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Abstract

This thesis presents a theoretical study on the process of high-order harmonics gen-
eration (HHG) in single-layer graphene from the microscopic to tyhe macroscopic
point of view. We start from the study of the role of the recently discovered im-
perfect recollisions in bulk solids, but in the context of a gapless monolayer such as
graphene. Considering non-zero recollision distances between the electron-hole, we
explain the high-harmonic emission observed at the final stages of the interaction, in
the results obtained with the time-dependent Schrédinger equation, for recombina-
tion times greater than one cycle of the incident field. Next in this thesis, we present
the first macroscopic analysis of the HHG process in graphene. We consider the in-
fluence of the spatial intensity distribution of the incident field on the total harmonic
emission. The result concludes that there is a certain ring in the graphene target
around the propagation axis, whose emissions govern the total emissions of the pro-
cess. Finally, based on previous studies on the anisotropic behavior of the graphene
sheet, we have developed a technique to characterize polycrystalline graphene using

high-order harmonic spectroscopy:.

Resumen

En esta tesis se presenta un estudio tedrico sobre el proceso de generacién de armoni-
cos de orden elevado en una capa de grafeno desde el punto de vista microscépico
hacia el macroscépico. Nuestros resultados parten del estudio del papel de las recol-
isiones imperfectas, recién descubiertas en sélidos gruesos, pero en el contexto de
materiales monocapa sin gap como es el grafeno. Considerando distancias de recol-
ision entre el par electrén-hueco diferentes de cero, explicamos las emisiones ob-
servadas en los resultados obtenidos con la ecuaciéon de Schrodinger dependiente
del tiempo, para tiempos de recombinacién superiores a un ciclo del campo inci-
dente. Ademads, presentamos el primer andlisis macroscépico del proceso de HHG
en grafeno. Consideramos la influencia de la distribucién de intensidad espacial del
campo incidente en la emisién total de armoénicos. El resultado concluye que existe
un determinado anillo en la Idmina de grafeno en torno al eje de propagacién, cuyas

emisiones gobiernan las emisiones totales del proceso. Finalmente, basaindonos en



estudios previos sobre el comportamiento anisétropo de la ldmina de grafeno, hemos
desarrollado una técnica para caracterizar grafeno policristalino mediante espectro-

scopia de armoénicos de orden alto.



Agradecimientos

Hasta aqui llega una de las etapas mds bonitas que he vivido en toda mi vida y,
sin lugar a duda, ese podria ser el titulo de esta tesis. Durante estos mds de cinco
afios he crecido enormemente tanto en lo profesional como en lo personal, y por
suerte, no lo he hecho solo. A lo largo de todo este tiempo gracias a mucha gente he
llegado a ser quién soy y realmente seria imposible mencionarlos a todos. Cualquier
interaccion, sea buena o mala, te condiciona y forja cada uno de los puntos que te
describen ahora. Como se suele decir, de los errores se aprende.

Lo gracioso de esta historia es que nunca pretendi llegar a ser doctor. Cuando
salf de realizar mi trabajo de fin de grado en el Centro de Léaseres Pulsados dirigido
por Alvaro Peralta Conde, alld por 2016, mi primer pensamiento fue: “yo quiero
dedicarme a la investigacion”. Alli me descubrieron el sentido de todo lo que es-
taba estudiando y encontré mi motivacién. Mi primer paso al acabar la carrera fue
apuntarme al propio Méster de Fisica y Tecnologia de los Laseres en la Universidad
de Salamanca, donde descubri a compafieros magnificos con la misma ilusién por
aprender sobre el mundo de los ldseres. La experiencia fue muy buena, tanto es asi,
que fue alli donde, de alguna manera, consegui engafar a mis directores de tesis
Carlos Herndndez Garcia y Luis Plaja Rustein. Inicialmente sélo iba a ser un con-
trato de cinco meses, que consigui6 convertirse en dos afios y asi hasta llegar a hoy.
Siento un profundo agradecimiento a mis dos directores por la oportunidad que me
han brindado, siempre me han ayudado en todo lo que he necesitado y han encon-
trado un equilibrio perfecto entre ser directores y compafieros. Asi como al resto del
Grupo de Investigacion en Aplicaciones del Laser y Foténica, es magnifica la familia
que habéis construido y sé que he tenido una suerte enorme en haber trabajado con
todos vosotros, echaré de menos poner dinero para el bote del café. Y como no,
mencionar a Laura Rego Cabezas y Aurora Crego Garcia, mis compafieras y mis dos

pilares durante todo este proceso. Los tres partimos desde el Méaster y comenzamos



nuestro camino como doctorandos en aquel cuartucho del sétano. He vivido mo-
mentos maravillosos con vosotras, en congresos, seminarios y en algtn bar que otro
también. Muchas gracias por todo y, por cierto: “Mamad! Quiero ser doctor!”, parece
que lo hemos conseguido. En lo profesional, también me gustaria agradecer a Os-
car Zurrén Cifuentes, para mi un ejemplo claro de pasién por la investigacién, por
el conocimiento y por haberme ayudado siempre que ha podido en el maravilloso
mundo del grafeno. A Miguel Angel Silva Toledo y Fabian Scheiba, me abrieron las
puertas de Hamburgo y me acogieron durante tres meses maravillosos que siempre
recordaré junto con todos los compafieros en el centro Center for Free-Electron Laser
Science, siempre tendréis las puertas de mi casa abiertas. Por tltimo, a Mdximo, mi
profesor de instituto y de carrera, si acabé estudiando fisica fue sin duda gracias a ti.

Como decfa al principio, esta etapa no sélo me ha proporcionado conocimiento,
sino que también me ha hecho crecer en el plano personal. Por ello, quiero empezar
agradeciendo a mi familia, mi padre Jose Ignacio y mi madre Dolores, me habéis
dado absolutamente todo desde la mayor humildad para llegar a ser quien soy y
jamas tendré palabras suficientes para agradecéroslo, os quiero con todo mi corazén,
sé que estdis orgullosos de lo que soy, pero creedme que ojald pudiera llegar a ser
un uno por ciento de lo que sois vosotros. A mi hermana Marina, muchas gracias
por estar ahi siempre, me das siempre todo sin pedirme nada a cambio y, pese a
que seas la pequefa, eres una gran referencia para mi, sigue luchando por lo que
te hace feliz, te quiero. A Marta, que eres una mdas de mi familia, sabes que esta
dltima etapa ha sido especialmente dura, sin embargo, me has comprendido y me
has ayudado en todo momento cuando quiza otra persona no hubiera aguantado,
te lo agradezco profundamente a ti y también a toda tu familia que me ha hecho
sentir uno mds. Creo que formamos un gran equipo, por mas momento bonitos a tu
lado. A mis tios Victor y Azu que siempre me habéis cuidado, a mis abuelos Victorio,
Beatriz que sé que estarfais orgullosos. A mis abuelos Lola y Benito, a mi tio Beni,
mi tia Tofii y mis primos Fory, Inma y Libia, somos una familia pequefia, pero entre
todos nos queremos y sé que siempre puedo contar con vosotros esté donde esté.
Como se suele decir, la familia no sélo es de sangre, sino que también se elige y yo
he tenido la suerte de incluir a la mia personas maravillosas como Miguel, Adelfa y

Miguelin y a mis hermanos de otra madre Josepa, Fer, Moreiro y Marina. También a



los Radicales, gracias por cada momento vivido, desde el principio me abristeis las
puertas y me acogisteis sin apenas conocerme de nada, espero seguir creciendo con
vosotros. Al Grupo 2, mis compafieros de carrera que quiza sin vosotros también
la habria acabado, pero desde luego no habria sido ni la mitad de divertida. Y, por
altimo, pero no menos importante, agradecer a Mar y Patrick, sois dos personas
maravillosas que, pese a la distancia, hemos conseguido tener una amistad muy
bonita.

Como dije al principio, mencionar a todo el mundo seria tarea imposible, sin
embargo, agradezco a cada una de las personas que ha decidido dedicarme una

porcién de su tiempo.






Contents

[Agradecimientos|
I Introduction| 1
[I.1  Objectives of this thesis and publications| . . . ... ... .. ... ... 9
2__Introduccionl 13
2.1 Objetivos de esta tesis y publicaciones| . . . . . ... ... ... .... 22
3__Fundamentals| 25
[3.1 The microscopic description of high-order harmonic generation in |
[ atomsl . . . .. 25
B.1.1 Semiclassical approach|. . . . ... ... ... ... ... .. 27
3.1.2  Quantum approach: Exact solution| . ... ... ... ... ... 30
[(Iime-frequency analysis| . . . . .. ... ... ........... 31
3.1.3  Quantum approach: The Strong-Field Approximation|. . . . . . 32
3.2 The macroscopic description of high-order harmonic generation in |
[ atoms| . . ... 36
3.2.1 Phase-matching|. . ... ... ... ... . ... ... ... .. 36
3.2.2  Computation of macroscopic high-order harmonic emission| . . 38
[3.3 High-order harmonic generation in graphene| . . . . . . ... ... ... 40
3.3.1 Crystalstructure] . . . ... ... ... ... o 0oL 40
3.3.2  The band structure of graphene|. . . . . . ... ... ... ... .. 41
[The tight-binding description of graphene| . . . . .. ... ... 42
3.3.3 Polycrystalline graphene| . . . .. ... ... ..... .. ... .. 46
3.3.4 Calculation of HHG in single-layer graphene| . . . . . .. .. .. 47
[Electromagnetic field interaction with single-layer graphene| . . 47

[Semiclassical description| . . .. ... ... .. 0 0000 50




4 Results 53

4.1 Classical study of electron trajectories: the role of imperfect recollisions| . 53

Resumen|. . . .. ... 55

4.2 Transverse harmonic phase-matching in single-layer graphene|. . . . . 66
Resumenl. . . ... ... ... .. . L 68

4.3 HHG in polycrystalline graphene|. . . . . ... ... ... . ... . ... 82
Resumen]. . . . . .« oo v 83
5__Conclusions| 93
1 nclusiones|. . . . . ... 94

Bibliography| 97



Chapter 1

Introduction

From its invention in 1960 to our days, the wide applications of laser light have rev-
olutionized areas of knowledge such as industry, medicine, communications, etc...
In fundamental science, lasers play a leading role in capturing the dynamics of ul-
trafast phenomena. The shortest temporal resolution that can be captured by laser
light is dictated by the pulse duration. The length of a laser pulse has a fundamen-
tal lower limit in the period of the electromagnetic wave. Therefore, high-frequency
laser pulses are unavoidable in order to track the fastest electronic dynamics in mat-
ter. The development of such sources was boosted with the development of short
infrared pulses at high intensity using the chirped pulse amplification (CPA) tech-
nique developed by 2018 Nobel Prize laureates Strickland and Mourou [1]. Nowa-
days, intense laser technology allows the study and control of a variety of strong
laser-matter interaction phenomena at the femtosecond (10~19s) or even attosecond
(10~'8s) time scales. Among them, high harmonic generation (HHG) stands as a
unique non-perturbative process, that allows not only to generate high-frequency
coherent radiation, that can be used to synthesize the shortest laser pulses created up
tonow [2], but also to study ultrafast laser-driven electronic dynamics, whose details
are encoded in the spectrum of the emitted radiation. HHG results from the strong
non-lineal response of matter to high intensity laser radiation. The non-perturbative
interaction induces an extreme non-linear dynamics in the system, from which fol-
lows the emission of high-frequency radiation. The high-frequency spectrum is com-
posed by a phase-locked frequency comb, reaching the extreme ultraviolet (XUV) or
even the soft X-rays. The extraordinary coherence of this process allows to synthe-

size these harmonics into trains of pulses with time durations as short as few tens
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of attoseconds. The first evidences of this non-perturbative character of HHG were
obtained from gases in the late 1980s. McPherson et al. [3] produced high-order har-
monics up to the seventeenth (14.6 nm) of a 248 nm laser in Ne, and, one year later,
M. Ferray et al. [4] reached the 33rd harmonic (32.2 nm) from a 1064 nm laser in Ar.
A few years later, in 1993, a semiclassical explanation of the process behind HHG
was proposed in the so-called three-step model (see Fig. [5, 6]: first, the atom is
tunnel ionized by the strong laser field, generating an electron wave packet in the
continuum every time the field reaches an amplitude maximum; during a second
step, the wave packet evolves accelerated by the field until, in a third step, it recom-
bines with the parent ion. In this later step the high frequency radiation is emitted
in the form of harmonics.

A) B) C)

atomic potential

+ emitted XUV photon
M (linearly polarised) p

\\\\ E-field of the laser pulse

FIGURE 1.1: Semiclassical three-step model of HHG. (A) The electron

is tunnel-ionized into the continuum. (B) The laser field accelerates

the electron, which is brought back to the parent ion. (C) Upon re-

combination, high frequency radiation up to the XUV or soft x-rays is
emitted. Figure extracted from [7].

As we can see in Fig. where we reproduce the experimental harmonic spec-
trum obtained by L'Huillier et al. in 1989 [8]], the lower part of the spectrum is com-
posed by harmonics with decreasing efficiency, while the highest frequency spec-
trum forms a plateau that extends up to a cutoff frequency. The maximum energy
radiated depends on the ionization energy of the gas, as well as on the pondero-
motive energy of the electron in the continuum [9], which in turn depends on the
external field wavelength and intensity.

The three-step model describes HHG in gases from a microscopic point of view.
However, a constructive interference of the HHG emissions from all the atoms in the

gas target —also known as phase-matching condition-is crucial to efficiently produce
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FIGURE 1.2: Experimental result of HHG in Ar driven by a laser pulse
of peak intensity 3 x 10'3W /cm?, centered at 1064 nm, extracted from
Ref. [8]. The harmonic distribution reflects three regions: a exponen-
tial decrease for the first harmonics, a plateau, and a cutoff frequency.

harmonics that can be measured and also used in practical applications. Therefore,
a full description of HHG must account for the single-atom emission as well as the
build-up of the harmonic signal in the macroscopic target. We define the phase-
matching condition as a situation in which the phase front of the harmonic field
being generated at the target overlaps the phase front of the harmonic field already
propagating through the sample (see Fig. .

In 1995, Salieres et al. [11] presented a theoretical study for the phase-matching
dependency with the driving-beam geometry, in particular with the position of the
laser focus relative to the target, and opened the door to the successive studies of
harmonic phase-matching [12-15]. The proper control of phase-matching is also rel-

evant for the fine-tuning of the HHG process. In particular, the control of the chirp of
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FIGURE 1.3: Basic representation of the phase-matching process in

HHG. The driving field interacts with the atoms in a medium, gen-

erating harmonic emissions with a constructive addition. Figure ex-
tracted from [10]

the harmonic field was relevant for the first experimental demonstration of attosec-
ond pulses in 2001 by Paul et al. [16], obtaining a train of 250 attosecond pulses, and
for the first attosecond metrology experiments by Hentschel et al. [17], where they
traced the electronic dynamics with a time resolution below 150 as. Remarkably,
even in some of the most recent results of HHG, such as the generation of isolated
attosecond pulses [18,19], and the generation of circularly polarized harmonics [20,
21], phase-matching plays a relevant role.

Initially, HHG studies considered mainly gaseous targets. However, in the last
two decades the development of intense laser sources in the mid-infrared (mid-IR)
raised the possibility of driving HHG in solids. Solid targets have a larger density
of electrons, therefore, in principle, can provide brighter harmonics. The first obser-
vation of HHG from bulk crystals was reported in 2011 by Ghimire et al. [22] using
ZnO as target (see Fig. [1.4). Afterwards, addition studies showed the viability of
HHG in other finite-gap solids, such as ZnO, MoS;, ZnSe, GaSe or SiO; [22-26].

From a semiclassical point of view, bulk solids generate harmonics similarly to
the three-step model in atoms. In this case, ionization is replaced by tunnel excitation
of electrons from the valence to the to the conduction bands, and the final step is the
electron-hole recombination. In crystalline solids, the spectral cutoff corresponds to
the maximum gap explored by the electron-hole pair during its excursion. Note that

the electron and hole trajectories in solids are not in free space, and thus they depend
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FIGURE 1.4: First HHG results obtained experimentally in a bulk

solid, 500-um-thick ZnO crystal. The green (blue) spectrum is gen-

erated with a driving pulse energy of 0.52 uJ (2.63 iJ) and centered

at 3.25 um. The inset shows the blue spectrum cutoff on a linear scale.
Figure extracted from [22].

on the nature of the crystal and on the details of the band structure. A last impor-
tant point is that, while atomic targets are isotropic, solid crystals may present an
anisotropy in their nonlinear response, allowing the generation of elliptically or cir-
cularly polarized harmonics from linearly polarized drivers 27-30]. Nowa-
days, a new variety of targets, such as topological insulators and 2D materials, are
becoming potential candidates for HHG due to their different geometrical or topo-
logical characteristics 31]]. In particular, there is a major interest in monolayers
with zero gap, such as single-layer graphene. In this case, the mechanism of HHG
substitutes tunnel excitation by the non-adiabatic crossings near the points where
the valence and conduction bands are in contact (the so-called Dirac points) (see Fig.

1.5).
A paradigmatic example of 2D solid is graphene. In 1962 P.R. Wallace computed
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Incident laser

-

High-order harmonics

| |
+ v
1Y L

FIGURE 1.5: The three-step model scheme for HHG in a 2D-material

with zero gap, like graphene. In a first step, the external field drives

the electron-hole pair through the Dirac point, where the electron is

promoted to the conduction band, creating a valence hole. Then, in a

second step, it is accelerated by the external field along the band and,

in the last step, the electron-hole pair recombines emitting the high-
order harmonics.

the electronic energy bands and the first Brillouin zone of a single hexagonal layer of
graphite using the tight binding approximation [32]. Later on, in 1986, these graphite
single-layers were termed as graphene by Hanns-Peter Boehm, Ralph Setton and
Eberhard Stumpp [33]], combining the word graphito, referring to carbon in its or-
dered crystalline form, and the suffix -ene, referring to polycyclic aromatic hydro-
carbons, in which the carbon atoms form hexagonal, or six-sided, ring structures.
Graphene is composed of two carbon atoms per unit cell with four electrons each,
three of them placed in hybrid sp? orbitals forming c-bonds, while the fourth oc-
cupies an orbital perpendicular to the lattice plane, forming 7t and 7*-bonds. As a
result, graphene is a 2-D hexagonal crystal built from two atomic sublatices, referred
as A and B. The distinction between lattices A and B stems from their relative posi-
tion in the 3-D structure of graphite, A being the lattice with neighbors above and
below (see Fig. [1.6).

In 2004, Geim and Novoselov obtained for the first time isolated graphene
via exfoliation with the well known scotch-tape method [35]. This achievement
was awarded with the Nobel Prize in Physics in 2010. They also characterized
its semimetal electronic properties and confirmed its gapless nature. Near the

Dirac points the energy dispersion is approximately linear, forming conical shapes.
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FIGURE 1.6: Scheme of the graphite structure. Atoms A and A’ (full

dots) have neighbors in adjacent layer planes at 3.35 A distance. On

the other hand, B and B’ (open dots) are separated 6.71 A by their
neighbors in above and below planes. Figure extracted from [34].

In these cones, the mobility of both electron or hole carries can exceed 15.000
cm?V 1571 in normal conditions, with carrier concentrations up to 103cm 2, and the
electrons behave as massless quasiparticles with Fermy velocity ¢/300, being c the
speed of light. Noticeably, the quantum Hall effect can be also observed under the
same laboratory conditions [36]. Attending to the massless fermion equivalence, the
Dirac equation can be used to describe most of the electronic properties of graphene
[37]. The double sublattice configuration of graphene has as direct consequence an
additional degree of freedom known as pseudospin or valley degeneracy. This two
different states for the wave functions can be also understood as the chirality of the
graphene [38,39].

In terms of the optical response, graphene under intense external electric fields
is strongly nonlinear. As mentioned above, the presence of Dirac points allows the
generation of electron-hole pairs without tunnel excitation [40]. Mikhailov et al.
in 2007 [41, 42] applied a quasi-classical theory to predict that graphene emits high-
order harmonics. They estimated the production of frequencies up to 5-10 THz, thus,

opening the door to graphene applications in terahertz electronics. Ishikawa et al.
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[43] studied the dynamics of harmonic generation using optical Bloch equations, an-
alyzing the interplay between intraband and interband dynamics at the Dirac points.
Three years later, it was reported for the first time the third harmonic generation in
graphene [44]. Finally, in 2017 Taucer et al. [45] and Yoshikawa et al. [30] produced
nonperturbative harmonics up to the fith and ninth order (see Fig. [1.7), demonstrat-
ing experimentally for the first time the process of HHG in single-layer graphene.
They confirmed the prediction of the high efficiency of the process, and also reported
the dependency of the harmonic intensity with the polarization of the driving field,

a consequence of graphene’s non-linear anisotropy.

A) 105
4 Graphene RT
10
2
S 103 5thorder
el
5 102 7th order
Z 40t 9th order
qc) |
€ 1004 ,m
107

T T T | 0
15 20 25 3.0 200 300 400 500 600 700 800
Photon Energy (eV) Wavelength (nm)

FIGURE 1.7: First high harmonic spectra obtained in single-layer

graphene. In panel A), we present the result extracted from

Yoshikawa et al. (figure adapted from [30]), reaching up to the 9th-

order with a driving pulse centered at 0.26 eV (~ 4.8um). In panel

B), we present the spectrum from Taucer et al. (figure adapted from

[45])), where the 5th-order is observed with a driving wavelength of
3.1um.

