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Featured Application: Cut mark identification and analysis is a fundamental component for
archaeological investigation. Cut mark analysis, however, has been the root of great debates,
with some authors claiming to have the oldest cut marks in or outside of Africa. If these marks
were to truly be anthropic in nature, then the repercussions of these findings would produce
a paradigm shift for our understanding of human evolution. Unfortunately, the majority of
methods available for cut mark classification are namely qualitative in nature. Here we provide a
new, highly powerful artificially intelligent neural network classification model that can be used
to quantitatively and more objectively overcome these issues, using 3D digital microscopy, Deep
Learning and Geometric Morphometrics to obtain up to 100% accuracy in some cases.

Abstract: The concept of equifinality is currently one of the largest issues in taphonomy, frequently
leading analysts to erroneously interpret the formation and functionality of archaeological and
paleontological sites. An example of this equifinality can be found in the differentiation between
anthropic cut marks and other traces on bone produced by natural agents, such as that of sedimentary
abrasion and trampling. These issues are a key component in the understanding of early human
evolution, yet frequently rely on qualitative features for their identification. Unfortunately, qualitative
data is commonly susceptible to subjectivity, producing insecurity in research through analyst
experience. The present study intends to confront these issues through a hybrid methodological
approach. Here, we combine Geometric Morphometric data, 3D digital microscopy, and Deep
Learning Neural Networks to provide a means of empirically classifying taphonomic traces on bone.
Results obtained are able to reach over 95% classification, providing a possible means of overcoming
taphonomic equifinality in the archaeological and paleontological register.
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1. Introduction

The publication of the ‘oldest’ anthropic evidence of any type is always a problematic issue,
usually drawing attention, criticism, and eventual debate on the quality of these findings from the
entire archeological and paleontological community. Perfect examples of such debates can be observed
in the claims of ~3.4 Ma cut marks from Dikika, Ehtiopia [1], which have since been heavily criticized
and rejected [2,3]. Likewise, sites claiming to have ~2.6 Ma cut marks outside of Africa in the province
of Quranwala, India [4], have drawn some speculation to their authenticity. In the Americas, ~130 ka
anthropic bone breakage [5] are also noted to be located in areas with highly abrasive sediments and
problematic taphonomic contexts. The current consensus for the oldest cut marks in Africa, however,
remains to be those of Gona [6], dated to approximately between 2.1 and 2.58 Ma, while other promising
results have been localized with 1.9 and 2.4 Ma in Northern Africa [7].

Taphonomic debates revolving around these topics are essential in understanding features of
human evolution, considering how current theories argue meat-eating to be a fundamental component
of our evolution [8–11]. The concept of butchery contains a multitude of different implications beginning
with resource acquisition [8,12–15], as well as the cognitive technical capacities to manufacture the
instruments used for such activities [16–20]. Dates of cut marks at 3.3 Ma implicate Australopithecine
populations to be the first users of tools and butcherers in hominin pre-history [1], however authors
are yet to come to an agreement as to whether these individuals were physically capable of such
practices [16–20]. While an argument has been proposed to say that natural edges of unknapped
stones could be used for butchery practices [1], other authors argue that experimentation is yet to be
found that supports this claim [3]. Nevertheless, if these findings were to be real, then strong empirical
evidence would be needed in support of such a hypothesis.

Recent advances in the development of new methodologies for the study of Bone Surface
Modifications (BSMs) have been able to reveal interesting patterns in the in-depth study of taphonomic
traces. The implementation of Geometric Morphometric studies has been able to reveal a means
of inferring different tool use [21] as well as raw material management [21–23] through cut mark
morphologies. Moreover, when applied to the carnivore induced BSMs, analysts have been able to
differentiate between carnivore agents based on tooth mark morphologies [24–27]. The innovative
introduction of Artificial Intelligence (AI) in taphonomy [26–31] has additionally been able to overcome
multiple barriers imposed by subjectivity [32]. This presents a powerful tool for the construction of
classification models, presenting a series of efficient tools for the processing of complex data.

