:

~xlb = {−Pdchmax
i,t , Xcutmin

i,l,t }, i = {1, ..., I}, t = {1, ..., T}, l = {1, ..., L} , (13)

~xub = {Pchmax
i,t , Xcutmax

i,l,t }, i = {1, ..., I}, t = {1, ..., T}, l = {1, ..., L} . (14)

Thus, the EAs can generate initial populations with random candidate solutions between those
bounds using a random function such as:

~xj = rand( ~xlb, ~xub), j = {1, ..., Nsol} , (15)

where rand( ~xlb, ~xub) generates a random solution between the bounds defined in Equations (13) and (14),
and Nsol is the size of the population defined by the user.

Since the formulation includes constraints that can be difficult to optimize by the algorithms, we
apply some direct repair techniques to ease the generation of feasible solutions. Equation (16) presents
the direct repair mechanism employed to keep variables EBat

i,t into the allowed limits:

EBat
i,t =


0, i f EBat

i,t < 0
EBatmax

i,t , i f EBat
i,t > EBatmax

i,t
PBat

i,t , otherwise
, ∀i ∈ {1, ..., I}, ∀t ∈ {2, ..., T} , (16)

where variable EBat
i,t represent the energy state of charge of the battery. EBat

i,t < 0 represents a discharge state
greater than the allowed one, so that the variable is fixed to its minimum value. When EBat

i,t > EBatmax
i,t ,

the battery has charged more energy than the allowed, thus, the value of maximum energy in the
battery is fixed the maximum allowed value. After repairing the state of charge, variables PBat

i,t should
also being repaired as:

PBat
i,t =


EBat

i,t − EBat
i,t−1, i f EBat

i,t < 0
EBat

i,t − EBat
i,t−1, i f EBat

i,t > EBatmax
i,t

PBat
i,t , otherwise

, ∀i ∈ {1, ..., I}, ∀t ∈ {2, ..., T} . (17)

Notice that variable PBat
i,t is repaired following the same conditions of Equation (16).

This procedure guarantees feasible solutions, helping in the iterative process of the EAs.
Since the encoding has been designed to include all information needed to evaluate the

mathematical model from Section 2, the fitness function is taken directly from Equation (1) including
penalties due to the possibility of generate infeasible solutions. Therefore, the fitness value includes
the energy bill (costs and revenues), fixed costs, and DR curtailment weight off all users plus penalties:

Fitness(~xj) = f (~xj) + pfunction(~xj) , (18)
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where f (~xj) is equivalent to Equation (1), and pfunction(~xj) is a function that returns a penalty value
associated with the violation of the limits of variable PGrid

i,t for each user i at each time t, defined as:

pfunction(~xj) =
I

∑
i=1

T

∑
t=1

ρi,t , (19)

ρi,t =


0− PGrid

i,t , if (PGrid
i,t < 0)

PGrid
i,t − PGridmax

i,t , if (PGrid
i,t > PGrid min

i,t )

0 otherwise
, (20)

where ρi,t is a penalty factor related to the limits of variable PGrid
i,t . Notice that direct repair methods

are used to avoid as much as possible violations of constraints (see direct repair methods in [20]), yet,
due to the stochastic nature of EAs, infeasible solutions may arise for large instances (as the result
section shows).

{𝑃1,1
bat … 𝑃1,𝑇

bat} … {𝑃𝐼,1
bat … 𝑃𝐼,𝑇

bat}

Batteries of all households

Ԧ𝑥1=

Ԧ𝑥2=

…

Ԧ𝑥𝑁sol
=

{𝑋1,1,1
cut 𝑋1,1,2

cut … 𝑋1,𝐿,𝑇
cut } … 𝐷 = 𝑇 ∗ 𝐼 ∗ (1 + 𝐿){𝑋𝐼,1,1

cut 𝑋𝐼,1,2
cut … 𝑋𝐼,𝐿,𝑇

cut }

Loads for DR of all households
𝑇 ∗ 𝐼 𝐿 ∗ 𝑇 ∗ 𝐼

Total dimension

of each individual

Subsequent

households

Subsequent

households

Figure 2. Solution encoding. The individual structure used by the EAs include all information needed
to evaluate a solution.

3.2. EAs Used for DR of Households

Now that we defined the encoding of individuals and the fitness function, we apply EAs following
the scheme from Figure 1 to solve the problem. In this paper, we apply DE and two of its variants
hyde and HyDE (Hybrid Differential Evolution) (due to its success in many applications and easy
implementation [22]), an improved version of the well-known PSO, and the vs [23]. In the following
subsections, we provide a brief description of the algorithms, and their variation operators that
distinguish each of them.

3.2.1. Differential Evolution

DE uses a Pop (Population) of individuals ~xj,i,G = [x1,i,G, ..., xD,i,G], where G is the number of
iterations, i = [1, ..., NP] is the index of individuals in the population, and j = [1, ..., D] is the index
for the variables to optimize. In the initialization stage, NP solutions are generated randomly within
lower and upper ranges ~xlb and ~xub. In the standard form of DE, the so-called DE/rand/1 algorithm,
new solutions are created applying a mutation and recombination operator defined by:

~mi,G = ~xr1,G + F(~xr2,G −~xr3,G) , (21)

~tj,i,G =

{
~mi,G if (randi,j[0, 1] < Cr) ∨ (j = Rnd)
~xj,i,G otherwise

, (22)

where ~xr1,G,~xr2,G,~xr3,G ∈ Pop are three random individuals from the Pop, mutually different from
each other. F and Cr are the mutation and recombination parameters of DE, usually set in the range
[0, 1]. The fitness function, (i.e., Equation (18)), is used to evaluate the performance of new individuals.
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An elitist selection procedure is applied in DE by replacing solution with worse performance than the
new generated ones. A detailed explanation of DE can be found in [24,25].

3.2.2. Hybrid Adaptive DE

HyDE is a new self-adaptive version of DE proposed in [25]. The distinguish HyDE variation operator,
known as “DE/target-to-perturbedbest/1”, modifies the well-known DE/target-to-best/1 strategy [22]
perturbing the best individual (similar to the evolutionary PSO [26]). HyDE also integrate a self-adaptive
parameter mechanism (taken from the jDE (Self-Adaptive Differential Evolution algorithmm [27]).
The main operator of HyDE is defined as follows:

~mi,G = ~xi,G + F1
i (ε ·~xbest −~xi,G) + F2

i (~xr1,G −~xr2,G) , (23)

where F1
i and F2

i , are scale factors in the range [0, 1] independent for each individual i, and ε = N (F3
i , 1)

is a random perturbation factor following a normal distribution with mean F3
i (random number in the

range [0, 1]) and standard deviation 1. F1
i , F2

i and F3
i are updated at each iteration with the same rule

of jDE algorithm (see Section III.B of [25]).

3.2.3. Hybrid Adaptive DE with Decay Function

HyDE-DF is an improved version of HyDE used for function optimization [28]. The main different
in its operation is the incorporation of a decay function that allows a transition in the iterative process
from the main operator of HyDE (Equation (23)) to the basic operator of DE (Equation (21)):

~mi,G = ~xi,G + δG · [F1
i (ε ·~xbest −~xi,G)] + F2

i (~xr1,G −~xr2,G) , (24)

where δG is a decreasing function (from 1→ 0) that gradually mitigates the influence towards xbest,
and takes advantage of the inherent DE exploitation capabilities in later stages of the evolutionary
process. The decay factor at each generation G is calculated as:

δG = e1−1/a2
; with a = (GEN − G)/GEN . (25)

δG factor alleviate the premature convergence effect towards the best individual in the population
(i.e., due to the term F1

i (ε ·~xbest −~xi,G)). Such transition also allows an enhance exploration phase in
the early stages of evolution, and improves exploitation in later stages of the optimization. HyDE-DF
achieved third place (out of 36 algorithms) in the 100-digit challenge at CEC/GECCO 2019 [29].

3.2.4. PSO-LVS

PSO [20] belongs to the class of SI, in which particles (solutions to the problem) coordinate their
actions by modifying their position towards the optimum value. Particles are evaluated in the fitness
function and improve their position in each iteration using the following variation operator:

~xj,i,G = ~xj,i,G−1 + ~vj,i,G , (26)

~vj,i,G = wG · ~vj,i,G−1 + c1G · rand() · (Pbest
i − ~xj,i,G−1) + c2G · rand() · (Gbest − ~xj,i,G−1) , (27)

where ~vj,i,G represents the velocity vector, wG is the inertia weight, c1G and c2G are the are acceleration
coefficients for personal and global component, rand() is a uniformly distributed random number,
Pbest

i is the historical best position obtained by particle i while Gbest is the population historical best
position obtained by the swarm.
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PSO-LVS (PSO with Local Vortex Search) (Equation (28)) is a variant of PSO developed by the
authors that includes a local search based on the VS algorithm. The movement of PSO-LVS is therefore
obtained by following equation:

~xj,i,G =

 ~xj,i,G = ~xj,i,G−1 + ~vj,i,G i f , rand() ≤ PPSOG

p(~m/µ, Σ) = 1√
(2π)d |Σ|

exp
{
− 1

2 (~x− µ)GΣ−1(~x− µ)
}

otherwise, (28)

where PPSOG is a probability factor that switch between PSO standard equation and VS. Another difference
is that µ in Equation (29) is replaced by Gbest. In addition, PPSOG = 0.9

G
8 is a probability that decreases in

function of the number of generations. With this method, it is expected the execution of LVS (Local
Vortex Search) in later stages of the iterative process.

3.2.5. Vortex Search

VS is classified as a single-solution-based metaheuristic, although it has an analogous framework
to the EAs selected for this study. In each iteration, N given number of neighbor solutions are generated
using a multivariate Gaussian distribution around the initial solution using:

p(~m/µ, Σ) =
1√

(2π)d|Σ|
exp

{
−1

2
(~x− µ)GΣ−1(~x− µ)

}
, (29)

where d represents the dimension, ~x is the d× 1 vector of a random variable, µ is the d× 1 vector of
sample mean (center), and Σ is the covariance matrix. The N solutions generated with this function are
evaluated in the fitness function, and the best solution replaces the initial single-solution. The radius
of search is gradually reduced during the iterative process, favoring exploitation capabilities in the
final iterations. This process is iterative repeated until a stop criterion is achieved [23].

4. Non-Parallel and Parallel-Based Approaches

In this paper, given the nature of the mathematical formulation, and the independence of
variables between households, we propose two approaches to use the EAs. In the first approach
illustrated in Figure 3, so-called non-parallel approach, all variables are combined in a single encoding
(explained in Section 3.1). Thus, the EAs use their variation operators over the whole set of variables,
until a stop criterion is achieved. This is the typical form in which an EA is applied to solve a
given problem.

Single population 

with all information

Household 1

.

.

.
Household I

Household 2

EA Solution

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

In the non-parallel approach, the EA optimizes 

all households at once

Figure 3. The non-parallel approach optimizes all variables in one population. This is in line with the
typical mechanism of EAs.

However, the problem formulation assume that each household scheduling is independent
from each other, since their resources are individual and not shared among them. Thus, in the
second approach illustrated in Figure 4, variables are divided in groups corresponding to each
household. After that, multi-populations are generated and optimized independently by a chosen EA.
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The independent solutions are combined in a post-optimization stage, to calculate the total costs of all
households. While the solution returned by both approaches is equivalent, results show that breaking
the groups of variables into sets corresponding to each household in fact improves the performance of
the EAs. In addition, the parallel-based approach can make use of distributed computing, running in
parallel different EAs and improving convergence times.

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

In the parallel-based approach, the EAs 

optimize each households independently

Household 1

.

.

.
Household I

Household 2

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

EA

EA Solution 1

Solution 2

Solution I

Solution

Multi-population

(one for each household)
Solutions are 

combined

EA

Figure 4. The proposed parallel-based approach breaks the solution into parts corresponding to the
variables of each household. After that, each EA optimizes the variables and a post-optimization
procedure combines the solutions into a single solution.

5. Case Study

We design a case study to evaluate our framework considering households representing
prosumers complying with actual Portuguese legislation, which allows small producers (consumers
with local generation) to use their energy to satisfy their own load needs, and inject excess of energy to
the grid. We assume that households are equipped with PV panels with a maximum power capacity of
7.5 kW and a battery unit belonging to one of the four models showed in Table 1 (distributed randomly
within the households). In addition, households equipped with controllable loads can reduce 10% on
average of their total consumption.

Table 1. Battery models used for the case study, taken from [30].

PchmaxPchmaxPchmax −Pdchmax−Pdchmax−Pdchmax EBatmaxEBatmaxEBatmax

Laboratory battery used in [20] 1.5 kW −1.5 kW 12 kWh
Tesla Powerwall 5 kW −5 kW 13.5 kWh
Alpha Smile 2.87 kW −2.87 kW 14.5 kWh
Sonnen 3.3 kW −3.3 kW 15 kWh

For consumption and PV generation, two sample power profiles were used to generate data of
residential households. The profiles were built using real open datasets available at PES ISS website
[31]. With these base profiles, up to 20 households’ data was generated using a randomized function
with a uniform distribution, ±25% around the base profiles.

Figure 5 shows the retail tariffs and PV generation of the base profiles. We assume that households
have a power supply contract with a given retailer of 11 kW characterized by three different periods:
peak (0.33 EUR/kWh), intermediate (0.16 EUR/kWh), and off-peak (0.093 EUR/kWh). We also consider
a feed-in tariff of 0.095 EUR/kWh and a DR weight with a trend contrary to the buy from grid tariff,
i.e., promoting the use of dr when the price of energy is higher (these weights are applied to the second
term of Equation (1)). Tariffs are based on real values of a Portuguese retailer.

Figures 6 shows the aggregated consumption profiles of 20 households. Notice that the aggregated
profile correspond to a typical profile since data from households is generated following base profiles,
which in practice might not be the case. However, this paper is focused on the performance of
EAs rather than the impact in the diversity of consumers. Further studies can be done considering
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households with diverse characteristics and their impact in costs and DR curtailment. Figure 7 the
total aggregated consumption and generation of 20 households. Finally, input values of variables for
each household are summarized in Table 2

Table 2. Input variables of the problem. Values are applied to each household.

Parameter Variable Value Units

Maximum power injected to the grid PGridmax
i,t 5.1 kW

Maximum power required from grid PGridmin
i,t 1000 kW

Maximum battery capacity EBatmax
i,t 12, 13.5, 14.5, 15 kW

Battery charge/discharge rate BBatch
i,t /BBatdch

i,t 1.5, 5, 2.87, 3.3 kWh
Initial state of charge of batteries EBatmax

i,1 0 kWh
PV maximum generation capacity PPV

i,t 7.5 kW
Total Periods T 96 -
Total of controllable loads L 3 -
Total of batteries B 1 -
Total of PV units - 1 -
Adjust parameter * ∆t 4 -

* 1The factor of 4 is used since there are four 15-min periods in an hour.
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Figure 7. Aggregated consumption and production.

6. Results

We present the results of our methodology applied to the case study of Section 5. The experiments
were implemented using MATLAB2018a, in a computer with Intel Xeon(R) E5-2620v2@2.1 GHz
processor with 16GB of RAM running Windows 10. All the algorithms were run for 30 times (given the
stochastic nature of eas), so the reported results correspond to the average of those runs.

We perform four different experiments based on the number of households and the ea
optimization approach. Table 3 show the four cases, identified by the letter C1-C4, related to the
experiments. C1 is designed to assess the selected eas under the non-parallel approach considering two
households. C2 also considers two households but under the parallel-based approach. C3 and C4 assess
eas under non-parallel and parallel-based approaches respectively, but considering 20 households.

Table 3. Available equipment in houses for analyzing the impact of storage and dr.

Case Two Households 20 Households Non-Parallel Parallel-Based

C1
C2
C3
C4

The parameters for each tested ea were selected following the recommendation of previous
studies. Therefore, for de, the mutation factor and recombination constant (F and Cr) were set to
0.5 and 0.9 respectively [32]. hyde and HydE-DF [25] are a self-adaptive parameter versions but
initial values for Fi and Cr where set to 0.5. For PSO-LVS the wG inertia weight is linearly decreasing
with the number of iterations between 0.9 and 0.4 [33]. The constants c1G is set 0.5 and c2G set 1.8.
For variables boundary control Bounce Back method is used. VS algorithm does not have any parameter
to configure [23]. To make a fair comparison, all the algorithms used a population of 20 initial solutions
and run for 4e3 iterations.

Figure 8 shows the convergence of the tested algorithms considering the two players and the
non-parallel and parallel-based approaches (C1 and C2 cases). It can seem that VS presents the best
convergence performance in both cases. HyDE-DF and HyDE show similar performance (in fact,
convergence lines are overlapped in Figure 8b, which indicates that the improvements incorporated in
HyDE-DF (that showed remarkable performance in the 100-digit challenge [29]) have almost no impact
solving the proposed problem. Overall, the parallel-based approach seems to slightly improve the
performance of all algorithms, without modifying the overall ranking of them. In fact, VS algorithm
obtains a similar final valor.
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Figure 8. Average convergence of the tested EA considering two players under: (a) non-parallel
approach (case C1); (b) parallel-based approach (case C2).

Figure 9 shows the results when increasing the number of players to 20 (C3 and C4 cases).
In this case, while the non-parallel approach degrades the convergence performance of all EAs,
the parallel-based approach keep the convergence performance and increasing only the final fitness
value related with the cost of more households (see for instance Figures 8b and 9b). In summary,
the parallel-based approach can help EAs in finding quality solutions for even large instances of
the problem. Also, notice that DErand and PSO-LVS, apart from showing the worse performance,
switch their convergence behavior when the non-parallel approach is used and the number of players
increases (see for instance Figures 8a and 9a). That result shows evidence of their lack of robustness,
since their performance should not be affected by the increase of the number of players
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Figure 9. Average convergence of the tested EA considering 20 players under: (a) non-parallel approach
(case C3); (b) parallel-based approach (case C4).

We also analyze the average fitness and associated costs/revenues obtained by the EAs in all the
cases. Tables 4–7 present the average values of fitness, time, daily bill and DR curtailment, as well
as the calculation of fitness percentage improvement, taking as reference the worst fitness value in
each case. Table 4 shows the average results obtained in the case C1. First thing to observe is that
VS presents the lower fitness value, but also the higher optimization time. However, all EAs present
similar optimization times (ranging from 1.15 to 1.5 min). Regarding costs/revenues, it is interesting
to note that despite VS obtains the best fitness value, its daily costs (Daily Bill column in the table)
is slightly higher than that obtained by DE. This is explained by column DR curtailment, which
shows that DE activates DR curtailment in a higher degree than the other algorithms. While this is
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beneficial for the energy bill, it also represents a higher number of interruption of loads during the day,
which can impact user comfort in some degree. Notice that DR curtailment in the formulation is not a
monetary cost, but rather a weight associated with the interruption of loads. Future work can study
the multi-objective nature of the formulation to optimize both terms in Equation (1) simultaneously.
Finally, VS achieved the best performance with an improvement of around 30 % compared to PSO
(worst algorithm for case C1).

Table 5 presents the results corresponding to case C2. It can seem that the general trends,
as reported in case C1 results, are followed by the EAs when low number of households are considered.
Mean Fitness and overall daily bills are slightly improved. Optimization times are equivalent, but
it should be taken into account that column Time reflects the sum of the independent optimization
of both households. Such optimizations can be done in parallel since are independent, reducing the
optimization time by half, while obtaining better results regarding fitness and daily bills. In case C2,
VS again achieved the best performance with an improvement of around 20 % compared to PSO (worst
algorithm for case C2).

Table 4. Case C1: Fitness value and associated costs considering two households and non-parallel EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 10.69 0.46 1.16 9.29 −2.75 1.02 7.56 226.94 1.68 4.52
PSO 11.19 0.44 1.14 10.29 −2.11 1.02 9.21 276.25 0.75 0.00
HyDE 9.94 0.78 1.43 10.13 −1.21 1.02 9.95 298.43 0.00 11.23
HyDE-DF 9.59 0.83 1.42 9.78 −1.18 1.02 9.62 288.74 0.00 14.35
VS 7.77 0.08 1.48 9.09 −2.43 1.02 7.69 230.65 0.08 30.57

* Daily bills are calculated as buy Costs − sell Revenues + fixed Costs. ** Monthly bill on average
considering 30 days.

Table 5. Case C2: Fitness value and associated costs considering two households and parallel-based EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 9.30 0.34 1.03 9.34 −2.80 1.02 7.56 226.84 0.54 2.03
PSO 9.49 0.22 1.05 9.79 −2.04 1.02 8.77 263.21 0.28 0.00
HyDE 8.64 0.41 1.31 9.66 −1.97 1.02 8.72 261.55 0.00 8.97
HyDE-DF 8.67 0.46 1.30 9.53 −1.67 1.02 8.88 266.46 0.00 8.68
VS 7.68 0.03 1.36 9.27 −2.62 1.02 7.67 230.18 0.00 19.06

* Daily bills are calculated as buy Costs − sell Revenues + fixed Costs. ** Monthly bill on average
considering 30 days.

When the number of households increases, different conclusions are achieved. Tables 6 and 7
present the results corresponding to cases C3 and C4. The first thing to remark are the high fitness value
reported by DE and PSO-LVS in case C3. Such high values are associated with the inability of both
algorithms to find feasible solutions (i.e., the solutions include penalties explained in Equation (19)).
Therefore, it is confirmed that these two algorithms are very sensitive to the increase in the number of
households when the non-parallel approach is used. Such situation is corrected by the parallel-based
approach, as Table 7 shows. In fact, the advantage of using this approach is stressed concerning fitness
and daily bill values when the number of households is increased. Notice that since optimization times
in the parallel-based approach correspond to the sum of independent optimizations, increasing the
number of households affect notably the optimization times (see column Time of Table 7). However,
such independent optimization can be performed in parallel reducing the time considerable depending
the available parallel computing capacity. For instance, in MATLAB using four workers in the parallel
pool (four parallel optimizations), the optimization time can be reduced by a factor of 5. Overall, VS
achieved the best performance in both cases, with an improvement of around 22% compared to HyDE
in case 3 (worst algorithm without considering DE and PSO due to reported infeasible solutions) and
around 25% in case C4 compared to PSO.
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Table 6. Case C3: Fitness value and associated costs considering 20 households and non-parallel EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 4672.93 2362.42 3.98 104.67 −35.33 10.24 79.57 2387.22 4.31 -
PSO 626.70 602.42 3.70 147.50 −19.79 10.24 137.94 4138.31 2.03 -
HyDE 149.45 3.86 4.93 150.40 −11.17 10.24 149.47 4484.04 0.02 0.00
HyDE-DF 148.58 4.26 4.93 150.59 −11.99 10.24 148.84 4465.34 0.03 0.58
VS 115.69 3.95 5.51 83.17 −33.48 10.24 59.93 1797.81 2.57 22.59

* Daily bills are calculated as Buy costs − Sell Revenues + Fixed Costs. ** Monthly bill on average
considering 30 days.

Table 7. Case C4: Fitness value and associated costs considering 20 households and parallel-based EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 82.72 2.24 9.69 86.54 −31.95 10.24 64.83 1944.86 0.82 2.36
PSO 84.72 0.90 9.60 92.32 −25.01 10.24 77.55 2326.41 0.39 0.00
HyDE 77.83 2.40 11.87 89.79 −21.38 10.24 78.65 2359.42 0.02 8.13
HyDE-DF 76.77 2.24 11.77 89.21 −20.02 10.24 79.43 2382.86 0.00 9.38
VS 63.19 0.26 12.31 84.29 −31.53 10.24 63.00 1889.92 0.01 25.41

* Daily bills are calculated as Buy costs − Sell Revenues + Fixed Costs. ** Monthly bill on average considering
30 days.

7. Conclusions

In this paper, a different EAs are used to solve an optimization problem considering
households with PV-battery systems and DR. Taking advantage of the independence of variables
between households, two optimization approaches, non-parallel and parallel-based, are proposed.
Results showed that EAs using the parallel-based approach provide solutions with better fitness value
when the number of households increases. It was demonstrated that the direct application of an
EA to larger instances of the problem (the non-parallel approach) has poor convergence capabilities
(despite being very efficient when applied to one or two households). On the other hand, the proposed
parallel-based approach showed excelled performance even when increasing the number of households.
It is important to notice that the parallel-based approach is only valid for a framework as the one
assumed in this work (which is actually a very likely real scenario due to the possible resistance of
households to share data or equipment between peers), so changing such conditions might require a
hybrid non-parallel and parallel approach. Overall, VS algorithm overcomes other tested EAs when
using both optimization approaches. In fact, improvements of 30.57 % for case C1, 19.06 % for case C2,
22.59 % for case C3, and 25.41 % for case C4, were achieved with VS (best performance) compared to
PSO (worst performance). Another advantage of the parallel-based approach is related to the possibility
of using parallel computing to reduce optimization times while obtaining solutions with good quality.
From the practical point of view, in this work we have envisaged the involvement of an Energy Service
Provider that performs the optimization of households equipped with distributed energy resources
(like PV generation, storage, and demand response) and the needed control devices. In this way, several
business models can be explored by the Energy Service Provider within this framework. For instance,
the service provider can charge a fee or commission from the total bill reduction achieved by the
households, or receive incentives from upper level actors (such as the DSO) for the reduction of peak
demand through DR. These two options, and other business model possibilities exploring the use
of available infrastructure for practical implementations can be explored in future work. Another
line of research for future work is related to the mathematical model. In this work, energy bill and
DRdr curtailment are combined into a single objective formulation despite being terms that can be
optimized in function of user preferences. Thus, multi-objective optimization versions of EAs can
be employed to find Pareto optimal solutions. Moreover, a relation between DR curtailment and
user comfort was not explicitly defined in this study, so another line of research can be followed
concerning the modelling of user comfort. Finally, the practical implementation of EAs is also worth
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to be explored in future works. The parallel-based approach uses a multi-population similar to that
used by coevolutionary algorithms, so testing those kinds of algorithms and their performance in this
problem since a good research avenue. In addition, in this study the parallel-based approach was
implemented sequentially, so optimization times reflect the sum of all independent optimizations.
In a future study, the implementation of an actual parallel platform can be proposed to handle larger
instances of the problem and assess the reaches and scalability of the approach.
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Abbreviations

The following abbreviations are used in this manuscript:

DE Differential Evolution
DG Distributed generator
DR Demand Response
EA Evolutionary Algorithms
EC Evolutionary Computation
EU European Union
HyDE Hybrid Differential Evolution
HyDE-DF HyDE with Decay function
jDE Self-Adaptive Differential Evolution
LVS Local Vortex Search
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Non-linear Programming
OF Objective Function
PLC Programmable Logic Controller
Pop Population
PSO Particle Swarm Optimization
PSO-LVS PSO with Local Vortex Search
PV Photovoltaic
SI Swarm Intelligence
VS Vortex Search

Nomenclature

Indices
l Controllable load
i Household
t Period
Parameters
PLoad

i,t Consumption from non-controllable loads
CGrid In

i,t Cost of buying energy
PPV

i,t Energy generated by PV panels.
PCut

i,t,l Energy load cuts
Fix Costi Fixed tariff costs
PGridmin

i,t Lower bond for buying energy
PBatdch

i,t Lower bound for discharge the battery
CGrid Out

i,t Revenue of selling energy
PGridmin

i,t Lower bond for buying energy
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PBatdch
i,t Lower bound for discharge the battery

CGrid Out
i,t Revenue of selling energy

∆t Time adjust parameter
L Total of controllable loads
I Total of households
T Total of periods
EBatmax

i,t Upper bound battery energy level
PBatch

i,t Upper bound for charge the battery
PGridmax

i,t Upper bound for selling energy
WCut

i,t,l Weight of energy cuts

Variables
XCut

i,t,l Binary decision variables for DR action
PBat

i,t Energy charge/discharge of batteries
PGrid

i,t Energy flow
PGrid Out

i,t Energy flow from household to the grid
PGrid In

i,t Energy flow from grid to the household
EBat

i,t State of the battery
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Resumen 

La actual estrategia energética de la Unión Europea sitúa al usuario final como 
un participante clave en los mercados eléctricos. La Unión Europea ha fomentado 
la creación de comunidades energéticas para aumentar la penetración de las 
energías renovables y reducir el coste total de la cadena energética. Las 
comunidades de energía están compuestas principalmente por prosumidores, 
que pueden ser hogares con equipos de producción de energía de tamaño 
pequeño, como paneles fotovoltaicos en la azotea. El mercado eléctrico local es 
un concepto emergente que permite la participación activa del usuario final en 
los mercados eléctricos y es especialmente interesante cuando existen 
comunidades energéticas. Este artículo propone un modelo de optimización para 
programar transacciones peer-to-peer (punto a punto) a través del mercado 
eléctrico local, transacciones de red en el mercado minorista y gestión de baterías 
considerando la producción fotovoltaica de los hogares. Los prosumidores tienen 
la posibilidad de realizar transacciones de energía con el comercializador o con 
otros consumidores de su comunidad. El problema se modela usando 
programación lineal entera mixta, que contiene variables binarias y continuas. Se 
estudian cuatro escenarios y se analiza el impacto de los sistemas de 
almacenamiento de baterías y las transacciones entre pares. También se analizó 
el tiempo de ejecución del modelo propuesto según el número de prosumidores 
involucrados (3, 5, 10, 15 o 20) en la optimización. Los resultados sugieren que el 
uso de un sistema de almacenamiento de batería en la comunidad energética 
puede conducir a un ahorro de energía del 11 al 13 %. Además, combinar el uso 
de transacciones peer-to-peer y sistemas de almacenamiento de energía puede 
generar ahorros energéticos de hasta un 25 % en los costos generales de los 
miembros de la comunidad.  
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ABSTRACT The current energy strategy of the EuropeanUnion puts the end-user as a key participant in elec-
tricity markets. The creation of energy communities has been encouraged by the European Union to increase
the penetration of renewable energy and reduce the overall cost of the energy chain. Energy communities are
mostly composed of prosumers, whichmay be households with small-size energy production equipment such
as rooftop photovoltaic panels. The local electricity market is an emerging concept that enables the active
participation of end-user in the electricity markets and is especially interesting when energy communities are
in place. This paper proposes an optimizationmodel to schedule peer-to-peer transactions via local electricity
market, grid transactions in retail market, and battery management considering the photovoltaic production
of households. Prosumers have the possibility of transacting energy with the retailer or with other consumers
in their community. The problem is modeled using mixed-integer linear programming, containing binary and
continuous variables. Four scenarios are studied, and the impact of battery storage systems and peer-to-peer
transactions is analyzed. The proposed model execution time according to the number of prosumers involved
(3, 5, 10, 15, or 20) in the optimization is analyzed. The results suggest that using a battery storage system
in the energy community can lead to energy savings of 11-13%. Besides, combining the use of peer-to-peer
transactions and energy storage systems can potentially provide energy savings of up to 25% in the overall
costs of the community members.

INDEX TERMS Local electricity market, local energy community, optimization, peer-to-peer transactions,
prosumers.

I. INTRODUCTION
Distributed and renewable generation has emerged as a solu-
tion for the depletion of fossil fuel energy and for meet-
ing energy sustainability targets, namely the greenhouse
gas emissions limits imposed in some areas. For example,
the European Union (EU) is targeting a reduction of at
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least 40% of greenhouse gas emissions by 2030, an incre-
ment of at least 32% share for renewable energy, and an
improvement of at least 32.5% in energy efficiency, tak-
ing as basis 1990 levels [1]. In 2018, renewable genera-
tion accounted for 18.9% of the energy consumed in the
EU [2], which already represents about 50% of the imposed
levels. At the residential level, households can install smart
devices and distributed energy resources (DER) such as pho-
tovoltaic (PV)modules, small scale wind turbines, and energy
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storage including plug-in electric vehicles (EV), to increase
energy efficiency and reduce energy bills [3]. However,
due to the increasing maturity of renewable energy produc-
tion capabilities, the feed-in tariff which incentivized local
generation sales to the grid is being reduced. In consequence,
the reduction of feed-in tariffs may impact the motivation
of consumers, slowing down the penetration of renew-
able sources and ultimately, failing in achieving the agreed
targets.

Due to feed-in tariff reduction, in several locations, it is
now more attractive for households to use generation sur-
plus for self-consumption than selling to the grid [4]. Self-
consumption is different among individuals depending on
daily consumption profiles, which can vary with the habits
and with the used electrical equipment.

The European Commission Strategic Energy Technology
Plan [5] states that energy consumers are envisioned at the
center of the future energy systems and shall be encouraged to
install energy production sources. Peer-to-peer (P2P) energy
trading emerges as a promising solution to empower the
role of the end-users in energy systems [6]. Basically, P2P
energy trading is a recent technology of energy management
mechanism in smart grids [6]. In the scope of an energy
community, P2P energy trading enables flexible energy trades
between peers. In other words, in a P2P market, the excess
of energy generation coming from many small-scale DERs
is traded among local customers [7]. The prosumers can
achieve a ‘‘win-win’’ situation by searching for a satisfactory
trading price and by reaching an agreement in a seamless
way. Themarginal price of P2P electricity transactions should
be cheaper than the retailer tariff and higher than the feed-
in tariff (i.e., the price of electricity export to the grid) so
that P2P can provide savings for buyers and profit for sell-
ers [8]. The work in [9] highlights potential benefits of P2P
energy trading: the maximization of renewable energy usage,
the reduction of electricity cost, the shaving of peak load,
the empowerment of the prosumers, and the minimization of
network operation and investment costs. Although the poten-
tial benefits are fairly significant, research on P2P energy
trading is still at an early stage and there is no consensus
on what type of data sharing and processing infrastructure is
more efficient and yields to the best results [3]. It is expected
to reach an investment of USD25 billion inmicrogridmarkets
by 2025 in USA [10], which will inevitably lead to the devel-
opment of P2P market applications to empower prosumers
and fulfill the niche market void.

In this article, a P2P market structure is proposed to allow
energy transactions between users at a price that provides
better benefits than current feed-in tariffs. In this way, con-
sumers become active participants of the local market, having
the possibility to take advantage of their surplus electricity
without being limited by retailers.

Figure 1 presents the trading architecture proposed for a
local community with N prosumers considering a conven-
tional retail electricity market and a P2P market between the
community members.

FIGURE 1. Proposed methodology.

As can be seen in Figure 1, we propose a local community
scheduling considering the possibility of transacting energy
with the retailer and in a market within the community with
P2P transactions. The local community is composed by pro-
sumers, each of them with a PV-battery system which is
also scheduled in the optimization process. The community
members have two different possibilities, namely, buy/sell
electricity to the grid or transact energywith other community
members. The optimization is used to determine the set of
prosumers in each period that performed P2P transactions.

As the main contributions of this work, we highlight five
aspects:
• An optimization model that determines the best P2P
energy transactions in a local energy community with
prosumers equipped with PV generation and energy
storage systems;

• A deterministic mixed-integer linear programming
(MILP) method, implemented in TOMLAB,1 to deter-
mine the decision-making;

• The model includes realistic constraints, customer load
profiles, PV systems, battery energy storage systems and
market transactions constraints. Real Portuguese tariffs
are used to generate realistic case studies;

• The presented model considers the active involvement
of households in the electricity markets, in line with the
goals of governmental institutions to reduce energy costs
and carbon emissions;

• The proposed methodology considers an optimal solu-
tion combining demand side management (DSM) and
P2P transactions integrated into the optimization pro-
cess, characteristic that, to the best of the authors’
knowledge and according to the analysis made by the
authors in section II, is not proposed in the current
literature.

The rest of this paper is divided into six sections:
Section 2 presents the background on the DSM and P2P
models. Section 3 shows the proposed methodology and the

1TOMLAB is a language for solving optimization problems considering
MATLAB language (https://tomopt.com/tomlab/).
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mathematical formulation developed in this research work.
Section 4 describes the case study used to test the proposed
methodology. Section 5 discusses and analyzes the results.
Finally, Section 6 presents the conclusion of this work and
provides future research directions.

II. BACKGROUND
This section presents a background on the energy costs opti-
mization in smart grids. DSM applications in smart grids can
be considered as one of the most innovative steps to minimize
the operation costs [11]–[13]. These applications consider
the optimization of house consumption by rescheduling the
loads to periods when the electricity price is lower [14], [15].
With the installations of PV generators in residential houses
and the development of load controlled systems for demand
response, more comprehensive and complex approaches are
emerging [16]. In previous referred works, authors consider
the rescheduling of controllable loads and the use of PV
generation and battery storage systems. A similar work is
presented in [17], where authors reduce the computational
effort by adopting evolutionary computation algorithms to
solve the optimization problem. A different technique was
implemented in [18] using case-based reasoning based on
historical data to determine the reduction value for a demand
response application. More recently, works that address the
energy commerce between groups within smart grids have
been proposed. In [19], a trading environment between neigh-
bor microgrids was presented. In the case study, a smart
grid with three microgrids was considered, and apart from
the inter-micro-network market, six different markets were
analyzed for trading electricity.

Energy transaction between households has emerged in
recent years as a promising trend that should be adapted
to minimize the costs of the electric bill. Reference [20]
introduces a local market into the simulation. The prob-
lem was solved using a two-stage stochastic programming
approach. The authors optimize the electricity costs of all
microgrids members, allowing local transactions between
microgrids and the possibility of buying energy into the
wholesale market. Publication [21] determines the best port-
folio option for the electricity transaction, considering the
possibility of transacting electricity in local electricity mar-
kets. The authors in [22] consider an energy sharing approach
between prosumers. The problem is solved considering a
bi-level programmingmethod using a function called demand
and supply ratio. A Mixed Integer Non-linear Programming
(MINLP) is used in work [23] to determine the P2P transac-
tion considering 2 households and a horizon time of 8 periods
(1h each). The influence of battery storage systems in P2P
trading within a microgrid was explored in reference [24].
Works [22]–[24] consider the problem of local electricity
transaction but do not consider the coordination of DSM
with local transaction scheduling. In other words, these works
cannot provide a coordinate solution of the local transaction
to take themaximumbenefits of households loads and storage
systems. DSM approaches are used to optimize energy costs

and are typically formulated as linear or non-linear prob-
lems [3]. Linear optimization is usually used to solve short
periods of time and usually have a very short resolution time
when compared with non-linear optimizations resolutions.
Researchers to reduce the computation time burden of non-
linear models are using approximate methods to reduce the
resolution time [25]–[27].

TABLE 1 presents a comparison between works published
considering P2P energy trading within an energy community.
The proposed work is also included in TABLE 1 highlighting
its contributions concerning the current literature.

A similar method to the one presented in this work was
proposed in [26]; authors used a distributed approach to
implement a DSM system combined with P2P trading. Due
to the use of an approximate solution approach the work
in [26] does not guarantee optimal solutions to the prob-
lem. In contrast, by using a deterministic solution approach
(MILP), our method provides an optimal solution considering
up to 20 players combining the DSM with P2P transac-
tions. Typically, optimization methods that determine local
market transaction using centralised approaches consider a
small number of users involved due to the computational
burden [22]–[24]. On contrast, methods that consider a
large number of users use iterative process [3] or deter-
mine the local transaction after the DSM optimization is
finished [8], [25].

