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Abstract: The efficiency of high-harmonic generation (HHG) from a macroscopic sample is
strongly linked to the proper phase matching of the contributions from the microscopic emitters.
We develop a combined micro+macroscopic theoretical model that allows us to distinguish the
relevance of high-order harmonic phase matching in single-layer graphene. For a Gaussian
driving beam, our simulations show that the relevant HHG emission is spatially constrained to
a phase-matched ring around the beam axis. This remarkable finding is a direct consequence
of the non-perturbative behavior of HHG in graphene—whose harmonic efficiency scaling is
similar to that already observed in gases— and bridges the gap between the microscopic and
macroscopic HHG in single-layer graphene.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since its discovery in the late 80s [1,2], high-harmonic generation (HHG) has turned out to
be a remarkably rich process in nonlinear optics. The interaction of intense femtosecond
laser pulses with an atomic, molecular, or solid target drives electrons to a non-perturbative
dynamics, resulting in the generation of coherent high-frequency radiation, extending from
extreme ultraviolet to soft x-rays [3]. High-frequency harmonics are emitted in the form of
ultrashort pulses, with temporal durations at the attosecond timescale [4,5].

While the vast majority of studies and applications of HHG have been developed in the context
of atomic and molecular targets, its demonstration in solids targets [6] has boosted a considerable
interest in the recent years. In atoms and molecules, HHG is well understood in semiclassical
terms [7]: an electronic wavepacket is ejected from its parent atom through tunnel ionization
driven by the laser field. Once in the continuum, the electron is accelerated by the field. Upon
reversal of the field amplitude, the electron is driven back to the ion, where it recollides, releasing
its kinetic energy as high-frequency harmonics of the driving field. HHG in solid systems follows
similar physical mechanisms [8,9]. For the case of finite-gap solids, ionization is replaced by
tunnel excitation from the valence to the conduction band, and interband harmonics are radiated
upon electron-hole recombination [9]. Up to now, HHG has been observed in different finite-gap
solids, such as ZnO, MoS2, ZnSe, GaSe or SiO2 [6,10–14]. Low-dimensional systems, as
single-layer graphene, have also been recently demonstrated to produce high-order harmonics
[15] where, interestingly, tunnel excitation is replaced by an electron-hole pair creation from the
non-adiabatic crossings near the Dirac points [16]. Such mechanism leads to the emission of a
complex set of electron-hole trajectories responsible for HHG [16–18], very different to those in
bulk solids [19]. In addition to the interband contributions, solid systems also present HHG from
intraband dynamics [9]. Nowadays many theoretical works have explored HHG in solids at the
microscopic level to gain understanding into these dynamics [9,16,20–25], probing that HHG can
serve as a unique spectroscopic tool to unveil the structural dynamics of solid materials [13,14].

One of the potential advantages of HHG from solids is the capability to produce brighter
harmonics, due to the larger number of emitters involved. The efficiency of the macroscopic
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harmonic emission, however, depends crucially on the phase matching of the microscopic
contributions. Phase matching in HHG has been extensively studied in atoms and molecules
[26–33], and several theoretical methods have been proposed [34–43]. There are many examples
where the emitted harmonic radiation is controlled tuning only macroscopic parameters, such as
the isolation of attosecond pulses [44,45], the generation of circularly polarized harmonics [46,47],
lenless focusing of high-order harmonics [48,49], or the generation of structured harmonics with
custom orbital angular momentum or self-torque properties [50–52], among others. However, up
to now few works have theoretically studied the macroscopic picture of HHG in solids. Floss and
coworkers [53] coupled ab-initio simulations of the time-dependent density functional theory with
the Maxwell equations to study macroscopic effects of HHG in diamond along the propagation
direction. The primary effect observed in the macroscopic signal was the production of a cleaner
harmonic spectra, an effect that is universally observed in experiments, and which has been
previously invoked phenomenologically in theoretical simulations by including short dephasing
times [9,13,24]. Moreover, macroscopic HHG in Dirac-Weyl materials such as single-layer
graphene, where excitation takes place through the Dirac points, remains unstudied.