Here we present the power of Feed Forward Neural Networks (FFNN) trained through Deep
Learning (DL) for the processing of morphological data obtained with advanced 3D digital microscopy.
These efforts attempt to overcome issues imposed by equifinality and subjectivity in taphonomic
research, as well as complement previously obtained data regarding the effectivity of Machine Learning
(ML) algorithms for the processing of Geometric Morphometric information [26]. Through this,
we present a new means of classifying cut marks and trampling marks through their morphological
attributes, as well as an empirically objective and quantitative approximation to their morphological
description and characterization.

2. Materials and Methods

Experimental samples consisted of 80 cut marks and 251 trampling marks (Figure 1). Sample sizes
where chosen in accordance with statistical power tests [33,34], defining a minimum sample size of
59 individuals as significant for the type of analysis performed within this paper (Cohen’s d = 0.52,
α = 0.05, power = 0.8).
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Figure 1. Photographic examples of (A,B) experimental and (C,D) archaeological taphonomic traces. 
Photographic documentation using the HIROX KH-8700 microscope of experimental (A) cut and (B) 
trampling marks. Scanning Electron Microscope photographs of (C) inconspicuous taphonomic traces 
that could be cut marks and (D) clear cut marks found on antelope bone from Frida Leakey Korongo 
West of the Olduvai Gorge (Tanzania). Photos by L.A.C. Archaeological remains studied first by J.Y. 
[35] and later by L.A.C. 

Trampling mark samples (Figure 1B) were obtained from Domínguez-Rodrigo et al. [36]’s 
sample. These traces were produced under a number of different experimental conditions. 
Experiments were carried out using cervid bones obtained from a legal organized hunting party. 
Anatomical elements present a mixture of axial and appendicular elements, including femora, tibiae, 
radii, ulnae, humerii, vertebrae, ribs, and scapulae. The majority of the meat from these bones were 
removed with metal knives, then sectioned into smaller pieces using an electric saw. Each bone was 
then examined to avoid misclassifying BSMs produced by the defleshing and sectioning processes. 
The sample was then separated into multiple subsamples that were subjected to different 
experimental conditions. The first variable considered was the sediment type. Five different 
sedimentary conditions were used, the first consisting in fine-grained sands (60–200 µm), followed 
by medium-grained sands (200–600 µm), coarse-grained sands (0.6–2 mm), a combination of the 
different sand types in a clay stratum, and finally gravels (>2 mm). Additional variables considered 
the time exposed to trampling (10 s or 2 min), the individuals producing the trampling (all students 
of varying weights), and whether the bones were dry or fresh when buried. For more details consult 
citation reference [36]. 
  

Figure 1. Photographic examples of (A,B) experimental and (C,D) archaeological taphonomic traces.
Photographic documentation using the HIROX KH-8700 microscope of experimental (A) cut and (B)
trampling marks. Scanning Electron Microscope photographs of (C) inconspicuous taphonomic traces
that could be cut marks and (D) clear cut marks found on antelope bone from Frida Leakey Korongo
West of the Olduvai Gorge (Tanzania). Photos by L.A.C. Archaeological remains studied first by J.Y. [35]
and later by L.A.C.

Cut marks (Figure 1A) were produced using simple flakes knapped by a single right-handed
individual, experienced and familiar with lithic materials from the Olduvai Gorge and other Lower
Pleistocene sites. The raw material used for these experiments was obtained directly from the Naibor
Soit Inselberg of the Olduvai Gorge (Tanzania) [23]. This raw material consists of a coarse-grained
quartzite frequently found in multiple sites of Beds I and II of the Olduvai Gorge. Cut marks were
produced on a mixture of adult bovid and suid individuals on a number of different anatomical
elements, including femora, tibiae, and humerii. All cut marks were produced by a single right-handed
individual, perpendicular to the bone while the bone was fresh and the meat intact.