During the last two decades, the combination of all the properties enumerated
above has motivated the choice of graphene as a replacement of other materials in
already existing applications, and also opening the door to future ones. It is used in
a wide range of fields, from supporting nano-objects for transmission electron mi-
croscopy (TEM) [46], the use in solar cells as transparent conductive coating [47],
or as transistors for high-frequency applications [48]. Most applications, however,
claim for the production of large-area sheets, beyond the micrometre-size. The most
extended industrial production method is chemical vapor deposition (CVD). Unfor-
tunately, the single layers of graphene obtained in mass production are polycrystals

(see Fig. [1.8). Thus, studies of HHG in polycrystalline graphene are required.
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FIGURE 1.8: Images of different regions in a polycrystalline graphene
sample generated by CVD. Both pictures are obtained by an elec-
tron microscopy technique called dark-field transmission electron mi-
croscopy (DF-TEM). The grain imaging gives false-colours to distin-
guish the shapes and orientations. Scale bar is 500 nm. Figure ex-

tracted from
1.1 Objectives of this thesis and publications

The main motivation of this thesis is to contribute to the study of the fundamental
aspects of high-harmonic generation from single-layer graphene. Taking as starting
point previous studies on the microscopic theory of HHG from graphene, such as
Ref. [40], we have focused into the exploration of the macroscopic response in order
to approach the experimental situation 50]. This thesis report contains our

results published in the following references:

1. Reference . R. Boyero-Garcia, O. Zurrén-Cifuentes, L. Plaja, C. Hernandez-
Garcia, Transverse phase-matching of high-order harmonic generation in
single-layer graphene. Opt. Express 29,2488-2500 (2021). Even though a single-
layer graphene is a 2D material and the longitudinal propagation does not play
a role in the final emission of harmonics, the phase-matching in the superposi-
tion of the local emissions in the graphene’s plane still has a fundamental role.
The so-called transverse phase-matching is well understood in gas targets. Our
results determine that the total harmonic emission from the grahene layer is
dominated by a certain phase-matched ring around the driving beam propa-

gation axis.

2. Reference [52]. R. Boyero-Garcia, A. Garcia-Cabrera, O. Zurrén-Cifuentes,

C. Herndndez-Garcia, L. Plaja, Non-classical high harmonic generation in
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graphene driven by linearly polarized laser pulses. Opt. Express 30,
15546-15555 (2022). From a semiclassical point of view, it is known that
the number of electron trajectories in HHG from single-layer graphene is far
greater than in finite gap solids, due to the replacement of tunnel excitation by
the non-adiabatic excitation near the Dirac points. Recent results in HHG in
bulk solids [53} 54] have demonstrated that non-classical trajectories are rele-
vant in the build-up of the final HHG spectrum. In this paper we showed the
signature of these non-classical trajectories in the harmonic spectrum obtained

in graphene.

3. Reference [55]. R. Boyero-Garcia, A. Garcia-Cabrera, O. Zurrén-Cifuentes, C.
Hernéndez-Garcia, L. Plaja, High-order harmonic spectroscopy of polycrys-
talline graphene. Opt. Mater. Express 12, 3543-3550 (2022). Chemical va-
por deposition is one of the most popular techniques to obtain large areas of
graphene, required to most industrial applications. This technique, however,
produces polycrystals with different domain sizes and orientations. In order
to characterize the polycrystal structure, i.e. to provide for the distributions
of sizes and orientations, we propose to explore the graphene’s non-linear
anisotropic response. Following that, we present HHG simulations in poly-
crystalline graphene and a study of the harmonic polarization dependence on

the size and orientation of the polycrystals.

The above results take as starting point previous results obtained along the thesis

where the student participates also as a co-author:

1. Reference [56]. O. Zurrén-Cifuentes, R. Boyero-Garcia, C. Herndndez-Garcia,
A. Picon, L. Plaja, Optical anisotropy of non-perturbative high-order harmonic
generation in gapless graphene. Opt. Express 27, 7776-7786 (2019). In this
work, we studied the influence of graphene’s symmetry in the harmonic emis-
sion. The non-linear optic response leads to the generation of harmonics with
elliptical or circular polarization when driven by a linearly polarized electric

field.

2. Reference [57]. O. Zurrén-Cifuentes, R. Boyero-Garcia, C. Herndndez-Garcia,

L. Plaja, High harmonic generation in armchair carbon nanotubes. Opt. Express
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28, 19760-19771 (2020). In order to explore HHG in new configurations of
carbon allotropes, we solved numerically the HHG in carbon nanotubes. We
focused into the emission of armchair-type with chiral index (1, n) irradiated

by a mid-IR laser.
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Chapter 2

Introduccion

Desde su invencién en 1960 hasta nuestros dias, la variedad de aplicaciones de la luz
laser ha revolucionado dreas de conocimientos como la industria, la medicina, las co-
municaciones, etc... En ciencia fundamental, los laseres juegan un papel principal en
la captura de la dindmica de fenémenos ultrarrapidos. La resolucion temporal mas
breve obtenida con un laser pulsado viene dada por la duracién del pulso. Esta tiene
un limite inferior fundamental en el periodo de la onda electromagnética. Por lo
tanto, pulsos ldser de alta frecuencia son necesarios para observar la dindmica elec-
tréonica més rapida que ocurre en la materia. El desarrollo tecnoldgico de este tipo
de fuentes de luz fue impulsado gracias a la obtencién de pulsos cortos infrarrojos
de alta intensidad. La clave de este desarrollo es la aparicién de la técnica chirp pulse
amplification (CPA), elaborada por Strickland y Mourou, Premios Nobel en Fisica en
2018 [1]. Hoy en dia, las tecnologias relacionadas con los l4seres intensos permiten
estudiar y controlar una variedad de fendmenos de interaccion ldser-materia en la
escala temporal de los femtosegundos (10~!° segundos) o, incluso, de los attose-
gundos (10718 segundos). Entre ellas, la generacién de arménicos de orden elevado
(HHG, de sus siglas en inglés) se erige como el tnico proceso que permite generar
radiacién coherente de alta frecuencia, que puede ser usada para sintetizar los pulsos
laseres més cortos creados hasta la fecha [2]. Ademads, permiten estudiar la dindmica
electrénica ultrarrdpida inducida por laseres, cuya traza queda reflejada en el espec-
tro de la radiacién emitida. El proceso de HHG resulta de la respuesta altamente no
lineal de la materia a la radiacion l4ser de alta intensidad. La interaccién no pertur-

bativa induce dindmicas extremadamente no lineales en el sistema, que resultan en



14 Chapter 2. Introduccién

la emisién de radiacién de alta frecuencia. El espectro de esta radiaciéon esta com-
puesto por un peine de frecuencias (o arménicos) que presentan una fase regular y
que se extienden hasta el ultravioleta extremo (XUV) o, incluso, hasta los rayos X
blandos. La extraordinaria coherencia de este proceso permite sintetizar estos ar-
monicos en un tren de pulsos con duraciones temporales de unas pocas decenas de
attosegundos. Las primeras evidencias del cardcter no perturbativo del proceso de
HHG se obtuvieron irradiando gases nobles a finales de los afios 80. McPherson et
al. [3] obtuvieron arménicos hasta el orden 17 (14.6 nm) a partir de un laser de 248
nm de longitud de onda interaccionando con neén. Un afio mds tarde, M. Ferray et
al. [4] consiguieron el armoénico 33 (32.2 nm) gracias a la interaccién de un laser de
1064 nm en argén. Pocos afios més tarde, en 1993, se propuso una explicaciéon semi-
clasica para explicar la fisica subyacente al proceso de HHG, en lo que se conoce
como el modelo de los tres pasos (ver Fig. [5, 6]: primero, el 4&tomo es ionizado por
tanel mediante un campo laser intenso, generando un paquete de ondas electrénico
en el continuo cada vez que el campo llega a su maxima amplitud; durante el se-
gundo paso, el paquete de ondas evoluciona en el continuo viéndose acelerado por
el campo laser hasta que, en el tercer paso, recombina con el ion padre. En este tl-

timo paso la radiacién de alta frecuencia es emitida en forma de arménicos de orden

elevado.
atomic potential
+ emitted XUV photon
A (linearly polarised) _
N e SN E-field of the laser pulse

FIGURE 2.1: Modelo de los tres pasos semicldsico que permite explicar

el proceso de HHG. (A) El electrén se ioniza por tinel al continuo. (B)

El campo laser acelera el electrén, el cual es llevado de vuelta al ion

padre. (C) Una vez recombina, se emite radiacién de alta frecuencia,

hasta el ultravioleta extremo o los rayos X blandos. Figura extraida
de [7].

Como podemos ver en la Fig. donde reproducimos el espectro experimental
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de armoénicos obtenido por L'Huillier et al. en 1989 [8], la parte baja del espectro
estd compuesta por armoénicos cuya eficiencia decrece, mientras que las frecuencias
altas del espectro forman un plateau que se extiende hasta la frecuencia de corte. La
maxima energfa radiada depende del potencial de ionizacién del gas, asi como de la
energia ponderomotriz del electrén en el continuo [9], que a su vez depende de la

longitud de onda y la intensidad del campo incidente.
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FIGURE 2.2: Resultado experimental de HHG en Ar inducido por un
pulso laser con intensidad pico de 3 x 1013W /cm?, centrado en 1064
nm. Extraido de la Ref. [8]. El espectro de armonicos refleja tres
regiones: un decrecimiento exponencial para los arménicos bajos, un
plateau de armoénicos de intensidad similar, que se extiende hasta la
frecuencia de corte, a partir de donde la sefial decrece bruscamente.

El modelo de los tres pasos describe el proceso de HHG en gases desde un punto
de vista microscépico. Sin embargo, es crucial adoptar una visién macroscépica
de cara a tener una interferencia constructiva entre la radiacién emitida por todos

los 4tomos del gas —también conocida como condicién de acuerdo de fase— para
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producir eficientemente arménicos que puedan ser medidos y/o utilizados en apli-
caciones practicas. Por lo tanto, una descripcién completa del proceso de HHG tiene
que tener en cuenta tanto la emisién de un solo &tomo como la suma de la sefal de
armoénicos en un medio macroscépico. Definimos la condicién de acuerdo de fase
como la situacién en la que el frente de ondas del campo de arménicos generado en
el medio coincide con el frente de ondas del campo de arménicos que ya se estaban

propagando en la muestra (ver Fig. [2.3).

Laser field

>
\_—~>

\__’_\-»
>
O \_/-\)

O Constructive addition
of X-ray fields

FIGURE 2.3: Representacion basica del proceso de acuerdo de fase en

el proceso de HHG. El campo externo interacciona con el 4tomo en el

medio, generando una emisién de armoénicos que se suman construc-
tivamente. Figura extraida de [10].

En 1995, Salieres et al. [11] presentaron un estudio tedrico de la dependencia del
acuerdo de fase con la geometria del haz externo. En particular, estudiaron cémo
varia el proceso de HHG con la posicién relativa entre el foco del laser incidente y el
medio, abriendo el camino a posteriores estudios de acuerdo de fase en HHG [12-
15]. El control adecuado del acuerdo de fase es relevante para un ajuste fino de las
caracteristicas de la radiacion emitida en el proceso de HHG. En particular, el control
del chirp del campo de armoénicos fue relevante para la primera demonstracion ex-
perimental de pulsos de attosegundo en 2001 por Paul et al. [16], obteniendo un tren
de pulsos de 250 attosegundos, asi como para el primer experimento de metrologia
de attosegundo realizado por Hentschel et al. [17], donde estudiaron dindmicas
electrénicas con una resolucién temporal por debajo de 150 as. Sorprendentemente,
incluso en algunos de los mds trabajos maés recientes de HHG el ajuste de fase juega
un papel fundamental, como ocurre en la generacién de pulsos de attosegundo ais-

lados [18,/19], y en la generacién de armoénicos polarizados circularmente [20, [21]].
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Inicialmente, los estudios de HHG consideraban medios gaseosos. Sin embargo,
en las dos ultimas décadas el desarrollo de fuentes laser en el infrarrojo medio (mid-
IR, de sus siglas en inglés) ha conllevado la posibilidad de realizar HHG en s6lidos.
Los solidos tienen una gran densidad de electrones, por tanto, en principio, pueden
generar armoénicos mds brillantes. La primera observaciéon de HHG en cristales grue-
sos fue reportado en 2011 por Ghimire et al. utilizando ZnO (ver Fig. 2.4). Poste-
riormente, diferentes estudios han mostrado la viabilidad de HHG en otros s6lidos

de gap finito, como por ejemplo ZnO, MoS,, ZnSe, GaSe o SiO, [22-26].
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FIGURE 2.4: Primer resultado de HHG obtenido experimentalmente
en un sélido grueso, cristal de ZnO de 500 ym de grosor. El espectro
verde (azul) se ha generado con un pulso externo con energia de 0.52
uJ] (2.63 uJ) y centrado en 3.25 ym. La figura insertada muestra la
frecuencia de corte del espectro azul en escala lineal. Figura extraida

de [22].
Desde un punto de vista semiclésico, los sélidos gruesos generan armoénicos de
una manera similar al modelo de los tres pasos que tiene lugar en dtomos. En este
caso, la ionizacién se remplaza por la excitacion tinel de los electrones de la banda

de valencia a la de conduccién, y el dltimo paso por la recombinacion de la pareja
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electrén-hueco. En sélidos cristalinos la frecuencia de corte del espectro de armoni-
cos corresponde con el gap maximo que encuentra el par electron-hueco durante su
excursiéon. Cabe resaltar que las trayectorias del electréon y del hueco no estan en
el espacio libre y, por lo tanto, dependen de la naturaleza del cristal y de los de-
talles de la estructura de bandas. Un tultimo aspecto a tener en cuenta es que, si
bien los medios atémicos son isétropos, los cristales s6lidos pueden presentar una
anisotropia en su respuesta no lineal. Esto permite la generacién de arménicos con
polarizacion eliptica o circular a partir de campos laser polarizados linealmente
27-30]. Hoy en dia, una nueva variedad de medios, como los aislantes topologi-
cos o los materiales 2D, se estan convirtiendo en candidatos potenciales para el pro-
ceso de HHG debido a sus peculiares caracteristicas geométricas o topoldgicas
31]]. En particular, existe un gran interés en monocapas con gap cero, como el grafeno
de una sola capa. En este caso, el mecanismo de HHG sustituye la excitacién por
tanel por los cruces no adiabéticos cerca de puntos donde las bandas de valencia y

conduccién estdn en contacto (los llamados puntos de Dirac) (ver Fig. 2.5).

Incident laser

-

High-order harmonics

FIGURE 2.5: El esquema del modelo de los tres pasos del proceso de

HHG en un material 2D con gap cero, como el grafeno. En un primer

paso, el campo externo conduce al par electrén-hueco a través del

punto de Dirac, donde el electrén es promovido a la banda de con-

duccién. Luego, en un segundo paso, el par electrén-hueco es aceler-

ado por el campo externo a lo largo de la banda y, en el tltimo paso,
el par se recombina emitiendo los arménicos de alto orden.

Un ejemplo paradigmatico de sélido 2D es el grafeno. En 1962, PR Wallace cal-
cul6 las bandas de energia electrénica y la primera zona de Brillouin de una sola capa

hexagonal de grafito utilizando la aproximacién de tight-binding [32]. Més tarde, en
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1986, estas capas aisladas de grafito fueron denominadas grafeno por Hanns-Peter
Boehm, Ralph Setton y Eberhard Stumpp [33], combinando la palabra graphito, que
se refiere al carbono en su forma cristalina ordenada, y el sufijo -ene, que se refiere
a los hidrocarburos aromaticos policiclicos, en los cuales los d&tomos de carbono for-
man estructuras de anillos hexagonales o de seis lados. El grafeno estd compuesto
por dos dtomos de carbono por celda unitaria con cuatro electrones cada uno, tres
de ellos colocados en orbitales hibridos sp? que forman enlaces ¢, mientras que el
cuarto ocupa un orbital perpendicular al plano de la red, formando enlaces 7ty 77*.
Como resultado, el grafeno es un cristal hexagonal bidimensional construido a par-
tir de dos subredes atémicas, denominadas A y B. La distincién entre las redes A y B
proviene de su posicién relativa en la estructura 3D del grafito, siendo A la red con

vecinos arriba y abajo (ver Fig. [2.6).

FIGURE 2.6: Esquema de la estructura del grafito. Los d4tomos A y

A’ (puntos completos) tienen vecinos en planos de capas adyacentes

a3.35 A de distancia. Por otro lado, By B’ (puntos vaios) estan sepa-

rados 6.71 A por sus vecinos en los planos superior e inferior. Figura
extraida de [34].

En 2004, Geim y Novoselov obtuvieron por primera vez grafeno aislado me-
diante exfoliacion con el conocido método scotch-tape [35]. Este logro fue galar-
donado con el Premio Nobel de Fisica en el afio 2010. También caracterizaron sus

propiedades electrénicas semimetélicas y confirmaron su naturaleza sin gap. Cerca
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de los puntos de Dirac la dispersion de energia es aproximadamente lineal, for-
mando conos. En estos conos la movilidad tanto de electrones como de huecos
puede superar los 15.000 cm?V ~1s~! en condiciones normales, con concentraciones
de portadores de hasta 10'3cm 2, y los electrones se comportan como cuasiparticulas
sin masa con velocidad de Fermy ¢/300, siendo c la velocidad de la luz. De hecho,
el efecto Hall cuadntico también se puede observar bajo las mismas condiciones de
laboratorio [36]. Atendiendo a la equivalencia del fermién sin masa, la ecuacién de
Dirac se puede utilizar para describir la mayoria de las propiedades electrénicas del
grafeno [37]. La configuracion de doble subred del grafeno tiene como consecuencia
directa un grado adicional de libertad conocido como pseudospin o degeneraciéon
de valle. Estos dos estados diferentes para las funciones de onda también pueden
entenderse como la quiralidad del grafeno [38,39].

En términos de respuesta Optica, el grafeno bajo campos eléctricos externos inten-
sos es fuertemente no lineal. Como se mencion6 anteriormente, la presencia de pun-
tos de Dirac permite la generaciéon de pares electron-hueco sin excitacién de ttnel
[40]. Mijailov et al. en 2007 [41, 42] obtuvieron una teoria cuasi-cldsica para predecir
que el grafeno emite armoénicos de orden alto. Estimaron la produccién de frecuen-
cias de hasta 5-10 THz, abriendo asi la puerta a las aplicaciones del grafeno en la
electrénica de terahercios. Ishikawa et al. [43] estudiaron la dindmica de la gen-
eracion de armoénicos usando ecuaciones Opticas de Bloch, analizando la interacciéon
entre la dindmica intrabanda e interbanda en los puntos de Dirac. Tres afios de-
spués, se reportd por primera vez la generacion del tercer armoénico en grafeno [44].
Finalmente, en 2017 Taucer et al. [45] y Yoshikawa et al. [30] produjeron arménicos
no perturbativos hasta el quinto y noveno orden (ver Fig. [2.7), demostrando ex-
perimentalmente por primera vez el proceso de HHG en grafeno de una sola capa.
Confirmaron la prediccion de la alta eficiencia del proceso y también reportaron la
dependencia de la intensidad de los arménicos con la polarizacion del campo inci-
dente, consecuencia de la anisotropia no lineal del grafeno.

Durante las dos tltimas décadas, la combinacién de todas las propiedades enu-
meradas anteriormente ha motivado la eleccién del grafeno como sustituto de otros

materiales en aplicaciones ya existentes. De hecho se utiliza en una amplia gama
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FIGURE 2.7: Primeros espectros de armoénicos de orden elevado

obtenidos en grafeno monocapa. En el panel A), presentamos el resul-

tado de Yoshikawa et al. (figura adaptada de [30]), alcanzando hasta

el noveno orden armoénico a partir de un l-aser centrado en 0.26 eV

(~ 4.8um). En el panel B), el espectro de Taucer et al. (figura adap-

tada de [45])), donde se observa el quinto orden arménico generado a
partir de un laser de longitud de onda de 3.1um.

de campos, desde el soporte de nanoobjetos para microscopia electrénica de trans-
mision (TEM, de sus siglas en inglés) [46], el uso en células solares como recubrim-
iento conductor transparente [47], hasta como transistor para aplicaciones de alta
frecuencia [48]]. Sin embargo, la mayoria de las aplicaciones exigen la produccién de
laminas de gran superficie, mds alld del tamafio micrométrico. El método de pro-
duccién industrial més extendido es la deposiciéon quimica de vapor (CVD, de sus
siglas en inglés). Desafortunadamente, las capas individuales de grafeno obtenidas
en la produccién en masa son policristales (ver Fig. 2.8). Por lo tanto, los estudios

de HHG en grafeno policristalino son de alto interés.