The current literature reflects a lack of deterministic solu-
tion methods that include local electricity transactions con-
sidering more than four players. Thus, this work presents a
deterministic method that can solve the problem under a case
study considering up to 20 players. Ourmethod also considers
the coordination between DSM and local transactions, unlike
most of the current approaches.

III. MATHEMATICAL FORMULATION
In this section, the mathematical formulation used to obtain
the optimal social welfare costs of the community is fully
presented. Equation (1) represents the objective function that
minimizes the total cost of the energy community. Indeed,
the objective function is equivalent to the social welfare of
the community members, minimizing their energy costs.

minimize : obf =
Nt∑
t=1

Ni∑
i=1

(
π
buyGrid
t,i × PbuyGridt,i

)
×

1
1t

−

Nt∑
t=1

Ni∑
i=1

(
π sell Gridt,i × Psell Gridt,i

)
×

1
1t

(1)

where t represents the period, i represents the prosumer, Nt
the total number of periods,Ni the total number of prosumers,
π
buyGrid
t,i represents the price of buying electricity from the

grid (time-of-use tariff), PbuyGridt,i represents the amount of
electricity purchased from the grid, π sell Gridt,i represents the
selling price of electricity to the grid (feed-in tariff) and
Psell Gridt,i represents the amount of electricity sold to the grid.
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TABLE 1. P2P energy trading works comparison.

The term 1t is used to adjust the tariff price to the optimiza-
tion time intervals (e.g., 15 min). Equation (2) represents the
power balance for each prosumer.

Pgent,i + P
buyGrid
t,i + Pdcht,i +

Nj∑
j=1,j6=i

Pbuy p2pt,i,j

= Ploadt,i + P
sell Grid
t,i + Pcht,i +

Nj∑
j=1,j6=i

Psell p2pt,i,j

∀i ∈ Ni, ∀j ∈ Nj, ∀t ∈ Nt (2)

where Pgent,i represents the generated power, Pdcht,i is the dis-

charged power of the battery, Pbuy p2pt,i,j corresponds to the
electricity purchased in the P2P market, Ploadt,i is the load, Pcht,i
is the power charged by the battery, Psell p2pt,i,j corresponds to
the electricity sold in the P2P market, j is the prosumer and
Nj the total numbers of prosumers. The sum of variable Pp2pt,i,j
over the index j gives the total value of each i buy in P2P
transactions for each t index, whereas the sum in i index gives
the total value of each j sale. Equation (3) and (4) represent
the maximum limits of variables PbuyGridt,i and Psell Gridt,i .

PbuyGridt,i ≤ Pmax buyGrig
t,i × BinbuyGridt,i

∀i ∈ Ni, ∀t ∈ Nt (3)

Psell Gridt,i ≤ Pmax sell grigt,i × Binsell Gridt,i

∀i ∈ Ni, ∀t ∈ Nt (4)

where Pmax buyGrig
t,i represents the maximum amount of elec-

tricity to buy from the grid, BinbuyGridt,i is a binary variable
that enables purchasing electricity from the grid if it is 1,
Pmax sell grigt,i represents the maximum amount of electricity
sold to the grid, and Binsell Gridt,i is a binary variable that
enables selling electricity to the grid if it is 1. Equation (5)
is the constraint applied to the binary variables above.

BinbuyGridt,i + Binsell Gridt,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (5)

Equation (5) restricts the transactions of electricity to either
buy or sell energy in the same period for the same prosumer.
Equations (6) and (7) represent the maximum limits of vari-
able Pmax buy p2pt,i,j and Pmax sell p2pt,i,j .

Pbuy p2pt,i,j ≤ Pmax buy p2pt,i,j × Binbuy p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (6)

Psell p2pt,i,j ≤ Pmax sell p2pt,i,j × Binsell p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (7)

where Pmax buy p2pt,i,j corresponds to the maximum limit for

P2P purchase transactions, Binbuy p2pt,i,j corresponds to a binary
variable that enables purchasing electricity from j to i in P2P
mode, Pmax sell p2pt,i,j corresponds to the maximum limit for P2P

electricity sale transactions, and Binsell p2pt,i,j corresponds to a
binary variable that enables selling electricity from i to j in
P2P mode. Both indices i 6= j and j 6= i represent prosumers,
and must be different since i = j or j = i would represent
a prosumer negotiating with himself. Equations (8) and (9)
are implemented to restrict actions related to the transactions
with the grid and P2P market.

BinbuyGridt,i +

Nj∑
j=1,j6=i

Binsell p2pt,i,j ≤ 1 ∀i∈Ni, ∀t ∈Nt (8)

Nj∑
j=1,j6=i

Binbuy p2pt,i,j +Bin
sell Grid
t,i ≤ 1 ∀i∈Ni, ∀t ∈Nt (9)

Equation (8) imposes that it is not allowed to buy electricity
from the grid to sell it in P2P mode, whereas equation (9)
imposes that it is not possible to buy electricity in P2P
mode to sell to the grid. The above restrictions were imple-
mented assuming that it is always more expensive to buy/sell
electricity from the grid than in P2P trading. Equation (10)
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corresponds to the balance of the P2P trading market.

Nj∑
j=1,j6=i

Ni∑
i=1,i6=j

Pbuy p2pt,i,j =

Nj∑
j=1,j6=i

Ni∑
i=1,i6=j

Psell p2pt,i,j ∀t ∈ Nt

(10)

Equation (10) imposes that the total amount of electricity
purchased in P2P mode should be equal to the total amount
of electricity sold in the same P2P mode. Equations (11) and
(12) are applied to model the P2P market transactions.

Ni∑
i=1,i6=j

Binbuy p2pt,i,j +

Nj∑
j=1,j6=i

Binsell p2pt,i,j ≤ 2 ∀t ∈Nt (11)

Nj∑
j=1,j6=i

Binbuy p2pt,i,j +

Ni∑
i=1,i6=j

Binsell p2pt,i,j ≤ 2 ∀t ∈Nt (12)

Equations (11) and (12) ensure that each prosumer trade
with another prosumer in each period. The model does not
allow that one prosumer transacts electricity with two or more
prosumers.

Equations (13) and (14) represent the limits for charge and
discharge of the batteries.

Pcht,i ≤ Pmax cht,i × Bincht,i, ∀i ∈ Ni, ∀t ∈ Nt (13)

Pdcht,i ≤ Pmax dcht,i × Bindcht,i , ∀i ∈ Ni, ∀t ∈ Nt (14)

where Pmax cht,i represents the maximum charge power, Bincht,i
is the binary variable associated with the charging state,
Pmax dcht,i represents themaximum discharge power, andBindcht,i
represents the binary variable associated with the discharge
option. Equation (15) represents the limit imposed on the
charging/discharging state. With equation (15), the charge
and discharge actions are controlled so that they do not occur
simultaneously.

Bincht,i + Bin
dch
t,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (15)

Equation (16) presents the state of the batteries in each
period.

EBatt,i =E
Bat
t−1,i+P

ch
t,i×η

ch
i − P

dch
t,i ×

1

ηdchi

∀i∈Ni, ∀t ∈Nt

(16)

where EBatt,i represents the state of the battery, EBatt−1,i repre-
sents the state of the battery in period t − 1, ηchi corresponds
to the efficiency of charge and ηdchi to the efficiency of
discharge. Equations (17) - (29) present the upper and lower
bounds for the variables of the problem.

0 ≤ PbuyGridt,i ≤ Pmax buyGridt,i , ∀i ∈ Ni, ∀t ∈ Nt (17)

0 ≤ Psell Gridt,i ≤ Pmax sell Gridt,i , ∀i ∈ Ni, ∀t ∈ Nt (18)

0 ≤ Pdcht,i ≤ P
max dch
t,i , ∀i ∈ Ni, ∀t ∈ Nt (19)

0 ≤ Pcht,i ≤ P
max ch
t,i , ∀i ∈ Ni, ∀t ∈ Nt (20)

0 ≤ Pbuy p2pt,i,j ≤ Pmax buy p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (21)

0 ≤ Psell p2pt,i,j ≤ Pmax sell p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (22)

0 ≤ EBatt,i ≤ E
max Bat
t,i , ∀i ∈ Ni, ∀t ∈ Nt (23)

0 ≤ BinbuyGridt,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (24)

0 ≤ Binsell Gridt,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (25)

0 ≤ Binbuy p2pt,i,j ≤ 1

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (26)

0 ≤ Binsell p2pt,i,j ≤ 1

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (27)

0 ≤ Bindcht,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (28)

0 ≤ Bincht,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (29)

where Emax Batt,i represents the maximum battery capacity.
Equations (17) - (23) bound the continuous variables, while
equations (24) - (29) bound binary variables.

The total energy bill (EB) for each prosumer in the P2P
market can be calculated according to equation IV.

EBi =
Nt∑
t=1

(
π
buyGrid
t,i × PbuyGridt,i

)
×

1
1t

−

Nt∑
t=1

(
π sell Gridt,i × Psell Gridt,i

)
×

1
1t

+

Nt∑
t=1

Nj∑
j=1,j6=i

(
π
p2p
t,i,j × P

buy p2p

t,i,j

)
×

1
1t

−

Nt∑
t=1

Nj∑
j=1,j6=i

(
π
p2p
t,i,j × P

sell p2p
t,i,j

)
×

1
1t
+ FixCosti

∀i ∈ Ni, (30)

where πp2pt,i,j represents the price in the P2P market for the
transaction between prosumer i and prosumer j, and Fix Costi
is the fixed cost that each prosumer must pay to use the
network.
EB contains five terms, as equation IV shows. The first

term represents the costs of purchasing electricity from the
grid; the second term is the revenue of selling electricity to the
grid; the third term corresponds to the costs of buying elec-
tricity in P2P market; the fourth term represents the revenues
of selling electricity in the P2P market and, finally; the fifth
term corresponds to fixed costs paid by each prosumer. The
fixed costs are paid directly to the retailer, and are defined
in the energy supply contract established between retailer
and prosumer. In fact, the sum of the EB of each prosumer
without the fixed costs represents the objective function of
equation (1). The costs and revenues in the P2P market are
not implemented in the objective function since the sum of
costs/profits over all player is 0.

To obtain the P2P price for the transactions, we chose the
mid-market rate method presented in [4]. Themethod of price
determination assumes that the exchange price is the average
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FIGURE 2. Average values of electricity grid prices in the local energy
community.

of the electricity buying price and selling price:

π
p2p
t,i,j =

π
buyGrid
t,i + π sell Gridt,i

2
, ∀i ∈ Ni, ∀t ∈ Nt (31)

When a P2P transaction is executed, the price πp2pt,i,j is deter-
mined by the seller (i).

IV. CASE STUDY
This section presents a case study to illustrate the use of the
methodology proposed in section II. A local energy commu-
nity with 10 prosumers is considered to presents the main
results. To test the scalability of the approach, simulations
were executed considering up to 20 prosumers. Each domes-
tic prosumer is equipped with a PV-battery system installed in
the household. Figure 2 presents the mean value of electricity
prices used to buy and sell electricity within the energy
community.

It is assumed that all consumers have contracted a bi-hourly
tariff from a retailer. The maximum limit for electricity
purchase from the grid is specified in the contract between
retailer and prosumers. The prosumer is free to choose this
limit but should be considered that higher limits have associ-
ated more expensive fixed costs. As can be seen in Figure 2,
the buying price correspond to the average price of the ten
prosumers. This price is always higher than the selling price.
The selling price considered for this case study corresponds to
the feed-in tariff defined by Portuguese legislation.2 Selling
electricity to the main grid is modelled as a constant price
(see Figure 1). Each prosumer complying with the current
Portuguese legislation, which allows small producers (con-
sumers with local generation) to use their energy to satisfy
their own load needs, can inject their surplus of energy to the
grid.

2Defined in Portaria n.◦ 115/2019 of Diário da República n.◦

74/2019, Série I de 2019-04-15, https://data.dre.pt/eli/port/115/2019/
04/15/p/dre/pt/html

FIGURE 3. Average of consumption and generation in the local energy
community.

Figure 3 presents the average consumption and generation
profiles.

Figure 3 shows that the average consumption profile
presents one peak in the morning (period 8) and another in the
afternoon (period 15-17). The generation profile is a classic
PV profile with a generation peak near to period 14h. A total
of 54 kWh capacity for PV production and 128 kWh of capac-
ity for the battery systems is installed. Each prosumer has a
contract with a retailer for a maximum power supply. In the
case study, one prosumer has a contract of 3.45 kVA, one
4.6 kVA, two 5.75 kVA, four 10.75 kVA and two 13.8 kVA.
The prosumers in the case study pay an average of 0.49 eof
fixed costs per day; it is assumed that the retailer has defined
these costs. TABLE 2 presents the input variables used in the
simulations.

For some parameters two different values appeared in
TABLE 2, these correspond to the minimum and maximum
values. The input parameters are different for each case study
in order to consider prosumers with diverse characteristics.

V. RESULTS
This section presents and discusses the results of the case
study presented in Section IV. The experiments were imple-
mented using MATLAB2018a, in a computer with Intel
Xeon(R) E5-2620v2@2.1 GHz processor with 16GB of
RAM running Windows 10. TOMLAB optimization plat-
form with the solver CPLEX has been used. Four different
scenarios are simulated and compared. The scenarios are
defined considering the battery usage and the possibility of
transacting energy with P2P. The set of scenarios is:

• Scenario A – scenario without batteries and without P2P
transactions. This scenario is considered the base case;

• Scenario B – scenario with batteries and without P2P
transaction;

3EDP comercial website: https://www.edp.pt/particulares/energia/
tarifarios/.
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TABLE 2. input parameters of the problem.

• Scenario C – scenario without batteries but considering
P2P transactions;

• Scenario D – scenario with batteries and with P2P
transactions.

The detailed results are presented for a simulation with 10
prosumers. In the end of this section, we have included
simulations varying the number of prosumers to analyze the
scalability of our approach.

TABLE 3 presents the results of the tested scenarios
for 10 prosumers for one day of operation (96 periods of
15-minutes each).

The total costs presented in TABLE 3 correspond to the
evaluation of objective function in equation (1). Also notice
that consumption and production are considered the same in
the four scenarios.

Comparing the scenarios without P2P transactions
(Scenario A and Scenario B), Scenario B presents a cost
reduction of 4.23e, i.e. 11%, in comparison with Scenario A.
When batteries are considered, there is less energy sold to the
grid. This indicates that it is more benefic for prosumers to
use the electricity they produce for their own consumption
by making use of the batteries than to sell the electricity
to the grid. Comparing the two scenarios without battery
(Scenario A and Scenario C), Scenario C presents a reduction
of 12% in total costs (4.48 e) compared with Scenario
A. Without available storage, it is more profitable to sell
electricity in P2Pmarket than to sell it to the grid. Considering
now the scenarios with battery systems (Scenario B and

TABLE 3. Results considering 10 prosumers.

Scenario D), Scenario D has a reduction of 5.05 e(15%)
compared with Scenario B. In the scenarios with P2P trans-
actions (Scenario C and Scenario D), the battery enables a
reduction of 4.80e(13%) in the total operation cost. Compar-
ing Scenario Awith themost complete scenario (Scenario D),
savings account for 9.28 e, i.e. 25%, in the later.

TABLE 4 presents the total electricity transaction for each
prosumer considering all scenarios for the full considered
day.

It is clear that the inclusion of batteries provides additional
flexibility to the prosumers, having a direct influence on the
electricity transactions and on the total costs.

Figure 4 presents the energy bill value for each prosumer
for Scenarios B, and D. EB value is obtained after finalizing
the optimization process using equation IV. The value of
EB for all prosumers decreases when P2P transactions are
enabled. For Scenario B, the average EB for one day of
operation is 3.28 e, whereas for Scenario D it is 2.78 e,
corresponding to a difference of 0.50 erepresenting a 15%
of reduction.

Notice that in Figure 4, prosumer 9 presents an EB negative
value indicating that this prosumer was able to make profits
with P2P transactions. Therefore, his energy bill becomes
negative. On average, comparing the results of Scenario A
with the results of Scenario D, the prosumers have a decrease
in cost of 0.93 e/day. If these scenarios are repeated every
day of the year, a potential annual savings of 338 eper
prosumer can be achieved. Figure 5 presents the contracted
power, the battery capacity, and the P2P transactions of each
prosumer for Scenario D.
Figure 5 presents two different vertical axes; the left-side

vertical axis measures the P2P energy (purchased and sold)
transacted in kWh, and the right-side vertical axis measures
the contracted power and battery capacity in kW.

As explained before the contracted power limits the trans-
actions between the prosumer and the grid in each period
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TABLE 4. Electricity transactions for each individual household considering one day of operation [in kWh].

FIGURE 4. Energy Bill results for each prosumer in Scenario B and
Scenario D for one day of operation.

FIGURE 5. P2P trades in Scenario D with the contracted power and
battery capacity.

and has a direct influence on the P2P transactions. As can be
seen in Figure 5, prosumers 3 and 6 have the same contracted

FIGURE 6. Volume of P2P electricity transactions for one day of operation
in Scenario D.

power, but prosumer 6 presents a higher volume of electricity
sold in the P2P market. Analyzing both figures 4 (showing
the EB) and 5, prosumers 6 and 9 have the smaller energy
bills and the higher values of energy transacted in P2P.

Figure 6 presents the electricity sellers in yy-axis, buyers
in xx-axis and the transacted volume in zz-axis corresponding
to the volume of electricity transacted between prosumers
for the full day in Scenario D. The higher volume of energy
transacted occurs between prosumer 8 (as a buyer) and pro-
sumer 6 (as a seller) with a total of 4.91 kWh. Moreover,
an average of 3.34 kWh was transacted in the P2P market
by each prosumer in the referred day of operation.

Figure 7 presents the electricity purchased from the grid,
the electricity sold to the grid, and the P2P transactions for
Scenario D.

As can be seen in Figure 7, the tariff peak hours are
between 9h to 22h as defined by the bi-horary tariff contracted
with the grid/retailer. In these periods, the price of electricity
is higher than the rest of periods (off-peak). In turn, the
P2P transactions price is also higher in those peak periods.
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FIGURE 7. Accumulated electricity transactions with the grid and in P2P
market for one day of operation in Scenario D.

However, P2P prices are always lower than the retailer’s
selling prices. Therefore, the P2P transactions have been real-
ized during the peak periods, as Figure 7 illustrates. Another
important fact is that the exceeding PV production from 8h
to 20h (Figure 3) can be used to charge the batteries, to be
injected to the grid, or to be traded with other prosumers
(P2P). As can be seen in Figure 7, electricity is sold to the
grid between hours 11h and 16h, which corresponds to the
periods with higher PV production (see Figure 3). The P2P
market is more attractive for the prosumer to sell the surplus
of electricity for a higher profit. However, a part of the surplus
electricity is still exported to the grid because prosumers with
high PV production reach their maximum battery capacity,
and eventually, there are not enough peers to carry out P2P
transactions.

The implemented optimization procedure considering
10 prosumers (with total cost of 27.29 e, as showed in
TABLE 3) took around 142.83 second. Therefore, to test
the scalability of our model, we have run experiments con-
sidering 3, 5, 15 and 20 prosumers to obtain a sensitivity
analysis of the optimization times. Figure 8 presents the
execution time for the optimization process of all scenar-
ios in TABLE 3, varying the number of prosumers from
3 to 20. The yy-axis uses a logarithmic scale. The faster
optimization times are obtained with Scenario A considering
3 prosumers (0.81 s). The most time-consuming optimization
corresponds to Scenario D with 20 prosumers, that took
15,869.68 s (4.41 h).

As can be seen in figure 8, Scenario D presents a higher
optimization time. This is related to the number of vari-
ables involved in the optimization process. When the P2P
transactions are included in the optimization, it is neces-
sary to include all the possibilities that prosumers have
to trade electricity. Also, notice that the number of pro-
sumers does not have an impact in the optimization times
for Scenario A and Scenario B, while having a clear
impact for Scenario C and Scenario D. In Scenario D, an
increment of 4.37 hours was registered in the optimization

FIGURE 8. Optimization time results for one day of operation.

FIGURE 9. Mean results of energy bill considering the scenarios and
number of prosumers.

time when the number of prosumers was increased from
10 to 20.

Finally, Figure 9 presents a comparison of the mean energy
bill considering the four scenarios and the total set of pro-
sumers number. In each scenario presented in figure 9, five
different values are shown corresponding to the different
number of prosumers tested. The mean EB value registered
a reduction when the numbers of prosumers increased. In the
case of Scenario D, corresponding to the scenario with the
best results, the mean value considering 20 prosumers reg-
istered a decrease of 1.07 e(32%) with regards to the case
considering 3 prosumers only.

VI. CONCLUSION
This paper proposes a method for managing the energy
resources of a local community considering P2P transactions,
PV production, and storage systems. With the inclusion of
P2P transactions, looking at the economic aspects, the overall
costs of the energy community were lower and each prosumer
was able to get a reduction in the energy bill. The best option,
as demonstrated by simulation studies, is the combination of

12428 VOLUME 9, 2021



R. Faia et al.: Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions

P2P transactions with the usage of batteries (Scenario D).
In fact, Scenario D led to the minimum overall costs for
the community members, ensuring an average reduction of
electricity costs of 0.93 e/day (9%) per prosumer compared
Scenario D with Scenario A.

The proposed optimization method is consumer-centric
having the ability to enable significant user participation in
energy trading. Hence, enabling P2P transaction in the energy
communities has the potential to encourage households to
shift from consumers to prosumers.

The proposed methodology presents some limitations as it
requires the existence of bidirectional information and phys-
ical energy flows between the involved prosumers. Also, in a
real implementation, long execution times can be a drawback
that needs to be solved. In the case of 20 prosumers, the opti-
mization time was 4.41 h for the best scenario (Scenario D).
Therefore, alternative and efficient methods that run near to
real-time should be proposed.

In the future, we intend to explore metaheuristic meth-
ods (such as evolutionary computation) and decompositions
methods (such as Benders decomposition) to solve the pro-
posed problem and reduce the optimization time. In this
way, the proposed model can be applied considering a higher
number of prosumers.
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Resumen 

Los mercados locales de electricidad son soluciones emergentes para permitir el 
comercio local de energía para los usuarios finales y proporcionar servicios de 
soporte de red cuando sea necesario. En la literatura se han propuesto varios 
modelos de mercados eléctricos locales (LEM por sus siglas en inglés). El modelo 
de mercado peer-to-peer (punto a punto) aparece como una estructura 
prometedora entre los modelos propuestos. La estructura de mercado peer-to-
peer permite transacciones de electricidad entre los participantes en un sistema 
de energía local a un costo menor. Fomenta la producción a partir de pequeñas 
tecnologías de generación de bajas emisiones de carbono. Las comunidades 
energéticas pueden ser el lugar ideal para implementar mercados eléctricos 
locales, ya que están diseñados para permitir un mayor crecimiento de las 
energías renovables y los vehículos eléctricos, al mismo tiempo que se benefician 
de las transacciones locales. En este contexto, se propone un modelo LEM 
considerando una comunidad energética con alta penetración de vehículos 
eléctricos en la que son posibles las transacciones prosumer-to-vehículo (P2V). 
Cada miembro de la comunidad energética puede comprar electricidad al 
minorista o a otros miembros, y vender electricidad. El problema se modela como 
una formulación de programación lineal de enteros mixtos (MILP por sus siglas 
en ingles) y se resuelve dentro de un proceso descentralizado e iterativo. La 
implementación descentralizada proporciona soluciones aceptables con un 
tiempo de ejecución razonable, mientras que la implementación centralizada 
suele dar una solución óptima a expensas de una escalabilidad reducida. Los 
resultados preliminares indican que existen ventajas para los vehículos eléctricos 
como participantes del LEM, y la implementación propuesta asegura una 
solución óptima en un tiempo de ejecución aceptable. Además, las transacciones 
P2V benefician a la red de distribución local y a la comunidad energética.  
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Local Electricity Markets for Electric
Vehicles: An Application Study Using a
Decentralized Iterative Approach
Ricardo Faia1, João Soares1*, Mohammad Ali Fotouhi Ghazvini 2, John F. Franco3 and
Zita Vale4
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Polytechnic of Porto, Porto, Portugal, 2Department of Electrical Engineering, Chalmers University of Technology, Göteborg,
Sweden, 3Departamento de Engenharia Elétrica, Faculdade de Engenharia de Ilha Solteira, UNESP–Universidade Estadual
Paulista, Ilha Solteira, Brazil, 4School of Engineering (ISEP), Polytechnic of Porto, Porto, Portugal

Local electricity markets are emerging solutions to enable local energy trade for the end
users and provide grid support services when required. Various models of local electricity
markets (LEMs) have been proposed in the literature. The peer-to-peer market model appears
as a promising structure among the proposed models. The peer-to-peer market structure
enables electricity transactions between the players in a local energy system at a lower cost. It
promotes the production from the small low–carbon generation technologies. Energy
communities can be the ideal place to implement local electricity markets as they are
designed to allow for larger growth of renewable energy and electric vehicles, while
benefiting from local transactions. In this context, a LEM model is proposed considering
an energy community with high penetration of electric vehicles in which prosumer-to-vehicle
(P2V) transactions are possible. Eachmember of the energy community can buy electricity from
the retailer or other members and sell electricity. The problem is modeled as a mixed-integer
linear programing (MILP) formulation and solvedwithin a decentralized and iterative process. The
decentralized implementation provides acceptable solutions with a reasonable execution time,
while the centralized implementation usually gives an optimal solution at the expense of reduced
scalability. Preliminary results indicate that there are advantages for EVs as participants of the
LEM, and the proposed implementation ensures an optimal solution in an acceptable execution
time. Moreover, P2V transactions benefit the local distribution grid and the energy community.

Keywords: decentralized control, energy community, local electricity markets, prosumer, electric vehicle

INTRODUCTION

Despite the pandemic that largely affected the automotive industry in 2020, the electric vehicle (EV)
and renewable energy industry performed remarkably well (Lieven 2021; Wan et al., 2021). In fact,
EV sale numbers in Europe increased to record numbers and all-time highs (up 137% from 2019),
while the overall automotive industry was down by 20% year on year (Irle 2021). Most oil energy
companies quickly shifted investments toward renewable energy projects and became more ESG1-
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oriented, anticipating an earlier oil use peak (Strauch et al., 2020).
The quicker energy transition motivated by the pandemic, the
need to foster job creation, and new opportunities in the industry
flag the importance to accelerate the conditions to accommodate
a large penetration of EVs (Barbier 2020).

Most researchers agree that a large number of EVs in the grid
will bring new operational challenges but also new opportunities
(Fotouhi Ghazvini et al., 2019; Chung et al., 2019; Das et al.,
2020). Challenges may include distribution lines and
transformers’ capacity limitations, overheating and overvoltage
issues, bidirectional power flows (vehicle-to-grid), and market
price increases (Gesevičius et al., 2021). Opportunities will
include new business models, no-upfront cost grid services,
improved renewable energy use, etc.

In this context, local electricity markets (LEMs) have been
proposed as an effective tool to mitigate some bottlenecks of
renewable and EV penetration in local distribution grids. Local
markets are emerging in order to facilitate energy transactions
among small producers and consumers in nearby energy
communities (Mengelkamp et al., 2017). Their emergence is
not targeting the replacement of wholesale markets and the
retailing activity, but rather coexistence (Lezama et al., 2019a).
Aggregators can participate in a LEM via load and EV aggregation
as well (Lezama et al., 2019b; Masood et al., 2020). Among the
different LEM models that have been proposed in the literature,
the peer-to-peer (P2P) market model appears as a promising
structure to reduce costs (Z. Zhang et al., 2020; Faia et al., 2021a).

A previous work proposed a centralized model to solve the
optimal energy trading in a LEM between prosumers and EVs
(Faia et al., 2021b). However, the scalability of the adopted
centralized model is not enough, and the data privacy can be
easily compromised. We believe that decentralized models can be
a viable alternative to overcome issues previously raised, given the
reduced number of resources involved in energy communities
compared to region-wide scale problems. Therefore, a
decentralized iterative approach is proposed in this study to
solve energy management problems, considering the
possibility of transactions in a prosumer-to-vehicle (P2V)
market, thus enabling the prosumers to sell the surplus
electricity production and to charge the EVs at a lower
price than the retail market price. The price of electricity in
the P2V market is assumed to be the most advantageous for
both parties. The proposed model provides the integration of
RESs and the empowerment of electricity end users in the
power system, namely, by allowing prosumers and EVs to
interact within the P2V market. The case study considers 90
players, composed of 50 domestic prosumers and 40 EVs; three
different models of domestic battery systems; and seven
different models of EVs. Real electricity tariffs from a
Portuguese retailer and current feed-in tariff in the country
are used in the case study. The main contributions of the study
are as follows:

• A decentralized and iterative process is developed to
determine electricity transactions among prosumers and
EVs in a P2V market.

• Considering the reduction of the feed-in tariff, the proposed
approach allows prosumers to have another option to sell
electricity at higher price.

• Development of optimization models (prosumers and EVs)
that include realistic constraints, prosumers load and
generation profiles, photovoltaic (PV) systems, energy
storage systems, and real and updated EV models.

The article is structured in six sections including this
introductory section. A literature review is given in Literature
Review. Proposed Methodology presents the proposed
methodology, namely, formulation and the coordinator
decision process. Case Study presents the details of the case
study. Finally, Results presents the results and its discussion,
while Conclusion and Future Works provides the conclusions of
the article.

LITERATURE REVIEW

Different designs of the LEMs and the market analysis of the
proposed models have been presented in the literature. Absorbing
the output of local generation from renewable sources by the
flexible demand has been widely investigated. A P2P local
electricity market model is developed in Z. Zhang et al.’s
(2020) study which considers local energy trading and the
uncertainty of the demand and PV generation. In this model,
the load flexibility is characterized by time and power flexibility.
The results reveal that this model could be used to enable the local
balancing of the PV forecast power and the uncertain demand,
while both consumers and PV owners could benefit from the local
P2P market.

The P2P energy trading mechanism has also been used to
coordinate the distributed energy generation and consumption
(Matamoros et al., 2016) and the trading among the peers in a
distribution network. C. Zhang et al., (2018) proposed an
innovative platform for P2P energy trading using the game
theory. The test results in a microgrid show that P2P trading
can improve the local balance of consumption and generation.
This trading mechanism can promote increased penetration of
renewable energy sources in the grid.

A local electricity market model is developed in Sæther et al.
(2021) to enable P2P electricity trading for a community of
industrial buildings. The impact of local flexibility on the
usage of DER technologies was investigated in that work;
moreover, the contribution of the local market to peak
demand management was assessed. The authors showed that
the local market approach leads to more local usage of the
distributed resources, eliminating the need to curtail DER
power and reducing the grid feed-in.

A contract-based framework to enable local energy trading for
electricity suppliers in different categories (i.e., small, medium,
and large suppliers) is developed in Oprea and Bâra (2021). The
model helps the suppliers obtain optimal contracts and trade the
surplus power with an aggregator in a hierarchical electricity
trading system. The distributed algorithm for electricity trading
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guarantees the optimal utility of both parties in various trading
scenarios.

A day-ahead local energy market model is developed in
Elbatawy and Morsi (2021) in which the residential consumers
with home battery storage are the main participants. It uses the
utility’s distributed energy management system and the home
energy management system based on the existing
intercommunication system. Moreover, the provision of grid
services, such as voltage support, transformer management,
and phase balancing, as a result of this transactive market
model, is investigated. The results show that the proposed
market can contribute to grid services, while increasing the
profits of the residential consumers.

Different auction mechanisms for the trade of electricity in a
local market using blockchain mechanisms were investigated by
Oprea and Bâra (2021). Suitable auction mechanisms for
blockchain are proposed along with an adjustment of the price
for both sellers and buyers after the initial clearing of the market
at the classical auction levels. The simulation results show that
this approach could improve the trading performance indicators.

The impact of local electricity trade on the operation of the
distribution network is investigated in Lüth et al. (2020). It is
concluded that exempting local trade and self-consumption from
taxes could create distributional effects. That work proposes a
novel market design that requires few legal amendments on the
ownership and participation of renewable technologies to avoid
the distributional effects of local markets, making them more
attractive for the prosumers and consumers.

The work of Mustafa, Cleemput, and Abidin (Mustafa et al.,
2016) provides security analysis for a proposed model of a local
electricity market considering the privacy requirements of the
users. Each user in this model buys or sells electricity in the local
market via the supplier, and the supplier charges the user only for
the electricity supplied to them by the grid and pays to them only
for the exported electricity that was not traded in the local market.
In this model, the DSO will also access the imported and exported
electricity by all the users per supplier for each settlement period.

The aforementioned works indicate the potential of LEMs to
benefit producers and consumers in energy communities.
Nevertheless, further research on decentralized models is
required to overcome scalability limitations when multiple
agents are involved. Thus, Proposed Methodology presented the
proposed methodology based on optimization models solved in a
decentralized way.

PROPOSED METHODOLOGY

In this section, the details of the model used to characterize
the transactions among the local prosumers and EVs are
presented. The optimization models for prosumers and EVs
are presented first and then the iterative process proposed for
ensuring the balance in the P2V market is explained. The
proposed methodology constitutes two different
optimization models: prosumer model and EV model. Both
of them are formulated as a MILP problem with the possibility
of energy exchange among the retailers, the distribution grid,

and the P2V market. It is assumed that EVs are able to buy
electricity from a retailer or the P2V market. The models also
consider the energy management system properties, using
storage systems to obtain the best options for the user.
Figure 1 presents the model scheme of the implemented
methodology.

As can be seen in Figure 1, in the implemented model, the
prosumers can buy electricity from a retailer and sell to the
main grid or in the P2V market; on the other hand, the EV
can buy electricity from the retailer or directly from
prosumers.

Formulation
The formulations are presented for each of the three agents:
prosumers, EVs, and the coordinator in the respective
subsections.

Prosumers
The prosumer operation is represented by the minimization of its
energy costs across a set of time periods. Each agent i belonging to
the set {1, . . . , Ni} optimizes its energy costs according to Eq. 1
and subject to Eqs 2–23. Decision-making is done in a
decentralized way, which means that each prosumer solves its
own optimization process.

minimize ProCostsi � ∑Nt

t�1
(PRetailer buy

i,t · ToUi,t − PGrid sell
i,t · f it

− PP2V sell
i,t · pP2V) · Δt + FCi, (1)

where ProCostsi represents the energy costs for the prosumer,
PRetailer buy
i,t represents the electricity bought from a retailer,

ToUi,t represents the time of use tariff contracted by the
prosumer to the retailer, PGrid sell

i,t corresponds to the
electricity sold in the distribution grid, fit is the feed-in
tariff, PP2V sell

i,t represents the electricity sold in P2V
market, pP2V is the price of electricity in the P2V market,
Δt represents the time adjustable parameter, FCi corresponds
to the daily fix cost paid by the prosumer, and Nt corresponds
to the total number of periods. Indices t and i represent the
respective period and prosumer. Eq. 2 presents the power
balance for prosumer agent i.

PGen
i,t + PRetailer buy

i,t + PDch
i,t � PLoad

t,i + PGrid sell
t,i + PP2V sell

i,t

+ PCh
i,t ,∀t ∈ Nt, (2)

where PGen
i,t represents the electricity generated by the prosumer,

PDch
i,t represents the electricity discharged from the prosumer

battery, PLoad
t,i corresponds to the load demanded by the

prosumer, and PCh
i,t corresponds to the electricity charged by

the prosumer battery. Eqs 3–5 simulate the prosumer’s
transactions.

PRetailer buy
i,t ≤PBuy

i,t · XRetailer buy
i,t ,∀t ∈ Nt, (3)

PGrid sell
i,t ≤PSell

i,t · XGrid sell
i,t ,∀t ∈ Nt, (4)

PP2V sell
i,t ≤P

Sell P2V
i,t · XP2V sell

i,t ,∀t ∈ Nt, (5)
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where P
Buy
i,t represents the maximum buying limit for the

prosumers, XRetailer buy
i,t corresponds to the binary variable for

the buy action, P
Sell
i,t represents the maximum limit for the

sales actions, XGrid sell
i,t is a binary variable for the sale on-grid

actions, P
Sell P2V
i,t represents the maximum limit for the sales on

P2V market, and XP2V sell
i,t represents the binary variable for the

sales on P2V market. Eqs 6, 7 represent the prosumers’
restrictions for buying and selling electricity.

XRetailer buy
i,t + XGrid sell

i,t ≤ 1, ∀t ∈ Nt, (6)

XRetailer buy
i,t + XP2V sell

i,t ≤ 1,∀t ∈ Nt, (7)

where Eq. 6 avoids simultaneous purchase from the retailer and
selling to the grid. Eq. 7 also controls simultaneous purchase from
the retailers and selling to the P2V market. Sells to the grid and
the P2V market can occur at the same time in this model. Eqs
8–10 control charging and discharging decisions of the
prosumers.

PCh
i,t ≤P

Ch
i,t · XCh

i,t ,∀t ∈ Nt, (8)

PDch
i,t ≤PDch

i,t · XDch
i,t , ∀t ∈ Nt, (9)

XCh
i,t + XDch

i,t ≤ 1,∀t ∈ Nt, (10)

where P
Ch
i,t represents the maximum limit for the prosumers

charge battery, XCh
i,t represents the binary variable for the

charge action, P
Dch
i,t corresponds to the maximum limit for the

battery discharge of the prosumer, and XDch
i,t corresponds to the

binary variable for the discharge action. Simultaneously, only one
action (charge and discharge) is possible and the binary variables
control these actions. Eq. 11, 12 model the state of charge of the
storage unit.

SoCBat
i,1 � SoCBat Init

i + (PCh
i,1 · ηChi − PDch

i,1 · 1
ηDch
i

) · Δt, (11)

SoCBat
i,t � SoCBat

i,t−1 + (PCh
i,t · ηChi − PDch

i,t · 1
ηDch
i

) · Δt,∀t ∈ [2,Nt],
(12)

where SoCBat
i,t represents the state of charge of the storage

unit, SoCBat Init
i represents the battery unit’s initial value;

efCh
i and ηDch

i represent the efficiency of charge and
discharge of the battery unit, respectively. Equations
13–23 present the limits for the optimization variables of
prosumer’s operations.

0≤PRetailer buy
i,t ≤PBuy

i,t ,∀t ∈ Nt , (13)

0≤PGrid sell
i,t ≤PSell

i,t ,∀t ∈ Nt , (14)

0≤PP2V sell
i,t ≤P

Sell P2V
i,t ,∀t ∈ Nt , (15)

0≤PCh
i,t ≤P

Ch
i,t ,∀t ∈ Nt , (16)

0≤PDch
i,t ≤PDch

i,t ,∀t ∈ Nt , (17)

SoC Bat
i,t ≤ SoCBat

i,t ≤ SoC
Bat
i,t ,∀t ∈ Nt , (18)

XRetailer buy
i,t ∈ {0, 1} ,∀t ∈ Nt , (19)

XGrid sell
i,t ∈ {0, 1}, ∀t ∈ Nt , (20)

XP2V sell
i,t ∈ {0, 1},∀t ∈ Nt , (21)

XCh
i,t ∈ {0, 1}, ∀t ∈ Nt , (22)

XDch
i,t ∈ {0, 1},∀t ∈ Nt , (23)

where SoC Bat
i,t and SoC

Bat
i,t represent the maximum and minimum

capacity of the battery unit, respectively.