Trampling mark samples (Figure 1B) were obtained from Domínguez-Rodrigo et al. [36]’s sample.
These traces were produced under a number of different experimental conditions. Experiments were
carried out using cervid bones obtained from a legal organized hunting party. Anatomical elements
present a mixture of axial and appendicular elements, including femora, tibiae, radii, ulnae, humerii,
vertebrae, ribs, and scapulae. The majority of the meat from these bones were removed with metal
knives, then sectioned into smaller pieces using an electric saw. Each bone was then examined to
avoid misclassifying BSMs produced by the defleshing and sectioning processes. The sample was
then separated into multiple subsamples that were subjected to different experimental conditions.
The first variable considered was the sediment type. Five different sedimentary conditions were
used, the first consisting in fine-grained sands (60–200 µm), followed by medium-grained sands
(200–600 µm), coarse-grained sands (0.6–2 mm), a combination of the different sand types in a clay
stratum, and finally gravels (>2 mm). Additional variables considered the time exposed to trampling
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(10 s or 2 min), the individuals producing the trampling (all students of varying weights), and whether
the bones were dry or fresh when buried. For more details consult citation reference [36].

2.1. Digital Reconstruction Technique

A combination of two different methodological approaches was used for this study, the first
concerning the 3D digital reconstruction protocol via advanced digital microscopy [37] followed by the
processing of this data via a 3D 13-landmark model [21].

The digitalization process was performed using the HIROX KH-8700 3D Digital Microscope
with an MXG-5000 REZ triple objective revolving lens located in the Institut Català de Paleoecologia
Humana I Evolució Social (IPHES), Tarragona, Spain. The HIROX is equipped with a high intensity
LED light source that can be positioned around the subject of study. For this study, the light source
was positioned directly above the object, combining both coaxial and ring lighting conditions without
the use of any polarized filters. Digital reconstructions of each trace were performed between 100×
(Field of View (FOV) = 1516 µm) and 200x (FOV = 3032 µm) magnification, using either the low or
medium range lens. Three-dimensional reconstructions were produced using the HIROX’s mosaic
tiling function, specifying a minimum of 30 photos per tile. This process takes approximately 13 min to
complete per mark [37]. Collection of 3D landmark data was performed directly within the HIROX’s
system software, employing the use of multiple measurement systems to obtain x, y, and z coordinates
for the position of each landmark. This landmark data was then formatted and imported into R
(https://www.r-project.org/) for further statistical analysis.

Further technical details regarding the microscope and a detailed description of the reconstruction
protocol can be consulted in [37], as briefly and graphically described in Figure 2.
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3D Digital Microscope, as described in detail through Courtenay et al. [21,37]. Figure by L.A.C.

2.2. Geometric Morphometrics

Geometric morphometric analysis was performed in the free statistical software R (https://www.r-
project.org/), employing the use of multiple packages that can be consulted in Appendix A Table A1.

For the Geometric Morphometric analysis of both linear traces, a 3D 13-landmark model was
used [21]. This model combines landmark types I and II to capture the internal as well as external
morphological features of each trace. Landmark data is fist processed using a full Procrustes

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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fit and an orthogonal tangent projection [38], known as Generalized Procrustes Analysis (GPA),
normalizing data for further multivariate statistical analyses. GPA is a common practice in Geometric
Morphometrics for the standardization of form information through multiple superimposition
procedures, including translation, rotation, and scaling. Differences through this are revealed through
patterns of variation and covariation that can be assessed statistically [39,40]. Principal Components
Analyses (PCA) are performed on this data to reduce the complex combination of variables to fewer
dimensions [39]. Additional thin plate splines, grid warpings, and mean shapes were calculated to
visualize morphological variation across the Principal Component (PC) scores [39]. Degree of variance
is then assessed using pairwise Multiple Variance Analyses (MANOVA). Depending on the inter-group
homogeneity within each sample, MANOVA calculations were adjusted either using the Wilks or
Hotelling–Lawley formula for inhomogeneous and homogeneous samples, respectively.

