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Abstract

The growing concerns regarding the lack of fossil fuels, their costs, and their
impact on the environment have led governmental institutions to launch energy
policies that promote the increasing installation of technologies that use
renewable energy sources to generate energy. The increasing penetration of
renewable energy sources brings a great fluctuation on the generation side,
which strongly affects the power and energy system management. The control of
this system is moving from hierarchical and central to a smart and distributed
approach. The system operators are nowadays starting to consider the final end-
users (consumers and prosumers) as a part of the solution in power system
operation activities. In this sense, the end-users are changing their behavior from
passive to active players. The role of aggregators is essential in order to empower
the end-users, also contributing to those behavior changes. Although in several
countries aggregators are legally recognized as an entity of the power and energy
system, its role being mainly centered on representing end-users in wholesale

market participation.

This work contributes to the advancement of the state-of-the-art with
models that enable the active involvement of the end-users in electricity markets
in order to become key participants in the management of power and energy
systems. Aggregators are expected to play an essential role in these models,
making the connection between the residential end-users, electricity markets,
and network operators. Thus, this work focuses on providing solutions to a wide

variety of challenges faced by aggregators.

The main results of this work include the developed models to enable
consumers and prosumers participation in electricity markets and power and
energy systems management. The proposed decision support models consider
demand-side management applications, local electricity market models,

electricity portfolio management, and local ancillary services.

The proposed models are validated through case studies based on real data.
The used scenarios allow a comprehensive validation of the models from
different perspectives, namely end-users, aggregators, and network operators.

The considered case studies were carefully selected to demonstrate the
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characteristics of each model, and to demonstrate how each of them contributes

to answering the research questions defined to this work.

Keywords:  Aggregator; Decision-support Models; Electricity Markets;
Electricity End-users; Local Ancillary Services; Local
Electricity Markets.
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Resumen

La creciente preocupacion por la escasez de combustibles fdsiles, sus costos
y su impacto en el medio ambiente ha llevado a las instituciones
gubernamentales a lanzar politicas energéticas que promuevan la creciente
instalacion de tecnologias que utilizan fuentes de energia renovables para
generar energia. La creciente penetracion de las fuentes de energia renovable trae
consigo una gran fluctuacion en el lado de la generacién, lo que afecta
fuertemente la gestion del sistema de potencia y energia. El control de este
sistema estd pasando de un enfoque jerarquico y central a un enfoque inteligente
y distribuido. Actualmente, los operadores del sistema estdn comenzando a
considerar a los usuarios finales (consumidores y prosumidores) como parte de
la solucidn en las actividades de operacidn del sistema eléctrico. En este sentido,
los usuarios finales estan cambiando su comportamiento de jugadores pasivos a
jugadores activos. El papel de los agregadores es esencial para empoderar a los
usuarios finales, contribuyendo también a esos cambios de comportamiento.
Aunque en varios paises los agregadores estan legalmente reconocidos como una
entidad del sistema eléctrico y energético, su papel se centra principalmente en

representar a los usuarios finales en la participacion del mercado mayorista.

Este trabajo contribuye al avance del estado del arte con modelos que
permiten la participacion activa de los usuarios finales en los mercados eléctricos
para convertirse en participantes clave en la gestion de los sistemas de potencia
y energia. Se espera que los agregadores desempenen un papel esencial en estos
modelos, haciendo la conexién entre los usuarios finales residenciales, los
mercados de electricidad y los operadores de red. Por lo tanto, este trabajo se
enfoca en brindar soluciones a una amplia variedad de desafios que enfrentan los

agregadores.

Los principales resultados de este trabajo incluyen los modelos
desarrollados para permitir la participacién de los consumidores y prosumidores
en los mercados eléctricos y la gestion de los sistemas de potencia y energia. Los
modelos de soporte de decisiones propuestos consideran aplicaciones de gestion
del lado de la demanda, modelos de mercado eléctrico local, gestion de cartera

de electricidad y servicios auxiliares locales.
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Los modelos propuestos son validan mediante estudios de casos basados en
datos reales. Los escenarios utilizados permiten una validacion integral de los
modelos desde diferentes perspectivas, a saber, usuarios finales, agregadores y
operadores de red. Los casos de estudio considerados fueron cuidadosamente
seleccionados para demostrar las caracteristicas de cada modelo y demostrar
como cada uno de ellos contribuye a responder las preguntas de investigacion

definidas para este trabajo

Palabras clave:  Agregador; Modelos de Apoyo a la Decisién; Mercados
Eléctricos; Usuarios Finales de Electricidad; Servicios

Auxiliares Locales; Mercados Eléctricos Locales
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Resumo

As crescentes preocupagoes com a falta de combustiveis fosseis, com seus
cuscos e seus impactos no meio ambiente tém levado institui¢des governamentais
a criarem politicas energéticas que promovam a instalacdo cada vez maior de
tecnologias que utilizam fontes renovaveis de energia para gerar eletricidade. A
crescente penetracao de fontes de energia renovavel traz uma grande flutuagao
na geragao, o que afeta fortemente a gestao do sistema de energia. O controlo
desse sistema esta a mudar de uma abordagem hierarquica e central para uma
abordagem inteligente e distribuida. Atualmente, os operadores do sistema
comecam a considerar os utilizadores finais (consumidores e prosumers) como
parte da solugao nas atividades de operacao do sistema de energia elétrico. Nesse
sentido, os utilizadores finais estdao a mudar o seu comportamento de utilizadores
passivos para ativos. O papel dos agregadores é realmente essencial para
potencializar os utilizadores finais, contribuindo também para essas mudangas
de comportamento. Embora em varios paises os agregadores sejam legalmente
reconhecidos como entidade do sistema de energia elétrico, o seu papel centra-se
principalmente na representacao dos utilizadores finais na participagao no

mercado grossista de eletricidade.

Este trabalho contribui para o avango do estado da arte com modelos que
permitem o envolvimento ativo dos utilizadores finais nos mercados de
eletricidade para se tornarem participantes-chave na gestao do sistema elétrico
de energia. Espera-se que os agregadores desempenhem um papel essencial
nestes modelos, fazendo a ligacdo entre os utilizadores finais residenciais, os
mercados de eletricidade e os operadores de rede. Assim, este trabalho foca-se
em fornecer solu¢des para uma ampla variedade de desafios enfrentados pelos

agregadores.

Os principais deste trabalho incluem a participagao dos consumidores e
prosumers nos mercados de eletricidade e na gestao dos sistemas de energia e
energia. Os modelos de suporte desenvolvidos consideram aplicagdes de gestao
do lado do consumidor, modelos de mercado local de eletricidade, gestao de

portfdlio de eletricidade e servigos auxiliares locais.

Os modelos propostos sao validados através de casos de estudo baseados

em dados reais. Os cendrios utilizados permitem uma validagao abrangente dos
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modelos a partir de diferentes perspetivas, nomeadamente utilizadores finais,
agregadores e operadores de rede. Os casos de estudo considerados foram
criteriosamente selecionados para demonstrar as caracteristicas de cada modelo
e demonstrar como cada um deles contribui para responder as questoes de

pesquisa definidas neste trabalho.

Palavras-chave: Agregador; Modelos de Apoio a Decisdao; Mercados de
Eletricidade; Usuarios Finais de Eletricidade; Servigos
Auxiliares de Sistema Locais; Mercados Locais de
Eletricidade.
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Chapter 1

Introduction







1. Introduction

1 Introduction

The motivation for the development of this Doctor of Philosophy (Ph.D.)
thesis is presented in section 1.1, which leads to the definition of the related
research questions and objectives, presented in section 1.2. The key contributions
of the developed work and the related publications are described in section 1.3.
Finally, section 1.4 presents the outline and organization of the Ph.D. thesis

document.

1.1 Motivation

Today’s societies are highly dependent on electrical energy consumption.
Considering that societies are composed of rational beings, which always search
for the best possible comfort, the electricity consumption needs to increase in
order to satisfy them. Considering this behavior, the institutional government
has been fighting the consequences that a drastic increase of electricity
consumption brings, imposing and suggesting different actions. The European
Union (EU) has shown great concern, from an early stage, regarding climate
change, environmental and energy issues [1]. The reduction of greenhouse gas
(GHG), the share of energy renewable-based generation, and the energy
efficiency are considered by the EU as key aspects in the future of electric power
systems. Still, they can also condition the consumption and production of
electrical energy. In September of 2020, the EU published in [2] a revision of the
defined targets of [3] maintaining the following trends: reduction of GHG
emissions by at least 40% from the levels of 1990; the target of 32% of renewable
energy consumption share; and the energy efficiency should be improved at least
32,5% by 2030. The “European Green Deal” created on 1%t December of 2019 [4]
constitutes a collection of policy initiatives purposed by the European
Commission (EC) with the propose of getting the EU climate neutral in 2050. To
obtain neutrality, EU extends its goals for other different sectors, including
construction, biodiversity, energy, transport, and food. More ambitious targets,
aligned with the “European Green Deal” and defined in [5], identify goals for an
economy with net-zero GHG emissions by 2050 [6]. By analyzing the EC report
published on 26t October of 2021 [7], it is possible to conclude that the previously
published directives are starting to show results. According to the report results, the

power sources using fossil fuels were for the first time (2020) exceeded by power
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sources using renewables; in specific 38% for renewables, 37% for fossil fuels and
25% for others (nuclear fission). Regarding GHG emissions values, the report also
presents encouraging results: in 2020 a value of 31% (compared with 1990 values) is
registered as the verified reduction. This value is largely due to the Covid-19
pandemic situation, but the pre-set target of 40% by 2030 is expected to be easily
achieved.

The consequent large integration of renewable energy sources (RES) (e.g.,
wind, solar, among others) has variable production, and the installed power is often
not an effective production. Since the behavior of RES differs from conventional
energy sources, the integration of RES with particularities presented in reference [8]
is reflected in the power and energy systems (PES) and brings different challenges
to its normal operation [9]. The problems provoked by large scale-RES penetration
in the PES can be mitigated by installing of energy storage systems (ESS) [10], [11].
The integration of RES and ESS needs a sophistical energy management system
(EMS) for successful integration [12], [13]. EMS can be oriented to obtain single or
multiple objectives, still that the most common are economic objectives [14]. These
objectives can be fulfilled at the transmission, distribution, or end-user level. In this
way, the application of EMS at the end-user level can contribute to the empowerment

of electricity end-users (consumers and prosumers) meeting EU guidelines.

With higher distributed energy resources (DER) penetration and utilization,
customers are becoming more active players in the electric grid, either as prosumers
or by participating in demand-response (DR) programs offering a variety of system
benefits [15], [16]. DR can be considered a tool to maintain the stability of PES from
the demand side [17]. DR programs were initially designed and implemented for
industrial and commercial customers, hence residential customers were out of this
initial scope due to the small DR contribution that each one could offer [18].
Resources aggregation is one of the promising solutions identified to include the
residential consumers as participants in DR events and markets and make use of
their flexibility potential. In this sense, the aggregator entity gains a solid role in PES
[19]. The application scope of aggregators is not just limited to aggregating DR. In
fact, the literature offers several other different types, e.g., a load aggregator mainly
gathers the load flexibility of residential customers; a production aggregator (e.g.,
virtual power plant (VPP)) groups small generation units [20]; an EV aggregator
groups individual EVs [21]. In this way, an aggregator is a legal agent and can
participate in electricity power market (intraday, day ahead, etc.), and in regulating

or balancing markets.
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With the increase of RES installation in small end-user facilities, households’
consumers have become prosumers with the ability not only to meet their needs but
also to sell surplus energy, generating some profits. Given the impossibility of
prosumers' surplus energy being sold on the wholesale market due to minimum
quantity restrictions, aggregators play a fundamental role in this process [22].
Portfolio optimization appears as a management tool that can give support to
electricity sellers and buyers. In a traditional portfolio optimization problem, the
solution is composed of the allocation of capital within different investments
opportunities. The portfolio application on EM allocates electricity within different
markets (day-ahead markets, real-time markets, bilateral contracts, forward) [23].
Aggregators can make the use of portfolio techniques to find the best schedule of
their aggregated electricity to obtain the best transactions in the electricity market,

considering all available options [24].

The RES installation also has an impact in the feed-in tariffs (FiT) value. Initially
the creation of FiT aimed to increase the number of DER installations to meet the
imposed environmental targets. This effect was also reflected at the household level
with high adherence to the installation of small generation PV units. A gradual
decrease in FiT has been observed over the years (e.g., in Portugal, in 2019, the FiT
was 95 €/MWHh, and in the current year (2022), the FiT is 45 €/ MWh). As a result,
these decreases may have an impact on RES companies’ profits or encourage higher
levels of self-consumption, e.g. when consumers with PV systems have ESS installed
[25], [26]. The main challenges arise during high generation periods, during which
RES production surpasses a prosumer demand, and therefore, overall generation
may not be fully utilized. If a ESS is not available, the surplus energy could be
curtailed or fed back into the grid [27]. Curtailment can lead prosumers to invest in
lower generation capacity and reduce the profitability of the installed capacity.
Feeding into the grid brings other issues, such as the requirement for a fair price,
since the existing heavily subsidized feed-in tariffs may not be viable as the number

of prosumers increases.

Consequently, a significant need for drastic changes in the EM emerges,
comprising both the retail and wholesale markets. Accordingly, the EC promptly the
restructuring and liberalization of EM in the EU. This process emerged in 1996 with
the directive 96/92/EC of the European Parliament and Council, introducing
competition in the electricity markets (EM) that could increase efficiency and reduce
electricity prices. However, the market competition was threatened by
discriminatory access to transmission and distribution networks and market

dominance. To combat the previous situation, the EU introduced in 2003 the

Ricardo Faia 5



Decision Support for Participation in Electricity Markets considering the Transaction of Services and
Electricity at the Local Level

2003/54/EC directive (replacing 96/92/EC). This directive guarantees transparency in
electricity prices, non-discriminatory access to market and network and promotes
the separation of entities related to the exploration of transmission and distribution
systems. The third energy package introduced in 2009 (2009/72/EC) replaced the last
2003/54/EC published directive. It reinforced the separation of legal ownership of
network operation from suppliers and generation, emphasizes the consumers’ right
to free choice of suppliers, and strengthens cross-border trading in the EU. In 2019,
Directive 2019/944 with the name “Common rules for the internal market for
electricity” was published. It focuses on creating a truly integrated and competitive,
consumer-centered, flexible, fair, and transparent electricity market in the EU.
Directive 2019/944 imposes rules on consumer empowerment and protection. Also,
this directive promotes the final end-user of electricity with the possibility to evolve
from a passive player to an active player. Furthermore, it promotes their enrolment

in the power system through the creation of new business opportunities [28].

Endowing end-users with a more active role in the EM are leading to the
emergence of Local Electricity Markets (LEM). LEM are arising as a prosumer-
centered model with the possibility for sellers and buyers to find the best market
opportunities [29]. Furthermore, LEM can contribute to the empowering of users
[30], as these are implemented locally and designed for the participation of
consumers and prosumers, complying with the guidelines of the EU for the energy
communities [31], [32]. LEM can have two main proposes, one of them being
electricity trading [33], where prosumers and consumers can transact electricity
without necessarily a central authority. The other propose is flexibility trading [34],
where a central entity (e.g., aggregator, distributed system operator (DSO)) request
flexibility in a specified local area to solve grid issues [35]. LEM could also support
ancillary services (AS) provisions at the local level [36]. These types of models have
come into great focus in the literature [37], and there is a need to create

methodologies to support and guide the users in real-world applications.

1.2 Objectives

The need for electricity end-users (prosumers and consumers) to become
active players in PES, and EM in particular; and the lack of suitable decision
support methodologies that can enable them coping with the new challenges,
especially via entities such as aggregators, are some of the relevant
acknowledged constraints in the current state of the art. The research problems
that arise from this gap highlight the need for improved solutions to assist the

decisions and operation of aggregators. This enables consumers and prosumers
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to adapt their behaviors in order to gain better benefits for themselves and for the
system. As a result, it is essential to consider the participation of consumers and
prosumers at different levels, namely: in the management of PES, participation
in wholesale markets and AS markets, and in LEM participation. Normally,
individual consumers or prosumers cannot meet the requirements to participate
in the activities listed above or do not have the knowledge, capability, will or
capacity to do so. In this context, the role of the aggregator becomes fundamental
for the empowerment of the consumers and prosumers in EM and PES. In sum,
the gaps are focused on aggregator, prosumer and consumer activities involving
the participation in PES and EM. The main research question established in this
Ph.D. was identified by the significant breakthroughs that are necessary to cover

the identified gaps:

QO - Can innovative aggregator-oriented business, market and flexibility models

boost prosumers/consumers active participation in future PES?

In order to respond to research question QO, there is a need to divide the
main question into different sub-research questions. Therefore, the following

group of research questions arises:

Q1 - How can consumption flexibility and demand response models enable the
participation of prosumers/consumers in a fair and efficient way, with benefit for all the

involved players and the system?

Q2 — How can electricity market models be improved to enable an efficient and
intensive use of local resources (distributed generation, EV, demand flexibility, and

storage)?

Q3 - How can players improve their participation in future EM considering the

new and evolving opportunities including, aggregators, energy communities, and LEM?

Q4 - How can we take full advantage of local resources for implementing new
models for AS provision with benefit(s) to distribution system operators and local players

including prosumers and consumers?

Q5 - How can prosumers/consumers use their flexibility in an efficient and
advantageous way in their own installations and to respond to implicit and explicit
flexibility requests?

The hypothesis of this Ph.D. work aims at demonstrating that electricity
end-users (prosumers and consumers), namely households, can have an active

participation in PES and EM. This can bring benefits not only to themselves but
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also to other stakeholders (e.g., DSO, aggregator, etc.) participating in the smart
grid. In order to prove this hypothesis, four central topics are identified and will
be the subject of study of this work: demand-side management, LEM, electricity

portfolio management, and local ancillary services.

The development of this Ph.D. must result in a decision support
methodology capable of guiding consumers and prosumers in their daily energy
management activities, considering the participation in EM and contributing to
the management of PES. It is also needed to develop models that include the
possibility of residential end-users (prosumers and consumers) executing
demand-side management actions; the option of prosumers and consumers
participating in LEM transacting electricity between them; the opportunity to use
the portfolio management methods to find the best markets to allocate their
transactions and the possibility of providing ancillary services to upper levels.
The expected implementation models should consist mostly of optimization
solutions, simulation models, and analyses. Exact methods (e.g., Mixed Integer
Linear Programming (MILP)) or intelligent search algorithms (e.g., Particle
Swarm Optimization (PSO)) should be applied to solve the optimization

problems.

The conclusions of this Ph.D. work will be supported by experiments based
on real data provided from both laboratory and real environments. The hosting
institution Research Group on Intelligent Engineering and Computing for
Advanced Innovation and Development (GECAD) will provide all software and

hardware necessary to develop and test the created models.

Taking into account the previously explained hypothesis and ensuring the
answers to the identified research questions, the following objectives are

considered:

1. Development of a methodology for optimization of demand response

(flexibility) of residential households,

a. Analyze different resources to support demand response such
as, ESS, PV-systems, and controllable loads

b. Evaluation of model scalability considering many households
managed by an aggregator

c. Explore the value of flexibility for the grid and distribution

operator
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2. Development of new electricity market models at the local level for

households’ participation
a. Analyze existing published models and solutions for LEM
models
b. Evaluate the benefits of local transactions for all involved
players
c. Comparing the centralized and distributed resolution
methodologies

3. Development of methodology of portfolio optimization for an

aggregator to enable the households’ participation in EM

a. Examine the influence of the risk in the portfolio allocation
assets (electricity in different markets)

b. Analysis of the participation of an energy community in the
wholesale market through an aggregator

4. Investigate the possibility of households providing AS contributing

with an active role in the distribution grid operation

a. Simulation of an action-based market at the local level to
negotiate the flexibility needed for solving problems in a
distribution grid

5. Optimization and Simulation of scenarios based on real and simulated

data to test and validate the models

a. Testing and validating different optimization methods
b. Simulation of scenarios based on real EM’ data
c. Analysis of the realistic scenarios simulation results using the

developed system to support market players’ actions

1.3 Contributions and Publications

The realization of the defined objectives and the consequent success of
responses to the specified research questions fully cover the goals defined in the
Ph.D. scholarship (reference SFRH/BD/133086/2017 and
COVID/BD/152167/2021) in the scope of the “Ph.D. Studentships and Post-
Doctoral Fellowships” and “Exceptional Grants to Mitigate the Impact of
COVID-19” respectively, both from the programme of FCT (Fundagio para a
Ciéncia e a Tecnologia - Science and Technology Foundation). In addition, the
results obtained in the scope of this thesis also partially cover the objectives and

results of several national and international R&D projects with the participation
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or coordination of GECAD, the hosting institution for the development of the

research activities of this Ph.D. The considered projects are:

e TradeRES — New Markets Design & Models for 100% Renewable
Power Systems. Funded by the European Union’s Horizon 2020

research and innovation program under grant agreement 864276;

To TradeRes project (ongoing), the work of this Ph.D. contributed to
developing electricity transaction models within energy communities. Although
the results obtained will not be reported here, they are presented in the

deliverables of the project.

e CENERGETIC - Coordinated ENErgy Resource manaGEment under
uncerTainty considering electrlc vehiCles and demand flexibility in
distribution networks. PTDC/EEI-EEE/28983/2017;

The models developed within the scope of this work related to EV and their
integration into the local context also contributed to the CENERGETIC project
(finalized). The results reported from the publications that constitute the work of

this Ph.D. were also reported in the projects deliverables.

e MAS-Society — Multi-Agent Systems SemantiC Interoperability for
simulation and dEcision supporT in complex energY systems,
reference no. PTDC/EEI-EEE/28954/2017;

In the MAS-Society project (finalized), the work developed in this Ph.D.
essentially contributed to the application of the portfolio theory to support
participating players in the electricity markets. Therefore, the results reposted in
this work, considering the portfolio theory application, are part of the projects

results.

e DOMINOES - Smart Distribution Grid: A Market Driven Approach
for the Next Generation of Advanced Operation Models and
Services, under the H2020 grant agreement no. 771066;

For the DOMINOES project (finalized), this Ph.D. work contributed to
models developed for acquiring AS at the local level using the available flexibility
provided by small electricity end-users. Accordingly, the results obtained from
the application of these models were reported in the deliverables of the project

had a different case study from those presented in this document.
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e CONTEST - Innovative CONsumer aggregation to improve demand
response and Tariff design for Energy and Services Transactions,
reference no. SAICT-POL/23575/2016;

Considering the CONTEST project (finalized), the model that includes the
aggregator as a DR service provider developed in this Ph.D. work contributed to
the project’s outcomes. The presented results in this work are not reported in the

projects deliverables.

e DREAM-GO - Enabling Demand Response for short and real-time
Efficient And Market Based smart Grid Operation — An intelligent
and real-time simulation approach. Funded by the European Union’s
Horizon 2020 research and innovation programme under the Marie

Sklodowska-Curie grant agreement no. 641794;
In the scope of DREAM-GO (finalized), the models developed in this Ph.D.

work contributed to the DR actions implementation using metaheuristic
algorithms. The results obtained with the DR models reported in this document

were part of the projects results.

The results and the work achieved during the development of this Ph.D.
thesis ensured the publication of nineteen scientific papers. Ten papers were
presented and published in the proceedings of top-level conferences in the fields
of power systems and computer science; one book chapter has been published in
a book dedicated to LEM; and ten journal papers have been published in JCR!
indexed journals with impact factors. Seven of the published papers compose the
core of this Ph.D. thesis (six published in scientific international journals and one
in scientific international conference proceedings) by fulfilling the proposed
objectives and answering the research questions. The seven papers are presented
in Appendix A. Core Publications, and their fundamental contributions to cover
this Ph.D. thesis’ objectives are presented in chapter 2. The seven core

publications of this Ph.D. work are as follows:

I.  Faia, R, Faria, P., Vale, Z., & Spinola, J. (2019). Demand response

optimization using particle swarm algorithm considering optimum

1 Journal Citation Reports (JCR): https://jcr.clarivate.com/.
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II.

II1.

IV.

VL

VIL

battery  energy  storage schedule in a  residential
house. Energies, 12(9), 1645.

Lezama, F., Faia, R., Faria, P., & Vale, Z. (2020). Demand response of
residential houses equipped with PV-battery systems: An application
study using evolutionary algorithms. Energies, 13(10), 2466.

Faia, R., Soares, J., Pinto, T., Lezama, F., Vale, Z., & Corchado, J. M.
(2021). Optimal model for local energy community scheduling
considering peer to peer electricity transactions. IEEE Access, 9,
12420-12430.]

Faia, R., Soares, J., Ghazvini, M. A. F., Franco, J. F., & Vale, Z. (2021).
Local Electricity Markets for Electric Vehicles: An Application Study
Using a Decentralized Iterative Approach. Frontiers in Energy
Research, 563.

Faia, R., Pinto, T., Vale, Z., & Corchado, J. M. (2021). Portfolio
optimization of electricity markets participation using forecasting
error in risk formulation. International Journal of Electrical Power &
Energy Systems, 129, 106739.

Faia, R., Pinto, T., Vale, Z., & Corchado, J. M. (2021). Prosumer
community portfolio optimization via aggregator: The case of the
iberian electricity market and portuguese retail market. Energies,
14(13), 3747.

Faia, R., Pinto, T., Vale, Z., & Corchado, J. M. (2019, September). A
local electricity market model for DSO flexibility trading. In 2019 16th
International Conference on the European Energy Market (EEM) (pp.
1-5). IEEE.

In addition, there are three manuscripts submitted for publication in international

journals with preprints available in public mode to complement and reinforce the

realization of the proposed objectives. These papers are available in Appendix B.

Faia, R., Lezama, F., Pinto, T., Faria, P., Vale, Z., Terras, J., &
Albuquerque, S. (2022). A Simulation of Market-based Non-
Frequency Local Ancillary Services Procurement Based on Demand
Flexibility.

Faia, R., Morais, H., Pinto, T., Lezama, F., Vale, Z. (2022). Indoor
Temperature Evolution Modelling Through Computational

Intelligence

Preprints.
L
IT.
12
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III.  Faia, R., Lezama, F., Vale, Z., Soares, J., Pinto, T., Corchado, J. M.
(2022). Local Electricity Markets — Review

The combinations of the contributions provided by the work developed in
the scope of the Ph.D. work results in different models able to support the
decisions of aggregators, prosumers and consumers in the participation of EM
and management of PES. Figure 1-1 presents the conceptual overview of the
study in this Ph.D.

Demand Side Local Electricity
Management Markets

Prosumer

AN

Retailer

&)

R{UTAET p)
WA SAS HONINQLISI(

Electricity Portfolio Local Ancillary
Management Services

Figure 1-1 — Conceptual overview of the work developed

Figure 1-1 presents the conceptual overview of the work developed in this
Ph.D., with the representation of the prosumer in the center. This figure
highlights the aggregator as an important entity to enable the prosumer
participation in some activities and the key components that underlie the main
activities that prosumers can participate or get involved in. The four main
components presented in Figure 1-1 integrate the decision support features that
enable: (i) demand-side management that includes the possibility of consumers
and prosumers to modify their consumption demand (presented in Core Paper I
[38] and Core Paper II [39]); (ii) the participation in LEM, considering the
possibilities for electricity transactions with neighbors (presented in Core Paper
I1I [40] and Core Paper IV [41]); (iii) the possibility of using electricity portfolio
management techniques, choosing the best opportunities to perform the
transactions (presented in Core Paper V [42] and Core Paper VI [43]); and the
possibility of providing ancillary services from the local level through a novel

market structure (present in Core Paper VII [44]).

All developed modules are created with focus on consumer and prosumer

activities, considering them as a central entity in the proposed system.
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Generation resources (PV generators) and storage resources (home batteries and
EV batteries) are considered on the prosumer or consumer side. Therefore,
through optimization and simulation approaches, the implemented
methodologies and models provide the best solution considering the available

resources and the purpose for which they are intended.

To support prosumers in demand side management (DSM) actions the
models presented in Core Paper I [38] and Core Paper II [39] and Other Paper I-V in
[45]-[49] have been proposed. Core Paper I and Core Paper II [39] consider the
possibility of prosumers realizing DR in order to minimize the costs of energy
usage. Core Paper I [38], provides a single application for the prosumers to realize
DR without contracting other entities (e.g., aggregator). The solution is obtained
considering two different approaches (exact and non-exact). Core Paper II [39]
considers a service provision by an aggregator to perform DR, in which
prosumers’ houses pay a fee to the aggregator as compensation for the provided
service. This paper provides a model to schedule the best options to execute the
DR. To obtain the solution, the aggregator solves the optimization problem by

considering metaheuristic algorithms (non-exact resolutions).

The support for the prosumers’ participation in LEM is presented in Core
Paper I1I [40], Core Paper IV [41], and also in Other Paper VI-IX [50]-[53]. In Core
Paper I11 [40] a centralized solution is obtained considering that prosumers realize
peer-to-peer (P2P) transactions and use the main grid as a backup. In this study,
an exact solution was found to minimize the overall costs of the community
members. Core Paper IV [41] presents a study of a LEM model that includes
prosumers and EVs. An iterative and distributed solution was proposed to solve

the problem.

Electricity portfolio management support was analyzed in Core Paper V [42]
and Core Paper VI [43] and also Other Paper X [54] and Other Paper XI [55]. Core
Paper V [42] considers the participation of an aggregator in different market
possibilities supported by portfolio optimization analyses. The model proposed
in Core Paper VI [43], comprises the aggregator participation in the wholesale
electricity market (a spot market and six intraday market sessions) or the

purchase of electricity from a retailer.

Regarding the local AS participation, the support is given by the models
proposed in Core Paper VII [44], Other Paper XII [56] and Preprint I [57]. These
works comprise simulation studies. In Core Paper VII [44], a local market for AS
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services provisions has been proposed, prosumers and consumers can respond
to the flexibility request with offers of demand reductions. The offers are selected
according to an asymmetric auction mechanism. Preprint I [57] also presents a
local AS provision market for voltage bus and current lines control. This work
analyses different types of consumers behaviors in submitting offers on the local

AS provision market.

1.4 Document Structure

This thesis document contains three chapters. This chapter presents the
introduction and exposes the motivation for developing this Ph.D. thesis, a
background overview of the most significant subjects related to this work, the
identified research questions and objectives, and a summary of the key

contributions.

Chapter 2 describes the contributions of this thesis, explaining the research
questions and discussing how each core paper addresses these questions,
accomplishing the determined objectives. The chapter contains the key
contributions of this Ph.D. work, in which each subsection addresses a specific

topic associated with a research question.

Finally, chapter 3 presents the most relevant conclusions and findings
completed from the developed work. Perspectives of future research are also

presented in this final chapter.
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2 Contributions

This chapter presents the key contributions of the developed work and
discusses how each of the core papers of this Ph.D. thesis addresses the presented
research questions. The fulfilment of the Ph.D. objectives is also described as a

result of several key contributions.

2.1 Introduction

Adequate models and methodologies are fundamental to provide support
for the small electricity end-users (consumers and prosumers) in EM
participation and PES management involvement. Using these models and
methods, electricity end-users (consumers and prosumers) are able to obtain
advantages from participating in the multiple activities discussed in the
motivation of this work. The research questions stated in the introduction section
and the subsequent characterization of the Ph.D. work's objectives were
motivated by the current gap in the literature regarding this form of support for
small electricity end-users in EM participation and PES management

involvement.

As a result of this Ph.D. research, several models and methods have been
developed, which is crucial to overcome the field's limitations. Furthermore, the
obtained results contribute to the progress of the current state of the art by
offering solutions to the research questions that have been defined as relevant to

such development.

Table 2-1 presents the relation between each publication and the key
contributions of this thesis. The identified key contributions are also associated
with each related objective defined previously. Publication “Core Paper” I to VII
[38]-[44] represents the core publications (six journal papers and one conference
paper) of this Ph.D. work, previously introduced in section 1.3. The “Other”
column identifies supplementary scientific publications, in total twelve (seven
conference papers, four journal papers and one book chapter), that have also been
published in the scope of this Ph.D. research, complementing with additional
results the achievements of the core publications. Additionally, the “Preprint”

column considers important unpublished papers that give complementary
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support for this Ph.D. work, three in total; these papers have been submitted to

JCR journals and were briefly presented in section 1.3.

Table 2-1 - Ph.D. thesis key contributions, related objectives, publications, and preprints.

Publications B
Key Related Core Other
Contributions | Objectives | | Im | m|1v | V | VI|VI I-XII I II | II
[38] | [39] | [40] | [41] | [42] | [43] | [44] | [45]-[56] | [57] | [58] | [59]
[45]
Demand Side ! . [46]
Management (see section | X X [47]
2.2) [48]
[49]
Local 2 E(l)}
Electricity (see section X X X
Markets 2.3) [52]
[53]
Electr1c41ty 3 4 [54]
Portfolio (see section X X [55]
Management 2.4)
. 4
Loca.l Ancillary (see section X [56] X
Services
2.5)
5
Experiments (see section | X X X X X X X X X
2.6)

As can be seen from Table 2-1, the key contributions are covered by at least
one core publication. In addition, other publications and preprints resulted from
this Ph.D. study and address particular issues on the related topics, complement
and extend the core papers' achievements. The objectives of this Ph.D. work are
completed or partially fulfilled by one of the contributions presented in Table 2-1.
The research questions can be related to one or more key contributions. The
following sections present each of the key contributions, the link with the
respective research question(s), and specifics how the created core papers attend
to the contributions that give response to the research questions of this Ph.D.

work.