Electric Vehicles
This section presents the optimization model for the EV agents,
which minimizes the daily operation cost through Eq. 24.

FIGURE 1 | Proposed model scheme.
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minimize : EVCosts
j � ∑Nt

t�1
(PEVRetailer buy

j,t · ToUj,t + PP2Vbuy
j,t · pP2V)

· Δt + FCj,

(24)

whereEVCosts
j represents the costs for EV,PEVRetailer buy

j,t corresponds to
the electricity bought from a retailer, ToUj,t is the time of use tariff,
PP2Vbuy
j,t represents the electricity bought in the P2V market, pP2V

corresponds to the price of electricity in P2V market, FCj represents
the fixed costs for EV, andNj represents the total number of EVs. Eq.
25 represents the energy balance for the EVs.

PEVRetailer buy
j,t + PP2Vbuy

j,t � PEVCh
j,t , ∀t ∈ Nt , (25)

where PEVCh
j,t represents the electricity charged for EV battery.

Eqs 26, 27 model the energy balance in EV batteries.

SoCEVBat
j,1 � SoCEVBat Init

j + (PEVCh
j,1 · ηEVCh

j − PEVMove
j,1 ) · Δt , (26)

SoCEVBat
j,t � SoCEVBat

j,t−1 + (PEVCh
j,t · ηEVCh

j −PEVMove
j,t )

× Δt ,∀t ∈ [2,Nt], (27)

where SoCEVBat
j,t represents the state of charge of the EV battery,

SoCEVBat Init
j represents the initial state of EV battery, ηEVCh

j
represents the efficiency of EV charge action, and PEVMove

j,t
represents the EV consumption during trips. Eqs 28, 29 limits
the EV buying of electricity when they are on trip.

PEVRetailer buy
j,t ≤ P

EVBuy
j,t · AEVMove

j,t ,∀t ∈ Nt , (28)

PP2Vbuy
j,t ≤ P

EVP2VBuy
j,t · AEVMove

j,t ,∀t ∈ Nt , (29)

where P
EVBuy
j,t represents the maximum limit for buying electricity,

AEVMove
j,t gives the indication if the EV is travelling (zero) or if is

available to charge (one), and P
EVP2V Buy
j,t represents the maximum

limit for buying electricity in P2V market. Eqs 30–33 present the
maximum and minimum limits for the EV operation.

0≤PEVReatiler buy
j,t ≤PEVBuy

j,t ,∀t ∈ Nt , (30)

0≤ PP2Vbuy
j,t ≤PEVP2VBuy

j,t ,∀t ∈ Nt , (31)

0≤PEVCh
j,t ≤PEVCh

j,t ,∀t ∈ Nt , (32)

SoC EVBat
j,t ≤ SoCEVBat

j,t ≤ SoCEVBat
j,t ,∀t ∈ Nt , (33)

where P
EVCh
j,t represent the maximum limit for EV maximum

charge action and SoC EVBat
j,t and SoC

EVBat
j,t represent the

minimum and maximum level for the EV battery, respectively.

Coordinator
The coordinator is responsible for the process of ensuring the balance
in the P2V market. The coordinator process is based on Eqs 34, 35
and applies four sequential rules. The first two rules limit the periods
for prosumers’ sells (Eq. 36) and EV buys (Eq. 37), respectively. On
the other hand, the last two rules limit the amount of buy and sell
electricity in periods in which transactions are possible. Eq. 38 limits
the maximum amount of electricity that each EV can buy in P2V
market, and similarly, Eq. 39 imposes a limit for prosumers’ sales.

Eq. 34 presents the energy balance in P2V market.

Balance : ∑Ni

i�1
(PP2V sell

i,t · Δt) � ∑Nj

j�1
(PP2Vbuy

j,t · Δt),∀t ∈ Nt . (34)

To ensure the balance in the P2V market, the aggregator executes
four hierarchical rules. Thus, an error is calculated according to
Eq. 35 to indicate the difference between the sell and buy energy
across all time periods.

Error � ∑Nt

t�1
⎛⎝∑Ni

i�1
PP2V sell
i,t · Δt −∑Nj

j�1
PP2Vbuy
j,t · Δt

⎞⎠2

· (35)

The error can be obtained in each iteration of the process and
considers the energy sold by the prosumers and bought by the
EVs. When the process has been finalized, the value of error
should be minimal.

Four different rules are created to achieve the minimal
error and the convergence of the coordinator process. One
algorithm per each rule is presented in order to facilitate the
interpretation of the corresponding rule. The first rule is defined
in Eq. 36.

Rule1: P
EVP2VBuy
j,t,(it�2) �

⎧⎪⎪⎨⎪⎪⎩
0 if ∑Ni

i�1
PP2V sell
i,t � 0

P
EVP2V buy
j,t,(it�1) otherwise , ∀t ∈ Nt ,∀j ∈ Nj.

(36)

Rule 1 is applied to update the values of EV electricity maximum
buy limit in the P2V market for the second iteration. Considering
this rule, the EV in the second iteration only can buy electricity in
periods when the prosumers are available for sale. Algorithm 1
presents the application process of rule 1.

Algorithm 1. Application of Rule 1 (Eq. 36)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 1
4. For t � 1: Nt

5. For j � 1: Nj

6. If ∑Ni
i�1 PP2V sell

i,t � 0

7. P
EVP2V buy
j,t,(it�2) � 0

8. Else If
9. P

EVP2V buy
j,t,(it�2) � P

EVP2V buy
j,t,(it�1)

10. End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16. End If
17. Return the solution.
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Eq. 37 presents the rule executed for the second iteration.

Rule 2: P
SellP2V
i,t,(it�3) �

⎧⎪⎪⎨⎪⎪⎩
0 if ∑Nj

j�1
PP2V buy
j,t � 0

P
Sell P2V
i,t,(it�2)otherwise ,∀t ∈ Nt ,∀i ∈ Ni.

(37)

Rule 2 is applied to the maximum limit of electricity sell in the
P2V market for the prosumers side. In this case, in periods where
the EVs do not buy electricity in the P2V market, the maximum
sales limit for prosumers in this same period is zero. Algorithm 2
presents the application of rule 2.

Algorithm 2. Application of Rule 2 (Eq. 37)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 2
4. For t � 1: Nt

5. For i � 1: Ni

6. If ∑Nj

j�1 P
P2Vbuy
j,t � 0

7. P
Sell P2V
i,t,(it�3) � 0

8. Else If
9. P

Sell P2V
i,t,(it�3) � P

Sell P2V
i,t,(it�2)

10 End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16. End If
17. Return the solution.

Rule 3 in Eq. 38 presents a new update for the maximum buy
limit for EV buys in the P2V market.

Rule 3: P
EVP2V Buy
j,t,(it�4) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑Ni

i�1 P
P2V sell
i,t

PP2V buy
j,t

if PP2V buy
j,t ≥ 0

P
EVP2V Buy
j,t,(it�3) otherwise

,∀t ∈ Nt ,∀j ∈ Nj.

(38)

Using rule 3, the maximum limit for EVs to buy electricity in the
P2V market is limited using the quantity available from
prosumers. In this case, in each period that there is electricity
sold by the prosumers, the maximum limit for the EVs available
to buy will be limited. This limitation will be proportional,
considering the maximum electricity available from prosumers.
Algorithm 3 presents the application of rule 3.

Algorithm 3. Application of Rule 3 (Eq. 38)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 3
4. For t � 1: Nt

5. For j � 1: Nj

6. If PP2V buy
j,t ≥ 0

7. P
EVP2VBuy
j,t,(it�4) � ∑Ni

i�1 P
P2V sell
i,t

PP2V buy
j,t ≥ 0

8. Else If
9. P

EVP2VBuy
j,t,(it�4) � P

EVP2VBuy
j,t,(it�3)

10. End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16 End If
17. Return the solution.

Rule 4 limits the maximum electricity sold by prosumers in the
P2V market presented in Eq. 39.

Rule 4: P
SellP2V
i,t,(it�5) �

∑Nj

j�1
PP2V buy
j,t

PP2V sell
i,t

if PP2V sell
i,t ≥ 0

P
SellP2V
i,t,(it�4) otherwise

,∀t ∈ Nt ,∀i ∈ Ni.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(39)

In rule 4, the same process of rule 3 is applied, but for the
maximum limit for prosumers sells in the P2V market.
Algorithm 4 presents the application of rule 4.

Algorithm 4. Application of Rule 4 (Eq. 39)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 4
4. For t � 1: Nt

5. For i � 1: Ni

6. If PP2V sell
i,t ≥ 0

7. P
Sell P2V
i,t,(it�5) �

∑Nj
j�1 P

P2V buy
j,t

PP2V sell
i,t

8. Else If
9. P

Sell P2V
i,t,(it�5) � P

Sell P2V
i,t,(it�4)

10. End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16. End IF
17. Return the solution

Iterative Process
An iterative approach is adopted to solve the coordination
process. This is illustrated by the block diagram in Figure 2.
The coordinator is responsible for the perfect match between
the sales of prosumers and purchases of the EVs in the P2V
market. The optimizations of each prosumer and EV are
independent, only needing the information of maximum
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limits for transaction in the P2V market provided by the

coordinator.
The coordinator initializes the process, defines the

maximum limits for prosumers and EV transactions in
P2V market, and passes the information for each
prosumer and EV. Both of those agents optimize
their energy costs with the provided information of
maximum limits for P2V transactions. Those
optimizations run in a parallel and decentralized way in
which prosumers and EVs receive and send the required data
to the coordinator. The latter receives the P2V transaction
information and determines the error considering the
electricity sold by prosumers and bought from EV. The
convergence is tested through two different criteria: the
error value obtained by Eq. 35 and the number of
iterations. Considering the error, if the value is equal to
or less than 0.001 kW, the process converges. On the other
hand, when the process is completed, the limit of iterations
(five) is reached. When none of the aforementioned
conditions is verified, the process proceeds to the next
iteration, and the maximum limits for P2V transactions
are updated.

The created rules are applied in a sequential mode with
respect to the number of respective iterations. During the
iterative process, if the error condition is verified, the model
converges, and all rules may not be applied. At the maximum,
this process has five iterations.

CASE STUDY

To validate the proposed methodology, a case study with a set of
50 residential prosumers and 40 EVs is adopted.2 In total, the
community is constituted by 90 players. All community players
have a contract with the retailer to supply the necessary electricity
that defines the maximum limit for buying electricity, the
maximum limit for injecting electricity into the grid, and the
fixed costs. The prosumers and EVs can transact electricity in the
P2V market, that is, prosumers’ sell and EVs buy electricity,
which presents the mean profiles of generation and
conventional load.

The profiles presented in Figure 3 are the mean profiles
considering the 50 prosumers. The prosumers present a total
consumption of 2001.89 kWh and 1,1417.82 kWh of total PV
generation, which correspond to a mean of 40.04 kWh of
consumption and 28.36 kWh of generation for each prosumer.
The prosumer has installed 248.8 kW of produced capacity for
PV generation, that is, a mean of 4.98 kW. Table 1 presents the
characteristic of batteries used in the prosumers’ facilities.

Three different batteries for prosumers are selected in the case
study. In total, there are 50 units of batteries, one per each
prosumer. The three available battery types are randomly

FIGURE 2 | Block diagram process.

2All data are available in the public datset: https://zenodo.org/record/4737293#.
YJFWT7VKg2x.
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distributed among all prosumers. In total, the prosumers have
715 kWh of storage capacity installed. Table 2 presents the
characteristics of EVs used in the case study, while Figure 4
presents the EV profiles.

Figure 4A presents the profiles of EV trips; most of the EV
trips happen at 8:15 h and 19:45 h (36 trips). In mornings, the EV
starts the movements at 6:15 h and stops at 23:30 h at night.
Regarding the total number of periods, the EVs make 780 trips,
which correspond to a mean of 8.3 trips per period. Figure 4B
presents the mean profile of EV consumption. The peaks of
consumption are verified in the same peak periods of EV
movements.

The seven EVmodels presented inTable 2were also randomly
distributed within the 40 available EV users. Tesla Model 3
Standard Range + is the most used model. Considering all
EVs, they have 1916.60 kWh of capacity. Table 3 presents the

tariffs used in the case study. All buy tariffs are obtained in the
EDP Comercial Portuguese electricity retailer.

Table 3 presents three different tariffs that the prosumers and
EVs can contract with the retailer. The users should contract the
tariff that best fits their needs. Contracted power corresponds to
the maximum power that each user can demand from the
distribution grid. Fixed costs are always associated with
contracted power value; higher contracted power values are
associated with higher values of fixed costs. The price of
electricity varies in two different periods in the day. Off-peak
period (during 22:15 to 8:00 h) are considered the cheapest
periods, while peak time (between 8:15 to 22:00 h) is considered
expensive. Regarding the sell tariff, the price is defined as linear
and can be found in Ambiente. (2020). The limit for export of
electricity to the grid is half of the contracted power. In the set of
prosumers, 21 of them selected the tariff with 6.90 kVA
contracted power, while in the set of EVs, 16 of them
selected the tariff with 13.80 kVA contracted power. Price of
the P2V market (pP2V) is obtained considering the mean
between the minimum value of ToU tariffs (min(ToUj,t))
and the feed-in tariff. The electricity price of the P2V market
is 0.0686 €/kWh, while the minimum EV buy price is 0.0922 €/
kWh and the price of export electricity to the grid (fit) is
0.045 €/kWh.

RESULTS

The results of the proposedmethodology applied to the case study
are shown in this section. The simulations were performed on a
computer with an Intel Xeon(R) E5-2620v2@2.1 GHz processor
with 16 GB of RAM running Windows 10. To emulate the
optimization problem, a MATLAB 2018a with TOMLAB
optimization add-on was used. The CPLEX solver was used to
optimize the proposed model. The simulations are carried out for
a time horizon of 24 h divided into 96 periods (15 min each). The

FIGURE 3 | Mean profiles of prosumers.

TABLE 1 | Prosumers batteries characteristics.

Brand Model Capacity (kWh) Charge/discharge rate (kW) Efficiency (%) No

Sonnen 9.43 15.000 3.300 90 16
Tesla Powerwall 13.500 5.000 90 18
Alpha Smile 14.500 2.867 90 16

TABLE 2 | EV characteristics.

Brand Model Capacity (kWh) Charge rate (kW) Efficiency (%) No

Honda e 35.500 6.600 90 2
WV ID.4 82.000 11.000 90 6
WV e-Golf 35.800 7.200 90 8
Tesla Model 3 Standard Range + 50.000 11.000 90 10
Peugeot e-208 50.000 7.400 90 2
Nissan Leaf 40.000 3.600 90 8
WV e-UP! 36.800 7.200 90 4
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load and generation data are obtained through forecasts. Two
different scenarios are considered to enable the comparison:
scenario A for the possibility of transacting electricity with
retailers and the option of exporting to the grid, and scenario
B for the possibility of transacting electricity with retailers, the
option of exporting to the grid, and transacting electricity in the
P2V market. Table 4 presents the optimization results for a
centralized approach and the decentralized approach proposed in
this work.

Table 4 presents the optimization results for the same case
study with two different variants (with and without P2V market)
and for two different implementations (centralized and
decentralized). It was found that the results are the same when
the P2V market is not available; however, as expected, the
centralized method provides slightly better total costs for the
P2V market variant. The only difference is the implementation,
which has disadvantages considering the privacy issues.
Comparing the two different implementations when the P2V

FIGURE 4 | EV profiles, (A) movements, and (B) mean consumption.

TABLE 3 | Tariffs description.

Tariff Type Price (€/kWh) Contracted power
(kVA)

Fixed costs
(€/day)

No

Off-peak Peak Prosumer EV Total

Buy ToU 0.0923 0.1833 4.60 0.3251 12 8 20
0.0924 0.1834 5.75 0.3847 10 0 10
0.0924 0.1836 6.90 0.4448 21 2 23
0.0922 0.1829 10.35 0.6209 7 14 21
0.0926 0.1838 13.80 0.8022 0 16 16

Sell Feed-in tariff (fit) 0.0450 50% of buy limit 0.0000 50 0 50

TABLE 4 | Optimization results (€).

Centralizeda Decentralized

No P2V market P2V market No P2V market P2V market

Scenario

A B A B

Mean cost Prosumers 2.10 2.10 2.10 2.06
EV 4.62 4.37 4.62 4.44

Sum of costs Prosumers 104.84 104.96 104.84 102.82
EV 184.85 174.95 184.85 177.52

Total costs 289.69 279.92 289.69 280.34
Reduction (%) 3.37 3.23

aConsidering model presented in reference (Faia, et al., 2021b).
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market is available, the centralized implementation has better
results with a minimal difference (0.15% comparing the total
costs). Analyzing other indicators’ results, different values are
presented when considering scenario B in the two different
implementations. In the decentralized option, the values of
mean prosumer cost decreases (2.04%) and the mean EV costs
increase (1.45%). Since each player is trying to make the most
advantageous transaction for itself, which leads to a suboptimal
cost. On the other hand, in a centralized implementation, the
community profit is maximized.

Table 5 presents the optimization time results for both
implementation scenarios. In the decentralized
implementation, the time presented in each iteration
corresponds to the maximum resolution time in the set of all
players. Execution times in the decentralized implementation for
both scenarios A and B are lower than the times required by the
centralized implementation. The big difference and the advantage
of the decentralized implementation are verified when the
resolution times for scenario B are presented. As can be seen,
when the centralized implementation is considered, the
resolution time is 144 times greater than the decentralized
implementation.

Figure 5 shows the convergence of the optimization process.
Three different variables are presented in Figure 5, the error

(obtained by Eq. 34), the value of prosumers sells in P2V, and the
EV buys in P2V. The sales and buys should have the same value.
In the first iteration of Figure 5, the EVs are buying more units of

TABLE 5 | Optimization time results (seconds).

Centralized DecentralizedIteration

No P2V market P2V market No P2V market P2V market

1 9.74 1,118.57 1.78 1.64
2 − − − 1.34
3 − − − 1.59
4 − − − 1.58
5 − − − 1.58
Total 9.74 1,118.57 1.78 7.73
Total (minutes) 0.16 18.64 0.03 0.13

FIGURE 5 | Process convergence. FIGURE 6 | Buys and sells of scenario B.

FIGURE 7 | Buys and sells of scenario B.
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electricity than the amount available on the market, corresponding
to the prosumers’ selling. The electricity sold by the prosumers in
the P2V market remains constant in all iterations. However, in the
end, the EVs adjust their purchased electricity with what is sold by
the prosumers. Throughout the iterations, the amount of purchase
of EVs decreases as a result of the application of the rules created,
leading the error to zero. In this case, the EVs adapt their actions to
the behavior of the prosumers. This is because the amount of
electricity available on the part of the prosumers is less than that
required by the EVs.

Figure 6 presents the electricity transaction of scenario B in
centralized and decentralized implementations. The presented
results are very similar, although there are differences, mainly in
the electricity exported to the grid. Electricity is exported in the
centralized implementation, while it is not exported in the
decentralized approach. One of the important aspects observed
is the value of electricity traded in the P2V market, which is
superior to decentralized implementation. Figure 7 presents the
transaction on P2V electricity market considering the centralized
and decentralized implementation.

As can be seen in Figure 7, the transactions of P2V for the
centralized and decentralized solutions have differences. The main
difference is related to the period of transaction: in the centralized
approach, the transactions occur between 9:00 h and 19:00 h and also
between 21:00 and 22.30 h. In the case of decentralized resolution, the
transactions occur during 9:00 h to 16:00 h, which corresponds to the
PV prosumers’ production hours. Figure 8 presents the electricity
transaction on grid for the decentralized approach.

Both Figures 8A and B present results for the decentralized
resolution, Figure 8A for scenario A, where P2V market is not
available, and Figure 8B for scenario B where P2V market is
available. The big difference presented in the figures is related to
the prosumers’ sell to grid values. In the case of scenario A, there
are sells to the grid made by prosumers, while in scenario B, all the
electricity units available to be sold is sold in the P2V market.
Figure 9 presents the mean costs for prosumers and EV of
scenario B.

The mean costs for prosumers and EVs regarding the iterations
are presented in Figure 9. The mean values for decentralized
implementation vary in the case of EV, but in prosumers’ case, the
value is constant. The mean value of EV increases throughout
interactions. In the fifth iteration, the value is higher than the value
of the first iteration because they decrease the value of electricity
bought in the P2V market, which has a better price for EVs. As the
liquidity of electricity is not sufficient for the amount needed by the
EVs, they have to buy from the retailer and pay a higher price.
Buying at the retailer rates increases the average of electricity costs.

CONCLUSION AND FUTURE WORKS

This study presented a decentralized approach for a prosumer-to-
vehicle (P2V) market at a local energy community composed of 90

FIGURE 8 | Transactions on grid for decentralized (A) scenario A and (B) scenario B.

FIGURE 9 | Mean costs of Scenario B.
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players [50 prosumers and 40 electric vehicles (EVs)]. The results
using the P2Vmarketmechanism show a reduction in the total energy
costs and the average costs of each player’s type. Comparing the results
of centralized with decentralized implementations, the difference in
total costs is minimal, but the optimization time difference is
significantly higher. Other issues may arise regarding the
centralized implementation, such as data privacy. In the case of
decentralized implementation, players perform their optimization
and only share the values referring to the P2V market.
Cyberattacks can also be an important aspect of decentralized
implementation. In the centralized implementation, if a cyberattack
occurs, the operation of the system can be stopped, leaving users
without service. In the case of decentralized systems, as distributed by
the various users, an attack will only affect the targeted user, while
others remain safe.

The influence of the P2V market depends on the quantity of
energy available from the prosumers’ side. As can be seen, by
using rules created, the EV adapts the electricity bought in the
P2V market to the electricity sold to the prosumers in the same
market. Most of them have PV installations, and it is possible to
assume that enough amount will be available in future. The use of
small thermoelectric generation units can be a solution to
increase the supply capacity for the P2V market. Still, the
higher production costs of those units can be a barrier.

The P2V market allows prosumers to benefit the local
distribution grid and the energy community. As a future work,
the authors intend to compare this approach with other
decentralized methods available in the literature. The authors
are considering the possibility to implement the ADMM
technique, although the application of this technique involves
proof of concepts that sometimes are not possible to obtain and
fully prove the convergence of the implementation. Considering
dynamic pricing in the P2V market is another relevant aspect
worthy to be explored in the future. The inclusion of dynamic
pricing in the P2V market can encourage the users to participate
in local energy transaction. Participating in such markets could
lead to higher benefits for prosumers and the EV owners. In this
case, the idea would be to vary the price of electricity in the P2V
market with the amount of electricity offered and required. An
important aspect that serves as a subject for future work is the
study of the vulnerabilities that the system presents in terms of

cyber security and the effective mechanisms and measure to
protect the users.
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Resumen 

Los cambios recientes en el sector de la energía están aumentando la importancia 
de la optimización de la cartera de clientes para la participación en el mercado. 
Aunque el problema de optimización de cartera es más popular en finanzas y 
economía, solo recientemente está siendo objeto de estudio y aplicación en los 
mercados de electricidad. Sin embargo, el modelado de riesgos en este dominio 
se está abordando como en el clásico problema de optimización de carteras, 
donde la diversidad de inversiones es la medida adoptada para mitigar el riesgo. 
La creciente imprevisibilidad de los precios de mercado como reflejo de la 
variabilidad de la generación renovable trae una nueva dimensión a la 
formulación del riesgo, ya que el riesgo de participación en el mercado debe 
considerar la variación de precios en cada mercado. Este artículo propone así un 
nuevo modelo de optimización de cartera, considerando un nuevo enfoque para 
la gestión de riesgos. El problema de asignación de electricidad entre diferentes 
mercados se formula como un problema clásico de optimización de cartera 
considerando el error de pronóstico de los precios de mercado como parte del 
activo de riesgo. Tratar con un problema multiobjetivo conlleva una gran carga 
computacional y, por esta razón, se aplica un método basado en la optimización 
de enjambre de partículas (particle swarm optimization en inglés). Un estudio de 
caso basado en datos reales del mercado eléctrico ibérico demuestra las ventajas 
del enfoque propuesto para aumentar las ganancias de los actores del mercado y 
minimizar el riesgo de participación en el mercado.  
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Resumen 

La participación de los prosumidores domésticos en los mercados mayoristas de 
electricidad es muy limitada, considerando el límite mínimo de participación 
impuesto por la mayoría de las reglas de participación en el mercado. La 
capacidad de generación de los hogares ha ido en aumento ya que la instalación 
de generación distribuida a partir de fuentes renovables en sus instalaciones 
aporta ventajas para ellos y para el sistema. Debido al crecimiento del 
autoconsumo, los operadores de red han ido dejando de lado la compra de 
energía eléctrica a los hogares, y se ha producido una reducción del precio de 
estas transacciones. Este artículo propone un modelo innovador que utiliza la 
agregación de hogares para alcanzar los límites mínimos de volumen de 
electricidad necesarios para participar en el mercado mayorista. De esta forma, 
el agregador representa a la comunidad de hogares en las compras y ventas del 
mercado. Se propone un modelo de optimización de cartera de transacciones de 
electricidad para permitir que el agregador tome decisiones sobre en qué 
mercados participar para maximizar los resultados de negociación de estos, 
considerando el mercado diario, el mercado intradiario y el mercado minorista. 
Se presenta un caso de estudio considerando el mercado eléctrico mayorista 
ibérico y el mercado minorista portugués. Para la realización de los experimentos 
se utiliza una comunidad de 50 prosumidores equipados con generadores 
fotovoltaicos y sistemas de almacenamiento individual. El enfoque logra una 
reducción de costos del 6 al 11 % cuando la comunidad de hogares compra y 
vende electricidad en el mercado mayorista a través del agregador.  
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Abstract: The participation of household prosumers in wholesale electricity markets is very limited,
considering the minimum participation limit imposed by most market participation rules. The
generation capacity of households has been increasing since the installation of distributed generation
from renewable sources in their facilities brings advantages for themselves and the system. Due
to the growth of self-consumption, network operators have been putting aside the purchase of
electricity from households, and there has been a reduction in the price of these transactions. This
paper proposes an innovative model that uses the aggregation of households to reach the minimum
limits of electricity volume needed to participate in the wholesale market. In this way, the Aggregator
represents the community of households in market sales and purchases. An electricity transactions
portfolio optimization model is proposed to enable the Aggregator reaching the decisions on which
markets to participate to maximize the market negotiation outcomes, considering the day-ahead
market, intra-day market, and retail market. A case study is presented, considering the Iberian
wholesale electricity market and the Portuguese retail market. A community of 50 prosumers
equipped with photovoltaic generators and individual storage systems is used to carry out the
experiments. A cost reduction of 6–11% is achieved when the community of households buys and
sells electricity in the wholesale market through the Aggregator.

Keywords: aggregator; Iberian electricity market; portfolio optimization; prosumer; Portuguese
retail market

1. Introduction

Considering the targets imposed by the European Commission [1] about greenhouse
gas emission reductions, the installation of distributed generators (DG) based on renewable
energy sources (RES) can make a positive contribution to the cause. The successful imple-
mentation of national energy policies can contribute also for a global economic growth
(one average of 3.4% by 2040) [2]. DG based on RES includes small-scale generation units
connected essentiality to distribution grids in low or medium voltage. They can provide
challenges and opportunities to the users and participants of the distribution system (utili-
ties, end-users, operators, and retailers) [3]. The use of distributed energy resources (DER)
based on RES or non-RES from the costumers side, can improve local dependability, and
reduce costs with energy supply [4], from the grid side can minimize the operation costs [5]
or help to avoid some expensive investments in planning actions [6]. Due to the price
reduction of photovoltaic (PV) systems, the global installed capacity increased from 23 GW
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(2009) to 627 GW (2019) [7]. The growth of installed PV systems as DER in households has
been supported by various policies, such as feed-in tariffs (FIT), renewable electricity stan-
dards, net metering, and auctions [8]. In Portugal, installing PV panels in households has
been mainly incentivized through FIT approaches and installation incentives. FITs are ex-
periencing a downward trend in Portugal, in 2015 the FIT was fixed at 0.095 EUR/kWh [9]
and 0.045 EUR/kWh in 2020 [10], which correspond to a reduction of 53%. The reduction
of FITs can cause uncertainty regarding the installation of PV systems by Portuguese house-
holds, and the targets imposed for greenhouse gas emissions may be compromised [11].
On the other hand, reducing FITs can also increase the levels of self-consumption, since
the amount received for the export to the national grid does not bring profits [12]. Around
the world, the trade war caused the trend of deglobalization to be much more important,
influencing energy demand, knowledge and technology commerce, and financial capital
flows [13]. These effects can reduce the installation of technologies that make it possible to
generate clean energy.

The installation of small or medium-sized DG in Portugal must consider the Por-
tuguese legislation “Decreto-Lei n.º153/2014, 2014” [14] where two different facility types
were defined: UPP dedicated to the generation for grid export, and UPAC dedicated for
self-consumption. Some challenges are arising for these facilities considering the Por-
tuguese legal framework. In the UPP, the FIT (export grid tariff) has been experiencing a
downgrade trend, as identified above, resulting in a reduction in profits of electricity ex-
ported to the grid, leading to the consideration of different alternatives to export electricity.
In the UPAC, the surplus electricity of self-consumption is exported to the grid without
costs 0.00 EUR/kWh. Therefore, no payment is received for the exported electricity. In this
case, different options for exporting the surplus electricity should be considered, as well
as Portuguese legislation suggests the use of market facilitators to transact electricity in
wholesale electricity markets.

The participation in wholesale electricity markets is restricted to players with a great
volume to trade, e.g., in the MIBEL electricity market, a minimum value of 1 MW is required
to submit any bid (buy or sell). Solutions like virtual power producers (VPP) [15] represent
small aggregate DGs to achieve the minimum bidding quantity in the Wholesale electricity
markets. Based on the same approach of VPP, the Aggregator entity has emerged with
greater popularization with the association with demand response (DR) actions [16]. The
term VPP was used to represent small generators in wholesale markets, thus enabling
their participation, as it was impossible in isolation. The Aggregator performs the same
functions as the VPP although currently it can perform energy service provider functions,
where in addition to wholesale market participation it can also provide DR services and
also battery system management. Considering the DR capabilities of households, the
Aggregator can manage flexible loads, reducing household energy costs [17].

Participation in the wholesale market via Aggregator is not a new concept [16,18–24]
however they usually only consider one asset. Works [16,21] use the well-known DR asset
to participate in the market. Reference [18] uses heat pumps as an asset for flexibility acqui-
sition to participate in the EPEX market (Netherlands). Electrical vehicles (EV) are used
in [19] by an Aggregator to participate in ancillary services in Quito, Ecuador. Another ap-
plication involving EVs and their aggregation is presented in [22], in this work the flexibility
of EVs to participate in reserve markets is used. In [20], an aggregated model of RES is used
to participate in a real-time market. At industrial level the aggregator can also perform
some services, such as this approach [23] where its services are used to facilitate industrial
demand response. In reference [24], the authors propose a framework for comprehensive
market participation of DER Aggregators. Different kind aggregators are modelled by the
DSO, including energy storage aggregators, dispatchable distributed generation aggrega-
tors, electric vehicle charging stations, and demand response aggregators. The presented
work has the same purpose as this work, but the Aggregator uses the household as a hold
to participate in the wholesale market. On the other hand, the model proposed in this work
does not combine just one asset but a set of them (PV production, energy storage system,
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and flexibility). Another relevant issue of this work is its application in a real setting, like
in [18]. References [25–27] presented the wholesale market’s participation in the Electricity
Iberian Market (Mibel) as also presented in this work. The presented paper compared
with [26,27] describes an innovation, which considers the day-ahead spot market and the
intraday sessions. Ref. [25] uses a non-deterministic resolution to solve the problem, which
can compromise the results and provoke losses for the user. The model proposed in the
current paper solves this problem using a deterministic method that guarantees the optimal
global best result. Aggregators’ activities in the electricity system and electricity markets
have been widely explored, showing positive results in theoretical applications but also
real simulations. The study [28] concludes that more guidance is needed for convergence
on a more harmonized approach.

Considering this study’s aim, the Aggregator represents the market’s facilitator (enun-
ciated by Portuguese legislation), finding the best opportunity to export the surplus elec-
tricity. This paper offers an optimization model to minimize the energy costs of an energy
community, considering the possibility of buying or selling electricity in the wholesale
electricity market via an Aggregator. The model also allows the management of PV-
battery systems to take the most advantages of them. Figure 1 presents a scheme of the
proposed approach.

Figure 1. Proposed approach.

As can be seen in Figure 1 the proposed approach considers an energy community,
a retailer and wholesale electricity market, an Aggregator, and the main grid. Prosumers
constitute the energy community, and each of them can be equipped with PV panels and
storage units. Prosumers can purchase electricity in the retail market and wholesale market,
and also sell its electricity to the main grid and, also in the wholesale market. To participate
in the wholesale market, a minimum quantity of participation is needed, to overcome
this issue, an Aggregator represents the energy community in the wholesale market. The
Aggregator’s business is to buy and sell electricity in the wholesale market, receiving each
prosumer’s fee. As main contributions of this work, the following aspects are highlighted:

• An optimization model that jointly solves the minimization of the operating costs
(energy usage) of an energy community and the optimal participation of an Aggregator
in the Spot market and intraday sessions.

• A real scenario (prices and condition of participation) is modeled considering the
Portuguese retail market and MIBEL wholesale electricity market.
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• A thorough analysis of different case studies, demonstrating interesting insights on
the importance of Aggregator participating in the wholesale electricity market.

• A consumer-centric approach that can bring empowerment of small electricity end-
users in the power systems.

The rest of the paper is organized into five different sections. Section 2 presents
the participation conditions in the MIBEL wholesale market and Portuguese distributed
generation installation options. The mathematical formulation of the model is explained in
Section 3. In Section 4, the case studies and respective characterization are presented. The
achieved results using the proposed model in the case studies are presented in Section 5.
Finally, conclusions and future works are drawn in Section 6.

2. Legal Framework

This section presents the legal framework to participate in the wholesale market
and rules imposed by the Portuguese legislation to install distributed generation in end-
consumers facilities.

2.1. MIBEL Operation

As most wholesale electricity markets in Europe, MIBEL is divided into day-ahead
and intraday sessions. MIBEL also has a particularity for trading electricity in future
markets. The asset (electricity) may not require physical delivery, and the negotiation is
considered for a later date.

Considering the day-ahead spot market, the players should submit their bids until the
gate close (12:00 of day d), after that they cannot modify their bids. Two different types of
bids are available, one from the demand side and the other from the generation side, each
of these types of bids is comprised of a price and energy volume for a specific hour. The
equilibrium between the demand curve and generation curves determines the price and
the volume transacted in each hour of the day ahead spot market. Figure 2 presents the
negotiation options in the MIBEL market. The day-ahead spot market is available for 24 h.
The MIBEL market option in intraday has six different sessions, represented in Figure 2.

Figure 2. Negotiation options in the MIBEL market.

The intraday sessions have the same day-ahead operation mode, but the bids process
submissions have different times. In the six different sessions, presented in the Figure 2,
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the agents can adjust their generation and consumption schedules to adapt to the new
forecasts or unpredicted events.

The MIBEL wholesale market contains two different operators, the OMIE and OMIP.
OMIE represents the market operator for the management of day-ahead and intraday
electricity markets of the Iberian Peninsula. OMIP corresponds to the market operator for
the derivatives exchange energy market, namely, futures, forwards, swap and options. The
stock associated with these contracts is electricity and natural gas. In the MIBEL market,
only physical agents located in Portugal and Spain can participate. Due to the physical
restrictions of interconnection between the two countries, there may be a separation from
the wholesale market, and each country can have a different electricity price.

2.2. Distributed Generation in Portugal

According to the Decreto-Lei n.º153/2014, 2014 [14] (Portuguese regulation) there are
two types of distributed generation in consumers facilities the UPP (Portuguese acronym
for units of small generation) and UPAC (Portuguese acronym for units of small generation
for self-consumption). UPP facilities are dedicated to electricity generation from renewable
sources using only one generation technology, where the connection to the main grid is
equal to or less than 250 kW. All the electricity generated must be sold in full to the main
grid, but must be equal to or less than 50% of the consumer’s electricity consumption.
Figure 3 presents typical UPP connection schemes.

Figure 3. UPP schemes, (a) Two unidirectional meters, and (b) One unidirectional and one bidirectional meter.

Figure 3a meters only accepted unidirectional power flows, the production has a
meter, and the consumption has another. Figure 3b has two meters, but one of them is
only for production, the other is bidirectional and allows the power flow in both directions.
Three different categories of UPP are available. Category I consists of producers that
install a small generation unit, category II comprises producers with a small generation
unit and an electric vehicle charging station, and category III represents producers with
a small generation unit and solar thermal accumulator. Portaria n.º 80/2020 [10] defines
45 EUR/MW (0.045 EUR/kW) as the reference tariff that corresponds to the payment that
producers receive from each unit of electricity exported to the grid.

UPAC is defined as being electricity generation facilities from renewable and non-
renewable sources used primarily for self-consumption, with the possibility of connection to
the grid for sale. The surplus energy from self-consumption can be traded in the wholesale
market with the help of an Aggregator. Figure 4 presents typical UPAC connection schemes.

In Figure 4a there are two different meters, and the generation power installed is
greater than 1.5 kW. When the generation power installed is equal to or less than 1.5 kW
the facility only needs a single meter as seen in Figure 4b where there is no possibility of
exporting electricity to the grid.
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Figure 4. UPAC schemes, (a) One unidirectional meter, and (b) One unidirectional meter and one bidirectional meter.

3. Proposed Model
3.1. Model Overview

The proposed model considers an energy community that intends to minimize the
costs of electricity usage, and able community members to buy and sell electricity in
different markets. The model considers the Aggregator operation, which is responsible
for representing the energy community in the wholesale market (day-ahead and intraday
sessions) and also for determining the best scheduling the usage of the battery storage
system installed in each household. The retail market is used by households as a backup
where they can purchase electricity when needed, or when wholesale market participation
is not advantageous. The public network is responsible for absorbing the feed-in electricity
provided by each household when the Aggregator cannot sell in the wholesale market.

The considered wholesale market refers to the MIBEL operator which is divided
into day-ahead and 6 intraday sessions. The Aggregator is responsible for complying
with the rules imposed for participation in the wholesale market. The presented model
considers that a minimum value of electricity is required to participle in the wholesale
market, according to MIBEL participation rules. For the energy community in the study, the
minimum can be reduced. The Aggregator has other methods to obtain more electricity for
participation when it is required. The rule imposed by the market operator regarding the
participation in intraday sessions is only valid if the participation in the wholesale market,
is not considered in this model, however, the Aggregator has to comply with this rule.

3.2. Formulation

Equation (1) presents the objective function of the problem. The objective function
minimizes the sum of the total operating costs of all energy community members.

minimize ob f = SMcosts + IDScosts + Rcosts + AGGincome (1)

where, SMcosts represents the spot market costs, IDScosts represents the intraday sessions
costs, Rcosts represents the retailer’s costs and AGGincome represents Aggregator income.
Equation (2) presents the calculation of the cost for the spot market.