FIGURE 2.8: Imdgenes de diferentes regiones en una muestra de
grafeno policristalino generadas por CVD. Ambas imdgenes se ob-
tienen mediante una técnica de microscopia electrénica llamada mi-
croscopia electrénica de transmisién de campo oscuro (DF-TEM). La
imagen de granos da colores falsos para distinguir las formas y ori-
entaciones. La barra de escala es de 500 nm. Figura extraida de
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2.1 Objetivos de esta tesis y publicaciones

La principal motivacién de esta tesis es contribuir al estudio de los aspectos fun-
damentales de la generacién de armoénicos de orden elevado en grafeno monocapa.
Tomando como punto de partida los estudios previos sobre la teoria microscépica
de HHG en grafeno, como la Ref. [40], nos hemos centrado en la exploracién de la
respuesta macroscopica para abordar situaciones préximas a los experimentos [30,

45, 50]. Esta tesis contiene los resultados publicados en las siguientes referencias:

1. Referencia [51]. R. Boyero-Garcfa, O. Zurrén-Cifuentes, L. Plaja, C.
Herndndez-Garcia, Transverse phase-matching of high-order armonic gener-
ation in single-layer graphene. Opt. Express 29, 2488-2500 (2021). Si bien el
grafeno monocapa es un material 2D y la propagacion longitudinal no juega
un papel en la emisién final de armoénicos, el ajuste de fase en la superposicién
de las emisiones locales en el plano del grafeno si presenta un papel fundamen-
tal. El llamado acuerdo de fase transversal ha sido estudiado en HHG en medios
gaseosos, pero en este trabajo lo analizamos por primera vez en un soélido.
Nuestros resultados determinan que, debido al acuerdo de fase transversal, la
emisién de armonicos resultante de la capa de grafeno estd dominada por un

anillo alrededor del eje de propagacién del haz incidente.

2. Referencia [52]. R. Boyero-Garcia, A. Garcia-Cabrera, O. Zurrén-Cifuentes,
C. Hernandez-Garcia, L. Plaja, Non-classical high harmonic generation in
graphene driven by linearly polarized laser pulses. Opt. Express 30,
15546-15555 (2022). Desde un punto de vista semicldsico, se sabe que el
nimero de trayectorias electrénicas que tienen lugar en el proceso de HHG
en grafeno de una sola capa es mucho mayor que en sélidos de gap finito. Esto
es debido al reemplazo de la excitacion ttnel por la excitacién no adiabética
cerca de los puntos de Dirac. Resultados recientes de HHG en sélidos gruesos
[53) 54] han demostrado que las trayectorias no cldsicas son relevantes en la
construccién del espectro final de HHG. En este articulo hemos demostrado
el papel relevante de estas trayectorias no clasicas en el espectro de armoénico

generado en grafeno.
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. Referencia [55]. R. Boyero-Garcia, A. Garcia-Cabrera, O. Zurrén-Cifuentes, C.

Hernédndez-Garcfa, L. Plaja, High-order harmonic spectroscopy of polycrys-
talline graphene. Opt. Mater. Express 12, 3543-3550 (2022). La deposiciéon
quimica de vapor es una de las técnicas méas populares para obtener grandes
dreas de grafeno, requerida para la mayoria de las aplicaciones industriales.
Esta técnica, sin embargo, produce policristales con diferentes tamafios de do-
minio y orientaciones. Para caracterizar la estructura policristalina, es decir,
para proporcionar las distribuciones de tamafios y orientaciones, proponemos
explorar la respuesta anisotrépica no lineal del grafeno a campos laser inten-
sos. En este trabajo presentamos simulaciones de HHG en grafeno policristal-
ino, con un estudio de la dependencia de la polarizacién de los arménicos

frente al tamafio y la orientacién de los policristales.

Los articulos anteriores toman como punto de partida resultados previos

obtenidos a lo largo de la tesis donde el estudiante participa también como coau-

tor:

1. Referencia [56]. O. Zurrén-Cifuentes, R. Boyero-Garcia, C. Herndndez-Garcia,

A. Picén, L. Plaja, Optical anisotropy of non-perturbative high-order harmonic
generation in gapless graphene. Opt. Express 27, 77767786 (2019). En este
trabajo estudiamos la influencia de la simetria del grafeno en la emisién de
armonicos. La respuesta 6ptica no lineal conduce a la generacién de arménicos
con polarizacién eliptica o circular cuando es inducida por un campo eléctrico

polarizado linealmente.

. Referencia [57]. O. Zurrén-Cifuentes, R. Boyero-Garcia, C. Hernandez-Garcia,

L. Plaja, High harmonic generation in armchair carbon nanotubes. Opt. Express
28, 19760-19771 (2020). Para explorar el proceso de HHG en nuevas configu-
raciones de alétropos de carbono, resolvimos numéricamente el proceso en
nanotubos de carbono. Nos enfocamos en la emisién de tipo sillén con indice

quiral (n, n) irradiada por un ldser mid-IR.
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Chapter 3

Fundamentals

In this chapter we shall review fundamental concepts needed to contextualize the
research carried on during this thesis. We will first review the phenomena of HHG
from atomic gas targets. As commented in the previous chapter, the first exper-
iments in HHG were carried at using noble gas jets as targets. These targets are
not subjected to damage limitations, therefore allowing to explore comfortably the
strong field interaction regime. In addition, the low reactivity of noble gases is also
an advantage when manipulated in vacuum chambers. Interestingly, the bound-
state dynamics does not play a relevant role in HHG from atoms. Therefore, the
subject can be introduced straight away, without a need of presenting particular top-
ics of atomic physics. The situation changes, however, in the case of solids, where
the description of the electron dynamics is of paramount importance. Therefore, the
section presenting the fundamentals of HHG from graphene will also include the
description of the matter system. In both cases, atoms and solids, we will also intro-

duce the details of the build-up of the harmonic signal from macroscopic targets.

3.1 The microscopic description of high-order harmonic gen-

eration in atoms

The understanding of HHG requires addressing two different levels. On one side,
the microscopic description considers the harmonic emission of an elemental radia-
tor in the target. At this level, the amplitude of the driving field is assumed spatially
constant, and the effort is focused into the understanding of the non-linear response

of the target species. Once the microscopic description is developed, the macroscopic
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point of view studies the collective emission of the elementary emitters, distributed
along the target and, therefore, exposed to different local values of the driving field
amplitude.

When an intense laser field interacts with a target, it can induce a strong non-
linear, non-perturbative, process that may result in the emission of harmonics. In
the traditional approach, the optical non-linear response of a medium to an intense
electric field of frequency wy is described by the polarization density, as a perturba-

tive series of the incident field of the form
P = XV (—wo,wp) F + x* (=2wo, wo) F? + x¥ (—3wo,wo) F* + .., (3.1)

where x") (—nwo, wy) is the nth-order non-linear susceptibility and F is the exter-
nal field amplitude. The quantum theory of the non-linear light-matter interactions
was described by Maria Goepper-Mayer in 1931, in her doctoral dissertation [58].
However, it was not until one year after the invention of the laser in 1960, when the
generation of the second-harmonic of a driving field was experimentally reported
in crystalline quartz [59]]. Soon afterwards, in 1962, the generation of the third har-
monic was reported from calcite [60]. The mechanism described by the perturbative
series corresponds to the multiphoton excitation of matter, where the order in
the series corresponds to the number of photons involved in the process. Since the
probability of combining a set of photons decreases with its number, the efficiency
of the multiphoton process drops with the harmonic order. When the laser inten-
sity is high enough, the process becomes non-perturbative, and the expansion
is not longer valid. Driving field intensities of about 10'® to 10> W /cm? are strong
enough to inject the atomic electron into the continuum via tunnel ionization. In this
case, the ionization rate increases with respect to the multiphoton absorption, and
the high-order harmonics are generated more efficiently. This regime was experi-
mentally tested in 1989 by Huillier et al. in Ar, Kr and Xe [8] when they noted that
the harmonic spectrum departed from the monotonous descending intensity trend.
As it was already introduced in this thesis work, the strong-field harmonic spectrum
can be separated into three different regions (see Fig. [B.I): an exponential decrease

for the lower order harmonics, followed by several harmonics with similar intensity,
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known as plateau, and a abrupt cutoff frequency that limits the maximum harmonic-
order radiated. The law describing the cutoff frequency, wyqx, was first identified in

[9] from numerical simulations, and is given by:
hwmax = I + 317U, (3.2)

being I, the ionization energy and U, the cycle-averaged kinetic energy of a free
electron in presence of a electromagnetic field, also known as the ponderomotive
energy. For a monochromatic driving field, the ponderomotive energy is given by
U, = q; 2F2/ 4meaJ where g, and m, are the electron charge and mass, respectively,
and F, the driving field amplitude. For centrosymmetric targets, such as noble gas
atoms, the even-order susceptibilities are zero, therefore HHG produces a frequency

comb with only odd-order harmonics.

| Plateau
(T

@,

Cut-off

Intensity

2K + 1, max
Frequency

FIGURE 3.1: Basic structure of a HHG spectrum with the three char-
acteristic stages as: an exponential decrease in intensity at low-order
harmonics, followed by an extended intensity plateau, until a cer-
tain cutoff frequency where the intensity decreases again. For cen-
trosymmetric targets, HHG spectrum is typically composed by odd
harmonic orders (K is a positive integer). Figure extracted from [61]].

3.1.1 Semiclassical approach

In order to explain intuitively mechanism behind HHG in gases, the most extended
theory is the so-called three-step model [5, 62] explained previously in section |1} Ac-

cording to it, harmonics are radiated upon rescattering of electrons with the parent
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ion. This process repeats twice every cycle i.e. once per maximum of the field am-
plitude, and structures the harmonic emission into a train of high-frequency XUV
pulses. This periodicity, together with the symmetry of the target, determines the
line-spacing between the harmonics in the frequency comb. As already introduced,
centrosymmetric targets typically result in odd-order harmonics, but the use of
polichromatic driving pulses may lead to the appearance of even-order (or more
complex) harmonic distributions [63-65]].

Assuming that the ionized-electron wave packet behaves as a semiclassical
charged particle accelerated by the external field, we can analyze the electron tra-
jectories that lead to the HHG emission. Note that in the tunnel ionization regime
the electron is released into the continuum with a mean value of zero velocity. In
this situation, a linearly polarized field can only drive the electron back and forth,
optimizing the efficiency of the re-encounters with the parent atom. Neglecting the
influence of the Coulomb potential and the effect of the magnetic field during the
electron excursion in the continuum, we can integrate the equation of motion of the
free electron interacting with a monochromatic field, linearly polarized in the y axis,

F(t) = F, sinwyt, as follows:

. geFo .
= t, 3.3
ij e sin wy (3.3)
. g.F,
= —— t— tol, 3.4
y ——— [cos wot — cos wot,] (34)
y = — 9o [sin wot — sin wot, — wp (t — t,) cos wot,]|, (3.5)
Mew}

where t( is the time when the electron is ionized. Following the three-step model
description, the frequency of the emitted harmonic corresponds to the kinetic en-
ergy at recollision time plus the ionization potential Ip. Accordingly, the maximum
frequency radiated, i.e. the frequency cutoff, corresponds to the maximum kinetic
energy on recollision among all the recolliding trajectories.

Figure[3.2h, illustrates the above discussion by showing a set of electron trajecto-
ries born in the continuum at different ionization times. The trajectories are obtained

from Egs. The electric field is represented by the grey-dashed line and the
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FIGURE 3.2: A) Classical trajectories in time calculated for a
monochromatic laser field centered at 800 nm and a peak intensity
1.57x10'4 W/cm?. Light green line represent the atom position,
while the dashed grey line is the driving field. Blue line is the tra-
jectory with the maximum recollision energy, i.e. cutoff and the three
pairs of continuous lines represent the trajectories corresponding to
3.0 Up, 2.5 Up and 1.5 Up energies. B) lonization (red dots) and rec-
ollision (green dots) energies in time. Short and long trajectories dis-
tribution in both energy spikes are highlighted. The excursion time
of the cutoff trajectory is 0.63 T, where T is the laser period. Figure
extracted from

green line shows the position of the atom. Only a subset of trajectories is repre-
sented, corresponding to those that rescatter with the parent ion. Note the fortunate
coincidence of these trajectories being ionized near the driving field amplitude max-
imum, therefore with greater tunnel probability. As a consequence, the rescattering
trajectories, leading to the emission oh harmonics, are also those more efficiently
ionized.

Fig. shows the kinetic energy at rescattering as a function of the ionization
(red) and recollision (green) times of the corresponding trajectories. Note that those
trajectories ionized slightly after the field amplitude maximum rescatter with ener-
gies close to the frequency cutoff 3.17Up. A single trajectory fulfills this maximal en-

ergy condition, plotted as a blue line in Fig. [3.2a. In contrast, there is always a pair
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of trajectories with the same recollision energy below the cutoff (e.g. 3.0Up,2.5Up
and 1.5Up cases presented in pink tones in Fig. [3.2). These trajectories differ in the
ionization and rescattering times, and therefore spend different times during their
excursion through the continuum. According to the duration of their excursion,
they are termed as short and long trajectories. Lewenstein et al. in 1994 [66] gave the
tirst glimpse to the semiclassical nature of the electron wave packet trajectories, in
particular to the phase acquired by the wave function during the electron’s excur-
sion. The relative phase between the trajectories generates interference patterns in
the harmonic spectra, that were first found experimentally in 2008 [67]. According to
Lewenstein’s description, this quantum phase is more sensitive to the driving field
intensity the longer the trajectory’s excursion is. As we shall study, this will be very

relevant to understand the macroscopic build-up of the harmonic emission.

3.1.2 Quantum approach: Exact solution

HHG can be well described within the single active electron approximation (SAE),
where the electron is assumed to interact with the electric field and the atomic core
is frozen. The dynamics of the electron wave function, ¥ (r, t), is ruled by the time-

dependent Schrodinger equation (TDSE)

ihaat‘I’ (r,t)=H(r, t)¥ (r,t), (3.6)

where H (r,t) is the Hamiltonian describing the electron interaction with the ion
and the electromagnetic field. Under the dipole approximation, the electromagnetic

field is approximated as homogeneous, therefore

H(r,t) =T+ Vc(r) + VE(t), (3.7)

where T = —ZL,;vz is the kinetic energy operator, V(r) the core’s Coulomb poten-

tial, and Vp(t) = —i gl A(t)-V+ g A2?(t), A(t) being the electromagnetic vector

meC 212

potential. The integration of [3.6|is usually carried by means of the Crank-Nicolson
algorithm [68]]. According to Larmor’s formula [69], the electron will emit an elec-

tromagnetic field proportional to its acceleration. The harmonic spectrum is, then,
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computed as the Fourier transform of the mean value of the electron acceleration,
a(t) = (—(9e/me)VVc)y,. Fig3.3{shows the harmonic spectrum corresponding
to the dynamics of an electron initially occupying the ground state of a hydrogen
atom. The electromagnetic field is modelled as a 16-cycle long sin? envelope pulse
with center wavelength 800 nm and peak intensity 1.48 x 10* W/cm?. Note the
emergence of the plateau structure, that extends approximately to the 27th order, in

good agreement with the semiclassical cutoff formula
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FIGURE 3.3: TDSE simulation results of the HHG spectrum in atomic
hydrogen driven by a 800 nm, 16 cycles (total duration) and 1.48 x
10'* W/cm? peak intensity pulse.

Time-frequency analysis

In order to analyze the temporal characteristics of the harmonic emission it is very
useful to develop a time-frequency analysis (TFA) of the harmonic signal. This diag-
nostic allows to resolve which harmonics are emitted at the different instants of time
during the interaction. The TFA uses the harmonic spectrogram, obtained from the

inverse Fourier Transform of the time-gated acceleration,

Se(w, T) = \/127( /j:o go(t — T)a(t)e' ™ dt (3.8)

where g, is a Gaussian function of width ¢.
Fig 3.4/ shows the spectrogram corresponding to the harmonic spectrum plotted

in Fig. The harmonic frequencies corresponding to the semiclassical trajectories
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are superimposed as red and black circles, corresponding to the short and long trajec-
tories, respectively. It is appealing the coincidence between the classical predictions
and the TFA, which demonstrates the success of the semiclassical description even

in the description of the spectral region well below the cutoff frequency.
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FIGURE 3.4: TFA of the HHG emission obtained in hydrogen atom

using a driving laser pulse with 1.48 x 10'* W /cm? peak intensity, cen-

tered at 800 nm and 16-cycle total duration pulse. The TFA has been

obtained scanning over the HHG spectral amplitudes with a Gaus-

sian mask of 3wy width. Red (black) dots represent the semiclassical
results from short (long) classical trajectories.

3.1.3 Quantum approach: The Strong-Field Approximation

The integration of the TDSE in Eq. provides the exact solution of the wave
packet dynamics but, at the same time, it can be very computing-time demanding.
This inconvenience is overcome with the use of simplified models, based on reason-
able approximations. Among them, the Strong-Field Approximation (SFA) has been
demonstrated very successful in the description of relevant strong-field phenomena,
as above-threshold ionization or HHG [70-72]. The SFA neglects the Coulomb po-
tential once the electron evolves in the continuum. The SFA approach is developed
through the definition of Green’s propagators of the complete and partial forms of
the Hamiltonian. The solution of the TDSE[3.6is given in terms of the Green's func-

tion, G (r,t; 7, ty), associated to the Hamiltonian@ as,

Y (r,t)= i/G (r,t;74,t0) Y (v, t0) dri, (3.9)
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or, in Dirac notation,|¥ (t)) = iG (t,to) |'¥ (f0))-

The SFA is developed considering two possible splittings of the total Hamil-
tonian On one hand H = Hj + Ve(t), with Hy = T + Vc(r) being the
atomic Hamiltonian, can be interpreted as describing an atomic electron interact-
ing with an electric field. On the other hand, the splitting H = Hp(t) + V, with
Hp(t) = T+ Vg(t), describes the field-assisted electron scattering with the ion poten-
tial. According to these definitions, we can define the Green’s functions associated
with the partial Hamiltonians H4 and Hr(t) as G4(t, to) and Gr(t, to) respectively.
Ga(t, to) propagates an atomic electron free from the interaction with the electric
field, whereas Gr(t, to) propagates a free electron quivering under the influence the
electric field.

The exact calculation of the the Green’s function G (t, ty) is too complex, there-
fore requires the development of approximations. One general strategy to approx-
imate Green’s propagators consist in considering the Lippmann-Schwinger expan-

sion that, for the two Hamiltonian splitting considered above, reads as,

1 t

G (t,to) = Galtty)+ ), G (t,t1) Vi (t1) Ga (t1,t0) dt (3.10)
0
1 t

G (t, to) = Gr(t, to) + 7 t G (t, tl) Ve (tl) Gr (i‘l, to) dty (3.11)
0

Note that these are not approximations, as the right-hand sides depend also on the
final solution G (t, ty). In it most common form, the SFA substitutes the exact propa-
gator inside the integral in Eq. by the first term in the expansion resulting

in the approximated expression:
1 ot
G (t, to) ~ Gy (t, to) + ﬁ /t Gr (t, tl) Vi (tl) Ga (tl,to) dty. (3.12)
0

The physical reading of this expression is the following: the evolution results
from the superposition of different stories that may happen to the electrons. The first
term in describes the possibility that the electron evolves in the atom, without
interaction with the electric field. The integral term, on the other side, describes the
sum of all stories in which the electron evolves in the atom until a certain time, t1, in

which the interaction happens. Afterwards, the electron evolves as a free particle in
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the electric field without noticing the Coulomb potential of the ion.

Now we can write the temporal evolution of the electronic wave function using

the SFA propagator as

¥ (1) = iGA(t,f0)|¢0>+;l/ttGF(trfl)VF(tl)GA(tlzfo)!l/J0>df1

= [po (1) +[09 (1)), (3.13)

where [ip) is the initial state of the electron, that we shall assume as the atomic
ground state. The first term of the right part refers to the electron evolving solely

under the Coulomb potential, then

9o (£)) = iGa (t,10) [ipo) = e~ 001/ T ypg) (3.14)

where ¢ is the energy of the state. For the integral term in we introduce the
Volkov states, the basis for describing the interaction between strong laser pulses

and a free electron:

[¥p (1) = i@ | P), (3.15)

where (r|P) = ¢!/"P~1./cAl)] P being the canonical momentum, and S (P, t,t1)

the free electron action given by

S(Ptt) = —— /tt P-Taw)| ar. (3.16)

me
Using the Volkov states, the Green’s function Gr results in
Gr (r tr1, ) = —i/ei%su”ffffl) |P) (P|dP. (3.17)

Introducing Eq. in the second term in Eq. we obtain

] t . €
op(t) = — [ [ NP0 (P Ve (1) 1go) by |P) dP
fo

— / ¢ (P,t)|P)dP (3.18)
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We can solve ¢ (P, t) using a standard Runge-Kutta algorithm for the differential

equation:

d ] e ’ 2 ] —i%0 (4—
GV P =g [P TA)] g (P1) — e TPV (1) o). 319)

Once we have obtained the temporal evolution of the electron wave function, the

acceleration of the electron can be expressed following Eq. as

{a(t)) = (o (t)[alipo (t)) + (3¢ ()| a oy (1)) + 2R {{¢o ()| a [0 (#))}. (3:20)

The first term in the right hand vanishes due to the parity of the atomic orbitals.
The second term stems from the free electron oscillation due to a external field in-
teraction. This term is mainly linear, therefore not relevant for HHG. The last one
represents the acceleration of the dipole formed between the ionized electron and
the ground state. Using the Ehrenfest theorem, the SFA acceleration operator can be

expressed as,

@) =2{ O -TValep )} - LF), G2

e

and using the information in Eq.