Samples were also processed using a Canonical Variance Analysis (CVA). CVA consists in the
transformation of the raw PCA data, whereby pooled within-group dispersion are manipulated in a
scaling process, thus standardizing within-group variance, and finally rotating the axes to be redrawn
as a CVA graph [40]. Distances were then calculated between the groups with permutated p-values from
the pooled within-group covariance matrices, calculating the degree of separation between samples in
the form of Procrustes and Mahalanobis distances with their associated p-values of significance.

To ensure the efficiency of the learning process, PC scores were bootstrapped 1000× and extracted
for the construction of Deep Learning Feed Forward Neural Network models.

2.3. Deep Learning

Deep Learning applications were programmed in Python (https://www.python.org/), using a
number of different packages that can be consulted in Appendix A Table A2. Algorithms conceptualized
for supervised training and classification of samples consisted in the development of Feed Forward
Neural Networks (FFNN). Neural Networks are modeled and coded to replicate brain patterns
that are able to process highly complex and large sets of data [41], consisting of multiple nodes or
perceptrons, which are connected by weighted axons or edges. These networks are designed to
recognize patterns in order to interpret data, utilizing components of mathematics, calculus, linear
algebra, and statistics to train and perform different tasks [42,43]. Likewise, this can be performed in a
supervised, semisupervized, or unsupervised manner.

The FFNN designed for this study was constructed in TensorFlow 2.0 using the Keras API [41].
All Deep Learning implications were therefore run using TensorFlow as a backend engine on a portable
laptop’s CPU (Intel® CoreTM i5 6300HQ), executed in a Conda (https://www.anaconda.com) virtual
environment. The network was trained using the PC scores as dependencies, employing NumPy
to convert PC scores into 64-bit floating point matrices. The associated class labels were indexed as
separate 64-bit floating point vectors. PC scores are frequently used in Machine and Deep Learning as
a method for projecting high-dimensional data into a new feature space that is useful for the training
of AI models. Here we used the top 10 PC scores, representing 93% of the sample’s variance, using
these PC scores to train models to classify unknown individuals.

A combination of neurons in a mixture of hidden layers are then used to map out the relationships
between the dependency inputs (x) and the label outputs (y) [42,43]. A generalized mathematical
representation of a single neuron can thus be represented as [42]:

y(x) = f

 n∑
i=1

wixi

 (1)

where w are the weights connecting each neuron and f() represents an activation function that varies
according to the position within the network [42]. Considering the case at hand consists in a binary
classification problem, the label values were converted into a string of 1s and 0s indicating whether
the taphonomic trace is anthropic (1) or not (0). In order to ensure that the model therefore only

https://www.python.org/
https://www.anaconda.com
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produces an output between 1 and 0, a sigmoid activation function is used for the final layer, described
mathematically as [42]:

f (x) =
1

1 + e−x (2)

While all hidden layers were activated using the Rectified Linear Unit (ReLU) function [42]:

f (x) = max(0, x) (3)

During the learning process, the training of the model searches for the optimal combination of
weights that can efficiently map out the y(x) relationship. Neural Networks are stochastic; therefore,
weight initialization is performed at random [41–44]. The tuning of these weights was performed
using back propagation and gradient descent via a stochastic optimization algorithm [42,43,45–48] and
a binary cross entropy loss function [42,43].

For the purpose of configuring the neural network and finding the right hyperparameters during
optimization, a series of trial runs were performed. These alternated between different combinations
of hyperparameters, searching for the best results without overfitting. These trials employed typical
practices of Deep Learning techniques [44], including changing the number of hidden layers, number
of neurons per layer, batch size, epoch size, kernel constraints, weight regularization, the presence,
position, or threshold of dropout layers as well as different optimization algorithms and learning rates.
A summary of the hyperparameters tested can be consulted in Table 1.

Table 1. List of hyperparameters and settings tested during optimization of final Feed Forward Neural
Networks (FFNN) model architecture and configurations.