SMcosts =
Ni

∑
i=1

Nt

∑
t=1

((
pSM buy

i,t − pSM sell
i,t

)
× πSM

i,t

)
(2)

where, pSM buy
i,t represents the electricity purchased in the spot market, pSM sell

i,t represents
the electricity sold in the spot market, πSM

i,t corresponds to the price of electricity in the
spot market, i is the respective player, t the respective period, Ni the numbers of players,
and Nt the numbers of periods. Only one option of sell or buy can be applied at the same
time. Equation (3) presents the calculation of the costs in intraday sessions.

IDScosts =
Ni

∑
i=1

Nt

∑
t=1

Ns

∑
s=1

((
pIDS buy

i,t,s − pISD sell
i,t,s

)
× π IDS

i,t,s

)
(3)
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where, pIDS buy
i,t,s represents the electricity purchased in intraday sessions, pISD sell

i,t,s represents
the electricity sold in the intraday session, π IDS

i,t,s corresponds to the price of electricity in
intraday session, s is the respective session and Ns represents the number of intraday
sessions. Equation (4) presents the costs in the retailer market.

Rcosts =
Ni

∑
i=1

Nt

∑
t=1

(
pR buy

i,t × πTOU
i,t − pGrid sell

i,t × πFIT
i,t

)
+ FixedCostsi (4)

where, pR buy
i,t represents the electricity purchased in the retail market, πTOU

i,t is the price of
purchased electricity denominated as time of use tariff, pGrid sell

i,t represents the electricity
sells in the grid, πFIT

i,t is the price of selling electricity to the grid denominated the feed-in
tariff and FixedCostsi represents the fixed costs that users should pay to retailers for the
supply guarantees. Equation (5) presents the Aggregator income calculation.

AGGincome =
Ni

∑
i=1

Nt

∑
t=1

(
pSM buy

i,t + pSM sell
i,t + pIDS buy

i,t,s + pISD sell
i,t,s

)
× FeeAGG (5)

where, FeeAGG represents the fee in EUR per Kilowatt that the Aggregator charges for
the aggregated user participation in the spot market and intraday sessions. Equation (6)
presents the balanced equation for each user.

pgen
i,t + pdch

i,t + pSM buy
i,t +

Ns
∑

s=1
pIDS buy

i,t,s + pR buy
i,t =

pload
i,t + pch

i,t + pSM sell
i,t +

Ns
∑

s=1
pIDS sell

i,t,s + pGrid sell
i,t ,

∀i ∈ Ni, ∀t ∈ Nt

(6)

where, pgen
i,t represents the electricity generated, pdch

i,t represents the electricity discharged
from the battery, pload

i,t represents the load of each end-user, and pch
i,t is the electricity that

charges the battery. Equations (7)–(9) represent the constraints applied to the spot market
for each user.

pSM buy
i,t ≤ xSM buy

i,t × pSM max buy
i,t , ∀i ∈ Ni, ∀t ∈ Nt (7)

pSM sell
i,t ≤ xSM sell

i,t × pSM max sell
i,t , ∀i ∈ Ni, ∀t ∈ Nt (8)

xSM buy
i,t + xSM sell

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (9)

where, xSM buy
i,t represents a binary variable for the individual spot market buy action,

pSM max buy
i,t represent the maximum individual limit for each user to buy electricity in the

spot market, xSM sell
i,t represents a binary variable for the individual spot market sell action

and pSM max sell
i,t represents the maximum individual limit for each user sell electricity in the

spot market. Equation (9) imposes that it is only possible to buy or sell in the spot market.
Equations (10) and (11) represent global constraints for participation in the spot market.

LSM buy ≤
Ni

∑
i=1

pSM buy
i,t × XSM buy

t + LSM buy ×
(

1− XSM buy
t

)
, ∀t ∈ Nt (10)

LSM sell ≤
Ni

∑
i=1

pSM sell
i,t × XSM sell

t + LSM sell ×
(

1− XSM sell
t

)
, ∀t ∈ Nt (11)

where, LSM buy represents the minimum amount of electricity necessary to purchase elec-
tricity in the spot market, XSM buy

t represents the global binary variable to participate in
the spot market, LSM sell represents the minimum amount of electricity necessary to sell
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electricity in the spot market and XSM sell
t represents the global binary variable to partic-

ipate in the spot market. Equations (10) and (11) allows that when each binary variable
XSM buy

t and XSM sell
t is active, the minimum amount should be respected. In the other case,

the constraint is also satisfied. Equations (12)–(14) represent the constraints applied to the
intraday sessions for each user.

pIDS buy
i,t,s ≤ xIDS buy

i,t,s × pIDS max buy
i,t,s × AIDS

t,s , ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (12)

pIDS sell
i,t,s ≤ xIDS sell

i,t,s × pIDS max sell
i,t,s × AIDS

t,s , ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (13)

xIDS buy
i,t,s + xIDS sell

i,t,s ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (14)

where, xIDS buy
i,t,s represent the binary variable for the individual intraday session buy

action, pIDS max buy
i,t,s represents the maximum electricity amount limit to buy in intraday

sessions, AIDS
t,s is an input binary parameter that indicates the availability of each intraday

session, xIDS sell
i,t,s represent the binary variable for the individual intraday session sell

action and pIDS max sell
i,t,s represents the maximum electricity amount limit to sell in intraday

sessions. Equation (14) imposes that it is only possible to buy or sell in the intraday session.
Equations (15)–(18) represent global constraints for participation in intraday sessions.

LIDS buy
s ≤

Ni

∑
i=1

pIDS buy
i,t,s × X IDS buy

t,s + LIDS buy
s ×

(
1− X IDS buy

t,s

)
, ∀t ∈ Nt, ∀s ∈ Ns (15)

LIDS sell
s ≤

Ni

∑
i=1

pIDS sell
i,t,s × X IDS sell

t,s + LIDS sell
s ×

(
1− X IDS sell

t,s

)
, ∀t ∈ Nt, ∀s ∈ Ns (16)

Ns

∑
s=1

X IDS buy
t,s ≤ 1, ∀t ∈ Nt (17)

Ns

∑
s=1

X IDS sell
t,s ≤ 1, ∀t ∈ Nt (18)

where, LIDS buy
s represents the minimum amount of electricity needed to purchase elec-

tricity in intraday sessions, X IDS buy
t,s represents the global binary variable to participate

in the intraday session to purchase electricity, LIDS sell
s represents the minimum amount

of electricity necessary to sell in intraday sessions, X IDS sell
t,s represents the global binary

variable to participate to sell in the intraday session. Equations (15) and (16) performs the
same process of Equations (10) and (11). Equations (17) and (18) allow the sale or purchase
of electricity in one of the intraday sessions. Equations (19)–(21) represent the constraints
applied to the retail market for each user.

pR buy
i,t ≤ xR buy

i,t × pR max buy
i,t , ∀i ∈ Ni, ∀t ∈ Nt (19)

pGird sell
i,t ≤ xGrid sell

i,t × pGrid max sell
i,t , ∀i ∈ Ni, ∀t ∈ Nt (20)

xR buy
i,t + xGrid sell

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (21)

where, xR buy
i,t represents the individual variable for the retailer by action, pR max buy

i,t rep-
resents the maximum limit to purchase electricity from a retailer, xGrid sell

i,t represents the
individual variable to sell electricity in the grid, pGrid max sell

i,t represents the maximum
quantity to sell electricity in the grid. Equation (21) imposes that it is only possible to buy
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in the retail market or sell to the grid. Equation (22) represents the constraints applied to
buying and selling electricity in different markets in the same period.

xSM buy
i,t +

Ns

∑
s=1

xIDS sell
i,t,s ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (22)

xSM buy
i,t + xGrid sell

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (23)

Ns

∑
s=1

xIDS buy
i,t,s + xGrid sell

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (24)

Ns

∑
s=1

xIDS buy
i,t,s + xSM sell

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (25)

xR buy
i,t +

Ns

∑
s=1

xIDS sell
i,t,s ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (26)

xR buy
i,t + xSM sell

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (27)

Equation (28) represents the energy storage system balance.

pBat
i,t = pBat

i,t−1 + pch
i,t × ηch

i − pdch
i,t ×

1
ηdch

i
, ∀i ∈ Ni, ∀t ∈ Nt (28)

where, pBat
i,t represents the status of the battery, ηch

i represents the efficiency of a charge
action, and ηdch

i represents the efficiency of the discharge action. Equations (29)–(31) present
constraints applied to the battery charge and discharge actions.

pch
i,t ≤ pch max

i,t × xch
i,t , ∀i ∈ Ni, ∀t ∈ Nt (29)

pdch
i,t ≤ pdch max

i,t × xdch
i,t , ∀i ∈ Ni, ∀t ∈ Nt (30)

xch
i,t + xdch

i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (31)

where, pch max
i,t represents the maximum value for charge action, xch

i,t represents the binary
variable for the charge action, pdch max

i,t represents the maximum value for the discharge
action and xdch

i,t represents the binary variable for the discharge action. Equation (31)
presents the constraints applied to control the charge and discharge of the batteries in
the same period, Equations (32)–(40) present the limits for the continuous variables of
the problem.

0 ≤ pSM buy
i,t ≤ pSM max buy

i,t , ∀i ∈ Ni, ∀t ∈ Nt (32)

0 ≤ pSM sell
i,t ≤ pSM max sell

i,t , ∀i ∈ Ni, ∀t ∈ Nt (33)

0 ≤ pIDS buy
i,t,s ≤ pIDS max buy

i,t,s , ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (34)

0 ≤ pIDS sell
i,t,s ≤ pIDS max sell

i,t,s , ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (35)

0 ≤ pR buy
i,t ≤ pR max buy

i,t , ∀i ∈ Ni, ∀t ∈ Nt (36)

0 ≤ pGrid sell
i,t ≤ pGrid max sell

i,t , ∀i ∈ Ni, ∀t ∈ Nt (37)

0 ≤ pdch
i,t ≤ pdch max

i,t , ∀i ∈ Ni, ∀t ∈ Nt (38)

0 ≤ pch
i,t ≤ pch max

i,t , ∀i ∈ Ni, ∀t ∈ Nt (39)

pBat min
i,t ≤ pBat

i,t ≤ pBat max
i,t , ∀i ∈ Ni, ∀t ∈ Nt (40)
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where, pBat min
i,t represents the minimum possible limit for the battery level and pBat max

i,t
represents the maximum possible limit for the battery level. Equations (41)–(52) represent
the minimum and maximum limit for the binary variables.

0 ≤ xSM buy
i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (41)

0 ≤ xSM sell
i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (42)

0 ≤ XSM buy
t ≤ 1, ∀t ∈ Nt (43)

0 ≤ XSM sell
t ≤ 1, ∀t ∈ Nt (44)

0 ≤ xIDS buy
i,t,s ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (45)

0 ≤ xIDS sell
i,t,s ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt, ∀s ∈ Ns (46)

0 ≤ X IDS buy
t,s ≤ 1, ∀t ∈ Nt, ∀s ∈ Ns (47)

0 ≤ X IDS sell
t,s ≤ 1, ∀t ∈ Nt, ∀s ∈ Ns (48)

0 ≤ xR buy
i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (49)

0 ≤ xGrid sell
i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (50)

0 ≤ xch
i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (51)

0 ≤ xdch
i,t ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (52)

4. Case Study

Three different case studies are created to evaluate the application of the proposed
model. The objective is to compare the market participation results of prosumers when
considering an all-encompassing approach (case study 1 (CS1)) that includes the market
opportunities for an installation without considering the rules imposed to both UPP and
UPAC, the UPP—case study 2 (CS2)) and UPAC—case study 3 (CS3), according to the
Portuguese regulation; and. Table 1 presents an overview of the considered case studies.

Table 1. Case study conditions overview.

CS 1
CS 2 CS 3

UPP UPAC

Scenario 1

Buy Retailer Yes Yes Yes

Sell RESP * Yes All No

Self-consumption Yes No Yes

Scenario 2

Buy
Retailer Yes Yes Yes

MIBEL via AGG
Spot Yes Yes Yes

Intra-Day Yes Yes Yes

Sell
RESP * Yes Yes No

MIBEL via AGG
Spot Yes No Yes

Intra-Day Yes No Yes

Self-consumption Yes No Yes
* public electricity network.

As seen in Table 1 the case studies are CS1, CS2, and CS3, in all case study two different
scenarios are implemented, one considering the normal operation without the possibility
of trading electricity in the wholesale market (basis approach), and one considering the
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use of an Aggregator to trade electricity in the wholesale market (proposed approach).
The UPP and UPAC case studies comply with the Portuguese legislation in both scenarios
(basis and proposed approach). Thereby, in total, six different scenarios are simulated.

The all-encompassing case (CS1) considers the formulation presented in Section 3.2,
in which there are no restrictions related to UPP or UPAC for trading electricity. The
specificities of UPP (CS2) and UPAC (CS3) conditions require some modifications in the
formulation, as follows.

In CS2, the UPP conditions explained in Section 2.2 are simulated. To model the UPP
conditions, Equation (6) must be modified. Equations (53) and (54) replace Equation (6).

pdch
i,t + pSM buy

i,t +
Ns

∑
s=1

pIDS buy
i,t,s + pR buy

i,t = pload
i,t + pch

i,t , ∀i ∈ Ni, ∀t ∈ Nt (53)

Equation (53) is very similar to Equation (6), but as UPP must inject into the grid all
generated electricity the power generated pgen

i,t and pGrid sell
i,t don’t take part of the energy

balance. Equation (54) imposes the condition that all electricity generated should be injected
into the grid.

pgen
i,t = pGrid sell

i,t , ∀i ∈ Ni, ∀t ∈ Nt (54)

In the case of UPAC (CS3) the electricity should be used for self-consumption or can
be sold in a wholesale market considering an aggregated entity. Equation (55) replaces
Equation (6) of the generic formulation.

pgen
i,t + pdch

i,t + pSM buy
i,t +

Ns
∑

s=1
pIDS buy

i,t,s + pR buy
i,t =

pload
i,t + pch

i,t + pSM sell
i,t +

Ns
∑

s=1
pIDS sell

i,t,s , ∀i ∈ Ni, ∀t ∈ Nt
(55)

Equation (55) represents the energy balance for a UPAC facility where the pGrid sell
i,t

variable withdrawn, and the electricity sales are only allowed in the spot market or intra-
day sessions.

An energy community with 50 prosumers is considered in the case study. It is impor-
tant to note that the minimum amount required to participate in the MIBEL market has
been reduced to 200 kW, as the legally required amount of 1000 kW (1 MW) would be im-
possible to obtain with the 50 prosumers. Figure 5 presents the accumulated consumption
and generation of total energy community members, the values are randomly generated
using the database used in [29].

Figure 5. Consumption and generation profile of the energy community.
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The total consumption for the referred periods is 2145.59 kWh per day, which corre-
sponds to an average of 89 kWh per hour. The energy community has installed 261 kWp
of PV generations and is generated 1556.59 kWh per day in the 24 periods, an average
of 64 kWh per hour. It was verified two different peaks of consumption, in the morn-
ing (09:00 h) and the afternoon (17:00 h). Figure 6 presents the electricity prices used in
the simulations.

Figure 6. Electricity prices, (a) retail market, and (b) wholesale market.

Figure 6a presents the retailer’s electricity price provided by the EDP retailer and
the export grid price considering the Portuguese legislation. A bi-horary tariff with two
different periods and days is used, the period off-peak (23.00 to 08.00) and peak (09.00 to
22.00). Figure 6b presents the wholesale market price for the spot market and in the six
intraday sessions, corresponding to real prices of September 01 of 2020 obtained with online
access to the OMIE website [30]. In the wholesale market, the price has high variability.
Figure 7 presents contracted power and battery characteristics used by the prosumers.

Figure 7a presents the contracted power limits for the community member, the con-
tracted power limits are established by the retailer and selected by the consumers. The
community members use five different contracting powers. Export power limits corre-
spond to the limit available to inject electricity into the grid. This limit also available in
Figure 7a is imposed by Portuguese legislation [10] and corresponds to half of the con-
tracted power. Figure 7b presents the batteries’ characteristics and represents the battery
capacity and charge/discharge capacity. Five different batteries are used in the case study
and were randomly distributed among community members, the efficiency of charge and
discharge actions is considered 90%.
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Figure 7. Prosumers characteristics, (a) Contracted power limits and (b) batteries characteristics.

5. Results

This section presented the results of the proposed methodology. The simulations were
carried out on a computer with an Intel Xeon(R) E5-2620v2@2.1 GHz processor with 16 GB
of RAM running Windows 10. To implement the optimization problem, a MATLAB2018a
with TOMLAB optimization toolbox is used. CPLEX is the solver used to optimize the
problem. Six different variants are constructed considering the possibility of transacting
electricity in the wholesale market via Aggregator. A list of variants is presented below:

• Scen1-CS1—All-encompassing, without the possibility of transacting electricity in the
wholesale market.

• Scen1-CS2—UPP without the possibility of transacting electricity in the wholesale market.
• Scen1-CS3—UPAC without the possibility of transacting electricity in the whole-

sale market.
• Scen2-CS1—All-encompassing, with the possibility of transacting electricity in the

wholesale market.
• Scen2-CS2—UPP with the possibility of transacting electricity in the wholesale market.
• Scen2-CS3—UPAC with the possibility of transacting electricity in the wholesale market.
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In variants Scen1-CS1, CS2 and CS3, the Aggregator only does the management of
the battery systems. Scen1-CS1, CS2, and CS3 the Aggregator can transact electricity in
the wholesale market, buying electricity to supply the needs of the energy community
or selling surplus electricity. In all scenarios, the FIT (export grid price) is established
at 0.045 EUR/kWh, according to the Portuguese legislation [10]. Table 2 presents the
comparison of the results of operation costs, considering the scenarios defined previously.

Table 2. Optimization Results.

Variants Type Wholesale Market Total Costs (EUR) Average Costs (EUR) Time (s)

Scen1
CS1 All-encompassing No 117.41 2.15 2.34

CS2 UPP No 278.48 5.57 1.93

CS3 UPAC No 130.50 2.61 2.18

Scen2
CS1 All-encompassing Yes 104.66 2.09 225.19

CS2 UPP Yes 262.80 5.26 10.68

CS3 UPAC Yes 117.76 2.36 583.23

Table 2 presents all results for the six scenarios implemented, the scenario of the group
presents the scenario where the possibility of transacting electricity in the wholesale market
is unavailable. In variants of Scen2, the possibility of transacting electricity in the wholesale
market is available. Scen1-CS1 presents a reduction of 58% and 10% compared with Scen1-
CS2 and Scen1-CS3, respectively. Scen1-CS3, where the facility uses the generation only
for self-supply, presents a reduction of 53% in total costs when compared with Scen1-CS2.
Considering scenario 2 (wholesale transactions available) the same tendency of scenario 1
is verified, the best variant is Scen2-CS1, the following is Scen2-CS3, and in last Scen2-CS2.
A reduction of 60% (compared with Scen2-CS2) and 10% (compared with Scen2-CS2) is
verified for Scen2-CS3. A reduction of 55% is verified for Scen2-CS3 when compared to
In Scen2-CS2 (UPP). Comparing the results between the variants of the two scenarios,
Scen2-CS1 presents a reduction of 11% compared with Scen1-CS1. Scen2-CS2 compared
with Scen1-CS2 presents a reduction of 6% in total costs, and Scen2-CS3 with Scen1-CS3
obtain a 10% reduction in total costs. As can be seen by the comparison showed above, the
scenarios where the wholesale transactions are available present reductions between 6%
and 11% compared with the same scenarios but without wholesale market transactions.
In the variants considered, Scen2-CS2 presents the best results, and Scen1-CS2 the worst
result for total costs. Attending to the optimization time, it can be seen a great increment
in variants of scenario 2, which is explained by the fact that the optimization problem
incorporates more variables due to the wholesale market transactions. Figure 8 presents
the costs and revenues in each different variant.

As can be seen in Figure 8, the costs are the positive values, and the revenues are
negative. For Scen1-CS1, Scen1-CS2, and Scen1-CS3 the costs or revenues associated with
the wholesale market do not exist. Scen1-CS2 presents higher costs for buying electricity
in retailer market and presents a higher revenue to sell electricity in the grid. Scen1-CS3
doesn’t present revenues for the sale of electricity on-grid because the type of facility
(UPAC) does not allow it. The revenues and costs of wholesale transactions only appeared
in Scen2-CS1, Scen2-CS2, and Scen2-CS3. UPP facility (Scen1-CS2 and Scen2-CS2) is buying
a great amount of electricity in a retailer compared to the other variants. The fixed costs are
always the same in all scenarios defined. The sales revenues in the wholesale market are
not presented, because no electricity is sold (minimum limit required not reached). Figure 9
presents the electricity transactions in each period considering Scen1-CS1, Scen1-CS2, and
Scen1-CS3, where the wholesale transaction is not available.
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Figure 8. Energy costs comparison for all scenarios.

Figure 9. Electricity transactions without wholesale participation, (a) Scen1-CS1, (b) Scen1-CS2, and (c) Scen1-CS3.
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Figure 9b,c have presented the free sales to the grid as the sale of electricity on the
grid is limited to half the contracted power and at certain periods the excess electricity
cannot be stored in the batteries and must be injected into the network but at zero cost.
Only in scenarios covered by Portuguese legislation do free sales to the grid. Scen1-CS2
presents 122.53 kW, and Scen1-CS3 has 270.03 kW. It can also be seen that free sales occur
in the periods that photovoltaic generation exists. Scen1-CS2 shows almost twice as much
electricity bought at the retail market as the electricity produced which is obligatorily all
injected into the grid. Figure 10 presents the electricity trading in each period for Scen2-CS1,
Scen2-CS2, and Scen3-CS3, where the wholesale transaction is available.

Figure 10. Electricity transactions with wholesale participation, (a) Scen2-CS1, (b) Scen-CS2, and (c) Scen2-CS3.

In all of the representations of Figure 10, it is presented the purchases made from the
wholesale market. Considering Scen2-CS1, the purchases from retailers decrease 83% when
compared with Scen1-CS1. Scen2-CS2 the purchases on the retail market also decrease by
37% compared with Scen1-CS2. Comparing the buy-in retailer market of Scen1-CS3 with
Scen2-CS3, the decrease is about 83%, in the same scenarios but comparing the free sales
on the grid in Scen2-CS3 we have a decrease of 17%. Scen2-CS1 and Scen2-CS3 present
the same value for electricity purchases from the wholesale market, however, Scen2-CS2
presents a small value (minus 5%). Figure 11 presents the accumulated state of the battery
for all variants tested.
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Figure 11. Accumulated state of the battery, (a) without wholesale participation and (b) with wholesale participation.

In Scen1-CS2 at 8:00, the community members have the batteries at the maximum level
of capacity, the same happens in Scen2-CS2 for periods 5:00 to 8:00. The identified scenarios
are both UPP facilities. Figure 11b presents the state of the batteries but considering
the possibility of the wholesale transaction and in the case of Scen2-CS2 the full state
of batteries is obtained when the purchases in the wholesale market occur (Figure 11b).
Considering the comparison of Scen2-CS1 and Scen2-CS2 Scen1-CS1 and Scen1-CS3, the
state of battery increases when wholesale market purchases occur. Table 3 the portfolio of
electricity transactions in all scenarios tested.

Table 3. Portfolio of Electricity transactions in different markets for the energy community.

Accumulated Transactions (kWh)
Variants

Scen1-CS1 Scen1-CS2 Scen1-CS3 Scen2-CS1 Scen2-CS2 Scen2-CS3

Buys from retailer 1020.83 2270.57 1020.83 170.24 1429.44 170.24

Sales to grid 291.14 1434.06 - 291.14 1434.06 -

Free sales to the grid 0 122.53 270.05 0 122.53 223.43

Buys from
wholesale

Spot - _- - 0 0 0

Intraday sessions - - - 881.43 841.13 881.43

Sales to
wholesale

Spot - - - 0 0 0

Intraday sessions - - - 0 0 0

The transaction’s portfolio in Scen1-CS1, Scen1-CS2, and Scen1-CS3 are divided into
purchases from the retail market and sales to the grid. In Scen2-CS1, Scen2-CS2, and
Scen2-CS3 the portfolio of transaction increases considering the wholesale availability.
Considering the wholesale transactions, there are the spot market and the intraday sessions,
considering the results only traded in intraday sessions. The sales in the wholesale market
are not used due to the minimum amount not reached. Figure 12 presents the electricity
transacted in different options of the wholesale market.

With Figure 12 it is possible to identify the intraday sessions where the electricity
transactions are made. Scen2-CS1 uses intraday session 1 and session 2 to buy electricity in
the wholesale market, the same happens for Scen2-CS3. Considering Scen2-CS2, only on
intraday session 2 it is used to buy electricity from the wholesale market. The representation
of wholesale market sales is not presented as it is not registered.
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6. Conclusions

The participation of household prosumers in the wholesale market is limited to the
minimum amount transacted, approaches using aggregators have been used to overcome
this particularity. Using energy management systems, aggregators can focus on the ideal
periods for buying and selling electricity in the wholesale market, taking advantage of
the price differences observed over time. The case study presented where the possible
scenarios used by Portuguese households (UPP and UPAC) are used, and it is possible to
demonstrate that the best option is UPAC, where self-consumption is prioritized. Compar-
ing the UPP and UPAC scenarios where there is the possibility of transacting electricity
in wholesale markets, there is a 55% reduction in operating costs when opting for UPAC,
considering the proposed methodology. By using managing the batteries and market
opportunities appropriately, the prosumers can reduce the consumption costs significantly.
In view of the proposed methodology using the Aggregator to transact electricity in the
wholesale market, there is a reduction in the total operating costs of the community. The
all-encompassing scenario is the one that presents the best results considering or not the
participation in the wholesale market, demonstrating that, despite not being legally pos-
sible in Portugal, the prosumers participation in the wholesale market via Aggregators
brings significant advantages for the whole energy community. As future work, we intend
to increase the community’s resources by increasing the number of prosumers to obtain
greater participation in the wholesale market. It is also intended to carry out a robust
optimization to study the influence of the price variability of the wholesale market.
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Resumen 

La necesidad de la participación del usuario final en los sistemas de energía se ha 
convertido en una realidad en los últimos tiempos. Una de las soluciones a este 
compromiso es la creación de mercados energéticos locales. Los operadores de 
sistemas de distribución se ven obligados a investigar y optimizar su costo de 
inversión de activos en el refuerzo de las redes mediante la introducción de 
funcionalidades de redes inteligentes para evitar inversiones. La gestión de la 
congestión es una de las estrategias más prometedoras para hacer frente a los 
problemas de la red. Este artículo presenta un mercado eléctrico local o 
negociación de flexibilidad como una estrategia para ayudar al operador del 
sistema de distribución en la gestión de la congestión. El mercado local se realiza 
considerando un modelo de actuación asimétrico y es coordinado por un 
agregador. Se presenta un caso de estudio considerando una simulación que 
utiliza una red de baja tensión con 17 buses, que incluye 9 consumidores y 3 
prosumidores, todos usuarios domésticos. Los resultados muestran que, 
utilizando el modelo de mercado propuesto, se evita la congestión de la red 
aprovechando la flexibilidad comercial de los consumidores.  
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Resumen 

La flexibilidad de la demanda se puede utilizar para proporcionar servicios que 
respalden el control y la operación del sistema de energía. Esto incluye los 
servicios auxiliares con o sin frecuencia. Este artículo propone un mecanismo 
innovador para la provisión de servicios auxiliares de no frecuencia por parte de 
consumidores conectados a redes de baja tensión. El método propuesto para la 
negociación de AS permite a los consumidores establecer el precio y la cantidad 
a negociar, considerando un mercado local asimétrico basado en un pool. Este 
mecanismo de negociación está diseñado de acuerdo con el reciente marco 
regulatorio de la Unión Europea, que promueve la participación activa de los 
consumidores. Se utiliza un estudio de caso con 98 consumidores para ilustrar el 
enfoque de adquisición de servicios auxiliares que no son de frecuencia basado 
en el mercado propuesto. Se implementaron y evaluaron tres estrategias 
diferentes de participación de los consumidores en una red real de baja tensión 
con topología radial. Los consumidores obtienen ganancias por la venta de su 
flexibilidad, contribuyendo a la reducción de pérdidas ya mantener el voltaje y 
la corriente dentro de límites predefinidos. 
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Abstract—This paper proposes a novel mechanism for the 

provision of non-frequency ancillary services (AS) by consumers 
connected to low-voltage distribution networks. The proposed 
method considers an asymmetric pool-based local market for AS 
negotiation, allowing consumers to set the flexibility quantity and 
desired price to trade. A case study with 98 consumers is used to 
illustrate the proposed market-based non-frequency AS provision 
approach. Also, three different strategies of consumers’ 
participation were implemented and tested in a real low voltage 
network with radial topology. It is shown that consumers can 
make a profit from the sale of their flexibility while contributing 
to keeping the network power losses, voltage, and current within 
pre-defined limits. Ultimately, the results demonstrate the value of 
AS coming directly from end-users. 
 

Index Terms— Demand Flexibility, Local Electricity Markets, 
Ancillary Services. 
 

I. INTRODUCTION 
OWADAYS, the renewable energy sources (RES) connected 
to the distribution network are changing the system 

operation towards a decentralized and market-based paradigm. 
At the same time, the stochastic nature of RES production, 
which is often higher in periods of low consumption, is 
increasing the reserve requirements of power and energy 
systems, usually guaranteed by ancillary services (AS) 
provision. This situation results in new opportunities for the 
implementation of flexibility services, for instance, those 
related to the trading of available energy into local electricity 
markets (LEM) [1], [2]. 
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for the operation of transmission and distribution systems, 
including frequency (frequency regulation) and non-frequency 
(e.g., voltage control, black start capabilities and reactive power 
compensation) services. Furthermore, the definition of AS has 
been moving forward, also including balancing [3] and 
congestion management [4] services. In other words, AS can be 
defined as services that support network operators to keep the 
electric power system into levels that guarantee a secure 
operation mode. 

Several initiatives are currently searching for innovative 
means of exploiting the flexibility of end-users, focusing on the 
development of full-scale demonstrators that take advantage of 
smart grid technologies [5], [6] and the flexibility of consumers 
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AS considering demand response (DR) providers and 
independent aggregators, in a non-discriminatory way; and (3) 
The 2030 framework for climate and energy policies from the 
EC [12] targeting a reduction of 40% of greenhouse gases and 
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a 27% increase of shared RES efficiency by 2030. Also, the 
large penetration of IoT devices in the electrical system 
provides network operators with a more suitable perception of 
the resources available in the network. While several AS are 
currently adopted at the transmission level for an effective 
operation of the system [13], market approaches at the 
distribution level are rather limited, usually leading to unfair 
contracting conditions for the end-users. 

Thus, new market approaches need to be developed to make 
possible a competitive and fair acquisition of flexibility 
resources at the distribution level. In this work, we propose a 
local non-frequency AS market mechanism to support network 
operators (i.e., DSOs), keeping bus voltages and line currents 
within acceptable levels for the proper grid operation. We 
assume that the DSO (as the network operator of a distribution 
grid) procures non-frequency AS from consumers. An 
aggregator acting as a local market operator is still in place, but 
consumers can actively participate in the market putting 
flexibility offers according to their own interests. To this end, 
an asymmetric pool auction model is used for non-frequency 
AS negotiation considering consumers' flexibility offers. The 
article also explores different market participation strategies of 
consumers in the newly defined AS marketplace. The main 
contributions of this article are as follows: 
• A non-frequency AS marketplace for small consumers and 

prosumers where they can actively participate offering 
their flexibility. The aggregator plays the role of the market 
operator, gathering the flexibility offers without the 
limitations of the amount offered; 

• A mechanism directed to the DSO aiming at keeping 
voltage and current grid limits within acceptable levels of 
operation using AS and a market-based approach; 

• Definition of three innovative market participation 
strategies for consumers and prosumers in the AS market; 

• Validation of the non-frequency AS market through 
simulation considering network constraints and a case 
study with 96 end-users (consumers and prosumers) 
connected to a low voltage distribution network. 

The article is organized into six sections as follows: After the 
introduction in Section 1, Section 2 presents a literature review 
of related work. Section 3 presents the proposed methodology 
and the mathematical formulation. Section 4 provides the 
details of the case study used in this work. Section 5 presents 
the main results and discussion of the findings. Finally, Section 
6 draws the main conclusions of the work. 

II. BACKGROUND AND LITERATURE REVIEW 
In traditional and vertically integrated power systems, large-

size central power plants generally provide the AS necessary to 
maintain the power system security and stability. Network 
operators should have AS reserves for providing additional 
generation to meet the demand during contingencies. The rapid 
growth of distributed generation (DG) with intermittent 
characteristics brings new challenges to such operation model. 
Therefore, this section presents an overview of different AS 
acquisition methods at the distribution level.  

As pointed in [14], the term distributed AS refers to AS 
delivered by local resources in a distributed way. Thus, the 
imbalance between generation and demand can be mitigated at 

the distribution level (i.e., the distribution network) with 
distributed AS. This prevents the spread of issues to upstream 
power networks, ensuring the system's control and stability 
[15]. 

The AS acquisition option considering the aggregator as a 
market operator and not in a central role is also in line with the 
motivations behind this work. Since the DSO procures AS from 
users connected to the distribution network, it is assumed that 
those end-users are equipped with the required technologies to 
execute demand-side management [16], [17]. DSO can use the 
AS for its own purpose and with different objectives. For 
instance, [18] considers the use of AS by the DSO for the 
control and operation of a micro-network. In [19], ASs are used 
from the supply side combining wind/battery power plant 
operation. Unlike the above works, we propose the use of 
demand-side as the main provider of AS. This attribute is in line 
with the future research directions of AS acquisitions and it is 
an initiative that empowers end-users.  

Also, the resources used for AS participation vary depending 
on the context and applications. For instance, buildings 
participation in AS markets is proposed in [20], using the AS to 
reduce the overall energy building costs. The use of heating and 
ventilation air conditioning (HVAC) system as flexibility 
resource is explored in [21]–[23]. AS provision by storage 
systems is proposed in [14], [24]–[26] while the utilization of 
electric vehicles (EV) for supporting network operation is 
proposed in [25]. The works [26], [27] also considers EV for 
AS provision, but including battery degradation cost and 
estimating the safe amount of power that EVs can supply. In 
references [24], [28], PV generation is explored as a resource 
for AS. The PV inverters in [28] are used for reactive power and 
harmonic current compensation based on different control 
strategies applied to single-phase and three-phase PV inverters. 
Similarly, wind generation is used as a base for AS provision in 
[19], [29]. References [21], [28], [30] also consider the 
acquisition of AS at a domestic level using a specific appliance, 
(e.g., a fridge-freezer). An island operation capability AS 
implementation is presented in [31]. In this work, the authors 
consider the modification of network topology, allowing the 
energy supply from distribution energy resources (DERs). This 
kind of approach required installing advanced smart grid 
technologies, which are generally not included in conventional 
networks, requiring large investments to implement the 
solutions into practice.  

Considering the literature analysis, we can classify the AS 
negotiation into pre-qualified auctions [20], [21], [24], 
incentive-based [25], [26], [30], penalized tariff as an incentive 
[14], voluntary participation [32], and price signal-based [27]. 
Considering the voltage and current control, the following 
relevant works can be found in the literature [33]–[36]. A 
voltage regulation strategy with thermostatically controlled 
loads is presented in [33]; in this work, it is assumed that the 
aggregator directly controls the specific loads installed in the 
houses. This type of approach can present problems from the 
point of view of cybersecurity (in contrast, the presented 
approach does not allow direct control of any user's asset). In 
fact, analyzing the works covered, almost none of the methods 
consider a local market or similar approach to carry out the 
control of current. 

Addressing the problem at the distribution level makes the 
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proposed work more attractive for the participation of users, as 
it gives them greater freedom of participation. From the 
literature review, we can identify a gap related to the lack of 
models for implementing competitive markets localized at 
consumers level to trade AS. The purpose of this work is to 
provide a contribution to overcome the identified gap. 

TABLE I presents a list of works related to AS acquisition 
classifying the asset used to provide AS, the AS product, the 
AS type, the AS variable, and the AS negotiated type. 
References [14], [19], [24]–[29] consider DERs as an asset for 
AS provision. On the other hand, [15], [32], [37] provide AS 
from the ideal operation of the system as a whole. The AS 
product can be divided into two major categories: the 
Frequency Restoration Reserve (FRR) and Non-Frequency. 
The FRR product can have two subcategories: the automatic 
(aFRR) and manual (mFRR) [38].  

TABLE  I 
AS ACQUISITION ON THE LOCAL LEVEL 

Ref Asset  Product Type Variable  Neg. Type 

[20] Commercial 
building aFRR SCR Frequency 

Pre-
qualified 
actions 

[24] Distributed solar 
batteries FRR PCR Frequency 

Pre-
qualified 
actions 

[25] EV aFRR 
PCR, 
SCR, 
TCR 

Frequency Incentives 

[37] DC community Non-
Frequency - Reactive power  - 

[28] PV inverters  Non-
Frequency - 

Reactive 
power, 

harmonic 
current 

compensation 

- 

[21] HVAC systems FRR SCR Frequency 
Pre-

qualified 
actions 

[30] Domestic fridge-
freezer  

Non-
Frequency - Spinning 

reserve  Incentives  

[32] MG optimal 
scheduling 

Non-
Frequency, 

FRR 
- 

Ramping 
support, 

frequency 
regulation 

Voluntary  

[29] Wind farms FRR - Frequency - 
[22] HVAC systems FRR - Frequency - 

[14] Battery storage 
systems 

Non-
Frequency, 

FRR 
- 

Power factor, 
voltage profile 

frequency 

Penalized 
tariff 

[15] AC meshed MG 
Non-

Frequency, 
FRR 

- Frequency 
voltage control - 

[23] Air-conditioning  FRR PCR Frequency - 
[26] EV FRR - Frequency Incentives 

[27] EV smart 
charging   - Price 

signals 

[19] Wind and Battery 
power plants FRR - Frequency - 

[31] Network 
reconfiguration 

Non-
Frequency - Generation 

reserve - 

[33] Thermostatically 
controlled loads 

Non-
Frequency  Voltage control  - 

      

TABLE I presents twelve applications for AS FRR products 
and ten for the AS non-frequency products. The AS related to 
control reserve is classified as primary control reserve (PCR), 
secondary control reserve (SCR), and tertiary control reserve 
(TCR). This classification is not consensual among the market 
operators, so each can use its own. However, the classification 
is directly related to the time of operation and the order of 
reserves activation. With the analysis of the respective column 
in TABLE I, three works are identified as PCR and SCR and 
one as TCR. The AS variable column identifies the system 

variable controlled with the use of AS. The work classified with 
FRR in column AS product must have a frequency as AS 
variable. Twelve works have a frequency as AS variable and 
also have reactive control [28], voltage control [14], [15], [33], 
[34] ramping support [32] and spinning reserve [30]. Regarding 
the AS negotiation, the literature analysis considers four 
different mechanisms based on pre-qualified action, incentives, 
voluntary, and penalized tariff. 

