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Abstract: Recent studies in high-order harmonic generation (HHG) in solid targets reveal new
scenarios of extraordinary rich electronic dynamics, in comparison to the atomic and molecular
cases. For the later, the main aspects of the process can be described semiclassically in terms of
electrons that recombine when the trajectories revisit the parent ion. HHG in solids has been
described by an analogous mechanism, in this case involving electron-hole pair recombinations.
However, it has been recently reported that a substantial part of the HHG emission corresponds
to situations where the electron and hole trajectories do not overlap in space. According to
the present knowledge, HHG from this imperfect recollisions reflects the quantum nature of
the process, arising in systems with large Berry curvatures or for elliptically polarized driving
fields. In this work, we demonstrate that imperfect recollisions are also relevant in the more
general case. We show the signature of such recollisions in the HHG spectrum from monolayer
graphene —a system with null Berry curvature— irradiated by linearly polarized driving fields.
Our calculations also reveal that imperfect multiple-order recollisions contribute to the harmonic
emission when electron-hole excursion times exceed one cycle of the driving field. We believe
that our work adds a substantial contribution to the full understanding of the sub-femtosecond
dynamics of HHG in solid systems.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-harmonic generation (HHG) is nowadays a well established technique to generate highly
coherent extreme-ultraviolet/x-ray radiation [1–7]. The phenomenon stems from the non-
perturbative interaction of intense laser light with matter. For atomic and molecular targets, HHG
can be understood in semiclassical terms, according to the so-called three-step model [8]. In this
point of view, harmonics are radiated when a tunnel-ionized electron returns to the parent ion,
where it recombines releasing its kinetic energy in the form of high-frequency radiation. This
later step is only efficient if the electron’s trajectory returns to the parent ion, which is a condition
naturally found in linearly-polarized driving fields. For elliptically-polarized drivers, the electrons
are pulled away from the parent ion, and the efficiency of the HHG process decreases accordingly
[9]. It is worth noticing also that the electron may not recombine at the first encounter with
the parent ion, therefore the harmonics can be emitted at subsequent higher-order recollisions
[10–12]. In such case, however, the radiated photon energies fall well below the maximum
photon energy of the first recollisions (the so-called harmonic cutoff frequency). Moreover, since
high-order recollisions imply electron’s excursion times longer than the driver’s cycle, they are
associated to lower harmonic conversion efficiencies, resulting from the progressive spread of
the electron’s wavepacket in the continuum [13–15].
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Solid targets provide richer scenarios for HHG [6,16–21]. In this case, the irradiation geometry
defines the HHG mechanism. For grazing incidences, i.e. when the polarization plane of the
driving electric field is perpendicular to the target’s surface, HHG follows from the recombination
of electrons detached from the target [22], in close resemblance to the ionization mechanism in
atomic and molecular cases. For solid targets, however, the crystal periodicity leaves a signal in
the detached electron’s wavefunction, in form of Talbot modulations, which in turn are reflected
in the HHG spectrum. This phenomenon gives ground to the recent proposal of ultrafast Talbot
spectroscopy at the nanometer scale [23]. On the other hand, for the case of normal incidence
or bulk solid targets, the HHG mechanism follows from an adapted semiclassical three-step
model [24]. According to this view, the electron’s tunnel ionization step is replaced by tunnel
excitation to the conduction band, and the consequent creation of a hole. Harmonics result from
the electron-hole recombination at times when the electron and hole trajectories overlap, i.e. the
so called perfect recollisions (ehPR). As a main characteristic, the harmonic cutoff frequency
corresponds to the maximum energy gap during the electron/hole excursion [24–28].

Despite of these fundamental similarities, HHG in solids turns out to be far more complex
than in atoms and molecules. On the one side, the crystal band’s dispersion is not quadratic and
thus, the dynamics of the electron in the conduction band is not as trivial as that of an electron
ionized in free space. In addition, Berry curvatures introduce a deflection in the electron and
hole trajectories. Therefore, while in gas systems the electron trajectories are universally defined,
in solids they depend on the target species. On the other side, the details of the excitation of the
electron to the conduction band are also affected by the band structure. For instance, it has been
demonstrated that HHG from elliptically-polarized drivers results from electrons tunnel-excited at
points surrounding the minimum band gap, rather than at the exact point [29]. In 2D semimetals
enclosing Dirac points, the excitation details are more involved, as tunneling is replaced by the
non-adiabatic crossing near these singular points [30]. This simple variation in the first step leads
to substantial differences in the HHG process, as electron-hole excitation is no longer linked
to the maxima of the driving field’s amplitude. In other low dimensional targets, as carbon
nanotubes, HHG follows from a similar non-adiabatic excitation mechanism near the Van Hove
singularities [31].