Hyperparameter Tested Settings References

Number of Layers Between 1 and 7 [41,42,44]
Node Density * Between 3 and 20 [41,42,44]
Activation Function * ReLU, Leaky ReLU, Tanh [49–52]
Kernel Initializer None, Uniform [51,53]
Dropout ** None, Present with a threshold of 0.5 between 0.5 and 0.9 [54]
Weight Regularizer None, l2 with a threshold between 0.01 and 0.00001 [53]
Weight Constraint UnitNorm, MaxNorm, MinMaxNorm [54]
Training Epochs Between 150 and 2000 [41,42,44]
Batch Size 4, 8, 16, 32, 64, 128, 256 [41,42,44]
Optimizer Stochastic Gradient Descent, RMSProp, AdaGrad, Adam [45–48]

Learning Rate Between 0.1 and 0.00001
Decay Between 0.9 and 0.0001
Momentum Between 0.99 and 0.1

* With exception of the final layer of the network which always consisted of 1 neuron with a sigmoid activation
function. ** Positioning of dropout layers within the model’s architecture was also tested.

Models were trained and evaluated using training, validation, and test splits. This is common
practice in both Machine and Deep Learning [41,44,55]. The train-test split consisted of a 70:30% split
ratio, respectively. During training, the training sample was further split using 30% for validation.
FFNN were then trained on training and validation data, optimizing weights to improve the accuracy
and reduce the loss. Learning curves were plotted to evaluate the increase/decrease of accuracy and
loss over each iteration epoch. The metric used to evaluate the learning process while the model was
being fit was set to ‘accuracy’. These learning curves could then be used to diagnose model behavior,
thus evaluating whether the model was under- or overfitting on the training and validation data [44].

Final evaluation of the model was performed using the test set. The model was used to predict
this ‘unknown’ data, recording both the accuracy and the loss obtained when predicting the missing
label values from this data. The final metrics employed and evaluated using the test set consisted of
sensitivity, specificity, and kappa values obtained via confusion matrices. The kappa (κ) statistic adjusts
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accuracy by considering the possibility of a correct prediction by change alone [55]. The resulting value
is presented between−1 and 1, with a κ> 0.8 considered as a powerful predictive model. Sensitivity and
specificity tests combine the frequencies and ratios of Type I and Type II statistical errors in proportion
with the rest of the confusion matrix [56]. Values between 0 (poor) and 1 (high performing) indicate
the predictive power of the model [55–57]. Further examination of the relationship between sensitivity
and specificity in models was performed through the plotting of Receiver Operating Characteristic
(ROC) curves and calculation of Area Under Curve (AUC) values [55,56]. ROC curves and AUC results
are interpreted through the amount of space represented underneath the curve: the larger the area
(AUC ≈ 1), the more accurate the model is when making predictions [55].

Considering the stochastic nature of FFNNs, evaluation and training was performed 30 times,
taking averages of each numeric result to provide the final results. Results across all 30 iterations
are provided as Tables S1 and S2. Confidence intervals were then calculated using the 2nd Standard
Deviation (±2SD), thus representing approximately 95% of the deviation from the mean.

The final Python code used for this study is available in the form of a Jupyter Notebook online at
https://github.com/LACourtenay/Deep-Neural-Network-for-Cut-Mark-Classification.

3. Results

3.1. Geometric Morphometrics

PCA was able to produce up to 32 PC scores, with the first 10 representing up to 93% of the total
variance (Figure 3). The first two components of this analysis represent a cumulative variance of 52%
of the sample, displaying a high degree of overlapping among trampling samples and anthropogenic
cut marks. Regardless, trampling marks can be seen to represent a much greater degree of variability,
with a much larger proportion of the sample displaying a trend toward a wider and more superficial
morphology. Cut marks occupy a much smaller percentage of the overall feature space, leaning much
closer to the end of PC1 that is represented by a finer groove. Additionally, trampling marks are also
seen to vary greatly across the second principal component, which is represented by variations in
groove trajectory. Contrarily, cut marks display a restricted distribution. Analysis of thin plate splines
across PC3 displays a much clearer tendency for cut marks to lean toward deeper marks (Figure 4A),
with trampling marks occupying primarily a percentage of feature space that is represented by very
superficial traces.
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Variance Analyses.