III. PROPOSE METHODOLOGY  
This section presents the proposed methodology that focuses 

on using the local non-frequency AS market, considering the 
coordination between DSO and an Aggregator. The DSO will 
use non-frequency AS to operate the distribution network 
within rated parameters, acting as a network operator. Issues 
can appear in the network operation where the operation 
parameters overreach the limits; in this case, we consider a 
violation of the network operation parameters. The aggregator 
is responsible for organizing the selection of resources 
(consumers providing demand response) in the non-frequency 
AS procurement process. Two different algorithms, 
representing different processes, are presented in this section. 
Algorithm 1 consists of a day-ahead analysis and non-
frequency AS procurement, which consists of selecting 
potential consumers to reduce their consumption, according to 
the forecasted operation parameters. Algorithm 2 describes the 
process of real-time non-frequency AS activation, where the 
selected consumers are notified to reduce their consumption. 
Thus, Algorithm 1 is a process repeated each day. 
Algorithm 1 Day-ahead analyses and non-frequency 
AS procurement 

1: Available forecasts of energy consumption 
for the next 24h 

2: DSO, based on forecasts, runs power flow of 
the network (Equation (11)) 

3: DSO check control parameters (Equation (9) 
and (10)) 

4: IF Control parameters are unbounded THEN 

5: Request the pre-acquisition of non-
frequency AS in the market 

6: Aggregator performs auction qualifications 
for each necessary period 

7: PROCEDURE Asymmetric Pool Auction 
(Equation (6)) 

8: Connected users submit offers of 
flexibility 

9: Accepted offers determine non-frequency 
response 

10: Aggregator communicates to DSO the results 
of the pre-auction 

11: ELSE 

12: Request is not performed 

Algorithm 1 starts with the forecast for the next 24 hours, 
which can be performed by DSO, or contracted to other entity. 
With the forecasts of demand and generation, DSO performs 
the power flow analysis for each period of the next 24 hours 
(step 2). Considering the power flow results, the DSO identifies 
the periods where problems with the control parameters can 
occur (step 3). For each period when it is identified violations, 
the DSO requests the pre-acquisition of non-frequency DSO in 
the market (step 5). The Aggregator (working as market 
operator) selects the offers according to an asymmetric pool 
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auction procedure (step 7).  
When the non-frequency AS providers present their offers, 

each offer is composed of an amount of amount flexibility (for 
energy reduction in context of demand response) and a price. 
The Aggregator (the entity responsible for the process with non-
discriminatory functioning) organizes the bids using a merit 
order procedure, starting with the lowest price and moving up. 
The non-frequency AS providers reveal their offers to set up the 
reduction in their consumption. Once the Aggregator knows the 
request from the DSO, it accepts as many offer bids as needed 
to fulfil the request, starting from the lowest price. After the pre-
acquisition process, the Aggregator will communicate the 
offers selection results to the DSO.  

This process is repeated each day for the 24 hours of the 
following day Algorithm 2. Algorithm 2 is executed period by 
period and starts with the updating forecasts (step 1). This 
process is necessary due to the accuracy of the forecasting 
methods. Forecasting errors can influence the activation of the 
non-frequency AS, as they can create a variation in load and 
production that was initially expected. DSO re-executes the 
power flow analyses and checks the control parameters of the 
system (step 2). 
Algorithm 2 Real-time non-frequency AS activation  

1: Updated forecasts for next period 

2: In real-time DSO re-execute power flow 
analysis (Equation (11)) 

3: IF Control variables are unbounded THEN 
(Equation (9) and (10)) 

4: DSO send the activation non-frequency AS 
signal to the Aggregator 

5: Aggregator active the non-frequency AS 

6: Providers delivered the non-frequency AS 

7: ELSE 

8: Non-frequency AS is not activated 

9: Aggregator notify DSO about availability and 
provision of non-frequency AS 

If the violations persist, the DSO sends the activation signal 
to the Aggregator who activates the non-frequency AS among 
providers (step 4). In a later stage, the Aggregator notifies the 
DSO about the availability and provision of non-frequency AS 
to proceed with the payment of services (step 9).  

Equation (1) represents the operation costs for DSO. 

𝑂𝑂𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = �(𝐿𝐿𝐶𝐶𝑡𝑡 + 𝐿𝐿𝐿𝐿𝐶𝐶𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 (1) 

where 𝑂𝑂𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 represents the total cost (EUR) of operation for 
the DSO, 𝐿𝐿𝐶𝐶𝑡𝑡 represents the cost of losses in period 𝑡𝑡 and 𝐿𝐿𝐿𝐿𝐶𝐶𝑡𝑡 
represents the local market costs (acquisition of non-frequency 
AS) in period 𝑡𝑡 . Equation (2) represents the calculation of 
losses cost: 

𝐿𝐿𝐶𝐶𝑡𝑡 = ��𝑊𝑊𝐿𝐿𝑙𝑙,𝑡𝑡 × 𝐶𝐶𝐶𝐶𝑙𝑙�,∀ 𝑡𝑡 ∈ 𝑇𝑇
𝐿𝐿

𝑙𝑙=1

 (2) 

where 𝑊𝑊𝐿𝐿𝑙𝑙,𝑡𝑡  are the energy losses (kWh), 𝐶𝐶𝐶𝐶𝑙𝑙  is the per 
kilowatt-hour cost of power losses (EUR/kWh). Equation (3) 
represents the local market costs for period 𝑡𝑡: 

𝐿𝐿𝑀𝑀𝑀𝑀𝑡𝑡 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝑡𝑡 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑡𝑡,∀ 𝑡𝑡 ∈ 𝑇𝑇 (3) 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝑡𝑡 represents the costs with the demand flexibility, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡 represents the cost with the payment to the aggregator 
and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑡𝑡  corresponds to the costs of bonus paid to the 
consumers with accepted offers, all correspond to the period 𝑡𝑡. 
Equation (4) represents the cost of the pool market. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝑡𝑡 = ��𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑊𝑊 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏�

𝐶𝐶

𝑐𝑐=1

,∀ 𝑡𝑡

∈ 𝑇𝑇 
(4) 

where 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑊𝑊 is the energy cut (kWh) of offer 𝑐𝑐 at period 𝑡𝑡, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the clearing price of cut (EUR/kWh) at period 

𝑡𝑡, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏  is a binary variable of offer 𝑐𝑐 at period 𝑡𝑡 and 𝐶𝐶 is 

the total number of customers. 
The term 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡

𝑊𝑊 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑃𝑃  are considered inputs for the 

problem while 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏  are decision variables. The decision 

variables are presented in equation (5), and are composed by a 
binary operator indicating the acceptance of a offer: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 = �1, 𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,∀ 𝑐𝑐 ∈ 𝐶𝐶,∀ 𝑡𝑡

∈ 𝑇𝑇 
(5) 

where 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 = 1 means that offer 𝑐𝑐 in period 𝑡𝑡 is selected 

for DSO and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 = 0 if the offer is not selected.  

Variables 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏  and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  are obtained using the 
function presented in equation (6). The Asymmetric pool model 
is one of the pool models applied in market trading (different to 
the symmetric model). In the case of the asymmetric model, 
only offers (i.e., players’ demand) are received and there is only 
one buyer with a defined quantity without a defined price. 

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏�
= 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀�𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡

𝑊𝑊 ,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑃𝑃 � (6) 

where 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀  is a function that returns the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏  represents the price and the offers accepted and 

rejected considering the asymmetric pool model. The results 
obtained from the function described in equation (6) have a 
direct impact in the corresponding values of operational costs 
(calculated with equation (1)). The inputs for this function are 
offers with energy and price information. With this information, 
it is possible to obtain the flexibility amount available in each 
customer and new values for customers' load are available. This 
function (𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀(. ) ) receives the inputs and returns as 
outputs the clearing price and the corresponding accepted 
offers. In a first step, the offers are sorted in ascending 
considering the price, and the accumulated quantity of 
electricity is added. When the accumulated quantity equals the 
requested quantity, the clearing price is determined by the price 
of the offer that matched the requested quantity, and all orders 
below this quantity are accepted. In this particular case, the 
required quantity is determined iteratively until the restrictions 
are met. 

Equation (7) represents the remuneration of the aggregator. 
𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡 = 0.05 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 (7) 

With Equation (7) the remuneration for the aggregator 
corresponds to the percentage of the total amount paid 
considering the offers accepted. 
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𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑡𝑡 = 0.5
𝛼𝛼
6 × 𝐶𝐶(𝑃𝑃𝑃𝑃),∀𝑡𝑡 ∈ 𝑇𝑇 (8) 

where 𝛼𝛼  corresponds to the number of accepted offers and 
𝐶𝐶(𝑃𝑃𝑃𝑃),  corresponds to the thermometric generator's 
production cost to generate the equivalent energy to aggregator 
request. The bonus calculation equation is an additional 
mechanism to encourage players to make better offers. The total 
bonus amount is obtained depending on the number of offers 
accepted and the greater the number of offers accepted, the 
lower the bonus amount. So, this mechanism can lead players 
to perform better offers with the intention of receiving a larger 
amount in this component. 

The local market mechanism is used if the conditions of 
equations (9) and (10) are violated. Equation (9) represents the 
conditions imposing bus voltage magnitude limits, and equation 
(10) represents the condition that imposes the maximum 
admissible current of lines: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑉𝑉𝑏𝑏,𝑡𝑡 ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ,∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑡𝑡 ∈ 𝑇𝑇 (9) 

𝐼𝐼𝑙𝑙,𝑡𝑡 ≤ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ,∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑡𝑡 ∈ 𝑇𝑇 (10) 
where 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  are respectively the minimum and 
maximum magnitude voltage limit in p.u., 𝑉𝑉𝑏𝑏,𝑡𝑡  is the voltage 
magnitude of bus 𝑏𝑏  at period 𝑡𝑡  and 𝐵𝐵  represents the total 
number of buses. 𝐼𝐼𝑙𝑙,𝑡𝑡 is the current, in p.u., in 𝑙𝑙 at time 𝑡𝑡, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 
is the maximum current limit in p.u., and 𝐿𝐿 represents the total 
number of lines. 

To verify the conditions imposed, it is necessary to obtain the 
Ω𝑉𝑉 = �𝑉𝑉𝑏𝑏,𝑡𝑡� and Ω𝐼𝐼 = �𝐼𝐼𝑙𝑙,𝑡𝑡�. For this, the forecast of customers 
load is updated considering the accepted offer, after applying 
equation (11). We assume that a power flow function is 
available to validate at any moment the network state (i.e., 
network constraints). Therefore, a power flow function is 
defined as [39]: 

(Ω𝑉𝑉 ,Ω𝐼𝐼 ,Ω𝑃𝑃) = 𝐏𝐏𝐏𝐏(∙) (11) 
where 𝐏𝐏𝐏𝐏(∙) is a function that receives the information of load 
consumption and grid information (lines, buses, transformers, 
generators), and returns the voltage status of buses Ω𝑉𝑉 =
�𝑉𝑉1,𝑡𝑡 ,𝑉𝑉2,𝑡𝑡 , … ,𝑉𝑉𝐵𝐵,𝑡𝑡� , the current status of lines Ω𝐼𝐼 =
�𝐼𝐼1,𝑡𝑡 , 𝐼𝐼2,𝑡𝑡 , … , 𝐼𝐼𝐼𝐼,𝑡𝑡� , and the power losses in lines Ω𝑃𝑃 =
�𝑃𝑃1,𝑡𝑡 ,𝑃𝑃2,𝑡𝑡 , … ,𝑃𝑃𝐿𝐿,𝑡𝑡�. This function is used to validate the network 
status at each time ∀𝑡𝑡 ∈ 𝑇𝑇. With the information returned by the 
power flow function, equation (9) and equation (10) can be 
validated. To run the PF(∙) function, pandapower.runpp module 
from the pandapower package installed in the Python software 
is used. The pandapower package can be installed and used on 
every platform with an installation of Python 2.7 or higher. The 
pandapower.runpp model allows to obtain a balanced AC 
power flow with different algorithms. For this work, the “bfsw” 
backward/forward sweep algorithm was used since it is 
recommended for distribution networks. For instance, the work 
[40] also uses pandapower to obtain power flow results and 
validating results. 

IV. CASE STUDY  
In the simulation process, we consider 24 periods with 1 hour 

of duration, the voltage limits are set to 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0.95  and 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 1.05, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  is specific for each line and the 𝐶𝐶𝐶𝐶𝑙𝑙  is 0.02 

EUR/kWh. We consider consumers (households) complying 
with the actual Portuguese legislation, which allows a small 
amount of generation (consumers with local generation) to be 
used for their own energy needs and bring excess energy to the 
grid. Each one of the consumers is equipped with controllable 
loads that can be used to reduce the total energy consumption 
when needed. According to the actual EU targets [12] regarding 
the increase in electricity production by renewable sources, we 
decide to create two different scenarios: 
• Scenario A - corresponds to the simulation considering the 

real configuration of the network with 2 DG;  
• Scenario B – corresponds to the same network 

configuration of scenario A, but considering the inclusion 
of more 31 DG, which corresponds to 33 DG units based 
on PV generation. 

These scenarios are used to test the influence of DG in the 
presence of a violation of network operation limits. While the 
location of DG has an impact in the operational costs, the 
optimal location of DGs is out of the scope of this work and 
open an interesting line for future research. Fig. 1 presents the 
accumulated consumption and generation profiles used in the 
experiments.  

  
a) b) 

Fig. 1. Consumption and generation, (a) accumulated consumption and (b) 
accumulated generation 

In Fig. 1 (a) the consumption profile presents a peak of 285 
kWh at 18:00 h. Fig. 1 (b) presents two different electricity 
profiles generated, one for scenario A and other for scenario B. 
The increment of generation is visible in the figure when 
scenario B is used to perform the simulations.   

A. Grid Configuration  
The proposed methodology is simulated using data from a real 

low-voltage network presented in [41]. The network is 
connected to a medium voltage network, rated 50 Hz of 
frequency, operating in radial topology. 

The network contains 237 buses in total, from which 236 are 
in low-voltage level (0.4 kV) and 1 in medium voltage level (20 
kV). All 98 loads in low-voltage level are considered resistive 
loads. The network also has 2 distributed generators located at 
buses 79 and 226, based on PV technology. The number of lines 
is 235 (with a total of 3146 m). The transformer presented 
between bus 0 and bus 1 is rated 0.4 MVA, 20 kV/0.4 kV. We 
consider the external source bus 0 as the reference for 
simulation tests. 

B. Offers Definition 
The consumer offers used for participating in the local non-

frequency AS provision are composed by the amount of load 
reduction (kWh) and a price (€/kWh). We consider that each 
consumer connected to the distribution network can reduce 
30% of their total consumption in each hour. To create the 
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amount of reduction for each consumer equation (12) is used. 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡

𝑊𝑊 = 𝑋𝑋~unif(𝑀𝑀𝑀𝑀𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑀𝑀𝑀𝑀𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅),∀ 𝑐𝑐 ∈ 𝐶𝐶,∀ 𝑡𝑡 ∈ 𝑇𝑇 (12) 
where 𝑋𝑋~unif(𝑀𝑀𝑀𝑀𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑀𝑀𝑀𝑀𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅) , represents a uniform 
distribution between 𝑀𝑀𝑀𝑀𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅  (minimum load reduction), and 
𝑀𝑀𝑀𝑀𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅  (maximum load reduction). In the creation of the offer, 
we consider for 𝑀𝑀𝑀𝑀𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅 = 0   and for 𝑀𝑀𝑀𝑀𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 = 0.3  of the 
referred consumption. 

Regarding the price, three different strategies are considered. 
These strategies aim to simulate the behavior of the consumer 
regarding the available amount of consumption reduction, as 
follows: 
1) Random based (strategy 1)  

This strategy considers a random creation. The consumer does 
not react to the energy reduction amount. The offer prices are 
simulated considering a uniform distribution presented in 
equation (13): 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑃𝑃 = 𝑋𝑋~unif�𝑀𝑀𝑀𝑀𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�,∀ 𝑐𝑐 ∈ 𝐶𝐶,∀ 𝑡𝑡

∈ 𝑇𝑇 (13) 

where 𝑀𝑀𝑀𝑀𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and  𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  correspond to the minimum and 
maximum price consider for offer reductions, respectively. The 
values for 𝑀𝑀𝑀𝑀𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is 0 EUR/kWh and for 𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is 
0.022391 EUR/kWh.  
2) Linear reduction dependent (strategy 2)  

This strategy considers a consumer reaction to the amount 
proposed for reduction. It is considered that a higher reduction 
causes a higher impact on the comfort, and the reduction price 
should be increased. Equation (14) represents the offer price 
definition of strategy 2. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑃𝑃 = 𝑚𝑚 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡

𝑊𝑊 + 𝑏𝑏,∀ 𝑐𝑐 ∈ 𝐶𝐶,∀ 𝑡𝑡 ∈ 𝑇𝑇 (14) 
where 𝑚𝑚  is the slope of the linear expression and is given 
according to equation (15) and 𝑏𝑏 is the is the intersection with 
the Y-axis and is given by the 𝑀𝑀𝑀𝑀𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

𝑚𝑚 =
𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑀𝑀𝑀𝑀𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑀𝑀𝑀𝑀𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑀𝑀𝑀𝑀𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅  (15) 

3) Intelligent price reaction (strategy 3)  
The last strategy provides an improvement based on strategy 

2. This strategy also considers a comfort impact reaction, but 
the consumers adapt their offer price according to their 
behavior. Two different behaviors are considered: the consumer 
accepts a reduction of the offer price (anxious), and the 
consumer increases the offer price (ambitious). To model this 
strategy, Equation (16) is considered. 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡

𝑊𝑊 = �𝑚𝑚 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑐𝑐,𝑡𝑡
𝑊𝑊 + 𝑏𝑏� × 𝑟𝑟𝑐𝑐,𝑡𝑡,∀ 𝑐𝑐 ∈ 𝐶𝐶,∀ 𝑡𝑡 ∈ 𝑇𝑇 (16) 

where 𝑟𝑟𝑐𝑐,𝑡𝑡  models the consumer behavior and is obtained 
considering equation (17). 

𝑟𝑟𝑐𝑐,𝑡𝑡 = � 𝑋𝑋~unif�𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀, 1� 𝑖𝑖𝑖𝑖 𝑐𝑐 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑋𝑋~unif(1, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀) 𝑖𝑖𝑖𝑖 𝑐𝑐 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

,  ∀ 𝑐𝑐

∈ 𝐶𝐶,∀ 𝑡𝑡 ∈ 𝑇𝑇 
(17) 

where 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀  represents the minimum value for reducing the 
offer price and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀  represents the maximum value for 
increasing the offer price. For 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 we chose 0.7 and 
1.10. 

 
1 The value corresponds to the mean day price of MIBEL spot market in 

06/05/2020 

V. RESULTS  
To organize better the results, Section 5.A presents the results 

of the day-ahead network analysis where the periods with 
violations are identified, and the procurement of non-frequency 
AS is made; Section 5.B presents the results of the non-
frequency AS activation in real-time and the influence of non-
frequency AS activation is analyzed; Section 5.C presents a 
discussion of the results using the proposed methodology. 

A. Day-ahead analyses and non-frequency AS procurement 
results 

The results of the day-ahead analysis considering the forecast 
for the day ahead are presented in this section. TABLE II 
presents a summary of the power flow analysis considering all 
24 periods and the two scenarios. 

TABLE  II 
ENERGY SHARE RESULTS 

Scenario Losses External DG Total 
Load 

Load 
(Average) 

A 

Active 
(kWh) 88.32 2797.18 19.7 2728.56 27,84 

Reactive 
(KVArh) 70.07 70.07 0 0 0 

Apparent 
(kVAh) 112.74 2798.05 19.7 2728.56 27,84 

B 

Active 
(kWh) 82.93 2502.11 309.38 2728.56 27,84 

Reactive 
(KVArh) 62.85 62.85 0 0 0 

Apparent 
(kVAh) 104.05 2502.9 309.38 2728.56 27,84 

Difference 8,69 295.16 289.68 0 0 

TABLE II presents the active component, the reactive 
component and the apparent energy for the losses, external 
supply, DG production and total load. As can be seen, all 
reactive power injected into the network in both scenarios is 
used to cover the reactive losses in the lines. In scenario B the 
reactive power is lower than in scenario A, due to the influence 
of DG production. We assume that loads have only active 
component, which results in active energy consumption in both 
scenarios with equal values. The average load presented in the 
Table 2 is done over the 98 loads. If we consider the total 
number of periods presented in the case study, each load has an 
average consumption of 1,16 kWh per period. 

Checking the network status according to the results of power 
flow, the condition of equation (9) is violated 17 times in period 
18th for scenario A, considering scenario B the same condition 
is violating 16 times in the same period.  Since only one period 
is identified with magnitude buses with violations in both 
scenarios. On the other hand, no violations were found 
considering the condition of equation (10) for maximum current 
limits. Considering the results of equation (9) verification 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0.95 𝑝𝑝.𝑢𝑢.  and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 1.05 𝑝𝑝.𝑢𝑢. for scenario A in 
period 18th, the buses with magnitude violation are: 215, 218, 
220, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 
235 and 236. Considering the scenario B in period 18th are 
presented the same buses excluding the bus 215.  In buses 
identified with violations, seven constitute buses where loads 
are connected (buses: 223, 224, 226, 231, 233, 234 and 236). 
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TABLE IV presents the summary results in the group of buses 
identified violations for period 18th. 

TABLE  III 
SUMMARY RESULTS OF THE VIOLATED BUS GROUP 

  Scenario A Scenario B 

Maximum 0.9496 0.9480 

Minimum 0.9380 0.9401 

Average 0.9411 0.9426 
Once the periods with violations have been identified, the 

DSO requests non-frequency AS pre-acquisition in the market. 
The Aggregator is responsible for carrying out the offers 
selection process. This section presents the results for offers 
selection considering the different strategies to create the offers.  
TABLE IV presents the results of the asymmetric pool results 
for the pre-acquisition of non-frequency AS. 

TABLE IV 
PRE-SELECTION OFFERS COMPARISON RESULTS FOR THE 18TH PERIOD. 

Scenario A B 

Strategy 1 2 3 1 2 3 

Total offers 98 98 98 98 98 98 

Total offer amount (kWh) 55.75 55.75 55.75 54.25 54.25 54.25 

Offers accepted 69 75 68 67 56 56 

Amount selected (kWh) 39.14 39.10 32.65 36.80 26.27 25.21 

Clearing price (EUR/kWh) 0.013 0.015 0.014 0.012 0.013 0.013 

Offers costs (EUR) 0.513 0.579 0.471 0.459 0.332 0.322 

TABLE IV shows the results for scenario A and scenario B, 
considering all acting strategies. In both scenarios, all strategies 
present 98 offers. The total amount of energy offered in 
scenario A is 55.75 kWh, and in scenario B is 54.25 kWh. The 
difference in values between scenarios is related to the total load 
consumed in each scenario. In both scenarios, the offers bid 
amount is equal in terms of percentage. Moreover, the offer 
amount in kWh is different because in scenario B, with 
inclusion the higher value of DG, the load of some consumers 
decreases.  

The offers consist of a reduction amount and a price as shown 
in the figure. Depending on the pricing strategies, the amount is 
always the same, and the price varies depending on the strategy 
used. Considering scenario A, the number of accepted offers is 
different for the different strategies adopted. Strategy 2 presents 
the higher value of offers accepted, but it presents the smallest 
selected amount with 39.10 kWh, while presenting the higher 
clearing price and the higher costs. In this case, strategy 2 
presents the bids with comfort affect when the higher value of 
offer amounts presents higher values of offer prices. The higher 
offers prices cause an increment in the clearing price. 
Comparing the strategy 3 with strategy 2, a small number of 
accepted offers and amount selected are verified. As it was 
explained, in strategy 3 the offer prices suffer a change, when 
in this case, the buses with violations adopt a benevolent 
behavior. With the benevolent behavior, the prices of these 
buses decreased, and they were accepted making lower clearing 
price and selected amount. In this scenario, the use of strategy 
3 brings benefits for the DSO, reducing the offers costs used for 
acquisition the non-frequency AS. 

In scenario B, the differences between strategy 2 and strategy 
3 are more reduced. In this scenario, the tendency between 

strategies does not repeat. Strategy 1 presents higher values in 
all sub-categories. Comparing the strategy 2 and strategy 3 
presents the same number of accepted offers, although accepted 
offers are different sets. It is found that the sets are different 
because the offer amount accepted is different, and if the sets 
were equal, they would require having the same offer amount 
accepted. In the amount of the offers, accepted strategy 3 
presents a value slightly lower than strategy 2. The clearing 
price (strategy 2 and strategy 3) in TABLE IV is equal, but the 
values have a small difference (1.34E-04). Considering the 
offer costs, strategy 3 also presents (as in scenario A) the 
smallest value. 

In Fig. 2 the graphical results from the asymmetric pool 
market are presented. Fig. 2(a) and Fig. 2(d) represent the 
strategies where the offer prices are randomly created, bringing 
the prices close to zero. 

  
a) b) 

  
c) d) 

  
e) f) 

Fig. 2. Asymmetric Pool Results, Scenario A: (a) –strategy 1, (b) – strategy 2, 
(c) – strategy 3 and Scenario B: (d) –strategy 1, (e) – strategy 2, (f) – strategy 3 

B. Real-time non-frequency AS activation results 
This section presents the results of non-frequency AS 

activation in real-time. The results presented are obtained for 
each hour and shown for all periods together. As it was stated 
in Algorithm 2, in step 1 the forecast is updated at each hour 
and DSO re-execute the power flow analysis for testing the 
control variables. In the simulations executed was verified a 
total consumption average error of 0,350 kWh considering the 
24 periods. For the total generation in scenario A an average 
error of 0,038 kWh was verified and in scenario B the average 
error was 0,008 kWh. Considering the resulting power flow 
analyses, the DSO actives the AS already selected (presented in 
the previous section). TABLE V presents a costs comparison 
between the different scenario and different strategies, the table 
also presents the results for the initial analyses for each 
scenario. 
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TABLE V 
COSTS COMPARISON (EUR) 

Scenario A B 

Strategy Init 1 2 3 Init 1 2 3 
Losses 
Costs 2.29 2.18 2.19 2.20 2.1

3 2.04 2.06 2.07 

Flex Costs 0 0.51 0.57 0.47 0 0.45 0.33 0.32 

Agg Costs 0 0.02 0.02 0.02 0 0.02 0.01 0.01 
Bonus 
Costs 0 0.002

5 
0.001

1 
0.002

6 0 0.003
2 

0.012
1 

0.012
4 

Operationa
l Costs 2.29 2.72 2.80 2.70 2.1

4 2.53 2.43 2.42 

Difference  0.44 0.51 0.41  0.36 0.29 0.28 

The column with initial in TABLE V presents the initial 
operation costs with violations in period 18th as was presented 
in section 5.A. TABLE V presents the different components of 
operational costs (Losses, Flexibility acquisition, Aggregator 
and Bonus). Notice that the operational costs presented by the 
different strategies are both larger than those initially presented. 
However, this increase in cost is justified since the solution now 
presents no violations. The initial losses costs were also higher 
than those presented by the different strategies in both 
scenarios, but this only reflects a different transit of power in 
the network. Considering the results of flexibility acquisition 
was already comment in section 5.A. The aggregator costs have 
a direct relationship with the amount of energy selected, so if 
more energy is selected a greater fee, he will receive. The bonus 
should be divided into the consumers with offers accepted. 
Strategy 3 is the strategies that get a greater value of the bonus. 
This strategy is characterized by the adjustment of the offer 
prices, considering the behavior adopted by the consumer. 
When the consumers located in buses with violations adopt the 
benevolent strategy, their offers have higher acceptance 
possibility. The system resolves the problems with less costs 
and the consumers receive a great value of the bonus. Both 
strategies in both scenarios can solve the problem, but as can be 
seen by the TABLE V the strategy 3 presents the smallest 
operating costs and the smallest difference with the operation 
costs of initial analyses with violations.  

Fig. 3 presents the boxplot analysis for the set of buses with 
voltage problems in the period 18th identified in Section 5.1.Fig.  
5 presents the boxplot of magnitude voltage for buses with 
violations. Fig. 3 (a) related scenario A and Fig. 3 (b) if for 
scenario B. 

  
a) b) 

Fig. 3. Magnitude voltage comparison for the 18th period, (a) scenario A and 
(b) scenario B. 

The figure presents the distribution of magnitude voltage 
values on considering minimum, first quartile, median, third 
quartile and maximum. Boxplot with label "Initial" represents 
the distribution of magnitude voltage considering the network's 
initial state in both scenarios. As can be seen in Fig. 3, all values 

are below the minimum limit of magnitude voltage (0.95 p.u.). 
Fig. 3 shows that the use of the different strategies in both 
scenarios, the violations can be avoided, all the minimum limits 
are above the 0.95 p.u. Considering the strategy 1, where the 
greater offer amount is selected, the improvements in the 
voltage magnitudes are more visible, yet is spent more costs for 
the AS acquisition. 

C. Discussion  
Considering the different offers strategies used to simulate the 

consumers behavior, for strategy 1, although the network 
violations were avoided, and the results were the worst.  
Strategy 2 creates the prices of the offers considering a linear 
expression. The use of linear expression tries to simulate the 
comfort influence felt by the consumer. In this strategy, the 
consumers with small offer amounts also have small offer 
prices. Strategy 3 tries to simulate the intelligent behavior of the 
consumers; thus, when the consumers are located in busses with 
problems, they reduce their offer prices with the intention that 
these will be accepted before the others. The created case study 
envisages the participation of consumers, reducing their load 
consumption when the Aggregator requests flexibility. Two 
different scenarios have been explored in order to study the 
influence of DG production. As results showed, the number of 
accepted offers decreases with this strategy, making an 
increment in the bonus. The final results showed that violations 
can be avoided by using the non-frequency AS provided by 
consumers. Comparing the results of period 18th (the period 
where the non-frequency AS were activated), the initial costs 
were lower than the costs when violations are avoided. 

VI. CONCLUSION  
The acquisition of non-frequency AS in low voltage level has 

been explored as a solution to solve issues that may arise in 
distribution networks. In this paper, a methodology for non-
frequency AS acquisition in low voltage networks was 
presented, and three different strategies for offer prices creation 
were implemented and compared. The simulation was 
performed using real attributes of a distribution network located 
in Portugal. The use of non-frequency AS by DSO brings 
advantages to the quality of operation as well as payments for 
consumers due to the non-frequency AS provision. Considering 
the DSO role for operating the distribution networks with 
control variables between limits, the simulation demonstrated 
that marker-based non-frequency AS at the local level are a 
good option for enabling active participation of consumers and 
guarantee a smooth grid operation. This work opens different 
lines of research that are worth to follow as future work. For 
instance, it is interesting to study the different market structures 
that allow the participation of final consumers to discover 
suitable market structure for the benefits of all participants. 
Another relevant line of research is related to the optimal 
location of DG to minimize the voltage and lines violations. 
Finally, the consideration of different asset in the grid and 
distributed resources (e.g., electrical vehicles and store 
systems) and their impact in operational costs under the 
proposed framework is another venue of research. 
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Resumen 

Un modelo preciso de la temperatura interior de los edificios es crucial para 
mejorar el confort térmico mientras se gestiona de manera eficiente el consumo 
de energía de calefacción y refrigeración del edificio. Este artículo propone un 
método para modelar la evolución de la temperatura interior a lo largo del 
tiempo en edificios con múltiples oficinas. El nuevo modelo se obtiene 
considerando los modelos térmicos teóricos con dos modificaciones para 
maximizar la precisión del modelo. Este tipo de modelo es especialmente útil 
cuando se combina con sistemas de gestión energética de edificios, con el objetivo 
de controlar la energía utilizada por los sistemas de calefacción/refrigeración, 
minimizando costes y garantizando el confort térmico de los usuarios. El modelo 
propuesto mejora los resultados de los modelos térmicos teóricos mediante el uso 
de algoritmos basados en inteligencia computacional, a saber, optimización de 
enjambre de partículas, evolución diferencial, evolución diferencial adaptativa 
híbrida con función de decaimiento y algoritmo de búsqueda de vórtice. Se 
utilizan tres tipos de datos de entrada para configurar un modelo predictivo: i) 
datos de temperatura obtenidos de los sensores instalados en el edificio; ii) 
consumo de calefacción, ventilación y aire acondicionado de los analizadores de 
energía y, iii) atributos físicos del edificio, es decir, materiales de construcción. 
Los datos reales de la temperatura real dentro de un edificio se utilizan para 
probar el rendimiento del modelo. Los resultados muestran una mejora de hasta 
un 81 % en la precisión de la temperatura interior prevista cuando el modelo 
utiliza los coeficientes determinados por los algoritmos de inteligencia 
computacional.
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ABSTRACT 9 

An accurate model of buildings’ indoor temperature is crucial to improve thermal comfort while 10 

efficiently managing the building heating and cooling energy consumption. This paper proposes a 11 

method to model the indoor temperature evolution along time in buildings with multiple offices. The 12 

new model is obtained considering the theoretical thermal models with two modifications in order to 13 

maximize the model accuracy. This type of model is especially useful when combined with building 14 

energy management systems, with the aim to control the energy used by heating/cooling systems, 15 

minimizing costs, and guaranteeing users' thermal comfort. The proposed model improves the results 16 

of theoretical thermal models by using algorithms based on computational intelligence, namely 17 

particle swarm optimization, differential evolution, hybrid-adaptive differential evolution with decay 18 

function, and vortex search algorithm. Three types of input data are used to set up a predictive model: 19 

i) temperature data obtained from sensors installed in the building; ii) heating, ventilating, and air 20 

conditioning consumption from power analysers and, iii) physical building attributes, i.e., building 21 

materials. Real data for the actual indoor temperature of a building is used to test the model 22 

performance. Results show an improvement of up to 81% in the predicted indoor temperature 23 

accuracy when the model uses the coefficients determined by the computational intelligence 24 

algorithms. 25 

KEYWORDS: Buildings, Computational intelligence; Indoor temperature; Temperature modelling; 26 

User thermal comfort.  27 
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1. Introduction 28 

The buildings sector is one of the major consuming sectors in the world. In Europe it 29 

represents around 40% of the total energy consumption, taking into account the households 30 

and service buildings [1,2]. Due to this high energy consumption, it is important to develop 31 

strategies for energy conservation and energy management in buildings. In [3,4] authors point 32 

out that building energy management models have a key relevance in modeling and 33 

controlling the energy demand. Building energy management systems must be able to 34 

manage and use energy efficiently and intelligently, ensuring indoor comfort for buildings 35 

occupants [5,6]. It is known that people perform their activities better and more effectively 36 

if comfort is guaranteed and there are no negative factors (e.g., cold, heat, low light, noise, 37 

poor air quality) that can disturb them [7]. Modelling such factors efficiently is therefore 38 

crucial to enable suitable energy management decisions [8]. 39 

Modelling indoor temperature in buildings is a widely studied topic. However, the 40 

existing models can be extremely complex or highly simplified depending on the number of 41 

variables the user wants to consider [3,9–15]. This work builds on previous studies found in 42 

the literature. In specific, [13] has built a model based on the building's physical processes 43 

but results reported an error of 6ºC in their records. In work [14], the authors use a less 44 

complex model and adapt it to the building by training the model with historical data. The 45 

model presented in [11] also presents great complexity in terms of the physical components 46 

considered in the building. The drawback of such complex models where a high number of 47 

variables is considered is mainly related to the quality of results obtained. Additionally, the 48 

simpler models obtain similar results and are easier to implement due to the fewest number 49 

of included variables. 50 
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Departing from the work already done in this domain, this paper presents a mathematical 51 

model that allows, through the analysis of heat exchanges and thermal gains of buildings, 52 

calculating the instantaneous temperature in different rooms. The proposed model can be 53 

incorporated into buildings' energy management systems, enabling a suitable temperature 54 

control.  55 

The proposed model considers physical variables (thermal conductivity of materials and 56 

area) of the building, as proposed by [14]. In order to improve the performance of the model, 57 

two adjusting coefficients are added to the formulation. These coefficients are adjusted using 58 

computational intelligence algorithms to minimize the modeling error, resulting in an 59 

improved model performance. By doing so, the model can be applied straightforwardly to 60 

different rooms in the same building with different heating performance and profiles.  61 

It should be noted that the proposed model takes into account the influence that adjacent 62 

rooms have on each particular room. Thus, to obtain the best values for coefficients added to 63 

the modified model, four different algorithms are implemented and compared, namely 64 

Particle Swarm Optimization (PSO) [16], Differential Evolution (DE) [17], Hybrid-adaptive 65 

differential evolution with decay function (HyDE-DF) [18], and Vortex Search algorithm 66 

[19] (VS).  67 

This paper presents a case study considering a real building for which the proposed model 68 

is applied to eleven different rooms, allowing to evaluate the model performance for rooms 69 

with distinct characteristics. The obtained results demonstrate the capabilities of the used 70 

algorithms of achieving higher levels of accuracy, in the order of up to 80%, when compared 71 

to previous works. The following points are enunciated to highlight the contributions of this 72 

work: 73 
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• Design and development of a generalized indoor temperature model, which can 74 

be used in different case studies; 75 

• Computational implementation of the proposed model; 76 

• Use of 4 different computational intelligence algorithms to obtain a more robust 77 

training; 78 

• Application of the proposed model to 11 different room of a real office building., 79 

using real data. 80 

The paper is divided into 4 different sections. After this introductory section presents the 81 

proposed methodology (section 2), which is divided into three different subsections. Section 82 

3.2 presents the proposed model based on literature works, section 2.2 presents the 83 

computational intelligence algorithms used to refine the model in order to obtain a minimal 84 

error, and section 2.3, a brief description of the optimization process is presented. The 85 

physical characteristics of the building used for experiments, the results from the model 86 

validation, and coefficients identification are presented in section 3. Finally, the main 87 

conclusions from this work are drawn in the last section of the paper (section 4). 88 

2. Proposed Methodology  89 

This section presents the proposed methodology, namely describing thermal heating 90 

model and the modification the algorithms used to refine the coefficient values. It also 91 

presents the metrics used in this paper to evaluate the performance of the thermal heating 92 

models.  93 

2.1.Proposed model 94 

The conceptual model proposed in this paper is based on the principle of energy 95 

conservation and is presented in Fig. 1, in which the model is illustrated for a specific 96 
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illustrative room (Room A). As can be seen in Fig. 1, Room A considers different heat gains 97 

and losses. Room A has heat gains from equipment �𝑄𝑄𝑒𝑒𝑒𝑒�, occupants (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜), HVAC systems 98 

(𝑄𝑄ℎ𝑣𝑣𝑣𝑣𝑣𝑣), lights �𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡�, and from adjacent room B (𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖). On the contrary, room A has 99 

losses of energy to the exterior of the building (𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒). 100 