2.2 Demand Side Management

Section 2.2 responds to Q1 - How can consumption flexibility and demand
response models enable the participation of prosumers/consumers in a fair and efficient

way, with benefit for all the involved players and the system?

DSM concept was introduced to enable energy demand adaptation from the

consumers' side, avoiding high consumption peaks and enabling full use of
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generation in times of surplus [60]. According to [61], DSM is defined as an
arrangement of actions to encourage electricity end-users to modify their energy
consumption pattern to match the demand with the available supply. Reference
[62] states that DSM first promoted, in the past, the engagement of the consumers
in a market that has historically been ‘invisible’ to them. Industrial large
consumers were initially, the targeted players of DSM programs due to their
ability to cause considerable adjustments on the system level. The adoption of
smart metering infrastructures facilitates the transaction of DSM from the
industrial to the residential sector [63]. However, applying these programs to
residential customers is not as straightforward since the direct control of loads
could compromise the user's privacy and affect the user's comfort [64]. Then an
approach that considers a stand-alone DSM application where DR is performed

is presented.

Core Paper I [38] proposes a DSM methodology applied to a generic house
to minimize the costs of energy usage. The methodology considers a DR
optimization approach considering the availability of other resources. The users
can perform DR actions in their facilities without any contracts with demand
response service providers. Figure 2-1 presents the implementation scheme of

work proposed in Core Paper I [38].
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Figure 2-1 — Implementation scheme of the proposed work in Core Paper I [38]

PV generation use is considered free of costs and thus a priority for the
residential user. The connection with the grid is considered bidirectional (the
electricity can flow both ways). In general, the consumer can benefit from the PV
generation, ESS, and DR actions to minimize the cost of consumption from the
main grid. The consumer can explore periods when electricity is cheapest to meet
consumption and charge the ESS, and look for periods when electricity is most

expensive to sell it to the main grid. An optimization based on the PSO
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metaheuristic is executed to optimize the operation costs, considering that the

user has storage units and is also enabled to apply DR in specific loads.

Core Paper 1I [39] extends the concept from Core Paper I [38], by proposing a
parallel-based approach to solve the problem by considering several houses. An
energy service provision is considered, which performs the optimizations, and

makes the results available for each house.

Multi-population In the parallel-based approach, the EAs Solutinns are
(one for each household) optimize each households independently combined
| | |

Household 1 —-
Houschald 2 :

|4.|:|

Howsehold 1 i

Figure 2-2 — Parallel-based approach proposed in Core Paper II [39]

To explore the scalability of the model presented in Core Paper I [38], the case
study in Core Paper II [39] was expanded to twenty different houses with the
possibility of each one controlling three different loads. In this work, the PV
generation and ESS resources are also considered. Five different computation
intelligence algorithms were used to solve the optimization problem.
Considering the results, the computational intelligence (CI) algorithms using the
parallel-based approach provide better solutions for a large number of
households.

In Other Paper IIl [47], a framework for aggregator and households
interaction was proposed to aggregate flexibility from the demand side. As the
central entity, the aggregator performs the optimization of the households’
resources. This optimization reduces its energy costs and gets revenues by selling
the flexibility provided by the DR capabilities of households. In the case study, a
set of 1000 households with PV generation and storage systems were considered.
The distribution system operator (DSO) can also take advantage of the end-users’
flexibility. Other Paper IV [48] presents a model to minimize the investments cost
in a distribution network expansion. Results regarding the use of flexibility from
the end-users’ side show that a reduction in investment costs was achieved. Other
Paper 1 [45] presents another model where DSO can take advantage of the
flexibility available on the end-users side. The cost of the distribution network
operation activity is minimized considering the costs of power losses and

flexibility acquisition. Attending to the discomfort caused by the DR
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implementations, a multi-objective model that minimizes both the energy bill
and the demand response quantity (measured in kW) was proposed in Other
Paper II [46]. A multi-objective PSO is used to solve the problem and find the
optimal pareto frontier. With the solutions of the pareto front, the user can choose
one of the solutions that meets its requirements. Whereas a greater comfort will
lead to a higher energy bill value, and on the other hand, a lower energy bill value

will lead to greater discomfort.

The contribution of this part of the Ph.D. work is a model that provides to
the prosumers or consumers the possibility of executing DSM actions in their
facilities considering a single application (Core Paper I [38]) and provided by an
energy service provider (Core Paper 11 [39] and Other Paper I1I [47]) (objective 1.a).
The role of the aggregator is also a focus of the proposed model and acts as an
intermediate to sell the flexibility provided by the consumers and prosumers
through the DR actions (objective 1.b). DSO is another main entity considered in
the developed model, showing the benefits that it can take from the flexibility of
prosumers and consumers in the management of PES (objective 1.c). This
contribution provides the answer to the research question considered in this
section (Q1), partially covers the research question Q5, and fully accomplishes
the first objective of this Ph.D. work.

2.3 Local Electricity Markets

Section 2.3 responds to Q2 — How can electricity market models be improved
to enable an efficient and intensive use of local resources (distributed generation, EV,

demand flexibility, and storage)?

LEM is a new concept, and a coherent definition is not presented yet.
Therefore, a consensual definition is necessary for the LEM implementation and
related contributions. The models developed in the scope of this contribution are
aligned with the definition of LEM provided by [65]:

A local electricity market is a market platform for trading locally generated
(renewable) electricity among residential agents within a geographically and socially
close community. Security of supply is ensured through connections to a superimposed

electricity system (e. g., national grid or adjacent local electricity markets).

LEMs admit the direct participation of electricity end-users and small

producers in the EM, thus promoting their empowerment [66] and the formation
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of local energy communities. In comparison with the other markets, LEM
requires sellers (producers and prosumers) and buyers (prosumers and
consumers) and a backup system (main grid or retailer) in order to ensure the
supply of electricity. With the possibility of prosumers increasing their sales with
the transactions on LEMs, these structures can have an important impact on the
local RES installation [67]. Furthermore, reducing energy costs is defined as the
main objective for the local markets participants, increasing the independence

from retailers” companies [68].

Preprint 1II [59] conducts a literature review paper on the topic of research
articles related to LEMs. The work presents a review that identifies and discusses
the different proposed approaches regarding LEM structures. A survey on
projects and publication addressing the LEM structures is realized for this
purpose. Regarding regulation and legislation that encourage the LEM creation,
an analysis is also executed in the review. The key contribution of the conducted
review is the proposed classification of LEM structures, which is based on the

content explored in the literature review.

Core Paper 111 [40] proposes a mathematical optimization model to optimize
the total community energy costs, considering the possibility of agents realizing
P2P transactions in LEM. Figure 2-3 presents the conceptual structure presented
by the Core Paper I1I [40].

Main Grid Retailer

(L))

Legend

Backup

Payment for energy supply contract
System « >

Payment of Pear-to-Pear transactions
Bidirectional energy flow

AANAD

NN NN

Prosumer 1 Prosumer 2 Prosumer 3 Prosumer N

Figure 2-3 — Conceptual LEM proposed in Core Paper III [40]

The proposed model considers a local energy community (LEC) with PV
generators and ESS installed in each community member facility. The members
characterized by prosumers have two different possibilities to buy electricity

(retailer or in P2P mode) and two other possibilities for selling electricity (main
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grid or P2P mode). The problem was modeled considering a MILP with the
minimization of energy costs summation of each prosumer. A social welfare
solution is set based on the best set of P2P transactions among the community
members. Savings of up to 15% were obtained when scenarios with P2P

transactions and without P2P transactions were compared.

The inclusion of electric vehicles (EV) in LEM was explored in Other Paper
VIII [52], and Core Paper IV [41]. The model proposed in Other Paper VIII [52]
considers the inclusion of EVs as buyers in LEM with a peer-to-vehicle (P2V)
market. Thus, the work considers an optimization model that simulates a LEM
between prosumers and EVs with P2V electricity transactions. The case study
considers an energy community composed of households, commercial and
industrial prosumers, and EVs, totaling fifteen prosumers and twenty EV. Three
prosumers’ households had an EV each, and it is considered that if the EV is
parked at the house, it should charge the battery from the electricity provided by
the prosumer. The rest of the EVs are parked at different points of the community

grid and charge the battery with electricity from the retailer or the P2V market.

Due to scalability problems that the Other Paper VIII [52] model presented,
a distributed methodology was developed to solve the P2V market problem with
a large number of members in the energy community. Core Paper 1V [41] has
presented this methodology. Figure 2-4 presents the methodology proposed in
Core Paper IV [41].

The process presented in Figure 2-4 considers the prosumers, EVs, and one
coordinator. The prosumers are the sellers, EVs the buyers, and the coordinator
is responsible for ensuring the P2V market operation. Each prosumer and EV
realize their own optimization considering the possibility of buying and selling
electricity in the P2V market. The transactions of P2V market for each prosumer
and EV are communicated to the coordinator, and the error (balance between
sales and buys) is calculated. The convergence is tested according to the error
value. If the balance condition is not verified, the coordinator must send the
information to the prosumers and EV, which will limit the transactions in the P2V
market. The process is repeated until convergence is verified. The presented
methodology makes it possible to find results for a large energy community (50
prosumers and 40 EVs) within an acceptable time. Comparing the results of

centralized implementation presented in Other Paper VIII [52] with the

Ricardo Faia 25



Decision Support for Participation in Electricity Markets considering the Transaction of Services and
Electricity at the Local Level

distributed application, the difference in total costs is minimal, but the

optimization time difference is significantly higher.
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Figure 2-4 — Methodology proposed in Core Paper IV [41]

Other Paper VI [50] consists of a book chapter and presents a review
dedicated to the practical implementation of LEM. This review aims to identify
the practical implementations of LEM that are currently deployed or ongoing and
what these practical implementations consider as research directions for the
future. Bidding strategies were identified as one of the research directions most
enunciated in the list of works analyses. In this way, the works Other Paper VII
[51] and Other Paper IX [53] were developed.

In the scope of LEM, Other Paper VII [51] presents a day-ahead LEM bidding
optimization. The LEM bidding is formulated as a bi-level optimization problem,
where the upper-level problem is the agent’s profit maximization, and the lower-
level problem is the maximization of the energy transacted in LEM. A learning
method is proposed, where each agent can learn with their submitted bids and
offers in the LEM. In order to determine the bids and offers accepted and the
clearing price, an auction-based symmetric model is implemented and run in
each period. Ant Colony Optimization (ACO) was a computation intelligence
method implemented in this work as provider of learning strategy capabilities.

An extension of the previous work is presented in Other Paper IX [53], but with
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the inclusion of an aggregator to enable the participation of the energy
community members in the wholesale market. The problem was modeled as a
multi-leader single-follower bi-level optimization problem. The same
computation intelligence method (ACO) was used to solve the problem. With the
day-ahead LEM bidding model it is possible to reduce the user costs and increase
the profits of small producers according to the results of the two previous works.
It is possible due to the small price obtained in the LEM compared to the one
provided by the retailer or aggregator.

The contribution of developed methodologies presented throughout this
section of this Ph.D. work is the provision of different LEM models and related
support to consumers, prosumers, and small producers in their participation.
Objective 2.a. is covered by the two developed reviews, one of them already
published and the other presented as a preprint. The accomplishment of
Objective 2.b. is demonstrated in most of the publications enunciated in this
section (excluding the review paper). Objective 2.c. is achieved by the two
publications comparing of the centralized and distributed resolution. The LEM
presented models show efficient and intensive use of the local resources, thus

providing the answer to the research question addressed in this section (Q2).

2.4 Electricity Portfolio Management

Section 2.4 responds to Q3 — How can players improve their participation in
future electricity markets considering the new and evolving opportunities including,

aggregators, energy communities, and LEM?

Traditional portfolio optimization consists in finding the optimal selection
of various proportions of various assets. The portfolio selection problem was laid
by Markowitz in 1952 [69], applying the problem to the finance field. The
portfolio application in EM can be divided into two different variants, investor
applications and management applications [23]. In the scope of this Ph.D. work,
portfolio optimization is used for the management application. Reference [70]
presents the first model of portfolio application to the EM as a management
application. The authors investigate the energy allocation problem for a power
producer allowing for three trading options. To measure the risk in portfolio
application, reference [71] presents four different measures, based on a mean-

variance metric. These measures are based on the historical prices, however, in
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recent markets such as LEM these metrics may not show good results as the price

history is still very scarce.

In order to overcome this issue, Core Paper V [42] presents a portfolio
optimization for EM participation considering the forecasting errors as the
measure of risk transactions. Figure 2-5 presents an overview of the proposed

framework developed considering portfolio optimization.
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Figure 2-5 — Conceptual framework proposed in Core Paper V [42]
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As presented in Figure 2-5, the proposed framework considers a portfolio
model with risk measurement based on the variability of EM prices. The risk
measure is obtained considering the error of the forecast and estimation methods.
Compared with the other considered risk measures where a risk value is assumed
for each market, the proposal is formulated considering the accuracy of the
forecast and estimation method for each market and each moment. In this sense
there are moments of negotiation in the same market where the value of risk
negotiation is different, reflecting the different volatility of prices in different

time periods in each market.

The proposed framework transforms the portfolio optimization problem
from a multi-objective (two objectives) problem to a single objective (one
objective) problem wusing an aggregated function. However, with the
transformation to one objective, the user should define a trade-off coefficient, a
requirement to specify the exposure to the risk/return. The case study considers
an aggregator with the possibility to transact electricity within five different
markets with different requirements. This aggregator only operates as an
intermediary and does not control any of its members' assets. A PSO
metaheuristic is proposed to solve the optimization problem, thus finding
solutions in an acceptable execution time. The optimization process can be used

as decision support to EM players.

Core Paper VI [43] considers a portfolio optimization for an energy

community represented by an aggregator. Compared to Core Paper V [42], in this
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study, the aggregator has control over the individual assets of the community,
namely PV and ESS. On the other hand, no metric is considered in the study to
measure the risk of participating in the different markets. Figure 2-6 presents the

proposed approach of Paper V1.

Main Grid Export to grid
.l
Import from retailer
‘ +
Import/export from aggregator
Import/export from wholesale
Retailer
Day-ahead
({11 7
((11))
Aggregator Intraday
(1N
Wholesale
: Electricity
Energy v
community X Market /

Figure 2-6 — Approach proposed in Core Paper VI [43]

As Figure 2-6 shows, the approach proposed in Core Paper VI [43] considers
an energy community composed of prosumers, an aggregator, a retailer and
wholesale market, and the main grid acting as a backup system. Prosumers can
buy electricity from the retail or wholesale market (via aggregator) and sell to the
main grid or the wholesale market (via aggregator). As participation in the
wholesale market requires a minimum participation volume, the use of an
aggregator acting as an intermediary is essential. In this way, the aggregator
receives a fee from each prosumer of the community for the transactions carried
out between the energy community and the wholesale market. The participation
in the wholesale market is simulated considering the MIBEL possibilities with a

wholesale market and an intraday market with six different sessions.

The developed study intends to minimize the overall energy community
costs and was formulated as a MILP model. The obtained solution considers the
best scheduling of ESS installed in each household and the purchases and sales
of electricity in the considered markets. A community with 50 prosumers is
considered in the case study, and two different scenarios were compared (with
and without wholesale participation). The scenario with the participation in the

wholesale market presents the best results, demonstrating that the prosumers’
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participation in the wholesale market via aggregators brings significant

advantages for the whole energy community.

Two additional works were developed considering the portfolio theory
application to EM participation and are presented in Other Paper X [54] and Other
Paper XI [55]. In addition to representing a contribution to the application of
portfolios in EM, these publications show how other types of metaheuristics can
be successfully applied to the same problem. In Other Paper XI [55], the
differential evolution (DE) method was applied and compared with PSO

showing better results for solving the addressed problem.

The presented models in Electricity Portfolio Management section address
the research question Q3 and fully accomplish the third objective of this Ph.D.
work. Objective 3.a. is covered by the study published in Core Paper V [42]
demonstrating the influence of risk in the EM negotiations considering the
portfolios theory. Objective 3.b. is fulfilled with the publication Core Paper VI [43],
in which the aggregator represents an energy community in wholesale market
negotiations. The Other Paper X [54] and Other Paper XI [55] presented in this
section provide additional contributions by applying metaheuristics in solving
the portfolio theory problems. In this contribution, the models presented
highlight the role of the aggregator as an essential entity for facilitating small

players’ participation in markets in which they cannot participate directly.

2.5 Local Ancillary Services

Section 2.5 responds to Q4 — How can we take full advantage of local resources
for implementing new models for AS provision with benefit(s) to distribution system

operators and local players including prosumers and consumers?

The variability behavior of RES, which often results in a mismatch between
the available generation and consumption needs, increases the reserve
requirements of power systems. These reserves are usually guaranteed by AS
acquisition. Considering the “Directive on common rules for the internal market for
electricity” [72], ASs are necessary for the operation of transmission and
distribution systems, including frequency and non-frequency (e.g., voltage
control, black start capabilities, and reactive power compensations) services [73].
European Transmission System Operator Network (ENTSO-E) focuses on DER
as important assets that must be offered for the DSOs and transmission system

operators (TSO) using active system management techniques to access the
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flexibility in the distribution grid [74]. This procurement of DER (such as ESS) as
AS could expand these technologies and provide opportunities for them in the
future grid planning and stability. Therefore, the term Local Ancillary Services
was mentioned in [75] as the services obtained by DSO aggregating resources in
the operation of the local market and transferring them to the TSO. The role of
the aggregator is once again critical to enable connected DERs, prosumers, and

consumers located at the low level of networks to provide AS to DSO, as
discussed by [76].

Core Paper VII [44] presents a local market model to trade AS in order to help
DSO to avoid problems with network operation. Figure 2-7 presents the case

study proposed in Core Paper VII [44].

1 Medium Voltage Line (15kV)

Figure 2-7 — Case study proposed in Core Paper VII [44]

Figure 2-7 is used to explain the proposed methodology. According to the
tigure, a set of prosumers constituting a LEC is presented, and an aggregator is
available to represent the LEC. DSO is responsible for ensuring the network's
normal operation and activating the AS when needed. The proposed approach
of Core Paper VII [44] considers the possibility of DSO acquiring the necessary AS
in the LEC to keep the network in normal operation. The necessary ASs for each
period is determined by DSO based on the forecasts of demand and generation.
After this step, DSO communicates to the aggregator the required amount. The
aggregator is responsible for organizing the LEM for AS acquisitions with its
members. An asymmetric pool-based market model is used, in which the
aggregator defines the quantity needed, and the community members submit
their offers with a respective price and energy amount. The offers are ordered
from the lowest to the highest price, and the quantity is accumulated. When the

accumulated amount exceeds the quantity desired by the aggregator, all offers
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up to that point are accepted, and this intersection determines the market price
(clearing price). After carrying out this procedure for the periods indicated by the
DSO, the aggregator communicates the results, where it identifies the elements
that will provide the services. During operation, the DSO may request these

services if necessary.

In the case study of Core Paper VII [44], the DSO used AS to realize
congestion management activities. In this way, DSO identifies two periods when
the total demand of LEC exceeds the rated power of connection with the main
grid (transformer 15/0.4 kV), and aggregator realizes two auction sessions in LEM
for selecting the AS providers. In the operation mode, to avoid the congestion in

transform, the DSO actives the AS avoiding the problems.
Other Paper XII [56] expands on the core idea of Core Paper VII [44], but the

transacted AS is used to control the bus voltage magnitudes. A coordination
mechanism between prosumers, aggregator, and DSO is proposed for AS
acquisition at low voltage levels. The case study is based on low voltage network
with 26 buses, five prosumers and seven consumers. Once the DSO finalizes the
day-ahead analysis, six periods are identified to perform the AS procurement.
The procurement is done considering an asymmetric pool model where the bids
with lower prices are accepted until the amount of electricity is sufficient to solve
the problem. This process is repeated for each period identified by the DSO. The
activation of the contracted AS is realized in real-time. From the presented
results, the problems were solved considering the active participation of the

consumers and prosumers.

Preprint I [57] presents an extended version of Core Paper VII [44] and Other
Paper XII [56]. In this study, the DSO intends to solve the problem with bus
voltage levels and maximum current lines. In this sense, DSO executes analyses
for a day-ahead operation based on forecasts of demand and generation,
identifying the periods with foreseen problems. The aggregator is also
considered and executes the procurement of AS also based on the asymmetric
pool market model. Finally, the DSO communicates the results, and the selected
offers are activated during the operation mode. Compared with Core Paper VII
[44], the case study was increased from 17 to 237 buses, 12 to 98 connected
electricity users, and the price definition of offers was created considering three
different strategies. In one of these strategies, it is considered a random behavior

of the user. In the other two, some intelligence is introduced in players’ offers,
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which allows defining the offer price by taking into account the offer amount.
Analyzing the results, the problems detected by DSO were avoided by using the
AS contacted at the local level, since the strategy used by the users in the price

offer definition impacts the operational network costs.

Preprint II [58] presents a study that is fundamental for further extending
and developing the models related to the key contribution presented in this
section. The Preprint 1I [58] presents a temperature emulation model in an office
room considering the heat transaction between adjacent rooms and the exterior.
The model also includes Heating, Ventilation, and Air Conditioning (HVAC)
control in order to introduce energy into the room so that the temperature level
desired by the user is reached. This model can be used for future development of
models to optimize the energy spent by HVAC on temperature control and use
the flexibility that the model allows to obtain to participate in the supply of AS.
The temperature model was tested and validated in eleven different parts of an
office building. In this way, the flexibility of the eleven aggregated rooms could
participate in the AS market through an aggregator.

The implementation of the auction-based market model (asymmetric pool)
for the negotiation of AS inside of LEC constitutes the key contribution of this
section, being achieved in the works presented by Core Paper VII [44] and Preprint
I [57]. In the presented methodologies, the role of the aggregator is essential not
only to establish the connection between the LEC and the network operator, in
this case, the DSO, but also for organizing the market sessions where AS are
acquired. In this sense, it is possible to show that the end-users can play an active
role in the management of the PES. Therefore, the contributions fulfill objective
4, answering the research question presented at the beginning of this section (Q4),

and also partly covering the research question Q5.

2.6 Experiments

This section aggregates relevant contributions related to the analysis of the
results achieved from the models and methods proposed in each of the key
contributions mentioned in this Ph.D. work. Additionally, this section fully
covers objective 5 of this thesis. Table 2-2 presents an overview of the

characteristics of the main models developed in this Ph.D. work.

Ricardo Faia 33



Decision Support for Participation in Electricity Markets considering the Transaction of Services and
Electricity at the Local Level

Table 2-2 — Models characteristics.

Publication | Ref. | Field Problem Dec1s:10n Solution Method
technique type
Paper 1 [38] PES DSM Optimization | Non-exact PSO
Paper 11 [39] PES DSM Optimization | Non-exact CI
Paper 111 [40] EM P2P Optimization Exact MILP
Paper 1V [41] EM LEM Optimization | Non-exact | Iterative
Paper V [42] EM Portfolios Optimization | Non-exact PSO
Paper VI [43] EM Portfolios Optimization Exact MILP
Paper VII [44] | EM/PES LEM-AS Simulation Non-exact
Other 1 [45] PES Operation (AC OPF Optimization Exact NLP
model)
Other 11 [46] PES DSM Optimization | Non-exact | MOPSO
Other I11 [47] PES DSM Optimization Exact MILP
Expansion
Other IV [48] PES planning (DC OPF | Optimization Exact MILP
model)
Other V [49] EM Optimal CO.ahtIOI‘l Optimization | Non-exact HyDE-
formation DF
Other VII [51] EM Strategic bidding Optimization | Non-exact | ACO
Other VIII | [52] EM P2P Optimization Exact MILP
Other IX [53] EM Strategic bidding Optimization | Non-exact | ACO
Other X [54] EM Portfolios Optimization | Non-exact | Hybrid
Other XI [55] EM Portfolios Optimization | Non-exact DE
Other XI1 [56] | EM/PES LEM-AS Simulation Non-exact
Preprint 1 [57] | EM/PES LEM-AS Simulation Non-exact
Preprint II | [58] PES errlerar: tll) s;a:;ngel Optimization | Non-exact H}];?:E-

*Publications Other Paper VI [50] and Preprint III [59] are excluded because are review works

Table 2-2 lists all developed models and respective publications. When
compared to Table 2-1, this table is missing two publications, related to literature
reviews works, as they do not propose new specific models. As previously
identified in the introductory section, the fields (PES and EM) of application of
this Ph.D. work are also the fields where the models presented in Table 2-2 were
developed. Seven of the models are applied on general PES problems, ten in the
EM domain, and two include both fields. These (Core Paper VII [44] and Preprint
1 [57]) are identified with both fields since they consider activity in PES using the
flexibility of end-users to support the operation of the network, and in EM

because this flexibility is obtained through a market-based pool model.

The problems addressed by the models are categorized into ten groups,
being that DSM and Portfolios are the topics addressed by a larger number of

publications, with four appearances each one. In this categorization publications
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Other Paper 1 [45] and Other Paper IV [48] are highlighted, which are considered
applications of optimal power flow (OPF), being that in one of them the
alternated current (AC) model is applied and in the other the direct current (DC)
model. The Other Paper V [49] presents a non-common problem type inside of the
developed models. Optimal coalition formation considers the creation of groups
for flexibility provision considering a metric of fairness (Shapley value) for the
price of coalition definition. Considering the used decision technique, the
majority of models consider optimizations, and only two consider simulations.
The two models of simulation decision technique also addressed the same LEM-
AS problem. Both are used in the negotiation of AS at the local level. Strategic
bidding as optimization methodologies could be applied to these works, e.g. as
applied in models Other Paper VII [51] and Other Paper IX [53].

Solution type is categorized into two different categories, exact (six entries)
providing the best solution (optimal) respecting all problem constraints, and non-
exact (thirteen entries) when typically, a near-optimal but always feasible
solution is obtained. In the method column, different possibilities are considered,
although they can be grouped into mathematical and metaheuristic resolution
methods. The MILP and NLP are mathematical resolution methods, ACO, DE,
HyDE-DF, and PSO are metaheuristic resolution methods. Core Paper II [39]
method label is considered CI since, in this work, five different metaheuristics
are implemented and compared, highlighting the vortex search algorithm for the
best results. Core Paper VI [41] considers an iterative method, in this specific case,
the proposed model is solved iteratively, and in each iteration, a MILP is realized.
The difference between iteration to iteration is the bounds of some variables.
Other Paper X [54] presents a hybrid method that uses a metaheuristic (PSO) and
a mathematical method (MILP).

The use of metaheuristics to find solutions to the problems modeled in this
work constitutes an additional contribution. In several cases, metaheuristics were
applied due to the characteristics of the tackled problems and the flexibility those
techniques provide regarding modelling and application (objective function and
constraints), they are adaptable to any type of problem (linear and non-linear),
they allow a reliable solution to be obtained in a short execution time, are free to
use and can be implemented in any programming language. They can also be

programmed in any hardware device (e.g., Arduino).
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Different case studies are created based on real conditions and scenarios to
test and validate the implemented models. The experiments and validations
under real or near-real environments are essential to validate models’
acceptability and precision in PES real-world application. Therefore, the
characteristics of the analyzed case studies are summarized in Table 2-3,

highlighting the main involved players and markets.

Table 2-3 — Summary of case studies’ characteristics.

Players EMs types

Network
Publicati - DR
ublication E:eis Aggregator | DSO | LEM | Retailer | Wholesale Analyses

Corel
Core I1
Core II1
Core IV
Core V
Core VI
Core VII
Other I
Other 11
Other I11
Other IV
Other V
Other VII
Other VIII
Other IX
Other X
Other X1
Other XII X
Preprint 1 X -
Preprint 11 X = = = = = = =

*Publications Other Paper VI [50] and Preprint 111 [59] are excluded because are review works

X | X

<

<
XXX XXX
X[ X

XX XXX X|X[X[X]|X

X[ >x
XXX
X=X

X
X

XXX

XX
x| X

Analyzing Table 2-3 is possible to see a clear picture of the involved players,
considered EMs, DR usage, and also the inclusion of the power network in the
experiments. These case studies are categorized based on the characteristics
presented in Table 2-3; which have been selected with respect to the key

contributions presented in Table 2-1.

The first group of characteristics regards the number of players involved in
the case studies. The group includes different types of end-users, the inclusion of
aggregator and DSO. The inclusion of end-users is presented in sixteen of
nineteen entries. For this classification, end-users include the consumers,

prosumers, and producers. In Core Paper V [42], Other Paper X [54], and Other
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Paper XI [55] the end-users are considered as aggregated elements, which is why
they are not marked in this category. Regarding the inclusion of aggregator in the
carried-out simulations, it is present in 58% of them. The main function of the
aggregator is to provide services to end-users, such as DR controlling loads and
ESS management (Core Paper II [39] and Other Paper 1II [47]), providing the best
schedule of LEM transactions (Core Paper III [40], Core Paper IV [41] and Other
Paper VIII [52]), representing end-users in the wholesale market (Core Paper V [42],
Core Paper VI [43], Other Paper VII [51] and Other Paper XI [55]), and acting as a
LEM operator (Core Paper VII [44] and Preprint I [57]). The involvement of DSO in
the simulations is related to the control of the network operations, as in Core Paper
VII [44], in which the DSO manages the congestion of the grid or in Preprint I [57],
in which it controls the magnitude voltage of the buses and the maximum

admissible current in the lines.

Regarding EMs, three types have been considered in the case studies of the
thesis papers. Seven papers include LEM options, from which two simulate P2P
transactions, and the others simulate community-based markets with pool-based
models. Eleven papers consider the inclusion of retail markets. The retail market
is important because it ensures electricity supply when other options (LEM or
wholesale) are unsuccessful. Thus, consumers and prosumers establish long-
term contracts with retailers. Wholesale market options are included in five
papers. In this set of works, Core Paper VI [43] is highlighted because it simulates
the MIBEL wholesale market, since this Ph.D. work has been developed in
Portugal and Spain, which are the two members of MIBEL.

The use of DR in six considered papers has two purposes, namely,
minimizing the costs of electricity acquisition (Core Paper I [38], Core Paper 11 [39],
Other Paper II [46] and Other Paper III [47]), and minimizing the costs of DSO
operation and planning investments (Other Paper I [45] and Other Paper IV [48]).
The network analyses were done in four papers; these analyses consist of the
application of power flow to obtain the values of network variables (Core Paper
VII [44] and Preprint I [57]) and the optimal power flow application to minimize
the operational costs (Other Paper I [45] and Other Paper VI [50]).

Table 2-4 presents the number of end-users and assets considered in the case
studies of the Papers elaborated in this Ph.D. work. The number of end-users is

divided into three elements, the consumers, prosumers, and producers. The
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number of assets considers the PV, ESS, EV, controllable loads, and small

combined heat and power (CHP) units.

Table 2-4 — Assets considered in case studies’.

Number of end-users Number of assets
Publication Consumers | Prosumers | Producer | PV | ESS | EV Con. Sl
Loads CHP

Corel - 1 - 1 1 - 3 -
Core Il - 20 - 20 20 - 60 -
Core I11 - 20 - 20 20 - - -
Core IV - 50 - 50 50 | 40 - -
Core V - - aggregated | - - - - -
Core VI - 50 - 50 50 - - -
Core VII 8 4 - 4 - - - -
Other I 94 2 - 2 - - - -
Other 11 - 1 - 1 1 - 3 -
Other I11 - 1000 - 1000 | 1000 | - 3000 -
Other IV 9 - - 2 - - - -
Other V - 12 - - - - - -
Other VII 5 20 5 20 - - -- 5
Other VIII - 15 - 15 16 | 20 - -
Other IX 3 3 3 3 - - - 3
Other X - - aggregated | - - - -

Other XI - - aggregated | - - - - -
Other XII 7 5 - 5 - - - -
Preprint 1 63 33 - 33 - - - -
Preprint 11 11 rooms - - - - - - -

*Publications Other Paper VI [50] and Preprint III [59] are excluded because are review works

When analyzing the number of end-users from Table 2-4 it is possible to see
that prosumers are the most explored entity. Other Paper III [47] is worth
highlighting due to the inclusion of 1000 prosumers in the case study. However,
the consumers are also considered in the case studies in smaller numbers when
compared to the number of prosumers. The producers considered in the case
studies are few in number and are only present in 2 papers (Other Paper VII [51]
and Other Paper IX [53]). This is because it is not common to use small generators
connected to the system without being associated with a consumer (e.g., the
actual prosumers). Core Paper V [42], Other Paper X [54] and Other Paper XI [55]
consider aggregated producers, and the aggregator is only aware of the amount
of energy, not knowing or having control over how many elements compose it.
Considering the number of assets, the most used is the PV generators, but ESS is
also widely used. In most cases, the end-users that consider PV-ESS systems have

great saving costs compared to using one asset (PV or ESS) alone. The use of EV
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is only explored in two papers. Still, their integration proved efficient in LEM's
operation, allowing them to participate as a player and thus increase market
liquidity. The column of controllable loads means that it is possible to reschedule
the consumption of some specific loads depending on some reason related to DR.
The Other Paper III [47] work is highlighted as it uses 3000 controllable loads
managed by an aggregator in order to respond to a DSO flexibility request.
Considering the small CHP units presented in the two case studies (Other Paper
VII [51] and Other Paper IX [53]), both are considered in small numbers. This type
of asset is modeled by a non-linear mathematical function, which makes it
difficult to find an optimal solution in an acceptable time for the process. In both
papers that contain the CHP units, the optimization process is performed by

metaheuristics to overcome the difficulties that the CHP modeling adds.