@®) = [2R | OIT)IP)
=g [ HEAOERD (P (1) [y} || 4P

= [a(P,t)dP. (3.22)

Fig. extracted from [73]], shows a comparison between TDSE (blue line) and
SFA (red line) spectrum results for a 6-cycles total duration driving field with 1.58 x
10'4W /cm? peak intensity and centered at 1600nm. The differences between the

exact solution given by the TDSE, and the SFA are demonstrated to be minimal.
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FIGURE 3.5: High-order harmonic spectra obtained with a driving
pulse of 6 cycles total duration, 1.58 x 10!* W/cm? peak intensity and
centered at 1600nm. Blue (red) line corresponds to the TDSE (SFA)
results, while orange and green lines are different approximations not
explained in this thesis work. Figure extracted from [73].

3.2 The macroscopic description of high-order harmonic

generation in atoms

Once we have discussed the different approaches for HHG in gases from a single
atom perspective, we can move on to the macroscopic point of view. This requires
the evaluation of the total emission of the atoms in the target, each subjected to the

local form of the driving field.

3.2.1 Phase-matching

Previously we commented on the relevance of the quantum phase acquired in the
trajectories” excursions. Then we determined the harmonic acceleration formula un-
der the SFA, and how it contained a phase term given by the action S (P, t,t;). This
phase is transmitted to the harmonics as the exponential of the action associated to
each semiclassical trajectory with rescattering kinetic energy ghwo — |€o|, g being the
harmonic order. Thus, the phase of the gth-order harmonic can be split in two parts
as,

¢q (0,¢,2) =qP (0, ¢,2) +agl (0, ¢,2), (3.23)

(p, ¢, z) being the cylindrical coordinates of the position of a particular atom in the
sample, and n ="s” or “1” labels the short or long nature of the trajectory consid-

ered. The first term in is the gth multiple of the local value of the driving field’s
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phase @ (p, ¢, z). This harmonic phase coincides with the expected from perturba-
tion theory. The second term in Eq. represents a non-perturbative addition to
the harmonic phase, that depends on the local value of the driving field’s intensity
I(p,¢,z). The proportionality constants aj depend on the harmonic order and on
the nature of the trajectory. The actual values of these constants can be obtained from
the SFA approach, combined with a saddle-point approximation. Fig. 3.6/shows the
values of aj as a function of the electron’s returning energy, as computed for the

case of a monochromatic driving field. Note that the sensitivity of the phase to the
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FIGURE 3.6: Numerical result for the phase coefficient « as a func-
tion of electron return energy, in units of Up. Figure extracted from

[15].

Since the macroscopic harmonic signal from the target is the superposition of the
emissions from each atom, the optimal signal should be obtained when the phase
of these emissions match to build a constructive interference. Considering the atom
distribution along the field propagation direction, the phase difference between the
harmonic field emitted at zp and propagated to z, and that being generated at z
is Apy = ¢ (z) — @4 (20) — kq (z — z0), where k; is the harmonic wavenumber. At

point z the emissions originated at all previous points zg present a longitudinal phase
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mismatch factor of

A" dg" (2)
N _ 929 _ %% _
My = oz 0z kg =qk1+ag

al (z)
0z

—k, (3.24)

where k; is the wavenumber of the driving field. Note that up to here we have con-
sidered only the quantum phase as the source of harmonic phase difference along the
propagation direction. However, in an experiment other sources of phase mismatch
are the harmonic dispersion due to the ionized electrons, and the phase acquired
by the field focusing geometry. It is common to find these terms in the longitudinal
phase mismatch factor in the literature [15].

Additionally to the longitudinal phase dependencies, it is also important to take
into account the transverse phase-matching [74]. The transverse intensity distribution
of the driving field leads to a different non-perturbative phase term in each point of
the transversal plane of the HHG emission. In such case, one can define the transverse
phase-mismatch factor as:

_ 990 _ 91(p)

n,.L _.n
Akq = 3 —ocqiap ,

(3.25)
where p is the radial coordinate. As in the longitudinal case, additional terms that
take into account the focusing geometry can be considered. It has been demon-
strated not only that transverse phase-matching is important to improve the HHG ef-
ficiency [74], but also to modify the temporal and spatial properties [75, 76]. How-
ever, transverse phase-matching is well demonstrated in gases but not in solids. One
of our results of this thesis is centered in the study of the transverse phase-matching

in a monolayer graphene, where, due to the layer’s atomic thickness, longitudinal

phase-matching effects do not play a role.

3.2.2 Computation of macroscopic high-order harmonic emission

In order to obtain the target’s emission as if detected in the far field, we follow the

method presented in Ref. [61]. We consider the wave equation:

vip_ L p_4mo

232 chJ' (3.26)
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where J is the current density and F' (r,t) = F, (r,t) + F; (r,t), F, (r,t) being the

driving field and F; (7, t) the field radiated by the charges in the target. For high
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FIGURE 3.7: Scheme of HHG propagation from each emitter placed

at 7 to a detector place at a distance || from the center of the target

O. The detector is formed by elementary cells at different angles 6,

where the integrated harmonic emission from all elementary radia-
tors at the target is collected. Figure extracted from [61]].

frequencies we can assume propagation at vacuum velocity. Then, the field radiated

by a source placed at the point r’ in the target propagates to a detector, placed at r,

as,

1 1 d
F (rg,t)=—= / dr ———— {J r,t } (3.27)
c? "I‘ - Tllj‘ ot/ ( ) t=t—|rg—r'|/c
Since we decompose the target into elemental radiators, the far-field contribution of
the radiator located at r; is (see Fig. [3.7),
q 1

Fj(rg t) = e

sq X [sgxaj(t—|rg—m/c)], (3.28)
where a; is the jth charge acceleration (that can be calculated through the TDSE or
SFA approaches), and s; is the unitary vector pointing to a detector at ;. Finally, the
total emission by the sample can be written as the superposition of each contribu-
tions F' (ry, t) = Zjl\il F; (r4,t). This approaches has been successfully used in HHG
in gas targets. In this thesis work we will adapt it to describe macroscopic HHG in

single layer graphene.
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3.3 High-order harmonic generation in graphene

Due to historical reasons, the theory of HHG has been well-established, and con-
trasted experimentally, for the case of atomic and gas targets. The previous section
overviewed this understanding in order to introduce the main aspects of HHG. In
this section we will consider graphene as target. The theory of HHG in solids, in par-
ticular in graphene, is much less developed. However it has some common points
with the case in gases, and also some of the processes in solids are analogous to
those in gases. In the next subsection we shall review the structural description of
graphene, and its more relevant aspect for HHG: the energy band dispersion. After
this, we shall finish this section exposing the theoretical method we have used in

this thesis to compute HHG from graphene layers.

3.3.1 Crystal structure

Carbon atom is one of the most abundant elements on earth, and it has the abil-
ity to form multiple geometrical configurations with different properties. Carbon
allotropes appear in four effective dimensions: 3D bulk systems (as diamond or
graphite), 2D layers (as graphene), quasi 1D structures (as nanotubes) and 0D (as
nanodots) [34]. Carbon structures have extraordinary electrical, optical and mechan-
ical properties due to the presence of strong bonds made from sp orbitals hybridiza-
tions. Diamond is one of the most known allotropes due to its hardness and high
refractive index, with an optical transparency from the infrared to the ultraviolet.
Carbon bonds in diamonds are sp® hybridizations leading to a three-dimensional
crystal structure. In contrast, graphene has an hexagonal structure formed by sp?-
orbital bonds that lead to properties completely opposed to diamonds. Graphite is
formed by stacked layers of graphene following an AB sequence, and with delo-
calized p-orbitals. As a result, graphite is a good electrical conductor in the layer
directions.

The upper valence and lower conduction bands in graphene are formed by out-

of-plane 77 and 77+ bonds. Graphene’s hexagonal lattice is formed by two sub-lattices
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(see Fig.[3.8p), defined by the translation vectors,

a1 =a(V/3/2,1/2,0), (3.29)

ar =a(V/3/2,-1/2,0), (3.30)

where a = 2.46 A is the lattice constant. Thus, any lattice vector is defined as
R, ,, = nijai + npaz, where ny and n; are integers. There are in total 12 point
group symmetry operations associated with the hexagonal lattice, six under rota-
tion by angles of 27t /n withn = 1...6, and six under reflection.

The first Brillouin zone (see Fig. b) is defined by the vectors in reciprocal

lattice,

by = 2m/a(1/+/3,1,0), (3.31)

by = 27/a(1/+/3,—1,0), (3.32)

Therefore any reciprocal lattice vector can be expressed as G, m, = mi1b1 + mab.
This results in an hexagonal lattice rotated 90° with respect to that in real space.
The six vertices, labeled as K and K’, are points where both valence and conduction
bands are in contact (Dirac points). The symmetry operations are the same for real
and reciprocal spaces. The highest symmetry point is at the center, denoted by I' =
(0,0), dihedrical group Dgj. Then we have the Dirac points K = %(@, 1) and
K = %(?, —1), dihedrical group Ds,, and point M = %(1,0), dihedrical group
Djy,. Besides, we can establish the symmetry linesI' — K, I' — M and K — M [77].

3.3.2 The band structure of graphene

In the previous section we have seen that the accurate description of the electron’s
evolution in the continuum is paramount to understand HHG from atoms. We shall
see that in the case of crystals the electrons are promoted to the conduction bands,
instead of being ionized (see Fig. . In this case, the electron evolution in the
conduction band plays a role of similar importance as that of the ionized electron in
atoms. Interestingly, solids add a new degree of complexity, as the energy dispersion

is far more intricate in comparison to the parabolic form of the free electron. Before
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FIGURE 3.8: A) Hexagonal structure of graphene with basis vectors

ay and ay. The nearest neighbors B are pointed by the vectors R;. B)

Hexagonal graphene structure in reciprocal space with basis b; and
by, where K and K’, I and M are the high symmetry points.

studying HHG, it is necessary to derive the details of the band structure of the solid
system used as a target. In our case, we will restrict ourselves to the case of graphene.
The following subsection develops the tight-binding approach to graphene’s band
structure. Once the energy dispersion in known, we shall review the approach we

will follow to compute HHG.

The tight-binding description of graphene

Wallace described the electronic energy bands of graphite in the tight binding approx-
imation [32], neglecting the overlap between wave functions from both sublattices.
Several years later, in 1998, Saito et al completed the energy band description in-
cluding the overlaps and, therefore, the interactions with the nearest neighbors. The
band calculation starts from the Bloch electron wave functions defined in the two

sublattices A and B, superpositions of carbon atomic orbitals 2p,:

eFRag, (r— Ra), (3.33)

op (1) = e Bsg (r — Rp), (3.34)

A _ 1
¢ (1) = 75 LR,
_ 1
ﬁ ZRB
where N is the total number of atoms in each sublattice, r is the electron position,

and R, p are the positions of the ions in each sublattice. The phase factors in Egs.

and result from the application of the Bloch’s theorem [78]]. The total wave
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function is the linear combination of the Bloch orbitals,

Y (r) =ca (k) ¢ (r) +cp (k) pp () . (3.35)

Graphene eigenstates correspond to solutions eigenvectors of graphene’s Hamil-

tonian H,

Multiplying by ¢}, (r) both sides of the equation and using we obtain

CA CA
<cj‘4 c’§> Hy, = (cj‘ c*é) ErSk , (3.37)
CB CB
with
H H S S
Hk _ AA AB ,Sk _ AA AB . (338)
HBA HBB SBA SBB

where H;; = <§b;c|Hk\<PL> and S;; = <¢};|¢],;>,with i,j € {A, B}. Then, the Schrodinger

equation is transformed into an eigenvalue equation,
|Hi, — ExSk| = 0. (3.39)

whose solutions give us the band structure of the 7r-orbitals.

Let us now estimate the expressions for Hy, in the nearest neighbors approxima-
tion. Hy4 and Hpp represent the average energy of the orbital 2p, with a value of
ezp = 0.28eV. On the other side, an atom of sublattice A has three nearest neigh-

bors atoms, belonging to the B sublattice. Therefore H4p corresponds to the overlap

integral
1 ‘
Hag(k) = + DY R PR [ (v~ Ra) Hug (r — Ry) dr
R, Rp
3 .
= ¥ ) ok /q)z (r — Ra) Hio- (T — RB],> dr

= 7 (eik:.'rn 4 eik.'rlz + eik-'r'13> , (340)
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being B; the three nearest neighbors of the atom at the site R4, and 7 the tight-
binding integral of graphene, that can be defined as the average interaction energy,

experimentally found to be -2.97 eV. Taking into account that:

1

R = ;(a-a), (3.41)
1

R, = 3 (—a1 + 2(12) , (3.42)
1

R; = 3 (—a1 —ay), (3.43)

we can define the function

f(k;) = e_ék"(a'ﬁ‘az) (e—%k‘al _i_e—ék:'az _|_1>
e—iakx/\/§ [1 _|_2€i\/§akx/2 cos <ak]/>] (3 44)
2 ! )

and simplify the equation for Hap as Hag (k) = vof (k). Note that Hga = H 5.
Following a similar path we can obtain the expressions for S terms. On the one
hand, S4o = Sgg = 1 since cp,‘;‘ and cpg are normalized. On the other hand, the

crossed terms can be written as,

Sap = sof (k), (3.45)

sp being the overlap integral between the nearest neighbors orbitals,

50 = / ¢ (r — Ra) ¢ (r — Rg) dr. (3.46)

Once we have Hy, and Sy, we can obtain the energy bands of the 7r-orbitals from

Eq. (3.39):
e2p F 0 |f (K)|
Ei(k)= ——"F77F7-7— 47
B e 047
where |f (k) | can be found from Eq. as
k k ky®
]f(k)]:\/1+4cos\@2axcosazy+4cosazy. (3.48)

At the Dirac points, K and K’ as defined in the previous section we have
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f(K) = f(K’) = 0, and the electronic bands are locally degenerated with energy 5,
corresponding to the Fermi level.

Since sp = 0.073 is small, we can neglect the overlap between neighbor wave
functions. Setting the energy reference at the Fermi level, we find Wallace’s solutions
[32],

Es (k) =0/ (K)]- (3.49)

Fig. |3.9|shows a plot of the energy band for two different trajectories in the Brillouin
zone, M—K—-T —-K —Mand K-T - M —K.

Thus, in the tight-binding approximation, the Hamiltonian can be written as,

0 k
He — Yof (k) ’ (3.50)
rf7 (k) 0
with eigenstates
eik~'r F1
o) = — , (3.51)
‘ § > \ﬁ e_i‘l’k
where ¢, is the phase of the complex function f (k).
E (eV) E (eV)
A) ! x B) =l =
F(;':\M' re MI
ﬂ.:;: 5t ‘K ﬂ'* 51 K
0 0
SH 5
T T
-10f -10}
M K r K M K r M K

FIGURE 3.9: Solutions for the energy bands, 7t (red line) and 7* (blue

line), under the tight-biding description following Eq. A) and B)

represent the bands along different paths in the Brillouin zone, shown
in their respectively insets. Figure extracted from [79]
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3.3.3 Polycrystalline graphene

Most technological applications of graphene require to produce large-area layers,
beyond the micrometer squared. There are different fabrication strategies, the most
extended one being chemical vapor deposition (CVD). In 2009 Li et al. presented
a potential alternative to exfoliation graphite technique —not scalable technique—,
based on growing large-area single-layer graphene films (>95%) of about centimeter

squared by CVD growth directly on copper foils by a surface catalyzed process.

HTEHAL AL
MM 11Cm

FIGURE 3.10: Graphene grown over copper foils by CVD. A) and B)
show a scanning electron microscopy (SEM) image of graphene on
a copper substrate and transferred to a SiO,, respectively. Figures

extracted from

The process has two steps. First, the annealing stage where they warm the copper
foil up to 1000°C and deposit a mixture of methane and hydrogen (CHs + H»). Then,
the cooling stage, when the carbon is segregated to the metal surface. The growth
conditions, as the thickness of the metal, the heating temperature, or the cooling

process, can determine the deposition mechanism, and therefore the morphology
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of the films. The practical interest in the generation of extended foils of graphene
in highly reproducible conditions has motivated many studies on strategies to in-
crease the size and to control the different number of grains and their boundaries, in
order to obtain particular properties according with the intended applications [81].
Typically, graphene films obtained from CVD are polycrystalline, meaning that the
foils are composed of crystalline domains, or grains, with different sizes and orien-
tations. The most widely used technique to characterize single-layer polycrystalline
graphene is transmission electron microscopy (TEM).

In 2011, Huang et al. [49] presented a full analysis of single-layer graphene films
on copper. They use a variation of TEM called aberration-corrected annular dark-
field scanning transmission electron microscopy (ADF-STEM) to characterize the do-
mains and boundaries within the layer. The films were placed upon a holey silicon
nitride grid with 2.5 ym length holes. The mean grain size obtained was 250 £ 11
nm and the grain relative-rotation was mainly centered at ~ 7° and ~ 30°. Despite
the graphene’s electronic properties can be modified by boundary defects, the op-
tical response is more resilient to these details, as the defect boundaries occupy a

small fraction of the surface of the domain.

3.3.4 Calculation of HHG in single-layer graphene

In this section we shall review the dynamical equations for the interaction of an elec-
tromagnetic pulse with graphene, and how this can be used to compute HHG. We
will also review the semiclassical understanding of the process, in terms of quivering
electron-hole trajectories.

Electromagnetic field interaction with single-layer graphene

We consider the hamiltonian,
H(t) = Y Hi + Vit (1), (352)
k

where Hy, is the graphene’s Hamiltonian, Eq.(3.50), and Vi, (t) = —g.F () - 7 repre-

sents the interaction with the electric field, F'(t).
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The dynamics of the interaction is governed by the TDSE,
. 0
iha [¥ (1)) = H () [¥ (1)), (3.53)

written as the time-dependent superposition of graphene’s eigenstates The
solution of the time-dependent problem is greatly simplified using the Houston state

basis, | P (t)), with:

t
K=k + % F (1) dr. (3.54)

where fik; can be interpreted as a kinetic quasimomentum. Therefore, we can ex-

press the electronic wave function as,
¥ (1)) = / [y () |@F) + C (e, t) | @7, )] dk. (3.55)
Projecting Eq. onto (P | we obtain a differential system:

lhaatci (K‘,t, t) = [Ei (K,t) — F (t) -D (Kf)] Ci (Iit, t)

— F(t)-D (k) Cy (K 1), (3.56)

where D represents the transition matrix element between the conduction and va-
lence band,

D (k) = (D, | q.F |Dg,), (3.57)

that also corresponds to the Berry connection. This matrix element presents singu-

larities at the Dirac points that introduce numerical instabilities. A way around this
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problem is to rewrite Eq. in terms of the Bloch states as follows,

ei(“‘rfqb“t)
\@

mr ¢"”~t)

¥ = fcr

+ [
elﬂ tT

_ _/(C_"”;f—cff) > %) drsy
ei(ﬂtr—li?nt)
V2
= /C"”f\[ |’y >d&t+/C”t 7 lug') dry. (3.58)

[ [u) + 7P !u§'>]] o

)y et |u;f>}] I,

+ / (C5t 4 ™) |u’§*>dm

where we have defined,

Cht = —(C—C™) (3.59)

Cyt = (Cff + Cr) e~ iom (3.60)

Rewriting the dynamical equations in terms of these coefficients, we end with

ih%c;t _ Ei(my) ﬂZL E_ (Ht)czt _Eq (k) ; E_ (nt)cgtei(pw (3.61)
h;tcnt _ Ey (k) ﬂZL E_ (Ht)cgt _Eq (k) ; E_ (Ht)cztei(p,et’ (3.62)

where the Berry connections do not appear explicitly and, therefore, the singularities
at the Dirac points do not introduce numerical instabilities. The time-dependent

dipole is computed from the solution of Egs. and as
d(t) = (¥ (1)o7 [¥ (1)) (3.63)
Following the Houston frame, and with CAB coefficients, the dipole emission is:
d(t) =ik / [ChP' Y, Ot 4 CEO Y, O8] dik. (3.64)

We then compute the HHG spectrum using the dipole acceleration, i.e. the second
time-derivative of Eq. In Fig. we present an example of a HHG spectrum

obtained in graphene driven by 3 um wavelength laser pulse. We used a sin? driving
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laser pulse envelope of 6-cycles total duration and peak intensity of 5 x 10! W/cm?.
As in the case of gases, we can identify a plateau structure that extends towards a

maximum cutoff frequency.

* %W WWV *
) (\M
-10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Harmonic Order

Spectral intensity
(arb. units, log. scale)

FIGURE 3.11: TDSE simulation results of the HHG spectrum obtained
in graphene driven by a 3 um, 6 cycles (total duration) and 5 x 10!
W /cm? peak intensity pulse.

Semiclassical description

Following the path described in Ref. [40], we can derive a semiclassical approach of

HHG in graphene by defining the action

Se (kb 1) = — / "By (k) — By (10)] d. (3.65)

t

Modelling the Berry connection as a Dirac delta at the Dirac points, the dipole inter-

band contribution can be written as
Do Ls (kpttp)
d$ (t) =i /eh g\BDAIDERID) (K, t) dk, (3.66)

tp i being the instant of time when the valence electron trajectory passes near a Dirac
point, where the electron-hole pair is generated. Similarly to what happens in gases
[82], the HHG dipole is dominated by the action. Eq. can be integrated using
the saddle-point approximation leading to the following conditions for the electron
trajectories

Ey (ke) = E- (ki) = ghewo (3.67)
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t t
/ vy (Ke)dt = / v_ (Ke) dT, (3.68)

tpk tpk
where vy (k) = (1/h) ViE4 (k) are the velocity of the electrons in both bands.
The first condition fixes the energy of the photon emitted as the value of the band
gap at the moment of recombination, t. The second condition determines that, in
this semiclassical framework, the recombination of the electron-hole pair is possible
if their position coincides in the real space. This condition defines the concept of a
perfect recollision, a relevant concept in the framework of this thesis work.