Fig. 1. Different heat gains and losses (illustrative example) 102 

The 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 parameter representing the heat exchange with the exterior and can be obtained 103 

considering equation (1) [20]. 104 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑖𝑖𝑖𝑖) + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑖𝑖𝑖𝑖) (1) 

where 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  and 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 are the wall and window areas respectively, 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 105 

are the global heat transference coefficients of wall and window, and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑇𝑇𝑖𝑖𝑖𝑖 represent 106 

the exterior and interior temperatures.  107 

The heat exchange over the indoor wall is represented by 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖  and is obtained 108 

considering equation (2) [20]. 109 

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑛𝑛𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × �𝑇𝑇𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑖𝑖𝑖𝑖� + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × �𝑇𝑇𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑖𝑖𝑖𝑖� (2) 

where 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  and 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  represent the areas of wall and window, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  and 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 are 110 

the global heat transference coefficients of indoor wall and window, and 𝑇𝑇𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 represents 111 

the temperature of adjacent areas.  112 

Equation (3) regards the heat gains from HVAC systems [20].  113 
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𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑂𝑂𝑁𝑁𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉  (3) 

where 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 represents the heat gain from a HVAC system considering the heating function, 114 

𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  corresponds to the HVAC power supply, and 𝑂𝑂𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  represents the HVAC state 115 

(1=ON , 0=OFF).  116 

The heat gains from occupants can be obtained using (4) [20]. 117 

𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (4) 

where 𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂  represents the heat gain from occupants, 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜  represents the number of 118 

occupants, and 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  represents the heat exchanged by a body.  119 

Heat gain from equipment’s is given by equation (5) [20]. 120 

   𝑄𝑄𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑒𝑒𝑒𝑒 × 𝑞𝑞𝑒𝑒𝑒𝑒  (5) 

Where 𝑄𝑄𝐸𝐸𝐸𝐸 represents the heat gain considering the internal equipment, 𝑁𝑁𝑒𝑒𝑒𝑒 represents the 121 

number of equipment, and 𝑞𝑞𝑒𝑒𝑒𝑒 is the heat released by equipment (e.g., computers).  122 

Equation (6) represents the heat gains from lightning [20].  123 

   𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 × 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡  (6) 

where 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 represents the heat gain by lighting, 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 is the number of lights, and 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 124 

represents the heat released by lighting equipment.  125 

Considering all enunciated gains and losses, the energy balance can be expressed using 126 

equation (7). 127 

   𝑑𝑑𝑈𝑈𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑

= +𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑄𝑄𝐸𝐸𝐸𝐸 + 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 + 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟  (7) 

Considering a constant mass in the control volume, the left-side term of the energy 128 

balance, which describes the variation of internal energy in the room, can be considered as 129 

equation (8) shows.  130 
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   𝑑𝑑𝑈𝑈𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑣𝑣𝑣𝑣𝐶𝐶𝑣𝑣
𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

 (8) 

Applying the substitution of equation (7) into equation (8), we obtain equation (9). 131 

𝑀𝑀𝑣𝑣𝑣𝑣𝐶𝐶𝑣𝑣
𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖  
𝑑𝑑𝑑𝑑

=

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑖𝑖𝑖𝑖) + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑖𝑖𝑖𝑖)
+𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × �𝑇𝑇𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑖𝑖𝑖𝑖� + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × �𝑇𝑇𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑖𝑖𝑖𝑖�

+𝑁𝑁𝑒𝑒𝑒𝑒 × 𝑞𝑞𝑒𝑒𝑒𝑒
+𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑂𝑂𝑁𝑁ℎ𝑣𝑣𝑣𝑣𝑣𝑣
+𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 × 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡

 (9) 

Modifying equation (9) by placing all temperatures in evidence leads to equation (10). 132 

𝑀𝑀𝑣𝑣𝑣𝑣𝐶𝐶𝑣𝑣
𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖  
𝑑𝑑𝑑𝑑

+ 𝑇𝑇𝑖𝑖𝑖𝑖�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�

= 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�

+ 𝑇𝑇𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�+𝑁𝑁𝑒𝑒𝑒𝑒 × 𝑞𝑞𝑒𝑒𝑒𝑒

+ 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑂𝑂𝑁𝑁ℎ𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 × 𝑞𝑞𝑙𝑙𝑙𝑙𝑔𝑔ℎ𝑡𝑡 

(10) 

Indoor temperature evolution with 𝑡𝑡  (equation (11)) can be obtained by solving the 133 

differential non-homogeneous equation (10).  134 

𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡+1 =
(𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 × 𝐵𝐵 + 𝐶𝐶) × 𝑒𝑒𝐵𝐵×∆𝑡𝑡 − 𝐶𝐶

𝐵𝐵
 (11) 

where 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡+1 represents the indoor temperature for the following period, 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡  is the temperature 135 

at period 𝑡𝑡 , ∆𝑡𝑡  corresponds to the time interval between 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡  and 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡+1,  parameter 𝐵𝐵  is 136 

obtained by equation (12), and 𝐶𝐶 by equation (13).  137 

𝐵𝐵 = −
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑀𝑀𝑣𝑣𝑣𝑣𝐶𝐶𝑣𝑣
 (12) 

𝐶𝐶 =

⎝

⎜
⎛

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� +
𝑇𝑇𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� +

𝑁𝑁𝑒𝑒𝑒𝑒 × 𝑞𝑞𝑒𝑒𝑒𝑒 + 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑂𝑂𝑁𝑁ℎ𝑣𝑣𝑎𝑎𝑎𝑎 +
𝑁𝑁ocu × 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 × 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 ⎠

⎟
⎞

×
1

𝑀𝑀𝑣𝑣𝑣𝑣𝐶𝐶𝑣𝑣
 (13) 
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Initial experiments, from which results for one of the rooms under study are presented in 138 

Fig. 2, show that the model presented in equation (11) with six physical parameters (i.e., 139 

external wall conductivity, internal all conductivity, equipment number, HVAC power 140 

consumption, occupants number and number of light) is not able to model the indoor 141 

temperature satisfactorily compared with real measurements. As can be seen in Fig. 2, the 142 

actual room temperature and the room temperature obtained with equation (11) for one 143 

specific room (room 107 in the case of results presented in Fig. 2), present a notorious 144 

difference (e.g., a difference of 4ºC in some periods), thus not being able to model the indoor 145 

room temperature correctly. Therefore, it is clear that adjustments are needed.   146 

Fig. 2. Initial experiments    148 
In order to keep the model simple considering the enunciated coefficients while 149 

increasing the modeling accuracy as much as possible, two additional coefficients, 𝑤𝑤, and 𝜏𝜏 150 

have been included in the model. These coefficients are used to capture the degradation of 151 

HVAC efficiency and the lack of modeled factors that provide loss or gain of heating 152 

(loss/gain ratios when the door is opened). Thus, the model is modified according to 153 

equations (14) and (15). 154 
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𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡+1 =
(𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 × 𝐵𝐵 + 𝐶𝐶) × 𝑒𝑒𝐵𝐵×∆𝑡𝑡 − 𝐶𝐶

𝐵𝐵
+ 𝝉𝝉 (14) 

𝐶𝐶 =

⎝

⎜
⎛

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� +
𝑇𝑇𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� +

𝑁𝑁𝑒𝑒𝑒𝑒 × 𝑞𝑞𝑒𝑒𝑒𝑒 + (𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝒘𝒘) × 𝑂𝑂𝑁𝑁ℎ𝑣𝑣𝑣𝑣𝑣𝑣 +
𝑁𝑁ocu × 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 × 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 ⎠

⎟
⎞

×
1

𝑀𝑀𝑣𝑣𝑣𝑣𝐶𝐶𝑣𝑣
 (15) 

As can be seen in (14) and (15), the two coefficients 𝑤𝑤 and 𝜏𝜏 are added to the model. 𝑤𝑤 155 

influences the heating generated by the HVAC and 𝜏𝜏 affects the overall room temperature. 156 

The rationale for the introduction of these two coefficients can be explained using a practical 157 

example. Analyzing Fig. 2 in further detail, one can detect two different contexts in which 158 

with an additional coefficient is possible to improve the accuracy of the model. The first 159 

context is when the HVAC is off (1:00h to 10:00h and 18:00 to 24:00). The other context is 160 

when HVAC is on (10:00 to 18:00). In order to deal with the periods when the HVAC is on, 161 

a coefficient 𝑤𝑤 is added, which directly multiplies the HVAC power, simulating the HVAC  162 

system efficiency deterioration over time. For the periods when the HVAC is off, the 163 

coefficient 𝜏𝜏 compensates positively (up) or negatively (down) the temperature. This is done 164 

since the model may not gather all the necessary components and there must be an increase 165 

in the estimated temperature, or in some cases, the existing ones are above the real values 166 

with an increase in the estimated values and it is necessary to reduce it. In this sense, the 167 

value of 𝜏𝜏, single in each building part that is intended to be modeled, can assume a negative 168 

or positive value. 169 

2.2. Computational intelligence algorithms 170 

This section presents the computational intelligence algorithms used to optimize the 171 

values of coefficients 𝑤𝑤 and 𝜏𝜏. To compare the results with large robustness, four different 172 

algorithms are used, namely Particle Swarm Optimization (PSO) [16], Differential Evolution 173 
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(DE) [17], Hybrid-adaptive differential evolution with decay function (HyDE-DF) [18], and 174 

Vortex Search algorithm [19] (VS). Each of the algorithms will look for the best set of 175 

coefficients according to equation (18) that minimizes equation (19). 176 

𝑥⃗𝑥 = [𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3, … , 𝜏𝜏𝑁𝑁𝑁𝑁;𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, … ,𝑤𝑤𝑁𝑁𝑁𝑁] (16) 

minimize: 𝑓𝑓(𝑥𝑥) = �(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟)
𝑁𝑁𝑁𝑁

𝑟𝑟=1

  (17) 

where, 𝑥⃗𝑥 represents the vector of the decision variables containing two different coefficients 177 

for each room, resulting in a dimension of 𝐷𝐷 = (2 ∗ 𝑁𝑁𝑁𝑁) = 2 ∗ 10 = 20 . Equation (17) 178 

represents the objective function considering the minimization of the total errors. Notice that 179 

it is possible to select the error metric,  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟, between the Mean Absolute Error (MAE) 180 

equation (18) or Root Mean Squared Error (RMSE) equation (19).  181 

MAE and RMSE measure the difference between the values obtained with the proposed 182 

model and the real values. Equation (16) and (17) are used to obtain the MAE and RMSE 183 

values, respectively.  184 

MAE =
∑ |𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 |𝑁𝑁𝑁𝑁
𝑡𝑡=1

𝑁𝑁𝑁𝑁
 (18) 

RMSE = �
1
𝑁𝑁𝑁𝑁

�(𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 )2 
𝑁𝑁𝑁𝑁

𝑡𝑡=1

 (19) 

where 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡  is the value obtained considering the model, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡  is the real value measured 185 

and 𝑁𝑁𝑁𝑁 is the total number of periods. 186 

• Particle Swarm Optimization  187 
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PSO is an optimization algorithm that iteratively searches the improvement of solutions 188 

regarding a given fitness function. It contains a population of possible solutions, here called 189 

particles, and move these particles around the search-space according to equation (20) 190 

(describing the particles position) and equation (21) (describing how the velocity of particles 191 

is updated).  192 

𝑥⃗𝑥𝑖𝑖+1
𝑗𝑗 = 𝑣⃗𝑣𝑖𝑖+1

𝑗𝑗 + 𝑥⃗𝑥𝑖𝑖
𝑗𝑗 (20) 

𝑣⃗𝑣𝑖𝑖+1
𝑗𝑗 = 𝑤𝑤𝑖𝑖

𝑗𝑗 × 𝑣⃗𝑣𝑖𝑖
𝑗𝑗 + 𝑐𝑐1𝑖𝑖

𝑗𝑗 × 𝑟𝑟1𝑖𝑖
𝑗𝑗 × �𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑗𝑗 − 𝑥⃗𝑥𝑖𝑖
𝑗𝑗� + 𝑐𝑐2𝑖𝑖

𝑗𝑗 × 𝑟𝑟2𝑖𝑖
𝑗𝑗 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥⃗𝑥𝑖𝑖

𝑗𝑗� (21) 

where 𝑥⃗𝑥𝑖𝑖
𝑗𝑗  represents the position vector of particle 𝑗𝑗  for 𝑛𝑛  variables at iteration 𝑖𝑖 , 𝑣⃗𝑣𝑖𝑖

𝑗𝑗 193 

represents the velocity vector, 𝑤𝑤𝑖𝑖
𝑗𝑗 represents the inertia weight obtained through equation 194 

(22), 𝑐𝑐1𝑖𝑖
𝑗𝑗  and 𝑐𝑐2𝑖𝑖

𝑗𝑗  are acceleration coefficients obtained by equations (23) and (24) 195 

respectively, and 𝑟𝑟1𝑖𝑖
𝑗𝑗 and 𝑟𝑟2𝑖𝑖

𝑗𝑗 are two uniformly distributed random numbers independently 196 

generated within [0,1] for the n-dimensional search space. 197 

𝑤𝑤𝑖𝑖
𝑗𝑗 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − �

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
� × 𝑖𝑖 (22) 

where 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value for the inertia weight, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum value for 198 

the inertia weight, and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum number of iterations.  199 

𝑐𝑐1𝑖𝑖
𝑗𝑗 = 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 − �

𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
� × 𝑖𝑖 (23) 

𝑐𝑐2𝑖𝑖
𝑗𝑗 = 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 + �

𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
� × 𝑖𝑖 (24) 

• Differential evolution  200 
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DE is also an iterative algorithm that searches for a solution considering a fitness 201 

function. In the standard form of DE, the so-called DE/rand/1 algorithm, new solutions are 202 

created applying a mutation and recombination operator defined by: 203 

𝑚𝑚��⃗ 𝑖𝑖,𝐺𝐺 = 𝑥⃗𝑥𝑟𝑟1,𝐺𝐺 + 𝐹𝐹�𝑥⃗𝑥𝑟𝑟2,𝐺𝐺 − 𝑥⃗𝑥𝑟𝑟3,𝐺𝐺� (25) 

𝑡𝑡𝑗𝑗,𝑖𝑖,𝐺𝐺 = �
𝑚𝑚��⃗ 𝑖𝑖,𝐺𝐺 if �rand𝑖𝑖,𝑗𝑗[0,1] < Cr ∨ (𝑗𝑗 = Rnd)�
𝑥⃗𝑥𝑗𝑗,𝑖𝑖,𝐺𝐺 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                              

, (26) 

where,  𝑥⃗𝑥𝑟𝑟1,𝐺𝐺 , 𝑥⃗𝑥𝑟𝑟2,𝐺𝐺and 𝑥⃗𝑥𝑟𝑟3,𝐺𝐺  are three random individuals from the population, mutually 204 

different from each other. 𝐹𝐹 and Cr are the mutation and recombination parameters of DE, 205 

usually set in the range [0,1]. An elitist selection procedure is applied in DE by replacing 206 

solution with worse performance than the new generated ones.  207 

• HyDE-DF 208 

HyDE-DF is an improved version of HyDE [21], and HyDE is a new self-adaptive 209 

version of DE proposed in [22]. The main difference in its operation is the incorporation of 210 

a decay function as can be seen in equation (27): 211 

𝑚𝑚��⃗ 𝑖𝑖,𝐺𝐺 = 𝑥⃗𝑥𝑖𝑖,𝐺𝐺 + 𝛿𝛿𝐺𝐺  ∙ �𝐹𝐹𝑖𝑖1�𝜖𝜖 ∙ 𝑥⃗𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥⃗𝑥𝑖𝑖,𝐺𝐺�� + 𝐹𝐹𝑖𝑖2�𝑥⃗𝑥𝑟𝑟1,𝐺𝐺 − 𝑥⃗𝑥𝑟𝑟2,𝐺𝐺� (27) 

where 𝛿𝛿𝐺𝐺 is a decreasing function (from 1→0) that gradually mitigates the importance around 212 

𝑥⃗𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The decay factor at each generation 𝐺𝐺 is calculated considering equation (28): 213 

𝛿𝛿𝐺𝐺 = 𝑒𝑒1−
1
𝑎𝑎2 ,   with      𝑎𝑎 = (𝐺𝐺𝐺𝐺𝐺𝐺−𝐺𝐺)

𝐺𝐺𝐺𝐺𝐺𝐺
 (28) 

𝛿𝛿𝐺𝐺 parameter controls the premature convergence effect around 𝑥⃗𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (best individual). This 214 

process allows an increased exploration process in the initial stages of search and contributes 215 

to a higher exploitation in final stages of the optimization process. 216 

• Vortex Search 217 
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VS is a single-solution-based algorithm, to obtain a good balance between the exploration 218 

and the exploitation, the search process of the vortex search algorithm is modeled as a vortex 219 

model. In each iteration, a number 𝑁𝑁 of neighbor solutions are created using a Gaussian 220 

distribution considering the initial solution using equation (29): 221 

𝑝𝑝(𝑚𝑚��⃗ /𝜇𝜇,∑) =
1

�(2𝜋𝜋)𝑑𝑑|∑|
exp �−

1
2

(𝑥⃗𝑥 − 𝜇𝜇)𝐺𝐺∑−1(𝑥⃗𝑥 − 𝜇𝜇)� (29) 

where 𝑑𝑑 represents the dimension, 𝑥⃗𝑥 is the vector of a random variable, 𝜇𝜇 is the vector of 222 

sample mean (center), and ∑ is the covariance matrix. 223 

2.3. Optimization process 224 

Fig. 3 presents the general diagram of the optimization process using a metaheuristic 225 

algorithm. 226 

Fig. 3. Optimization process diagram.     228 
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In the “Inputs” phase, the characteristics of buildings should be defined (areas, the 229 

conductivity of materials, among others) and the number of iterations, population size, and 230 

specific parameters that each algorithm needs to work. After the previous phase, the objective 231 

function and related constraints should be defined. As explained before, MAE or RMSE can 232 

apply as objective functions. In the “Optimization process” process, a solution should be 233 

founded considering specific steps. Therefore, the solution found should minimize the value 234 

of the error metric, obtaining the best values for the coefficients (w and τ) of the proposed 235 

thermal heating model. PSO, DE, HyDE, and VS can be used to realize the optimization 236 

process. In “Output results,” the results are obtained when the process reaches the maximum 237 

number of iterations, defined as the stopping criteria for all algorithms. As a result, the 238 

algorithms return the best value for the objective function and the best value for each variable, 239 

representing the value for each coefficient of the proposed model.   240 

3. Case studies 241 

This section describes the characteristics of the building considered in the experiments, 242 

presents the obtained results, and the outcome of the analysis regarding the proposed model 243 

performance. The experiments have been conducted using MATLAB2018a in a computer 244 

with Intel Xeon(R) E5-2620v2@2.1 GHz processor with 16GB of RAM running Windows 245 

10. The experimental study considered the following cases: 246 

• Baseline - thermal heating model without redefined coefficients (equation (11));  247 

• Case 1 - thermal heating model with redefined coefficients considering MAE as the 248 

Error (equation (18)) in the objective function of equation (17); 249 

• Case 2 - thermal heating model with redefined coefficients considering RMSE 250 
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(equation (19)) as the Error in the objective function of equation (17). 251 

3.1. Building characteristics  252 

The building used in the case study is located in Porto and has the following GPS 253 

coordinates (41°10'45.8"N 8°36'31.2"W). As aspect of the building is shown in Fig. 4. 254 

  
a) b) 

Fig. 4. Test building, a) exterior building view and b) floorplan.     255 
Fig. 4b) presents the floorplan of the building. As can be seen, the building has 20 256 

different parts, corresponding to 11 office rooms, 3 halls, 2 bathrooms, 2 server rooms, 1 257 

kitchen, and 1 meeting room. For the experiments, we have considered 7 office rooms, 1 258 

server room (N104), 1 meeting room (N101) and 1 hall. The considered parts are highlighted 259 

in blue in Fig.4 b). TABLE I presents the physical characteristics of the building.  260 

TABLE I. BUILDING PHYSICAL CHARACTERISTICS 261 

Building Parts 

Contact - exterior   Contact - interior 

Area (m2) Coefficient 
(W/m2oC) Area (m2) Coefficient 

(W/m2oC) 
Wall Glass Wall Glass Wall Glass Wall Glass 

Rooms 

N101 14.7 3.3 

1.31 2.85 

13.5 4.5 

2.31 1.71 

N102 15.8 2.2 12.24 5.76 
N103 5.98 1.1 20.76 7.44 
N104 3.36 0 24.48 0 
N105 5 2.2 17.92 10.4 
N106 6.1 1.1 17.92 10.4 
N107 6.22 1.1 20.44 8 
N108 14.7 3.3 7.68 10.32 
N109 6.1 1.1 17.26 11.34 

Hall 25.02 3.3 23.16 16.08 
 262 
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For each space considered in the experiments, TABLE I presents wall and glass windows 263 

areas in contact with the exterior and with other indoor parts. The heat transfer coefficients 264 

represent the rate of heat transfer between two different surfaces per unit surface area and per 265 

unit temperature difference. Analyzing the coefficients values listed in the table, there are 266 

two different groups of walls and two different groups of glass windows: the group in contact 267 

with the exterior and the group in contact with indoor parts. Fig. 5 shows the information of 268 

contact between different sections of the building considered in the case study.  269 

  
a) b) 

Fig. 5. Contact area matrix, a) building parts and b) windows 270 
Comparing Fig. 5 a) and b) with Fig. 4 b), it is possible to see which rooms are in contact 271 

with each other. Fig. 5a) presents the contact wall area of each part of the building. For 272 

instance, room N101 has a contact area of 6.3m2 with room N102, 3.5m2 with the Hall, and 273 

14.7m2 with the Exterior. Analyzing Fig. 5 b), it is also possible to see the glass area (i.e., the 274 

windows) that separated the building parts. For instance, room N102 has shared windows 275 

areas of 4.5m2, 3.36m2, and 2.2m2 with room N101, room N103, and the exterior, 276 

respectively. A value of 0 in Fig. 5 represents no contact between the parts (e.g., room N101 277 

is not in contact with the room N104). Fig. 6 shows the data regarding indoor and outdoor 278 

temperature and number of components in the building for a winter day, specifically on 13th 279 

January 2020. Fig. 6 a) presents the mean indoor temperature of the building and outdoor 280 
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temperature, and Fig. 6 b) displays the input components considered in the presented model 281 

(number of lights on, number of computers on and number of people inside the building). 282 

These components are presented only for the building parts in study and are used to capture 283 

the heat transfer gathered from such elements.   284 

  
a) b) 

Fig. 6. Building data for 13th January 2020, a) Outdoor and indoor temperature, b) number of lights 285 
turned on, computers turned on and people inside the building 286 

As can be seen in Fig. 6 a), the mean indoor temperature of the entire building has a 287 

similar behavior to the outdoor temperature, despite being always higher. This indicates that 288 

the building is drastically affected by changes in the outdoor temperature. The indoor 289 

temperature reaches its minimum value around 9 am (around 14°C) and its maximum around 290 

6 pm (22°C). The used data sample regards a normal working day in the building before the 291 

start of the Covid 19 pandemic in Portugal. Fig. 6 b) presents three different input 292 

components: the number of lights on, the number of computers on, and the numbers of people 293 

inside the building. As can be seen in the figure, the number of lights on has a maximum of 294 

13 in three moments, the number of computers on vary from 8 to 12, and the maximum 295 

number of people inside the building in study was registered at 15:00 with 12 people. Fig. 7 296 

presents the comparison between the total electricity consumption of the building parts 297 
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involved in the case study and the total HVAC consumption in these parts. The consumptions 298 

presented in Fig. 7 are for the same day as Fig. 6 a) and b). 299 

300 
Fig. 7. Electricity consumption for 13th January 2020 301 

As can be seen in Fig. 7, the HVAC load has a direct influence on the total load. HVAC 302 

load represents around 46% of the total load, and each building space considered in the case 303 

study has an HVAC average consumption of 3.6 kWh per day. At the end of the day, the total 304 

load presents a cumulative value of 79.75 kWh. 305 

3.2. Results 306 

In order to obtain more robust solutions, 30 different runs were executed for each 307 

algorithm. The comparison between the results obtained with the base case (without the two 308 

coefficients and the respective optimization) and the proposed model with coefficients 309 

optimized, is presented in TABLE II. 310 

TABLE II presents two different results, the best-of-run value obtained for the 30 runs, 311 

and the mean and standard deviation values obtained over the set of 30 performed runs. 312 

Analyzing these results, it is possible to see a reduction of error values in both metrics for all 313 

the proposed models compared with the baseline case. Considering the results for Case 1 314 

(MAE as optimization evaluation metric), the best algorithm is the DE, presenting a slight 315 

difference of 6.43E-05 compared with the second best, the HyDE-DF. 316 
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TABLE II. OPTIMIZATION RESULTS 317 

Scenario Model 
Best-of-run value   Mean and standard 

deviation over 30 runs Execution 
time(s) 𝑓𝑓(𝑥𝑥) ∑^(𝑀𝑀𝑀𝑀𝑀𝑀) ∑(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) mean�𝑓𝑓(𝑥𝑥)� std�𝑓𝑓(𝑥𝑥)� 

Base Case* - 28.132 38.664 - - - 

Case 1 - MAE 

PSO 6.938 6.938 10.122 11.165 3.582 540.321 

DE 5.479 5.479 7.503 5.514 0.113 536.746 

HyDE-DF 5.479 5.479 7.502 5.479 6.29E-05 540.268 

VS 5.480 5.480 7.505 5.497 0.019 522.263 

Case 2 - RMSE 

PSO 9.000 6.516 9.000 15.446 4.565 517.635 

DE 7.334 5.637 7.334 7.345 0.024 515.940 

HyDE-DF 7.334 5.637 7.334 7.334 6.05E-07 515.717 

VS 7.335 5.634 7.335 7.351 0.026 513.666 
*The case-base uses the model shown in Equation 11 and therefore optimization is not required 318 

Looking at the mean values and standard deviation of the 30 runs, HyDE-DF presents the 319 

lowest values of the group of used algorithms. This feature is an indicator that HyDE-DF 320 

gives solutions that are more robust and less sensitive to variability for this test, allowing a 321 

reduction on the number of runs due to its low variability. PSO presents the worst 322 

performance within the group of algorithms tested in Case 1 in both indicators.  323 

Considering the results of Case 2 (using RMSE), the same trend is observed with DE 324 

obtaining the minimum value with a difference of only 4.54E-06 concerning the second best, 325 

the HyDE-DF. Again, HyDE-DF presents the best results in terms of mean and standard 326 

deviation values. Comparing the results of Case 1 and Case 2, it can be seen that for Case 1, 327 

where the MAE is evaluated as error metric, the RMSE metric does not present a better value 328 

than the one obtained in Case 2 (where the RMSE is the error metric optimized), and vice 329 

versa (notice that in Case 2 the calculated MAE never has a smaller value than the one in 330 

Case 1). It thus can be concluded by the results that besides enabling better results, the use 331 

of RMSE metric has a positive impact in the execution time. On average, a run with RMSE 332 
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takes less than 20 seconds than using MAE. The runtime values shown are the mean values 333 

over the set of 30 runs. 334 

Fig. 8 presents the objective function value for the undertaken iterations, considering 335 

MAE and RMSE, in Fig. 8a) and in Fig 8b), respectively. Fig. 8a) and b) present the mean 336 

results over the 30 runs at each iteration for all models tested. The reference value presented 337 

in both figures corresponds to the value of the Base Case presented in TABLE II for both 338 

error metrics. The performance of DE and HyDE-DF are very similar, finding a good solution 339 

within the first 100 iterations. Notice that PSO presents a similar performance, but the final 340 

solution achieved has a higher value. On the other hand, VS achieves a similar final solution 341 

compared with DE and HyDE-DF, but the convergence behavior is different. As can be seen 342 

in the figures, the value of objective function stabilizes at 550 iterations, achieving a final 343 

value near to the one obtained by DE and HyDE-DF. It can be concluded that VS can avoid 344 

a premature convergence of solutions scaping from local optimal solutions in spite of not 345 

showing the best results when analyzing the evolution of the objective function. Fig. 9 346 

presents the errors obtained in the simulations for simulations considering MAE and for 347 

simulations considering RMSE, in Fig 9a) and Fig. 9b), respectively. 348 

  
a) b) 

Fig. 8. Objective function value, a) using MAE and b) using RMSE 349 
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Comparing the values of MAE and RMSE for the Base Case, it can be seen that the 350 

maximum MAE value regards room 104 both for MAE and RMSE. Analyzing Fig. 9a) and 351 

Fig 9b), it can be noticed that the error for the base case is very high for room N104. This 352 

can be explained since room 104 is the room where the computer servers are located and has 353 

very particular characteristics. For instance, the HVAC is set so that the temperature in that 354 

never exceeds 18ºC and, therefore, there is an automatic system that turns on the HVAC 355 

system whenever that situation occurs. Due to the results achieved with the error metrics for 356 

the Base Case, the proposed model includes a multiplicative coefficient to the HVAC power 357 

in the thermal model. As can be seen from the results for both MAE and RMSE, the proposed 358 

models lead to a decrease of 98% in the error for Room N104, compared with the error of 359 

the Base Case. Overall, a decrease in the respective error is verified for all rooms. Room 360 

N106 in Case 1 presented a smallest decrease (0.15%). Room N106 also presents the smallest 361 

decrease in Case 2, around 6%.  362 

  
a) b) 

Fig. 9. Errors per building part, a) using MAE error, and b) using RMSE value 363 
 364 

TABLE III presents the values of each coefficient for each building space corresponding 365 

to the solution with the minimum achieved value (i.e., the solution found by the DE 366 

algorithm). 367 
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 368 

TABLE III. COEFFICIENTS’ VALUE OPTIMIZED. 369 

Building Parts 
Coefficients 

𝑤𝑤 𝜏𝜏 
Case 1 Case 2 Case 1 Case 2 

Rooms 

N101 0.151 0.153 0.042 0.021 
N102 0.143 0.128 0.795 0.879 
N103 0.353 0.406 -0.169 -0.104 
N104 0.207 0.207 0.122 0.137 
N105 0.128 0.166 -0.201 -0.194 
N106 0.735 0.227 -0.035 -0.115 
N107 0.741 0.781 1.532 1.442 
N108 0.034 0.031 -0.094 -0.157 
N109 0.604 0.563 1.651 1.638 

Hall 0.574 0.112 -0.086 -0.206 
 370 

By analyzing the results presented in TABLE III, it can be observed that the values in 371 

both cases follow the same trend of positive or negative numbers. Values for 𝑤𝑤 in Case 1 372 

have a mean value of 0.367, and in Case 2, a mean value of 0.277. Considering the case of 373 

𝜏𝜏, in Case 1, a mean of 0.356 is obtained, and in Case 2 the mean is 0.334. Comparing the 374 

values for each room in the different cases, they are quite similar, except for room N106 for 375 

which the values are very different. The 𝑤𝑤 in Case 1 is greater than the one obtained in Case 376 

2; for the value of 𝜏𝜏, the opposite happens.    377 

Fig. 10 presents the temperature values obtained for room N102. The coefficient 𝜏𝜏 in this 378 

room will cause the values obtained by the Base Case model to rise at each instant to values 379 

closer to the real value (note that 𝜏𝜏 is a unique value applied to all periods). The coefficient 380 

𝑤𝑤 will only have an influence when the HVAC starts operating, as this is directly multiplied 381 

by the HVAC power. In this specific case, it will allow a drop in the value obtained by the 382 

model in the Case Base, getting closer to the real value. Room N102 in the Base Case has a 383 

MAE of 2.24 and a RMSE of 2.57, while for Case 1 the MAE is 0.57 (reduction of 75%) and 384 

for Case 2 the RMSE is 0.85 (reduction of 67%). Looking at the reported values, the use of 385 
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coefficients 𝜏𝜏  and 𝑤𝑤  in the proposed models enables a significant improvement of the 386 

thermal heating model. 387 

Fig. 10. Temperatures values for Room N102 389 

4. Conclusion  390 

This work presents the conception, design, and refinement of a model to estimate the 391 

indoor temperature in different of rooms building. The refinement process adapts the model 392 

in a way that it is fitted to a specific part of the building. Real measured data acquired from 393 

each building space has been utilized in the model performance analysis. Based on the 394 

simulations and on the best result achieved by the proposed models, the average MAE and 395 

RMSE during the considered 24 hours, divided in 96 periods of 15 minutes each was 5.5ºC 396 

and 7.3 ºC respectively. The achieved results show a significant improvement when 397 

compared to the Base Case, which represents the baseline indoor temperature model from 398 

the literature and presents a MAE of 28.13 ºC and RMSE of 38.66 ºC.  399 

In addition, the use of different computational algorithms brings more robustness to the 400 

results. Results demonstrate an acceptable accuracy for the various building parts of the case 401 

study. Generalizing the model structure allows implementing and adapting the model to the 402 

other rooms or to other buildings.  403 
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Resumen 

Los mercados eléctricos locales se perfilan como una solución natural para 
superar los retos que plantea la penetración masiva de la generación renovable 
distribuida, y la consiguiente necesidad de situar a los consumidores como 
actores centrales del sistema, con un papel activo y dinámico. Si bien existe una 
literatura significativa que aborda el tema de los mercados eléctricos locales, este 
sigue siendo un tema bastante nuevo y emergente. Por lo tanto, este documento 
proporciona una visión general de este dominio y brinda una perspectiva sobre 
las necesidades futuras y los desafíos que deben abordarse. Esta revisión presenta 
los conceptos más importantes en el dominio del mercado eléctrico local, brinda 
un análisis sobre los diferentes marcos regulatorios y de políticas, expone las 
iniciativas mundiales más relevantes relacionadas con la implementación de 
campo de los mercados eléctricos locales y analiza los modelos alternativos de 
mercado local propuestos en la literatura. La discusión presenta los principales 
beneficios y barreras de los modelos de mercado local actualmente propuestos, y 
el impacto esperado de su implementación generalizada. La revisión se concluye 
con la recapitulación y discusión sobre los caminos más relevantes para futuras 
investigaciones y desarrollos en este campo de estudio.
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ABSTRACT 

Local electricity markets are emerging as a natural solution to overcome the challenges brought by the massive 

penetration of distributed renewable generation, and the consequent need to put consumers as central players in 

the system, with an active and dynamic role. Although there is significant literature addressing the topic of local 

electricity markets, this is still a rather new and emerging topic. Hence, this paper provides an overall view on this 

domain and provides a perspective on future needs and challenges that need to be addressed. This review 

introduces the most important concepts in the local electricity market domain, provides an analysis on the different 

policy and regulatory framework, exposes the most relevant worldwide initiatives related to the field 

implementation of local electricity markets, and scrutinizes the alternative local market models proposed in the 

literature. The discussion puts forth the main benefits and barriers of the currently proposed local market models, 

and the expected impact of their widespread implementation. The review is concluded with the wrap-up and 

discussion on the most relevant paths for future research and development in this field of study. 

Keywords: Local Electricity Markets, Peer-to-Peer, Prosumers, Structure of Local Electricity Markets, 

Worldwide Initiatives 
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1. Introduction 

This paper explores the concept of local electricity markets (LEM), which comprises the electricity transactions 

and negotiations at the distribution level. The emergence of LEM aims at making the energy system more 
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sustainable, reliable, and accessible by different stakeholders [1]–[3]. To attain these goals, system management 

should no longer be restricted to top-down approaches, and should accommodate bottom-up approaches with 

greater involvement of local grid operators and the active participation of end-users [4]. 

In energy markets trade shoud be beneficial to all the respective contractors and different players contribute to 

bring increased competition. Electrical energy negotiation is still a complicated process, directed to large players, 

which until today prevents small and medium end users to benefit from a competitive market model. Due to 

current regulatory frameworks, consumers are still only allowed to establish simple contracts with energy retailers, 

which guarantee the energy supply under certain conditions. Currently, with the development of the Internet of 

Things technologies, which in turn gave rise to the so-called transactive energy (TE) concept [5], [6], the 

development of end user-centric electricity market structures is facilitated [7]. However, the widespread 

implementation of these new local market structures, will only be possible with the involvement and commitment 

of the end users. For that, these must be aware of the possibilities and benefits that market participation bring to 

them and have the required conditions to participate. Nowadays a significant number of end-users have their own 

distributed generation sources, namely rooftop photovoltaic panels, acting as small-scale electricity producers. 

This enables them to trade electricity in an autonomous way in the LEM structures [8] given that the right 

conditions are ensured. 

This paper presents a review that identifies and discusses the different proposed approaches regarding LEM 

structures. For this, a survey of projects and publications that address the LEM structures is carried out. The 

existing regulation that from our point of view encourages the creation of the LEM and that will possibly regulate 

the LEM is also reviewed and discussed. Another relevant contribution of the paper is the proposed classification 

for the LEM structures. This classification is based on the works found in the literature, which have been carefully 

selected, and are classified according to the analysis made in this review.  

The literature reviewed in the following sections highlights research on EU energy regulation to incentivize 

LEM adoption, the worldwide initiatives, including projects and real pilots, research publications, benefits and 

main barriers identifications for LEM implementations, and future research paths that LEM can follow. The key 

topics found in the literature reviewed in this work are summarized in Figure 1. 
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Figure 1 – Concepts reviewed in this work 

The key topics appearing around the figure are distributed within the sections of the paper. Considering the EU 

energy regulation, energy policy and the related legislation are analyzed. From worldwide initiatives, a list of 

research projects, a description of three platforms, and one open framework are presented. This work's main topic 

consists of exploring and analyzing research publications to find the possible LEM structures. The benefits and 

barriers are identified according to their similarities presented within the research publication. Finally, the future 

research paths are identified and explored. All these topics are briefly explained and referenced in this work. 

The paper is organized into six different sections. The first divided into two different sections, introduces the 

addressed topics, identify the motivations and contributions, contextualizes LEM and presents the related most 

relevant concepts. The second section presents an overview of most important EU regulation that has a relation to 

the LEM implementation and operation. Section three presents a list of worldwide initiatives relevant to LEM, 

including an overview of EU projects related with the implementation of LEM and considering transaction of 

energy and services. Section four presents a detailed description of LEM along with three different structures for 

LEM implementation. Section five presents a discussion related with the implementation of LEM including the 

main identified benefits and barriers. Finally, in section six the conclusions of the work are drawn, and the 

envisaged future directions are presented. 

1.1. Motivations and Contributions 

The directive on the European electricity market 96/92 EC [9] takes strong steps towards the liberalization of 

the electricity markets and had significant impact on the 27 member states. One of the important aspects in this 

directive is the non-discriminatory access to the electricity grid for third parties, thus enabling energy-free trade 

and boosting competition. Currently, the electricity market comprises the wholesale market and the retail market. 



4 

 

While the wholesale market regards the transaction of large quantities of energy, supporting transactions between 

large generators and other large players, the retail market is targeted at smaller consumers. Currently, in most 

retail markets, the consumer can freely choose any retailer operating in the respective geographic area, thus 

enabling market competition among the different retailers [10]. 

The share of renewable energy installed in final electricity end-users has increased considerably in recent years. 

The European Commission Energy Roadmap 2050 specifies that 75% of the gross final energy consumed in 2050 

should be ensured by renewable sources [11]. A large part of the renewable facilities is decentralized and small 

scale. At the same time, micro-generation at home has great potential and enables consumers to gain control over 

their energy bill and actively participate in electricity markets.  