2.7 Summary

The core publications of this Ph.D. work represent the response to the main
research question presented in this thesis, Q0 - Can innovative agqregator-oriented
business, market and flexibility models boost prosumers/consumers active participation
in future PES?

The work developed in this Ph.D. work answers the specific research
questions placed in this thesis, ultimately resulting in the developed decision
support models. The decision support models contribute to the improvement of
end-users’ participation in EM and PES management. The capabilities of the
decision support models developed in the scope of this Ph.D. have been
evaluated through the tests and validations using case studies based on scenarios
created with realistic data. The positive achievements resulting from realistic
simulation conditions support the thesis that aggregator-oriented models can
empower end-users in active participation in the future of PES. Table 2-5 presents
a summary of the key contributions of this thesis, including the specific

contributions within each main addressed topic.
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Table 2-5 — Ph.D. contributions overview.

Key Specific Publications Preprint
Contributions Contribution Core Other
M| | IV | V| VI| VI I-XI I 1T |
Demand Side Minimize X [46] [47]
Management energ}.f costs
Curtailment [45] [48]
P2P X [50] [52] X
Local Electricity Auction-based (501 1511 X
[53]
Markets Tt
based X [50] X
Electricity Risk-free X [54] [55]
Portfolio Risk-
. X
Management constrained
Voltage control [56] [67] | X
Local Ancillary Congestion [57]
Services management
Auction-based X | [56][57] | X
[45] [46]
[47] [48]
Optimizations X X | X |X|X [49] [51]
[52] [53]
[54] [55]
Experiments Simulations X | [56][57] | X
[46] [49]
Metaheuristics X X [51] [53] X
[54] [55]
[45] [47]
MILP X | X X (48] [52]

The key contributions also identified in Table 2-5 are covered at least by one

of the core papers, being complemented by the other papers and the preprints.

Then, as Table 2-5 shows, the specific contributions are identified inside each key

contribution. Thirteen different groups were identified, where Optimization,

Metaheuristics, and MILP are the most evidenced. All defined objectives inside

the scope of this Ph.D. are fulfilled by the results achieved in the realized

experiments. Furthermore, the defined specific research questions are answered

with the presented contributions in the scope of this Ph.D. work, which together

achieve the answer to the main research question.

40

2022




Chapter 3

Conclusions and Future Work







3. Conclusions and Future Work

3 Conclusions and Future Work

This chapter concludes the thesis document by presenting the most relevant
conclusions of this work in section 3.1, and identifying the perspectives for future

development in section 3.2.

3.1 Main Conclusions and Contributions

The large-scale integration of RES, such as solar and wind energy, boosted
as means to minimize the carbon footprint, has leading to a change in the
operation and control of worldwide PES. This change has led to the adoption of
approaches to control the demand, minimizing the unbalance between
generation and demand brought by RES production fluctuation. Recent EC
guidelines suggest a significant involvement of electricity end-users (consumers
and prosumers) in PES. For this, they must be involved in the electricity system's
management and planning and play an active role in the EM. The emergence of
the aggregator allowed electricity end-users to benefit from advantages they did
not have before, such as participation in wholesale markets. In this way, the
aggregator allows the electricity end-users to have greater importance, as,
through an intermediary, they became able to participate in the system actively.
In the field of EMs, changes are also occurring to introduce a competitive
behavior in the electricity wholesale market and, more recently, the liberalization
of the retail market. Bringing small players to the market is paving the way to
the emergence of LEM. Current LEM approaches found in the literature have
been very successful and are beginning to appear in practice, bringing electricity
end-users to greater involvement in the system. They allow electricity end-users
to transact their own electricity locally and also to negotiate services that network

operators can use to operate the system.

In this context, with the new possibilities for electricity end-users active
participation in the system, novel decision support and simulation models are
necessary to deal with new challenges. This thesis work contributed with the
proposal of new models and methods focusing on the referred difficulties,
oriented to support the end-users decisions in the future activities that the new
EM models provide and in the possible active participation in the PES
management. As core contribution, this work focused on the study of aggregator-

oriented models to boost the electricity end-users’ (prosumers and consumers)
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active participation in future PES. Therefore, it addressed the consumers or

prosumers as the central entity of the activities.

Four key contributions, including demand-side management, LEM,
electricity portfolio management, and local ancillary services, have been
addressed. In addition, other specific contributions can be highlighted, such as
using mathematical techniques to solve linear models, and metaheuristics for
non-linear and complex optimization, and creating different case studies to

evaluate the proposed models.

Although the LEM concept is considerably new, the literature related to it
is increasing significantly. A relevant additional contribution of this Ph.D. work
is related to the LEM concept with the development of two literature reviews
papers. One of these works, which is already published, has provided a review
of the practical LEM implementations. The other, provided as a pre-print in this
thesis, presents an analysis about currently proposed LEM structures, projects
including LEM and legislation to encourage LEM appearance. It was evidenced
that a common definition and description of LEM should be adopted, e.g., some
authors consider P2P as the name for local electricity commerce and other LEM.
Another identified issue is the structures that may exist within this market

segment and the diverse proposals for their organization.

The contributions of this work are based on different models addressing
mainly the consumers and prosumers through the aggregator. From the
consumer and prosumer side, different aspects have been addressed, such as the
inclusion of PV generation, ESS units, and EVs. Some of the developed models
also consider the inclusion of small CHP units as an individual entity to produce
electricity to be transacted in LEMs. However, some aspects arising with CHP
operation are necessary to create or improve the developed methodologies. On
the other hand, the role of the aggregator in PES has been widely discussed both
in the literature and in real-world applications. However, new business models
must be developed or adjusted in order to enable the widespread of LEM

applications in practice.

This thesis work contributed with approaches to help the electricity end-
user in their empowerment inside of the PES and EM scope. The proposed
models are focused on the aggregator's role and are oriented to support the
electricity end-user in its PES and EM activities. The research results addressed

the research question (QO0) and the five research questions (Q1 to Q5), presented
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in section 1.2. At least one model was developed for each of the four main
activities identified. These models are constructed to address specific problems
and, at the same time, possibly overcome the initially identified gap. As such,
Core Paper 11, 111, IV, V and VI present different models that simulate activities
where the aggregator is the provider, and the electricity end-user's are the
customers. In this sense, the gap was identified, namely where there was a lack
of models and solutions that assist the aggregator in the provision of services. For
the literature, the implemented and published models are also an asset, as they

allow interested parties to follow and implement them.

The findings resulting from the development of models and methods, from
the achievement of responses to the research questions, and from the consequent
accomplishment of all the defined objectives, enabled the test and the validation
of the identified hypothesis. Therefore, it is possible to conclude that several of
the models developed in this thesis can be applied in real environments.
However, others still cannot since the activity they intend to address lacks
legislation and regulation aligned with the current and future needs for
continuous PES and EM evolution. The work developed in the scope of this thesis
has resulted in the publication of nineteen main papers, ten of them published in
JCIjournals, and contributed to six projects in total, which three are nationals and

three are international.

3.2 Perspectives of Future Work

The results achieved in the scope of the work developed in this thesis
provide several advances for the development of methodologies where the
electricity end-user is considered a central entity. In this sense, the developments
that have been carried out can enhance different lines of future research, namely

the following:

- Demand-side management
e Elaborate an optimization model for demand-side management
considering different shiftable assets in order to minimize the total
electricity costs;
e Apply demand-side management techniques considering the
emulation of different thermal loads, e.g, heat pumps

- Local electricity markets

Ricardo Faia 45



Decision Support for Participation in Electricity Markets considering the Transaction of Services and
Electricity at the Local Level

e Explore the applications of distributed optimization methods to
simulate the LEM behaviors. Considering mathematical approaches,
alternating direction method of multipliers (ADMM) or
metaheuristics in distributed format;

e Investigate the application of the blockchain approach in the LEM
payments layer to ensure the security and privacy;

e Employ new sources of generation in the electricity end-users to
increase the liquidity of LEM structures, e.g., the use of hydrogen fuel
cells for power generation;

e Further detail the considered network constraints in LEM
simulations to investigate the influence of local transactions in the
network power flow analyses.

- Electricity portfolio management

e Improve the proposed method to include LEM as a different market
option for electricity end-users to allocate electricity;

e Apply robust optimization in portfolio management problems to
deal with the variability of price forecasting.

- Local ancillary services

e Development of an optimization model for flexibility provision of AS
participation considering time-shiftable assets (clothes washing and
dryer machine, dishwasher, microwave, blender, and others) and
power-shiftable assets (EVs and HVAC load);

e Application of bidding optimization strategies to simulate electricity

end-users’ participation in new developed local AS structures.

Some of the presented future work has been considered not only as further

research directions of this work, but it is also compliant with the core of ongoing

national and international research projects hosted by GECAD, namely the

following;:

e TradeRES — New Markets Design & Models for 100% Renewable
Power Systems. Funded by the European Union’s Horizon 2020

research and innovation program under grant agreement 864276;

The development of electricity trading models within an energy community

and how the energy community can provide services to the grid operator, will be

the topics to be studied within the scope of the TradeRES project.
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e RETINA - REal-Time support Infrastructure and Energy
management for Intelligent carbon-Neutral smArt cities. Funded by
Fundacao para a Ciéncia e a Tecnologia, NORTE-01-0145-FEDER-
000062;

For the RETINA project, the study of EVs in the provision of AS will be the
focus of this study. For future developments, decentralized approaches based on

bender decomposition will be taken into account.

e PRECISE - Power and Energy Cyber-Physical Solutions with
Explainable Semantic Learning, Funded by Fundacao para a Ciéncia
e a Tecnologia, NORTE-01-0145-FEDER-000062.

The DSM models, suggested as future works, can be included in the
PRECISE project to contribute to the development of oriented solutions for the

management of building energy systems.
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Resumen

La respuesta a la demanda (demand response en inglés) como recurso
distribuido ha demostrado su importante potencial para los sistemas de energia.
Es capaz de proporcionar una flexibilidad que, en algunos casos, puede ser una
ventaja para suprimir la imprevisibilidad de la generacién distribuida. La
capacidad para participar en programas de respuesta a la demanda para
pequenas o medianas instalaciones ha sido limitada; con las nuevas regulaciones
de la politica, esta limitacion podria ser sobrepasada. Los prosumidores son una
nueva entidad que se considera al mismo tiempo productor y consumidor de
energia eléctrica, y que pueden aportar excedentes de produccion a la red.
Ademas, la toma de decisiones en instalaciones con diferentes recursos de
generacion, sistemas de almacenamiento de energia y flexibilidad de la demanda
se vuelve mas compleja segin el nimero de variables consideradas. Este articulo
propone una metodologia de optimizacion de la respuesta a la demanda para su
aplicacion en una casa residencial genérica. En este modelo, los usuarios pueden
realizar acciones de respuesta a la demanda en sus instalaciones sin ningain
contrato con proveedores de servicios de respuesta a la demanda. El modelo
considera casas residenciales que cuentan con los dispositivos necesarios para
llevar a cabo las acciones de respuesta a la demanda. La generacion fotovoltaica,
la capacidad de almacenamiento disponible y la flexibilidad de las cargas se
utilizan como recursos para encontrar la programacion optima de minimos
costos de operacion. Los resultados presentados se obtienen utilizando una
optimizacion de enjambre de particulas (particle swarm optimization en inglés)
y se comparan con una solucion determinista para probar el rendimiento del
modelo. Los resultados muestran que el uso de la respuesta a la demanda puede

reducir el costo operativo diario.
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Abstract: Demand response as a distributed resource has proved its significant potential for power
systems. It is capable of providing flexibility that, in some cases, can be an advantage to suppress the
unpredictability of distributed generation. The ability for participating in demand response programs
for small or medium facilities has been limited; with the new policy regulations this limitation might
be overstated. The prosumers are a new entity that is considered both as producers and consumers
of electricity, which can provide excess production to the grid. Moreover, the decision-making in
facilities with different generation resources, energy storage systems, and demand flexibility becomes
more complex according to the number of considered variables. This paper proposes a demand
response optimization methodology for application in a generic residential house. In this model,
the users are able to perform actions of demand response in their facilities without any contracts
with demand response service providers. The model considers the facilities that have the required
devices to carry out the demand response actions. The photovoltaic generation, the available storage
capacity, and the flexibility of the loads are used as the resources to find the optimal scheduling of
minimal operating costs. The presented results are obtained using a particle swarm optimization and
compared with a deterministic resolution in order to prove the performance of the model. The results
show that the use of demand response can reduce the operational daily cost.

Keywords: demand response; distributed generation; particle swarm optimization; prosumer

1. Introduction

The future of power systems has been guided of a new structure where consumers (end-users)
are considered as a central entity. This vision is presented in the Strategic Energy Technology (SET)
plan of the European Union [1]. The transformation of end-users’ roles allows these entities to have
an active contribution in electric power systems. The prosumer is a new concept that has its origin
in the proliferation of Distributed Generation (DG) in end-user facilities. The Prosumer definition is
presented in Reference [2], where prosumers are considered agents that can either consume or produce
energy. The integration of renewable energy sources (RESs) and energy storage systems results in the
increase the complexity of energy management. In Reference [3], some methods to optimize renewable
energy systems management are revised.

Regarding demand response (DR) programs, the potential for participation in facilities is
significantly increased by the distributed energy resources and especially the energy storage systems.
With the participation in DR programs, the roles of the consumers change from a passive entity to
an active entity that manages both local consumption and generation resources [4]. DR constitutes
a modification of load profile in response to monetary or price signals, and thus provides flexibility
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and aims to help power systems during peak hours of demand or contingencies cases [5]. As the DR
programs are able to reschedule part of the load, the use of these programs is a way to increase the
flexibility of the grid management, avoiding the need to invest in more capacity [6].

Categorizing DR programs, it can be divided into two main categories: incentive-based DR
programs and price-based DR programs. The incentive-based DR programs are referred to as the first
category for DR programs, where the consumers can offer an incentive to change their consumption
patterns. Direct load control programs, load curtailment programs, demand bidding programs,
and emergency demand reduction programs are examples of incentive-based DR programs. The
“price-based DR programs” are the second category of DR programs, where the consumers are charged
with different rates at different consumptions times. Therefore, the retail electricity tariff is affected by
the cost of electricity supply. The price-based DR programs types are a time of use pricing, critical peak
pricing, real-time pricing, and inclining block rate [7]. Advanced infrastructure metering is needed to
implement DR programs at the residential, commercial, or industrial level. Such infrastructure (i.e.,
smart meters) is able to measure and store energy utilization at different times and also obtain the
current usage information remotely.

The European Union has shown significant interest in the concept of smart metering. According
to [8], it is expected by 2020 to invest ~45 million euros for 200 million smart electricity meters and
45 million smart meters of natural gas. This facilitates the application of DR programs in most
electrical facilities.

Regarding the formulation of DR optimization problems, linear programming (LP) or nonlinear
programming (NLP) can be used. Frequently the DR problems are able to use binary decision variables
for determining the status (ON or OFF) of various consumers or appliances; in these situations,
mixed-integer linear programming (MILP) or mixed-integer nonlinear programming (MINLP) may be
used. In Reference [9], the authors use MILP to optimize DR and generate scheduling in a residential
community grid using renewable energies, batteries, and electric vehicles. In this optimization, a
minimization problem of purchased energy costs of the residential community has been solved. In
Reference [10] a cost minimization in smart building microgrid considering DR optimization and
day-ahead operation is implemented using MILP. This case study is composed of two different
smart buildings with 30 and 90 houses. During the optimization process, the optimal schedule
of house appliances is found. Another MILP approach is applied in Reference [11], showing how
strategies like DR can achieve suitability in any region considering the presence of high penetration of
renewable-based generation.

An example of NLP applied for DR optimization is presented in Reference [12], where the unit
commitment problem for a microgrid is solved. The optimization problem finds the amount of load
reduction and paid incentives for each time interval. Another example of MINLP has been presented
in Reference [13], which considers the minimization of purchase gas and electricity from the grid by
including the consumption of different loads at different periods. The optimal day-ahead scheduling
of resources in energy hubs is determined.

The DR application in end consumers has been over time applied through an aggregator. It
works as a service provider, and the DR services must be paid to this provider. In Reference [14],
an aggregation of thermostatically controlled loads for performing DR is presented. In this case, the
air conditioning consumption is considered as the load. The aggregation services are not restricted
to the application of DR programs, in Reference [15] an aggregation of generalized energy storage
can be found. The aggregator storage is used to participate in the energy and regulation market. DR
programs targeting independent users, without the need of contracts or service providers, are also
possible [16,17]. These applications are considered independent because the user is not connected to
any aggregator. Usually, when the application is independent the user has a device installed in its
house to control the loads. In Reference [16], the controller is a PV inverter, while in Reference [17], a
home energy management system is used. The controllable loads can be divided into passive (i.e., air
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conditioning, fridges, washing machine) and active (i.e., DG, ESS, vehicle-to-grid, PV) loads [18]. In
References [16,19] the DR is applied on discrete loads, which only have two states: on or off.

With focus on artificial intelligence (Al), its application in power systems has increased in the
past years. The metaheuristics are a very popular part of Al for solving optimization problems.
These techniques have acceptable performance in order to solve engineering problems by finding a
near-optimal solution with a limited computation burden. Metaheuristics can be applied in problems
with a large number of decision variables and easily adapted to a problem that has several constraints [20].
A PSO variant is used in Reference [17] for finding the optimal operation of price-driven demand
response with a load shifting dispatch strategy for photovoltaic, storage battery, and power grid systems.
The optimization algorithm is implemented on Home Energy Manage System. In Reference [21], the
PSO algorithm is also used. The DR is optimized considering the variation of electricity price imposed
by DSO to provoke a consumption reduction. In the microgrid environment [22], a PSO is used for
solve the DR optimization problem. In this case a dynamic pricing model is considered for increase the
profit of costumers. In Reference [23] a PSO algorithm is proposed to optimize the performance of
a smart microgrid in a short term to minimize operating costs and emissions. Other algorithms like
genetic algorithm [24], simulated annealing [25], and differential evolution [26] are frequently used
algorithms to solve DR optimization problems.

The present paper proposes DR optimization considering the optimal battery schedule in a
residential house with Photovoltaic (PV) generation. A PSO approach is implemented to solve the
optimization problem (MILP), and the results are compared with a deterministic resolution (CPLEX
solver). The consumer (residential house) is provided with independent management that approaches
the several resources capabilities and contributions for the minimization of energy bought from the
grid. The main contributions of this paper are as follows.

(1) To perform DR without any contract with the DR service provider—this presented methodology
allows the user to perform DR actions without any connection with DR services provider. The
consumer is provided with independent management that approaches the several resources
capabilities and contributions for the minimization of bought energy from the grid.

(2) The implementation of PSO which is a very simple metaheuristic to implement, open access,
multiplatform (Windows, MacOS, Linux, etc.), executable from an Arduino/Raspberry and
also is the cheapest implementation option. Referring to the presented solution in [16], which
uses a CPLEX solver for MATLAB/TOMLAB platform, the implementation of the PSO is a
much affordable solution, once that MATLAB and TOMLAB are non-open access. PSO can be
implemented in an open access environment and can be executed in free simple platforms, such
as Python.

(3) The proposed methodology represents an optimization problem that can considerably improve
the consumer’s energy savings—the combined use of resources (PV production, storage capacity,
and loads flexibility) allows for a significant reduction in daily operation costs. The optimal
solution obtained by PSO has a daily cost of 3.28 €, while an operation without PV production,
storage capacity and loads flexibility has a cost of 16.83 € per day, which is five times higher than
PSO result for best scenario. If one considers a base scenario that was obtained by using a simple
management mechanism considering the PV production and storage capacity, the daily cost is
9.33 €, which is three times higher than PSO result for the best scenario. The assessment of PSO
can be verified in the comparison of the base scenario and the optimized base scenario with the
PSO. The daily costs with PSO decreases 1.38 €.

The paper is structured into seven sections: In Section 1 an introduction about DR and how
to solve DR problems is presented. Section 2 presents the proposed methodology; in Section 3 the
problem formulation is presented. Section 4 presents the algorithm (PSO) and its adaptation to the
problem formulation. In Section 5, the case study is presented as well as all input variables and PSO
parameters. Section 6 presents the results, and the conclusions are presented in Section 7.
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2. Proposed Methodology

With the goal to reduce the electricity bill of the end consumers is introduced the presented
methodology. This methodology aims to minimize the operation costs considering the batteries and
flexibility provided by the DR actions. The costs minimization considered the grid, the PV systems,
energy storage batteries, and consumption flexibility through load scheduling. The end consumer
is connected to the grid, and has a tariff contract that allows selling energy in the grid in exchange
for monetary payment. This methodology is able to be expanded to other consumers with different
conditions and with different numbers of resources. Figure 1 presents the context scheme of the
idea proposed. This scheme is typical for a household prosumer. The scheme of Figure 1 has a unit
generation (PV), energy storage system (ESS) (battery), one inverter module, the controllable and
noncontrollable loads, and a smart meter.

Inverter Other loads Smart Metter\ Main Network
< 11 ) "
\ Electric flow
,,,,,,,,,,,,,,,,,,, ’
Information flow
Controllable loads /

Figure 1. Implementation scheme of the proposed work.

For household, the use of PV generation is considered free (the generation unit is household
property). In this paper, the PV generation is considered priority above all others, meaning that when
it is available it will always be used either by load’s necessities, battery charge, or injection in the grid.
The connection with the grid is considered bidirectional. The PV rated power is usually limited by a
contract between retailer and household. This limitation occurs because it can be a source of problems
for the physical grid. In this way;, it is difficult to reach a situation in which, as limit case if no injection
to the grid is allowed, the PV is higher than the load plus the energy that can be used to charge the
battery. However, if it happens, the inverter will disconnect the PV in order to avoid overvoltage. In
Figure 1 one can see power flows and information flows. The information flows are connected to the
inverter and controllable loads. In this case, the inverter is enabled with a control and management
system that allows controlling loads, adding DR actions in household installation.

In general, the consumer can take advantage of the use of PV generation, ESS, and DR actions
to minimize the cost of consumption from the grid. The consumer can look for the periods where
electricity is cheaper to satisfy the consumption and charge the ESS, and the periods where the electricity
price is most expensive to sell the excess electricity from the facility. Thus, it can be considered as a
management system for the consumer to improve his energy bill.

Figure 2 is a representative illustration of the load’s control using relays. The controller, in this
case, is a component of the inverter. Each controllable load must have one relay associated with it,
which allows for its control. So, when the controller sends the signal to the relay, the load is connected
or disconnected from the electrical circuit. In this case, this control is considered a DR cut (direct load
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control). The scheme in Figure 2 considers only one relay for simplification; however, the proposed
methodology is able to consider several relays, one for each load in the facility.

Inverter

Controller

Electric circuit Relay Controllable load

Figure 2. The control scheme for the demand response (DR) cut with one load.
3. Problem Formulation

The mathematical formulation is presented throughout this section. With the formulation
presented it is intended to simulate the interaction of a consumer with the grid. The main goal is to
minimize the operation costs, considering that the user has storage units and is also enabled to do
DR in specific loads. The presented optimization model is considered a mixed-integer linear problem.
Equation (1) presents the objective function.

Minimize f = Energy Bill + DR Curtailment 1)

Equation (1) is comprised of the sum of two different parcels: the energy bill present in Equation (2)
and the DR curtailment present in Equation (3). The Energy Bill represents the cost of buying and
selling energy, and the DR curtailment refers to cost weighting associated with kWh curtailment.

In Equation (2) the variable P‘tgrid represents the flow of energy between household and grid,
Ifﬂd ™ is an indicator variable for power flow into the grid and control the energy buy (Itgrid "= 1)
and energy sell (thrid "= 0), Cfrid i represents the cost of buying electricity and C‘tgrid out represents
the cost of selling electricity. The Energy bill in Equation (2), consider the costs of buying electricity
(Itgrid " x Pfrid) X C‘tgrid " and the revenues of selling electricity ((1 - Itgrid in) X Pfrid) X C‘tgrid ' In each
period (t) the user can make a single operation (buy or sell).

T
Energ]/ Bill — ;[((Itgrid in % P‘tgrid) % C(tgrid in _ ((1 _ Itgrid in) % P;grid) % Ctgrid out) % Ait] + DCP )

Igrid in _ 1, if Pfrid >0 Vte(l T)
t 0, otherwise T

Also, in Equation (2) the term ((1 - Ifnd m) X Ptg”d) represents the power sent to the network. The
term At is used for to adjust the consumption to the tariff price because normally the tariff is available in
€/kWh and the optimization can be scheduled at different time intervals (e.g., 15 min). DCP represents
the daily contracted power cost. If the term Pf”d has a positive value during optimization it means
that there is electricity consumption from the network. However, if it has a negative value it means
that there is a sale of electricity to the network. Equation (3) presents the DR curtailment.
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DR Curtailment = Z[Z PC”t X Xcut X Wcut] 9

If the DR curtailment equation is implemented the cost of load is cut with the use of weights, and
in fact does not have cost for the user. The variable Pl“t‘t represents the cut energy of load (/) in period
(), the X4 represents the decision binary variable to active the cut of load (I) in period (t), and Wf'
represents the cut weight of load (I) in period (t). The term (Plcff‘t x XU x Wl”t‘t) shows the interest of
the user to perform cut in load (I) in period (¢).

Equation (4) represents the balance between load and generation, Pgaf represents the energy
charged or discharged by baterry (b) in period (t). If the value of PZ“tt is less than 0 the battery is
discharging, otherwise, if the value of PZ”; is greater than 0, the battery is charging. The variable P}I;‘t/
represents the photovoltaic production of unit p at period ¢, and Pi"‘zd corresponds to the value of load
at period t.

ngld — Pload + Z Pbat Z Pcut X Xcut Z Pg‘t/', Wt E ., T} (4)

The Equation (5) shows the balance of battery systems.
stor stor bat |, 1
E) =Ey" + Py X5 Vte{2,...T}, Vbell,..., B} ®)

Variable Eztf’ represents the state of the battery b in period ¢, in other words, it represents the
amount of energy it has available. So, by Equation (5) the current battery state is obtained by adding the

stor
bt-1

by Alt to convert power into energy units. The system is governed by the following constraints
(Equations (6)—(10)).

previous state E to the value of the variable Pb”‘t The power term Pb“t in Equation (5) is multiplied

_ Pgrid min < Pgrid < Pgrid mx g, n,..T 6)

PC“t PC“t max lef1,...,L}), Vte{l,...,T} )

0<E)y <E)y""™Vbe(l,... B}, Vte{l,... T (8)

— pidmax < pbat < phmax vy e (1, B, Vte{l,..., T} €)
1

xl“;f:{o Viell,..., L}, Vte{l,...,T). (10)

In Equation (6), the variable Pgrid " and Pgrid " represent the limit values for variable Pfrid.

Equation (7) identifies that PC”t can only take the maximum value PC”t max_ The Pb‘lt variables can take
a value between chth max and P(i;ht max; if the value of PZ”tt is less than zero it represents a discharge
and if the value is greater than zero it represents a charge. The variable X} is a binary variable and

represents a decision variable. When Xl”t‘t is equal to 1 the cut of load (I) at period (t) is active.

4. Particle Swarm Optimization

PSO was proposed by Kennedy and Eberhart in 1995, and it is a random search algorithm that
simulates the foraging and flocking of birds in nature [27]. When birds look randomly for food in a
given area, each bird can be associated with a single solution and can be considered as a particle in
the swarm.

For PSO implementations assume that it has j particles in the n-dimensional search space and
each particle represent a solution in the search space. Equation (11) presents the position vector of
particle j and in Equation (12) the velocity vector for particle j.
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2 (L j
X; = (xirl,xirz,...,xi,n) (11)

v; = (v?ll,vl]./z,...,vf ) (12)

where, ?c)f represents the position vector of particle j for n. variables at iteration 7. The ;f represents the
velocity vector of particle j for n variables. When the search process starts, both vectors are generated
randomly between the respective limits of the n variables.

Equation (13) represents the velocity update equation. This equation is composed of three

. i—] . iy .
different components: the wf ?))i component represents the previous positions in memory search,
cl? rl{ (Pégs [ xi) corresponds to the cognitive learning component, and sz]‘ rZ{(Gbest - xi) is a global

learning component. Equation (14) represents the position update.

o —w x T x U x (P T 42 w12 x (G - 7 (13)
i+1 — % i i i best i i i best i
-] —J —j
Xit1 = Uiy + X; (14)

where, ;{ 1 is the velocity vector at iteration i + 1; w{ represents the inertia weight obtained through
Equation (15); cll]. and 021]. are acceleration coefficients, which are obtained by Equations (16) and (17),

respectively; and 1’15 and r25 are two uniformly distributed random numbers independently generated

. Y . i j j
within [0,1] for the n-dimensional search space. Pbest = (prest,l’prest,Z’ .. .,prest’n

best position and Gpey; = (xgbgstll, Xgbest 2 - - -/ xgbest,n) denotes the population historical best position.
Equation (15) presents an inertia weight.

) denotes the historical

. max min
j_ o omax _[W —w :
w; =w (—imax )xz (15)
where, w"* is the maximum value for inertia weight, w™" is the minimum value for inertia weight,
and " represents the maximum value of iterations. The inertia weight present in Equation (15) is a

linear decreasing method during the search process. The inertia weight reduction ensures strong global
exploration properties in the initial phase and strong local exploitation properties in the advanced
phase. The inertia weight is calculated at each iteration and is the same for the set of particles at each
iteration [28]. Equations (16) and (17) present the acceleration coefficients calculation:

cmax _ Cmin
j max 1 1 ;
=" | == — | Xi (16)
1 1max
max _ min
@ =i 22y (17)
i 2 jmax
where, c["* and c’lm’1 are the maximum and minimum values for the personal acceleration coefficient,

respectively. cll]. decreases over the iterations, which means that the acceleration component for the
personal position at the beginning of the search is high allowing exploration. The parameters ¢J"" and

cy™* represent the minimum and maximum values for the global acceleration coefficient. CZ! increases
over the iterations, which means that the acceleration component for the global position at the end of
the search is high allowing exploitation. The encoding of the solutions is crucial for the success of the
algorithm. Equation (18) shows the encoded vector used for solving the problem present in Section 2.

3 =[P s xe) =
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117"
or discharge in each battery (b) at period (t) and {X"'”t . Xz”%} are binary variables to enable the

where, {Pb‘” .y P%”tT} is a group of continuous variables representing the electricity amount of charge

117"
possibility of performed cut action in load (I) at period (t). Therefore, particle X has dimensions of
n = B X T+ LxT. This encoding allows a direct evaluation in Equation (1).
The PSO implementation starts by defining the search space limits by setting the lower and upper
bounds of each variable. In Equation (19), xIb/ represents the lower limits for the solution of j particle
and xub/ in Equation (20) represent the upper limit for j particle.

xIbl = [{_leiclh max _PdBC¥ max}’ {Xiult min’ o Xiult" min}] (19)
xubl = [{P§mex, ., e} (xeutmax, - xeud min}] (20)
;i = rand [xlbf,xubj] (21)

Equation (21) presents the process of initialization where the initial solution was created. In this
case, a random process into allowed bounds is executed. rand [xlb/ , xubl ] is a random number within
the lower xIb/ and the upper xub/ bounds of j particle for n variables.