One could think that microscopic HHG is a reasonable approximation to the target emission
for single-layer graphene, as the propagation length is at the atomic scale. However, HHG
is a non-perturbative process and, therefore, the harmonic emission depends strongly on the
driving field’s intensity. In particular, the harmonic phase of the microscopic emission is
substantially affected by the driver’s intensity profile. Therefore, in the non-perturbative case,
the concept of harmonic phase matching, and the associated coherence length, must be extended
to describe also phase differences in the plane transverse to propagation [54]. It has been
demonstrated that transverse phase matching in atomic gases plays a relevant role to enhance
the HHG efficiency [54], and to shape the temporal [55] or spatial properties [48,49,56] of the
high-order harmonics—specially for structured driving fields—, as it is the case when they carry
orbital angular momentum [50]. Transverse phase matching should be thus expected to be of
paramount importance in HHG in low-dimensional solids, for orthogonal driver incidences,
where longitudinal propagation distances are reduced to the atomic size.

In this work we develop theoretical simulations of macroscopic HHG in single-layer graphene,
that combine the numerical integration of the time-dependent Schrödinger equation and the
electromagnetic field propagator. Our simulations demonstrate that phase matching plays a
relevant role in the macroscopic spectrum, despite the two-dimensional nature of graphene. As
a main result, we demonstrate that macroscopic HHG in single-layer graphene irradiated by a
Gaussian driving beam is effectively confined to a phase-matched ring. This spatial confinement
follows from the non-perturbative scaling law of the harmonic efficiencies with the driver intensity,
thus being a particular feature of HHG, not found in other photon conversion processes. We
thus establish a fundamental connection between the non-perturbative strong-field physics at the
microscopic level and the macroscopic HHG in single-layer graphene. Our numerical method and
our results pave the route for the complete theoretical study of HHG in other solid systems—such
as Dirac-Weyl materials—, or in other configurations—such as the use of structured driving
beams—that require the description of the macroscopic picture.

2. Microscopic vs macroscopic HHG in single-layer graphene

2.1. Theoretical method: time-dependent Schrödinger equation coupled with the
electromagnetic field propagator

Our method integrates both the microscopic and macroscopic description of HHG in single-layer
graphene. The calculations at the microscopic level combine the tight-binding description of the
valence and conduction bands in graphene with the solution of the time-dependent Schrödinger
equation, as depicted in [16].
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We consider a nearest-neighbor tight-binding model to describe the electron dynamics in
the periodic potential of graphene. The energy spectrum of the field-free hamiltonian, H0,
consists of two bands, the conduction band (+) and the valence band (-), with energy dispersion
ϵ±(k) = ±γ |f (k)| (γ = 2.97 eV) in the Brillouin zone, see Figs. 1(a) and (b), with

f (k) = e−iakx/
√

3
(︃
1 + 2ei

√
3akx/2 cos

aky

2

)︃
, (1)

where a = 2.45. The Bloch-state wavefunctions can be expressed as:

Φ
±
k (r) =

√︃
1
2

eik·r ⎛⎜⎝
±1

e−iφ(k)
⎞⎟⎠ , (2)

where ϕ(k) is the argument of the complex function f (k). The time-dependent wave function can
then be expressed as a superposition of the eigenstates described by Eq. (2):

Ψ(r, t) =
∫
Ψk(r, t)dk =

∫ [︁
C+(k, t)Φ+k (r) + C−(k, t)Φ−

k (r)
]︁

dk. (3)

Fig. 1. Scheme of the micro+macroscopic HHG method to compute HHG in single-layer
graphene. a) Scheme of graphene’s first Brillouin Zone in the reciprocal space. b) Graphene’s
band structure within the nearest-neighbor tight-binding approximation. The Fermi level
is set to zero. The conduction and valence bands correspond to positive and negative
values of energy, respectively. Dirac points K and K’ are degenerated in energy at the
Fermi level. c) Interaction geometry considered. The driving field propagates along the
z-direction, perpendicularly to the graphene layer, where high-order harmonics are generated.
Afterwards, the high-order harmonics are propagated to a far-field detector placed at position
rd from the center of the layer (dashed green line).