In the general case, the complex dynamics in crystals does not only affect the maximum
photon’s energy but also the polarization and phase properties of the emitted harmonics. In
particular, the band geometry around the symmetry points can lead to a highly non-linear
anisotropic response, resulting in the generation of harmonics with elliptical polarization even
when driven by linearly-polarized drivers [22,32–41]. In addition, the convoluted electronic
dynamics during HHG in solids leads to high harmonics with complex phase properties. As a
result, accounting for the spatial phase distribution in HHG from a macroscopic target [26,42]
has allowed to achieve a better understanding of the harmonic spectrum properties.

It has been recently shown that although the modified semiclassical three-step model accounts
for the main features of the HHG mechanism in solids, non-classical pathways can be also relevant
in systems with large Berry curvatures [43] or when HHG is driven by elliptically polarized
fields [44]. In these cases, harmonics are emitted during electron-hole imperfect recollisions
(ehIR), i.e. when the electron-hole wave packets overlap even though their centers are spatially
separated by distances one order of magnitude larger than the lattice constant [43].

In this article, we demonstrate that ehIR’s have a relevant role also for HHG in solids with
vanishing Berry curvature and driven by linearly-polarized laser fields. In particular, we show the
enhanced role of high-order ehIR at times larger than the laser cycle. The excellent agreement
between our semiclassical and quantum calculations demonstrates that ehIR must be considered
to obtain a better understanding of the complex phase properties of HHG in solids.

The article is organized as follows. In Section 2, we present the details of the computation
of the nonlinear response, where we use two models: the resolution of the time dependent
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Schrödinger equation within the first neighbor tight-binding approximation, and a semiclassical
saddle-point approach which allow us to interpret our results. In Section 3, we present and discuss
our findings, where we identify the role of ehPR and ehIR for several cases of HHG in single-layer
graphene driven by a linearly-polarized laser field. Finally we present our conclusions in Section
4.

2. Theoretical description of HHG in single-layer graphene

We consider the emission of high-order harmonics in single-layer graphene irradiated by a short
mid-infrared pulse, linearly polarized along the graphene sheet plane. To this end, we compute
the nonlinear response of graphene following the method described in [30], and we interpret
our results in terms of classical electron-hole trajectories in real space. The dynamics of the
interaction of a single layer graphene sheet with an ultrashort laser pulse will be described in the
first neighbor tight-binding approximation [45]. We express the electron wavefuntion in terms of
the graphene’s eigenstates, Φ±

k (r),

Ψ(r, t) =
∫
Ψk(r, t)dk =

∫ [︁
C+(k, t)Φ+k (r) + C−(k, t)Φ−

k (r)
]︁

dk. (1)

with Φ±
k (r) given as vectors in the basis of Bloch states,

Φ
±
k (r) =

√︃
1
2

eik·r ⎛⎜⎝
±1

e−iφ(k)
⎞⎟⎠ , (2)

ϕ(k) being the argument of the complex function f (k),

f (k) = e−iakx/
√

3
(︃
1 + 2ei

√
3akx/2 cos

aky

2

)︃
, (3)

where a = 2.46Å.
The evolution of Ψ(r, t) is solved in the reciprocal space’s moving frame ℏκ t = ℏk − qeA(t)/c,

where A(t) is the vector potential of the electromagnetic field, c the speed of light, and qe the
electron’s charge. The numerical instabilities associated with the singularities at the Dirac points
can be circumvented by using the change of variables,

CM(κ t, t) = C+(κ t, t) − C−(κ t, t) (4)

CP(κ t, t) = e−iφ(κt) [C+(κ t, t) + C−(κ t, t)] , (5)
whose temporal dependence is governed by the following equations,

iℏ
d
dt

CM (κ t, t) =
E+(κ t) + E−(κ t)

2
CM (κ t, t) +

E+(κ t) − E−(κ t)

2
eiφ(κt)CP (κ t, t) (6)

iℏ
d
dt

CP (κ t, t) =
E+(κ t) + E−(κ t)

2
CP (κ t, t) +

E+(κ t) − E−(κ t)

2
e−iφ(κt)CM (κ t, t) (7)

where E±(k) = ±γ0 |f (k)| are the energies of the valence (−) and conduction (+) bands, respectively,
and with γ0 = 2.97 eV [45].