Equation (22) presents the boundary constrains method. The search process over the iterations
will generate new solutions that may not be within the initially stipulated limits. To address this
issue the boundary control strategies are used to repair infeasible individuals. In this paper is used a
boundary control technique known as bounce-back [20].

rand(xlbf, 3 ) if ¥ < xlbi

o . . . ‘
Xi= rand(?f,xubf) if ?f > xubl (22)
;{ otherwise

In contrast to random reinitialization (the most used control technique), bounce-back uses the
information on the progress towards the optimum region by reinitialized the variable value between
the base variable value and the bound being violated. Making use of domain knowledge about the
problem, the Equations (23) and (24) is proposed as a direct repair equation. The Equation (23) concerns
the direct repair of ES%"

bt *
0o if EStr < 0
Bl = phmer g ptor » petormax be(l,...,B), Vtel,...,T) (23)
EZf?r otherwise

Although boundary control is used it can only control the variables P'* and X, the variable E5""
is a variable of control and balance, and when it is repaired other variables are necessarily changed. For
the repair process ES*" is needed to test two different conditions, Efﬁ” < O represents a greater discharge
than the allowed one, being that it fixes the variable to the minimum value. EZ‘;’V > EZf‘t” "4¥ means that
the battery has a charge greater than the allowed, the value of maximum energy in the battery is fixed
in maximum that can accumulate. Equation (24) presents the direct repair for P variable.

stor __ pstor . t
B —Epiy if By <0
A if Ejlor > Eglormax Vbe(l,..., B}, Vte(2,...,T) (24)
Pz”f otherwise

P is repaired in Equation (22), but with the direct repair used in Equation (23) the variable P
may not be correct, and it is necessary to perform direct repair on it. So, a battery power level test
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is performed, if Ezt‘;’ < 0 the value for Plb’”tt is equal to the difference between the battery power level

stor
bt-1

power level is greater than the allowed maximum Eit?’ > Eztfr max,

in the previous period E"" . and the current period EZ{‘Z’. The same rule is applied when the battery

The particles should be evaluated according to a fitness function f ’(;), Equation (25), including

objective function f (;) Equation (1) and constrains violation p f (;)

f’(x) :f(x)+pf(x) (25)
T . L . .
R .~ pgrid < grid min grid > grid max
pf(x) = Eltxf) if P <Py npo2h Vie(l,..., T} (26)
otherwise

where, pf (;) in Equation (26) represents the penalty value for a solution X. Despite the application of
bounce-back method Equation (22) and direct repair methods (23) and (24), the solution may still be
infeasible. The penalty value is obtained checking the limits of variable Pf”d for every period. In each
period that the variable is out of limit is counted and multiplied by a penalty amount p, the sum of all
individual (per period) penalties represents the total penalties per each solution.

Pseudocode of the PSO algorithm is presented in Algorithm 1.

Algorithm 1. PSO pseudocode.

INITIALIZE
Set control parameters w'"”x,w’“i”,c’lmx,cTi”,cg'“x,cg"i”, 7%, and "X,
Create an initial Pop (Equation (21)) and initial velocities.
IF Direct repair is used THEN
Apply direct repair to unfeasible individuals
END IF
Evaluate the fitness of Pop (Equation (25)).
Create a Py, vector for every particle.
Create a Gy, vector of the swarm.
FOR i =1 to "™*
FOR j=1to j™*
Velocity update (Equation (13))
Position update (Equation (14))
Update w;, c1; and ¢2; (Equations (15)—-(17))
Verify boundary constraints for P (Equation (9))and X (Equation (10))
IF Boundary constraints are violated THEN
Apply boundary control (Equation (22))
END IF
Verify boundary constraints for E5*" (Equation (8)) and Pbet (Equation (9))
IF Boundary constraints are violated THEN
Apply direct repair (Equations (23) and (24))
END IF
Evaluate fitness of x (Equation (25)).
Verify boundary constraints for pgrid (Equation (6))
IF P8" is out of limits THEN
Apply penalty function (Equation (26))
Update fitness value (Equation (25))
END IF
Update P, vector for i particle.
END FOR
Update Gy, vector of the swarm.
END FOR
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Basically, if in the evaluation process constraints violations are identified, the individual is
randomly repaired using the initialization process from Equation (22). The pseudocode of Algorithm 1
is displayed step-by-step, starts with the definition of the parameters related to the PSO. The search
begins with the creation of the initial population. After being evaluated, the best position of each
particle and the best position of the population are defined. The main cycle starts, and at each iteration
of the main cycle, another cycle is performed for each particle. For each particle a new velocity is
generated, updated, verified, and evaluated. When all particles repeat the process, the value of the
best personal position of each particle and the best overall position of the population is updated.

5. Case Study

This section presents the case study. The optimization problem was solved using PSO metaheuristic
and compared to a solution obtained by a CPLEX solver in MATLAB™/TOMSYM™ environment to
compare the results.

The proposed methodology addresses a Portuguese consumer and complies with actual Portuguese
legislation, which allows small producers (consumers with local generation) to use the energy produced
to satisfy the own load necessities and sell it to the grid. The consumer has a supply power contract of
10.35 KVA with the retailer, and it is characterized by three different periods: peak, intermediate, and
off-peak [29]. The prices applied to a consumer operation are present in Table 1. The input prices in
Table 1 are real values of a Portuguese retailer (https://www.edp.pt/particulares/energia/tarifarios),
which provides a realistic case study. The prosumer can inject his excess production into grid, but a
limit is imposed by the retailer. The maximum value injected into grid is half of its contracted power,
approximately 5.1 kW. The real prices and real condition inclusion in this problem contribute to more
accurate in this study and prove the real value of the methodology application.

Table 1. Prices of the different periods and contracted power.

Energy (€/kWh) Contracted Power
Parameter €
Peak Intermediate Off-Peak (€/Day)
Buy from grid 0.2738 0.1572 0.1038 0.5258
Period 10.30 h-13 h 08 h-10.30 h 22h-02h
erods 1930h-21h  13h-19.30h,21 h-22h 02h-08 h

Sell to grid 0.1659 * B
DR weight 0 0.2 0.4

* is used for all periods.

The DR weights present in Table 1 are defined by the consumer taking into account the energy
price variation within the day, adapted from [16]. The use of DR is more appreciated when the energy
is cheaper, so the weight of 0 is given in peak periods (highest price). With this weight distribution, the
DR actions are expected to be executed during peak periods. Equation (3) gives the amount of DR
actions contributing to the objective function. It does not represent costs for the consumer, but is rather
a consumer’s preference that influences the scheduling. In Table 2 are presented the problem input
variables adapted from [16].

The system has two PV panels with different production, one has a maximum production of 7.5
kW and other has a maximum production of 2.5 kW. This PV panels and the battery storage unit
are connected to the inverter. The battery can receive power from the PV production or the grid. In
this case study, the inverter has two functionalities: the first is to convert the power from DC to AC
and vice versa; the other functionality is to give the signal to manage certain loads. In this study,
three different loads are considered: a dishwasher, an air conditioner, and a water heater. Figure 3
shows the disaggregated consumption and PV generation forecasts. In this case study, the forecast is
performed for the next 24 h. In real-time operation, the forecast can be updated at every instant. Each
time that user update the forecast can perform a new optimization. Regarding the influence of the
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forecasting results on optimization, in the case that the presented day-ahead forecasting strategies in
References [30,31] are considered, the forecasting error, using Supporter Vector Machine algorithms to
predict the values for the next 24 h, will be 9.11%.

Table 2. Problem input variables.

Parameters Symbol Value Units
Maximum power injected to grid _Pfﬁd mitt -5.1 kW
Maximum power required from grid Ps rid max 1000 kW
Maximum power accumulated in battery EZf‘t’r mex 12 kW
Maximum energy of battery discharge —P‘gfth ax —6/4 kWh
Maximum energy of battery charge Pi’; ax 6/4 kWh
Total Periods T 96 -
Total of controllable loads L 3 -
Total of batteries B 1 -
Total of PV units P 2 -
Adjust parameter At 4* -

* The factor of 4 comes from the fact that there are four 15-min periods in an hour.

14
EE Total Consumption = Dish Washer [ Air Conditioning
[ Water Heater Total Production
12
10
8

Energy (kWh/4)

|
|

16:30 -

0 . =
o n O 1 O 1 O 1 9O 1 o 1 O W o 10 O WL O 1 O W n o 1 O 1 O 1 O 1
S H =S FH =4 S FH A4S FH A S FE D =S K — S Ff H = S f A —
SO O H AN O N H IO O O DN 0 NN O = A AN <K O IN 00 0 O © — —H o o
Lol B B B R B B N o= = = A AN AN A
Periods

Figure 3. Disaggregated consumption by appliance and photovoltaic (PV) generation.

Figure 3 presents a typical load profile with a peak of 11.5 kW at ~11.45 h. The consumption per
controllable load is present in Figure 3 with different colors. The total consumption includes the sum
of all loads and the same situation for PV but is the sum of two PV units. The peak of production is
forecasted between the 12.00 h and 13.30 h with 6 kW. In some periods, such as 10:30, the sum of the
controllable loads corresponds to the total consumption. Table 3 presents the parameters for PSO; they
were obtained from a previous study.
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Table 3. Particle swarm optimization (PSO) parameters used.

Parameters Symbol Value
Population size jmax 500
Maximum numbers of iterations jmax 500
Maximum inertia weight W™ 04
Minimum inertia weight win 0.9
Maximum cognitive weight C’lﬂ‘?x 1.5
Minimum cognitive weight c;'”” 0.5
Maximum global weight ™ 15
Minimum global weight ottt 0.5

Number of evaluations - 250,000
Number of trials - 30

The member of evaluation is equal to j** X "** and presents the number of fitness function is
evaluated during the search process. Considering that the PSO is an algorithm of a random nature,
a group of 30 trials is performed. With a sample of 30 results, it is possible to extract a more robust
conclusion from the application of the PSO to the problem in question.

6. Results

This section presents the results and analysis obtained from the implementation of the proposed
methodology and respective case study. Table 4 presents the results for Equation (1) in both the
CPLEX (deterministic) obtaining the optimal value, and PSO obtained an approximate resolution.
Four different scenarios were created considering the resources combination: the scenario “PV + Bat +
DR” combine the all available resources (PV production, the storage capacity and loads flexibility),
scenario “PV + Bat” combines the PV production and storage capacity resources and “PV” scenario
only considers the PV production resource. The nonoptimized value is used as a base case scenario
and was obtained by using a simple management mechanism; the scenario “PV + Bat” considers
PV production and storage capacity, and the “Without resources” scenario does not consider any
resource. Analyzing the results of CPLEX for the set of scenarios can conclude that “PV + Bat + DR”
presents the smallest fitness function. It can be said with resources combinations brings benefits for
household management.

Table 4. Results for Equation (2) (€/day).

PSO
Resources Combination Scenarios CPLEX
Min Mean STD
PV + Bat + DR 3.1874 3.2771 3.3381 0.0469
Values optimized PV + Bat 7.8652 7.9454 8.0595 0.1169
PV 8.8478 8.8478 8.8478 0
PV + Bat 9.3298

Nonoptimized values Without resources 16.8570

The analysis of results is performed for the “PV + Bat + DR” scenario. The results present in
Table 4 of PSO correspond to 30 trials. The minimum value that the PSO reached is 2.8% higher
when compared with CPLEX value. Analyzing the standard deviation (std) value for the sample of
PSO results is possible to conclude that it is relatively small and the values of the 30 trials should be
relatively close to the mean value. The STD analysis is important because it is a measure that expresses
the degree of dispersion of 30 trials solutions. Figure 4 presented the results related to the DR actions
applied to the profile shown in Figure 3.
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Figure 4. DR result regarding initial profile.

In Figure 4, the positive values correspond to the consumption of appliances that had no changes
with the application of the methodology. Negative values are energy that has been reduced due to cut
of loads. With the loads cut, reduction of 63% in the total consumption of three loads (dish washer, air
conditioner, and water heater) was obtained. The DR actions are performed during 10.00 h to 13.00 h
and 19.00 to 21.00. Crossing this information with Table 1, one can see that these periods correspond
to a peak hour, precisely when energy is more expensive. During peak hours the consumption with
the present optimization methodology is 44.8 kW, without its application and not considering PV
generation and energy storage systems, the consumption will be 115.4 kW. This reduction represents
20% reduction of total daily consumption. In this way; it is concluded that the present methodology
has an impact on the consumption of peak hours. In Figure 5 are presented the total load consumption
(controllable and noncontrollable loads), the battery actions (charge and discharge), and the final load
(load consumption plus battery charge).

10

I [ oads consumption =~ [ Energy Charged [ Energy Discharged e TFinal Load

Energy (kWh/4)

o n O 1 O ;L o ;0 o ;0 o 1L o WU o ;0L o ;0L o ;Lo Lo Lo ;Lo 1L o WL oW
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Period

Figure 5. Load consumptions, battery actions, and final load scheduling.
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Figure 5 shows that due to this condition, the generation (see Figure 3) exceeds the consumption
needs, and in this case, the energy surplus will either be used to charge the battery or sell to the grid. In
this way, the user avoids buying energy from the grid to charge the battery and to meet consumption
necessities. The battery discharge cycles are mostly represented between 11.00 and 21.00 periods that
correspond to a peak and intermediate hour. Table 5 presents a summary of the results obtained by
both methods applied.

Table 5. Summary of results.

. . . . Daily Daily Monthly

Scenario Method Equation (1) Equation (2) Equation (3) Costs (€) Revenues (€) Costs (€)
PV + Bat + DR CPLEX 3.1874 3.1874 0 6.9380 3.7505 95.6233
PV + Bat + DR PSO * 3.2771 3.2771 0 6.0565 2.7794 98.3140
PV + Bat PSO * 7.9922 7.9922 0 8.5136 0.5683 239.7661
PV + Bat Nonoptimized 9.3298 9.3298 0 9.3298 0 279.8928

* represent the values of trial with the minimum fitness value.

With the proposed methodology, the daily cost of operation for CPLEX is 3.18 (€) and 3.28 (£)
for PSO, but if the PV system, battery and DR do not exist and the daily costs are 16.83 (€). When
compared the results of Table 5 is possible to observe that daily cost for CPLEX is larger compared to
PSO daily cost, but the value of revenues in CPLEX are also large than PSO values. With the case study
present in Section 5, the value of Equation (1) is equal to Equation (2) in both of methods, which means
that the value of Equation (3) is zero because Equation (1) is the sum of Equation (2) and (3). When
Equation (3) has the value zero represents that the DR is performed on periods with weight equal to
zero and do not have a contribution to Equation (1). Table 5 also presents the monthly costs, which are
calculated considering that the profile present in Figure 3 is repeated for the 30 days of the month. The
value obtained for PSO is 2.96 (€) higher.

7. Conclusions

The present work addresses a methodology for resource scheduling (PV battery, storage capacity,
and load flexibility) in a residential house that has not any contract with a DR service provider. Usually,
the DR services for residential consumers are available using a DR service provider. In contrast, in the
presented methodology the user is independent of applying his preferences in decision-making. In

this case, the PV inverter, installed to convert the PV production into DC to AC, can control the charge

bat
bt

and Pf,’t‘t are the inputs for the PV inverter control to act on the battery system and controllable loads.
The optimization problem was solved using a stochastic method (PSO) and a deterministic method
(CPLEX). The results obtained by PSO have a close approximation to the deterministic results. The
simple implementation and open access possibility of programming PSO over different platforms are
factors that potentiate its use in this type of problems. In fact, in the present work, it was possible to
demonstrate the results of running a PSO-based algorithm on a connection with the inverter of the PV
system for control of the connected loads and the charge or discharge of the battery storage system.
The numerical results presented demonstrate that it is possible to obtain advantages by using the
optimal combination of available resources. Table 4 presents the fitness function value for different
resources combination, showing that the scenario that combines the all available resources is the best.

or discharge of the battery system and the interruption of the loads. The optimization results for P

Although PSO can obtain near-optimal solutions, its solution using the best combination resource
scenario is better than the normal operating solution. With the comparison between the base scenario
and the same scenario with PSO optimization, it is possible to make the assessment of the PSO approach.
The daily cost optimized by PSO for the base scenario is 14% lower compared with the obtained in the
nonoptimized base scenario.

As the presented methodology was built for been applied in an independent agent, the agent
facility (residential house) needs to be prepared with equipment to perform the actions that the
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presented method imposes. This condition may be a weakness of the methodology, as it will increase
the initial investment in equipment. Assuming that the DR program is implemented efficiently, such
investment can be recovered over time, as the user does not need to pay fees to any service provider to
use the service. The use of PSO instead of CPLEX can make the initial investment more appealing, for
reasons already discussed in the introduction.

For future work, an analysis incorporating more DR actions (e.g., reduction and shifting capabilities)
in the presented methodology can be done. Also, robust optimization considering the forecast error in
PV production and domestic consumption can also be made to analyze the impact of forecasts errors
in the electricity bill.
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Glossary/Nomenclature

Abbreviations

Al Artificial Intelligence

DR Demand Response

DG Distributed Generation

ESS Energy Storage System

LP Linear Programming

MATLAB Matrix Laboratory

MILP Mixed-integer Linear Programming
MINLP Mixed-integer Nonlinear Programming
NLP Nonlinear Programing

PSO Particle Swarm Optimization

PV Photovoltaic

RESs Renewable Energy Sources

SET Strategic Energy Technology
Indices

b Battery unit

n Dimension

i Iteration

l Load unit

j Particle

t Period

p Photovoltaic unit

Parameters

Cf”:d in Cost of buying electricity to the grid
C‘f”d out Cost of selling electricity to the grid
Wﬁ‘t Cut weight of load

DCP Daily contracted power cost

xIbl Lower bond for ;1

P‘tgrid mx Maximum limit for Ptgyid

jmax Maximum number of iterations
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jmex Maximum numbers of particles

Pfft‘t max Maximum value for cut load

cht max Maximum value for energy charge

P‘Z/Cth max Maximum value for energy discharge

gt Maximum value for global acceleration coefficient
w™ax Maximum value for inertia weight

c’lmx Maximum value for personal acceleration coefficient
EZ’;” max Maximum value of accumulated energy in battery
P‘f rid min Minimum limit for P‘?ﬁd

ot Minimum value for global acceleration coefficient
wmn Minimum value for inertia weight

c’l’“” Minimum value for personal acceleration coefficient
At Multiplicative factor related with the time to calculate energy
B Number of batteries

L Number of controllable loads

T Number of Periods

p Penalty value

PII; ‘t/ Photovoltaic production

xub/ Upper bond for ¥

Pﬁ"”d Value of load

Variables

Ifrid in Binary variable for control the flow direction

Pi’;t Cut power of load

Xl”t‘t Decision binary variable to active the cut of loads
PZT Energy charged or discharged by battery

Fitness function

Fitness function with penalty

Pfrid Flow of energy between household and grid
Pies ; Historical best position

wf Inertia weight

pf (?) , Penalty function

cll]. and c2l]. Personal and global acceleration coefficients
Gpest Population historical best position

}){ Position vector

Ezt‘t)r State of the battery

rllj. and r21]. Uniform distribution random numbers

EH Velocity vector
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Resumen

Los hogares equipados con recursos energéticos distribuidos, como unidades de
almacenamiento y renovables, abren la posibilidad de autoconsumo de
generacion in situ, vender energia a la red, o hacer ambas cosas segtin el contexto
de operacion. En este articulo se desarrolla un modelo para optimizar los recursos
energéticos de los hogares por parte de un proveedor de servicios de energia.
Consideramos viviendas dotadas de tecnologias que apoyen la reduccion real de
la factura energética y por tanto realicen acciones de respuesta a la demanda. Se
desarrolla una formulacién matematica para obtener la programacion optima de
los dispositivos domésticos que minimice la factura de energia y las acciones de
reduccion de respuesta a la demanda. Ademas del modelo de programacion, el
enfoque innovador de este documento incluye algoritmos evolutivos utilizados
para resolver el problema bajo dos enfoques de optimizacién: (a) el enfoque no
paralelo combina las variables de todos los hogares a la vez; (b) el enfoque
paralelo aprovecha la independencia de las variables entre los hogares utilizando
un mecanismo multipoblacional y optimizaciones independientes. Los
resultados muestran que el enfoque basado en paralelo puede mejorar el
rendimiento de los algoritmos evolutivos probados para instancias mas grandes
del problema. Por lo tanto, mientras aumenta el tamafio del problema, es decir,
aumenta el nimero de hogares, la metodologia propuesta serd mas ventajosa. En
general, el algoritmo busqueda de vortice (vortex search en inglés) supera a todos
los demas algoritmos probados (incluida la conocida evolucién diferencial y la
optimizacion de enjambre de particulas) logrando alrededor de un 30 % mejor
desempefio en todos los casos, lo que demuestra su eficacia para resolver el

problema propuesto.
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Abstract: Households equipped with distributed energy resources, such as storage units and
renewables, open the possibility of self-consumption of on-site generation, sell energy to the grid,
or do both according to the context of operation. In this paper, a model for optimizing the energy
resources of households by an energy service provider is developed. We consider houses equipped with
technologies that support the actual reduction of energy bills and therefore perform demand response
actions. A mathematical formulation is developed to obtain the optimal scheduling of household
devices that minimizes energy bill and demand response curtailment actions. In addition to the
scheduling model, the innovative approach in this paper includes evolutionary algorithms used to
solve the problem under two optimization approaches: (a) the non-parallel approach combine the
variables of all households at once; (b) the parallel-based approach takes advantage of the independence
of variables between households using a multi-population mechanism and independent optimizations.
Results show that the parallel-based approach can improve the performance of the tested evolutionary
algorithms for larger instances of the problem. Thus, while increasing the size of the problem, namely
increasing the number of households, the proposed methodology will be more advantageous. Overall,
vortex search overcomes all other tested algorithms (including the well-known differential evolution and
particle swarm optimization) achieving around 30% better fitness value in all the cases, demonstrating
its effectiveness in solving the proposed problem.

Keywords: demand response; energy service provider; energy storage system; evolutionary
algorithms; optimization; photovoltaic generation

1. Introduction

In the current environmental world scenario, countries are adopting a series of counter measures
in what regards to the use of energy, renewable sources and DG (Distributed generator) [1]. In fact, the
European Union, according to the EU (European Union) renewable energy directive (2009/28/EC),
is pushing to their country members to achieve strict targets such as the of penetration of 20% of
renewables into the energy mix by 2020, and increase the quantity up to by 100% by 2050. Thus, in order
to achieve such ambitious targets, it is expected a systematic and elaborated transformation of the
electrical grid, in line with the ambitions of the EU [2].

In this scenario, new technologies such as PV (Photovoltaic) panels and battery systems emerge
as a viable solution to promote the penetration of renewables at the local level of the distribution
networks. Households equipped with PV generation and storage units became small producers
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(the so-called prosumers due to their condition of consumer and producer at the local level) and
provide a new source of flexibility to the systems [3]. Also, prosumers allow the implementation of
innovative energy management mechanisms to take advantage of DR (Demand Response) and on-site
generation. The correct coordination and use of such devices, through effective management and
optimization approaches, promises several benefits such as the reduction of energy bills for households
and the reduction of carbon-emission footprints in general.

Different approaches have been proposed to address the optimization of households equipped
with PV-battery systems. For instance, a MILP (Mixed-integer Linear Programming) problem was
formulated in [4] for the management of a residential community grid with renewables, batteries,
electric vehicles, and DR capabilities. This formulation searched for the minimization of purchased
energy cost. In [5], a similar approach was used to minimize operation cost of a smart building
considering DR and day-ahead energy resource management. In [6], the capabilities of MILP
were tested again under a similar problem formulation, showing that DR can be very effective in
different scenarios when a high penetration of renewables is available. On the other hand, some
MINLP (Mixed-integer Non-linear Programming) have extended the mathematical formulation to
include non-linearities and make the models close to real-world situations. For instance, in [7] a unit
commitment problem of a microgrid is formulated to optimize the amount of load reduction and
incentives given due to DR at different time intervals. Also, in [8], gas and electricity are included into
the energy mix model, and the day-ahead energy scheduling is optimized for energy hubs. Some other
approaches have explored the idea of an aggregator that works as an energy service provider. In this
case, households can apply DR actions following incentives or responding to a direct control signals
dictated by the aggregator. For instance, in [9], an aggregation of air conditioning loads is considered
to perform DR actions. The study in [10] is not only limited to DR actions but also considers storage
units to participate in energy and regulation markets. Also, in [11], a demand response simulator
to study actions and schemes of users in distribution networks was proposed. The study took into
account the technical validation of solutions including load reduction using a consumer-based price
elasticity approach supported by real time pricing.

Finally, due to the complexity of the problem, EA (Evolutionary Algorithms) has been proposed
in the literature trying to face issues such as scalability, memory requirements, time constraints,
and other related problems that arise in the context of demand response and hybrid PV-battery
systems. For instance, in [12], a bi-level formulation for optimal day-ahead price-based DR is proposed
and solved by a hybrid approach in which a multi-population genetic algorithm is used for the upper
level and distributed individual optimization algorithm for the lower level. Another hybrid genetic
algorithm is used in [13] to consider the interaction of electricity retailers and DR. More recently,
in [14] a PSO (Particle Swarm Optimization) algorithm is used for load shifting of appliances and
the scheduling of PV and storage equipment using a home energy management system. In [15],
the performance of evolutionary algorithms is compared solving a flexibility management model in
which home appliances can perform DR actions. In addition, evolutionary algorithms have been used
not only to optimize hybrid renewable energy systems [16] but also to coordinate the scheduling of
PV-storage systems [17-19].

In this paper, we extend the model proposed in [20], for optimization of households equipped
with PV-battery systems and DR capabilities. Different EAs, including DE (Differential Evolution, PSO,
VS (Vortex Search, and other variants, are implemented to solve the optimization problem (MILP),
and their performance and results are compared under two novel frameworks (one following the
typical framework of EAs and another taking advantage of parallel computing). Households are
provided with an independent management of resources minimizing energy bills and optimizing
DR curtailment. With the objective of improving the minimization of electricity costs for households,
with the support of an energy service provider, the contributions of this paper are as follows:

e An optimization framework for the optimization of PV-battery system of households minimizing
energy bills and DR actions.
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e A MILP formulation to optimize the resources of several households.

o Implementation of different EAs under two optimization approaches, one based on standard
evolutionary computation and a second one taking advantage of parallel computing.

e Assessment of the effectiveness of EAs and the optimization framework under a case study
considering up to 20 households.

The paper is organized as follows: after the introduction in Section 1; the proposed methodology
and the mathematical formulation is presented in in Section 2; Evolutionary algorithms applied in
this work are introduced in Section 3; Section 4 presents the two proposed optimization approaches
employed with the use of EAs to make use of parallel computing; the case study and results are provided
in Sections 5 and 6 respectively; and finally, the conclusions of this work are presented in Section 7.

2. Households Demand Response Optimization

In this section, is provided the description of the proposed optimization model, which aims to
minimize the energy bill and the user discomfort. The change in the consumption pattern is considered
to be a way of user discomfort. Since it is a rather complex problem to be computed at house level,
the proposed methodology considers an Energy Service Provider that performs the optimization for a
large set of households, and makes the results available for each one.

In each house, distributed energy resources are available, like PV generation, storage, and DR.
Accordingly, each household is a prosumer (a consumer able to produce electricity), equipped with a
PV and an energy storage system. Three appliances can be controlled by the optimization algorithm
to reduce the consumption in periods when the electricity price is higher. For this, it is assumed that
the household owns the needed control devices (e.g., plc). The PLC (Programmable Logic Controller)
controller unit manages the consumption and generation resources in the houses according to the
schedule received from the Energy Service Provider.

The mathematical formulation of the problem is an extension of [20] to consider up to I households
(unlike the original model designed to target only one household). Thus, the formulation corresponds
to a MILP model having as OF (Objective Function) Equation (1):

Minimize OF = Energy Bill + DR Curtailment Weight , (1)

where Energy Bill represents the costs of buying and selling electricity, while DR Curtailment Weight
quantifies the weight of the curtailment of loads due to DR. Thus, Equation (2) represents the energy
bill that households must pay due to the flow of energy exchanged with the main grid:

) T

: ‘ ‘ ‘ 1

Energy Bill = Y <§ ) (pgﬂdln x Cidin _ pGrid Out, crid Out) x At) + Fix Cost;,  (2)
i=1 \t=1

where PZ.IGtrid In represents the energy flow from the grid to the household, Cgﬂd In represents the cost of
buying energy, Pl.,trid Out 5 the energy flow from household to the grid, Cgtrid Out corresponds to the
revenue of selling energy to the grid, é is a term that considers the modification of hourly values
to another time interval (e.g., 15 min in this article), Fix Cost; represents the fixed tariff costs pay
by each household. i = {1,...I} is used to identify households, and t = {1,..., T} for the periods.
Notice that Equation (2) includes the sum of energy bill over all households. Therefore, minimizing
this overall value corresponds to reduce the bill for each particular household. Moreover, the energy
consumption/generation from households is independent, and thus, finding the minimum value for
Equation (2) guarantees that the minimum possible bill for each household is obtained.

On the other hand, Equation (3) is used to calculate the weight of DR actions:

I (T [ L
DR Curtailment Weight =Y | <Z (E (Plct‘}t X th‘,‘lt X chtl}t>>> , 3)
=1

i=1 \t=1
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where P&}t represents the energy load cuts, th‘/llt are binary decision variables indicating a DR action,
Wl.Ctult represents the weight of energy cuts, I = {1, ..., L} is used to represent loads available for DR.
T Itis important to point out, as explained in [20] that the energy bill (first term) and DR curtailment
(second term) can be seen as opposite objectives in Equation (1). This is because the curtailment of
loads reduces energy bills, but at the same time affects user comfort in different ways depending on
user preferences. In this work, however, we decided to select the DR weights of energy cuts following
a trend contrary to the buy from grid tariff to promote the use of DR when the price of energy is higher.
Other assumptions and targets can be explored in future work.
Equation (4) represents the energy balance at each period:

L
PG = pload 4 pB = Y (PGU < xG) — PRY Vi € {1, 1}, Ve € {1,., T}, )

=1
where PGricl represents the energy flow between grid and household, PlLtoad represents consumption
from non-controllable loads, PBat corresponds to energy charge/discharge of batteries (charge or

discharge) and PZI,)V represents the energy generated by PV panels.

Equation (5) is applied to obtain the flow of energy between the grid to household:
pGidIn — pGd > 0,vi e {1,.., 1}, Vt € {1,.., T}. (5)
Equation (6) is applied to obtain the energy flow from households to the grid (exported energy):

pGrdout — pCrd < 0,vi e {1,.., 1}, Vt € {1,.., T} . (6)

Equation (7) represents the balance of the batteries for all households at all periods:
1
EP2t = EPRt, + PPt x v E{lL 1LV E 2, T}, @)

where Efat is the state of the battery of household i at period ¢, and EBat " | represents the previous state
of the battery of household i at period t — 1. Equation (7) is applied from the second to the last period
of optimization, while EE{“ is an input parameter of the case study.

Equation (8) is used to represent the bounds of Pﬁrid variable:

pGrdmin < pCrid < pCridmax i ¢ {1, 1}, Vt € {1,..,T}, (8)

where I’Gri"lmin corresponds to the lower bond and PGriCImaX to the upper bound values of PGrid.
Equatlon (9) represents the upper bound (max1mum cut capacity) for the variable PCut

POSt = POum™a i€ {1,.., 1}, Vt € {1,..., T}, VI € {1,..,L} . )

1 1,

Equation (10) presents the bonds for the variable Eftat.
0 < EPft > EPp™a vi e {1,..,1},Vt € {1,.., T}, (10)

where EP?™X are the upper bound of variables EP{™ax.
Equatlon (11) presents the bound for the Varlable PBat

— pBardeh < pBat > phatch i ¢ {1, ., 1}, vt € {1,.., T}, (11)

where — PBatdeh and pBatch gre the lower and upper bounds of the variable PP,



Energies 2020, 13, 2466 50f 18

Equation (12) represents the bounds for the variable Xl.ct”,t.

Xi(,:tb,llt - { (1) /Vi € {1,...,1},\V/t € {1r"'/ T}/VZ € {1/"" L} 4 (12)

where variable Xl.ct“f can takes the value of “1” when the cut is active and the ‘0" when the cut is
not active.

3. Evolutionary Computation

EC (Evolutionary Computation) is one of the three pillars of computational intelligence (along with
artificial neural networks and fuzzy systems). EC includes a set of algorithms for optimization inspired
in biological and evolutionary processes [21]. In fact, there are in the literature now a huge set of
algorithms available for optimization, but in general, they can be grouped in some popular categories
such as EA, SI (Swarm Intelligence), nature-inspired algorithms, natural computation, etc.

In this paper, we focus our attention in a class of algorithms that share some common mechanisms.
This choice eases the experimental analysis since a fair comparison can be performed between the
algorithms. Figure 1 illustrates the evolutionary mechanism employed by the selected EAs. Thus,
in a first stage, an encoding of solutions and a fitness function are defined for a particular problem.
The EAs act over an initial set of candidate solutions encoded as vectors (i.e., a population) that is
iteratively updated through generations. The way in which new solutions are created from the initial
population is what distinguish each EAs (i.e., each of the selected EAs has its own variation operator).
Solutions” performance is measured by the fitness function, and at each generation, solutions with
inferior performance are replaced by the new solutions with better performance. It is empirically
proved that by the principles of natural selection (or artificial selection in this case), the population
will gradually evolve towards an optimal fitness value.

Case Study Input:
Initial battery SoC
PV and load forecast

Energy tariffs

DR weights
Algorithm:

Encoding Evaluation
Fitness function (fitness)
Parameters

= For each household:
Best solution .
A Batteries’ state
Load curtailment

Current
solutions

. Evolutionary : Variation Different for
USRI cycle E operators i eachEA

Selection |-—| Evaluation }-—m

Figure 1. Typical optimization scheme of evolutionary algorithms. All the evolutionary algorithms

used in this work follow this scheme.