Exploring these variations through numerical results highlight significant differences between
samples, with MANOVA of p = 0.001 between both groups. Mahalanobis (D = 3.4403, p < 0.0001) and
Procrustes (D = 0.0297, p = 0.0001) distance calculations also concur, with a clear separation between
groups in CVA graphs (Figure 4B), represented by a total of 100% across the single axis of this figure.

3.2. Deep Learning

Initial trials prior to hyperparameter optimization and tuning began by achieving a model accuracy
of approximately 70%, while overfitting proved to be a considerable issue with most model training
and validation sets, even at this low degree of accuracy. After hyperparameter optimization, the final
model obtained between 97.63% and 100% accuracy differentiating between trampling and cut marks
(Figure 5, Table 2), presenting variation due to the stochastic nature of the model during weight
initialization. The final model employed the use of 6 layers, 5 standard neural layers, and 1 dropout
layer (Figure 5A and Figure S1). The inclusion of a larger density layer after the input (number of
neurons = 20) produced a significant boost in accuracy, yet in order to prevent this additional layer
from producing an over generalization of the data, a dropout layer with a constraint threshold of
0.5 was included directly afterwards (Figure 5A and Figure S1). A number of different positions for
the dropout layer were tried and tested, yet the best results were obtained positioning said dropout
in-between layers 3 and 5. An additional “UnitNorm” weight constraint was used to reduce overfitting,
while the best training performance was obtained using the Adam optimization algorithm (learning
rate (α) = 0.001, decay (β1) = 0.9). No additional regularization or kernel initialization techniques were
found necessary for the final model.

Table 2. Performance accuracy and loss of training, validation, and testing of Neural Network after 30
iterations. All accuracy values are presented in percentages.

Training Validation Testing

Accuracy Max 100.00 100.00 100.00
Mean 99.56 99.50 99.59

Upper CI 100.00 100.00 100.00
Lower CI 98.97 98.74 98.95

Min 98.43 97.63 98.00
Loss Max 0.13 0.09 0.02

Mean 0.05 0.02 0.01
Upper CI 0.08 0.05 0.01
Lower CI 0.02 0.00 0.00

Min 0.00 0.00 0.00
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Figure 5. Feed Forward Neural Network Architecture and Learning Curve. (A) Visualization of
the Neural Network Architecture including input and output shape for each layer, n◦ of adjustable
parameters, and the type of layer. A graphical representation of this has been provided as Supplementary
Figure S1. (B) Accuracy learning curve for validation and training over epochs. (C) Loss learning curve
for validation and training over epochs.

The final training process used 900 epochs and a microbatch size of 64, obtaining an average
accuracy of 99.55 ± 1.32% across training, testing, and validation samples (Figure 5B, Table 2 & Table S1).
Loss on all accounts highlights the FFNN to be a powerful classifier with high confidence when
assigning class labels to new individuals (Figure 5C). In training the average loss was recorded at 0.05,
while 0.02 was recorded for validation and 0.01 for testing (Table 2, Table S1).

Further model evaluation through confusion matrices obtained on model testing was able to
confirm the FFNN to be a highly efficient classification model, differentiating between cut and trampling
marks with κ values of 1 ± 0.008 (Table 3, Table S2). Likewise, both sensitivity and specificity values
averaged at 1 with the lowest specificity value being recorded at 0.995 and all sensitivity values
obtaining 1 as well (Figure 6, Table 3, Table S2). ROC graphs almost always display a perfect right
hand angle rather than a curve (Figure 6), with AUC values averaging at 1 ± 1.2 x 10-4.

Table 3. Average Neural Network performance evaluation on test sets.

Mean 2 SD

Sensitivity 1.000 0.000
Specificity 0.999 0.004

Kappa 0.997 0.008
AUC 1.000 0.000
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Figure 6. ROC curves with AUC values for Neural Network performance. (A) Worst recorded
performance of the Neural Network model, obtaining an AUC of 0.9999. (B) best recorded performance
of the Neural Network model, obtaining an AUC of 1. (C) Detail of dotted-square in (A), showing the
slight perfection affecting this model’s achievement of a perfect right-angle “curve”.