The interaction of the driving laser pulse E(t) is described by the time-dependent Hamiltonian
H(t) = H0 + Vi(t) and Vi(t) = −qeE(t) · r is the coupling with the electric field, in the dipole
approximation, qe being the electron charge. We consider a driving field linearly polarized and
aimed perpendicularly to the graphene layer, therefore the vector field E(t) is included in the
graphene plane. If the duration of the pulse is less than the characteristic carrier scattering time
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∼ 10-100 fs [57–59], the electron dynamics can be described by the time-dependent Schrödinger
equation [16]:

iℏ
d
dt

C+(κ t, t) = [ϵ+(κ t) − E(t) · D(κ t)]C+(κ t, t) − E(t) · D(κ t)C−(κ t, t), (4)

iℏ
d
dt

C−(κ t, t) = [ϵ−(κ t) − E(t) · D(κ t)]C−(κ t, t) − E(t) · D(κ t)C+(κ t, t), (5)

where ℏκ t = ℏk − qeA(t)/c, being A(t) the vector potential and c the speed of light, and
D(k) = (qe/2)∂ϕ/∂k is the interband matrix element , proportional to the Berry connection.
We assume all states of the valence band occupied and all states of the conduction band empty
before the interaction with the driving pulse, so we take C−(k, 0) = 1 and C+(k, 0) = 0 as
initial conditions. The harmonic emission is then computed from the total dipole acceleration,
a(t) = d2

dt2 d(t), with [16]

d(t) = ⟨Ψ|qer|Ψ⟩ = iqe
[︁
C∗
+(κ t, t)∇κt C+(κ t, t) + C∗

−(κ t, t)∇κt C−(κ t, t)
]︁
+

D(κ t)
[︁
C∗
−(κ t, t)C+(κ t, t) + C−(κ t, t)C∗

+(κ t, t)
]︁

.
(6)

The intraband contribution to the total acceleration is computed as

a↔(t) =
q2

e
ℏ2 E(t)

∫ [︃
|C+(κ t, t)|2

∂2ϵ+(κ t)

∂k2 + |C−(κ t, t)|2
∂2ϵ−(κ t)

∂k2

]︃
dk. (7)

In order to take into account macroscopic effects of HHG, one should solve the wave equation for
the electric field E,

∇2E −
1
c2
∂2

∂t2
E =

4π
c2
∂

∂t
J, (8)

where J is the current density. We will adopt a similar strategy as in [41], whose results
have been validated with experiments in HHG in atomic and molecular gases (as for example
in Refs. [3,44,46,47,51,52,54,55,60]). We consider, therefore, the formal integral solution:
E(r, t) = E0(r, t) + Ei(r, t), where E0(r, t) is the laser field, as it propagates in vacuum, and
Ei(r, t) is the field radiated by the accelerated charges in the target,

Ei(r, t) = −
1
c2

∫
dr’

1
|r − r’|

[︃
∂

∂t′
J(r’, t′)

]︃
t′=t−|r−r’ |/c

. (9)

The far field radiated by the jth charge in the layer, reaching the detector placed at rd (see
Fig. 1(c)), can be written as,

Ej
i(rd, t) =

1
c2

qj

|rd − rj(0)|
sd ×

[︁
sd × aj(t − |rd − rj(0)|/c)

]︁
, (10)

where aj is the charge’s acceleration, evaluated at the retarded time, and sd is the unitary vector
pointing towards the detector. We discretize the layer into a random distribution of spatial
regions of size much smaller that the driver’s wavelength, where the driving field can be assumed
homogeneous. These elemental regions, however, still include a number of graphene primitive
cells large enough to approximate the Brillouin zone to a continuum. Therefore, the macroscopic
signal radiated by the graphene layer can be written as the superposition of the individual
contributions Ei(r, t) =

∑︁N
j=1 Ej

i(r, t), corresponding to each of the regions. The number of
elemental regions considered must be large enough to ensure convergence of the radiation at the
detector. Note that for a two-dimensional target, Eq. (9) corresponds to the Huygens-Fresnel
diffraction formula.
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2.2. Microscopic vs macroscopic results

We consider as driving field a linearly polarized 3 µm-wavelength Gaussian beam of 30 µm
beam waist, aimed perpendicularly to the graphene layer, with a peak intensity of 3.5 × 1012

W/cm2, well below the threshold damage of graphene [61]. The driving field is modelled with a
sin2 envelope of 8 cycles temporal length—corresponding to 28.8 fs full width at half maximum
(FWHM)—smaller than the decoherence time due to carrier collisions [57–59].

The microscopic HHG spectrum corresponding to the driving field at the beam center, and
obtained from Eq. (6), is shown in Fig. 2(a) (blue line). It presents a non-perturbative plateau
of harmonics extending towards a cutoff frequency. As commented before, the generation of
this high-frequency radiation is understood in terms of interband and intraband transitions.
The contribution of the intraband transitions, calculated from Eq. (7), is shown in the cyan
line. It can be concluded, therefore, that interband transitions are the main responsible for the
generation of the high-frequency harmonics. As studied in [16], interband HHG is produced by
electron-hole pairs created during the non-adiabatic crossings near the Dirac points, followed by
their recombination at the emission time. The electron-hole pair can follow complex trajectories
before recombining, which gives rise to unstructured spectra.