Finally, by solving Eqs. (6) and (7), we calculate the harmonic emission from the dipole
acceleration, a(t) = d2

dt2 d(t) as [30],

d(t) = ⟨Ψ(t)|qer|Ψ(t)⟩ = i
qe

2

∫ [︁
C∗

M(κ t, t)∇kCM(κ t, t) + C∗
P(κ t, t)∇kCP(κ t, t)

]︁
dk. (8)

The fundamental physical aspects of HHG in graphene can be revealed by deriving a semiclassical
saddle-point approximated model (SPAM), as dicussed in [30]. SPAM considers that the emission



Research Article Vol. 30, No. 9 / 25 Apr 2022 / Optics Express 15549

of the q-th harmonic takes place at time t when the following conditions are fulfilled:

E+(κ t) − E−(κ t) = qℏω0 (9)∫ t

tD,k

v+(κτ)dτ =
∫ t

tD,k

v−(κτ)dτ (10)

where v±(κτ) = ∇kE±(κτ)/ℏ, ω0 is the laser’s fundamental frequency and tD,k the time when
the electron with wave vector k at the beginning of the interaction crosses the Dirac point, i.e.
the time when the electron-hole pair is created. In agreement with the semiclassical description
of HHG in solids, SPAM considers that the HHG emission is produced by the recombination
of overlapping classical electron-hole trajectories. Note, however, that SPAM describes the
evolution of the mean position of the electron and hole wavepackets created in the vicinity of the
Dirac points. The excitation of the wavepacket is not resonant with a one photon absorption, but
rather is of the Landau-Zenner type during the non-adiabatic crossing near the Dirac points. As
a consequence, the pair creation is not confined to the field-amplitude maxima, where tunnel
excitation is most likely, but takes place at any time during the interaction. Following the ideas
developed in [29,43], in this article we shall demonstrate a substantial role of ehIR in single-layer
graphene. Note that this role is unexpected, as graphene is a system with null Berry curvature
and our calculations assume that HHG is driven by linearly-polarized laser fields. To include
ehIR, we have expanded the SPAM model to take into account the contribution of electron-hole
trajectories that do not overlap classically. Therefore, we relax the condition of trajectory crossing
in Eq. (10) by allowing the recombination distance ∆R to be nonzero [43],

∆R ≡

∫ t

tD,k

[v+(κτ) − v−(κτ)] dτ (11)

Note that this semiclassical approach (SPAM), which does not include the wavepacket dispersion,
is just used to interpret the results of the full quantum calculations given by Eqs. (6) and (7).

3. Results and discussion

We consider a six optical cycles (o.c.) driving field with a sin2 envelope, which corresponds
to 2.2 o.c., 22 fs, of full width at half maximum (FWHM) in intensity (see inset in Fig. 1(a)).
The field is assumed linearly polarized along the Γ-K direction. The laser pulse is centered at 3
µm wavelength, with a peak intensity of 5 × 1011 W/cm2, and it is aimed perpendicularly to the
graphene’s layer. Note that the pulse duration is shorter that the typical electron thermalization
time [46]. The resulting harmonic spectrum and its time-frequency analysis are presented in
Figs. 1(a) and 1(b), respectively. The time-frequency representation has been obtained scanning
over the HHG spectral amplitudes with a Gaussian mask of 4ω0 in FWHM, and subsequently
performing the Fourier transform of each sample. As a reference, Figs. 1(c) and 1(d) show the
same information for the case of HHG in a hydrogen atom. HHG in hydrogen is calculated
from the solution of the three-dimensional time dependent Schrödinger equation, using a 0.72
µm driving field of peak intensity of 1.6 × 1014 W/cm2, parameters that have been adjusted to
produce a HHG spectrum with similar cutoff frequency as the graphene case.

The comparison of both spectra reveals that the emission of harmonics in graphene presents
a temporal structure far more complex than that in atoms. In the atomic case (Fig. 1(d)) the
high-order harmonics result from two well-resolved emission bursts per half-cycle, the so-called
short and long trajectories, which present a positive and negative slope structure in the time-
frequency representation, respectively [47–51]. In contrast, in HHG from graphene, the first
step —the creation of the electron-hole pair— is connected with the Dirac points: electron-hole
pair excitation follows from the non-adiabatic crossing near the singular points (see the inset of
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Fig. 1. Harmonic spectrum (a) and time-frequency analysis (b) of the high order harmonic
emission from single-layer graphene. The inset in (a) plots the driving electric field, a 3 µm,
six-cycles sin2 pulse (22 fs FWHM) linearly polarized in the graphene plane along the Γ-K
direction, with peak intensity of 5×1011 W/cm2. Panels (c) and (d) plot the same information
from a hydrogen atom target, irradiated with a linearly-polarized 0.72 µm, six-cycles sin2

pulse, with peak intensity of 1.6×1014 W/cm2. Inset in (b) is the normalized color map of
the electron excitation in the conduction band. The time at which this snapshot is taken is
depicted in the inset of panel (a), at 2.75 cycles after the beginning of the laser pulse.