Finally, FFNN training time averaged at 10.87 s while taking as little as ~17 milliseconds when
making predictions.

4. Discussion and Conclusions

BSM analysis remains to be a very important component of taphonomic studies, whereby
their identification and in-depth analysis can reveal multiple components regarding early hominin
populations [11–15], their development [6,7,23], and their associated paleoecologies [14,24,28].
Nevertheless, issues imposed by equifinality have led to complications in their identification and
interpretation [1–5], requiring more objective and empirical methods that can be used for BSM
classification and characterization [21–27,30,58].

In recent years, debates regarding the protocol used to identify cut marks have ranged from
simple observational criteria [58] to developments with a more complex multivariate protocol [36]
and advanced microscopic studies [59]. With the integration of ML to the processing of qualitative
data, analysts have been able to improve the processing of archaeological data sets to a considerable
degree [29]; nevertheless, the subjective nature upon which this data is obtained makes some of
these advances debatable [32]. One alternative has been proposed utilizing DL convolutional neural
network architectures for image processing and classification [30], presenting promising results for
automated BSM identification. Here, we additionally present the combined usage of advanced digital
microscopy, Geometric Morphometrics, and artificially intelligent computational algorithms for cut
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mark identification and characterization. On both accounts, ML and DL have effectively proven to
outperform human performance [29,30,32], presenting a more objective and precise means of studying
microscopic traces.

The present results are able to develop data observed by multiple authors [12,36,37,58],
yet employing new empirical means of quantifying these conclusions. Geometric morphometric
characterization of trampling and cut marks concur that the most significant features of cut marks are
their depth and straight trajectory, while trampling marks are more variable presenting much more
superficial morphologies alongside other irregularities [37]. Furthermore, the ability of high-resolution
3D digital microscopy to overcome limitations imposed by the superficial nature of some traces [37]
can also be considered a significant improvement from previous efforts [21,22]. While equifinality can
still be observed to a certain degree, considering the high degree of overlap in most of these samples,
it is important to point out the high dimensionality of PCA results derived from morphological data,
as seen in how MANOVA testing is still able to identify significant differences between samples.
Moreover, FFNN efficiently differentiates experimental samples with high levels of confidence on all
accounts, considering their ability to extract complex patterns from difficult data [60].

The present study additionally complements previous efforts to implement ML algorithms
in Geometric Morphometric analyses, expanding the available toolbox for morphological
studies [26,61–66]. Courtenay et al. [26]’s original attempts to implement neural network architectures
for tooth mark classification performed poorly, attributed by the authors to the model’s superficial
nature. The complexity of the model here supports this observation. These results thus confirm model
configuration and tuning to be essential for efficient classification, requiring extensive experimentation
to find the optimal model. This would also explain the mixed results obtained by similarly superficial
models in applications for systematic biology [61–66].

The field of AI can be seen to have exponentially grown since its conceptualization, providing
algorithmic computational means of processing complex data sets. Many of these algorithms have
presented significant advances for other disciplines, including medical research [67], pharmaceutics [68],
business studies [69], engineering [70], and any other fields that require the advanced processing of
large and complex data sets [60]. In prehistoric archaeology, ML and DL have arrived relatively late,
yet present promising results. Nevertheless, problems of true experimental analogy are needed before
these approaches can be applied on a broader scale. Here, Naibor Soit quartzite is used, considering this
raw material’s importance in many Pleistocene sites of the Olduvai Gorge; however, if this approach
were to be applied to other sites in Europe, Asia, or the Americas, then the experimental protocol and
reference sample should be adjusted accordingly. Moreover, analysts should be aware of the possible
overlapping traces that may increase the effects of taphonomic equifinality over time, such as fluvial
abrasion, chemical alterations, and general loss of cortical surfaces [71,72], to name a few.