Using Egs. and we can calculate the trajectories of the electron and the
possible recombination energies. In Fig. [3.12A), we present the TFA (color back-
ground) of the TDSE harmonic emission shown in Fig. We also include the
trajectories estimated from the semiclassical description. Note that the trajectories
starting in K (light red line) are half a cycle delayed compare to those starting at
K’ (dark red line). Interestingly, at the beginning of the HHG emission both results
match very well, the semiclassical study can reproduce the TDSE spectrum at this
stage. However, in rear part of the pulse, the trajectories do not properly resolve the
emission obtained by the TDSE. In this thesis work we explore the sources of this
phenomena, and we demonstrate the existence of the imperfect recollisions in HHG in
single-layer graphene. In Fig. [3.12B), we plot a map of the energy of the electron-

hole pair in terms of its excitation and recombination time.
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FIGURE 3.12: Results of HHG in graphene driven by a field centered
at 3um, 6 cycles pulse with a 5 x 10"'W/cm? peak intensity. Panel
A) shows in red the possible perfect recollisions calculated with Egs.
B.67/and .68 over the TFA and the TDSE results. Panel B) depicts the
corresponding band gap distribution in terms of the excitation and
recombination times assuming perfect recollisions.
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Chapter 4

Results

In this chapter we present the results of HHG in single-layer graphene developed
along this thesis work. We analyze the process from different perspectives. Starting
from a microscopic point of view, we study the quality of the description of HHG
in terms of semiclassical trajectories and the role of the imperfect recollisions. In a
second paper, we explore the macroscopic aspects of HHG, resolving the influence
of transverse phase-matching in the build-up of the target harmonic emission, i.e. the
one that would be observed in experiments. Finally, we analyze the potential use of
high-order harmonic spectroscopy in a rather interesting application: the statistical

characterization of domains in polycrystalline graphene.

4.1 Classical study of electron trajectories: the role of imper-

fect recollisions

In this paper we investigated the role of the imperfect recollisions in the process of
HHG from single-layer graphene. Our results evidence the relevance of these non-
classical electron-hole recombinations in the emitted harmonic spectrum.

The concept of imperfect recollisions is relatively new in the frame of HHG in
solids. Originally, semiclassical recollision models similar to that introduced in sec-
tion or in Ref. [83], assume that, after the creation of the electron-hole pair,
the high-order harmonics are emitted once the electron and the hole re-encounter
in real space. Recently, Yue and Gaarde provided a new perspective in Ref. [53],
introducing the concept of imperfect recollisions. From a quantum point of view, they

demonstrated in monolayer hexagonal boron nitride, the possibility of electron-hole
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recombination even if the wave-packet centers, i.e. the semiclassical positions, are
spatially separated tens of a.u. due to the spread of the electron and hole wave wave
packets (see Figl£.T). They developed an extended recollision model (ERM) that re-
laxes the restriction of spacial re-encounter of the electron and hole trajectories, and
included the effect of Berry connections and transition dipole phases in the trajec-
tories. Comparing with quantum results calculated with the semiconductor Bloch
equations (SBE) they concluded that imperfect recollisions are relevant in systems with

large Berry curvatures.
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FIGURE 4.1: Imperfect recollision between the electron and the hole
with a relative distance Ar. Figure extracted from [53].

This new phenomenon opens the door to reconsider the trajectory analysis in
different solid systems such as graphene. Even though graphene does not present
Berry curvatures, and the mechanism to produce high-order harmonics varies from
the case of finite-gap solids, as we have introduced in Chapter [T} imperfect recollisions
might be also relevant. In fact, in Fig. [3.12h) it is noticeable that perfect recollisions can
not reproduce the hole TFA of the graphene HHG emission, as at the rear part of the
pulse there are emissions from the TDSE that are not predicted with the semiclassical
solutions.

In our contribution we relax the condition in Eq. to select recollisions with
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different relative distances of a chosen case of HHG in graphene, driven by a lin-
early polarized pulse with a peak intensity of 5 x 101W /cm? and centered at 3 um.
We demonstrated that imperfect recollisions are also important in graphene. The cor-
rect description of the harmonic emission requires to include electron-hole excursion
times higher than one cycle of the driving field. For example, in the reported case,
we found that imperfect recollisions with electron-hole distances of up to 492 A are

relevant in the harmonic emission.

Resumen

According to the requirements of the University of Salamanca, the Spanish version
of the abstract is:

Estudios recientes en la generacién de arménicos de orden elevado (HHG) en
s6lidos revelan nuevos escenarios con dindmicas electrénicas extraordinariamente
ricas, comparadas con los casos de 4&tomos y moléculas. En el caso de estos tlitmos,
los principales aspectos del proceso se pueden describir semiclasicamente en fun-
cién de los electrones que recombinan cuando las trayectorias pasan de nuevo por
el ion padre. HHG en sélidos se describe con un mecanismo similar, en este caso se
tiene en cuenta la recombinacion del par electrén-hueco. Sin embargo, se ha repor-
tado recientemente que una parte sustancial de la emisiéon de HHG corresponde a
situaciones donde el electrén y el hueco no se sobreponen espacialmente. Segtn el
conocimiento actual, HHG que vienen de las recolisiones imperfectas reflejan la nat-
uraleza cuéntica del proceso, en sistemas con grandes curvaturas de Berry o cuando
el campo incidente esta polarizado elipticamente. En este trabajo, demostramos que
las recolisiones imperfectas son también relevantes en un caso mds general. De-
mostramos el papel de este tipo de recolisiones en el espectro de HHG en grafeno —
un sistema sin curvatura de Berry—iluminado por un campo linealmente polarizado.
Nuestros calculos también revelan que los multiples 6rdenes de las recolisiones im-
perfectas contribuyen en la emisién de armoénicos cuando el tiempo de excursiéon
del par electrén hueco sobrepasa un ciclo del campo incidente. Consideramos que
nuestro trabajo supone una contribucién sustancial para el completo entendimiento

de las dindmicas inferiores al fentosegundo de HHG en sistemas sélidos.
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Abstract: Recent studies in high-order harmonic generation (HHG) in solid targets reveal new
scenarios of extraordinary rich electronic dynamics, in comparison to the atomic and molecular
cases. For the later, the main aspects of the process can be described semiclassically in terms of
electrons that recombine when the trajectories revisit the parent ion. HHG in solids has been
described by an analogous mechanism, in this case involving electron-hole pair recombinations.
However, it has been recently reported that a substantial part of the HHG emission corresponds
to situations where the electron and hole trajectories do not overlap in space. According to
the present knowledge, HHG from this imperfect recollisions reflects the quantum nature of
the process, arising in systems with large Berry curvatures or for elliptically polarized driving
fields. In this work, we demonstrate that imperfect recollisions are also relevant in the more
general case. We show the signature of such recollisions in the HHG spectrum from monolayer
graphene —a system with null Berry curvature— irradiated by linearly polarized driving fields.
Our calculations also reveal that imperfect multiple-order recollisions contribute to the harmonic
emission when electron-hole excursion times exceed one cycle of the driving field. We believe
that our work adds a substantial contribution to the full understanding of the sub-femtosecond
dynamics of HHG in solid systems.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-harmonic generation (HHG) is nowadays a well established technique to generate highly
coherent extreme-ultraviolet/x-ray radiation [1-7]. The phenomenon stems from the non-
perturbative interaction of intense laser light with matter. For atomic and molecular targets, HHG
can be understood in semiclassical terms, according to the so-called three-step model [8]. In this
point of view, harmonics are radiated when a tunnel-ionized electron returns to the parent ion,
where it recombines releasing its kinetic energy in the form of high-frequency radiation. This
later step is only efficient if the electron’s trajectory returns to the parent ion, which is a condition
naturally found in linearly-polarized driving fields. For elliptically-polarized drivers, the electrons
are pulled away from the parent ion, and the efficiency of the HHG process decreases accordingly
[9]. It is worth noticing also that the electron may not recombine at the first encounter with
the parent ion, therefore the harmonics can be emitted at subsequent higher-order recollisions
[10-12]. In such case, however, the radiated photon energies fall well below the maximum
photon energy of the first recollisions (the so-called harmonic cufoff frequency). Moreover, since
high-order recollisions imply electron’s excursion times longer than the driver’s cycle, they are
associated to lower harmonic conversion efficiencies, resulting from the progressive spread of
the electron’s wavepacket in the continuum [13-15].

#452201 https://doi.org/10.1364/OE.452201
Journal © 2022 Received 23 Dec 2021; revised 22 Feb 2022; accepted 7 Apr 2022; published 21 Apr 2022



Research Article Vol. 30, No. 9/25 Apr 2022/ Optics Express 15547 |

Optics EXPRESS

Solid targets provide richer scenarios for HHG [6,16-21]. In this case, the irradiation geometry
defines the HHG mechanism. For grazing incidences, i.e. when the polarization plane of the
driving electric field is perpendicular to the target’s surface, HHG follows from the recombination
of electrons detached from the target [22], in close resemblance to the ionization mechanism in
atomic and molecular cases. For solid targets, however, the crystal periodicity leaves a signal in
the detached electron’s wavefunction, in form of Talbot modulations, which in turn are reflected
in the HHG spectrum. This phenomenon gives ground to the recent proposal of ultrafast Talbot
spectroscopy at the nanometer scale [23]. On the other hand, for the case of normal incidence
or bulk solid targets, the HHG mechanism follows from an adapted semiclassical three-step
model [24]. According to this view, the electron’s tunnel ionization step is replaced by tunnel
excitation to the conduction band, and the consequent creation of a hole. Harmonics result from
the electron-hole recombination at times when the electron and hole trajectories overlap, i.e. the
so called perfect recollisions (ehPR). As a main characteristic, the harmonic cutoff frequency
corresponds to the maximum energy gap during the electron/hole excursion [24-28].

Despite of these fundamental similarities, HHG in solids turns out to be far more complex
than in atoms and molecules. On the one side, the crystal band’s dispersion is not quadratic and
thus, the dynamics of the electron in the conduction band is not as trivial as that of an electron
ionized in free space. In addition, Berry curvatures introduce a deflection in the electron and
hole trajectories. Therefore, while in gas systems the electron trajectories are universally defined,
in solids they depend on the target species. On the other side, the details of the excitation of the
electron to the conduction band are also affected by the band structure. For instance, it has been
demonstrated that HHG from elliptically-polarized drivers results from electrons tunnel-excited at
points surrounding the minimum band gap, rather than at the exact point [29]. In 2D semimetals
enclosing Dirac points, the excitation details are more involved, as tunneling is replaced by the
non-adiabatic crossing near these singular points [30]. This simple variation in the first step leads
to substantial differences in the HHG process, as electron-hole excitation is no longer linked
to the maxima of the driving field’s amplitude. In other low dimensional targets, as carbon
nanotubes, HHG follows from a similar non-adiabatic excitation mechanism near the Van Hove
singularities [31].

In the general case, the complex dynamics in crystals does not only affect the maximum
photon’s energy but also the polarization and phase properties of the emitted harmonics. In
particular, the band geometry around the symmetry points can lead to a highly non-linear
anisotropic response, resulting in the generation of harmonics with elliptical polarization even
when driven by linearly-polarized drivers [22,32—41]. In addition, the convoluted electronic
dynamics during HHG in solids leads to high harmonics with complex phase properties. As a
result, accounting for the spatial phase distribution in HHG from a macroscopic target [26,42]
has allowed to achieve a better understanding of the harmonic spectrum properties.

It has been recently shown that although the modified semiclassical three-step model accounts
for the main features of the HHG mechanism in solids, non-classical pathways can be also relevant
in systems with large Berry curvatures [43] or when HHG is driven by elliptically polarized
fields [44]. In these cases, harmonics are emitted during electron-hole imperfect recollisions
(ehIR), i.e. when the electron-hole wave packets overlap even though their centers are spatially
separated by distances one order of magnitude larger than the lattice constant [43].

In this article, we demonstrate that ehIR’s have a relevant role also for HHG in solids with
vanishing Berry curvature and driven by linearly-polarized laser fields. In particular, we show the
enhanced role of high-order ehIR at times larger than the laser cycle. The excellent agreement
between our semiclassical and quantum calculations demonstrates that ehIR must be considered
to obtain a better understanding of the complex phase properties of HHG in solids.

The article is organized as follows. In Section 2, we present the details of the computation
of the nonlinear response, where we use two models: the resolution of the time dependent
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Schrodinger equation within the first neighbor tight-binding approximation, and a semiclassical
saddle-point approach which allow us to interpret our results. In Section 3, we present and discuss
our findings, where we identify the role of ehPR and ehlR for several cases of HHG in single-layer
graphene driven by a linearly-polarized laser field. Finally we present our conclusions in Section
4.

2. Theoretical description of HHG in single-layer graphene

We consider the emission of high-order harmonics in single-layer graphene irradiated by a short
mid-infrared pulse, linearly polarized along the graphene sheet plane. To this end, we compute
the nonlinear response of graphene following the method described in [30], and we interpret
our results in terms of classical electron-hole trajectories in real space. The dynamics of the
interaction of a single layer graphene sheet with an ultrashort laser pulse will be described in the
first neighbor tight-binding approximation [45]. We express the electron wavefuntion in terms of
the graphene’s eigenstates, @ (r),

Y(r,1) = / Wi (r, )dk = / [C.(k, NDE(r) + C_(k, )P (r)] dk. (D

with @ (r) given as vectors in the basis of Bloch states,

1 . +1
+ _ - ikr
o1 = 3¢ ciow | .

#(k) being the argument of the complex function f(k),

ak,
- |

f(K) = emiakd/ V3 (1 + 2e/VB3ake/2 o 3)

where a = 2.46A.

The evolution of W(r, 7) is solved in the reciprocal space’s moving frame fik; = ik — g.A(?t)/c,
where A(r) is the vector potential of the electromagnetic field, c the speed of light, and ¢, the
electron’s charge. The numerical instabilities associated with the singularities at the Dirac points
can be circumvented by using the change of variables,

CM(Kht) = C+(Kt9 t)_ C—(Kl‘at) (4)
CP(KZ’ t) = e_i¢(K,) [C+(Kl’ t) + C—(Kt» t)] ’ (5)
whose temporal dependence is governed by the following equations,

EL (k) + E_(k;)

d E -E_ -

ihECM (k1 1) = 3 Cum (&1, 1) + Me"ﬂk')CP (k1 1) (6)
d E E_ E -E_ ;

i cp iy = EELE® ¢ gy BRD B iy ) )

where E. (k) = +yp|f(k)| are the energies of the valence (—) and conduction (+) bands, respectively,
and with yg = 2.97 eV [45].

Finally, by solving Egs. (6) and (7), we calculate the harmonic emission from the dipole
acceleration, a(7) = j—;d(t) as [30],

d(r) = (Y()lger[¥()) = i%/ [Crr(ke, )VKCri (1, 1) + Cp(kr, Vi Cr(Ky 1) dK. (8)

The fundamental physical aspects of HHG in graphene can be revealed by deriving a semiclassical
saddle-point approximated model (SPAM), as dicussed in [30]. SPAM considers that the emission
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of the g-th harmonic takes place at time ¢ when the following conditions are fulfilled:

E. (k) — E_(k;) = ghwo &)
/ vi(kr)dt = / v_(k¢)dT (10)

where v.(k;) = VkE+(k¢)/R, wy is the laser’s fundamental frequency and 7p the time when
the electron with wave vector k at the beginning of the interaction crosses the Dirac point, i.e.
the time when the electron-hole pair is created. In agreement with the semiclassical description
of HHG in solids, SPAM considers that the HHG emission is produced by the recombination
of overlapping classical electron-hole trajectories. Note, however, that SPAM describes the
evolution of the mean position of the electron and hole wavepackets created in the vicinity of the
Dirac points. The excitation of the wavepacket is not resonant with a one photon absorption, but
rather is of the Landau-Zenner type during the non-adiabatic crossing near the Dirac points. As
a consequence, the pair creation is not confined to the field-amplitude maxima, where tunnel
excitation is most likely, but takes place at any time during the interaction. Following the ideas
developed in [29,43], in this article we shall demonstrate a substantial role of ehIR in single-layer
graphene. Note that this role is unexpected, as graphene is a system with null Berry curvature
and our calculations assume that HHG is driven by linearly-polarized laser fields. To include
ehIR, we have expanded the SPAM model to take into account the contribution of electron-hole
trajectories that do not overlap classically. Therefore, we relax the condition of trajectory crossing
in Eq. (10) by allowing the recombination distance AR to be nonzero [43],

AR = / ' [val) = v (k)] dr (11)

Dk

Note that this semiclassical approach (SPAM), which does not include the wavepacket dispersion,
is just used to interpret the results of the full quantum calculations given by Eqgs. (6) and (7).

3. Results and discussion

We consider a six optical cycles (o.c.) driving field with a sin? envelope, which corresponds

to 2.2 o.c., 22 fs, of full width at half maximum (FWHM) in intensity (see inset in Fig. 1(a)).
The field is assumed linearly polarized along the I'-K direction. The laser pulse is centered at 3
um wavelength, with a peak intensity of 5 x 10'! W/cm?, and it is aimed perpendicularly to the
graphene’s layer. Note that the pulse duration is shorter that the typical electron thermalization
time [46]. The resulting harmonic spectrum and its time-frequency analysis are presented in
Figs. 1(a) and 1(b), respectively. The time-frequency representation has been obtained scanning
over the HHG spectral amplitudes with a Gaussian mask of 4wy in FWHM, and subsequently
performing the Fourier transform of each sample. As a reference, Figs. 1(c) and 1(d) show the
same information for the case of HHG in a hydrogen atom. HHG in hydrogen is calculated
from the solution of the three-dimensional time dependent Schrodinger equation, using a 0.72
um driving field of peak intensity of 1.6 x 10'* W/cm?, parameters that have been adjusted to
produce a HHG spectrum with similar cutoff frequency as the graphene case.

The comparison of both spectra reveals that the emission of harmonics in graphene presents
a temporal structure far more complex than that in atoms. In the atomic case (Fig. 1(d)) the
high-order harmonics result from two well-resolved emission bursts per half-cycle, the so-called
short and long trajectories, which present a positive and negative slope structure in the time-
frequency representation, respectively [47-51]. In contrast, in HHG from graphene, the first
step —the creation of the electron-hole pair— is connected with the Dirac points: electron-hole
pair excitation follows from the non-adiabatic crossing near the singular points (see the inset of
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Fig. 1. Harmonic spectrum (a) and time-frequency analysis (b) of the high order harmonic
emission from single-layer graphene. The inset in (a) plots the driving electric field, a 3 pm,
six-cycles sin? pulse (22 fs FWHM) linearly polarized in the graphene plane along the I'-K
direction, with peak intensity of 5x 101! W/ecm?2. Panels (c) and (d) plot the same information
from a hydrogen atom target, irradiated with a linearly-polarized 0.72 um, six-cycles sin?
pulse, with peak intensity of 1.6x10'* W/cm?. Inset in (b) is the normalized color map of
the electron excitation in the conduction band. The time at which this snapshot is taken is
depicted in the inset of panel (a), at 2.75 cycles after the beginning of the laser pulse.

Fig. 1(b)) and, therefore, pairs are created continuously instead of at the driving field’s maxima,
as it is the general case for bulk crystals, atoms and molecules. As a result, the number of
interfering trajectories playing a relevant role in HHG in graphene is substantially larger, and not
necessarily regularly spaced in time [30], as it can be observed in Fig. 1(b). Note that, once the
driving field interaction with the graphene layer ends, the time-frequency picture reveals that
there is still emission from the excited sample, a behavior that has been reported in previous
works [36]. In the following we shall see that, even though the semiclassical trajectories leading
to ehPR successfully account for the main spectral features in Figs. 1(a) and 1 (b), the harmonic
signal can only be fully explained considering also the role of ehlIR.

We present in Fig. 2 the results of the SPAM calculations for the graphene case presented in
Fig. 1. The background in Figs. 2(a) and 2(b) are replicas of Fig. 1(b). We analyse the temporal
distribution of electron-hole recombination energies from ehPR (Fig. 2(a)) and ehIR (Fig. 2(b)).
The plotted ehIR energies correspond to the cases in which the electron and hole are 10 unit cells
(24 A, pink lines) and 70 unit cells (172 A, grey lines) apart, at the instant of recombination.
Lighter tones are used for trajectories initiated near the K Dirac points, and darker tones for those
initiated near the K’ points (see the inset in Fig. 2(c)). Note that, while the temporal distribution
of radiated frequencies from ehPR explains reasonably the fundamental features of the HHG
spectrum in (Fig. 2(a)), it becomes also clear that ehPR do not provide a full explanation of the
harmonic contributions at intermediate times and, specially, at the end of the driving pulse.

To simplify the discussion of the results from ehIR in Fig. 2(b), we shall focus our attention
to the highest harmonic orders, ¢g>15, and to the trajectories originated at the Dirac point K
(lighter lines). The discussion of the emission for pairs originated near points K’ (darker lines) is
analogous, due to the crystal’s inversion symmetry.