We describe the solution encoding and fitness function shared by the selected EAs in Section 3.1.
After that, a brief description of the chosen algorithms is provided in Section 3.2.
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3.1. Solution Encoding and Fitness

The optimization problem searches for the optimal scheduling of charging and discharging cycles
of batteries and the choice of which loads are used for DR curtailment, for each user (as stated in
Section 2).

Therefore, the selected encoding should include all the information to validate a solution, and it
is very similar to that used in [20], but generalized for I users. Figure 2 shows the structure of a
given solution in our framework. The solution first include continues variables representing the
charging/discharging state (positive for charging, and negative for discharging) of the users’ battery,
at all periods ¢, for each user i. Therefore, this set includes T x I variables Then, a second set of binary
variables is used to indicate a cut action in all load I (“1” if load [ is curtailed, and ‘0" if not), at all
periods ¢, for each user i. Therefore, this second set includes L x T x I binary variables. In general,
a complete given solution to the problem is of dimension D = T x I x (1 + L). The variables are
bounded by:

xlb = {—pichmax, xgpminy g ={1,.., 1}, t={1,.,T},1={1,..,L}, (13)

xib = {pfhmax, yewtmaxy - — f1 1}t ={1,..,T},I = {1,..,L}. (14)

Thus, the EAs can generate initial populations with random candidate solutions between those
bounds using a random function such as:

%; = rand(xIb, xub), j={1,..,Nsi}, (15)

where rand(x?b, xab) generates a random solution between the bounds defined in Equations (13) and (14),
and N, is the size of the population defined by the user.

Since the formulation includes constraints that can be difficult to optimize by the algorithms, we
apply some direct repair techniques to ease the generation of feasible solutions. Equation (16) presents
the direct repair mechanism employed to keep variables Eftat into the allowed limits:

0, if P <0
EPat = Efatmax, if EPat > EBatmax e (1,1}, Vt € {2,.., T}, (16)
pBat otherwise

it 7

where variable Eftat represent the energy state of charge of the battery. EEft < Orepresents a discharge state
greater than the allowed one, so that the variable is fixed to its minimum value. When E}?ft > EEf‘tmaX,
the battery has charged more energy than the allowed, thus, the value of maximum energy in the
battery is fixed the maximum allowed value. After repairing the state of charge, variables Pi]?tat should
also being repaired as:

EPat —EBat,if EPAt <0

pit= ¢ EPat—EBat if EPat> pBamax vie {1,., 1}, Vi€ {2,., T}, (17)
ppat otherwise

it 7

Notice that variable Pi]?tat is repaired following the same conditions of Equation (16).
This procedure guarantees feasible solutions, helping in the iterative process of the EAs.

Since the encoding has been designed to include all information needed to evaluate the
mathematical model from Section 2, the fitness function is taken directly from Equation (1) including
penalties due to the possibility of generate infeasible solutions. Therefore, the fitness value includes

the energy bill (costs and revenues), fixed costs, and DR curtailment weight off all users plus penalties:

Fitness(Xj) = f(Xj) + Psunction (¥;) , (18)
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where f(¥;) is equivalent to Equation (1), and pgunction(¥;) is a function that returns a penalty value
associated with the violation of the limits of variable Pﬁﬂd for each user i at each time f, defined as:

I T
pfunction(fj) = Z Oit s (19)
i=1t=1
0 —.Pf;rid, _ if (Pgrifi <0
Pif = PSrld _ Pﬁrldmax, if (Pgrld > Pgrld mm) , (20)

0 otherwise

where p; ; is a penalty factor related to the limits of variable Pi’trid. Notice that direct repair methods
are used to avoid as much as possible violations of constraints (see direct repair methods in [20]), yet,
due to the stochastic nature of EAs, infeasible solutions may arise for large instances (as the result
section shows).

Subsequent Subsequent

households households
%= |[PPR° | - [PDFY | - [PREY [ |PRRY XY |XENG | o XRERY| - JXSYS|XARS | WEERY| D =TI (14 1)
P i Total dimension
: ' of each individual

)?Nso] =
Batteries of all households Loads for DR of all households
(T=D) (L*TxD

Figure 2. Solution encoding. The individual structure used by the EAs include all information needed
to evaluate a solution.

3.2. EAs Used for DR of Households

Now that we defined the encoding of individuals and the fitness function, we apply EAs following
the scheme from Figure 1 to solve the problem. In this paper, we apply DE and two of its variants
hyde and HyDE (Hybrid Differential Evolution) (due to its success in many applications and easy
implementation [22]), an improved version of the well-known PSO, and the vs [23]. In the following
subsections, we provide a brief description of the algorithms, and their variation operators that
distinguish each of them.

3.2.1. Differential Evolution

DE uses a Pop (Population) of individuals X, = [x1,,G, - *D,i,c], where G is the number of
iterations, i = [1,..., NP] is the index of individuals in the population, and j = [1, ..., D] is the index
for the variables to optimize. In the initialization stage, NP solutions are generated randomly within
lower and upper ranges xIb and xub. In the standard form of DE, the so-called DE/rand/1 algorithm,
new solutions are created applying a mutation and recombination operator defined by:

mic =¥, +F(Xo6 —%3c), (21)

_},i,G _ { ;g if (rand;;[0,1] < Cr) V (j = Rnd) , )

Xjic otherwise

where ¥,1 G, X126, X3, € Pop are three random individuals from the Pop, mutually different from
each other. F and Cr are the mutation and recombination parameters of DE, usually set in the range
[0,1]. The fitness function, (i.e., Equation (18)), is used to evaluate the performance of new individuals.
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An elitist selection procedure is applied in DE by replacing solution with worse performance than the
new generated ones. A detailed explanation of DE can be found in [24,25].

3.2.2. Hybrid Adaptive DE

HyDE is a new self-adaptive version of DE proposed in [25]. The distinguish HyDE variation operator,
known as “DE/target-to-perturbedy.s; /1", modifies the well-known DE/target-to-best/1 strategy [22]
perturbing the best individual (similar to the evolutionary PSO [26]). HyDE also integrate a self-adaptive
parameter mechanism (taken from the jDE (Self-Adaptive Differential Evolution algorithmm [27]).
The main operator of HyDE is defined as follows:

_ o 1 o = 2/ o
MG = ¥+ F; (€ - Xpest — Xi,g) + F{ (X1, — ¥r2,6) » (23)

where F! and F?, are scale factors in the range [0, 1] independent for each individual i, and € = N/ (F?,1)
is a random perturbation factor following a normal distribution with mean F? (random number in the
range [0, 1)) and standard deviation 1. F!, F? and F? are updated at each iteration with the same rule
of jDE algorithm (see Section IIL.B of [25]).

3.2.3. Hybrid Adaptive DE with Decay Function

HyDE-DF is an improved version of HyDE used for function optimization [28]. The main different
in its operation is the incorporation of a decay function that allows a transition in the iterative process
from the main operator of HyDE (Equation (23)) to the basic operator of DE (Equation (21)):

MG =X+ 0c - [F1 (€ Rpest — Xi6)] + F (X1, — X26) (24)

where J¢ is a decreasing function (from 1 — 0) that gradually mitigates the influence towards Xpegt,
and takes advantage of the inherent DE exploitation capabilities in later stages of the evolutionary
process. The decay factor at each generation G is calculated as:

bc=e"V%,  with a=(GEN-G)/GEN . (25)

¢ factor alleviate the premature convergence effect towards the best individual in the population
(i.e., due to the term 1—"1.1 (€ - Xpest — Xj g))- Such transition also allows an enhance exploration phase in
the early stages of evolution, and improves exploitation in later stages of the optimization. HyDE-DF
achieved third place (out of 36 algorithms) in the 100-digit challenge at CEC/GECCO 2019 [29].

3.2.4. PSO-LVS

PSO [20] belongs to the class of SI, in which particles (solutions to the problem) coordinate their
actions by modifying their position towards the optimum value. Particles are evaluated in the fitness
function and improve their position in each iteration using the following variation operator:

XjiG = XjiG-1+VjiG, (26)

VjiG = WG - 0j 61+ clg - rand() - (PP = x;;61) + 2 - rand () - (G**' = x;:61) (27)

where v;; ¢ represents the velocity vector, wg is the inertia weight, c1¢ and c2¢ are the are acceleration
coefficients for personal and global component, rand() is a uniformly distributed random number,
PlbeSt is the historical best position obtained by particle i while G is the population historical best
position obtained by the swarm.
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PSO-LVS (PSO with Local Vortex Search) (Equation (28)) is a variant of PSO developed by the
authors that includes a local search based on the VS algorithm. The movement of PSO-LVS is therefore
obtained by following equation:

XjiG = XjiG-1+ 05 if, rand() < PPSOc

= _ 1 _1¢z_ \Gy—1(z_ ;
p(m/pu,X) = T exp { (X —p)"X (X y)} otherwise,
where PPSO6 is a probability factor that switch between PSO standard equation and VS. Another difference
is that ¢ in Equation (29) is replaced by GP®st. In addition, PP50c¢ = 095 isa probability that decreases in
function of the number of generations. With this method, it is expected the execution of LVS (Local
Vortex Search) in later stages of the iterative process.

Xj;,c = (28)

3.2.5. Vortex Search

VS is classified as a single-solution-based metaheuristic, although it has an analogous framework
to the EAs selected for this study. In each iteration, N given number of neighbor solutions are generated
using a multivariate Gaussian distribution around the initial solution using:

p(i/ 1, 5) = —1<f—u>Gz-1<f—m} , 29)

1
e
where d represents the dimension, ¥ is the d x 1 vector of a random variable, y is the d x 1 vector of
sample mean (center), and X is the covariance matrix. The N solutions generated with this function are
evaluated in the fitness function, and the best solution replaces the initial single-solution. The radius
of search is gradually reduced during the iterative process, favoring exploitation capabilities in the
final iterations. This process is iterative repeated until a stop criterion is achieved [23].

4. Non-Parallel and Parallel-Based Approaches

In this paper, given the nature of the mathematical formulation, and the independence of
variables between households, we propose two approaches to use the EAs. In the first approach
illustrated in Figure 3, so-called non-parallel approach, all variables are combined in a single encoding
(explained in Section 3.1). Thus, the EAs use their variation operators over the whole set of variables,
until a stop criterion is achieved. This is the typical form in which an EA is applied to solve a
given problem.

Single population In the non-parallel approach, the EA optimizes
with all information all households at once
Household 1
Household 2 | % § m
. { - % EA ::
. 1 stol i v E
Household 1 | | i

Figure 3. The non-parallel approach optimizes all variables in one population. This is in line with the
typical mechanism of EAs.

However, the problem formulation assume that each household scheduling is independent
from each other, since their resources are individual and not shared among them. Thus, in the
second approach illustrated in Figure 4, variables are divided in groups corresponding to each
household. After that, multi-populations are generated and optimized independently by a chosen EA.
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The independent solutions are combined in a post-optimization stage, to calculate the total costs of all
households. While the solution returned by both approaches is equivalent, results show that breaking
the groups of variables into sets corresponding to each household in fact improves the performance of
the EAs. In addition, the parallel-based approach can make use of distributed computing, running in
parallel different EAs and improving convergence times.

Multi-population In the parallel-based approach, the EAs Solutions are
(one for each household) optimize each households independently combined
%
Household 1 K m
Household 2 % Solution 2
. )?Nsal
. 7
Household | EA Solution |
fNSal

Figure 4. The proposed parallel-based approach breaks the solution into parts corresponding to the
variables of each household. After that, each EA optimizes the variables and a post-optimization
procedure combines the solutions into a single solution.

5. Case Study

We design a case study to evaluate our framework considering households representing
prosumers complying with actual Portuguese legislation, which allows small producers (consumers
with local generation) to use their energy to satisfy their own load needs, and inject excess of energy to
the grid. We assume that households are equipped with PV panels with a maximum power capacity of
7.5 kW and a battery unit belonging to one of the four models showed in Table 1 (distributed randomly
within the households). In addition, households equipped with controllable loads can reduce 10% on
average of their total consumption.

Table 1. Battery models used for the case study, taken from [30].

Pchmax _ Pdchmax EBatnmx
Laboratory battery used in [20] 1.5kW  —1.5kW 12 kWh

Tesla Powerwall 5 kW —5 kW 13.5 kWh
Alpha Smile 287kW —287kW 145 kWh
Sonnen 3.3 kW —3.3kW 15 kWh

For consumption and PV generation, two sample power profiles were used to generate data of
residential households. The profiles were built using real open datasets available at PES ISS website
[31]. With these base profiles, up to 20 households’ data was generated using a randomized function
with a uniform distribution, £25% around the base profiles.

Figure 5 shows the retail tariffs and PV generation of the base profiles. We assume that households
have a power supply contract with a given retailer of 11 kW characterized by three different periods:
peak (0.33 EUR/kWh), intermediate (0.16 EUR/kWh), and off-peak (0.093 EUR/kWh). We also consider
a feed-in tariff of 0.095 EUR/kWh and a DR weight with a trend contrary to the buy from grid tariff,
i.e., promoting the use of dr when the price of energy is higher (these weights are applied to the second
term of Equation (1)). Tariffs are based on real values of a Portuguese retailer.

Figures 6 shows the aggregated consumption profiles of 20 households. Notice that the aggregated
profile correspond to a typical profile since data from households is generated following base profiles,
which in practice might not be the case. However, this paper is focused on the performance of
EAs rather than the impact in the diversity of consumers. Further studies can be done considering
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households with diverse characteristics and their impact in costs and DR curtailment. Figure 7 the
total aggregated consumption and generation of 20 households. Finally, input values of variables for

each household are summarized in Table 2

Table 2. Input variables of the problem. Values are applied to each household.

Parameter Variable Value Units
Maximum power injected to the grid Pﬁridmax 51 kW
Maximum power required from grid Pgridmi“ 1000 kW
Maximum battery capacity ng‘tmax 12,13.5,14.5,15 kW
Battery charge/discharge rate BletCh / BFftdCh 1.5,5,2.87,3.3 kWh
Initial state of charge of batteries E?{‘tma" ’ 0 kWh
PV maximum generation capacity Z-Iiv 7.5 kw
Total Periods T 96 -
Total of controllable loads L 3 -
Total of batteries B 1 -
Total of PV units - 1 -
Adjust parameter * At 4 -

* 1The factor of 4 is used since there are four 15-min periods in an hour.

0.40 0.5
Buy from grid Tariff (€/kWh) Sell to grid Tariff (€/kWh) DR weight
0.35 0.4
0.30 04
— 0.3
§ 0.25
= 0.3
@ 0.20
3 0.2
£ 015
= 02
0.10 01
0.05 0.1
0.00 0.0
OO ULOULOLOWLOULOULOLOLOWLOWLOWULOLWLOWOLW O W
2¥Nde¥NdeeINdeINdeeINdTINIdST NI N
OO 1 AN MM O ON~NVIDDOANNMSTUOLL OO O N M
O O OO0 OO0 OO0 000000 ™ ™ e e+ e e+ e o e+ o e+ = = N AN N AN N
Periods
Figure 5. Considered tariffs and PV generation base profile.
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Figure 6. Aggregated loads and total consumption.
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Figure 7. Aggregated consumption and production.
6. Results

We present the results of our methodology applied to the case study of Section 5. The experiments
were implemented using MATLAB2018a, in a computer with Intel Xeon(R) E5-2620v2@2.1 GHz
processor with 16GB of RAM running Windows 10. All the algorithms were run for 30 times (given the
stochastic nature of eas), so the reported results correspond to the average of those runs.

We perform four different experiments based on the number of households and the ea
optimization approach. Table 3 show the four cases, identified by the letter C1-C4, related to the
experiments. C1 is designed to assess the selected eas under the non-parallel approach considering two
households. C2 also considers two households but under the parallel-based approach. C3 and C4 assess
eas under non-parallel and parallel-based approaches respectively, but considering 20 households.

Table 3. Available equipment in houses for analyzing the impact of storage and dr.

Case Two Households 20 Households Non-Parallel Parallel-Based

C1 v’ v’
C2 v’ v’
C3 v’ v’
C4 v’ v’

The parameters for each tested ea were selected following the recommendation of previous
studies. Therefore, for de, the mutation factor and recombination constant (F and Cr) were set to
0.5 and 0.9 respectively [32]. hyde and HydE-DF [25] are a self-adaptive parameter versions but
initial values for F' and Cr where set to 0.5. For PSO-LVS the w inertia weight is linearly decreasing
with the number of iterations between 0.9 and 0.4 [33]. The constants ¢l is set 0.5 and ¢2 set 1.8.
For variables boundary control Bounce Back method is used. VS algorithm does not have any parameter
to configure [23]. To make a fair comparison, all the algorithms used a population of 20 initial solutions
and run for 4e3 iterations.

Figure 8 shows the convergence of the tested algorithms considering the two players and the
non-parallel and parallel-based approaches (C1 and C2 cases). It can seem that VS presents the best
convergence performance in both cases. HyDE-DF and HyDE show similar performance (in fact,
convergence lines are overlapped in Figure 8b, which indicates that the improvements incorporated in
HyDE-DF (that showed remarkable performance in the 100-digit challenge [29]) have almost no impact
solving the proposed problem. Overall, the parallel-based approach seems to slightly improve the
performance of all algorithms, without modifying the overall ranking of them. In fact, VS algorithm
obtains a similar final valor.
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Figure 8. Average convergence of the tested EA considering two players under: (a) non-parallel
approach (case C1); (b) parallel-based approach (case C2).

Figure 9 shows the results when increasing the number of players to 20 (C3 and C4 cases).
In this case, while the non-parallel approach degrades the convergence performance of all EAs,
the parallel-based approach keep the convergence performance and increasing only the final fitness
value related with the cost of more households (see for instance Figures 8b and 9b). In summary,
the parallel-based approach can help EAs in finding quality solutions for even large instances of
the problem. Also, notice that DE,,,q and PSO-LVS, apart from showing the worse performance,
switch their convergence behavior when the non-parallel approach is used and the number of players
increases (see for instance Figures 8a and 9a). That result shows evidence of their lack of robustness,
since their performance should not be affected by the increase of the number of players

140
rand
——PSO-LVS 130
HyDE-DF 120 H
——HyDE |
—VS 110
’ i
S 5 1 2
,é 10° Soof
= =
X: 4000
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Figure 9. Average convergence of the tested EA considering 20 players under: (a) non-parallel approach
(case C3); (b) parallel-based approach (case C4).

We also analyze the average fitness and associated costs/revenues obtained by the EAs in all the
cases. Tables 4-7 present the average values of fitness, time, daily bill and DR curtailment, as well
as the calculation of fitness percentage improvement, taking as reference the worst fitness value in
each case. Table 4 shows the average results obtained in the case C1. First thing to observe is that
VS presents the lower fitness value, but also the higher optimization time. However, all EAs present
similar optimization times (ranging from 1.15 to 1.5 min). Regarding costs/revenues, it is interesting
to note that despite VS obtains the best fitness value, its daily costs (Daily Bill column in the table)
is slightly higher than that obtained by DE. This is explained by column DR curtailment, which
shows that DE activates DR curtailment in a higher degree than the other algorithms. While this is
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beneficial for the energy bill, it also represents a higher number of interruption of loads during the day,
which can impact user comfort in some degree. Notice that DR curtailment in the formulation is not a
monetary cost, but rather a weight associated with the interruption of loads. Future work can study
the multi-objective nature of the formulation to optimize both terms in Equation (1) simultaneously.
Finally, VS achieved the best performance with an improvement of around 30 % compared to PSO
(worst algorithm for case C1).

Table 5 presents the results corresponding to case C2. It can seem that the general trends,
as reported in case C1 results, are followed by the EAs when low number of households are considered.
Mean Fitness and overall daily bills are slightly improved. Optimization times are equivalent, but
it should be taken into account that column Time reflects the sum of the independent optimization
of both households. Such optimizations can be done in parallel since are independent, reducing the
optimization time by half, while obtaining better results regarding fitness and daily bills. In case C2,
VS again achieved the best performance with an improvement of around 20 % compared to PSO (worst
algorithm for case C2).

Table 4. Case C1: Fitness value and associated costs considering two households and non-parallel EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) (€) #€) Costs (€) Bill* (€) Bill ** (€) (%)
DE 10.69 046 1.16 9.29 —2.75 1.02 7.56 226.94 1.68 4.52
PSO 11.19 044 114 1029 211 1.02 9.21 276.25 0.75 0.00
HyDE 9.94 078 143 1013 —1.21 1.02 9.95 298.43 0.00 11.23
HyDE-DF  9.59 0.83 142 9.78 —1.18 1.02 9.62 288.74 0.00 1435
\E 7.77 0.08 1.48 9.09 —2.43 1.02 7.69 230.65 0.08 30.57
* Daily bills are calculated as buy Costs — sell Revenues + fixed Costs. ** Monthly bill on average
considering 30 days.

Table 5. Case C2: Fitness value and associated costs considering two households and parallel-based EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) (€) #€) Costs (€) Bill * (€) Bill ** (€) (%)
DE 9.30 0.34 1.03 9.34 —2.80 1.02 7.56 226.84 0.54 203
PSO 9.49 022 1.05 9.79 —2.04 1.02 8.77 263.21 0.28 0.00
HyDE 8.64 041 131 9.66 -1.97 1.02 8.72 261.55 0.00 897
HyDE-DF  8.67 0.46 1.30 9.53 —1.67 1.02 8.88 266.46 0.00 8.68
VS 7.68 0.03 1.36 9.27 —2.62 1.02 7.67 230.18 0.00 19.06
* Daily bills are calculated as buy Costs — sell Revenues + fixed Costs. ** Monthly bill on average
considering 30 days.

When the number of households increases, different conclusions are achieved. Tables 6 and 7
present the results corresponding to cases C3 and C4. The first thing to remark are the high fitness value
reported by DE and PSO-LVS in case C3. Such high values are associated with the inability of both
algorithms to find feasible solutions (i.e., the solutions include penalties explained in Equation (19)).
Therefore, it is confirmed that these two algorithms are very sensitive to the increase in the number of
households when the non-parallel approach is used. Such situation is corrected by the parallel-based
approach, as Table 7 shows. In fact, the advantage of using this approach is stressed concerning fitness
and daily bill values when the number of households is increased. Notice that since optimization times
in the parallel-based approach correspond to the sum of independent optimizations, increasing the
number of households affect notably the optimization times (see column Time of Table 7). However,
such independent optimization can be performed in parallel reducing the time considerable depending
the available parallel computing capacity. For instance, in MATLAB using four workers in the parallel
pool (four parallel optimizations), the optimization time can be reduced by a factor of 5. Overall, VS
achieved the best performance in both cases, with an improvement of around 22% compared to HyDE
in case 3 (worst algorithm without considering DE and PSO due to reported infeasible solutions) and
around 25% in case C4 compared to PSO.
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Table 6. Case C3: Fitness value and associated costs considering 20 households and non-parallel EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) (€) (5] Costs (€) Bill*(€) Bill** (€) (%)
DE 467293 236242 3.98 104.67 —35.33 10.24 79.57 2387.22 431 -
PSO 626.70 60242  3.70 14750 —-19.79 10.24 137.94 4138.31 203 -
HyDE 14945  3.86 493 15040 —11.17 10.24 149.47 4484.04 0.02 0.00
HyDE-DF 14858  4.26 493 150.59 —11.99 10.24 148.84 4465.34 0.03 0.58
VS 115.69  3.95 5.51 83.17 —33.48 10.24 59.93 1797.81 257 2259
* Daily bills are calculated as Buy costs — Sell Revenues + Fixed Costs. ** Monthly bill on average
considering 30 days.

Table 7. Case C4: Fitness value and associated costs considering 20 households and parallel-based EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) (€) €) Costs (€) Bill*(€) Bill** (€) (%)

DE 8272 224 9.69 86.54 —31.95 10.24 64.83 1944.86 0.82 236
PSO 84.72 090 9.60 9232 —25.01 10.24 77.55 2326.41 0.39 0.00
HyDE 7783 240 1187 89.79 —21.38 10.24 78.65 2359.42 0.02 813
HyDE-DF 76.77 224 1177 8921 —20.02 10.24 7943 2382.86 0.00 9.38
VS 6319 026 1231 8429 —31.53 10.24 63.00 1889.92 0.01 2541
* Daily bills are calculated as Buy costs — Sell Revenues + Fixed Costs. ** Monthly bill on average considering

30 days.

7. Conclusions

In this paper, a different EAs are used to solve an optimization problem considering
households with PV-battery systems and DR. Taking advantage of the independence of variables
between households, two optimization approaches, non-parallel and parallel-based, are proposed.
Results showed that EAs using the parallel-based approach provide solutions with better fitness value
when the number of households increases. It was demonstrated that the direct application of an
EA to larger instances of the problem (the non-parallel approach) has poor convergence capabilities
(despite being very efficient when applied to one or two households). On the other hand, the proposed
parallel-based approach showed excelled performance even when increasing the number of households.
It is important to notice that the parallel-based approach is only valid for a framework as the one
assumed in this work (which is actually a very likely real scenario due to the possible resistance of
households to share data or equipment between peers), so changing such conditions might require a
hybrid non-parallel and parallel approach. Overall, VS algorithm overcomes other tested EAs when
using both optimization approaches. In fact, improvements of 30.57 % for case C1, 19.06 % for case C2,
22.59 % for case C3, and 25.41 % for case C4, were achieved with VS (best performance) compared to
PSO (worst performance). Another advantage of the parallel-based approach is related to the possibility
of using parallel computing to reduce optimization times while obtaining solutions with good quality.
From the practical point of view, in this work we have envisaged the involvement of an Energy Service
Provider that performs the optimization of households equipped with distributed energy resources
(like PV generation, storage, and demand response) and the needed control devices. In this way, several
business models can be explored by the Energy Service Provider within this framework. For instance,
the service provider can charge a fee or commission from the total bill reduction achieved by the
households, or receive incentives from upper level actors (such as the DSO) for the reduction of peak
demand through DR. These two options, and other business model possibilities exploring the use
of available infrastructure for practical implementations can be explored in future work. Another
line of research for future work is related to the mathematical model. In this work, energy bill and
DRdr curtailment are combined into a single objective formulation despite being terms that can be
optimized in function of user preferences. Thus, multi-objective optimization versions of EAs can
be employed to find Pareto optimal solutions. Moreover, a relation between DR curtailment and
user comfort was not explicitly defined in this study, so another line of research can be followed
concerning the modelling of user comfort. Finally, the practical implementation of EAs is also worth
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to be explored in future works. The parallel-based approach uses a multi-population similar to that
used by coevolutionary algorithms, so testing those kinds of algorithms and their performance in this
problem since a good research avenue. In addition, in this study the parallel-based approach was
implemented sequentially, so optimization times reflect the sum of all independent optimizations.
In a future study, the implementation of an actual parallel platform can be proposed to handle larger
instances of the problem and assess the reaches and scalability of the approach.
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Abbreviations

The following abbreviations are used in this manuscript:

DE Differential Evolution

DG Distributed generator

DR Demand Response

EA Evolutionary Algorithms

EC Evolutionary Computation

EU European Union

HyDE Hybrid Differential Evolution

HyDE-DF  HyDE with Decay function

jDE Self-Adaptive Differential Evolution

LVS Local Vortex Search

MILP Mixed-integer Linear Programming

MINLP Mixed-integer Non-linear Programming

OF Objective Function

PLC Programmable Logic Controller

Pop Population

PSO Particle Swarm Optimization

PSO-LVS  PSO with Local Vortex Search

PV Photovoltaic

SI Swarm Intelligence

VS Vortex Search

Nomenclature

Indices

l Controllable load

i Household

t Period

Parameters

Phoad Consumption from non-controllable loads

Cgrid fn Cost of buying energy

PZPtV Energy generated by PV panels.
zctl}t Energy load cuts

Fix Cost; Fixed tariff costs

Pﬁridmin Lower bond for buying energy

PftatdCh Lower bound for discharge the battery

Crid Out Revenue of selling energy

Piétriclmin Lower bond for buying energy
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P}?f“dCh Lower bound for discharge the battery
Cﬁrid Out  Revenue of selling energy

At Time adjust parameter

L Total of controllable loads

I Total of households

T Total of periods

EPatmax Upper bound battery energy level

Pi]étatCh Upper bound for charge the battery
Pgridmax Upper bound for selling energy

thult Weight of energy cuts
Variables
Xictult Binary decision variables for DR action
PIBtat Energy charge/discharge of batteries
Pgnd Energy flow
PI.Gtrid Out  Energy flow from household to the grid
Pgrid In Energy flow from grid to the household
EPat State of the battery
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Resumen

La actual estrategia energética de la Union Europea situa al usuario final como
un participante clave en los mercados eléctricos. La Unidon Europea ha fomentado
la creacion de comunidades energéticas para aumentar la penetracion de las
energias renovables y reducir el coste total de la cadena energética. Las
comunidades de energia estdn compuestas principalmente por prosumidores,
que pueden ser hogares con equipos de produccion de energia de tamafo
pequenio, como paneles fotovoltaicos en la azotea. El mercado eléctrico local es
un concepto emergente que permite la participacion activa del usuario final en
los mercados eléctricos y es especialmente interesante cuando existen
comunidades energéticas. Este articulo propone un modelo de optimizacion para
programar transacciones peer-to-peer (punto a punto) a través del mercado
eléctrico local, transacciones de red en el mercado minorista y gestion de baterias
considerando la produccion fotovoltaica de los hogares. Los prosumidores tienen
la posibilidad de realizar transacciones de energia con el comercializador o con
otros consumidores de su comunidad. El problema se modela usando
programacion lineal entera mixta, que contiene variables binarias y continuas. Se
estudian cuatro escenarios y se analiza el impacto de los sistemas de
almacenamiento de baterias y las transacciones entre pares. También se analiz6
el tiempo de ejecucion del modelo propuesto segin el nimero de prosumidores
involucrados (3, 5, 10, 15 o0 20) en la optimizacion. Los resultados sugieren que el
uso de un sistema de almacenamiento de bateria en la comunidad energética
puede conducir a un ahorro de energia del 11 al 13 %. Ademas, combinar el uso
de transacciones peer-to-peer y sistemas de almacenamiento de energia puede
generar ahorros energéticos de hasta un 25 % en los costos generales de los

miembros de la comunidad.
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ABSTRACT The current energy strategy of the European Union puts the end-user as a key participant in elec-
tricity markets. The creation of energy communities has been encouraged by the European Union to increase
the penetration of renewable energy and reduce the overall cost of the energy chain. Energy communities are
mostly composed of prosumers, which may be households with small-size energy production equipment such
as rooftop photovoltaic panels. The local electricity market is an emerging concept that enables the active
participation of end-user in the electricity markets and is especially interesting when energy communities are
in place. This paper proposes an optimization model to schedule peer-to-peer transactions via local electricity
market, grid transactions in retail market, and battery management considering the photovoltaic production
of households. Prosumers have the possibility of transacting energy with the retailer or with other consumers
in their community. The problem is modeled using mixed-integer linear programming, containing binary and
continuous variables. Four scenarios are studied, and the impact of battery storage systems and peer-to-peer
transactions is analyzed. The proposed model execution time according to the number of prosumers involved
(3, 5, 10, 15, or 20) in the optimization is analyzed. The results suggest that using a battery storage system
in the energy community can lead to energy savings of 11-13%. Besides, combining the use of peer-to-peer
transactions and energy storage systems can potentially provide energy savings of up to 25% in the overall
costs of the community members.

INDEX TERMS Local electricity market, local energy community, optimization, peer-to-peer transactions,
prosumers.

I. INTRODUCTION

Distributed and renewable generation has emerged as a solu-
tion for the depletion of fossil fuel energy and for meet-
ing energy sustainability targets, namely the greenhouse
gas emissions limits imposed in some areas. For example,
the European Union (EU) is targeting a reduction of at

The associate editor coordinating the review of this manuscript and
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least 40% of greenhouse gas emissions by 2030, an incre-
ment of at least 32% share for renewable energy, and an
improvement of at least 32.5% in energy efficiency, tak-
ing as basis 1990 levels [1]. In 2018, renewable genera-
tion accounted for 18.9% of the energy consumed in the
EU [2], which already represents about 50% of the imposed
levels. At the residential level, households can install smart
devices and distributed energy resources (DER) such as pho-
tovoltaic (PV) modules, small scale wind turbines, and energy
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storage including plug-in electric vehicles (EV), to increase
energy efficiency and reduce energy bills [3]. However,
due to the increasing maturity of renewable energy produc-
tion capabilities, the feed-in tariff which incentivized local
generation sales to the grid is being reduced. In consequence,
the reduction of feed-in tariffs may impact the motivation
of consumers, slowing down the penetration of renew-
able sources and ultimately, failing in achieving the agreed
targets.

Due to feed-in tariff reduction, in several locations, it is
now more attractive for households to use generation sur-
plus for self-consumption than selling to the grid [4]. Self-
consumption is different among individuals depending on
daily consumption profiles, which can vary with the habits
and with the used electrical equipment.