In other practical cases, the drawbacks of DL can be presented by limited sample sizes as well as
the cost of training. This is especially apparent in archaeology and palaeoanthropology considering
the conservation and preservation of the fossil record present considerable limitations. Nevertheless,
Geometric Morphometric data has still proven to be a powerful type of input data for training, proving
relatively fast to learn patterns from >1 min. Furthermore, considering the nature of the landmark data
involved and its consequent transformation through GPA and PCA dimensionality reduction methods,
this type of input data is less prone to issues presented by sample size as opposed to studies concerning,
for example, Computer Vision and image processing-based techniques [54,73–76], the latter requiring
large amounts of parameters (usually in the millions), which are hard to learn from small datasets [76].

Needless to say, as with the case of any innovative methodological introduction in archaeological
and paleontological research, a large-scale use of these techniques is usually slow and requires large
experimental programs to truly fine tune these results and examine their limitations.
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DL and ML provide a significant advance for classification problems and predictive modeling [55],
almost regardless of the type of data being analyzed. Advances in data science are presenting new
means of automating data collection and processing, presenting a new empirical basis that can be
used to confirm or reject cases of controversial taphonomic interpretations [1,4,5]. Neural Networks
are highly versatile computational algorithms and can be adapted to most data sets [41,60]. Their
success, however, is highly dependent on the tuning of their configuration and the developments
available when considering the options feature engineering and hyperparameter optimization may
provide [44,54,60,75,76]. Here, we have tested the potential of Deep Learning on the processing of
morphological data to provide a hybrid approach that efficiently overcomes one of the taphonomy’s
biggest questions. The present work thus demonstrates an example of how advanced microscopy and
developed artificially intelligent algorithms may provide a promising future for archaeological and
paleontological science.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/1/150/s1:
Figure S1: Visualization of the Neural Network Architecture. Bias neurons are represented in green, hidden
neurons in blue and the dropout layer in red., Table S1: Accuracy and Loss Results from 30 prediction iterations
on training, validation and test data, and Table S2: Results from 30 prediction iterations on test data
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Appendix A

For the purpose of this study, a mixture of R (https://www.r-project.org/) (Table A1) and Python
(https://www.python.org/) (Table A2) were used for data science applications.

Table A1. Table presenting the R libraries used for geometric morphometric applications.

Library Used For: Link

Geomorph
Generalized Procrustes Analysis
Principal Components Analysis

Thin Plate Splines

https://cran.r-project.org/web/packages/
geomorph/geomorph.pdf

Shapes Canonical Variate Analysis https://cran.r-project.org/web/packages/
shapes/shapes.pdf

RVAideMemoire Multivariate Variance Analysis https://cran.r-project.org/web/packages/
RVAideMemoire/RVAideMemoire.pdf

http://www.mdpi.com/2076-3417/10/1/150/s1
https://www.r-project.org/
https://www.python.org/
https://cran.r-project.org/web/packages/geomorph/geomorph.pdf
https://cran.r-project.org/web/packages/geomorph/geomorph.pdf
https://cran.r-project.org/web/packages/shapes/shapes.pdf
https://cran.r-project.org/web/packages/shapes/shapes.pdf
https://cran.r-project.org/web/packages/RVAideMemoire/RVAideMemoire.pdf
https://cran.r-project.org/web/packages/RVAideMemoire/RVAideMemoire.pdf
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Table A2. Table presenting the Python libraries used for Deep Learning applications.

Library Used for: Link

TensorFlow 2.0.
Keras API

Neural Network Construction
Hyperparameter Optimization

https://www.tensorflow.org/
https://keras.io/

Numpy Numerical applications and operations
Slicing, indexing and transformation of data https://www.numpy.org/

Pandas Loading data https://pandas.pydata.org/

Matplotlib Plotting learning curves and ROC results https://matplotlib.org/

Scikit-Learn Model evaluation https://scikit-learn.org/

For handling of Python and Deep Learning applications, the open source Anaconda (https://www.
anaconda.com/) software was used to manage libraries and internal environments for Deep Learning.
For debugging of Python code Jupyter Notebook (https://jupyter.org/) was used. For debugging of R
code, R-Studio was used (https://www.rstudio.com/).
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