We have computed the macroscopic response considering the graphene layer at the focus of
the Gaussian beam, where the driving field exhibits a transverse intensity profile with uniform
phase. The on-axis detected coherent superposition of the microscopic contributions introduced
in Section 2.1 is presented in filled-red in Fig. 2(a). In order to highlight the role of phase
matching, we also include in the figure the spectrum corresponding to the incoherent addition
of the microscopic fields (black line), where the harmonic phase is artificially ignored when
obtaining the far-field emission. The coherent addition cleans the spectrum, showing clearly
visible harmonic peaks, an effect that has been also observed theoretically in diamond [53],
and is universally observed in experiments of HHG in solids [6,10–12]. The coherent addition
results also in a weaker harmonic signal compared with the incoherent addition, through all
the HHG spectrum, thus demonstrating partial destructive interference due to phase mismatch.
Also, the signal at odd harmonic frequencies shows much higher degree of coherence than
that of the non-harmonic frequencies. To further show the cleaning of the HHG spectrum
obtained when considering transverse phase-matching, we present in Figs. 2(b) and 2(c) the time-
frequency analysis for the macroscopic (coherent addition) and microscopic cases, respectively.
Though the family of trajectory contributions to HHG in graphene is very complex [16,18], the
temporal emission is substantially cleaned when considering the macroscopic result (Fig. 2(c)).
The comparison between microscopic and macroscopic cases demonstrates the relevance of
considering phase matching in single-layer graphene to reproduce the harmonic signal detected
in an experiment.

In addition, the intraband contribution to the coherent macroscopic response is shown in dark
red in Fig. 2. Similarly to the microscopic response, the macroscopic response of the high-order
harmonics is dominated by the interband transitions.

For the sake of completeness we show in Figs. 2(d) and 2(e) the far-field spatial distribution
of the HHG spectrum corresponding to the coherent and incoherent macroscopic additions,
respectively. Note that the profiles at zero divergence correspond to the HHG spectra shown in
filled-red and black in Fig. 2(a), respectively. The comparison between the spatial profiles reveals
that the coherent macroscopic addition results in a much narrower emission of the HHG radiation.
In addition, the coherent macroscopic harmonics exhibit a divergence that decreases with the
harmonic order, a direct consequence of the non-perturbative behavior of HHG in graphene, as
we demonstrate in the next section.
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Fig. 2. (a) Comparison between the microscopic and macroscopic HHG spectrum in
single-layer graphene irradiated by a 3 µm in wavelength, 28.8 fs FWHM, and 3.5 × 1012

W/cm2 peak intensity Gaussian beam (30 µm beam waist). The microscopic spectrum
obtained at the center of the Gaussian profile is shown as a blue line, the macroscopic HHG
spectrum resulting from the coherent (incoherent) addition of the microscopic contributions
are shown in filled-red (black line). The spectrum in the microscopic case has been rescaled
to the peak at the fundamental frequency of the macroscopic coherent addition. The intraband
contributions are shown in solids lines for the microscopic (cyan) and coherent macroscopic
(dark red) cases. Time-frequency analysis (log. scale) of the (b) coherent macroscopic
and (c) microscopic harmonic emission, performed with a spectral Gaussian mask of width
3ω0, where ω0 is the frequency of the driving laser pulse. The far-field intensity divergence
profile is shown in panels (d) and (e) for the coherent and incoherent macroscopic additions,
respectively.
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3. Phase-matched ring and atom-like features in non-perturbative harmonic gen-
eration from graphene

In order to gain insight into the build-up of the the macroscopic harmonic signal presented in
Fig. 2, we now analyze the high-order emission at different positions along the graphene layer.
The qth-order harmonic far-field emission detected on-axis can be found from the Fraunhofer
integral