Figure 2(b) points out that the emissions from ehIR’s for increasingly longer recombination
distances are progressively delayed. This is consistent with the increasingly larger excursion
times needed for the electron-hole pair to reach longer interparticle distances. This aspect is
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Fig. 2. Results of the harmonic emission corresponding to trajectories leading to ehPR
—red, panel (a)— and ehIR —pink and grey, panel (b)—. The electron-hole pairs are created
at points K (light colors) and K” (dark colors) of the graphene’s Brillouin zone. Panels (a) and
(b) show the energy of the electron-hole pair at recombination obtained with the semiclassical
SPAM calculations against the background corresponding to the time-frequency analysis
shown in Fig. 1 (b). In (a) we plot the frequency of the harmonic emission corresponding to
ehPR, i.e. when the electron and hole classical trajectories intersect, and in (b) the same
results for ehIR, where the electron-hole distances at the recombination time are 24 A (pink)
and 172 A (grey). We have added a long recombination distance of 492 A (black) in order to
recover the harmonic emission at the rear part of the pulse. Panel (c) shows the distribution
of energies radiated from ehIR as a function of the pair recombination (horizontal axis) and
excitation (vertical axis) times. The inset shows the geometry of graphene’s Brillouin zone.
Labels @; and §; correspond to two pairs of sampled ehlIR trajectories recombining at 24 A
and 172 A, respectively, with excitation times of ~1.9 o.c. (i=1), and ~2.9 o.c. (i=2).
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reproduced in Fig. 2(c), where we show the energy of the electron-hole pair at any potential
recombination time, as a function of the pair recombination (horizontal axis) and excitation
(vertical axis) times. Labels a; and §; correspond to two pairs of sampled ehlR trajectories
recombining at distances of 24 A and 172 A, respectively, with different excitation times: ~1.9
o.c. fori=1, and ~2.9 o.c. for i=2. To complete our analysis, we have also included in Fig. 2(b)
the trajectory contributions of ehIR that recombine at longer distances (200 unit cells, 492 A,
black lines), which present a relevant contribution at the rear part of the harmonic emission.
Thus, our analysis unequivocally demonstrates the relevance of ehIR in HHG in graphene. The
harmonic contributions that are not reproduced by ehPR in Fig. 2(a) are mostly fulfilled by the
ehlR sampled in Fig. 2(b), whereas the nature of ehlR is clearly identified in Fig. 2(c). We note
that a larger sample of ehIR born at different excitation times, and with other recombination
distances, completely fulfills the harmonic emmission not reproduced by ehPR in Fig. 2(a).

It is important to point out that the excursion time, i.e. the time lapse between excitation and
emission times, increases with the recombination distance. In Ref. [29] ehlR are understood from
non-classical pathways, since while the mean position of the electron and hole wavefunctions are
distant, dispersion leads to the overlap of the wavefunctions. Threfore, ehIR at larger distances
require a larger wavepacket dispersion and, thus, a larger excursion time. Results in Fig. 2(c)
show excursion times of the order of 1.5 cycles for ehIR recombining at 172 A (8)).

Note that the wavepacket dispersion rate is nearly six times larger than the one reported for hBN
in [29]. This enhanced dispersion suggests that the excited electron-hole wavepackets are more
localized in our case, therefore the dispersion rate is larger. We interpret this as consequence of
the different excitation mechanisms for each species. In graphene, the non-adiabatic electron-hole
excitation results in a broad wavepacket in the reciprocal space, around the Dirac points. In
contrast, tunnel excitation, as is the case of hBN, is very sensitive to the band gap, therefore
resulting in narrower wavepackets in the reciprocal space around the gap minima.

Finally, in Fig. 3 we show a comparative analysis of the role of ehPR against ehIR for
different driving peak intensities. According to the current understanding of HHG in solids, the
frequency of the harmonic radiation is given by the energy gap at the time of recombination of
the electron-hole pair. Since the trajectories quiver in the reciprocal space with an amplitude
(g.A/c), the harmonic cutoff frequency is expected at the maximum gap energy during this
excursion. For the two cases represented in Fig. 3, the maximum gap is reached at the turning
point (2g.Aq/c), Ag being the amplitude of the vector potential. This maximum quivering for
each case is represented in the energy band representation in the insets of Fig. 3. According
to this, the prediction for the harmonic cutoff frequency is the 15th order (~ 6 eV) for a peak
intensity of 1.3 x 10! (Fig. 3(a)), and the 43rd order (=~ 18 V) for a peak intensity of 2 x 10'2
(Fig. 3(b)), which agrees with the corresponding time-frequency analyses. Figure 3 also shows
the prediction of the harmonic emission from the semiclassical SPAM for ehPR (red) and ehIR
at distances of 86 A (green) and 172 A (grey). As a main observation, we can see that in all
cases, ehlIR are necessary to reproduce the harmonic emission, specially at longer times. Note
that the quiver trajectory of electrons and holes in the reciprocal space is the same for ehPR and
ehIR. However, by relaxing the constraint of zero distance at recombination, ehIR harvest the
full potential harmonic emission during the quivering, making it possible the emission of the
maximum cutoff frequency in situations excluded by the ehPR’s overlapping constrain.
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Fig. 3. Time-frequency analysis of the harmonic emission corresponding to two different
peak intensities, 1.3 X 101 W/em? (a) and 2.0 x 1012 W/em? (b), with the same length
duration and central wavelength as in the previous figures. For the scan of the spectrum
we have used a Gaussian mask of 2.5 w in (a), and 4 wq in (b). In both panels we plot the
frequency of the harmonic emission corresponding to ehPR (red) and to ehIR recombining
at 86 A (green) for (a) and at 172 A (grey) for (b).

4. Conclusion

We have presented quantum calculations and classical analysis of HHG in single-layer graphene.
A comparative analysis with the results of HHG from atoms reveals the extraordinary complex
nature of the process in the solid layer. The main trends of the characteristics of this complex
emission can be associated with the particular mechanism of HHG in graphene, in which the
electron-hole pair excitation is not associated with the maxima of the driving field amplitude.
However, our study demonstrates that still relevant spectral features are connected with non-
classical recollisions —the so-called imperfect recollisions— where the electron-hole pair can
recombine even when the classical trajectories do no overlap. We have found that these imperfect
recollisions typically contribute to the harmonic emission at increasing delayed times for longer
recombination distances. These time delays, which are connected with the spreading of the
electron and hole wavefunctions to the recombination distance, are significantly larger for
graphene. We interpret this result as the consequence of the linear dispersion relation near the
Dirac points.
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4.2 Transverse harmonic phase-matching in single-layer

graphene

The objective of this work was to present, to the best of our knowledge for the first
time, a numerical study of HHG in single-layer graphene from a macroscopic per-
spective. In particular, we aimed to explore the influence of transverse phase-matching
in the target harmonic emission.

In section 3.2.T|we introduced the relevance of phase-matching in HHG in gases.
In order to obtain a constructive interference of all the emissions produced in the
target, the phase of the locally radiated harmonic field must interfere constructively
in the far field. We can divide the phase-mismatching sources into longitudinal and
transverse ones. Longitudinal phase-matching defined in Eq. takes into ac-
count the phase-mismatch between the harmonics emitted along the propagation
axis. In this case, the propagation of the driving field along the gas determines the
phase-matching conditions. Its focusing geometry, or the variation in the refractive
index due to the ionized electrons are some phenomena that determine the ampli-
tude and phase properties of the pulse as it propagates in the gas. In the other
hand, transverse phase-matching defined in Eq. stems from the influence of the
driver’s transverse intensity distribution on the phase of the harmonic field. Com-
monly, driving fields are described by spatial profiles similar to a Gaussian beams.
In this case, the intensity decreases with the distance to be beam axis, therefore the
phase of the harmonics emitted in the transversal plane varies, and affects the in-
terference in the macroscopic harmonic build up from the target [74]. In Fig.
C. Hernandez-Garcia and coworkers showed the spatial distribution of the far-field
phase of the 19th harmonic emitted from the different the points of the gas target,
using a sin? envelope pulse of 2.9 cycles full width half maximum (FWHM), 800nm
wavelength and 1.57 x 1014W /cm? peak intensity. They defined a transverse cohet-
ence length, L, as the transverse distance between two consecutive target positions
whose emissions interfere destructively.

While HHG in gases depends strongly of both phase-mismatch sources (longi-
tudinal and transverse), in monolayer systems such as graphene, the longitudinal

phase-matching can be neglected due to the nearly atomic thickness of the layer, and
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FIGURE 4.2: Spatial map corresponding to the 19th harmonic am-

plitude produced in a hydrogen gas jet placed after the focus posi-

tion. The black arrows represent the harmonic phase by the angle.

Li"h and chh are the longitudinal and transverse coherence length,

respectively. Driving field is a sin? envelope of 2.9 cycles FWHM,

with 1.57 x 10'W/cm? peak intensity and centered at 800 nm. Fig-
ure adapted from [74].

the only relevant phase matching source into play is the transverse phase-matching.
In order to study in this work the macroscopic harmonic emission from single-
layer graphene, we model a discretized layer with a random distribution of regions,
each with a sufficiently large number of graphene primitive cells, so that the as-
sumption of a continuous Brillouin zone remain valid. On the other side, the size
of these regions are smaller than the fundamental wavelength of the external field,
therefore, in each region the driving field can be assumed as homogeneous. We con-
sider a linearly polarized Gaussian driving beam, as it is the most commonly used
in experiments. The macroscopic emission is the superposition of the contributions
for each of these regions, which are propagated to a far-field detector following the
same procedure as in section In order to spot the consequences of the trans-
verse phase-matching, we have compared the total harmonic emission when the local
contributions are added coherently and incoherently. The first result of this arti-
cle is that, the harmonic efficiency is higher in the incoherent than in the coherent
case. The second relevant result is that not all regions of the target contribute to
the macroscopic harmonic emission. In particular we have identified that transverse
phase matching favors the emission from a ringed region around the driver’s beam

axis.
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Resumen

According to the requirements of the University of Salamanca, the Spanish version
of the abstract is:

La eficiencia de la generacién de arménicos de orden elevado (HHG) en un caso
macroscopico esta fuertemente ligado al correspondiente acuerdo de fase de las con-
tribuciones que vienen de los emisores microscépicos. Nosotros desarrollamos un
modelo tedrico combinado micro+macroscépico que nos permite distinguir la rel-
evancia del acuerdo de fase de los arménicos de orden elevados en una lamina de
grafeno. Para un pulso incidente Gausiano, nuestras simulaciones muestran que la
parte relevante de la emisién de HHG esta reducido espacialmente a un anillo de
acuerdo de fase alrededor del eje del haz. Este notable hallazgo es una consecuencia
directa del comportamiento no perturbativo de HHG en grafeno —donde la eficien-
cia de los armonicos escala de manera similar a lo ya observado en gases—y conecta

la parte micoscépica y macroscépica en HHG en una lamina de grafeno.
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Abstract: The efficiency of high-harmonic generation (HHG) from a macroscopic sample is
strongly linked to the proper phase matching of the contributions from the microscopic emitters.
We develop a combined micro+macroscopic theoretical model that allows us to distinguish the
relevance of high-order harmonic phase matching in single-layer graphene. For a Gaussian
driving beam, our simulations show that the relevant HHG emission is spatially constrained to
a phase-matched ring around the beam axis. This remarkable finding is a direct consequence
of the non-perturbative behavior of HHG in graphene—whose harmonic efficiency scaling is
similar to that already observed in gases— and bridges the gap between the microscopic and
macroscopic HHG in single-layer graphene.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since its discovery in the late 80s [1,2], high-harmonic generation (HHG) has turned out to
be a remarkably rich process in nonlinear optics. The interaction of intense femtosecond
laser pulses with an atomic, molecular, or solid target drives electrons to a non-perturbative
dynamics, resulting in the generation of coherent high-frequency radiation, extending from
extreme ultraviolet to soft x-rays [3]. High-frequency harmonics are emitted in the form of
ultrashort pulses, with temporal durations at the attosecond timescale [4,5].

While the vast majority of studies and applications of HHG have been developed in the context
of atomic and molecular targets, its demonstration in solids targets [6] has boosted a considerable
interest in the recent years. In atoms and molecules, HHG is well understood in semiclassical
terms [7]: an electronic wavepacket is ejected from its parent atom through tunnel ionization
driven by the laser field. Once in the continuum, the electron is accelerated by the field. Upon
reversal of the field amplitude, the electron is driven back to the ion, where it recollides, releasing
its kinetic energy as high-frequency harmonics of the driving field. HHG in solid systems follows
similar physical mechanisms [8,9]. For the case of finite-gap solids, ionization is replaced by
tunnel excitation from the valence to the conduction band, and interband harmonics are radiated
upon electron-hole recombination [9]. Up to now, HHG has been observed in different finite-gap
solids, such as ZnO, MoS,, ZnSe, GaSe or SiO; [6,10-14]. Low-dimensional systems, as
single-layer graphene, have also been recently demonstrated to produce high-order harmonics
[15] where, interestingly, tunnel excitation is replaced by an electron-hole pair creation from the
non-adiabatic crossings near the Dirac points [16]. Such mechanism leads to the emission of a
complex set of electron-hole trajectories responsible for HHG [16—18], very different to those in
bulk solids [19]. In addition to the interband contributions, solid systems also present HHG from
intraband dynamics [9]. Nowadays many theoretical works have explored HHG in solids at the
microscopic level to gain understanding into these dynamics [9,16,20-25], probing that HHG can
serve as a unique spectroscopic tool to unveil the structural dynamics of solid materials [13,14].

One of the potential advantages of HHG from solids is the capability to produce brighter
harmonics, due to the larger number of emitters involved. The efficiency of the macroscopic

#412639 https://doi.org/10.1364/OE.412639
Journal © 2021 Received 20 Oct 2020; revised 29 Dec 2020; accepted 29 Dec 2020; published 14 Jan 2021
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harmonic emission, however, depends crucially on the phase matching of the microscopic
contributions. Phase matching in HHG has been extensively studied in atoms and molecules
[26-33], and several theoretical methods have been proposed [34—43]. There are many examples
where the emitted harmonic radiation is controlled tuning only macroscopic parameters, such as
the isolation of attosecond pulses [44,45], the generation of circularly polarized harmonics [46,47],
lenless focusing of high-order harmonics [48,49], or the generation of structured harmonics with
custom orbital angular momentum or self-torque properties [S0-52], among others. However, up
to now few works have theoretically studied the macroscopic picture of HHG in solids. Floss and
coworkers [53] coupled ab-initio simulations of the time-dependent density functional theory with
the Maxwell equations to study macroscopic effects of HHG in diamond along the propagation
direction. The primary effect observed in the macroscopic signal was the production of a cleaner
harmonic spectra, an effect that is universally observed in experiments, and which has been
previously invoked phenomenologically in theoretical simulations by including short dephasing
times [9,13,24]. Moreover, macroscopic HHG in Dirac-Weyl materials such as single-layer
graphene, where excitation takes place through the Dirac points, remains unstudied.

One could think that microscopic HHG is a reasonable approximation to the target emission
for single-layer graphene, as the propagation length is at the atomic scale. However, HHG
is a non-perturbative process and, therefore, the harmonic emission depends strongly on the
driving field’s intensity. In particular, the harmonic phase of the microscopic emission is
substantially affected by the driver’s intensity profile. Therefore, in the non-perturbative case,
the concept of harmonic phase matching, and the associated coherence length, must be extended
to describe also phase differences in the plane transverse to propagation [54]. It has been
demonstrated that transverse phase matching in atomic gases plays a relevant role to enhance
the HHG efficiency [54], and to shape the temporal [55] or spatial properties [48,49,56] of the
high-order harmonics—specially for structured driving fields—, as it is the case when they carry
orbital angular momentum [50]. Transverse phase matching should be thus expected to be of
paramount importance in HHG in low-dimensional solids, for orthogonal driver incidences,
where longitudinal propagation distances are reduced to the atomic size.

In this work we develop theoretical simulations of macroscopic HHG in single-layer graphene,
that combine the numerical integration of the time-dependent Schrodinger equation and the
electromagnetic field propagator. Our simulations demonstrate that phase matching plays a
relevant role in the macroscopic spectrum, despite the two-dimensional nature of graphene. As
a main result, we demonstrate that macroscopic HHG in single-layer graphene irradiated by a
Gaussian driving beam is effectively confined to a phase-matched ring. This spatial confinement
follows from the non-perturbative scaling law of the harmonic efficiencies with the driver intensity,
thus being a particular feature of HHG, not found in other photon conversion processes. We
thus establish a fundamental connection between the non-perturbative strong-field physics at the
microscopic level and the macroscopic HHG in single-layer graphene. Our numerical method and
our results pave the route for the complete theoretical study of HHG in other solid systems—such
as Dirac-Weyl materials—, or in other configurations—such as the use of structured driving
beams—that require the description of the macroscopic picture.

2. Microscopic vs macroscopic HHG in single-layer graphene

2.1. Theoretical method: time-dependent Schrddinger equation coupled with the
electromagnetic field propagator

Our method integrates both the microscopic and macroscopic description of HHG in single-layer
graphene. The calculations at the microscopic level combine the tight-binding description of the
valence and conduction bands in graphene with the solution of the time-dependent Schrodinger
equation, as depicted in [16].
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We consider a nearest-neighbor tight-binding model to describe the electron dynamics in
the periodic potential of graphene. The energy spectrum of the field-free hamiltonian, Hy,
consists of two bands, the conduction band (+) and the valence band (-), with energy dispersion
e:(K) = 2y|f(K)| (y = 2.97 V) in the Brillouin zone, see Figs. 1(a) and (b), with

) , ak
fk) = eiaki/ V3 (1 + 2¢/V3aks/2 oo Ty , 6))

where a = 2.45. The Bloch-state wavefunctions can be expressed as:

@*(r)=\ﬁeik'r N @
k 2 it |

where ¢(k) is the argument of the complex function f(k). The time-dependent wave function can
then be expressed as a superposition of the eigenstates described by Eq. (2):

Y(r,1) = / Wi (r, )dk = / [C.(k, NDL(r) + C_(k, )® (r)] dk. 3)

Fig. 1. Scheme of the micro+macroscopic HHG method to compute HHG in single-layer
graphene. a) Scheme of graphene’s first Brillouin Zone in the reciprocal space. b) Graphene’s
band structure within the nearest-neighbor tight-binding approximation. The Fermi level
is set to zero. The conduction and valence bands correspond to positive and negative
values of energy, respectively. Dirac points K and K’ are degenerated in energy at the
Fermi level. c) Interaction geometry considered. The driving field propagates along the
z-direction, perpendicularly to the graphene layer, where high-order harmonics are generated.
Afterwards, the high-order harmonics are propagated to a far-field detector placed at position
ry from the center of the layer (dashed green line).

The interaction of the driving laser pulse E(7) is described by the time-dependent Hamiltonian
H(t) = Hy + V() and Vi(t) = —q.E(¢) - r is the coupling with the electric field, in the dipole
approximation, ¢, being the electron charge. We consider a driving field linearly polarized and
aimed perpendicularly to the graphene layer, therefore the vector field E(t) is included in the
graphene plane. If the duration of the pulse is less than the characteristic carrier scattering time



Research Article Vol. 29, No. 2/18 January 2021/ Optics Express 2491 |

Optics EXPRESS

~ 10-100 fs [57-59], the electron dynamics can be described by the time-dependent Schrodinger
equation [16]:

ihdizc+(Kf’ 1) = & (k;) — E(t) - D(k,)] Cy (k1 1) — E(2) - D(k,)C— (ks 1), @

ihditc—(’(t, ) = [e-(k;) = E(t) - D(k;)] C_(k;, 1) — E(f) - D(k/)Co (K, 1), )

where 7k, = Tk — q.A(t)/c, being A(f) the vector potential and ¢ the speed of light, and

D(k) = (g./2)0¢/0k is the interband matrix element , proportional to the Berry connection.