The European Commission Strategic Energy Technology
Plan [5] states that energy consumers are envisioned at the
center of the future energy systems and shall be encouraged to
install energy production sources. Peer-to-peer (P2P) energy
trading emerges as a promising solution to empower the
role of the end-users in energy systems [6]. Basically, P2P
energy trading is a recent technology of energy management
mechanism in smart grids [6]. In the scope of an energy
community, P2P energy trading enables flexible energy trades
between peers. In other words, in a P2P market, the excess
of energy generation coming from many small-scale DERs
is traded among local customers [7]. The prosumers can
achieve a “win-win” situation by searching for a satisfactory
trading price and by reaching an agreement in a seamless
way. The marginal price of P2P electricity transactions should
be cheaper than the retailer tariff and higher than the feed-
in tariff (i.e., the price of electricity export to the grid) so
that P2P can provide savings for buyers and profit for sell-
ers [8]. The work in [9] highlights potential benefits of P2P
energy trading: the maximization of renewable energy usage,
the reduction of electricity cost, the shaving of peak load,
the empowerment of the prosumers, and the minimization of
network operation and investment costs. Although the poten-
tial benefits are fairly significant, research on P2P energy
trading is still at an early stage and there is no consensus
on what type of data sharing and processing infrastructure is
more efficient and yields to the best results [3]. It is expected
to reach an investment of USD 25 billion in microgrid markets
by 2025 in USA [10], which will inevitably lead to the devel-
opment of P2P market applications to empower prosumers
and fulfill the niche market void.

In this article, a P2P market structure is proposed to allow
energy transactions between users at a price that provides
better benefits than current feed-in tariffs. In this way, con-
sumers become active participants of the local market, having
the possibility to take advantage of their surplus electricity
without being limited by retailers.

Figure 1 presents the trading architecture proposed for a
local community with N prosumers considering a conven-
tional retail electricity market and a P2P market between the
community members.
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FIGURE 1. Proposed methodology.

As can be seen in Figure 1, we propose a local community
scheduling considering the possibility of transacting energy
with the retailer and in a market within the community with
P2P transactions. The local community is composed by pro-
sumers, each of them with a PV-battery system which is
also scheduled in the optimization process. The community
members have two different possibilities, namely, buy/sell
electricity to the grid or transact energy with other community
members. The optimization is used to determine the set of
prosumers in each period that performed P2P transactions.

As the main contributions of this work, we highlight five
aspects:

« An optimization model that determines the best P2P
energy transactions in a local energy community with
prosumers equipped with PV generation and energy
storage systems;

¢ A deterministic mixed-integer linear programming
(MILP) method, implemented in TOMLAB,! to deter-
mine the decision-making;

o The model includes realistic constraints, customer load
profiles, PV systems, battery energy storage systems and
market transactions constraints. Real Portuguese tariffs
are used to generate realistic case studies;

o The presented model considers the active involvement
of households in the electricity markets, in line with the
goals of governmental institutions to reduce energy costs
and carbon emissions;

o The proposed methodology considers an optimal solu-
tion combining demand side management (DSM) and
P2P transactions integrated into the optimization pro-
cess, characteristic that, to the best of the authors’
knowledge and according to the analysis made by the
authors in section II, is not proposed in the current
literature.

The rest of this paper is divided into six sections:
Section 2 presents the background on the DSM and P2P
models. Section 3 shows the proposed methodology and the

ITOMLAB is a language for solving optimization problems considering
MATLAB language (https://tomopt.com/tomlaby/).
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mathematical formulation developed in this research work.
Section 4 describes the case study used to test the proposed
methodology. Section 5 discusses and analyzes the results.
Finally, Section 6 presents the conclusion of this work and
provides future research directions.

Il. BACKGROUND

This section presents a background on the energy costs opti-
mization in smart grids. DSM applications in smart grids can
be considered as one of the most innovative steps to minimize
the operation costs [11]-[13]. These applications consider
the optimization of house consumption by rescheduling the
loads to periods when the electricity price is lower [14], [15].
With the installations of PV generators in residential houses
and the development of load controlled systems for demand
response, more comprehensive and complex approaches are
emerging [16]. In previous referred works, authors consider
the rescheduling of controllable loads and the use of PV
generation and battery storage systems. A similar work is
presented in [17], where authors reduce the computational
effort by adopting evolutionary computation algorithms to
solve the optimization problem. A different technique was
implemented in [18] using case-based reasoning based on
historical data to determine the reduction value for a demand
response application. More recently, works that address the
energy commerce between groups within smart grids have
been proposed. In [19], a trading environment between neigh-
bor microgrids was presented. In the case study, a smart
grid with three microgrids was considered, and apart from
the inter-micro-network market, six different markets were
analyzed for trading electricity.

Energy transaction between households has emerged in
recent years as a promising trend that should be adapted
to minimize the costs of the electric bill. Reference [20]
introduces a local market into the simulation. The prob-
lem was solved using a two-stage stochastic programming
approach. The authors optimize the electricity costs of all
microgrids members, allowing local transactions between
microgrids and the possibility of buying energy into the
wholesale market. Publication [21] determines the best port-
folio option for the electricity transaction, considering the
possibility of transacting electricity in local electricity mar-
kets. The authors in [22] consider an energy sharing approach
between prosumers. The problem is solved considering a
bi-level programming method using a function called demand
and supply ratio. A Mixed Integer Non-linear Programming
(MINLP) is used in work [23] to determine the P2P transac-
tion considering 2 households and a horizon time of 8 periods
(1h each). The influence of battery storage systems in P2P
trading within a microgrid was explored in reference [24].
Works [22]-[24] consider the problem of local electricity
transaction but do not consider the coordination of DSM
with local transaction scheduling. In other words, these works
cannot provide a coordinate solution of the local transaction
to take the maximum benefits of households loads and storage
systems. DSM approaches are used to optimize energy costs
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and are typically formulated as linear or non-linear prob-
lems [3]. Linear optimization is usually used to solve short
periods of time and usually have a very short resolution time
when compared with non-linear optimizations resolutions.
Researchers to reduce the computation time burden of non-
linear models are using approximate methods to reduce the
resolution time [25]-[27].

TABLE 1 presents a comparison between works published
considering P2P energy trading within an energy community.
The proposed work is also included in TABLE 1 highlighting
its contributions concerning the current literature.

A similar method to the one presented in this work was
proposed in [26]; authors used a distributed approach to
implement a DSM system combined with P2P trading. Due
to the use of an approximate solution approach the work
in [26] does not guarantee optimal solutions to the prob-
lem. In contrast, by using a deterministic solution approach
(MILP), our method provides an optimal solution considering
up to 20 players combining the DSM with P2P transac-
tions. Typically, optimization methods that determine local
market transaction using centralised approaches consider a
small number of users involved due to the computational
burden [22]-[24]. On contrast, methods that consider a
large number of users use iterative process [3] or deter-
mine the local transaction after the DSM optimization is
finished [8], [25].

The current literature reflects a lack of deterministic solu-
tion methods that include local electricity transactions con-
sidering more than four players. Thus, this work presents a
deterministic method that can solve the problem under a case
study considering up to 20 players. Our method also considers
the coordination between DSM and local transactions, unlike
most of the current approaches.

Ill. MATHEMATICAL FORMULATION

In this section, the mathematical formulation used to obtain
the optimal social welfare costs of the community is fully
presented. Equation (1) represents the objective function that
minimizes the total cost of the energy community. Indeed,
the objective function is equivalent to the social welfare of
the community members, minimizing their energy costs.

Nt Ni

L buyGrid _ pbuy Grid 1
minimize : obf = Z Z (nt ';" Grid Pt'? Gri ) X A7
t=1 i=1

Nt Ni 1
_ Z Z (”f?” Grid Pfei” Grid) w
4 5 s At
t=1 i=1
(H

where ¢ represents the period, i represents the prosumer, Nt
the total number of periods, Ni the total number of prosumers,

lb, ';y Grid represents the price of. buying electricity from the
grid (time-of-use tariff), be? Grid
sell Grid pepresents the

electricity purchased from the grid, 7
selling price of electricity to the grid (feed-in tariff) and
Pffill Grid represents the amount of electricity sold to the grid.

represents the amount of
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TABLE 1. P2P energy trading works comparison.

Reference  Year Method Solution type

Coordinate DSM with
local transactions

Number of users* involved
in the optimization?

Method to determine local
marker transactions.

[22] 2017  Bi-Level Programming Approximate  No Included in the 5
optimization
[23] 2017 Mixed Integer Non-linear ~ Optimal No Included in the 2
Programming optimization
[24] 2018  Linear Programming Optimal No Included in the 4
optimisation
[25] 2018  Constrained Non-linear Approximate  Yes After the optimization 3,100
Programming
[3] 2019  Bi-Linear Programming Near Yes Iterative process (ECO- 40
Optimal Trade algorithm)
[26] 2019  Alternating Direction Approximate  Yes Included in the 10
Method of Multipliers optimization
[8] 2020 Mixed-integer Linear Optimal No After optimization using 30
Programming coalition game theory
Proposed 2020 Mixed-integer linear Optimal Yes Included in the 3,5,10,15,20
Programming optimization

*users can be considered prosumers, consumers, and small producer.

The term At is used to adjust the tariff price to the optimiza-
tion time intervals (e.g., 15 min). Equation (2) represents the
power balance for each prosumer.

Pgen+Pbu) Grid —f—PdLh + Z Pbuy.pr

t,i,j
J=lj#
:Pi?iad —I—P‘;iﬂGrid Pch + Z P;ell’ljp2p
J=Lj#
Vie Ni, YjeNj, VieNt )

where Pfi." represents the generated power, Pf‘lh is the dis-
charged power of the battery, f)]p 2 corresponds to the
electricity purchased in the P2P market, Pl"“d is the load, Pf}i

is the power charged by the battery, PS P > corresponds to
the electricity sold in the P2P market, J 1s the prosumer and
Nj the total numbers of prosumers. The sum of variable szfj
over the index j gives the total value of each i buy in P2P
transactions for each ¢ index, whereas the sum in i index gives
the total value of each j sale. Equatlon (3) and (4) represent
the maximum limits of variables P,"; buy Grid 4 nd pyellGrid,

buy Grid max buy Grig . buy Grid
Py <P x Bin,';
Vie Ni, VteNt 3)
Pts‘elll Grid < P;ﬂ;lx sell grig < Bll/lfelll Grid
Vie Ni, VtelNt 4)

max buy Grig

where P, ; represents the maximum amount of elec-

tricity to buy from the grid, Bmh T binary variable

that enables purchasing electrlclty from the grid if it is 1,
P;"la“ellg”g represents the maximum amount of electricity
sold to the grid, and Bm‘e” Grid is a binary variable that
enables selling electricity to the grid if it is 1. Equation (5)

is the constraint applied to the binary variables above.

Bin)? " 4 Bin!'Od < 1, VieNi, VieNt (5
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Equation (5) restricts the transactions of electricity to either
buy or sell energy in the same period for the same prosumer.
Equatrons (6) and (7) represent the maximum limits of vari-

able Pmax buy p2p and Pmax sellpr

t,i,j
buy p2p ax buy p2p buy p2p
P = P x Bin, i,
Vi£jeNi, Vj#ieNj VteNt (6)
sell p2p ax sell p2p . sell p2p
LAY i Biny'; ;
Vi#jeNi, Vj#ieNj YteNt (7)
2 . .
where P:"f; buyp2p corresponds to the maximum limit for
2 .
P2P purchase transactions, ant l‘]p P corresponds to a binary

variable that enables purchasing electricity from j to i in P2P

mode, P sell p2p corresponds to the maximum limit for P2P

t,i,j
1l p2,
electricity sale transactions, and anye P corresponds to a

binary variable that enables selling electricity from i to j in
P2P mode. Both indices i # j and j # i represent prosumers,
and must be different since i = j or j = i would represent
a prosumer negotiating with himself. Equations (8) and (9)
are implemented to restrict actions related to the transactions
with the grid and P2P market.

Bin"? " 1 Z Bin)!?® <1 VieNi, VieNt  (8)
J=Lj#i

Nj
S BinPP 4 Binf O <1 VieNi, YieNt  (9)
=Lt

Equation (8) imposes that it is not allowed to buy electricity
from the grid to sell it in P2P mode, whereas equation (9)
imposes that it is not possible to buy electricity in P2P
mode to sell to the grid. The above restrictions were imple-
mented assuming that it is always more expensive to buy/sell
electricity from the grid than in P2P trading. Equation (10)
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corresponds to the balance of the P2P trading market.

Nj Ni
buy p2p sell p2p
2. 2 Pl Z ZPW Vi € Ni
J=1jA =11 J=LjF i=1i#]
(10)

Equation (10) imposes that the total amount of electricity
purchased in P2P mode should be equal to the total amount
of electricity sold in the same P2P mode. Equations (11) and
(12) are applied to model the P2P market transactions.

Ni Nj
buy p2p . sell p2p
E Bin, ; T E Bmm’j <2 VteNt an
=1 i#j =Lt

Ni
Z Bin)?P"+ Y Binl'T¥ <2 vieNt  (12)
J=Lj#i i=Li#j
Equations (11) and (12) ensure that each prosumer trade
with another prosumer in each period. The model does not
allow that one prosumer transacts electricity with two or more
prosumers.
Equations (13) and (14) represent the limits for charge and
discharge of the batteries.

P& < Pt Bint, Vie Ni, ¥t e Nt (13)

x Bin",  VieNi, Vt e Nt (14)

dch maxdch
P = Pt,i 1,0

where P ch represents the maximum charge power, Binfﬁ-
is the binary variable associated with the charging state,
P deh represents the maximum discharge power, and Bdeh
represents the binary variable associated with the dlscharge
option. Equation (15) represents the limit imposed on the
charging/discharging state. With equation (15), the charge
and discharge actions are controlled so that they do not occur
simultaneously.

Bin{". + Bin" < 1, VieNi, ¥t € Nt (15)
Equation (16) presents the state of the batteries in each

period.

EP =EP 4P xnth — P VieNi, VteNt

1
n;lch

(16)
where EB‘” represents the state of the battery, EB_“{ i repre-
sents the state of the battery in period t — 1, nf " corresponds
to the efficiency of charge and ndCh to the efficiency of
discharge. Equations (17) - (29) present the upper and lower
bounds for the variables of the problem.

0 < PO < preb Gl i e Ni, vie Nt (17)
0< Pii-” Crid < praxsellGrid i e Ni, Vi e Nt (18)
0 < P < praxdch i e Ni, Vi € Nt (19)
0 < P < PM*h VieNi, Vt € Nt (20)
0 < Pflfyjﬂp P:"la; buy p2p

Vi#jeNi, Vj#ieNj VieNt 21)
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sell p2p max sell p2p

0< Pt ij = Pt’i’j

Vi#£jeNi, Vj#ieNj VteNt (22)
0 < EP" < El"™P4 Vi€ Ni, Vt € Nt (23)
0 < B <1, VieNi, Vi e Nt 24)
0< Bmfj” Grid < 1 Vie Ni, Vt € Nt (25)
0 < Bin, 7% <1

Vi#£jeNi, Vj#ieNj VteNt (26)
0 < Bin){? <1

Vi#£jeNi, Vj#ieNj VieNt (27)
0 < Bin®" <1, VieNi, Vt e Nt (28)
0 < Bin{ <1, VieNi, Vt € Nt (29)

where E7{ Bat represents the maximum battery capacity.
Equatlons (17) (23) bound the continuous variables, while
equations (24) - (29) bound binary variables.

The total energy bill (EB) for each prosumer in the P2P
market can be calculated according to equation IV.

Nt
 Gri i 1
EB; = § (n,tb'f) Grid % PbM.yGrld) w« —
N 1,1 At

t=1

_ Z( sell Grid Psell Grzd) L
At

Nt
bu72 1
p2p yp<p L
CX Y ()

t=1 j=1,j#i
Nt Nj 1
— Z Z < tpl2p X Psellﬂp) x — + FixCost;
J 1,0 ¢
t=1 j=1j#i
Vi € Ni, (30)
where np 2P ; represents the price in the P2P market for the

transactlon between prosumer i and prosumer j, and Fix Cost;
is the fixed cost that each prosumer must pay to use the
network.

EB contains five terms, as equation IV shows. The first
term represents the costs of purchasing electricity from the
grid; the second term is the revenue of selling electricity to the
grid; the third term corresponds to the costs of buying elec-
tricity in P2P market; the fourth term represents the revenues
of selling electricity in the P2P market and, finally; the fifth
term corresponds to fixed costs paid by each prosumer. The
fixed costs are paid directly to the retailer, and are defined
in the energy supply contract established between retailer
and prosumer. In fact, the sum of the EB of each prosumer
without the fixed costs represents the objective function of
equation (1). The costs and revenues in the P2P market are
not implemented in the objective function since the sum of
costs/profits over all player is 0.

To obtain the P2P price for the transactions, we chose the
mid-market rate method presented in [4]. The method of price
determination assumes that the exchange price is the average
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FIGURE 2. Average values of electricity grid prices in the local energy
community.

of the electricity buying price and selling price:
buy Grid

p2p nt,i
tij —

sell Grid
+ 7

b4 )
2

Vi € Ni, ¥t € Nt 31

P2

When a P2P transaction is executed, the price 7, i"} is deter-

mined by the seller (7).

IV. CASE STUDY

This section presents a case study to illustrate the use of the
methodology proposed in section II. A local energy commu-
nity with 10 prosumers is considered to presents the main
results. To test the scalability of the approach, simulations
were executed considering up to 20 prosumers. Each domes-
tic prosumer is equipped with a PV-battery system installed in
the household. Figure 2 presents the mean value of electricity
prices used to buy and sell electricity within the energy
community.

Itis assumed that all consumers have contracted a bi-hourly
tariff from a retailer. The maximum limit for electricity
purchase from the grid is specified in the contract between
retailer and prosumers. The prosumer is free to choose this
limit but should be considered that higher limits have associ-
ated more expensive fixed costs. As can be seen in Figure 2,
the buying price correspond to the average price of the ten
prosumers. This price is always higher than the selling price.
The selling price considered for this case study corresponds to
the feed-in tariff defined by Portuguese legislation.” Selling
electricity to the main grid is modelled as a constant price
(see Figure 1). Each prosumer complying with the current
Portuguese legislation, which allows small producers (con-
sumers with local generation) to use their energy to satisfy
their own load needs, can inject their surplus of energy to the
grid.

2Defined in Portaria n.° 115/2019 of Didrio da Republica n.°
74/2019, Série 1 de 2019-04-15, https://data.dre.pt/eli/port/115/2019/
04/15/p/dre/pt/html
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FIGURE 3. Average of consumption and generation in the local energy
community.

Figure 3 presents the average consumption and generation
profiles.

Figure 3 shows that the average consumption profile
presents one peak in the morning (period 8) and another in the
afternoon (period 15-17). The generation profile is a classic
PV profile with a generation peak near to period 14h. A total
of 54 kWh capacity for PV production and 128 kWh of capac-
ity for the battery systems is installed. Each prosumer has a
contract with a retailer for a maximum power supply. In the
case study, one prosumer has a contract of 3.45 kVA, one
4.6 kVA, two 5.75 kVA, four 10.75 kVA and two 13.8 kVA.
The prosumers in the case study pay an average of 0.49 €of
fixed costs per day; it is assumed that the retailer has defined
these costs. TABLE 2 presents the input variables used in the
simulations.

For some parameters two different values appeared in
TABLE 2, these correspond to the minimum and maximum
values. The input parameters are different for each case study
in order to consider prosumers with diverse characteristics.

V. RESULTS

This section presents and discusses the results of the case
study presented in Section IV. The experiments were imple-
mented using MATLAB2018a, in a computer with Intel
Xeon(R) E5-2620v2@2.1 GHz processor with 16GB of
RAM running Windows 10. TOMLAB optimization plat-
form with the solver CPLEX has been used. Four different
scenarios are simulated and compared. The scenarios are
defined considering the battery usage and the possibility of
transacting energy with P2P. The set of scenarios is:

e Scenario A — scenario without batteries and without P2P
transactions. This scenario is considered the base case;

e Scenario B — scenario with batteries and without P2P
transaction;

3EDP  comercial website:

tarifarios/.

https://www.edp.pt/particulares/energia/
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TABLE 2. input parameters of the problem.

TABLE 3. Results considering 10 prosumers.

Parameters Designation Value Units
Nt Number of periods 96 -
Ni, Nj Number of prosumers 10 -
nfz‘y Grid Price for buying electricity ~ 0.1886 — €/kWh
’ from the grid* 0.1008
et erid Price for selling electricity ~ 0.095 €/kWh
to the grid
At Multiplicative time factor 4 -
ﬂf,iz,f Prices for p2p transactions 0.1418 — €/kWh
0.0979
P buyGrig  Limit for buying electricity ~ 3.45—13.8 kWh
' from grid
prexsettorig Limit for selling electricity ~ 1.725-6.9 kWh
' to grid
pmaxbuyp2p [ imit for buying electricity ~ 3.45-13.8 kWh
tij .
in P2P market

Il p2p
prmax se
tij

Limit for selling electricity ~ 3.45—13.8 kWh

in P2P market

P ch Limit for battery charge 2-8 kWh
ppox dch Limit for battery discharge ~ 28 kWh
Efhox Bat Maximum capacity of the 5-20 kWh
battery
Fix Cost; Fixed costs* 0.7267 — €/day
0.240904
neh Battery charge efficiency 0.9 %
ndeh Battery discharge 0.9 %

efficiency

*values obtained from a P retailer EDP

o Scenario C — scenario without batteries but considering
P2P transactions;

e Scenario D — scenario with batteries and with P2P
transactions.

The detailed results are presented for a simulation with 10
prosumers. In the end of this section, we have included
simulations varying the number of prosumers to analyze the
scalability of our approach.

TABLE 3 presents the results of the tested scenarios
for 10 prosumers for one day of operation (96 periods of
15-minutes each).

The total costs presented in TABLE 3 correspond to the
evaluation of objective function in equation (1). Also notice
that consumption and production are considered the same in
the four scenarios.

Comparing the scenarios without P2P transactions
(Scenario A and Scenario B), Scenario B presents a cost
reduction of 4.23 €, i.e. 11%, in comparison with Scenario A.
When batteries are considered, there is less energy sold to the
grid. This indicates that it is more benefic for prosumers to
use the electricity they produce for their own consumption
by making use of the batteries than to sell the electricity
to the grid. Comparing the two scenarios without battery
(Scenario A and Scenario C), Scenario C presents a reduction
of 12% in total costs (4.48 <€) compared with Scenario
A. Without available storage, it is more profitable to sell
electricity in P2P market than to sell it to the grid. Considering
now the scenarios with battery systems (Scenario B and
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No battery Battery
Without P2P transaction

Scenario A Scenario B
Total costs (€) 37.07 32.84
Consumption (kWh) 482.03 482.03
Production (kWh) 321.38 321.38
Grid supply (kWh) 294.88 268.64
Grid sell (kWh) 129.37 93.46
Savings storage (€) - 4.23 (11%)

With P2P transactions

Scenario C Scenario D
Total costs (€) 32.59 27.79
Consumption (kWh) 482.03 482.03
Production (kWh) 321.38 321.38
Grid supply (kWh) 250.38 216.45
Grid sell (kWh) 88.40 39.51
P2P transaction (kWh) 44.50 72.53
Savings storage (€) - 4.80 (13%)
Savings trade (€) 4.48 (12%) 5.05 (15%)
Savings total (€) 4.48 (12%) 9.28 (25%)

Scenario D), Scenario D has a reduction of 5.05 €(15%)
compared with Scenario B. In the scenarios with P2P trans-
actions (Scenario C and Scenario D), the battery enables a
reduction of 4.80 €(13%) in the total operation cost. Compar-
ing Scenario A with the most complete scenario (Scenario D),
savings account for 9.28 €, i.e. 25%, in the later.

TABLE 4 presents the total electricity transaction for each
prosumer considering all scenarios for the full considered
day.

It is clear that the inclusion of batteries provides additional
flexibility to the prosumers, having a direct influence on the
electricity transactions and on the total costs.

Figure 4 presents the energy bill value for each prosumer
for Scenarios B, and D. EB value is obtained after finalizing
the optimization process using equation IV. The value of
EB for all prosumers decreases when P2P transactions are
enabled. For Scenario B, the average EB for one day of
operation is 3.28 €, whereas for Scenario D it is 2.78 €,
corresponding to a difference of 0.50 €representing a 15%
of reduction.

Notice that in Figure 4, prosumer 9 presents an EB negative
value indicating that this prosumer was able to make profits
with P2P transactions. Therefore, his energy bill becomes
negative. On average, comparing the results of Scenario A
with the results of Scenario D, the prosumers have a decrease
in cost of 0.93 €/day. If these scenarios are repeated every
day of the year, a potential annual savings of 338 €per
prosumer can be achieved. Figure 5 presents the contracted
power, the battery capacity, and the P2P transactions of each
prosumer for Scenario D.

Figure 5 presents two different vertical axes; the left-side
vertical axis measures the P2P energy (purchased and sold)
transacted in kWh, and the right-side vertical axis measures
the contracted power and battery capacity in kW.

As explained before the contracted power limits the trans-
actions between the prosumer and the grid in each period
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TABLE 4. Electricity transactions for each individual household considering one day of operation [in kWh].

Without P2P transaction With P2P transaction
No Battery Battery No Battery Battery
SCENARIO A SCENARIO B SCENARIO C SCENARIO D
Grid Grid Grid P2P Grid P2pP
Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell
Prosumer 1 25.78 2.34 24.73 0.53 16.41 2.34 9.36 0 12.19 0.57 : 13.21 045
Prosumer 2 31.33 8.57 27.90 3.37 26.40 6.47 493 2.10 20.60 1.54 : 8.62 2.90
Prosumer 3 38.01 24.03 35.23 19.87 | 37.36 15.80 i 0.65 8.24 36.00 7.78 : 1.90 14.03
Prosumer 4 12.78 6.63 11.85 5.24 12.49 491 0.29 1.72 12.80 2.16 : 0.41 431
Prosumer 5 27.49 13.66 23.61 7.90 25.04 10.82 i 2.46 2.84 21.65 456 : 3.85 5.19
Prosumer 6 37.37 30.83 34.58 28.15 | 36.81 16.19 i 0.56 15.62 | 35.49 8.81 : 2.31 22.03
Prosumer 7 18.32 3.14 17.02 1.11 14.06 3.13 425 0.01 10.79 132 0 7.32 0.81
Prosumer 8 43.92 10.91 39.67 4.61 33.15 891 10.76  2.00 26.47 335 1749 5.08
Prosumer 9 17.92 19.05 16.42 19.13 | 17.46 11.49 : 047 10.09 | 16.35 7.07 : 141 14.14
Prosumer 10 41.96 10.21 37.62 3.55 31.18 8.33 10.77 1.88 24.13 2.34 : 16.00 3.58
Total 29488 129.37 | 268.63 93.46 i 250.36 88.39 | 44.5 445 | 21647 395 7252 7252
7 T T T
I Scenario B
6 [ Scenario D

——— = Mean of Scenario B
Mean of Scenario D

Energy Bill €

FIGURE 4. Energy Bill results for each prosumer in Scenario B and
Scenario D for one day of operation.
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FIGURE 5. P2P trades in Scenario D with the contracted power and
battery capacity.

and has a direct influence on the P2P transactions. As can be
seen in Figure 5, prosumers 3 and 6 have the same contracted
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FIGURE 6. Volume of P2P electricity transactions for one day of operation
in Scenario D.

power, but prosumer 6 presents a higher volume of electricity
sold in the P2P market. Analyzing both figures 4 (showing
the EB) and 5, prosumers 6 and 9 have the smaller energy
bills and the higher values of energy transacted in P2P.

Figure 6 presents the electricity sellers in yy-axis, buyers
in xx-axis and the transacted volume in zz-axis corresponding
to the volume of electricity transacted between prosumers
for the full day in Scenario D. The higher volume of energy
transacted occurs between prosumer 8 (as a buyer) and pro-
sumer 6 (as a seller) with a total of 4.91 kWh. Moreover,
an average of 3.34 kWh was transacted in the P2P market
by each prosumer in the referred day of operation.

Figure 7 presents the electricity purchased from the grid,
the electricity sold to the grid, and the P2P transactions for
Scenario D.

As can be seen in Figure 7, the tariff peak hours are
between 9h to 22h as defined by the bi-horary tariff contracted
with the grid/retailer. In these periods, the price of electricity
is higher than the rest of periods (off-peak). In turn, the
P2P transactions price is also higher in those peak periods.
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FIGURE 7. Accumulated electricity transactions with the grid and in P2P
market for one day of operation in Scenario D.

However, P2P prices are always lower than the retailer’s
selling prices. Therefore, the P2P transactions have been real-
ized during the peak periods, as Figure 7 illustrates. Another
important fact is that the exceeding PV production from 8h
to 20h (Figure 3) can be used to charge the batteries, to be
injected to the grid, or to be traded with other prosumers
(P2P). As can be seen in Figure 7, electricity is sold to the
grid between hours 11h and 16h, which corresponds to the
periods with higher PV production (see Figure 3). The P2P
market is more attractive for the prosumer to sell the surplus
of electricity for a higher profit. However, a part of the surplus
electricity is still exported to the grid because prosumers with
high PV production reach their maximum battery capacity,
and eventually, there are not enough peers to carry out P2P
transactions.

The implemented optimization procedure considering
10 prosumers (with total cost of 27.29 €, as showed in
TABLE 3) took around 142.83 second. Therefore, to test
the scalability of our model, we have run experiments con-
sidering 3, 5, 15 and 20 prosumers to obtain a sensitivity
analysis of the optimization times. Figure 8 presents the
execution time for the optimization process of all scenar-
ios in TABLE 3, varying the number of prosumers from
3 to0 20. The yy-axis uses a logarithmic scale. The faster
optimization times are obtained with Scenario A considering
3 prosumers (0.81 s). The most time-consuming optimization
corresponds to Scenario D with 20 prosumers, that took
15,869.68 s (4.41 h).

As can be seen in figure 8, Scenario D presents a higher
optimization time. This is related to the number of vari-
ables involved in the optimization process. When the P2P
transactions are included in the optimization, it is neces-
sary to include all the possibilities that prosumers have
to trade electricity. Also, notice that the number of pro-
sumers does not have an impact in the optimization times
for Scenario A and Scenario B, while having a clear
impact for Scenario C and Scenario D. In Scenario D, an
increment of 4.37 hours was registered in the optimization
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FIGURE 9. Mean results of energy bill considering the scenarios and
number of prosumers.

time when the number of prosumers was increased from
10 to 20.

Finally, Figure 9 presents a comparison of the mean energy
bill considering the four scenarios and the total set of pro-
sumers number. In each scenario presented in figure 9, five
different values are shown corresponding to the different
number of prosumers tested. The mean EB value registered
a reduction when the numbers of prosumers increased. In the
case of Scenario D, corresponding to the scenario with the
best results, the mean value considering 20 prosumers reg-
istered a decrease of 1.07 €(32%) with regards to the case
considering 3 prosumers only.

VI. CONCLUSION

This paper proposes a method for managing the energy
resources of a local community considering P2P transactions,
PV production, and storage systems. With the inclusion of
P2P transactions, looking at the economic aspects, the overall
costs of the energy community were lower and each prosumer
was able to get a reduction in the energy bill. The best option,
as demonstrated by simulation studies, is the combination of
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P2P transactions with the usage of batteries (Scenario D).
In fact, Scenario D led to the minimum overall costs for
the community members, ensuring an average reduction of
electricity costs of 0.93 €/day (9%) per prosumer compared
Scenario D with Scenario A.

The proposed optimization method is consumer-centric
having the ability to enable significant user participation in
energy trading. Hence, enabling P2P transaction in the energy
communities has the potential to encourage households to
shift from consumers to prosumers.

The proposed methodology presents some limitations as it
requires the existence of bidirectional information and phys-
ical energy flows between the involved prosumers. Also, in a
real implementation, long execution times can be a drawback
that needs to be solved. In the case of 20 prosumers, the opti-
mization time was 4.41 h for the best scenario (Scenario D).
Therefore, alternative and efficient methods that run near to
real-time should be proposed.