A significant part of renewable-based generation of electricity uses primary energy sources that are intermittent, 

such as the sun and wind, and, in many cases, energy generation becomes highly geographically distributed, with 

a significant share of small-scale generation. This creates a whole new level of challenges for power systems 

requiring a paradigm change, where the traditional approach of large-scale generation units being dispatched 

based on current load is no longer suitable [12]. Smart grids (SG) create opportunities for short-term actions as 

they provide users with real-time information on the supply, demand, and operation of the grid. SGs are therefore 

an important enabler for the transition of the European energy system based on renewable energies.  

Energy communities are also gaining interest and value, according to REScoop.eu [13], in annual report 2021 

[14], their network has 1900 energy cooperative in Europe. According to the EC, the interest in LEM for local 

energy communities is a consequence of the current trend towards the carbonization of the European electricity 

system that is occurring through the propagation of renewable energy sources [15]. Energy cooperatives can be a 

contribution to mitigate the existing monopolies in the energy domain, as these cooperatives can provide the kind 

of services that end-users need [16]. By 2050, it is expected that in the European electrical system there will be 

millions of prosumers, electric vehicles, and distributed storage systems with the capacity to provide energy and 

flexibility. Reference [17] presents a perspective considering a wholesale market coexisting with multiple local 

markets geographically distributed. Moreover, the creation of LEM can overcome to some of the economic and 

efficiency challenges that energy cooperatives face. 

Based on the literature analysis it is clear that electrical power systems are facing major changes and require a 

different approach on the consumption and production of electricity [18]. The new approaches should consider 

end-users with active participation and essential roles in the new electricity markets models. In references [19], 
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[20], the authors mention that the key to innovation in the energy sector is to develop consumer-centric business 

models and to define demand-side management programs carefully.  

LEM focus on local production and consumption [21]–[23] and aim to address relevant issues in the current 

electricity markets, by considering the local context [7]. The creation of new business models for local power 

supply has the potential to establish the necessary conditions for small community generators [24]. Local energy 

trade significantly contributes to the autonomy of micro-grids, reducing their demand and dependence from the 

main grid [25]. Local markets can also be beneficial for the grid [26]. Some grid investments can be avoided by 

using local flexibility sources, as the additional capacity would only be used for a few hours a year. The need for 

additional grid capacity can be overcome if the DSOs locally contract flexibility sources as part of their planning 

activities [27]. 

Table 1 presents the different motivations for the emergence of local electricity markets, based on [4], [25], 

[28]–[34]. 

Table 1 – Motivations for LEM emergence 

Area Motivation Purpose Ref. 

Economic 

Competitiveness 
“it is important to consider the effect of actor roles and responsibilities for managing 
the electric flexibility from resources locally in the regulatory context of energy retail 

competition.” 

[31] 

Job creation 
“Thus, the use of renewable energies has significant potential to create value-added 

and employment effects throughout Germany” 
[32] 

Grid investment 

deferral 

“If the DSO actively contracts flexibility as part of grid planning activities, then it can 

be said that investment deferral is a purpose of using local contracting” 
[4] 

Energy 

security 

Energy 

independence 

“Whilst a distributed energy future would mean a high proportion of energy is 
generated locally, this was not shown to lead to energy independence, even with the 

high levels of demand reduction” 

[33] 

Energy policy 

Adequate market 

model 

“New rules making the EU's electricity market fit for the future and putting the 
consumer at the center of the energy transition have been signed off by the European 

Parliament today” 

[34] 

Social Cohesion  
“a more bottom-up approach is required with a larger involvement of the regional 

(local) grid operators and the proactive end users” 
[4] 

Environmental 
Carbon emissions 

reduction 

“less electricity will be generated by conventional generators leading to less 

greenhouse gas emissions.” 
[25] 

As shown by Table 1, most LEM related works are motivated in their majority by economic and energy policy 

drivers, highlighting the competitiveness as an important factor that can motivate the electricity end-user to switch 

their interest to the LEM applications. The existing works in this domain have already been reviewed by some 

dedicated studies. Table 2 presents a summary of review papers found in the literature related with LEM, TE and 

pear-to-peer (P2P) subjects. In total twelve publications are presented. This table was built considering the main 

topic of the publication and, more specifically, the matters on which the works are focused. With the analysis of 

these works and their focus, the gap which this paper addresses are identified.  
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Table 2 – Published Local Electricity Markets Literature Review Papers 

Ref. Year Main Topic Address: 

[35] 2016 Electricity markets Prosumers markets models 

[36] 2017 Peer-to-Peer Peer-to-Peer energy trading projects identification 

[5] 2017 Peer-to-Peer Challenges reviews  

[1] 2017 Local Energy Markets Market designs, Biding strategies 

[37] 2018 Local Energy Markets  Designs models, Clearing approaches 

[38] 2018 Peer-to-Peer Energy trading architectures, DR optimization methods, Power Routing 

[39] 2019 Peer-to-Peer Practical implementation 

[6] 2019 Transactive Energy ICT technologies  

[40] 2019 Transactive Energy ICT technologies 

[41] 2020 Transactive Energy ICT technologies, Architecture 

[42] 2021 Local Markets Practical implementations review   

[43] 2021 
Local Electricity 

Markets 
Challenges Review, Practical implementation  

This 

paper 
 

Local Electricity 

Markets 
Theoretical models, Projects identification, Regulation identification 

Table 2 shows that there are three big terms related to LEM: P2P, LEM and TE. A review focused on ICT 

technologies is usually the approach when addressing the topic of TE [6], [40], [41]. Regarding the peer-to-peer 

[5], [36], [38], [39] and local electricity markets [1], [37], [42], [43] focused reviews, the studies address different 

aspects, as Table 2 shows. From the analysis of these reviews, the authors identify a significant gap in the 

classification and categorization of markets at the local level. Therefore, the authors decide to consider these as 

the main aspects related to LEM addressed by this research. Evolving from [36], projects related to LEM 

implementation are identified and discussed in this study. The regulation analysis is also a gap that the authors 

intend to answer with the identification of the main EU energy regulation, with direct influence on the future 

development of LEM. Finally, the comparison of practical and theoretical implementations of LEM is undertaken 

and discussed. 

1.2. Local Electricity Market Concept   

Currently, there is no consensus regarding the local electricity market definition and there are different opinions 

regarding on how local markets should operate. However, there is a common idea in the literature that local 

electricity should facilitate energy transactions at the local level. A market can generally be defined as an 

environment where potential consumers and sellers of a given economic product engage in trade [27]. The EU 

Strategy Energy Technology Plan [44] states that the energy end-users are envisioned to be at the center of the 

future energy system. This requires to ensure that consumers are better informed and better protected, which is 

progressing along with new proposals for local markets and TE systems [15]. The following definition is adopted 

in this paper to characterize the terms of LEM [45]. 

Definition 1.  “as a market, a physical or virtual space (in this case local), in which the transactions between 

the actors are carried out taking into account the rules defined for the exchange of products or services in agreed 
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temporal horizons. Being that the main market elements are: actors, territory, transactions, market rules, product, 

services, physical or virtual space” 

LEMs have the potential to evolve with the restructuring of electric power system and to integrate small 

producers and prosumers with renewable generation into the energy supply system, as well as any other consumers 

without local generation. According to [1], LEM arise from the need to create suitable and adaptable markets to 

negotiate the energy needs of prosumers. According to [2], this type of market makes use of and combines smart 

grid technologies with the intention of coordinating the operations between grid, prosumers, distributed 

generation, connected to the distribution network, and consumers. LEM may include many sources of uncertainty 

and flexibility, such as renewable distributed generation, flexible demand, and storage [3]. 

LEM are relevant for microgrid structures [46] as they enable the implementation of market rules at the medium 

and low voltage levels of the system. Microgrids can take the form of energy communities with prosumers and 

consumers of various types as well as with storage facilities belonging to community members [47]. A 

community-based LEM will engage all its members and those who share the community interest in a range of 

business activities, thus serving to create a better and more sustainable energy environment for all stakeholders 

[16]. A similar concept is described in [48], using the term micro-market, which is described as an environment 

that allows all participants (consumers, producers, and prosumers) to share their energy in a competitive regime. 

In the same publication, the author presents the day-ahead micro-market. This market aims to organize local 

resources using market-based rules to participate in the wholesale market on the following day. 

LEMs provide energy-related exchanges that are usually combined with other community-adjusted services 

and products. LEMs can support flexibility services, aggregation support, energy efficiency measures, storage, 

financing, generation efficiency aid, installation services, and maintenance programs [16]. However, LEMs are 

not restricted to those services and they may support specific services for certain customers [16]. The provision 

of these services, as well as avoiding violations of network stability limits or energy stability issues, can be 

obtained through coordinated distributed energy resources usage. This coordination can be attained using 

appropriate price signals [49]. By using local consumption and generation, LEMs can reduce the price of 

electricity for end-users and also reduce transmission losses as presented in reference [23]. 

The distribution system operator can contract flexibility services in the scope of a LEM. In this way, considering 

the spatial specifications, the LEM can be considered as a new submarket for flexibility [27]. A market of local 

flexibility is a market of electricity trading to sell and buy flexibility, which is usually established in 

geographically limited areas. A local market for flexibility with a platform that support participants’ flexibility 
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negotiations is presented in [35]. This platform is also useful for sending information and scheduling actions. The 

Smart Energy Service Provider (SESP) is responsible for managing that platform and performs aggregator 

functions. In this way, the end-users submit their value of flexibility to the platform and SESP bids these offers 

on the wholesale market. 

The concept of P2P appeared with the evolution of the Internet, where it presented advantages over traditional 

hierarchies. P2P electricity trading has recently emerged and is gaining increased importance [50]. In the case of 

electricity markets, the P2P concept refers to the scenario in which all points of the distributed power system have 

equal responsibility and play an active role in the production and/or consumption of electricity. This paradigm is 

based on the possibility that all the consumers in the network can make their produced energy available for trade, 

becoming prosumers. Consumers thus take an active part in the electric power system [5]. The concept of P2P 

requires that new business models are created to be applied in the context of LEM. However natural distributed 

configuration of the distribution grid can facilitates the implementation of this market models which have as their 

main characteristic the decentralization [22].  

2. EU energy regulation in the Local Electricity Markets context 

Energy policy and the related legislation in the European Union Member States are guided by EU directives, 

thus affecting the political energy decisions of every EU member state. The climate change, security of supply 

and affordability/competitiveness has been referred as the energy policy trilemma in the EU [51]. This section 

outlooks the current regulation that will drive the implementation of LEM in the future. 

The EU energy policy is defined in article 194 (1) of treaty on the functioning of the European Union (TFEU) 

which obligates EU member states to make political decisions that [52]: 

1. Ensure a competitive Electricity market;  

2. Contribute to the security of supply;  

3. Promote energy efficiency, energy savings and new forms of renewable energy; 

4. Promote interconnected electricity networks.  

In this direction, EU began the preparation of three energy packages and an agenda focused on the sustainability 

and climate change. Those energy packages are also driving the implementation of LEM.  

The directive on the European electricity market 96/92 EC [9] takes strong steps towards the liberalization of 

the electricity markets and had significant impact on the 27 member states. One of the important aspects in this 

directive is the non-discriminatory access to the electricity grid for third parties, thus enabling energy-free trade 
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and boosting competition. Currently, the electricity market comprises the wholesale market and the retail market. 

While the wholesale market regards the transaction of large quantities of energy, supporting transactions between 

large generators and other large players, the retail market is targeted at smaller consumers. Currently, in most 

retail markets, the consumer can freely choose any retailer operating in the respective geographic area, thus 

enabling market competition among the different retailers [10]. 

The share of renewable energy installed in final electricity end-users has increased considerably in recent years. 

The European Commission Energy Roadmap 2050 specifies that 75% of the gross final energy consumed in 2050 

should be ensured by renewable sources [11]. A large part of the renewable facilities is decentralized and small 

scale. At the same time, micro-generation at home has great potential and enables consumers to gain control over 

their energy bill and actively participate in electricity markets.  

A significant part of renewable-based generation of electricity uses primary energy sources that are intermittent, 

such as the sun and wind, and, in many cases, energy generation becomes highly geographically distributed, with 

a significant share of small-scale generation. This creates a whole new level of challenges for power systems 

requiring a paradigm change, where the traditional approach of large-scale generation units being dispatched 

based on current load is no longer suitable [12]. Smart grids (SG) create opportunities for short-term actions as 

they provide users with real-time information on the supply, demand, and operation of the grid. SGs are therefore 

an important enabler for the transition of the European energy system based on renewable energies.  

Energy communities are also gaining interest and value, according to REScoop.eu [13], in annual report 2021 

[14], their network has 1900 energy cooperative in Europe. According to the EC, the interest in LEM for local 

energy communities is a consequence of the current trend towards the carbonization of the European electricity 

system that is occurring through the propagation of renewable energy sources [15]. Energy cooperatives can be a 

contribution to mitigate the existing monopolies in the energy domain, as these cooperatives can provide the kind 

of services that end-users need [16]. By 2050, it is expected that in the European electrical system there will be 

millions of prosumers, electric vehicles, and distributed storage systems with the capacity to provide energy and 

flexibility. Reference [17] presents a perspective considering a wholesale market coexisting with multiple local 

markets geographically distributed. Moreover, the creation of LEM can overcome to some of the economic and 

efficiency challenges that energy cooperatives face. 

Based on the literature analysis it is clear that electrical power systems are facing major changes and require a 

different approach on the consumption and production of electricity [18]. The new approaches should consider 

end-users with active participation and essential roles in the new electricity markets models. In references [19], 
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[20], the authors mention that the key to innovation in the energy sector is to develop consumer-centric business 

models and to define demand-side management programs carefully.  

LEM focus on local production and consumption [21]–[23] and aim to address relevant issues in the current 

electricity markets, by considering the local context [7]. The creation of new business models for local power 

supply has the potential to establish the necessary conditions for small community generators [24]. Local energy 

trade significantly contributes to the autonomy of micro-grids, reducing their demand and dependence from the 

main grid [25]. Local markets can also be beneficial for the grid [26]. Some grid investments can be avoided by 

using local flexibility sources, as the additional capacity would only be used for a few hours a year. The need for 

additional grid capacity can be overcome if the DSOs locally contract flexibility sources as part of their planning 

activities [27]. 

Table 1 presents the different motivations for the emergence of local electricity markets, based on [4], [25], 

[28]–[34]. 

Table 1 – Motivations for LEM emergence 

Area Motivation Purpose Ref. 

Economic 

Competitiveness 
“it is important to consider the effect of actor roles and responsibilities for managing 
the electric flexibility from resources locally in the regulatory context of energy retail 

competition.” 

[31] 

Job creation 
“Thus, the use of renewable energies has significant potential to create value-added 

and employment effects throughout Germany” 
[32] 

Grid investment 

deferral 

“If the DSO actively contracts flexibility as part of grid planning activities, then it can 

be said that investment deferral is a purpose of using local contracting” 
[4] 

Energy 

security 

Energy 

independence 

“Whilst a distributed energy future would mean a high proportion of energy is 
generated locally, this was not shown to lead to energy independence, even with the 

high levels of demand reduction” 

[33] 

Energy policy 

Adequate market 

model 

“New rules making the EU's electricity market fit for the future and putting the 
consumer at the center of the energy transition have been signed off by the European 

Parliament today” 

[34] 

Social Cohesion  
“a more bottom-up approach is required with a larger involvement of the regional 

(local) grid operators and the proactive end users” 
[4] 

Environmental 
Carbon emissions 

reduction 

“less electricity will be generated by conventional generators leading to less 

greenhouse gas emissions.” 
[25] 

As shown by Table 1, most LEM related works are motivated in their majority by economic and energy policy 

drivers, highlighting the competitiveness as an important factor that can motivate the electricity end-user to switch 

their interest to the LEM applications. The existing works in this domain have already been reviewed by some 

dedicated studies. Table 2 presents a summary of review papers found in the literature related with LEM, TE and 

pear-to-peer (P2P) subjects. In total twelve publications are presented. This table was built considering the main 

topic of the publication and, more specifically, the matters on which the works are focused. With the analysis of 

these works and their focus, the gap which this paper addresses are identified.  
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Table 2 summarizes the main EU directives and policies that will motivate the implementation and proposal 

of new structures of LEMs. The 2020 climate & energy package also known as the “20-20-20 targets” were 

established by EU leaders in 2007 and came finally into legislation in 2009. This package had the goal of tackling 

important climate change and sustainability issues of carbon emissions, renewable energy, and energy efficiency 

for smart, sustainable and inclusive growth [53]. Later, in October 2014, under preparation for the 2015 

Conference of the Parties summit, the European Council agreed on the 2030 climate and energy framework [54]. 

This framework is a follow-up of the previous package but aims to provide further requirements to achieve more 

ambitious decarbonization targets and to address the issue of affordability/competitiveness and security of supply. 

The 2030 targets include: at least 40% cuts in greenhouse gas emissions (from 1990 levels), at least 27% share 

for renewable energy, and at least 27% improvement in energy efficiency. Unlike 2020 goals, specific national 

targets were not set to allow more flexibility for each country.  

Table 3 – European Union regulation and directives driving the implementation of LEMs 

Ref. 
Name of 

regulation/directive 
Scope 

Contribution to Local electricity 

markets 
Year 

[53] 
2020 climate & energy 

package 

Goals by 2020: 20% reduction of GHG, 20% of 

increase in RES share in energy mix, 20% 

energy efficiency increase from 1990 

Targets still relevant for consensus 

among EU states; LEMs can help to 
improve RES use and reduce GHG 

emissions. 

2009 

[52] Consolidated Treaty General treaty of EU (includes energy scope) 

The treaty includes to ensure a 
competitive electricity market. LEM are 

another option to foster this competition 

at the local level and increase security 

of supply 

2012 

[54] 

2030 climate and energy 

policy framework was 
developed 

 

Reformed ETS emissions trade, reduction of 

40% GHG by 2030, efficiency increase of 27% 

and 27% share RES by 2030 

In line with previous directives this 

brings strong ambitious and opens the 
line for LEMs contribution to achieve 

those targets by 2030 

2014 

[55] 
Framework strategy for 

an energy union 

Focus of the framework is energy security (of 

gas especially), to be addressed mainly through 
improved coordination through the Internal 

Energy Market. 

 

A unified energy framework would 

create more conditions for the internal 

electricity market and consequently 
easy the path towards LEMs 

2015 

[56] Summer package 

European Commission’s vision for a new 

market design. 

Higher cross-border integration of electricity 
markets and regional coordination in market 

design and policy making 

 

Market design changes start to emerge 
in this set of legislative proposals. 

2015 

[15] Winter package 

Increased horizontal integration among Member 
States (in market transactions and in 

regulatory/industry cooperation) and increased 

the vertical integration of wholesale and retail 
markets 

 

 

Market design changes proposed to 
increase flexibility and responsiveness 

of short-term markets and remuneration 

for flexibility services and consumers 
demand offer. Therefore, motivating the 

implementation of LEMs. 

 

2016 

[57] 
Clean energy for all 

Europeans 

The package’s overarching goal is to facilitate 

the transition to a more stable, more 
competitive, and more sustainable European 

Union (EU) energy sector 

Access to retail, local and wholesale 

markets should be enabled to increase 

liquidity. 
The concept can allow local market and 

wholesale market structures to work in 

union, thus not restricting competition. 

2019 

[58] Directive 2019/944 

Directive on common rules for the internal 

market for electricity and amending directive 

2012/27/EU 

The directive promotes the consumer 

empowerment refereed as citizen 

energy communities 

2019 

[59] 
Delivering the European 

Green Deal 

Objective is to make Europe the first climate-
neutral continent in the world. By 2050, all 27 

of the EU's member states pledged to make the 

Reduce emissions and external energy 

dependency can be greatly achieved by 
2021 
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EU the world's first climate-neutral continent. In 

addition, lower emissions by at least 55% by 

2030 compared to 1990 levels. 

the development and implementation of 

LEMs. 

More recently, efforts have been made to create a framework to shift from national regulatory frameworks into 

a unified one [55]. This framework is refereed as the energy union package that identifies several aspects required 

for greater flexibility, energy security, sustainability and competitiveness. 

The summer package [56] and the winter package [57] are a set of legislative proposals set to introduce new 

market design proposals and create the foundations in EU for a unified and internal electricity market. Overall, 

the changes in this set of packages aim at increased horizontal integration among the Member States, i.e. integrated 

market transactions and more regulatory and industry cooperation. In addition, these packages seek for increased 

vertical integration of wholesale and retail markets, e.g. via demand participation and cooperation between 

distribution and transmission system operators. In this sense, this set of packages clearly aim at engaging consumer 

participation. The "Clean Energy for all Europeans" package [57] from 2019, provides an updated view of the 

EC’s desired "measures to keep the European Union competitive, as the clean energy transition is changing global 

energy markets”, encouraging the development of solutions that enable energy consumers to produce and sell 

their own electricity. LEMs and TE implementation contribute to these EU recommendation to put consumers as 

an important player of the electricity markets and thus ensuring that they are empowered and better protected [15].  

Specific legal and regulatory framework for the implementation of the LEMs does not exist in EU member 

states. Nevertheless, pilot projects of LEMs are being implemented, e.g. [60] and [61]. Legislation is a key factor 

for the successful implementation of LEMs [62]. Sustainable business models for LEMs need to be developed to 

ensure that there is a successfully shift from current pilot projects and concepts to commercial solutions. 

3. Worldwide Initiatives 

Worldwide initiatives are currently focusing on the research, development and full-scale demonstration of smart 

grid technologies. In particular, efforts in the EU have been spread into financial support to projects concerning 

the development of the European electricity grid through the program H2020-EU.3.3.4 - A single, smart European 

electricity grid. Since the scope of this paper is to analyze LEM architectures, we provide here a general overview 

of recent (and some already finalized) European projects under the umbrella of the H2020 programme that address 

issues related to the development of LEM and smart grids. Additionally, some demonstrators and real 

implementations are also revised. 
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3.1. H2020 EU Projects  

Table 4 presents some selected European H2020 projects related to the design and implementation of local 

electricity markets. The Table provides a general scope of such projects, as well as the project status that can be 

devised according to the duration dates. Most of the listed projects aim at enabling higher flexibility and efficiency 

of energy grids. This is tightly related with empowering end-users in market activities using DR programs. It is 

expected that different stakeholders will be engaged in the new local market activities. Therefore, interactions and 

linked activities among stakeholders should be carefully analyzed to provide stability and resilience in the 

network. 

Table 4 – European H2020 projects related with local electricity markets 

Ref Project Name Scope Start/End 

[63] ENERGISE 

Efficient deployment of smart grid solutions by offering a toolkit that supports decision-

making process as regards the use of telecommunication infrastructure for existing or 
projected business cases; 

Target group includes telecommunication providers, industry associations, utility sectors, 

energy suppliers, national regulatory agencies, and other players being active in the 
relevant fields; 

The ENERGISE toolkit addresses: Smart grid solutions, telecommunication 

infrastructure, and specific cases or business models, where shared infrastructure use is 
beneficial. 

01-01-15/ 

31-03-17 

[64] P2P-SmarTest 

Investigate and demonstrate a smarter electricity distribution system integrated with 

advanced ICT, regional markets and innovative business models; 
Employ Peer-to-Peer (P2P) approaches to ensure the integration of demand side 

flexibility and the optimum operation of DER while maintaining power balance and the 

quality and security of the supply; 
Built upon experience ICT for the Energy Sector, Smart Grids including DER integration, 

Microgrids, CELLs, VPPs, power system economics, electricity markets and business 

models, etc 

01-01-15/ 

31-12-17 

[65] IndustRE 

Identify and implement business models for supplying variable renewable electricity 

(e.g., on and off-site renewable energy production) to industrial users with flexibility in 

their demand; 
Business models adapted to 5 industrial sectors (Chemicals, non-ferrous metals, cold 

storage, steel, and water treatment) and 6 target countries (Belgium, France, Germany, 

Italy, Spain and UK). 
Methodology will be transferred to third parties and will be applied in 6 case studies 

covering all target sectors and countries. 

Use of a sophisticated power system model and detailed analysis will provide reliable 
data on the impact the policy recommendations could have 

01-01-15/ 

31-12-17 

[66] ERANet SmartGridPlus 

Organize the learning down to regional Smart Grids stakeholders, beyond the 

demonstration phase towards implementation from local trials to a European knowledge 

community; 
Support knowledge sharing between regional and European Smart Grids initiatives by 

financing 15-20 transnational projects on applied research, piloting and demonstration in 

the field of Smart Grids; 
Taking a next step in Smart Grids development building on the knowledge base, R&D 

initiatives as well as research and demonstration facilities already in place at regional, 

national and European level. 

31-01-15/ 
29-01-20 

[67] Flex4Grid 

Create a framework for "prosumer" flexibility management; 

Create a system for new market players offering aggregation and data analytic services 
directed to DSO. 

01-01-15/ 
31-03-18 

[68] EMPOWER 

Investigate electricity LMs to promote the "prosumer" role in SG; 

Develop and verify a local marketplace and business models to exploit the flexibility 
created by "prosumers"; 

The smart energy service provider (SESP) role was proposed to handle the operation 

coordination of participants in the market. 

01-01-15/ 

30-04-18 



14 

 

Ref Project Name Scope Start/End 

[69] NOBEL GRID 

Deploying and evaluating ICT services and tools to enable active consumers participation 

in LMs; 
The developed tools allow DSOs to mitigate management and maintenance costs; 

One of the most innovative aspects of the project was the development of the smart low-

cost advanced meter, that empower prosumers and consumers. 

01-01-15/ 

30-06-18 

[70] FLEXICIENCY 

Demonstrate that an open European Market Place for standardized interactions among 

electricity stakeholders (market players) can accelerate the deployment of flexibility 

services, advanced monitoring, and local energy control; 
Assessment of economic models of these new services based on five demonstrations and 

a variety of use cases. 

01-02-15/ 

31-01-19 

[71] Smartnet 

Propose solutions and architecture for optimized interaction between TSOs and DSO; 
Explore monitoring and acquisition of ancillary services (e.g., reserve and balancing, 

voltage regulation, congestion management) from resources in the distribution segment 

(DG and flexible loads) for both local needs and for the whole system. 

01-01-16/ 

31-12-18 

[72] DR-BOB 

Demonstrate the economic and environmental benefits of demand response in blocks of 

buildings for the different key actors; 

Integration of existing technologies for energy management and the demonstration of 
such solutions in 4 sites with different conditions (UK, France, Italy and Romania); 

Validate method of assessing technology readiness, identify revenues with at least 5% 
profit margin to developed business models, and engage with companies involved in the 

supply chain for DR in buildings across the EU. 

01-03-16/ 
31-08-19 

[73] FHP 

Provide services to DSOs and RES producers using heat pumps, large thermal stores and 

building thermal inertia; 
To test practical prototypes representing the European power grid; 

The expected services include, algorithms for heating systems management, tools 
supporting grid operators to solve local problems using flexible resources, grid flexible 

heat pump, and model-free building thermal characterization. 

01-11-16/ 

31-10-19 

[74] GOFLEX 

Develop and demonstrate a group of electricity smart-grid technologies, enabling the cost-

effective use of DR in distribution grids and supporting an increasing share of renewables; 

Enabling active use of distributed sources of load flexibility to provide services for grid 
operators, balance electricity demand and supply, and optimize energy consumption and 

production at the local level of electricity trading and distribution systems; 

Building on top of existing technologies for capturing and exploiting distributed 
flexibility using automatic trading of general, localized, device-specific energy as well as 

flexibility in trading aggregated prosumer energy; 

Three use-cases, covering a diverse range of structural and operational distribution grid 
conditions in three European countries, are used to demonstrate the proposed solution. 

01-11-16/ 

31-10-19 

[75] Interflex 

Empower DSOs towards a flexible local energy system; 

18 use cases will be tested including diverse resources to provide flexibility such as: 
energy storage technologies (electricity, heat, cooling), DR schemes with two coupling 

of networks (electricity and gas, electricity and heat/cooling), integration of EVs, and 

automation of grid operations including contributions of microgrids. 

01-01-17/ 

31-12-19 

[76] FLEXCoop 

Propose an end-to-end DR framework allowing energy cooperatives to participate in LMs 

under the role of aggregator; 
Innovative and effective tools for microgrids and VPPs as balancing and ancillary assets 

for grid stability; 

The project considers local generation, demand and storage flexibility, and EVs 
integration. 

01-10-17/ 

30-09-20 

[77] DOMINOES 

Develop new DR, aggregation, grid management and peer-to-peer trading services for a 
scalable LM; 

Deliver new business models for DR and VPP operations; 

Propose tools to validate DR services based on smart metering, methods to utilize VPP 

and microgrids as active balancing assets (flexibility), and secure data handling 

procedures in LMs. 

01-10-17/ 

31-03-21 

[78] Magnitude 

Identify potential flexibility options coming from synergies between the electricity, 

heating, cooling and gas networks; 

Simulate the multi-energy system to optimize its operation maximizing the provision of 
flexibility services; 

Propose improved market designs and evaluate their performance; 

Quantify the benefit of pooling flexibilities coming from the multi-energy system in LMs 
through an aggregation platform. 

01-10-17/ 

31-03-21 
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Ref Project Name Scope Start/End 

[79] FLEXITRANSTORE 

Propose a technical basis to support flexibility services enhancing the existing European 
internal electricity market; 

Strategic objectives include to accelerate the integration of renewables and to increase 

cross-border electricity flows across Europe; 
Resources include state-of-the-art ICT technologies, control improvements and exploring 

the enhancement of the existing infrastructure by integrating storage and DR 

management. 

01-11-17/ 

31-10-21 

[80] EU-SysFlex 

Ensure services to facilitate a share of renewables while maintaining the level of resilience 
that consumers expect from the European electricity system; 

Design of a new electricity market, considering the need for new regulations; 

Stakeholders and roles include: generation and flexibility providers, TSOs, DSOs, and 
regulators at different system levels (e.g., interconnected system, national transmission 

and distribution sub-systems and consumers). 

01-11-17/ 

31-10-21 

[81] eDREAM 

Develop tools for DR, including early detection of flexibility potential based on data 
fusion and big data techniques; 

Design optimal DSO-driven DR management, including applications of blockchain 

technology for secure energy transactions, market-based microgrid control and near real-
time closed loop DR verification. 

01-01-18/ 
31-12-20 

[82] DELTA 

Propose an aggregator management platform distributing its task into lower layers of 
intelligence to establish a more easily manageable and computationally efficient DR 

solution. 

Propose and implements novel multi-agent based, self-learning algorithms to enable 
aggregation, segmentation and coordination of supply/demand clusters; 

Facilitate real-time DR flexibility activation between prosumers to satisfy the 

aggregator’s portfolio self-balancing needs and deliver services to market or grid-related 
stakeholders. 

01-05-18/ 
30-04-21 

From the scope of these projects, we can devise some significant drivers in the context of LEM, namely: (i) 

taking advantage of the penetration of distributed generation and renewables to support efficient smart grid 

solutions; ii) flexibility management using flexible resources; (iii) flexibility services directed to DSO; and (iv) 

DR programs taking advantage of the flexibility. Moreover, LEM approaches need to ensure the integration of 

variable distributed generation (renewables) and demand-side flexibility while guaranteeing a secure supply of 

energy and power balance. Flexibility resources include different types of storage systems, EVs integration, 

heating, and cooling management, and DR programs (that involve the participation of end-users).  

Projects proposed in the earlies 2010s [63], [64], [66], [83], [84] were more focused on the adoption of 

renewables and distributed generation at the local level, as well as addressing the challenges (variability of 

generation, infrastructure and ICT required to control distributed resources, interoperability) and opportunities 

(small consumer participation, efficient use of active supply and demand at the local level, reduction of 

environmental impact) that such adoption would bring to the electric power system. Follow-up of these projects 

was given, for instance in projects [67], [69], [73], [75], focusing on the development of services directed to the 

DSO for local flexibility management. Such services can span different options like aggregation and data analytics 

services [67], ICT technologies for reduction of management and maintenance costs [69], and energy management 

systems to support DSO activities through the use of flexible resources [73], [75]. DR programs using flexibility 

will be explored practically in all the proposed projects, emphasizing the importance of the involvement of end-

users in LEM activities. In particular, projects [76], [77] consider a LEM in which DR is provided taking into 
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account the role of aggregators. Moreover, VPP, energy communities and microgrids are also devised as crucial 

participants of this new LEM, and business models directed to these entities are explored as well. Finally, projects 

[71], [79], [80] also study in some degree the interactions between DSO and LEMs with external markets, for 

instance examining the interactions between DSO-TSO and the use of flexibility for ancillary services. 

3.2. Online platforms for local energy trading 

One of the fundamental parts to enable the implementation of LEMs relates to the capacity (including 

infrastructure and platforms) of performing P2P local transactions in a transparent and reliable manner. Trials on 

local energy trading have been carried out in recent years. In this section we provide an overview of open platforms 

and frameworks currently used for the development of LEMs. These initiates can serve as a basis for the 

implementation of business models related to the use of flexibility or can be accessed by consumers (and 

prosumers) to perform energy transactions (sell and buy) locally. 

Piclo is an online platform developed in the UK in 2015 [85]. The platform can be used for P2P energy local 

trading between consumers with generation capabilities. Basic functionalities are used to provide data 

visualization and analytics to customers that perform the trading. A matching algorithm is used to guarantee a 

balance between generation and consumption locally. The platform allows consumers to choose the seller from 

who they want to buy energy in the local market. Advanced metering technologies are used to perform local 

balance between supply and demand in a half hour span. 

Vandebron [86], developed in The Netherlands, is another online platform for local energy trade where energy 

consumers can buy electricity directly from independent producers (e.g., farmers with wind turbines or PV 

generation). Vandebron therefore takes the role of an energy supplier with the particularity of providing incentives 

for consumers and generators to exchange energy. Prosumers who inject surplus energy to Vandebron platform 

can purchase energy from the platform at a lower price comparing to other suppliers. 

The sonnenCommunity [87] integrates sonnenBatterie owners (sonnenBatterie is a battery storage manufacturer 

in Germany) who desire to share self-produced energy with other members in the community. The idea behind 

sonnenCommunity is to use a virtual energy pool of batteries, where PV generation can be stored and shared 

between the members, taking advantage of the differences in renewable generation from diverse locations. The 

idea is similar to Piclo and Vandebron, with a special emphasis in storage technologies. A centralized approach 

(software-based) is used to monitor and control the generation and storage capacity of sonnenCommunity 

members, guaranteeing the balance of supply and demand. This program is available in Germany, Austria, 
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Switzerland and Italy, providing benefits to its members for a monthly fee of around 20 EUR. The benefits for 

members include ten years guarantee on sonnenBatteries, energy from 23 cent, software updates for all existing 

functions, free weather forecast updates and energy usage optimization. Remote maintenance and monitoring, as 

well as intelligent usage control, are also provided.  

3.3. Open framework 

The universal smart grid energy framework (USEF) [12], developed by the USEF Foundation, has the purpose 

of delivering one common standard on which smart energy products and services can be created. The USEF 

Foundation consists of a partnership of seven worldwide leader organizations in all areas of the energy industry, 

including ABB, Alliander, DNV GL, Essent, IBM, ICT Automation and Stedin. Particularly, USEF is intended 

to unlock the value of flexibility, defining the market structures, rules and tools required to make possible the 

trading of flexibility as a commodity. USEF positions the aggregator in a central role of the flexibility market. 

Therefore, in the USEF framework aggregators have the target of accumulating the flexibility obtained from DR 

programs at different levels of the energy demand (i.e., industrial, commercial and residential level), and offering 

such flexibility as a reliable product to different stakeholders for different purposes. Examples of such products 

and services, and the stakeholders that might be interested in such commodity embrace all different roles present 

in the LEM such as retailers, DSOs, BRPs, and even TSOs. Finally, USEF fits on top of current electricity market 

models and can be used to extend existing processes and propose new business models. Besides, the information 

of the framework is accessible to anyone through the documentation provided by the USEF foundation, so that it 

represents a solid initial step for researchers and companies interested in the implementation of LEM and the use 

of flexibility as an asset.  

4. Local Electricity Markets Structures 

In this section a review of published articles is realized considering the LEM scope. The characteristics and 

objectives of market participants are essential features to be considered in the definition of LEM [7]. The LEMs 

concept should encompass different services, such as: flexibility services, aggregation support, energy efficiency 

measures, storage, and generation assistance. All these services are ensured by contracts made between end-users 

and retailers [16]. In fact, LEM might have the participation of different actors, for instance, sellers (distributed 

generators, prosumers, storage units), buyers (consumers, prosumers, and storage units), energy service companies 

(ESCo), aggregators, DSO or Distribution Network Operator (DNO) [88]. Some LEM attributes and rules directly 

related to the characteristics of market participants, such as the degree of competition, the negotiation horizon, or 
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dispatch intervals, are addressed in [23]. On the other hand, the market rules determining the restrictions of 

bidding, acceptance of the bids, price determination, and settlement rules are described in [89]. Overall, the design 

of LEM depends on existing grid conditions, on the arrangement of loads and generation, and also on the 

consideration of future developments [2]. Millions of DGs supplying variable energy, dependent on solar and 

wind energy, require different control schemes compared to the existing ones [90]. This situation has motivated 

the development of LEM, contributing to better integrating the prosumers generation. Thus, LEMs will need to 

consider the trading of energy between end-users, with or without an intermediary between them. In this regards, 

the direct trading among end-users (prosumers and consumers) can be advantageous as it enables, for instance, 

avoiding the costs associated with retailers and at the same time reducing transmission line losses due to the 

decreased energy transmission ranges [2], [91].  

LEM structures in which the market clearing is centralized are characterized by supervisory nodes in a higher 

layer, thus reducing the conflicts between the lower layers requiring a smaller number of iterations. On the other 

hand, decentralized market clearing structures are considered more flexible and allowing the system connections 

at lower levels, where each node has only local information. When the size of the system is considered, the 

centralized systems may not be able to calculate the ideal dispatch without all the local information [92]. Notice 

that both types of structures, centralized and decentralized, need to have central accounting and registration nodes, 

but the differences between the two approaches is the way the clearing is performed. 

From the analyzed literature presented in  Table 5, we conclude that LEM structures are converged to the 

following: P2P market structure (Figure 2), Community-based market structure (Figure 3) and Group of 

community-based market structure (Figure 4). The main difference of these structures is related to their typology 

and the degree of decentralization. These concepts are, however, not consensual, and several divergent statements 

can be found in the literature, for instance: “This is not a P2P mechanism in the strictest sense (trades that are 

negotiated bilaterally) but in the broader sense that it incentivizes and remunerates power sharing between 

peers.” [93]. Such statements make the definition of P2P markets blurry, referring to the term P2P as long as there 

is electricity sharing between peers. Given such contradictions, the authors consider that a clearer distinction 

between the P2P and community-based markets is needed. 

In P2P markets like those depicted in Figure 2, decentralization is the most significant feature, enabling the 

markets to be more autonomous and flexible. This type of architecture mostly follows a bottom-up approach with 

a high number of agents and contractual relationships. The implementation of P2P markets can be done based on 

models such as the ones followed by companies such as Airbnb or Uber, taking the notion of shared economy and 
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translating this to an electricity market level. Thus, in such P2P market structure, a P2P platform enables electricity 

producers and consumers to directly sell and buy electricity and other energy-related services without the support 

of a central entity. 