We assume all states of the valence band occupied and all states of the conduction band empty

before the interaction with the driving pulse, so we take C_(k,0) = 1 and C,(k,0) = O as

initial conditions. The harmonic emission is then computed from the total dipole acceleration,
& ;

a(t) = £5d(7), with [16]

d(t) = <TIQer|T> = lqe [Cj-(KI’ t)VK,CJr(KIv t) + Ci(Kl’ t)VK,C*(KI’ t)] +

. . ©)
D(Kt) [C—(Kh t)C+(Kty t) + C—(Kl’ t)C+(Kts t)] .
The intraband contribution to the total acceleration is computed as
2 2 2
e 9%e (k) 9%e_(k;)
a.(n) = ﬁE(t) / [|C+(Kf, DIP—== +C_ (k1) e L | dk. @)

In order to take into account macroscopic effects of HHG, one should solve the wave equation for
the electric field E, ,
5 10 4r 0

vE 2 6t2E T2 ﬁtJ’ ®)
where J is the current density. We will adopt a similar strategy as in [41], whose results
have been validated with experiments in HHG in atomic and molecular gases (as for example
in Refs. [3,44,46,47,51,52,54,55,60]). We consider, therefore, the formal integral solution:
E(r,7) = Eo(r, 1) + Ei(r, 1), where Ey(r, ?) is the laser field, as it propagates in vacuum, and
E;(r, 1) is the field radiated by the accelerated charges in the target,

1 1 0
E(r.0)=-— / dr [—J(r’, t’>] : ®
c? [r—1’| [ 8¢ r=t-|r-r’|/c

The far field radiated by the jth charge in the layer, reaching the detector placed at r; (see
Fig. 1(c)), can be written as,

E(y, )= —————
() = G e 5]

sa X [sa X a;(t = |rg — 1;(0)| /0)] (10)
where a; is the charge’s acceleration, evaluated at the retarded time, and s, is the unitary vector
pointing towards the detector. We discretize the layer into a random distribution of spatial
regions of size much smaller that the driver’s wavelength, where the driving field can be assumed
homogeneous. These elemental regions, however, still include a number of graphene primitive
cells large enough to approximate the Brillouin zone to a continuum. Therefore, the macroscopic
signal radiated by the graphene layer can be written as the superposition of the individual
contributions E;(r,?) = ,Ai 1 E;(r, 1), corresponding to each of the regions. The number of
elemental regions considered must be large enough to ensure convergence of the radiation at the
detector. Note that for a two-dimensional target, Eq. (9) corresponds to the Huygens-Fresnel
diffraction formula.
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2.2. Microscopic vs macroscopic results

We consider as driving field a linearly polarized 3 um-wavelength Gaussian beam of 30 ym
beam waist, aimed perpendicularly to the graphene layer, with a peak intensity of 3.5 x 10!?
W/cm?, well below the threshold damage of graphene [61]. The driving field is modelled with a
sin® envelope of 8 cycles temporal length—corresponding to 28.8 fs full width at half maximum
(FWHM)—smaller than the decoherence time due to carrier collisions [57-59].

The microscopic HHG spectrum corresponding to the driving field at the beam center, and
obtained from Eq. (6), is shown in Fig. 2(a) (blue line). It presents a non-perturbative plateau
of harmonics extending towards a cutoff frequency. As commented before, the generation of
this high-frequency radiation is understood in terms of interband and intraband transitions.
The contribution of the intraband transitions, calculated from Eq. (7), is shown in the cyan
line. It can be concluded, therefore, that interband transitions are the main responsible for the
generation of the high-frequency harmonics. As studied in [16], interband HHG is produced by
electron-hole pairs created during the non-adiabatic crossings near the Dirac points, followed by
their recombination at the emission time. The electron-hole pair can follow complex trajectories
before recombining, which gives rise to unstructured spectra.

‘We have computed the macroscopic response considering the graphene layer at the focus of
the Gaussian beam, where the driving field exhibits a transverse intensity profile with uniform
phase. The on-axis detected coherent superposition of the microscopic contributions introduced
in Section 2.1 is presented in filled-red in Fig. 2(a). In order to highlight the role of phase
matching, we also include in the figure the spectrum corresponding to the incoherent addition
of the microscopic fields (black line), where the harmonic phase is artificially ignored when
obtaining the far-field emission. The coherent addition cleans the spectrum, showing clearly
visible harmonic peaks, an effect that has been also observed theoretically in diamond [53],
and is universally observed in experiments of HHG in solids [6,10—12]. The coherent addition
results also in a weaker harmonic signal compared with the incoherent addition, through all
the HHG spectrum, thus demonstrating partial destructive interference due to phase mismatch.
Also, the signal at odd harmonic frequencies shows much higher degree of coherence than
that of the non-harmonic frequencies. To further show the cleaning of the HHG spectrum
obtained when considering transverse phase-matching, we present in Figs. 2(b) and 2(c) the time-
frequency analysis for the macroscopic (coherent addition) and microscopic cases, respectively.
Though the family of trajectory contributions to HHG in graphene is very complex [16,18], the
temporal emission is substantially cleaned when considering the macroscopic result (Fig. 2(c)).
The comparison between microscopic and macroscopic cases demonstrates the relevance of
considering phase matching in single-layer graphene to reproduce the harmonic signal detected
in an experiment.

In addition, the intraband contribution to the coherent macroscopic response is shown in dark
red in Fig. 2. Similarly to the microscopic response, the macroscopic response of the high-order
harmonics is dominated by the interband transitions.

For the sake of completeness we show in Figs. 2(d) and 2(e) the far-field spatial distribution
of the HHG spectrum corresponding to the coherent and incoherent macroscopic additions,
respectively. Note that the profiles at zero divergence correspond to the HHG spectra shown in
filled-red and black in Fig. 2(a), respectively. The comparison between the spatial profiles reveals
that the coherent macroscopic addition results in a much narrower emission of the HHG radiation.
In addition, the coherent macroscopic harmonics exhibit a divergence that decreases with the
harmonic order, a direct consequence of the non-perturbative behavior of HHG in graphene, as
we demonstrate in the next section.
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Fig. 2. (a) Comparison between the microscopic and macroscopic HHG spectrum in
single-layer graphene irradiated by a 3 um in wavelength, 28.8 fs FWHM, and 3.5 x 1012
W/cm? peak intensity Gaussian beam (30 um beam waist). The microscopic spectrum
obtained at the center of the Gaussian profile is shown as a blue line, the macroscopic HHG
spectrum resulting from the coherent (incoherent) addition of the microscopic contributions
are shown in filled-red (black line). The spectrum in the microscopic case has been rescaled
to the peak at the fundamental frequency of the macroscopic coherent addition. The intraband
contributions are shown in solids lines for the microscopic (cyan) and coherent macroscopic
(dark red) cases. Time-frequency analysis (log. scale) of the (b) coherent macroscopic
and (c) microscopic harmonic emission, performed with a spectral Gaussian mask of width
3wq, where wy is the frequency of the driving laser pulse. The far-field intensity divergence
profile is shown in panels (d) and (e) for the coherent and incoherent macroscopic additions,
respectively.
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3. Phase-matched ring and atom-like features in non-perturbative harmonic gen-
eration from graphene

In order to gain insight into the build-up of the the macroscopic harmonic signal presented in
Fig. 2, we now analyze the high-order emission at different positions along the graphene layer.
The gth-order harmonic far-field emission detected on-axis can be found from the Fraunhofer
integral

ikz
Uy = 2;;4 / Uy(p)pdp, (n
where Uy(p) is the microscopic harmonic field emitted at each point of the graphene slab,
proportional to the dipole acceleration, Eq. (6). U,(p) inherits the cylindrical symmetry from the
driving field, a Gaussian beam. We present in Fig. 3 the contributions of the different radii in
Eq. (11), Uy(p)p, in amplitude and phase, i.e., the near-field harmonic emission weighted by the
distance to the beam center. Remarkably, Fig. 3(a) shows that the most prominent high harmonic
field amplitudes (orders above the 13th in the figure) are radiated from a limited, annular, region
around a radius that we denote as p,,,,. However, the overall efficiency of this ring depends
crucially on the degree of phase matching around it. We plot, therefore, in Fig. 3(b) the phase
distribution of U,(p) at the sample. Note that, for the higher-order harmonics, the phase variation
shows two distinct regions, slower for smaller radii and faster for larger radii. Interestingly
enough, the region enclosed by the ring of maximal amplitudes, p;,4x, belongs to the former one,
ensuring a smooth variation of the phase and, therefore a proper phase matching condition.
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Fig. 3. (a) Harmonic intensity contribution I,(p)p, and (b) harmonic phase, ¢4(p), of each
spatial ring at the graphene layer, considering a Gaussian driving beam profile with beam
waist wg = 30 um. The harmonic intensity and phase are given by the Fourier transform of
Eq. (6) for the same driving pulse parameters as in Fig. 2. The orange solid line indicates the
position of the radius of maximum harmonic intensity contribution, pmax = wo/ \/Z_p =116

pm.

The presence of a phase-matched ring of similar radius for the high-harmonic orders is, in
fact, a consequence of the non-perturbative character of the HHG process. To evidence this, we
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will first demonstrate that microscopic HHG follows the same basic non-perturbative features
in graphene as in gases. This is a surprising fact since, as mentioned before, the underlying
mechanism of HHG in graphene differs in fundamental aspects from that in atoms. On one
hand, the electron-hole pair creation is connected with the adiabatic crossing in the Dirac points,
instead of tunnelling . On the other hand, harmonics are typically generated by a much more
complex set of electron-hole trajectories. Nevertheless, we next see that the amplitude of the
harmonics generated at the graphene target can still be approximated using a description valid for
atoms [62],

Uy(p) o< [Up(p)I? ellatolorren(®], (12)

where g is the harmonic order, Up(p)e®®) is the driving field amplitude, ¢,(p) is the non-
perturbative intrinsic phase, and p<gq is the power-scaling factor between the harmonic and the
driver intensity, for harmonics in the plateau region. In the perturbative case, a similar relation
would hold, but with the absence of the intrinsic phase and replacing the scaling factor p by the
harmonic order g. Therefore, the non-perturbative nature of HHG is connected with a constant
scaling exponent, p, and the additional intrinsic term in the phase.

In order to estimate the behaviour of the power scaling in graphene, we present in Fig. 4(a) the
intensity scaling of different harmonic orders (the 19th, 29th and 39th) with the driving field
intensity. The logarithmic fit represented in solid lines in Fig. 4(a) allows us to extract the power
scaling p, being 2.0, 3.4 and 3.6 for the 19th, 29th and 39th harmonics respectively. In Fig. 4(b)
we show the extracted power scaling as a function of the harmonic order for three different driving
intensities: 1.3 x 102 W/cm? (dashed red), 3.5 x 102 W/cm? (solid black, same as that used in
Fig. 2(a)), and 6.9 x 10" W/cm? (dashed blue). The grey solid line indicates the perturbative
power scale behaviour p = g. From the results presented in Fig. 4 we can clearly conclude that in
HHG in graphene the power scaling is clearly non-perturbative, p<gq, lying between 2 and 4 in
the plateau region, close to the values reported for HHG in atomic gases [49,50,62,63].

Now we can estimate the position of the radius of maximum harmonic contribution, , introduced
in Fig. 3. Inserting Eq. (12) in Eq. (11), assuming a Gaussian profile for the driving field at the

_e?
target with waist wy, Up(p) = Upe "0, and using Eq. (12), the radius of the ring with maximal
contribution to the integral Eq. (11) can be found as

0

2
P
—pes
Uge "o p)

ap

Ay
V2

Note that in the perturbative case (p = ¢) the radii would depend on the harmonic order. In
the non-perturbative case, however, p is constant and the high harmonics will be preferentially
emitted from the same annular region in the target. For the case shown in Fig. 3, the red line
corresponds to Oqr =11.6 um for p =3.3.

The final HHG efficiency depends on the width of the annular region around p,,,, for which
the microscopic emissions are properly phase-matched. We show in Fig. 5 the relative phase
of the harmonic emission near the ring of maximum efficiency, ¢,(p) — ¢4(Omax), for the case
shown in Fig. 2(a). Note that we only show the phase values at the harmonic peaks, considering
as a reference the coherent addition (filled-red line) of Fig. 2(a). The green lines indicate the
radii for which the harmonic phase difference is +7/2, relative to the emission at p = ppax , i.€.
where the harmonic emission can be considered phase-matched.

The analysis of the intensity and phase profiles in Figs. 3 and 5 allows us to identify the width
of the phase-matched graphene ring. The relevance of this ring to the total harmonic emission is
illustrated in Fig. 6(a), where we show the HHG emission resulting from the whole graphene
layer (filled-red, same as that in Fig. 2(a)), and from rings centered at p = pmax With thicknesses

13)

=0 — Pmax =
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Fig. 4. (a) Intensity scaling of the 19th (yellow), 29th (pink), and 39th (green) harmonics
with the driving field intensity (log. scale), obtained through the microscopic calculation
of HHG in single-layer graphene. The solid lines indicate the fit for extracting the power
scaling pg. (b) Power scaling p, as a function of the harmonic order for 1.3 X 10'2 W/em?
(dashed red), 3.5 x 10'2 W/em? (solid black, same intensity as in Fig. 2), and 6.9 x 10!2

W/cm? (dashed blue) driving intensities. The grey solid line indicates the perturbative power
scale behaviour p; = g.
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Fig. 5. Relative phase of the harmonics with respect to the emission at ppax (orange line).
The green lines show the boundaries of the phase-matched region around the circle of
maximum efficiency, with phase variation less than /2 relative to that at p = ppax, the
average is given by the blue-dashed lines.
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of 4 um (green line) and 12 um (purple line). These spatial regions are depicted in Fig. 6(b),
together with the beam waist of the driving beam (blue-dashed line). While the HHG spectrum
of the thin ring differs substantially from that of the whole layer, the thicker one exhibits an
excellent agreement. Note that 12 um thickness is a fair approximation to the phase-matched

region identified in Fig. 5.
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Fig. 6. HHG emission from the phase-matched graphene ring. a) Macroscopic coherent
HHG emission resulting from the whole graphene layer (filled-red), and from a ring centered
at p = pmax With a thickness of 4 um (green line) and 12 um (purple line). These spatial
regions at the graphene-layer are depicted in panel b), where the beam waist of the driving
beam (wg = 30 um) is indicated by the blue-dashed line.

Finally, we note that the fact that all the harmonics are generated from the same annular region
in the graphene layer, implies that the far-field divergence of the harmonics decreases with the
harmonic order. This result, that is a consequence of the diffraction of a ring structure with
progressive shorter wavelength, was already observed in the results presented in Fig. 2(b).

4. Conclusion

We present a theoretical method to compute both microscopic and macroscopic HHG in solids,
similar to what has been used in atomic or molecular targets. We have applied this model to
calculate HHG in a two-dimensional layer of graphene, evidencing the connection between the
microscopic an macroscopic physics of HHG. On one hand, we observe that the macroscopic
HHG spectrum presents cleaner harmonic peaks, as it has been observed in different experiments
of HHG in solids. On the other hand, the analysis of the macroscopic HHG emission allows
to characterize the non-perturbative dynamics of the microscopic emission, such as the power
scaling law. Most interestingly, we show that the macroscopic high-order harmonic emission
is dominated by an annular region at the target, with radius approximately constant with the
harmonic order. We demonstrate that this finding is a direct consequence of the non-perturbative
scaling of the microscopic HHG. Our results show the relevance of considering transverse
phase-matching even in 2D solids, when irradiated with intense driving fields. Our work opens
the route to study macroscopic effects of HHG in other Dirac-Weyl materials, and in more complex
macroscopic geometries. For example, it paves the way in the emerging field of structured laser
beams with custom angular momentum properties when considering HHG in solid targets. In
such scenarios the macroscopic description of the HHG process is absolutely needed to unveil
the up-conversion rules of the angular momentum properties.
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4.3 HHG in polycrystalline graphene

In this work we have studied the possibility of characterizing polycrystalline
graphene samples via high-order harmonic spectroscopy. In particular, we take ad-
vantage of the the graphene’s non-linear anisotropy in HHG to study the changes in
polarimetry induced by the different domain distributions in the sample.

As we have introduced in previous chapters, single-layer graphene is a unique
material with an enormous potential in many technological applications, ranging
from biomedicine to sensors and microelectronics. All these implementations re-
quire scalable techniques to produce large-area samples of graphene. Practically,
most of these single layers are generated by CVD, as previously explained in sec-
tion Typical films of graphene produced by CVD have polycrystalline nature,
i.e. the graphene samples are composed of single-crystalline domains with different
sizes and orientations, forming boundaries between them. In Ref. [49]], Huang et al.
used a DF-TEM technique to characterize a polycrystalline graphene sample grown
using CVD. They obtained the grain size and relative rotation distributions shown
in Fig. Note that, while in many electrical applications graphene’s grain bound-
aries are relevant, such as in transport [84], their influence in HHG can be neglected
because they represent a small fraction of the total grain surface.

In order to simulate HHG from polycrystalline graphene, we consider the do-
main statistics found in [49], where the sample size is 2.5 um (see Fig. . We

use a linearly-polarized driving field centered at 3 ym, with a sin?

envelope of 28 fs
FWHM and 5 x 10''W /cm? peak intensity. The small size of the domains compared
to the laser pulse wavelength allows us to assume that every grain interacts with
the same spatial part of the driving beam. Therefore, following similar distributions
as in Fig. A) and B), we can theoretically generate samples of polycrystalline
graphene with different number of grain sizes and orientations.

A first conclusion applies to polycrystals with large number of grains. In this
case, we have found little dependence of the harmonic emission on the driver’s po-
larization tilt. On the other hand, if the polycrystal is formed by a small number

of grains, the harmonic polarization deviates from that of the driver. In this case,

the system is sensitive to the domain distribution. Repeating this calculation many
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FIGURE 4.3: Characterization of three representative samples using

DF-TEM. A) and B) are histogram of grain sizes and their relative ro-

tation, respectively. D) DF-TEM image of different polycrystal areas.
Scale bar, 2 pym. Figure adapted from [49].

times with different polycrystal configurations, we found that the standard devia-
tion of the harmonic tilt-angle increases with the harmonic order. We made a map
with the standard deviation of the tilt-angle of the 7th harmonic order in terms of the
domain size and orientation distribution. While the dependence of the standard de-
viation of the harmonic tilt with the domain orientation is quite small, this is not the
case for the size distributions. We could, therefore, design a proof-of-concept strat-
egy to determine the standard deviation of the domain size distribution from the
values of the most frequent grain size and the standard deviation of the harmonic

tilt.

Resumen

According to the requirements of the University of Salamanca, the Spanish version
of the abstract is:

La actual produccién en masa de grandes areas de grafeno se basa fundamental-
mente en métodos de deposicién quimica de vapor (CVD). La generacién de fron-

teras, que dividen las muestras de cristal en dominios, es inherente en este tipo de



84 Chapter 4. Results

métodos de fabricacién. Estudios recientes han demostrado una fuerte anisotropia
en la respuesta no lineal ultrardpida de la ldmina de grafeno cuando estd sometido a
condiciones no perturbativas, un campo laser intenso por debajo del limite de dafio.
Nosotros proponemos utilizar su anisotropia para caracterizar la distribuciéon de
tamafios de los dominios de grafeno en policristales via polarimetria de los 6rdenes
elevados de armoénicos. Nuestras resultados simulados demuestran la sensibilidad
del estado de polarizacién de los arménicos a detalles de la distribuciéon de granos
del policristal. En particular, mostramos que la rotacién en la inclinacién de la polar-
izacién de los 6rdenes elevados de armoénicos contiene informacién sobre la distribu-
cién de granos en el policristal. Como prueba de concepto, proponemos un método
para determinar la desviacion estandar de la distribucién de tamarfios de granos par-
tiendo de los valores mds frecuentes de tamafio de grano y la desviaciéon estandar
de la rotacién de la inclinacién de los armoénicos a partir de medidas hipotéticas
en diferentes policristales generados. Nuestro trabajo muestra la capacidad de la
polimetria basada en armoénicos de ordene elevado para caracterizar policristales de

materiales de dos dimensiones.
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Abstract: Present mass production of large-area single-layer graphene relies fundamentally
on chemical vapor deposition methods. The generation of grain boundaries, which divides
the sample into a set of crystalline domains, is inherent to these fabrication methods. Recent
studies have demonstrated a strong anisotropy in the ultrafast non-linear response of single-layer
graphene when subjected to non-perturbative, intense laser fields below the damage threshold.
We propose to exploit this anisotropy to characterize the size distribution of graphene domains
in polycrystals via high-order harmonic polarimetry. Our simulation results demonstrate the
sensitivity of the harmonic polarization state to details of the polycrystal grain distribution. In
particular, we show that the rotation in the polarization tilt of the highest-order harmonics holds
information about the grain distribution in the polycrystal. As a proof-of-concept, we propose a
method to determine the standard deviation of the grain size distribution from the values of the
most frequent grain size and the standard deviation of the harmonic tilt rotation from a set of
hypothetical measurements on different polycrystal realizations. Our work reveals the capability
of high-order harmonic polarimetry to characterize polycrystalline two-dimensional materials.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Single-layer graphene (SLG) is a two dimensional —atomic thin— carbon allotrope with extraordi-
nary potential in a variety of fields, ranging from biomedicine to sensors and microelectronics
[1]. Industrial applications require large layers of graphene. Chemical vapor deposition (CVD)
on metal substrates is one of the most popular choices to fabricate large-area SLG [2]. However,
CVD typically leads to polycrystals with grain size and orientation distributions that depend
on the fabrication parameters (substrate, growth temperature, hydrogen flow, etc.) [3]. While
graphene’s electronic properties are degraded by the grain boundaries [4], the smaller fraction of
the boundary regions against the total grain surface makes the optical response to be dominated
by the inner part of the grain [3]. Grain analysis can be performed using a variety of techniques,
either resolving the grain scale (using transmission electron microscopy [3]) or the polycrystal
scale (using low-energy electron microscopy [5] or by Raman microscopy [6]).

High-order harmonic generation (HHG) stands as a unique method to produce short-wavelength
coherent radiation. This highly non-linear process is triggered by the intense laser-matter
interaction driven mainly by infrared and mid-infrared laser pulses. As a result, high-order
harmonics of the driving field, extending towards the extreme-ultraviolet or even soft x-rays, are
produced [7]. The extraordinary coherence of the process allows tracking the fastest laser-driven
electronic dynamics at the attosecond timescales [8]. While HHG was initially explored using
gaseous targets [9,10], a substantial interest has recently burgeoned its study in crystalline solids

[11].