U′
q =

2πeikz

izλq

∫
Uq(ρ)ρdρ, (11)

where Uq(ρ) is the microscopic harmonic field emitted at each point of the graphene slab,
proportional to the dipole acceleration, Eq. (6). Uq(ρ) inherits the cylindrical symmetry from the
driving field, a Gaussian beam. We present in Fig. 3 the contributions of the different radii in
Eq. (11), Uq(ρ)ρ, in amplitude and phase, i.e., the near-field harmonic emission weighted by the
distance to the beam center. Remarkably, Fig. 3(a) shows that the most prominent high harmonic
field amplitudes (orders above the 13th in the figure) are radiated from a limited, annular, region
around a radius that we denote as ρmax. However, the overall efficiency of this ring depends
crucially on the degree of phase matching around it. We plot, therefore, in Fig. 3(b) the phase
distribution of Uq(ρ) at the sample. Note that, for the higher-order harmonics, the phase variation
shows two distinct regions, slower for smaller radii and faster for larger radii. Interestingly
enough, the region enclosed by the ring of maximal amplitudes, ρmax, belongs to the former one,
ensuring a smooth variation of the phase and, therefore a proper phase matching condition.

Fig. 3. (a) Harmonic intensity contribution Iq(ρ)ρ, and (b) harmonic phase, ϕq(ρ), of each
spatial ring at the graphene layer, considering a Gaussian driving beam profile with beam
waist w0 = 30 µm. The harmonic intensity and phase are given by the Fourier transform of
Eq. (6) for the same driving pulse parameters as in Fig. 2. The orange solid line indicates the
position of the radius of maximum harmonic intensity contribution, ρmax = w0/

√︁
2p = 11.6

µm.

The presence of a phase-matched ring of similar radius for the high-harmonic orders is, in
fact, a consequence of the non-perturbative character of the HHG process. To evidence this, we
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will first demonstrate that microscopic HHG follows the same basic non-perturbative features
in graphene as in gases. This is a surprising fact since, as mentioned before, the underlying
mechanism of HHG in graphene differs in fundamental aspects from that in atoms. On one
hand, the electron-hole pair creation is connected with the adiabatic crossing in the Dirac points,
instead of tunnelling . On the other hand, harmonics are typically generated by a much more
complex set of electron-hole trajectories. Nevertheless, we next see that the amplitude of the
harmonics generated at the graphene target can still be approximated using a description valid for
atoms [62],

Uq(ρ) ∝ |U0(ρ)|
p ei[qφ0(ρ)+ϕq(ρ)], (12)

where q is the harmonic order, U0(ρ)eiφ0(ρ) is the driving field amplitude, φq(ρ) is the non-
perturbative intrinsic phase, and p<q is the power-scaling factor between the harmonic and the
driver intensity, for harmonics in the plateau region. In the perturbative case, a similar relation
would hold, but with the absence of the intrinsic phase and replacing the scaling factor p by the
harmonic order q. Therefore, the non-perturbative nature of HHG is connected with a constant
scaling exponent, p, and the additional intrinsic term in the phase.

In order to estimate the behaviour of the power scaling in graphene, we present in Fig. 4(a) the
intensity scaling of different harmonic orders (the 19th, 29th and 39th) with the driving field
intensity. The logarithmic fit represented in solid lines in Fig. 4(a) allows us to extract the power
scaling p, being 2.0, 3.4 and 3.6 for the 19th, 29th and 39th harmonics respectively. In Fig. 4(b)
we show the extracted power scaling as a function of the harmonic order for three different driving
intensities: 1.3 × 1012 W/cm2 (dashed red), 3.5 × 1012 W/cm2 (solid black, same as that used in
Fig. 2(a)), and 6.9 × 1012 W/cm2 (dashed blue). The grey solid line indicates the perturbative
power scale behaviour p = q. From the results presented in Fig. 4 we can clearly conclude that in
HHG in graphene the power scaling is clearly non-perturbative, p<q, lying between 2 and 4 in
the plateau region, close to the values reported for HHG in atomic gases [49,50,62,63].

Now we can estimate the position of the radius of maximum harmonic contribution, , introduced
in Fig. 3. Inserting Eq. (12) in Eq. (11), assuming a Gaussian profile for the driving field at the

target with waist w0, U0(ρ) = U0e
−

ρ2

w2
0 , and using Eq. (12), the radius of the ring with maximal

contribution to the integral Eq. (11) can be found as

∂

(︄
Up

0e
−p ρ2

w2
0 ρ

)︄
∂ρ

= 0 −→ ρmax =
w0√︁
2p

. (13)

Note that in the perturbative case (p = q) the radii would depend on the harmonic order. In
the non-perturbative case, however, p is constant and the high harmonics will be preferentially
emitted from the same annular region in the target. For the case shown in Fig. 3, the red line
corresponds to ρmax =11.6 µm for p =3.3.