In the future, we intend to explore metaheuristic meth-
ods (such as evolutionary computation) and decompositions
methods (such as Benders decomposition) to solve the pro-
posed problem and reduce the optimization time. In this
way, the proposed model can be applied considering a higher
number of prosumers.
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Resumen

Los mercados locales de electricidad son soluciones emergentes para permitir el
comercio local de energia para los usuarios finales y proporcionar servicios de
soporte de red cuando sea necesario. En la literatura se han propuesto varios
modelos de mercados eléctricos locales (LEM por sus siglas en inglés). El modelo
de mercado peer-to-peer (punto a punto) aparece como una estructura
prometedora entre los modelos propuestos. La estructura de mercado peer-to-
peer permite transacciones de electricidad entre los participantes en un sistema
de energia local a un costo menor. Fomenta la produccién a partir de pequenias
tecnologias de generacion de bajas emisiones de carbono. Las comunidades
energéticas pueden ser el lugar ideal para implementar mercados eléctricos
locales, ya que estan disenados para permitir un mayor crecimiento de las
energias renovables y los vehiculos eléctricos, al mismo tiempo que se benefician
de las transacciones locales. En este contexto, se propone un modelo LEM
considerando una comunidad energética con alta penetracién de vehiculos
eléctricos en la que son posibles las transacciones prosumer-to-vehiculo (P2V).
Cada miembro de la comunidad energética puede comprar electricidad al
minorista o a otros miembros, y vender electricidad. El problema se modela como
una formulacion de programacion lineal de enteros mixtos (MILP por sus siglas
en ingles) y se resuelve dentro de un proceso descentralizado e iterativo. La
implementacién descentralizada proporciona soluciones aceptables con un
tiempo de ejecucidon razonable, mientras que la implementacion centralizada
suele dar una solucion optima a expensas de una escalabilidad reducida. Los
resultados preliminares indican que existen ventajas para los vehiculos eléctricos
como participantes del LEM, y la implementacion propuesta asegura una
solucion optima en un tiempo de ejecucion aceptable. Ademas, las transacciones

P2V benefician a la red de distribucion local y a la comunidad energética.
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Local electricity markets are emerging solutions to enable local energy trade for the end
users and provide grid support services when required. Various models of local electricity
markets (LEMs) have been proposed in the literature. The peer-to-peer market model appears
as a promising structure among the proposed models. The peer-to-peer market structure
enables electricity transactions between the players in a local energy system at a lower cost. It
promotes the production from the small low-carbon generation technologies. Energy
communities can be the ideal place to implement local electricity markets as they are
designed to allow for larger growth of renewable energy and electric vehicles, while
benefiting from local transactions. In this context, a LEM model is proposed considering
an energy community with high penetration of electric vehicles in which prosumer-to-vehicle
(P2V) transactions are possible. Each member of the energy community can buy electricity from
the retaller or other members and sell electricity. The problem is modeled as a mixed-integer
linear programing (MILP) formulation and solved within a decentralized and iterative process. The
decentralized implementation provides acceptable solutions with a reasonable execution time,
while the centralized implementation usually gives an optimal solution at the expense of reduced
scalability. Preliminary results indicate that there are advantages for EVs as participants of the
LEM, and the proposed implementation ensures an optimal solution in an acceptable execution
time. Moreover, P2V transactions benefit the local distribution grid and the energy community.

Keywords: decentralized control, energy community, local electricity markets, prosumer, electric vehicle

INTRODUCTION

Despite the pandemic that largely affected the automotive industry in 2020, the electric vehicle (EV)
and renewable energy industry performed remarkably well (Lieven 2021; Wan et al.,, 2021). In fact,
EV sale numbers in Europe increased to record numbers and all-time highs (up 137% from 2019),
while the overall automotive industry was down by 20% year on year (Irle 2021). Most oil energy
companies quickly shifted investments toward renewable energy projects and became more ESG'-

'"Environmental, Social, and Governance (ESG) is a set of criteria and standards to enable socially and sustainable conscious
decision investments within a company.
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oriented, anticipating an earlier oil use peak (Strauch et al., 2020).
The quicker energy transition motivated by the pandemic, the
need to foster job creation, and new opportunities in the industry
flag the importance to accelerate the conditions to accommodate
a large penetration of EVs (Barbier 2020).

Most researchers agree that a large number of EVs in the grid
will bring new operational challenges but also new opportunities
(Fotouhi Ghazvini et al., 2019; Chung et al.,, 2019; Das et al.,
2020). Challenges may include distribution lines and
transformers’ capacity limitations, overheating and overvoltage
issues, bidirectional power flows (vehicle-to-grid), and market
price increases (Gesevic¢ius et al., 2021). Opportunities will
include new business models, no-upfront cost grid services,
improved renewable energy use, etc.

In this context, local electricity markets (LEMs) have been
proposed as an effective tool to mitigate some bottlenecks of
renewable and EV penetration in local distribution grids. Local
markets are emerging in order to facilitate energy transactions
among small producers and consumers in nearby energy
communities (Mengelkamp et al., 2017). Their emergence is
not targeting the replacement of wholesale markets and the
retailing activity, but rather coexistence (Lezama et al., 2019a).
Aggregators can participate in a LEM via load and EV aggregation
as well (Lezama et al., 2019b; Masood et al., 2020). Among the
different LEM models that have been proposed in the literature,
the peer-to-peer (P2P) market model appears as a promising
structure to reduce costs (Z. Zhang et al., 2020; Faia et al., 2021a).

A previous work proposed a centralized model to solve the
optimal energy trading in a LEM between prosumers and EVs
(Faia et al, 2021b). However, the scalability of the adopted
centralized model is not enough, and the data privacy can be
easily compromised. We believe that decentralized models can be
a viable alternative to overcome issues previously raised, given the
reduced number of resources involved in energy communities
compared to region-wide scale problems. Therefore, a
decentralized iterative approach is proposed in this study to
solve energy management problems, considering the
possibility of transactions in a prosumer-to-vehicle (P2V)
market, thus enabling the prosumers to sell the surplus
electricity production and to charge the EVs at a lower
price than the retail market price. The price of electricity in
the P2V market is assumed to be the most advantageous for
both parties. The proposed model provides the integration of
RESs and the empowerment of electricity end users in the
power system, namely, by allowing prosumers and EVs to
interact within the P2V market. The case study considers 90
players, composed of 50 domestic prosumers and 40 EVs; three
different models of domestic battery systems; and seven
different models of EVs. Real electricity tariffs from a
Portuguese retailer and current feed-in tariff in the country
are used in the case study. The main contributions of the study
are as follows:

e A decentralized and iterative process is developed to
determine electricity transactions among prosumers and
EVs in a P2V market.

Local Markets for Electric Vehicles

o Considering the reduction of the feed-in tariff, the proposed
approach allows prosumers to have another option to sell
electricity at higher price.

e Development of optimization models (prosumers and EVs)
that include realistic constraints, prosumers load and
generation profiles, photovoltaic (PV) systems, energy
storage systems, and real and updated EV models.

The article is structured in six sections including this
introductory section. A literature review is given in Literature
Review. Proposed Methodology presents the proposed
methodology, namely, formulation and the coordinator
decision process. Case Study presents the details of the case
study. Finally, Results presents the results and its discussion,
while Conclusion and Future Works provides the conclusions of
the article.

LITERATURE REVIEW

Different designs of the LEMs and the market analysis of the
proposed models have been presented in the literature. Absorbing
the output of local generation from renewable sources by the
flexible demand has been widely investigated. A P2P local
electricity market model is developed in Z. Zhang et al’s
(2020) study which considers local energy trading and the
uncertainty of the demand and PV generation. In this model,
the load flexibility is characterized by time and power flexibility.
The results reveal that this model could be used to enable the local
balancing of the PV forecast power and the uncertain demand,
while both consumers and PV owners could benefit from the local
P2P market.

The P2P energy trading mechanism has also been used to
coordinate the distributed energy generation and consumption
(Matamoros et al., 2016) and the trading among the peers in a
distribution network. C. Zhang et al, (2018) proposed an
innovative platform for P2P energy trading using the game
theory. The test results in a microgrid show that P2P trading
can improve the local balance of consumption and generation.
This trading mechanism can promote increased penetration of
renewable energy sources in the grid.

A local electricity market model is developed in Saether et al.
(2021) to enable P2P electricity trading for a community of
industrial buildings. The impact of local flexibility on the
usage of DER technologies was investigated in that work;
moreover, the contribution of the local market to peak
demand management was assessed. The authors showed that
the local market approach leads to more local usage of the
distributed resources, eliminating the need to curtail DER
power and reducing the grid feed-in.

A contract-based framework to enable local energy trading for
electricity suppliers in different categories (i.e., small, medium,
and large suppliers) is developed in Oprea and Bara (2021). The
model helps the suppliers obtain optimal contracts and trade the
surplus power with an aggregator in a hierarchical electricity
trading system. The distributed algorithm for electricity trading
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guarantees the optimal utility of both parties in various trading
scenarios.

A day-ahead local energy market model is developed in
Elbatawy and Morsi (2021) in which the residential consumers
with home battery storage are the main participants. It uses the
utility’s distributed energy management system and the home
energy management system based on the existing
intercommunication system. Moreover, the provision of grid
services, such as voltage support, transformer management,
and phase balancing, as a result of this transactive market
model, is investigated. The results show that the proposed
market can contribute to grid services, while increasing the
profits of the residential consumers.

Different auction mechanisms for the trade of electricity in a
local market using blockchain mechanisms were investigated by
Oprea and Bara (2021). Suitable auction mechanisms for
blockchain are proposed along with an adjustment of the price
for both sellers and buyers after the initial clearing of the market
at the classical auction levels. The simulation results show that
this approach could improve the trading performance indicators.

The impact of local electricity trade on the operation of the
distribution network is investigated in Liith et al. (2020). It is
concluded that exempting local trade and self-consumption from
taxes could create distributional effects. That work proposes a
novel market design that requires few legal amendments on the
ownership and participation of renewable technologies to avoid
the distributional effects of local markets, making them more
attractive for the prosumers and consumers.

The work of Mustafa, Cleemput, and Abidin (Mustafa et al.,
2016) provides security analysis for a proposed model of a local
electricity market considering the privacy requirements of the
users. Each user in this model buys or sells electricity in the local
market via the supplier, and the supplier charges the user only for
the electricity supplied to them by the grid and pays to them only
for the exported electricity that was not traded in the local market.
In this model, the DSO will also access the imported and exported
electricity by all the users per supplier for each settlement period.

The aforementioned works indicate the potential of LEMs to
benefit producers and consumers in energy communities.
Nevertheless, further research on decentralized models is
required to overcome scalability limitations when multiple
agents are involved. Thus, Proposed Methodology presented the
proposed methodology based on optimization models solved in a
decentralized way.

PROPOSED METHODOLOGY

In this section, the details of the model used to characterize
the transactions among the local prosumers and EVs are
presented. The optimization models for prosumers and EVs
are presented first and then the iterative process proposed for
ensuring the balance in the P2V market is explained. The
proposed  methodology  constitutes two  different
optimization models: prosumer model and EV model. Both
of them are formulated as a MILP problem with the possibility
of energy exchange among the retailers, the distribution grid,

Local Markets for Electric Vehicles

and the P2V market. It is assumed that EVs are able to buy
electricity from a retailer or the P2V market. The models also
consider the energy management system properties, using
storage systems to obtain the best options for the user.
Figure 1 presents the model scheme of the implemented
methodology.

As can be seen in Figure 1, in the implemented model, the
prosumers can buy electricity from a retailer and sell to the
main grid or in the P2V market; on the other hand, the EV
can buy electricity from the retailer or directly from
prosumers.

Formulation

The formulations are presented for each of the three agents:
prosumers, EVs, and the coordinator in the respective
subsections.

Prosumers

The prosumer operation is represented by the minimization of its
energy costs across a set of time periods. Each agent i belonging to
the set {1,..., Ni} optimizes its energy costs according to Eq. 1
and subject to Eqs 2-23. Decision-making is done in a
decentralized way, which means that each prosumer solves its
own optimization process.

Nt

L Retailer b ; .

minimize Pro’*" = Z(Pif werty . ToU,, — PErsl. fit
t=1

_ PftZVsell 'PPZV) . At + FC;, (1)
where Prof°* represents the energy costs for the prosumer,
Pfftaﬂerb“y represents the electricity bought from a retailer,
ToU;; represents the time of use tariff contracted by the
prosumer to the retailer, Pgridse!! corresponds to the
electricity sold in the distribution grid, fit is the feed-in
tariff, Pftzvse“ represents the electricity sold in P2V
market, pP2V is the price of electricity in the P2V market,
At represents the time adjustable parameter, FC; corresponds
to the daily fix cost paid by the prosumer, and Nt corresponds
to the total number of periods. Indices ¢ and i represent the
respective period and prosumer. Eq. 2 presents the power
balance for prosumer agent i.

Gen Retailer buy Dch _ plLoad Grid sell P2V sell
Pi,t +Pi,t +Pi,t _Pt,i +Pt,i +Pi,t

+ PP, Vt € Nt, )
where P{¢" represents the electricity generated by the prosumer,
P>™ represents the electricity discharged from the prosumer
battery, PX* corresponds to the load demanded by the
prosumer, and Pﬁh corresponds to the electricity charged by
the prosumer battery. Eqs 3-5 simulate the prosumer’s
transactions.

P')tetailerbuy Sﬁf:y . X:,ltetailerbuy’vl_ € Nt, (3)

i
Pi(;ridsell < ﬁisjll . Xg;tridsell) Vt € Nt, (4)

—Sell P2V

P{'tZVSell SPi)t . thZVSell, Vt € Nt, (5)
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FIGURE 1 | Proposed model scheme.

+B . . o
where P;;’ represents the maximum buying limit for the
§ Retailer buy . .
prosumers, X;; corresponds to the binary variable for
the buy action, Pij represents the maximum limit for the
sales actions, XSridsell js 3 binary variable for the sale on-grid
. HSe ’ . .-

actions, P;; represents the maximum limit for the sales on
P2V market, and X}7" sell represents the binary variable for the
sales on P2V market. Eqs 6, 7 represent the prosumers’
restrictions for buying and selling electricity.

Xjgrlertoy o xGridsel <1 vt € N, (6)

Xfftaﬂerbuy + XftZVsell < I,Vt € Nt, (7)

where Eq. 6 avoids simultaneous purchase from the retailer and
selling to the grid. Eq. 7 also controls simultaneous purchase from
the retailers and selling to the P2V market. Sells to the grid and
the P2V market can occur at the same time in this model. Eqs
8-10 control charging and discharging decisions of the
prosumers.

PO <P - X, Vi € N, ®)
h _ 3Dch h
PY* <P, - XDVt € Nt, )
Ch h
X+ X" <1,Vt € Nt, (10)

where I_JICth represents the maximum limit for the prosumers
charge battery, thh represents the binary variable for the
charge action, FZChcorresponds to the maximum limit for the
battery discharge of the prosumer, and X0 corresponds to the
binary variable for the discharge action. Simultaneously, only one
action (charge and discharge) is possible and the binary variables
control these actions. Eq. 11, 12 model the state of charge of the
storage unit.

, 1
SoCPft = SoC* ™ + (Pfl" - P npd‘) <At (11)

SoC* = SoCH" | + (P,Ff," et - PO Dch) - At,Vt € [2,Nt],

(12)

where SoCP?" represents the state of charge of the storage
unit, SoCP* Mt represents the battery unit’s initial value;
efh and #P" represent the efficiency of charge and
discharge of the battery unit, respectively. Equations
13-23 present the limits for the optimization variables of
prosumer’s operations.

—Buy

0 SI)ftetailerl:ﬂ-l}’ SP” ,Vt c Nt) (13)
rid sel HSell
0< piridsl < P77 vt € N, (14)
sell _ 5Sell P2V
0<PV <PVt e N,, (15)
—Ch
0<P'<P,,VteN, (16)
o —Dch
0<P)*<P,” ,VteN, (17)
SoC ™ < SoC* <SoC;:', Vit € N, (18)
Xftelailerbuy € {0’ 1} ,Vt € Nh (19)
Xgrdsl ¢ {0,1},Vt € N, (20)
X7Vl e (0,1}, Vt € Ny, (21)
X e{0,1},Vt e Ny, (22)
XD e {0,1},Vt € N,, (23)

<—~B . -
where SoC %" and SoC,-!ta ' represent the maximum and minimum
capacity of the battery unit, respectively.

Electric Vehicles
This section presents the optimization model for the EV agents,
which minimizes the daily operation cost through Eq. 24.
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Jit
t=1

N
L EV Retailer b P2V by
minimize : EV;*™* = Z(P WY ToUy, + Py, Y ~pP2V)

- A¢ + FGj,
(24)

EV Retailer b
where EV ]C‘m represents the costs for EV, P; Y corresponds to

the electricity bought from a retailer, ToU j; is the time of use tariff,
Pfbeuy represents the electricity bought in the P2V market, pF2¥
corresponds to the price of electricity in P2V market, FC; represents
the fixed costs for EV, and N ; represents the total number of EVs. Eq.

25 represents the energy balance for the EVs.

EV Retailer b P2V b
Py R Y = PR, Ve e N, (25)
where PEYCh represents the electricity charged for EV battery.

Eqgs 26, 27 model the energy balance in EV batteries.

SOC];VBat _ SOC};VBatInit (PEVCh . ;EVCh _ PjI:ZYMove) A, (26)

EV Bat EV Bat EV EV EV Move
SoCJy®* = SoC[Y V* + (PFY " - iV P}

x A, Vt € [2,Nt], (27)

where SoCY P! represents the state of charge of the EV battery,
SOCEVBH‘I“lt represents the initial state of EV battery, #=¥<h
represents the efficiency of EV charge action, and PE, Move
represents the EV consumption during trips. Eqs 28, 29 limits
the EV buying of electricity when they are on trip.
iler —EVB "
pEY Retilrbuy ¢ pEVEW . gEVMove vt ¢ N, (28)
—EV P2V B

P}’f""“y <P, AN v e N, (29)
where P " represents the maximum limit for buying electricity,
AEVMOVE glves the indication if the BV 1s travelling (zero) or if is
avallable to charge (one), and P represents the maximum
limit for buying electricity in P2V market. Eqs 30-33 present the
maximum and minimum limits for the EV operation.

0< Pl Rt < PVEY vt e N, (30)
0< P??VbuysﬁftVPZVBuY’Vt €N, (31)
0<PEA <P VieN, (32)

SoC* EV Bat <SoCEVBat <So CF‘VBm Vt € Ny, (33)

Ch
where P represent the maximum hmE1‘t, Bfor EV maximum
charge actlon and SoCFY5" and So oC;, o represent the

minimum and maximum level for the EV battery, respectively.

Coordinator

The coordinator is responsible for the process of ensuring the balance
in the P2V market. The coordinator process is based on Eqs 34, 35
and applies four sequential rules. The first two rules limit the periods
for prosumers’ sells (Eq. 36) and EV buys (Eq. 37), respectively. On
the other hand, the last two rules limit the amount of buy and sell
electricity in periods in which transactions are possible. Eq. 38 limits
the maximum amount of electricity that each EV can buy in P2V
market, and similarly, Eq. 39 imposes a limit for prosumers’ sales.

Local Markets for Electric Vehicles

Eq. 34 presents the energy balance in P2V market.

i N;
Balance : i(Pftz"se“ . At) - Z}:( PPV A,

o JVteN. (34)

izl =1

To ensure the balance in the P2V market, the aggregator executes
four hierarchical rules. Thus, an error is calculated according to
Eq. 35 to indicate the difference between the sell and buy energy
across all time periods.

N [ N N; 2
Error = z z Pffvs"'ﬂ A - z P;,ZV"“Y A - (35)
j=1

t=1 i=1

The error can be obtained in each iteration of the process and
considers the energy sold by the prosumers and bought by the
EVs. When the process has been finalized, the value of error
should be minimal.

Four different rules are created to achieve the minimal
error and the convergence of the coordinator process. One
algorithm per each rule is presented in order to facilitate the
interpretation of the corresponding rule. The first rule is defined
in Eq. 36.

0 1f Z PP2Vse]l

—EVP2V buy
P ot (it=1)

—EVP2VBuy
Rulel: P;, ;.

otherw1se Vt € N, Vj € N;.
(36)

Rule 1 is applied to update the values of EV electricity maximum
buy limit in the P2V market for the second iteration. Considering
this rule, the EV in the second iteration only can buy electricity in
periods when the prosumers are available for sale. Algorithm 1
presents the application process of rule 1.

Algorithm 1. Application of Rule 1 (Eq. 36)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error>1x 1072 kW and it = 1

4. For t=1: N;
5. For j=1: N;
6. If Zl 1PPZVsell 0
8. Else If
S I
10. End If
11. End For
12. End For
13. it=it+1
14. Else If
15. Converged solution
16. End If

17. Return the solution.
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Eq. 37 presents the rule executed for the second iteration.

Nj
0 if P, ™ =0
Rule2: P}y = f Z ”‘ (37)

—sell P2V
P,f (it Otherwise, V't € Ny, Vi € N

Rule 2 is applied to the maximum limit of electricity sell in the
P2V market for the prosumers side. In this case, in periods where
the EVs do not buy electricity in the P2V market, the maximum
sales limit for prosumers in this same period is zero. Algorithm 2
presents the application of rule 2.

Algorithm 2. Application of Rule 2 (Eq. 37)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error >1 x 1072 kW and it = 2
For t=1: N;
For i = 1 N;
If z] 1PPZVbuy 0

4

5

6

7. ?ff'if}g) =0
8

9

Else If

: Prory =
10 End If

11. End For

12.  End For

13. it=it+1

14. Else If

15. Converged solution
16. End If

17. Return the solution.

—Sell P2V
P it, (it=2)

Rule 3 in Eq. 38 presents a new update for the maximum buy
limit for EV buys in the P2V market.

ZNi pP2vsell
j=1 " it . PPZVbuy
e if P, >0
EVPZVBuy 2V buy Jt .
Rule3: P,y " =1 Py ,Vt € N,,Vj € N;.
—EVP2VB .
P, -3 Y otherwise

(38)

Using rule 3, the maximum limit for EV's to buy electricity in the
P2V market is limited using the quantity available from
prosumers. In this case, in each period that there is electricity
sold by the prosumers, the maximum limit for the EVs available
to buy will be limited. This limitation will be proportional,
considering the maximum electricity available from prosumers.
Algorithm 3 presents the application of rule 3.

Algorithm 3. Application of Rule 3 (Eq. 38)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)

3. If Error >1x 1072 kW and it = 3
4. For t=1: N;

Local Markets for Electric Vehicles

5. For j=1: N;
6. If P77 by L
o pravsd
; phymvin %—0
8. Else If
5 Pisis) = Pitis) |
10. End If
11. End For
12. End For
13. dit=it+1
14. Else If
15. Converged solution
16 End If

17. Return the solution.

Rule 4 limits the maximum electricity sold by prosumers in the
P2V market presented in Eq. 39.

N;j

PPZVbuy

> P

—Sell P2V j=1 s 2V sell .
Rule4: P, . 5 = W’fpft 20 ,vt e N,,Vi e N;.

it

—SellP2V .

P otherwise

it (it=4)
(39)
In rule 4, the same process of rule 3 is applied, but for the

maximum limit for prosumers sells in the P2V market.
Algorithm 4 presents the application of rule 4.

Algorithm 4. Application of Rule 4 (Eq. 39)
1. Coordinator balance check (Eq. 34)

2. Error calculation (Eq. 35)
3. If Error>1x 1072 kW and it = 4

4 For t=1: N;
5 Fori=1: N;
6. If PPZV sell >0
pP2Vvbuy
7 o Z;,‘m’;u
8 Else If i
0. Pipirs = Prois
10. End If
11. End For
12. End For
13, it=it+1
14. Else If
15. Converged solution
16. End IF

17. Return the solution

lterative Process

An iterative approach is adopted to solve the coordination
process. This is illustrated by the block diagram in Figure 2.
The coordinator is responsible for the perfect match between
the sales of prosumers and purchases of the EVs in the P2V
market. The optimizations of each prosumer and EV are
independent, only needing the information of maximum
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limits for transaction in the P2V market provided by the CASE STUDY

coordinator.

The coordinator initializes the process, defines the
maximum limits for prosumers and EV transactions in
P2V market, and passes the information for each
prosumer and EV. Both of those agents optimize
their energy costs with the provided information of
maximum  limits for P2V  transactions. Those
optimizations run in a parallel and decentralized way in
which prosumers and EVs receive and send the required data
to the coordinator. The latter receives the P2V transaction
information and determines the error considering the
electricity sold by prosumers and bought from EV. The
convergence is tested through two different criteria: the
error value obtained by Eq. 35 and the number of
iterations. Considering the error, if the value is equal to
or less than 0.001 kW, the process converges. On the other
hand, when the process is completed, the limit of iterations
(five) is reached. When none of the aforementioned
conditions is verified, the process proceeds to the next
iteration, and the maximum limits for P2V transactions
are updated.

The created rules are applied in a sequential mode with
respect to the number of respective iterations. During the
iterative process, if the error condition is verified, the model
converges, and all rules may not be applied. At the maximum,
this process has five iterations.

To validate the proposed methodology, a case study with a set of
50 residential prosumers and 40 EVs is adopted.” In total, the
community is constituted by 90 players. All community players
have a contract with the retailer to supply the necessary electricity
that defines the maximum limit for buying electricity, the
maximum limit for injecting electricity into the grid, and the
fixed costs. The prosumers and EVs can transact electricity in the
P2V market, that is, prosumers’ sell and EVs buy electricity,
which presents the mean profiles of generation and
conventional load.

The profiles presented in Figure 3 are the mean profiles
considering the 50 prosumers. The prosumers present a total
consumption of 2001.89 kWh and 1,1417.82kWh of total PV
generation, which correspond to a mean of 40.04 kWh of
consumption and 28.36 kWh of generation for each prosumer.
The prosumer has installed 248.8 kW of produced capacity for
PV generation, that is, a mean of 4.98 kW. Table 1 presents the
characteristic of batteries used in the prosumers’ facilities.

Three different batteries for prosumers are selected in the case
study. In total, there are 50 units of batteries, one per each
prosumer. The three available battery types are randomly

2All data are available in the public datset: https://zenodo.org/record/4737293#.
YJFWT7VKg2x.
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distributed among all prosumers. In total, the prosumers have
715kWh of storage capacity installed. Table 2 presents the
characteristics of EVs used in the case study, while Figure 4
presents the EV profiles.

Figure 4A presents the profiles of EV trips; most of the EV
trips happen at 8:15 h and 19:45 h (36 trips). In mornings, the EV
starts the movements at 6:15h and stops at 23:30 h at night.
Regarding the total number of periods, the EVs make 780 trips,
which correspond to a mean of 8.3 trips per period. Figure 4B
presents the mean profile of EV consumption. The peaks of
consumption are verified in the same peak periods of EV
movements.

The seven EV models presented in Table 2 were also randomly
distributed within the 40 available EV users. Tesla Model 3
Standard Range + is the most used model. Considering all
EVs, they have 1916.60 kWh of capacity. Table 3 presents the

Local Markets for Electric Vehicles

tariffs used in the case study. All buy tariffs are obtained in the
EDP Comercial Portuguese electricity retailer.

Table 3 presents three different tariffs that the prosumers and
EVs can contract with the retailer. The users should contract the
tariff that best fits their needs. Contracted power corresponds to
the maximum power that each user can demand from the
distribution grid. Fixed costs are always associated with
contracted power value; higher contracted power values are
associated with higher values of fixed costs. The price of
electricity varies in two different periods in the day. Off-peak
period (during 22:15 to 8:00h) are considered the cheapest
periods, while peak time (between 8:15 to 22:00 h) is considered
expensive. Regarding the sell tariff, the price is defined as linear
and can be found in Ambiente. (2020). The limit for export of
electricity to the grid is half of the contracted power. In the set of
prosumers, 21 of them selected the tariff with 6.90 kVA
contracted power, while in the set of EVs, 16 of them
selected the tariff with 13.80 kVA contracted power. Price of
the P2V market (p*?") is obtained considering the mean
between the minimum value of ToU tariffs (min(ToUj,))
and the feed-in tariff. The electricity price of the P2V market
is 0.0686 €/kWh, while the minimum EV buy price is 0.0922 €/
kWh and the price of export electricity to the grid (fit) is
0.045 €/kWh.

RESULTS

The results of the proposed methodology applied to the case study
are shown in this section. The simulations were performed on a
computer with an Intel Xeon(R) E5-2620v2@2.1 GHz processor
with 16 GB of RAM running Windows 10. To emulate the
optimization problem, a MATLAB 2018a with TOMLAB
optimization add-on was used. The CPLEX solver was used to
optimize the proposed model. The simulations are carried out for
a time horizon of 24 h divided into 96 periods (15 min each). The

TABLE 1 | Prosumers batteries characteristics.

Brand Model Capacity (kWh) Charge/discharge rate (kW) Efficiency (%) No
Sonnen 9.43 15.000 3.300 90 16
Tesla Powerwall 13.500 5.000 90 18
Alpha Smile 14.500 2.867 90 16
TABLE 2 | EV characteristics.

Brand Model Capacity (kWh) Charge rate (kW) Efficiency (%) No
Honda e 35.500 6.600 90 2

WV D.4 82.000 11.000 90 6

WV e-Golf 35.800 7.200 90 8

Tesla Model 3 Standard Range + 50.000 11.000 90 10
Peugeot e-208 50.000 7.400 90 2

Nissan Leaf 40.000 3.600 90 8

WV e-UP! 36.800 7.200 90 4

Frontiers in Energy Research | www.frontiersin.org

November 2021 | Volume 9 | Article 705066


mailto:E5
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Faia et al.

Local Markets for Electric Vehicles

A 40 T T T T T T T :
35+
30
ﬁ
5
8251
14
>
=}
E 20 B
>
3
S
o I5F
o
Z
10
5 |8
2 4 6 8 10 12 14 16 18 20 22 24
Periods (h)
FIGURE 4 | EV profiles, (A) movements, and (B) mean consumption.

EV demand (kW)
N

12 14 16 18 20 22 24
Periods (h)

=
+~
o
o0
=

TABLE 3 | Tariffs description.

Tariff Type Price (€/kWh) Contracted power Fixed costs No
Off-peak Peak (kvA) (€/day) Prosumer EV Total
Buy ToU 0.0923 0.1833 4.60 0.3251 12 8 20
0.0924 0.1834 5.75 0.3847 10 0 10
0.0924 0.1836 6.90 0.4448 21 2 23
0.0922 0.1829 10.35 0.6209 7 14 21
0.0926 0.1838 13.80 0.8022 0 16 16
Sell Feed-in tariff (fit) 0.0450 50% of buy limit 0.0000 50 0 50
TABLE 4 | Optimization results (€).
Scenario Centralized® Decentralized
No P2V market P2V market No P2V market P2V market
A B A B
Mean cost Prosumers 2.10 2.10 2.10 2.06
EV 4.62 4.37 4.62 4.44
Sum of costs Prosumers 104.84 104.96 104.84 102.82
EV 184.85 174.95 184.85 177.52
Total costs 289.69 279.92 289.69 280.34

Reduction (%)

4Considering model presented in reference (Faia, et al., 2021b).

load and generation data are obtained through forecasts. Two
different scenarios are considered to enable the comparison:
scenario A for the possibility of transacting electricity with
retailers and the option of exporting to the grid, and scenario
B for the possibility of transacting electricity with retailers, the
option of exporting to the grid, and transacting electricity in the
P2V market. Table 4 presents the optimization results for a
centralized approach and the decentralized approach proposed in
this work.

3.23

Table 4 presents the optimization results for the same case
study with two different variants (with and without P2V market)
and for two different implementations (centralized and
decentralized). It was found that the results are the same when
the P2V market is not available; however, as expected, the
centralized method provides slightly better total costs for the
P2V market variant. The only difference is the implementation,
which has disadvantages considering the privacy issues.
Comparing the two different implementations when the P2V
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TABLE 5 | Optimization time results (seconds).

Local Markets for Electric Vehicles

Iteration Centralized Decentralized
No P2V market P2V market No P2V market P2V market
1 9.74 1,118.57 1.78 1.64
2 - - - 1.34
3 - - - 1.59
4 - - - 1.58
5 - - - 1.58
Total 9.74 1,118.57 1.78 7.73
Total (minutes) 0.16 18.64 0.03 0.13
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FIGURE 5 | Process convergence. FIGURE 6 | Buys and sells of scenario B.

market is available, the centralized implementation has better
results with a minimal difference (0.15% comparing the total
costs). Analyzing other indicators’ results, different values are
presented when considering scenario B in the two different
implementations. In the decentralized option, the values of
mean prosumer cost decreases (2.04%) and the mean EV costs
increase (1.45%). Since each player is trying to make the most
advantageous transaction for itself, which leads to a suboptimal
cost. On the other hand, in a centralized implementation, the
community profit is maximized.

Table 5 presents the optimization time results for both
implementation scenarios. In the decentralized
implementation, the time presented in each iteration
corresponds to the maximum resolution time in the set of all
players. Execution times in the decentralized implementation for
both scenarios A and B are lower than the times required by the
centralized implementation. The big difference and the advantage
of the decentralized implementation are verified when the
resolution times for scenario B are presented. As can be seen,
when the centralized implementation is considered, the
resolution time is 144 times greater than the decentralized
implementation.

Figure 5 shows the convergence of the optimization process.
Three different variables are presented in Figure 5, the error

Z T T T T T T T T T T T

Scenario B centralized
Scenario B descentralized

Electricity (kWh)
(=}

(%]
T

2 14 16 18 20 22 24
Periods

FIGURE 7 | Buys and sells of scenario B.

(obtained by Eq. 34), the value of prosumers sells in P2V, and the
EV buys in P2V. The sales and buys should have the same value.
In the first iteration of Figure 5, the EV's are buying more units of
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electricity than the amount available on the market, corresponding
to the prosumers’ selling. The electricity sold by the prosumers in
the P2V market remains constant in all iterations. However, in the
end, the EV's adjust their purchased electricity with what is sold by
the prosumers. Throughout the iterations, the amount of purchase
of EV's decreases as a result of the application of the rules created,
leading the error to zero. In this case, the EVs adapt their actions to
the behavior of the prosumers. This is because the amount of
electricity available on the part of the prosumers is less than that
required by the EVs.