 
Figure 2 – P2P market structure 

The term P2P is usually associated with decentralized market structures lacking a central authority, as can be 

seen in references [1], [2], [7], [94]. P2P and peer-to-platform terms are assigned to the decentralized structures 

in reference [94]. Two different terms are assigned to the  decentralized structure, the peer-to-retailer, and peer-

to-wholesale models [95], [96]. TE terms, also aligns with this type of market structure [97], it is related to the 

coordinated operation of a vast number of actively involved DERs based on value-based information in the smart 

grid [3]. In general, decentralized systems within liberalized electricity markets can reduce market effectiveness, 

because agents are self-interested [23].  

To study and implement the P2P markets structures different techniques can be used, game theory approaches 

was implemented to find optimal solutions in decentralized LEM [8]. Other methods based on game theory as 

Stackelberg game and Non-cooperative game, was applied to the LEM [7], [8]. References [98], [99] present also 

methods that use game-theory approaches not directly addressing the concept of LEM but used for electricity 

transactions in microgrids. The agent simulation-based solution is also proposed as a different approach to 

simulate environments in  LEM [8], [100], techniques like reinforcement learning and Q-learning can be 

techniques applied to agents for trading electricity into LEM according to [7]. This structure can use a 

decentralized market clearing, for which multi-agent systems can be used to simulate the direct negotiations 

(bilateral contracts). In this case, each peer is simulated by an agent, and when the negotiation takes place, there 

must be an interaction among the agents. If the agents determine the price directly between them, the market 

clearing is performed in a decentralized way. 
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Figure 3 depicts a community-based market structure where a local market operator is considered the central 

entity controlling the clearing of the market. In [101] the aggregator participates in the energy trading and also 

provides services for the users of the distribution grid. Reference [7] introduces a local grid controller managing 

the interactions between the local electricity resources and the aggregator. It is also responsible for managing the 

demand side response, optimizing and transferring the locally generated energy with the main grid or another 

local grid by means of an aggregator. In [48], a micro market operator similar to the market operator in the 

wholesale market, is presented with the role of executing the clearing algorithm and supervising the operation of 

the market.  

 
Figure 3 – Community-based market structure 

Considering community-based structure, the system can operate in connection to the main grid or in an island 

model with no grid connection, presenting different incentives for users according to the connection. When a 

system is connected to the main grid, there is an incentive for users to generate as much electricity as possible 

because the excess of generation can be sold to the main grid. Thus, the local market operator has the goal of 

maximizing the profits of the community where the LEM is taking place. DSOs are becoming active system 

managers with local markets operators responsibilities where the flexibility is fundamental for the functioning of 

the system [102]. The other possibility is when the system operates in island mode, and the user services need to 

be optimized at the microgrid level. According to reference [23], the LEM must be configured and operated by 

the DSO or by a LEM operator acting as an aggregator. [23] also proposes an interesting idea related to prosumers 

acting as market operators, a possibility that might increase the robustness of the control. In general, the LEM 

operator can be considered as an entity of the LEM since the decentralized approaches will eventually have control 

of the system. According to [103], DR approaches are also considered centralized approaches when an aggregator 

(DR operator) serves as an intermediary between generation and demand. 
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Centralized structures usually use optimization techniques, such as convex, stochastic, or swarm optimization 

[7], [8]. In [104], a market structure between two island mode microgrids is presented and a convex optimization 

problem is formulated to minimize the overall cost. The auction format is recommended to be used in the 

centralized approach of LEM design according to reference [102]. As a rule, symmetrical double auctions require 

buy and sale orders submitted to a block order. These orders are then matched either continuously or at discrete 

market closing times [105]. A continuous double action to trade energy between multiple consumers and 

prosumers is presented in [106] and [48], the match between the generators offers and the consumer's bids 

determines the price for the electricity in auction market. Another  double auction mechanism  applied at local 

level is presented in [99] where distributed storage units trade energy in the smart grid. 

The group of communities-based market structure, as depicted in Figure 4, lays between the previous two 

presented models in terms of structure and scale. It is based on the concept of community, where each local market 

operator represents a community and can negotiate with other communities.  

 
Figure 4 – Group of communities-based market structures 

This type of model is usually presented in smart grid environments, enabling opportunities for local 

organizations, neighborhoods, or communities, allowing to manage energy needs efficiently and dynamically with 

the use of local balancing resources. Peer-to-platform approaches found in the literature fit with a group of 

communities-based market structures and presents some advantages for flexibility negotiation compared to P2P 

markets. Such as, standard flexibility services are required by larger entities such as BRPs, DSOs, or TSOs, and 

P2P markets could lead to prosumers having low negotiation energy. The production potential of each prosumer 

can also be an obstacle to P2P trading in the wholesale market since there are requirements on the minimum 

quantities of energy for participation [94]. Incentives that enable end-users to become prosumers facilitate the 

creation of community-based initiatives that in turn stimulate local management of supply and demand. 

Theoretically, communities and local authorities can use their resources to generate revenue for themselves. 
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Similar to traditional companies operating in the electricity system, new small and medium-sized companies may 

operate at the local level performing aggregation functions or providing distribution and energy services. 

In both group of communities-based market and community-based market structures, aggregator can be 

responsible for the decision making and can perform centra supervision. Thus, the aggregator as controller has a 

full and complete overview of the market status and can make decisions for the benefit of the local energy 

community as a group and not taking into account each participant individually. However, LEMs used to provide 

flexibility to upper levels of the energy chain might present disadvantages in some specific situations. For instance, 

in the case of prosumers with thermal flexibility, this flexibility can be activated by the aggregator frequently, 

which can bring a loss of comfort and result in a decline of acceptance by the final user. To overcome this situation, 

higher rewards should be paid to the prosumer to achieve participation in the LEM and compensate for the 

discomfort to their daily environment [94]. 

To summarize our analysis, Table 5 presents a review of the works regarding LEM structures. The first column 

identifies the publication with the respectively reference. The second column presents a characterization of each 

work according to the categories proposed in this section. In the third column, it is identified the type of market 

clearing realized and in fourth column the type of objective function is identified. Fifth column presents the central 

entity that coordinates the LEM or not. The sixth column identifies the scope of the LEM, referring essentially to 

a what service the LEM is designed for. The seventh column presents the available resources that are used by 

LEM users, for instance, active supply and demand (DR) and DGs. Eighth column are identified the number of 

involved players to perform the simulations. In the nineth column, titled comments and additional information 

provided by the authors of the studies is presented. Finally, in tenth the publication year is presented.  
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Table 5 – Summary of the publications analyzed considering LEM approaches 

Ref Structure 
Market 

Clearing 

Objective 

Function 
Central entity Scope 

Available 

resources 

Number of 

involved 

players 

Comments Year 

[16] 
Community-based 

market 
Centralized Cooperative 

Smart energy 
service provider 

Electricity, 

Flexibility and other 

services 

ESS, Active 

supply and 

demand 

- 
Different contexts: island mode, and direct or 

indirect relation with the wholesale market 
2016 

[31] 
Community-based 

market 
Centralized Cooperative Aggregator Flexibility trading ESS - Framework for flexibility services 2016 

[107] 
Community-based 

market 
Centralized Cooperative 

Micro market 

operator 
Electricity trading PV, ESS - 

The storage unit is controlled by the micro 

market operator 
2016 

[107] 
Community-based 

market 
Centralized Cooperative Aggregator Flexibility trading PV, ESS 40 

Augmented power consumption management 
mode is proposed. 

2016 

[108] 

Group of 

communities-based 
market 

Decentralized Competitive Microgrid operator Electricity trading 

ESS, Active 

supply and 
demand 

3 MG 
Incentive mechanism using the Nash 

bargaining solution 
2016 

[1] P2P market Centralized Competitive - Electricity trading 
Active supply 

and demand 
- Agent-based Simulation 2017 

[2] 
Community-based 

market 
Centralized Competitive DNO Electricity trading - 16 

For numerical analysis, a 22-Buses UK 
medium voltage distribution system is 

considered 

2017 

[4] 
Community-based 

market 
Centralized Competitive - Flexibility trading - - 

DSO seeks to procure flexibility to resolve 
grid 

2017 

[25] 
Community-based 

market 
Centralized Competitive Supplier Electricity trading 

Active supply 

and demand 
2 Double action trading mechanism 2017 

[48] 
Group of 

communities-based 

market 

Centralized Competitive Manager agent Electricity trading 
ESS, Active 
supply and 

demand 

4 MG 
The market is divided into two level the 

intra-market and inter-market 
2017 

[90] 
Community-based 

market 
Centralized Cooperative Aggregator Electricity trading 

ESS, Active 

supply and 
demand 

21 Clustering Power System Approach 2017 

[3] 
Community-based 

market 
Centralized Competitive Energy Brokers Electricity trading 

Active supply 

and demand 
6 

A two-stage market decision-making process 

is implemented 
2017 

[109] 
Community-based 

market 
Centralized Competitive LEM operator 

Electricity and 
Hydrogen trading 

ESS, EV, HV 100 
The inclusion of hydrogen storage systems in 

a local energy market 
2017 

[110] 

Group of 

communities-based 

market 

Centralized Competitive Aggregator Electricity trading 

ESS, Active 

supply and 

demand 

8 

The interaction between the aggregators in 

the market as a Potluck game-theoretic 

problem 

2017 

[22] 

P2P market, 

Community-based 
market 

Centralized Cooperative - Electricity trading 

ESS, Active 

supply and 
demand 

4 
Two distinct market designs are implemented 

the Flexi User and Pool Hub. 
2018 

[94] 
Community-based 

market 
Centralized Cooperative Aggregator Flexibility trading 

Active supply 

and demand 
- 

The aggregator manages the flexible loads to 

provide services to DSO and BRPs 
2018 

[97] 
Community-based 

market 
Centralized Cooperative 

Smart energy 
service provider 

Flexibility trading ESS 4 
A case study was present with four different 

households 
2018 
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Ref Structure 
Market 

Clearing 

Objective 

Function 
Central entity Scope 

Available 

resources 

Number of 

involved 

players 

Comments Year 

[111]  P2P market Centralized Cooperative 

P2P Energy 

Sharing 

Coordinator 

Energy sharing ESS, PV 100 
An aggregator controls the many small-scale 

batteries 
2018 

[112] 
Community-based 

market 
Centralized Competitive - Electricity trading PV, ESS 10 

Designed a platform Elecbay for P2P energy 

trading 
2018 

[113] 
Community-based 

market 
Centralized Cooperative ESCO Electricity trading PV, ESS 90 Inclusion of flexible residential loads 2019 

[114] 
Community-based 

market 
Decentralized Competitive Market controller Electricity trading - - 

Behaviours of both risk-neutral and risk-

averse agents are tested 
2019 

[115] P2P market Centralized Cooperative Market operator Electricity trading PV, EV 22 
Model incorporating both energy trading and 

uncertainty trading 
2019 

[116] P2P market Decentralized Competitive 
Central 

coordination 
Electricity trading PV, EV 15 A dual decomposition method is proposed 2019 

[117] 
Community-based 

market 
Centralized Competitive 

Energy Sharing 

Coordinator 
Electricity trading PV, ESS 10 

Three pricing models: Double Auction, Mid-

Market Rate and Supply and Demand Ratio 
2019 

[118] 

Group of 

communities-based 

market 

Centralized Competitive DisCo Electricity trading - 3 

Proposing an iterative algorithm for 

exchange energy within a distribution 

network 

2019 

[119] P2P market Decentralized Competitive 
Distribution 

Network Operator 
Electricity trading PV, ESS 6 Distributed storage system 2020 

[120] P2P market Centralized Competitive - Electricity trading PV, ESS 37 Blockchain-based platform is implemented 2020 

[121] 
Community-based 

market 
Centralized Competitive 

Central Market 

Operator 
Electricity trading PV, ESS, EV 10 Uses bid dependencies possibilities 2020 

[122] P2P market Decentralized Competitive - Electricity trading PV 12 
Implementation of general nash equilibrium 

and variational equilibrium 
2020 

[123] 
Community-based 

market 
Centralized Competitive Auctioneer Electricity trading PV 36 Continuous double auction 2020 

[124] P2P market Centralized Competitive 
Community 

Manager 
Electricity trading PV 11 

Cooperative and non-cooperative gaming 

concepts are employed for efficient trading 
2020 

[125] 
Community-based 

market 
Centralized Cooperative Aggregator Electricity trading - - 

Integration with Pan-European Wholesale 
Electricity Market Model 

2020 

[126] 
Community-based 

market 
Decentralized Competitive - Electricity trading PV 372 

Decentralized autonomous area agent 

simulation framework 
2020 

[127] 
Community-based 

market 
Centralized Competitive LEM operator Electricity trading PV 57 Chance-constrained optimization algorithm 2020 

[128] 
Community-based 

market 
Centralized Cooperative - Electricity trading PV 55 IEEE European LV Test Feeder grid is used 2020 

[129] P2P market Centralized Cooperative Aggregator Electricity trading ESS, EV, DER 5 
Uses a game-theoretic framework to analyse 

a local trading mechanism 
2021 

[130] P2P market Centralized Competitive Virtual agent Electricity trading PV, ESS 60 Continuous doble action market 2021 

[131] 
Community-based 

market 
Centralized Competitive 

Community 

Manager 

Electricity and heat 

trading 
DER, ESS, HSS 4 

Different allocation schemes: uniform 

pricing, Vickrey-Clarke-Groves, Shapley 
value, and nucleolus. 

2021 
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Ref Structure 
Market 

Clearing 

Objective 

Function 
Central entity Scope 

Available 

resources 

Number of 

involved 

players 

Comments Year 

[132] P2P market Centralized Competitive - Flexibility trading PV, ESS 

1 (office 

building 6800 

m2) 

Blockchain-based decentralized energy 
flexibility market 

2021 

[93] P2P market Centralized Competitive 
Microgrid 

coordinator 
Electricity trading PV, EV 50 Inclusion of V2X possibilities 2021 

[133] P2P market Centralized Competitive 
Local Market 

Operator 

Energy and 

flexibility trading 
PV 10 Designing a 2-stage hierarchical model 2021 

[134] 
Community-based 

market 
Centralized Competitive Aggregator Electricity trading PV 30 Bi-level optimization model 2021 

[135] 
Community-based 

market 
Centralized Competitive - Electricity trading PV, ESS 11 Simulation in a blockchain platform 2021 

[136] P2P market Centralized Cooperative - Electricity trading PV, EV 5 Shaded storage option 2021 

[137] 
Community-based 

market 
Centralized Competitive DSO Flexibility trading PV 410 Three-stage market clearing method 2021 

[138] P2P market Centralized Cooperative Aggregator Electricity trading PV, ESS 20 
Model that determines the best P2P energy 

transactions 
2021 

[139] P2P market Centralized Competitive Aggregator Electricity trading DER, ESS 6 
Market clearing method for the non-

cooperative electricity market 
2021 

[140] 
Community-based 

market 
Centralized Cooperative Aggregator Electricity trading ESS 48 

Contract-based distributed algorithm for 
electricity trading 

2021 

[141] 
Community-based 

market 
Centralized Competitive 

Community 

Manager 
Electricity trading PV, ESS 10 ADMM-based clearing process 2021 
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From the analysis of Table 5 is possible to create Figure 5 in order to analyze the proportion of analyzed works 

studying different structure types. 

 

Figure 5 – Structures classification results 

Figure 5 shows that 29 present a Community-based market structure, 17 a P2P market structure, and only 4 

cover the Group of communities-based market. On the other hand, Figure 6 b) shows that 79% of the analyzed 

works (38 out of 48) used a central entity in the implemented market. In fact, by making a cross reference from 

these two classifications, we noticed that structures classified as Community-based market typically consider a 

central entity. Contrarily, when a P2P market structure is considered, the presence of central entities is not 

necessary. There is also a relation between the market clearing and studies considering a centralized entity since 

structures considering a market clearing procedure will require a local market operator. However, as identified in 

Table 5, there are many approaches classified as community-based market structures where auction methods are 

applied for determining the price of electricity. In this way, we can conclude that this market structure has a 

competitive objective function, but the market is carried out in a centralized way where all users make their bids 

to buy and sell electricity. 

From Table 5 we can identify two main categories of works related to the market clearing procedure and the 

objective function. Figure 6 presents the comparison of the number of analyzed papers separated by these 

categories. The analyzed works have been classified into two types, market clearing and objective function (a 

classification previously defined in [43]). 
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Figure 6 – Results: a) Market clearing and b) Objective function 

In [8], a description of the two types of clearing price (centralized and decentralized) is presented. For instance, 

when an energy trading organization is configured to have only one user or central controller that can dictate its 

decisions to a group of users, it is considered a centralized market clearing. On the other hand, the market clearing 

is considered decentralized when several interacting users try to optimize their resources independently of others 

[8]. Figure 6 a) shows the distribution of works considering centralized and decentralized market clearing types. 

It can be seen that the majority of work is focused on centralized models (43 out of 49 analyzed articles). Thus, it 

is clear that less decentralized market clearing models have been implemented or studied in the literature, with 

only 12% of the total of analyzed works. In fact, most of the analyzed works apply auction methods considering 

a central market clearing to define the market clearing price. Now looking at Figure 6 b), it can be seen that 

objective functions considering competitive approaches represent about 65% (32 works out of 49) compared to 

the 35% studying cooperative approaches. This is a more balanced comparison, yet, it highlights the need for 

studies focusing on cooperative approaches.  

We also show graphically in Figure 7 the works that consider the central entity and the scope of work. Notice 

that the sum of the inner circles in Figure 7 might exceed the number of the analyzed sample (i.e., 49 articles), 

which means that a given article can fit into more than one topic within the classification. 
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Figure 7 – Results: a) Central entity and b) scope of work 

Considering Figure 7 a) is possible to count the number of works that 38 works consider central entity and 10 

do not consider. Figure 7 b) shows that 41 works lay within the scope of electricity trading, while only 10 articles 

address flexibility trading and 3 present other types of trading (e.g., hydrogen). 

Finally, Figure 8 presents the proportion and number of works for the categories of scope, and number of 

players involved.  

  

Figure 8 – Results: a) Available resources and b) number of involved players 

Figure 8 a) groups the works according to the types of available resources considered, with 27 articles focusing 

on PV; 26 on ESS; 6 considering EVs; and 13 considering other resources (such as: hydrogen storage systems and 

DER). It is relevant the use of renewable energy sources, particularly PV generation, and the use of ESS as the 

main drivers for LEM implementation. Finally, Figure 8 b) presents the analysis regarding the number of involved 

players into the simulations/implementations. Nearly half of the works (24 articles) perform simulations with less 

than 20 players; 8 articles consider 20 to 50 players; only 9 works present a number of players greater than 50; 

and 8 do not specify how many players are involved in the market. It is noteworthy to highlight the low number 
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of involved players in most of the works related to LEM, which reflects the state of maturity of this topic. In fact, 

many of the analyzed works are still theoretical, addressing the market models and mechanisms and neglecting 

the actual impact of such implementations when it comes to scalability and practical applications of such models.  

5. Discussion  

This section discusses the analyzed LEM structures as well as the main benefits and barriers that these new 

markets present. One of the most notable aspects within the energy sector that enables the appearance of the LEM 

is the transformation of consumers into prosumers. LEM operations in distribution networks can become essential 

for avoiding additional investments. For instance, LEM devoted to the use of flexible resources (also called 

flexibility markets) can be used to compensate the local energy consumption deviations caused by the forecast 

errors [97]. 

Also, DR programs, make possible to transfer the consumption of periods of high demand to periods with lower 

demand. Such modification provides very useful flexibility for the network operator, making them potential 

stakeholders interested in the development of LEM. 

Currently, one way to shift electricity consumption from end-users is based on incentives related to the 

electricity prices. Assuming that end-users are rational and have some generation capabilities, they will react to a 

variable electricity price so that their respective revenues are maximized, or their energy bill is minimized. 

Therefore, system operators need to take into account end-users' behaviors to be able of defining the price of 

electricity to control demand and supply at any given moment and maximize the utility of the energy system [91]. 

This type of solution has been applied commonly to large energy consumers. Thus, similar approaches can be 

applied in the context of LEMs as a solution that network operators can use to get a more efficient load response 

from end-users. 

The increasing penetration of DERs and renewable energy is another significant factor in the implementation 

of LEM structures. While renewable energy production can be predicted with a good level of accuracy (85% - 

95%) for large producers [142], it is much more difficult to forecast DERs from prosumers at a lower level. This 

is also related to different variations of consumption habits related to human behavior, leading to deviations that 

may cause network problems. LEM can designed to mitigate these deviations, allowing prosumers to generate 

additional revenues by selling their output to individual consumers [1]. 

The power system is forced to evolve due to several factors: the increasing penetration of DER, the new 

consumers (prosumers) roles and new electric loads, such as electric vehicles. In the past, the centralized 
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generation that was dispatchable and predictable offered flexibility at the transmission level and was used to find 

the balance between generation and demand. At present, the large number of installed DERs (including 

renewables) are transforming the generation component into a more variable and intermittent energy source. This 

characteristic in generation is calling for different and more efficient management approaches (e.g., distributed 

optimization might be considered in many cases). On the demand side, the LEM can be the solution for adequate 

management of the flexibility available from end-users overcoming the problems of intermittencies of the 

renewable DERs. 

Consideration of combined markets, as discussed in [109], [143], will also boost the appearance of the LEM. 

By default, these types of structures combine two or more energy sources, like electricity and hydrogen. For 

instance, an hydrogen distribution market can serve as a fuel for cars and at the same time be used for the 

commercialization of electricity [109]. Thus, the combination of two forms of energy that can be traded locally 

can contribute to a more significant expansion of local market structures. With the inclusion of combined markets, 

LEM are not restricted only to the trade of electricity, and other assets can be negotiated (e.g., hydrogen). 

Currently in the electric power system, a significant number of tasks, including design, planning, operation, 

and control, cannot be performed without the assistance of computer software and modeling based on simulations  

[103]. Thus, it can be inferred that LEM will suffer from the same situation and simulations and decision making 

tools will be essential to evaluate and anticipate changes and achieve good functioning of the system.  

Considering presented LEM structures, end-users can increase their participation in the electricity markets 

since, for now, direct participation of end users in the electricity market is limited, having to contract a tariff with 

retailers in order to receive electricity. With LEM, end-users will be able to conduct direct negotiations with peers 

and interact with different players in the market [23]. The LEM gives energy independence to the communities, 

providing the possibility of direct electricity trading within communities, and increasing the reliability and 

resilience of each member of the community as well. In fact, LEM promote local generation with the consideration 

of local sellers in the system [144]. If sellers use renewable DER, they will also contribute to the goals imposed 

by the EU [54]. As competition will increase, it is expected better services from traditional power industry actors, 

benefiting the needs of customers and giving them access to a more competitive market with better prices [145].  

Concerning network operators, a minimization of the network investments costs can be seen as a benefit. 

Usually, these investments are made to prevent possible networks issues. LEM structures can also be used to avoid 

such costs [27]. The increase of local energy producers located in the community will decrease the flow of energy 

from the generation utilities which in turn can reduce network losses [97]. In addition, the fact that local production 
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is closer to the point of consumption brings benefits to power quality and reliability in distribution networks [24]. 

Moreover, the emergence of LEMs will enable new business models due to the technology required for LEMs to 

be implemented [144]. Such approaches are in line with the roadmap defined by the EU, in which the electricity 

consumer should be at the center of the system and have an active participation on it [34].  

Table 6 presents a summary of the benefits presented in the literature review for LEM. The classification is 

performed considering the contribution of analyzed articles addressing each benefit. After analyzing 26 articles, 

we have determined qualitative levels of merit for each of the identified benefits and barriers. A “weak”, 

“moderate”, and “strong” level is assigned to a benefit reflecting the degree of importance that it has in the context 

of LEM. These levels were defined considering the percentage of articles that address a given topic, namely a 

“weak” level is assigned to a benefit/barrier if it is addressed by 0-to-3 works, a “moderate” level if it is addressed 

by 4-to-6 works, and a “strong” level if it is addressed by 7 or more works. 

Table 6 – LEM benefits classification. 

Benefits LEM impact Work reference 

Consumer on centric approaches  Strong [1], [4], [16], [34], [46], [48], [90], [109], [107] 

Benefits to power quality and reliability of distribution networks  Strong [23], [146], [97], [109], [108], [24], [112] 

More offers available  Moderate [1], [146], [3], [103], [147] 

RES increment Moderate [94], [90], [54], [91], [148]  

Decrease the network costs Moderate [1], [94], [27],  [97], [149] 

New business models appearance  Moderate [22] ,[30], [31], [144] 

Better response from tradition power industry  Weak [7], [145]  

The implementation and operation of LEM, presented in section 4.2, may encounter barriers that hinder their 

emergence. For instance, the increase in penetration of variable resources as renewables will require technical 

maturity of some DER, which poses a barrier concerning their installation and in turn will also affect the 

implementation of LEM [146]. Smart meters are a key part of the implementation of LEM structures, as it will be 

from them that the information will emerge. Despite the various measures taken by political entities, the 

installation of smart meters in every home of energy users is far from being achieved [150]. Due to the information 

flow and access points that the implementation of LEM frameworks requires, guarantee data privacy is seen as a 

barrier that needs to be overcome by LEM, and it is certainly a good challenge in cybersecurity [151]. Trading 

platforms that include LEMs will need to be created so that users can access them effortlessly. At present, such 

platforms exist in reduced number and with restricted access, thus constituting also a barrier [86]. Negotiating of 

flexibility between DSOs and small end-users is a relevant aspect of LEM implementation. The lack of legislation 

and regulation in this DSO activity constitutes a barrier adjacent to the implementation of the LEM [145]. LEM 

structures will be created and dimensioned considering low voltage networks, because it is where small end-users 

are connected. The operation of these networks can constitute also a barrier since their current operation is 
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essentially performed without considering a bidirectional flow, contrary to LEM in which bidirectional flows of 

electricity and information are a must [7]. LEM structures will have to use distribution grids for electricity 

transactions to take place. As a rule, distribution networks are exclusive to DSO, thus imposing another barrier 

due to conflicts that may occur between market participants [145]. Currently, it is on-going work from 

standardization bodies and policy makers to clearly define new concepts that arise in LEM, yet the fact that these 

works are still in progress represents a barrier that limits the emergence of the LEM [151]. LEMs are based on 

energy end-users, so there are gaps in business models capable of promoting these interests. In fact, most of today's 

business models are focused on the large users of power system [30]. Economically, the implementation costs of 

technology for end-user’s participation on LEM can be high due to technology immaturity. This also constitutes 

a barrier to the development of LEM [145]. In addition, successful implementation of LEM requires the full 

involvement of end-users, which in many cases adopt a position of resistance to change due to distrust or simply 

lack of knowledge, constituting another barrier that depends on user-behavior and have more societal implications 

[151]. Table 7 presents the barriers classification for LEM found in the literature, the classification is performed 

considering the barriers impact in each structure. We perform the same qualitative assessment done for Table 6.  

Table 7 – LEM barriers classifications  

Barriers 
Impact on 

LEM 
Work reference 

ICT technologies (smart meters, data privacy and trading 

platforms) 
Strong 

[1], [7], [150], [23], [25], [30], [94], [86], [3], [148], 

[152], [151] 

Standardization bodies and policy makers Moderate [90], [148], [147], [112], [145] 

DSO distribution networks exclusivities  Moderate [7], [153], [145], [151] 

Absent regulation and legislation on the flexibility negotiation  Weak [4], [31], [94] 

Lack of business models capable of promoting the interests of 

end-consumers 
Weak [30], [109] 

Implementation costs  Weak [152], [145] 

Maturity of some DERs Weak [146] 

Resistance to change Weak [151] 

6. Conclusion  

Structuring and modifying the electric power systems for the implementation of the LEM models can bring 

benefits to customers, particularly to residential and commercial end-users. LEM can also influence DR, making 

it more attractive because users will be able to perform DR for incentives while opening the opportunity to trade 

the saved electricity consumption to interested parties. LEM may also influence the installation of more distributed 

production technology. In fact, since there will be the possibility of selling electricity in LEM at a more attractive 

price than selling to the network, users will be interested on more means of production to increase their profits. 

However, the actual implementation of LEM structures can only be achieved if government entities (e.g., the EU) 

can recognize and support their implementations. LEM can be differentiated by the services and roles for which 
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they are intended. Despite the current implementations and studies on the basic forms of LEM (showed throughout 

this work), the electrical system will require a more significant effort from researchers, suppliers, policymakers, 

and industry so that an effective implementation of LEM can become a reality. 

If well-structured, LEM will allow a greater involvement of end-users in the electricity markets. In this regard, 

the concept of prosumer is one of the main drivers that is making possible the participation of end-users in the 

electricity markets, and in turn is promoting the emergence of LEM structures. Also, electricity trading at the local 

level can open a window of opportunity for local energy service companies. For instance, energy service 

companies can be suppliers of hardware and software for the implementations and operation of LEM. The 

implementations of LEM structures can also support the development of new businesses and agreements between 

stakeholders, adding private and shared resources to the benefit of individuals, communities, and society. 

LEM can offer a better balance in general for energy negotiation, as they will allow more energy sellers to enter 

the system, promoting competition and reducing prices for the consumers. For instance, PV technology suppliers 

will benefit from successful implementation of LEM since they will promote the use PV panels increasing their 

sales. This increase in sales is explained for the possibility of selling energy by end-user and the willingness of 

increasing local production. Considering the joining concept of Internet of Things and residential automation 

systems, new modus operandi for energy management can be created to bring more active users and replacing 

gradually centralized management approaches. The resistance to change as a human characteristic can be 

sometimes difficult to overcome, but considering the LEM benefits presented in this study, it is expected a 

gradually transition from the users to this new paradigm of local electricity transactions.  

Based on the contents of this article, some suggestions on future research paths are as follow: 

• LEM design and structure of: Despite the development that market structures have had over the years 

with the market reform, concepts related to LEM still need to be further defined and standardized. The 

actual structure of energy power system should include specified regulation to incentive the 

participations of DER in the markets. New regulations should be created considering the needs to 

specify the roles of both new players and traditional players.  

• Coordination of ancillary services with LEM: The ancillary services are considered an important 

mechanism which guarantees the security of the system. These types of mechanisms are typically used 

for regulating the power system variables, like frequency or voltage. LEM can be a good solution for 

ancillary services mechanisms at the local level. Therefore, new coordination approaches need to be 

designed and implemented to enable ancillary services at the local level. 
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• The use of distributed approaches: The use of distributed approaches in power systems is not a novelty 

and can be also applied into LEM. Since it is expected that the number of agents acting in the LEM 

increases significantly, the computational burden and scalability of the methods will be crucial for an 

efficient implementation. Thus, scalability of the distributed methods should be a topic for research 

enabling operation in a shorter periods of time and reducing the computational burden. 

• Human dimension modelling: Decision support systems are needed to assist players in market 

participation. New decision support systems should be designed considering the rules and factors 

needed for participation in LEM mechanisms. The strategic behavior of the LEM agents should be an 

important issue to explore. In fact, a key feature of LEM consists in finding ways to optimally express 

consumers preferences and evaluate the impact of such preferences on the markets.  

• LEM design considering the physical network: Players of LEM will use the traditional grid to make 

the energy transactions. Therefore, LEM should consider this during its designs. With the possibility 

of obtaining profits locally, or reducing energy bills, it is predictable that the participation of users in 

LEM will increase. In this way, it is possible that the limits of the traditional network can be exceeded. 

Thus, adequate network fees for LEM transactions should be designed. 

• Communication system for interactions in LEM: In the negotiations of market players, a 

communications structure is fundamental for a correct information flow within each player. For 

instance, if players are not aware in real-time of the energy availability of each other player, 

transactions may not happen. Future developments of LEM should include new designs of 

communication and feasible information exchanges between players. 

• Cyber-security in LEM structures: As LEM is mostly a market for end-users’ participation, the number 

of connections in the systems will increase, and with more connections, more points of vulnerability 

in the system can be detected. This feature makes the system fragile to suffer cyber-attacks, damaging 

the power system and reaching the users. Cyber-security issues are therefore a critical topic that 

deserves further and continuous research to ensure reliable LEM structures. 
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Conclusiones Principales y Contribuciones 
La integración a gran escala de fuentes de energía renovables (RES por sus 

siglas en inglés), como la solar y la eólica, impulsada como medio para minimizar 
la huella de carbono, ha llevado a un cambio en la operación y control de los 
sistemas de energía y potencia (PES por sus siglas en inglés) en todo el mundo. 
Este cambio ha llevado a la adopción de enfoques para controlar la demanda, 
minimizando el desequilibrio entre la generación y la demanda provocado por la 
fluctuación de la producción de RES. Directrices recientes de la comisión europea 
(EC por sus siglas en inglés) sugieren una participación significativa de los 
usuarios finales de electricidad (consumidores y prosumidores) en los PES. Para 
ello, deben participar en la gestión y planificación del sistema eléctrico y 
desempeñar un papel activo en los mercados eléctricos. La aparición del 
“agregador” permitió a los usuarios finales de electricidad beneficiarse de 
ventajas que antes no tenían, como la participación en los mercados mayoristas. 
De esta forma, el agregador permite que los usuarios finales de electricidad 
tengan mayor importancia, ya que, a través de un intermediario, pasan a poder 
participar activamente en el sistema. En el ámbito de los mercados eléctricos 
(EM), también se están produciendo cambios para introducir un comportamiento 
competitivo en el mercado mayorista de electricidad y, más recientemente, la 
liberalización del mercado minorista. Traer pequeños participantes al mercado 
está allanando el camino para el surgimiento de mercados eléctricos locales (LEM 
por sus siglas en inglés). Los enfoques LEM actuales que se encuentran en la 
literatura han tenido mucho éxito y están comenzando a aparecer en la práctica, 
lo que lleva a los usuarios finales de electricidad a una mayor participación en el 
sistema. Permiten a los usuarios finales de electricidad realizar transacciones de 
su propia electricidad localmente y también negociar servicios que los 
operadores de red pueden usar para operar el sistema. 

En este contexto, con las nuevas posibilidades de participación activa de los 
usuarios finales de electricidad en el sistema, se necesitan nuevos modelos de 
simulación y soporte de decisiones para hacer frente a los nuevos desafíos. Este 
trabajo de tesis contribuyó con la propuesta de nuevos modelos y métodos 
enfocados en las dificultades referidas, orientados a apoyar las decisiones de los 
usuarios finales en las actividades futuras que brindan los nuevos modelos EM y 
en la posible participación activa en la gestión de los PES. Como contribución 
central, este trabajo se centró en el estudio de modelos orientados a agregadores 
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para impulsar la participación activa de los usuarios finales de electricidad 
(prosumidores y consumidores) en futuros PES. Por tanto, se dirigió a los 
consumidores o prosumidores como ente central de las actividades.  

Se han abordado cuatro contribuciones clave, incluida la gestión del lado de 
la demanda, los mercados eléctricos locales, la gestión de la cartera de 
electricidad y los servicios auxiliares locales. Además, se pueden destacar otras 
contribuciones específicas, como el uso de técnicas matemáticas para resolver 
modelos lineales, y metaheurísticas para optimización no lineal y compleja, y la 
creación de diferentes casos de estudio para evaluar los modelos propuestos. 

Aunque el concepto LEM es considerablemente nuevo, la literatura 
relacionada con él está aumentando significativamente. Una contribución 
adicional relevante de este Ph.D. se relaciona con el concepto LEM en sí, 
desarrollando dos trabajos de revisión de literatura. Uno de estos trabajos, que 
ya está publicado, ha proporcionado una revisión de las implementaciones 
prácticas de LEM. El otro, proporcionado como preimpresión en esta tesis, 
presenta un análisis sobre las estructuras LEM actualmente propuestas, los 
proyectos que incluyen LEM y la legislación para fomentar la aparición de LEM. 
Se evidenció que se debe adoptar una definición y descripción común de LEM, 
por ejemplo, algunos autores consideran P2P como el nombre para el comercio 
local de electricidad y otros LEM. Otro tema identificado son las estructuras que 
pueden existir dentro de este segmento de mercado y las diversas propuestas 
para su organización. 

Las aportaciones de este trabajo se basan en diferentes modelos dirigidos 
principalmente al consumidor y prosumidores a través del agregador. Desde el 
lado del consumidor y prosumidor, se han abordado diferentes aspectos, como 
la inclusión de generación fotovoltaica, sistemas de almacenamiento de energía 
(ESS por sus siglas en inglés) y vehículos eléctricos. Algunos de los modelos 
desarrollados también consideran la inclusión de pequeñas unidades de 
combinación de calor y potencia (CHP por sus siglas en inglés) como una entidad 
individual para producir electricidad para ser transaccionada en LEM. Sin 
embargo, algunos aspectos que surgen con la operación de CHPs son necesarios 
para crear o mejorar las metodologías desarrolladas. Por otro lado, el rol del 
agregador en los PES ha sido ampliamente discutido tanto en la literatura como 
en aplicaciones reales. Sin embargo, se deben desarrollar o ajustar nuevos 
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modelos comerciales para permitir la generalización de las aplicaciones LEM en 
la práctica.  

Este trabajo de tesis contribuyó con enfoques para ayudar al usuario final 
de electricidad en su empoderamiento dentro del ámbito de PES y EM. Los 
modelos propuestos se centran en el papel del agregador y están orientados a 
apoyar al usuario final de electricidad en sus actividades de PSA y EM. Los 
resultados de la investigación abordaron la pregunta de investigación (Q0) y las 
cinco preguntas de investigación (Q1 a Q5), presentadas en la sección 1.2. Se 
desarrolló al menos un modelo para cada una de las cuatro actividades 
principales identificadas. Estos modelos se construyen para abordar problemas 
específicos y, al mismo tiempo, posiblemente superar la brecha identificada 
inicialmente. Cómo tal, los artículos, Core Paper II, III, IV, V y VI presentan 
diferentes modelos que simulan actividades donde el agregador es el proveedor 
y los usuarios finales de electricidad son los clientes. En este sentido, se identificó 
la brecha, es decir, donde faltaban modelos y soluciones que ayuden al agregador 
en la prestación de servicios. Para la literatura, los modelos implementados y 
publicados también son una contribución, ya que permiten a los interesados 
seguirlos e implementarlos. 

Los hallazgos resultantes del desarrollo de modelos y métodos, del logro de 
respuestas a las preguntas de investigación y del consecuente cumplimiento de 
todos los objetivos definidos, posibilitaron la prueba y la validación de las 
hipótesis identificadas. Por tanto, es posible concluir que de los varios modelos 
desarrollados en esta tesis pueden ser aplicados en entornos reales. Sin embargo, 
otros aún no pueden ya que la actividad que pretenden abordar carece de 
legislación y regulación alineada con las necesidades actuales y futuras para la 
evolución continua de los PES y los EM. El trabajo desarrollado en el ámbito de 
esta tesis ha resultado en la publicación de diecinueve artículos principales, diez 
de ellos publicados en revistas JCI, y contribuido a seis proyectos en total, de los 
cuales tres son nacionales y tres internacionales. 
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