The final HHG efficiency depends on the width of the annular region around ρmax for which
the microscopic emissions are properly phase-matched. We show in Fig. 5 the relative phase
of the harmonic emission near the ring of maximum efficiency, ϕq(ρ) − ϕq(ρmax), for the case
shown in Fig. 2(a). Note that we only show the phase values at the harmonic peaks, considering
as a reference the coherent addition (filled-red line) of Fig. 2(a). The green lines indicate the
radii for which the harmonic phase difference is ±π/2, relative to the emission at ρ = ρmax , i.e.
where the harmonic emission can be considered phase-matched.

The analysis of the intensity and phase profiles in Figs. 3 and 5 allows us to identify the width
of the phase-matched graphene ring. The relevance of this ring to the total harmonic emission is
illustrated in Fig. 6(a), where we show the HHG emission resulting from the whole graphene
layer (filled-red, same as that in Fig. 2(a)), and from rings centered at ρ = ρmax with thicknesses
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Fig. 4. (a) Intensity scaling of the 19th (yellow), 29th (pink), and 39th (green) harmonics
with the driving field intensity (log. scale), obtained through the microscopic calculation
of HHG in single-layer graphene. The solid lines indicate the fit for extracting the power
scaling pq. (b) Power scaling pq as a function of the harmonic order for 1.3 × 1012 W/cm2

(dashed red), 3.5 × 1012 W/cm2 (solid black, same intensity as in Fig. 2), and 6.9 × 1012

W/cm2 (dashed blue) driving intensities. The grey solid line indicates the perturbative power
scale behaviour pq = q.

Fig. 5. Relative phase of the harmonics with respect to the emission at ρmax (orange line).
The green lines show the boundaries of the phase-matched region around the circle of
maximum efficiency, with phase variation less than π/2 relative to that at ρ = ρmax, the
average is given by the blue-dashed lines.
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of 4 µm (green line) and 12 µm (purple line). These spatial regions are depicted in Fig. 6(b),
together with the beam waist of the driving beam (blue-dashed line). While the HHG spectrum
of the thin ring differs substantially from that of the whole layer, the thicker one exhibits an
excellent agreement. Note that 12 µm thickness is a fair approximation to the phase-matched
region identified in Fig. 5.

Fig. 6. HHG emission from the phase-matched graphene ring. a) Macroscopic coherent
HHG emission resulting from the whole graphene layer (filled-red), and from a ring centered
at ρ = ρmax with a thickness of 4 µm (green line) and 12 µm (purple line). These spatial
regions at the graphene-layer are depicted in panel b), where the beam waist of the driving
beam (w0 = 30 µm) is indicated by the blue-dashed line.

Finally, we note that the fact that all the harmonics are generated from the same annular region
in the graphene layer, implies that the far-field divergence of the harmonics decreases with the
harmonic order. This result, that is a consequence of the diffraction of a ring structure with
progressive shorter wavelength, was already observed in the results presented in Fig. 2(b).

4. Conclusion

We present a theoretical method to compute both microscopic and macroscopic HHG in solids,
similar to what has been used in atomic or molecular targets. We have applied this model to
calculate HHG in a two-dimensional layer of graphene, evidencing the connection between the
microscopic an macroscopic physics of HHG. On one hand, we observe that the macroscopic
HHG spectrum presents cleaner harmonic peaks, as it has been observed in different experiments
of HHG in solids. On the other hand, the analysis of the macroscopic HHG emission allows
to characterize the non-perturbative dynamics of the microscopic emission, such as the power
scaling law. Most interestingly, we show that the macroscopic high-order harmonic emission
is dominated by an annular region at the target, with radius approximately constant with the
harmonic order. We demonstrate that this finding is a direct consequence of the non-perturbative
scaling of the microscopic HHG. Our results show the relevance of considering transverse
phase-matching even in 2D solids, when irradiated with intense driving fields. Our work opens
the route to study macroscopic effects of HHG in other Dirac-Weyl materials, and in more complex
macroscopic geometries. For example, it paves the way in the emerging field of structured laser
beams with custom angular momentum properties when considering HHG in solid targets. In
such scenarios the macroscopic description of the HHG process is absolutely needed to unveil
the up-conversion rules of the angular momentum properties.
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