Fig. 1(b)) and, therefore, pairs are created continuously instead of at the driving field’s maxima,
as it is the general case for bulk crystals, atoms and molecules. As a result, the number of
interfering trajectories playing a relevant role in HHG in graphene is substantially larger, and not
necessarily regularly spaced in time [30], as it can be observed in Fig. 1(b). Note that, once the
driving field interaction with the graphene layer ends, the time-frequency picture reveals that
there is still emission from the excited sample, a behavior that has been reported in previous
works [36]. In the following we shall see that, even though the semiclassical trajectories leading
to ehPR successfully account for the main spectral features in Figs. 1(a) and 1 (b), the harmonic
signal can only be fully explained considering also the role of ehIR.

We present in Fig. 2 the results of the SPAM calculations for the graphene case presented in
Fig. 1. The background in Figs. 2(a) and 2(b) are replicas of Fig. 1(b). We analyse the temporal
distribution of electron-hole recombination energies from ehPR (Fig. 2(a)) and ehIR (Fig. 2(b)).
The plotted ehIR energies correspond to the cases in which the electron and hole are 10 unit cells
(24 Å, pink lines) and 70 unit cells (172 Å, grey lines) apart, at the instant of recombination.
Lighter tones are used for trajectories initiated near the K Dirac points, and darker tones for those
initiated near the K′ points (see the inset in Fig. 2(c)). Note that, while the temporal distribution
of radiated frequencies from ehPR explains reasonably the fundamental features of the HHG
spectrum in (Fig. 2(a)), it becomes also clear that ehPR do not provide a full explanation of the
harmonic contributions at intermediate times and, specially, at the end of the driving pulse.

To simplify the discussion of the results from ehIR in Fig. 2(b), we shall focus our attention
to the highest harmonic orders, q>15, and to the trajectories originated at the Dirac point K
(lighter lines). The discussion of the emission for pairs originated near points K′ (darker lines) is
analogous, due to the crystal’s inversion symmetry.

Figure 2(b) points out that the emissions from ehIR’s for increasingly longer recombination
distances are progressively delayed. This is consistent with the increasingly larger excursion
times needed for the electron-hole pair to reach longer interparticle distances. This aspect is
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Fig. 2. Results of the harmonic emission corresponding to trajectories leading to ehPR
—red, panel (a)— and ehIR —pink and grey, panel (b)—. The electron-hole pairs are created
at points K (light colors) and K′ (dark colors) of the graphene’s Brillouin zone. Panels (a) and
(b) show the energy of the electron-hole pair at recombination obtained with the semiclassical
SPAM calculations against the background corresponding to the time-frequency analysis
shown in Fig. 1 (b). In (a) we plot the frequency of the harmonic emission corresponding to
ehPR, i.e. when the electron and hole classical trajectories intersect, and in (b) the same
results for ehIR, where the electron-hole distances at the recombination time are 24 Å (pink)
and 172 Å (grey). We have added a long recombination distance of 492 Å (black) in order to
recover the harmonic emission at the rear part of the pulse. Panel (c) shows the distribution
of energies radiated from ehIR as a function of the pair recombination (horizontal axis) and
excitation (vertical axis) times. The inset shows the geometry of graphene’s Brillouin zone.
Labels αi and βi correspond to two pairs of sampled ehIR trajectories recombining at 24 Å
and 172 Å, respectively, with excitation times of ∼1.9 o.c. (i=1), and ∼2.9 o.c. (i=2).
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reproduced in Fig. 2(c), where we show the energy of the electron-hole pair at any potential
recombination time, as a function of the pair recombination (horizontal axis) and excitation
(vertical axis) times. Labels αi and βi correspond to two pairs of sampled ehIR trajectories
recombining at distances of 24 Å and 172 Å, respectively, with different excitation times: ∼1.9
o.c. for i=1, and ∼2.9 o.c. for i=2. To complete our analysis, we have also included in Fig. 2(b)
the trajectory contributions of ehIR that recombine at longer distances (200 unit cells, 492 Å,
black lines), which present a relevant contribution at the rear part of the harmonic emission.
Thus, our analysis unequivocally demonstrates the relevance of ehIR in HHG in graphene. The
harmonic contributions that are not reproduced by ehPR in Fig. 2(a) are mostly fulfilled by the
ehIR sampled in Fig. 2(b), whereas the nature of ehIR is clearly identified in Fig. 2(c). We note
that a larger sample of ehIR born at different excitation times, and with other recombination
distances, completely fulfills the harmonic emmission not reproduced by ehPR in Fig. 2(a).