Figure 6 presents the electricity transaction of scenario B in
centralized and decentralized implementations. The presented
results are very similar, although there are differences, mainly in
the electricity exported to the grid. Electricity is exported in the
centralized implementation, while it is not exported in the
decentralized approach. One of the important aspects observed
is the value of electricity traded in the P2V market, which is
superior to decentralized implementation. Figure 7 presents the
transaction on P2V electricity market considering the centralized
and decentralized implementation.

As can be seen in Figure 7, the transactions of P2V for the
centralized and decentralized solutions have differences. The main
difference is related to the period of transaction: in the centralized
approach, the transactions occur between 9:00 h and 19:00 h and also
between 21:00 and 22.30 h. In the case of decentralized resolution, the
transactions occur during 9:00 h to 16:00 h, which corresponds to the
PV prosumers’ production hours. Figure 8 presents the electricity
transaction on grid for the decentralized approach.

Both Figures 8A and B present results for the decentralized
resolution, Figure 8A for scenario A, where P2V market is not
available, and Figure 8B for scenario B where P2V market is
available. The big difference presented in the figures is related to
the prosumers’ sell to grid values. In the case of scenario A, there
are sells to the grid made by prosumers, while in scenario B, all the
electricity units available to be sold is sold in the P2V market.
Figure 9 presents the mean costs for prosumers and EV of
scenario B.

Prosumers decentralized -

——— EV decentralized
Prosumers centralized

- ---EV centralized &

Mean Cost (EUR)

251 7

1.5 . . .
1 2 3 4 5
Iterations

FIGURE 9 | Mean costs of Scenario B.

The mean costs for prosumers and EVs regarding the iterations
are presented in Figure 9. The mean values for decentralized
implementation vary in the case of EV, but in prosumers’ case, the
value is constant. The mean value of EV increases throughout
interactions. In the fifth iteration, the value is higher than the value
of the first iteration because they decrease the value of electricity
bought in the P2V market, which has a better price for EVs. As the
liquidity of electricity is not sufficient for the amount needed by the
EVs, they have to buy from the retailer and pay a higher price.
Buying at the retailer rates increases the average of electricity costs.

CONCLUSION AND FUTURE WORKS

This study presented a decentralized approach for a prosumer-to-
vehicle (P2V) market at a local energy community composed of 90
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players [50 prosumers and 40 electric vehicles (EVs)]. The results
using the P2V market mechanism show a reduction in the total energy
costs and the average costs of each player’s type. Comparing the results
of centralized with decentralized implementations, the difference in
total costs is minimal, but the optimization time difference is
significantly higher. Other issues may arise regarding the
centralized implementation, such as data privacy. In the case of
decentralized implementation, players perform their optimization
and only share the values referring to the P2V market.
Cyberattacks can also be an important aspect of decentralized
implementation. In the centralized implementation, if a cyberattack
occurs, the operation of the system can be stopped, leaving users
without service. In the case of decentralized systems, as distributed by
the various users, an attack will only affect the targeted user, while
others remain safe.

The influence of the P2V market depends on the quantity of
energy available from the prosumers’ side. As can be seen, by
using rules created, the EV adapts the electricity bought in the
P2V market to the electricity sold to the prosumers in the same
market. Most of them have PV installations, and it is possible to
assume that enough amount will be available in future. The use of
small thermoelectric generation units can be a solution to
increase the supply capacity for the P2V market. Still, the
higher production costs of those units can be a barrier.

The P2V market allows prosumers to benefit the local
distribution grid and the energy community. As a future work,
the authors intend to compare this approach with other
decentralized methods available in the literature. The authors
are considering the possibility to implement the ADMM
technique, although the application of this technique involves
proof of concepts that sometimes are not possible to obtain and
fully prove the convergence of the implementation. Considering
dynamic pricing in the P2V market is another relevant aspect
worthy to be explored in the future. The inclusion of dynamic
pricing in the P2V market can encourage the users to participate
in local energy transaction. Participating in such markets could
lead to higher benefits for prosumers and the EV owners. In this
case, the idea would be to vary the price of electricity in the P2V
market with the amount of electricity offered and required. An
important aspect that serves as a subject for future work is the
study of the vulnerabilities that the system presents in terms of
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Resumen

Los cambios recientes en el sector de la energia estan aumentando la importancia
de la optimizacién de la cartera de clientes para la participacion en el mercado.
Aunque el problema de optimizacion de cartera es mas popular en finanzas y
economia, solo recientemente esta siendo objeto de estudio y aplicacion en los
mercados de electricidad. Sin embargo, el modelado de riesgos en este dominio
se esta abordando como en el cldsico problema de optimizacion de carteras,
donde la diversidad de inversiones es la medida adoptada para mitigar el riesgo.
La creciente imprevisibilidad de los precios de mercado como reflejo de la
variabilidad de la generaciéon renovable trae una nueva dimension a la
formulacion del riesgo, ya que el riesgo de participacion en el mercado debe
considerar la variacion de precios en cada mercado. Este articulo propone asi un
nuevo modelo de optimizacion de cartera, considerando un nuevo enfoque para
la gestion de riesgos. El problema de asignacion de electricidad entre diferentes
mercados se formula como un problema cldsico de optimizaciéon de cartera
considerando el error de prondstico de los precios de mercado como parte del
activo de riesgo. Tratar con un problema multiobjetivo conlleva una gran carga
computacional y, por esta razon, se aplica un método basado en la optimizacion
de enjambre de particulas (particle swarm optimization en inglés). Un estudio de
caso basado en datos reales del mercado eléctrico ibérico demuestra las ventajas
del enfoque propuesto para aumentar las ganancias de los actores del mercado y

minimizar el riesgo de participacion en el mercado.
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3747, 2021, doi: 10.3390/en14133747. (2020 Impact Factor: 3.004);

Resumen

La participacion de los prosumidores domésticos en los mercados mayoristas de
electricidad es muy limitada, considerando el limite minimo de participacion
impuesto por la mayoria de las reglas de participacion en el mercado. La
capacidad de generacion de los hogares ha ido en aumento ya que la instalacion
de generacion distribuida a partir de fuentes renovables en sus instalaciones
aporta ventajas para ellos y para el sistema. Debido al crecimiento del
autoconsumo, los operadores de red han ido dejando de lado la compra de
energia eléctrica a los hogares, y se ha producido una reduccion del precio de
estas transacciones. Este articulo propone un modelo innovador que utiliza la
agregacion de hogares para alcanzar los limites minimos de volumen de
electricidad necesarios para participar en el mercado mayorista. De esta forma,
el agregador representa a la comunidad de hogares en las compras y ventas del
mercado. Se propone un modelo de optimizacion de cartera de transacciones de
electricidad para permitir que el agregador tome decisiones sobre en qué
mercados participar para maximizar los resultados de negociacion de estos,
considerando el mercado diario, el mercado intradiario y el mercado minorista.
Se presenta un caso de estudio considerando el mercado eléctrico mayorista
ibérico y el mercado minorista portugués. Para la realizacion de los experimentos
se utiliza una comunidad de 50 prosumidores equipados con generadores
fotovoltaicos y sistemas de almacenamiento individual. El enfoque logra una
reduccion de costos del 6 al 11 % cuando la comunidad de hogares compra y

vende electricidad en el mercado mayorista a través del agregador.
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Abstract: The participation of household prosumers in wholesale electricity markets is very limited,
considering the minimum participation limit imposed by most market participation rules. The
generation capacity of households has been increasing since the installation of distributed generation
from renewable sources in their facilities brings advantages for themselves and the system. Due
to the growth of self-consumption, network operators have been putting aside the purchase of
electricity from households, and there has been a reduction in the price of these transactions. This
paper proposes an innovative model that uses the aggregation of households to reach the minimum
limits of electricity volume needed to participate in the wholesale market. In this way, the Aggregator
represents the community of households in market sales and purchases. An electricity transactions
portfolio optimization model is proposed to enable the Aggregator reaching the decisions on which
markets to participate to maximize the market negotiation outcomes, considering the day-ahead
market, intra-day market, and retail market. A case study is presented, considering the Iberian
wholesale electricity market and the Portuguese retail market. A community of 50 prosumers
equipped with photovoltaic generators and individual storage systems is used to carry out the
experiments. A cost reduction of 6-11% is achieved when the community of households buys and
sells electricity in the wholesale market through the Aggregator.

Keywords: aggregator; Iberian electricity market; portfolio optimization; prosumer; Portuguese
retail market

1. Introduction

Considering the targets imposed by the European Commission [1] about greenhouse
gas emission reductions, the installation of distributed generators (DG) based on renewable
energy sources (RES) can make a positive contribution to the cause. The successful imple-
mentation of national energy policies can contribute also for a global economic growth
(one average of 3.4% by 2040) [2]. DG based on RES includes small-scale generation units
connected essentiality to distribution grids in low or medium voltage. They can provide
challenges and opportunities to the users and participants of the distribution system (utili-
ties, end-users, operators, and retailers) [3]. The use of distributed energy resources (DER)
based on RES or non-RES from the costumers side, can improve local dependability, and
reduce costs with energy supply [4], from the grid side can minimize the operation costs [5]
or help to avoid some expensive investments in planning actions [6]. Due to the price
reduction of photovoltaic (PV) systems, the global installed capacity increased from 23 GW
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(2009) to 627 GW (2019) [7]. The growth of installed PV systems as DER in households has
been supported by various policies, such as feed-in tariffs (FIT), renewable electricity stan-
dards, net metering, and auctions [8]. In Portugal, installing PV panels in households has
been mainly incentivized through FIT approaches and installation incentives. FITs are ex-
periencing a downward trend in Portugal, in 2015 the FIT was fixed at 0.095 EUR/kWh [9]
and 0.045 EUR/kWh in 2020 [10], which correspond to a reduction of 53%. The reduction
of FITs can cause uncertainty regarding the installation of PV systems by Portuguese house-
holds, and the targets imposed for greenhouse gas emissions may be compromised [11].
On the other hand, reducing FITs can also increase the levels of self-consumption, since
the amount received for the export to the national grid does not bring profits [12]. Around
the world, the trade war caused the trend of deglobalization to be much more important,
influencing energy demand, knowledge and technology commerce, and financial capital
flows [13]. These effects can reduce the installation of technologies that make it possible to
generate clean energy.

The installation of small or medium-sized DG in Portugal must consider the Por-
tuguese legislation “Decreto-Lei n.°153/2014, 2014” [14] where two different facility types
were defined: UPP dedicated to the generation for grid export, and UPAC dedicated for
self-consumption. Some challenges are arising for these facilities considering the Por-
tuguese legal framework. In the UPP, the FIT (export grid tariff) has been experiencing a
downgrade trend, as identified above, resulting in a reduction in profits of electricity ex-
ported to the grid, leading to the consideration of different alternatives to export electricity.
In the UPAC, the surplus electricity of self-consumption is exported to the grid without
costs 0.00 EUR/kWh. Therefore, no payment is received for the exported electricity. In this
case, different options for exporting the surplus electricity should be considered, as well
as Portuguese legislation suggests the use of market facilitators to transact electricity in
wholesale electricity markets.

The participation in wholesale electricity markets is restricted to players with a great
volume to trade, e.g., in the MIBEL electricity market, a minimum value of 1 MW is required
to submit any bid (buy or sell). Solutions like virtual power producers (VPP) [15] represent
small aggregate DGs to achieve the minimum bidding quantity in the Wholesale electricity
markets. Based on the same approach of VPP, the Aggregator entity has emerged with
greater popularization with the association with demand response (DR) actions [16]. The
term VPP was used to represent small generators in wholesale markets, thus enabling
their participation, as it was impossible in isolation. The Aggregator performs the same
functions as the VPP although currently it can perform energy service provider functions,
where in addition to wholesale market participation it can also provide DR services and
also battery system management. Considering the DR capabilities of households, the
Aggregator can manage flexible loads, reducing household energy costs [17].

Participation in the wholesale market via Aggregator is not a new concept [16,18-24]
however they usually only consider one asset. Works [16,21] use the well-known DR asset
to participate in the market. Reference [18] uses heat pumps as an asset for flexibility acqui-
sition to participate in the EPEX market (Netherlands). Electrical vehicles (EV) are used
in [19] by an Aggregator to participate in ancillary services in Quito, Ecuador. Another ap-
plication involving EVs and their aggregation is presented in [22], in this work the flexibility
of EVs to participate in reserve markets is used. In [20], an aggregated model of RES is used
to participate in a real-time market. At industrial level the aggregator can also perform
some services, such as this approach [23] where its services are used to facilitate industrial
demand response. In reference [24], the authors propose a framework for comprehensive
market participation of DER Aggregators. Different kind aggregators are modelled by the
DSO, including energy storage aggregators, dispatchable distributed generation aggrega-
tors, electric vehicle charging stations, and demand response aggregators. The presented
work has the same purpose as this work, but the Aggregator uses the household as a hold
to participate in the wholesale market. On the other hand, the model proposed in this work
does not combine just one asset but a set of them (PV production, energy storage system,
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and flexibility). Another relevant issue of this work is its application in a real setting, like
in [18]. References [25-27] presented the wholesale market’s participation in the Electricity
Iberian Market (Mibel) as also presented in this work. The presented paper compared
with [26,27] describes an innovation, which considers the day-ahead spot market and the
intraday sessions. Ref. [25] uses a non-deterministic resolution to solve the problem, which
can compromise the results and provoke losses for the user. The model proposed in the
current paper solves this problem using a deterministic method that guarantees the optimal
global best result. Aggregators’ activities in the electricity system and electricity markets
have been widely explored, showing positive results in theoretical applications but also
real simulations. The study [28] concludes that more guidance is needed for convergence
on a more harmonized approach.

Considering this study’s aim, the Aggregator represents the market’s facilitator (enun-
ciated by Portuguese legislation), finding the best opportunity to export the surplus elec-
tricity. This paper offers an optimization model to minimize the energy costs of an energy
community, considering the possibility of buying or selling electricity in the wholesale
electricity market via an Aggregator. The model also allows the management of PV-
battery systems to take the most advantages of them. Figure 1 presents a scheme of the
proposed approach.
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Figure 1. Proposed approach.

As can be seen in Figure 1 the proposed approach considers an energy community,
a retailer and wholesale electricity market, an Aggregator, and the main grid. Prosumers
constitute the energy community, and each of them can be equipped with PV panels and
storage units. Prosumers can purchase electricity in the retail market and wholesale market,
and also sell its electricity to the main grid and, also in the wholesale market. To participate
in the wholesale market, a minimum quantity of participation is needed, to overcome
this issue, an Aggregator represents the energy community in the wholesale market. The
Aggregator’s business is to buy and sell electricity in the wholesale market, receiving each
prosumer’s fee. As main contributions of this work, the following aspects are highlighted:

e An optimization model that jointly solves the minimization of the operating costs
(energy usage) of an energy community and the optimal participation of an Aggregator
in the Spot market and intraday sessions.

e A real scenario (prices and condition of participation) is modeled considering the
Portuguese retail market and MIBEL wholesale electricity market.
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e A thorough analysis of different case studies, demonstrating interesting insights on
the importance of Aggregator participating in the wholesale electricity market.

e A consumer-centric approach that can bring empowerment of small electricity end-
users in the power systems.

The rest of the paper is organized into five different sections. Section 2 presents
the participation conditions in the MIBEL wholesale market and Portuguese distributed
generation installation options. The mathematical formulation of the model is explained in
Section 3. In Section 4, the case studies and respective characterization are presented. The
achieved results using the proposed model in the case studies are presented in Section 5.
Finally, conclusions and future works are drawn in Section 6.

2. Legal Framework

This section presents the legal framework to participate in the wholesale market
and rules imposed by the Portuguese legislation to install distributed generation in end-
consumers facilities.

2.1. MIBEL Operation

As most wholesale electricity markets in Europe, MIBEL is divided into day-ahead
and intraday sessions. MIBEL also has a particularity for trading electricity in future
markets. The asset (electricity) may not require physical delivery, and the negotiation is
considered for a later date.

Considering the day-ahead spot market, the players should submit their bids until the
gate close (12:00 of day d), after that they cannot modify their bids. Two different types of
bids are available, one from the demand side and the other from the generation side, each
of these types of bids is comprised of a price and energy volume for a specific hour. The
equilibrium between the demand curve and generation curves determines the price and
the volume transacted in each hour of the day ahead spot market. Figure 2 presents the
negotiation options in the MIBEL market. The day-ahead spot market is available for 24 h.
The MIBEL market option in intraday has six different sessions, represented in Figure 2.
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Figure 2. Negotiation options in the MIBEL market.

The intraday sessions have the same day-ahead operation mode, but the bids process
submissions have different times. In the six different sessions, presented in the Figure 2,
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the agents can adjust their generation and consumption schedules to adapt to the new
forecasts or unpredicted events.

The MIBEL wholesale market contains two different operators, the OMIE and OMIP.
OMIE represents the market operator for the management of day-ahead and intraday
electricity markets of the Iberian Peninsula. OMIP corresponds to the market operator for
the derivatives exchange energy market, namely, futures, forwards, swap and options. The
stock associated with these contracts is electricity and natural gas. In the MIBEL market,
only physical agents located in Portugal and Spain can participate. Due to the physical
restrictions of interconnection between the two countries, there may be a separation from
the wholesale market, and each country can have a different electricity price.

2.2. Distributed Generation in Portugal

According to the Decreto-Lei n.°153/2014, 2014 [14] (Portuguese regulation) there are
two types of distributed generation in consumers facilities the UPP (Portuguese acronym
for units of small generation) and UPAC (Portuguese acronym for units of small generation
for self-consumption). UPP facilities are dedicated to electricity generation from renewable
sources using only one generation technology, where the connection to the main grid is
equal to or less than 250 kW. All the electricity generated must be sold in full to the main
grid, but must be equal to or less than 50% of the consumer’s electricity consumption.
Figure 3 presents typical UPP connection schemes.

Production meter Production meter

E_.

Consumption meter Bidirectional meter

 —

Main Grid

A B

(@) (b)

Figure 3. UPP schemes, (a) Two unidirectional meters, and (b) One unidirectional and one bidirectional meter.

Figure 3a meters only accepted unidirectional power flows, the production has a
meter, and the consumption has another. Figure 3b has two meters, but one of them is
only for production, the other is bidirectional and allows the power flow in both directions.
Three different categories of UPP are available. Category I consists of producers that
install a small generation unit, category II comprises producers with a small generation
unit and an electric vehicle charging station, and category III represents producers with
a small generation unit and solar thermal accumulator. Portaria n.” 80/2020 [10] defines
45 EUR/MW (0.045 EUR/kW) as the reference tariff that corresponds to the payment that
producers receive from each unit of electricity exported to the grid.

UPAC is defined as being electricity generation facilities from renewable and non-
renewable sources used primarily for self-consumption, with the possibility of connection to
the grid for sale. The surplus energy from self-consumption can be traded in the wholesale
market with the help of an Aggregator. Figure 4 presents typical UPAC connection schemes.

In Figure 4a there are two different meters, and the generation power installed is
greater than 1.5 kW. When the generation power installed is equal to or less than 1.5 kW
the facility only needs a single meter as seen in Figure 4b where there is no possibility of
exporting electricity to the grid.
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Figure 4. UPAC schemes, (a) One unidirectional meter, and (b) One unidirectional meter and one bidirectional meter.

3. Proposed Model
3.1. Model Overview

The proposed model considers an energy community that intends to minimize the
costs of electricity usage, and able community members to buy and sell electricity in
different markets. The model considers the Aggregator operation, which is responsible
for representing the energy community in the wholesale market (day-ahead and intraday
sessions) and also for determining the best scheduling the usage of the battery storage
system installed in each household. The retail market is used by households as a backup
where they can purchase electricity when needed, or when wholesale market participation
is not advantageous. The public network is responsible for absorbing the feed-in electricity
provided by each household when the Aggregator cannot sell in the wholesale market.

The considered wholesale market refers to the MIBEL operator which is divided
into day-ahead and 6 intraday sessions. The Aggregator is responsible for complying
with the rules imposed for participation in the wholesale market. The presented model
considers that a minimum value of electricity is required to participle in the wholesale
market, according to MIBEL participation rules. For the energy community in the study, the
minimum can be reduced. The Aggregator has other methods to obtain more electricity for
participation when it is required. The rule imposed by the market operator regarding the
participation in intraday sessions is only valid if the participation in the wholesale market,
is not considered in this model, however, the Aggregator has to comply with this rule.

3.2. Formulation

Equation (1) presents the objective function of the problem. The objective function
minimizes the sum of the total operating costs of all energy community members.

minimize Obf = SMcosts + IDScosts + Reosts + AGGincome 1)

where, SM_osts represents the spot market costs, IDS.osts represents the intraday sessions
costs, Repsts represents the retailer’s costs and AGG;,com, represents Aggregator income.
Equation (2) presents the calculation of the cost for the spot market.

Ni Nt

SMeosts = Y _ Z(( M buy plsM Se”) X nftM) )

i=1t=1

where, pis ; by Y represents the electricity purchased in the spot market, pSM sell

SM

represents
the electricity sold in the spot market, 717, corresponds to the price of electricity in the
spot market, i is the respective player, ¢ the respective period, Ni the numbers of players,
and Nt the numbers of periods. Only one option of sell or buy can be applied at the same
time. Equation (3) presents the calculation of the costs in intraday sessions.

Ni Nt Ns

IDSoss = Y, 3, 1o ((pige ™ = pilif =) i) ©

i=1t=1s=
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IDS buy
where, p; ;¢ Y represents the electricity purchased in intraday sessions, pI D sell

the electricity sold in the intraday session, 7t/ ? S corresponds to the price of electricity in

intraday session, s is the respective session and Ns represents the number of intraday
sessions. Equation (4) presents the costs in the retailer market.

represents

Ni Nt

Reosts = Z Z (lethuy X 7T1t pthrld sell FIT) + FixedCosts; (4)
i=1t=

where, p ;i t " represents the electricity purchased in the retail market, nTou

Grid sell

is the price of

purchased electricity denominated as time of use tariff, p;’/
FIT 4

represents the electricity

sells in the grid, 77; /" is the price of selling electricity to the grid denominated the feed-in
tariff and F zxedCOSts, represents the fixed costs that users should pay to retailers for the
supply guarantees. Equation (5) presents the Aggregator income calculation.

Ni Nt

SM b IDS b
Gincome = Z Z( Yt p?i{\/f I+ Pits Yt Pﬁ? SEU) x Fee\GC ®)
i=1t=1
where, FeeACC represents the fee in EUR per Kilowatt that the Aggregator charges for

the aggregated user participation in the spot market and intraday sessions. Equation (6)
presents the balanced equation for each user.

Ns
en SM bu IDS bu R bu
R TR W RS
(6)
pfotad P PSM sell 4 Z pzl?ss sell 4 pGrzd sell

Vi € Ni, VteNt

where, p$ ; t " represents the electricity generated, pdd’ represents the electricity discharged

from the battery, pl"t“d represents the load of each end-user, and p¢" is the electricity that

charges the battery. Equations (7)—(9) represent the constraints applied to the spot market
for each user.

p?iw buy < xSM buy o plsfw maxbuy i e Ni, Vt € Nt )

pi! sell < e sell pit max sell /i € Ni, Vt € Nt 8)

P 4 xSMll < 1 Vi € Ni, Vi € Nt 9)

where, xle\/I by represents a binary variable for the individual spot market buy action,

SM max buy
it
spot market, x;
SM max sell

represent the maximum individual limit for each user to buy electricity in the
SM sell represents a binary variable for the individual spot market sell action

and p7, represents the maximum individual limit for each user sell electricity in the
spot market. Equation (9) imposes that it is only possible to buy or sell in the spot market.
Equations (10) and (11) represent global constraints for participation in the spot market.

Ni
LSMby < 37t s XM g L SM b s (1 xPM) v e e (10)

i=1

[SMsell < Z pSM sell XtSM sell | 1 SMsell (1 . XtSM sell>IVt c Nt 11)

i=

where, LM P represents the minimum amount of electricity necessary to purchase elec-

tricity in the spot market, th M buy represents the global binary variable to participate in
the spot market, LSM sell represents the minimum amount of electricity necessary to sell
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electricity in the spot market and X;M ¢/ represents the global binary variable to partic-

ipate in the spot market. Equations (10) and (11) allows that when each binary variable

Xf M buy and XtSM sell js active, the minimum amount should be respected. In the other case,

the constraint is also satisfied. Equations (12)—(14) represent the constraints applied to the
intraday sessions for each user.

(DS < DS pIDS P o AIDS i€ Ni, Vi€ Nt, Vs € Ns  (12)

p{?ss sell < let)sS sell plﬂt)ss max sell . AIDS Vi € Ni, Vt € Nt, Vs € Ns (13)

(DS bw  (IDS sl < 1,Vi € Ni, Wt € Ni, Vs € Ns (14)

where, xll?ss buy represent the binary variable for the individual intraday session buy
action, pll?ss max buy represents the maximum electricity amount limit to buy in intraday

sessions, A{ DS is an input binary parameter that indicates the availability of each intraday

IDS sell

session, x; represent the binary variable for the individual intraday session sell

action and pl DS max sell yopresents the maximum electricity amount limit to sell in intraday

sessions. Equatlon (14) imposes that it is only possible to buy or sell in the intraday session.
Equations (15)—(18) represent global constraints for participation in intraday sessions.

Ni
LiDS buy < Z p{DS buy % thfs buy + LIDS buy (1 . XIDS huy),vt €Nt ¥scNs (15)

it,s t,s
i=1

LIDS sell < mes sell o XIDS sell | LIDS sell (1 _ th,ls)s sell),Vt €Nt Vs Ns (16)

it,s
i=1

Ns

Y X[ D8P <1, Vi € Nt 17)

s=1

Ns

Yo x{Dosdl <1, vt e Nt (18)
where, LIDS buy represents the minimum amount of electricity needed to purchase elec-
tricity in intraday sessions, thfs buy represents the global binary variable to participate

in the intraday session to purchase electricity, LIPS *// represents the minimum amount

of electricity necessary to sell in intraday sessions, XtI,ISj S sell represents the global binary
variable to participate to sell in the intraday session. Equations (15) and (16) performs the
same process of Equations (10) and (11). Equations (17) and (18) allow the sale or purchase
of electricity in one of the intraday sessions. Equations (19)—(21) represent the constraints
applied to the retail market for each user.

pftb”y < xR Y letm“x bw i e Ni, Vt € Nt (19)

poird sell < xGrid sell s porid maxsell i ¢ Ni, Vt € Nt (20)

x4 xGrid sl < 1, € Ni, Yt € Nt (21)

where, ibuy represents the individual variable for the retailer by action, pftmux buy rep-

resents the maximum limit to purchase electricity from a retailer, xG”d sell

represents the
individual variable to sell electricity in the grid, pG”d max sell represents the maximum

quantity to sell electricity in the grid. Equation (21) imposes that it is only possible to buy
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in the retail market or sell to the grid. Equation (22) represents the constraints applied to
buying and selling electricity in different markets in the same period.

SM buy + Z xIDS sell < 1,Vi € Ni, Vt € Nt (22)
xle\/I buy + xiG,trid sell < 1,Vi € Ni, Vt € Nt (23)
NS DS
lets L Grzd sell < 1Vi € Ni, Vt € Nt (24)
s=1
NS ps
lets W SMsell<1v1€Nl Vt € Nt (25)
s=1
KR b”y—f— Z xll?s sell <1,Vi € Ni, Vt € Nt (26)
s=1
Rh”y—i—xsf\/“e”<1 Vi € Ni, Vt € Nt (27)

Equation (28) represents the energy storage system balance.

plit = plit, 4+ pdt oyt — plih x ,”,,VIGNI Vt € Nt (28)
l

where, pB“t represents the status of the battery, nfh represents the efficiency of a charge

action, and ndﬁh represents the efficiency of the discharge action. Equations (29)—(31) present

constraints applied to the battery charge and discharge actions.

plt pCh max lt,Vz € Ni, Vt € Nt (29)
pflfh pdCh max ffh,‘w € Ni, Vt € Nt (30)
xlt+xf§h<1Vz€Nz Vt € Nt (31)

where, p”h "aY represents the maximum value for charge action, x{ represents the binary

variable for the charge action, pdCh max

dch

represents the maximum Value for the discharge

action and x{{" represents the binary variable for the discharge action. Equation (31)
presents the constramts applied to control the charge and discharge of the batteries in
the same period, Equations (32)—(40) present the limits for the continuous variables of
the problem.

0 < pit MY < pIM Y i Ni, Yt € Nt (32)

0 < ppMsell < poMmaxsell i e Ni, Vt € Nt (33)

0< pll?ss buy < let)sS max by ,Vi e Ni, Vt € Nt, Vs € Ns (34)
0 < pipssell < pIDSmaxsell i ¢ Ni, Vt € Nt, Vs € Ns (35)
0< pi"™ < pi "M Vi€ Ni, Yt € Nt (36)

0 < pfyid sl < pGrid maxsell \yj ¢ Nj, Vt € Nt (37)

0 < pich < plchmax i € Ni, Vt € Nt (38)

0 < pit < pthmax i e Ni, Wt € Nt (39)

pBatmin < pBat < pBatmax i ¢ Ni, Vt € Nt (40)
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where, pP# ™i" represents the minimum possible limit for the battery level and pB# ™

represents the maximum possible limit for the battery level. Equations (41)—(52) represent
the minimum and maximum limit for the binary variables.

0<xM"™ <1,vie Ni, Vi e Nt (41)
0<xpMsl <1,vie Ni, Vt € Nt (42)

0< x;MP < 1,vt e Nt (43)

0 < XyMsel <1 vt € Nt (44)
0<x/rs ™ <1,Vie Ni, Vt € Nt, Vs € Ns (45)
0 < x/Po sl < 1,Vi € Ni, Vt € Nt, Vs € Ns (46)
0< X;0%" < 1,Vt € Nt, Vs € Ns (47)

0 < X{PSsdl <1,Vt € Nt, Vs € Ns (48)
0<x\"™ <1,¥i € Ni, ¥t € Nt (49)

0 < xGdsdl < 1,Vi € Ni, Vt € Nt (50)

0 < xf <1,Vi € Ni, Vt € Nt (51)

0 < xf" <1,Vi € Ni, Vt € Nt (52)

4. Case Study

Three different case studies are created to evaluate the application of the proposed
model. The objective is to compare the market participation results of prosumers when
considering an all-encompassing approach (case study 1 (CS1)) that includes the market
opportunities for an installation without considering the rules imposed to both UPP and
UPAC, the UPP—case study 2 (CS2)) and UPAC—case study 3 (CS3), according to the
Portuguese regulation; and. Table 1 presents an overview of the considered case studies.

Table 1. Case study conditions overview.

CS2 CS3
CS1
uPP UPAC
Buy Retailer Yes Yes Yes
Scenario 1 Sell RESP * Yes All No
Self-consumption Yes No Yes
Retailer Yes Yes Yes
Buy Spot Yes Yes Yes
MIBEL via AGG
. Intra-Day Yes Yes Yes
Scenario 2
RESP * Yes Yes No
Sell Spot Yes No Yes
MIBEL via AGG
Intra-Day Yes No Yes
Self-consumption Yes No Yes

* public electricity network.

As seen in Table 1 the case studies are CS1, CS2, and CS3, in all case study two different
scenarios are implemented, one considering the normal operation without the possibility
of trading electricity in the wholesale market (basis approach), and one considering the



Energies 2021, 14, 3747

11 of 20

use of an Aggregator to trade electricity in the wholesale market (proposed approach).
The UPP and UPAC case studies comply with the Portuguese legislation in both scenarios
(basis and proposed approach). Thereby, in total, six different scenarios are simulated.

The all-encompassing case (CS1) considers the formulation presented in Section 3.2,
in which there are no restrictions related to UPP or UPAC for trading electricity. The
specificities of UPP (CS2) and UPAC (CS3) conditions require some modifications in the
formulation, as follows.

In CS2, the UPP conditions explained in Section 2.2 are simulated. To model the UPP
conditions, Equation (6) must be modified. Equations (53) and (54) replace Equation (6).

Ns

dch SM bu IDS bu R bu load hoy. .

Py Y Y b iy = P+ il Vi€ Ni, Vi e Nt (53)
s=1

Equation (53) is very similar to Equation (6), but as UPP must inject into the grid all
generated electricity the power generated pfin and piGt”d sell don’t take part of the energy
balance. Equation (54) imposes the condition that all electricity generated should be injected

into the grid.
gen

Pi

In the case of UPAC (CS3) the electricity should be used for self-consumption or can

be sold in a wholesale market considering an aggregated entity. Equation (55) replaces
Equation (6) of the generic formulation.

= pcrdsell i e Ni, Vt € Nt (54)

Ns
gen dch SM buy IDS buy Rbuy
Pig TP<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>