#468125 https://doi.org/10.1364/OME.468125
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The underlying mechanism of HHG in two-dimensional (2D) solids depends strongly on the
interaction geometry. On the one hand, for intense p-polarized driving fields at grazing incidence,
the process resembles that reported for atoms and molecules [12]: electrons are detached from
the crystal’s surface, quiver in the continuum, and are finally redirected to collide with the crystal
potential, where harmonics are emitted [13]. Interestingly, the detached electron wavefunction
preserves the transverse structure imprinted by the crystal potential. These transverse modulations
introduce a Talbot revival dynamics at the femtosecond/nanometer scale, whose signature can be
resolved in the harmonic spectrum [14]. On the other hand, at normal incidence, the electrons
remain in the crystal plane. In such scenario, the driving field generates electron-hole pairs
from tunneling excitation at the band gap. Once excited, electrons and holes quiver in reciprocal
space following corresponding trajectories in direct space. The harmonic emission occurs from
pair recombination when the electron and hole trajectories overlap [15,16], or when they are
sufficiently close [17,18]. The corresponding mechanism of HHG in single-layer graphene differs
from finite gap solids in the very first step, in which excitation results from the non-adiabatic
crossings near the Dirac points [19], instead of tunneling. HHG from other carbon allotropes can
be understood through modifications of this basic mechanism [20].

The dynamical details of the coupling of the driving field with the crystal structure (energy
dispersion or symmetries) introduce time-resolved signatures in the HHG spectra, that can be
unraveled using high-harmonic spectroscopy techniques [21]. Among them, it has been recently
demonstrated that crystal symmetries introduce an anisotropic nonlinear response [22-25]. In
particular, HHG in graphene yields elliptically polarized harmonics when driven by linearly
polarized laser pulses, and viceversa [26—28]. In the recent years, these results have triggered the
use of the polarization state of the harmonics as an extension to state-of-the-art high harmonic
spectroscopic techniques [29]. Consequently, non-linear optics is at the root of recent proposals
for the characterization of 2D or quasi-2D materials [30]. While second harmonic spectroscopy
and four-wave mixing are used to determine the number of layers, crystal axis orientation and
crystal phase and defects, HHG has been demonstrated to be sensitive to crystal orientation,
interlayer coupling and valley structure [31].

In this paper we propose to exploit the graphene’s non-linear anisotropic response to characterize
the statistical distribution of the domain sizes in polycrystalline graphene. For this purpose, we
have implemented HHG simulations in polycrystalline graphene based on the time-dependent
Schrodinger equation. We have performed a series of calculations of different polycrystal
realizations corresponding to a given grain size and orientation distributions, interacting with
a mid-infrared linearly-polarized driving field. For each of these realizations, we compute the
polarization properties of the generated harmonics. The statistical analysis for a sufficiently
large number of polycrystal calculations shows that the harmonics are emitted with zero mean
ellipticity and null rotation of the polarization axis, i.e. the average polarization properties of the
harmonics reproduce that of the driving field’s. However, we show that the standard deviation
of these quantities is sensitive to the grain size distribution. From this, we propose a scheme
for the characterization of the grain size distribution knowing the most-frequent grain size and
the standard deviation of a series of measurements of the harmonic polarization tilt rotation, as
measured from a sample of polycrystals.

2. Theoretical description of HHG in polycristalline single-layer graphene

We consider polycrystal parameters similar to the corresponding to CVD graphene grown on
copper films (see method A in [3]). The polycrystal layer is irradiated by a linearly polarized
laser pulse centered at 3 um in wavelength and modeled by a sin? envelope of 28 fs full width
at half maximum (FWHM) in intensity, and peak intensity of 5 x 10'" W/cm? (see Fig. 1a).
Each polycrystal presents a typical area of 4.9 um? and is composed by domains whose size
and orientation distributions are plotted in Fig. 1, according to Ref. [3]: panel (b) shows the
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grain’s size distribution, the most frequent size being 25 nm, with a standard deviation of 275.8
nm, calculated from the best fit to a Gaussian distribution. The black solid line depicts the
Gaussian distribution corresponding to the values extracted from the proof-of-principle proposal
described in next section. Panels (c) and (d) depict the distribution of the orientation shift
between neighboring domains, and the corresponding absolute orientations of the domains in
the polycrystal, respectively. The laser beam is aimed perpendicularly to the sample, and we
consider the driver’s waist larger than the polycrystal size, therefore the driver’s intensity profile
can be approximated as constant. Note that this is crucial to ensure that all domains are subjected
to the same driving field conditions.
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Fig. 1. a) Scheme of the interaction between the driving field and a polycrystal. The driving
laser is aimed perpendicularly to the graphene’s surface, linearly polarized along the y-axis.
The inset represents the first Brillouin Zone of graphene, tilted by an angle 6 from the
vertical axis, i.e. the driving field’s polarization direction. b) Distribution of grain sizes and
c) relative grain rotation angles of a polycrystalline graphene grown with CVD, according to
[3]. We include in b) the Gaussian distribution resulting from our analysis in section 3. d)
Distribution of the absolute angles of rotation of the domains.

Graphene’s nonlinear response to intense laser radiation is computed from the integration
of the dynamical equations of SLG in the nearest neighbor tight-binding approximation [32].
Following [19] we solve the equations in the oscillatory frame x, = hk — g.a(f)/c, where k
are points in the Brillouin Zone, ¢, is the electron’s charge and a(f)/c is the normalized vector
potential of the driving field. Projecting the wavefunction on the Bloch basis of each graphene
sublattice (A and B), {¢{, ¢£}, the light-induced dipole can be computed as [19]

d(r) = (Y(@)lger|¥ (1)) = l—/ [Ca(kr, )VKCalk, 1) + ok, )V Cp(Ky, )] dk, (1)

where Cy4 p are the probability amplitudes of the electron wavefunction in each Bloch basis. The

harmonic emission is then calculated from the the dipole acceleration, a(t) = dtz d(t)

We consider first a set of polycrystals, each built by tiling randomly chosen domains according
to the size and orientation distributions shown in Figs. 1(b) to 1c, similar to those reported in
[3]. The driving field is linearly polarized along the vertical direction. Therefore, the domain
orientation refers to the angle between the grain’s I' — K’ axis and the vertical axis. If we
consider a particular polycrystal realization j in the set, its harmonic emission is computed
from the coherent addition of the contributions of the grains. Thus, the j-th polycrystal’s dipole
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acceleration is computed as A;(t) = Zf.vj a;(1), where N; is the number of grains and a;(¢) is the
dipole acceleration in each grain, given by the second derivative of Eq. (1).

We compute the harmonic emission from the j-th polycrystal through the Fourier transform,
Aj(w), of the dipole acceleration A;(¢). Additionally, we determine the polarization state of the
harmonics radiated by the j-th polycrystal by cillculating the Stokes parameters, S‘;((a)), with
k=0,...,3, for each of the Fourier amplitudes A;(w), as

Sh@) = |Ax@) + Ay @), @
Si(@) = |Ax@) - [Ay@)]’. 3)
Sh(w) = [Aja@)] - |Ap@), @)
Si(w) = [Ajr@) - A, )

where (x,y) is the Cartesian basis, (a,b) the 45° rotated basis and (l,r) the circular basis of the
space of Jones vectors. A .

We define the Stokes parameters S’q % for a given harmonic order, ¢, as the integral of S;((w)
along the interval Aw = +wy/10 centered at gwy, wp being the driving field’s frequency. The
ellipticity of each harmonic order and the tilt angle of the major axis is then determined from the
Stokes parameters as,

s

; 1
€, = tan | - arctan S (6)
2 2
Sq,1 + Sq’2
Sj
j Vs 1 q.2

Qq = 5 - E arctan SJ_l (7)

q,

The characterization of the polycrystal domain-size distribution is done considering a set of
8 x 10* individual polycrystal realizations according to the distributions shown in Fig. 1. The
domain rotation is discretized in steps of one degree, and the size distribution in steps of 10
nm. Therefore the number of different domain configurations corresponding to the case of
Fig. 1 is about 29000. From each realization, j, we compute the high-order harmonic spectrum,
and the ellipticity and the tilt of the different harmonic orders. Finally, we derive statistics of
the polarization parameters efi and Gﬁ, (mean and deviation), by collecting the results from the
complete set of polycrystal realizations.

3. Results and discussion

Figure 2(a) shows the comparison of the harmonic spectrum emitted by a single crystal with that
corresponding to a particular polycrystal random realization, j. Note that the harmonic spectrum
includes little information on the polycrystal structure. This can be understood since, as it has
been recently reported in [27], the efficiency of the higher-order harmonic emission is optimal
for graphene rotated 15° + k30° {k € Z} from the driver’s polarization axis, dominating over the
other orientations. In addition, for the lower-order harmonics, the emission is almost insensitive
to the orientation. Due to these reasons and, since the domain orientations span over the whole
circle (see Fig. 1(d)), the polycrystal harmonic spectrum barely deviates from that of a single
crystal oriented with the driver’s polarization axis. Therefore, as first conclusion, monitoring the
variations of the harmonic efficiency does not result in an useful strategy for the spectroscopic
characterization of the polycrystal grain distribution.

An alternative and more successful strategy for the characterization of the polycristal domain
distribution consists in looking at the polarization properties of the generated harmonics, instead
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Fig. 2. a) Comparison between the spectra of single-crystal graphene (blue line) and that of
a particular realization j of a polycrystal (orange line) according to the domain distributions
in Fig. 1. b) and c) show the ellipticity and tilt-angle for harmonics 3th to 9th from a
single-crystal graphene in terms of the rotation 8 of its ' — K’ axis. d) Statistical analysis of
the standard deviation of the ellipticity o (blue dots) and tilt-angle O'g (orange dots) for
8 x 10* polycrystal cases with the distributions shown in Fig. 1.

of at the harmonic efficiency. Our computations show that the polarization of the high-order
harmonic emission is indeed sensitive to the domain distribution. This stems from the non-linear
anisotropy of single-crystal graphene [27]. Figures 2(b) and 2(c) show the dependence of the
ellipticity, €;, and major-axis tilt angle, 6,, of the 3rd, 5th, 7th and 9th harmonic orders emitted
by a single-crystal graphene irradiated with a linearly-polarized driving field, as a function
of the crystal’s I' — K’ axis rotation-angle, 6. In both panels the crystal’s orientation spans
over 0<#<60° since, due to the graphene’s symmetry, the pattern is repeated periodically for
all subsequent angular intervals. Both parameters, €, and 6,, are basically unaffected for the
lower-order harmonics, i.e. the lower-order harmonics are almost linearly polarized in the same
direction as the driver. In contrast, the higher-order harmonics show a substantial deviation from
the driver’s polarization, as graphene’s anisotropy is more pronounced for the highest orders in
the HHG spectrum. Note also, in this latter case, that both ellipticity and major-axis tilt-angle
show a maximum deviation from the driver’s at orientation angles odd-multiples of 6 = 15°. In
addition, the deviations are symmetric and opposite with respect to 8 = 30° for any harmonic
order.

As a consequence of the non-linear anisotropy in single-crystal graphene, the different domains
in a polycrystal will radiate high-order harmonics with a distinctive polarization state, depending
on their particular orientation. However, note that, for a sufficient number of grains in the
polycrystal, the domain orientations will spread over 360° (see Fig. 1(d)). This, together with
the opposite symmetry of the non-linear response shown in Figs. 2(b) and 2(c), leads to the
expectation that the net polycrystal harmonic emission present the same polarization properties
as the driving field. However, for finite-size polycrystals, similar to those in [3], the number
of grains is limited to their cumulative area filling the polycrystal’s surface. Therefore, in this
case, we should expect a residual ellipticity and tilt deviations in the harmonics emitted by the
target. Note that the magnitude of the residual deviations decreases progressively for polycrystals
with large number of domains, as each realization will contain effectively all possible domain
configurations. For the case of Fig. 1, as the number of domain configurations is 29000 and the
mean domain size is 25 nm, this limit corresponds to polycrystals with sizes above 4.3 um, about
twice the size we are considering in this paper.
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Let us now consider the statistics of such deviations from repeated measurements of the
polarization properties over a set of N polycrystal realizations, grown accordingly to the same
distribution of grains sizes and orientations. In particular, we focus into the mean and standard
deviation of the tilt-angle and ellipticity of each gth-order harmonic, with respect to that of the
driving field, which we assume linearly polarized in the vertical direction,

1< q RN q
@) =20 (=5 ®)
j J
N N
= \w 2 ). of= %2(6"—@)2 2

where 7 and €’ are the tilt angle and ellipticity of the gth-order harmonic radiated by the j
polycrystal realization. Consistently with the above discussion on the symmetries of single-crystal
graphene’s anisotropy, we find near vanishing results for the mean values in Egs. (8), i.e. 6, and
€, are not sensitive enough to characterize the polycrystal domain distribution. In contrast, the
standard deviations presented in Egs. (9), 0';’ and o, for the harmonic orders 3rd to 9th show
non-vanishing values, as shown in Fig. 2(d). Note that while the deviations of the ellipticity are
rather small, those of the harmonic tilt-angle are large enough to be measured for the higher
harmonics. Therefore harmonic tilt-angle deviation is a potentially useful parameter for the
characterization of polycrystal domain order.

In order to demonstrate the sensitivity of the standard deviation o'g to the domain-size
distribution, we have performed a series of calculations of o'g for different Gaussian distributions,
exp (—(s — 50)?/20°%), with s9<1000 nm being the most frequent domain size and o<360 nm.
Figure 3(a) plots the results extracted from a set of 8 x 10* crystal realizations for each Gaussian
distribution. The two insets in panel (a) represent two examples of domain distributions with
so = 500 nm and widths of 353.6 nm (upper inset, green) and 35.4 nm (lower inset, yellow). We
find an approximate linear dependence of the tilt-angle standard deviation 0'; with the grain size
50, with slopes varying as a function of the polycrystal distribution width o. In all cases, the
variations in the standard deviation O'g with the distribution are of some tens of degrees, therefore
sensitive enough to use this quantity in a polarimetric characterization of the distribution.

As a proof-of-concept, we finally propose a possible strategy for the characterization of the
graphene polycrystal domain-size distribution based on high-order harmonic polarimetry. For
this, we shall use Fig. 3(b), which shows the same information as Fig. 3(a) but representing
the tilt-angle standard deviation a'; (color scale) as a function of sg and o-. We now consider
an hypothetical experiment in which we measure the tilt angle of the 7th harmonic, 9}7, for a
set of j € N polycrystals, fabricated under similar conditions, and thus according to the same
domain-size distribution. We compute the standard deviation of the measurements O'g meas
according to Eq. (9). For concreteness, we have run a simulation of this hypothetical experiment
using the distribution shown in Figs. 1(b) and 1(c), similar to that reported in [3], from which we
obtain a value of o'; \mm = 7.4°. Knowing the value of O'g mease W choose the corresponding
contour in Fig. 3(b) to find the relation between the grain-distribution width o in terms of the
most frequent size so. This contour predicts a width of o, = 264.3 nm for 5o = 25 nm, i.e. the
most frequent size in the distribution of Figs. 1(b). The corresponding Gaussian profile is plotted
in Fig. 1(b) as a solid black line. We confirm the accuracy of our method comparing o, with
the best Gaussian profile fit of the histograms in Fig. 1(b), which leads to the value of 275.8 nm.

In order to demonstrate the robustness of our procedure, in Fig. 3(c) we represent the
corresponding contours resulting from the same road map applied to drivers with different
intensities, from 3.5 x 10!1© W/cm?2 to 1.14 x 10'! W/cm?, and considering both the 7th and 9th
harmonic-orders. The excellent overlapping of the contours reveals an extraordinary consistency
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Fig. 3. a) Standard deviation of the 7th harmonic tilts 0'; computed for different Gaussian
distributions of grain sizes, from wider (red light line) to narrower (red dark line). The
insets show the Gaussian distributions for the wider case (green dot) and the narrower case
(orange dot), respectively, centered at so = 500 nm grain size. b) dependence of the tilt
angle deviation a'g in terms of the width o~ and the most frequent size sq of the Gaussian
distribution, the magenta line corresponds to all the contour a'g = 7.4°. Both a) and b)
panels correspond to a driver of intensity of 5.1 x 101! W /em?. ¢) shows the contours found
for different driving intensities, from 3.5 x 109 W/cm? to 1.14 x 101 W/cm?, and for
harmonics 7th an 9th.

in the prediction of domain-size standard deviations using different drivers and harmonic orders.
We believe that this result demonstrates the reliability of HHG polarimetry for the characterization
of polycrystaline graphene.

4. Conclusion

We have proposed high-order harmonic polarimetry as a method for the characterization of
domain parameters in single-layer graphene polycrystals. Our proposal stems from the recently
reported non-linear anisotropy in single-crystal graphene. While our theoretical simulations show
that the efficiency of high-order harmonic generation in polycrystals, as well as the ellipticity
measurements, are not sensitive enough to the details of the polycrystal disorder, we demonstrate
that the measurement of the tilt angle is indeed sensitive. As a proof-of-principle, we suggest a
simple method to retrieve the width of the grain-size distribution from the statistical deviation of
the measurements of the tilt rotation of the harmonics for a set of polycrystal realizations.
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Chapter 5

Conclusions

This thesis presents an extensive study that explores the process of high-order har-
monic generation (HHG) in single-layer graphene by an intense laser from micro-
scopic and macroscopic points of view. From our study we can derive the following

main conclusions:

1. We have demonstrated the substantial role of imperfect recollisions in HHG in
monolayer systems without Berry curvature, using linearly polarized incident
tields. We have shown that the classical trajectories are not capable of repro-
ducing the full high-order harmonic spectrum, and a quantum perspective is
needed to take into account non-zero electron-hole recollision distances. We
have also verified the non-perturbative character of the process, similar to that

of HHG in gases.

2. In the same way that occurs in gaseous media, the role of phase-matching is
also relevant in solids. In this thesis we have demonstrated the influence of the
transverse phase-matching in HHG in graphene, and its importance to reproduce
the harmonic emission from a macroscopic target. As it can be seen from our
results, the harmonic spectrum is dominated by the emission produced in a

certain ring of the graphene layer, which is centered on the propagation axis.

3. As a proof-of-concept, we have designed a way to characterize polycrystalline
graphene through polarimetry of the high-order harmonics emitted in the
HHG process in polycrystalline graphene. We have been able to develop a
technique to determine the distribution that follows the size domains forming

the polycrystal.
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From the methodological point of view:

1. We have extended the semiclassical description of HHG in graphene to include
imperfect recollisions. This model allows us to calculate recombinations that

occur when the electron and hole centers do not overlap spatially.

2. We have extended the macroscopic calculation of HHG in gases to a single
layer of graphene. This allows us to identify the role of transverse phase-

matching in HHG from two-dimensional materials.

3. We have developed a tool to calculate the high-order harmonic emission from
polycrystals with different grain size and orientation distributions. In addi-
tion, we are able to calculate the total harmonic emission in this system, as

well as its polarization.

5.1 Conclusiones

Esta tesis presenta un amplio estudio que explora el proceso de generacién de ar-
monicos de orden elevado (HHG) en una lamina de grafeno mediante un ldser in-
tenso desde puntos de vista microscépico y macroscépico. De nuestro estudio pode-

mos derivar las siguientes conclusiones principales:

1. Hemos extendido el concepto de recolisiones imperfectas en HHG en cristales
gruesos a sistemas monocapa sin curvatura de Berry y utilizando campos inci-
dentes polarizados linealmente. Hemos demostrado que las trayectorias clasi-
cas no son capaces de reproducir el espectro completo de armoénicos y se nece-
sita una perspectiva cudntica que tenga en cuenta distancias de recolisién en el
par electrén-hueco diferentes a cero. También hemos comprobado el caracter

no perturbativo del proceso, de la misma manera que ocurre en HHG en gases.

2. De la misma manera que ocurre en medios gaseosos, el papel del acuerdo de
fase también es relevante en los sélidos. En esta tesis hemos demostrado la
influencia del ajuste de fase transversal en la HHG del grafeno, y su impor-
tancia en la observacion de las dindmicas macroscépicas del sistema. Como se

puede ver en nuestros resultados, el espectro de armoénicos estd dominado por
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la emisién producida en un cierto anillo de la lJdmina del grafeno, centrado en

el eje de propagacion.

3. Como prueba de concepto, disefiamos una estrategia para caracterizar el
grafeno policristalino a través de medidas de polarizacién de los armoénicos
de orden elevado emitidos en el proceso de HHG en grafeno policristalino.
Hemos sido capaces de desarrollar una técnica para determinar la distribuciéon

que sigue el tamafio de los dominios que forman el policristal.

Desde el punto de vista metodolégico:

1. Hemos desarrollado una descripcion tedrica para identificar las recolisiones
imperfectas que ocurren en el proceso de HHG en grafeno. Esta descripcion
nos permite calcular recombinaciones que se dan cuando los centros del elec-

tron y el hueco no coinciden espacialmente.

2. Hemos extendido el cdlculo macroscépico de HHG en gases a laminas mono-
capa, como el grafeno. Esto nos permite identificar el papel del ajuste de fase

transversal en el proceso de HHG en materiales bidimensionales.

3. Hemos desarrollado una herramienta para calcular teéricamente policristales
con diferentes distribuciones de tamafio y orientacién de sus dominios.
Ademas, somos capaces de calcular la emision total de arménicos en estos sis-

tema, asi como su polarizacién.
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