It is important to point out that the excursion time, i.e. the time lapse between excitation and
emission times, increases with the recombination distance. In Ref. [29] ehIR are understood from
non-classical pathways, since while the mean position of the electron and hole wavefunctions are
distant, dispersion leads to the overlap of the wavefunctions. Threfore, ehIR at larger distances
require a larger wavepacket dispersion and, thus, a larger excursion time. Results in Fig. 2(c)
show excursion times of the order of 1.5 cycles for ehIR recombining at 172 Å (βi).

Note that the wavepacket dispersion rate is nearly six times larger than the one reported for hBN
in [29]. This enhanced dispersion suggests that the excited electron-hole wavepackets are more
localized in our case, therefore the dispersion rate is larger. We interpret this as consequence of
the different excitation mechanisms for each species. In graphene, the non-adiabatic electron-hole
excitation results in a broad wavepacket in the reciprocal space, around the Dirac points. In
contrast, tunnel excitation, as is the case of hBN, is very sensitive to the band gap, therefore
resulting in narrower wavepackets in the reciprocal space around the gap minima.

Finally, in Fig. 3 we show a comparative analysis of the role of ehPR against ehIR for
different driving peak intensities. According to the current understanding of HHG in solids, the
frequency of the harmonic radiation is given by the energy gap at the time of recombination of
the electron-hole pair. Since the trajectories quiver in the reciprocal space with an amplitude
(qeA/c), the harmonic cutoff frequency is expected at the maximum gap energy during this
excursion. For the two cases represented in Fig. 3, the maximum gap is reached at the turning
point (2qeA0/c), A0 being the amplitude of the vector potential. This maximum quivering for
each case is represented in the energy band representation in the insets of Fig. 3. According
to this, the prediction for the harmonic cutoff frequency is the 15th order (≃ 6 eV) for a peak
intensity of 1.3 × 1011 (Fig. 3(a)), and the 43rd order (≃ 18 eV) for a peak intensity of 2 × 1012

(Fig. 3(b)), which agrees with the corresponding time-frequency analyses. Figure 3 also shows
the prediction of the harmonic emission from the semiclassical SPAM for ehPR (red) and ehIR
at distances of 86 Å (green) and 172 Å (grey). As a main observation, we can see that in all
cases, ehIR are necessary to reproduce the harmonic emission, specially at longer times. Note
that the quiver trajectory of electrons and holes in the reciprocal space is the same for ehPR and
ehIR. However, by relaxing the constraint of zero distance at recombination, ehIR harvest the
full potential harmonic emission during the quivering, making it possible the emission of the
maximum cutoff frequency in situations excluded by the ehPR’s overlapping constrain.
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Fig. 3. Time-frequency analysis of the harmonic emission corresponding to two different
peak intensities, 1.3 × 1011 W/cm2 (a) and 2.0 × 1012 W/cm2 (b), with the same length
duration and central wavelength as in the previous figures. For the scan of the spectrum
we have used a Gaussian mask of 2.5 ω0 in (a), and 4 ω0 in (b). In both panels we plot the
frequency of the harmonic emission corresponding to ehPR (red) and to ehIR recombining
at 86 Å (green) for (a) and at 172 Å (grey) for (b).

4. Conclusion

We have presented quantum calculations and classical analysis of HHG in single-layer graphene.
A comparative analysis with the results of HHG from atoms reveals the extraordinary complex
nature of the process in the solid layer. The main trends of the characteristics of this complex
emission can be associated with the particular mechanism of HHG in graphene, in which the
electron-hole pair excitation is not associated with the maxima of the driving field amplitude.
However, our study demonstrates that still relevant spectral features are connected with non-
classical recollisions —the so-called imperfect recollisions— where the electron-hole pair can
recombine even when the classical trajectories do no overlap. We have found that these imperfect
recollisions typically contribute to the harmonic emission at increasing delayed times for longer
recombination distances. These time delays, which are connected with the spreading of the
electron and hole wavefunctions to the recombination distance, are significantly larger for
graphene. We interpret this result as the consequence of the linear dispersion relation near the
Dirac points.
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