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La Tesis Doctoral presentada por el doctorando D. Lloyd Austin David Courtenay reúne todos 
los requisitos que se le pueden exigir a una Tesis Doctoral con mención internacional, y que a 
continuación paso a detallar: 
 

 El tema presentado por el doctorando en su Tesis Doctoral se enmarca dentro de una de 
las líneas de investigación más intensas y novedosas dentro de las disciplinas de la 
Fotogrametría de Rango Cercano y la Visión Computacional. Más concretamente, se 
abordan desde una perspectiva transdisciplinar enfoques estadísticos robustos y 
acercamientos de inteligencia artificial para el análisis de datos morfológicos en 2D 
y 3D, aplicados a casos de Arqueología, Paleoantropología, Tafonomía y 
Dermatología. 

 
 El estado del arte ha sido rigurosamente documentado y analizado desde un punto de 

vista científico y tecnológico como así consta a lo largo de la gran cantidad de 
referencias incorporadas a la Tesis Doctoral.  

 

 La metodología y algoritmos desarrollados en la Tesis Doctoral presentan aspectos 
novedosos que permiten abordar con éxito los objetivos propuestos. Más 
concretamente, entre los progresos realizados hay que destacar muy especialmente: 

 

- El uso de recursos informáticos avanzados y técnicas estadísticas 
multivariantes que permiten mejorar en gran medida la precisión de los 
estudios que suelen realizarse con criterios visuales y cualitativos. 

- El empleo de herramientas matemáticas, que suelen utilizarse en contextos 
biológicos y antropológicos, para la cuantificación de diferentes morfologías. 

- La utilización exitosa de algoritmos de inteligencia artificial como 
herramienta muy poderosa en la clasificación de elementos en función de su 
morfología. 

- La creación de nuevos enfoques metodológicos aplicados a la tafonomía que 
nunca habían sido empleados antes. 

 

 Por otro lado, hay que reseñar la posible transferencia de tecnología derivada en 
forma del desarrollo de software que será susceptible de ser registrada como propiedad 
intelectual, y que ha servido como soporte para la experimentación de la metodología y 
algoritmos desarrollados:  

 



- RLibraries, para el tratamiento estadístico multivariante de los datos. 

- TPS Measurement software, para la realización de medidas en análisis 
morfológicos. 

- Trampling algorithm, para aplicar una red neuronal en procesos de análisis de 
marcas. 

 
 Finalmente, hay que destacar muy especialmente el altísimo nivel de producción 

científica derivado del propio desarrollo de la Tesis Doctoral por parte del Doctorando, 
el cual permite avalar la calidad y relevancia de la misma. Hay que reseñar la 
publicación de 9 artículos indexados JCR, así como sus aportaciones realizadas en 
otra elevada cantidad de contribuciones científicas desarrolladas a partir de las 
innovaciones aplicadas en esta tesis doctoral.  

 
 
 
 
Por todo lo anteriormente reseñado, emito un informe con todos mis pronunciamientos 
favorables, y autorizo su presentación como Tesis Doctoral en el Departamento de Ingeniería 
Cartográfica y del Terreno de la Universidad de Salamanca. 
 
 
 
 
 
       Ávila, 30 de noviembre de 2022 
      
     LOS DIRECTORES DE LA TESIS DOCTORAL  
 

 

 

 

 Fdo. Diego González Aguilera                Fdo. José Yravedra Sainz de los Terreros 



 

 

 
      

       

December 7, 2022 

 

 

Briana Pobiner: Reviewer Report for Lloyd Austin David Courtenay PhD dissertation 

 

 

It was a real pleasure to have the opportunity to serve as an external reviewer for 

Courtenay’s dissertation “Robust Statistical and Artificially Intelligent Approaches for 

the Analysis of 2D and 3D Morphological Data”.  

 

I am a taphonomist and zooarchaeologist, and I do not have strong training in the 

methods used and developed by Courtenay; therefore, my focus in reviewing this 

dissertation was mainly on the conclusions and implications for my own area of research. 

But before I get to that, I must note that I have been an external reviewer for several PhD 

dissertations, and this one is by far the most well organized and well written, with 

beautiful, clear figures. It is really impressive in its breadth and significance. Courtenay 

should be commended for the huge amount of high-level work that went into producing 

this dissertation. Chapters 1, 2, and 4, outside of the nine publications included which are 

helpfully organized into five themes, show his clear understanding and synthesis of the 

topics he studied and the innovative approaches he has not only applied, but also 

developed. 

 

As far as my own areas of expertise, I can comment on the five publications on bone 

surface modifications: Applied Sciences 2019, PLoS One 2020, Applied Sciences 2020, 

Scientific Reports 2021, Animals 2021, Quaternary Science Reviews submitted. In 

taphonomy and zooarchaeology, Courtenay has carved out a strong niche for himself in 

the field with a focus on new data science-based techniques and approaches to help us 

measure and classify bone surface modifications more accurately. These methods have 

implications for our understanding of the abiotic (trampling marks) and biotic (cut marks, 

carnivore tooth marks) processes that affected modern and fossil bone assemblages.  

 

In sum, this dissertation is an extremely cutting-edge (no pun intended) impressive body 

of research, especially for a dissertation. I look forward to seeing Courtenay continue to 

shape the fields of zooarchaeology and taphonomy in the future.    

 
 

With sincere regards, 

 
Briana Pobiner 
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University of Roehampton.  

Holybourne Ave SW15 4JD 

London (United Kingdom) 

n.tamayo@roehampton.ac.uk 

 

London, 9 December 2022 

 

By request of Dr. González-Aguilera, here I present my report on Mr. Lloyd Courtenay’s PhD 

thesis entitled “Robust Statistical and Artificially Intelligent Approaches for the Analysis of 2D 

and 3D Morphological Data” and supervised by Dr. Diego González-Aguilera and Dr. José 

Yravedra in the Escuela Politécnica Superior de Ávila (Universidad de Salamanca).  

This PhD thesis presents an innovative investigation that combines Geometric Morphometrics, 

Fourier Shape Descriptors and Artificially Intelligent Algorithms for generation, handling and 

quantification of 2D and 3D morphological data in different contexts. The outcomes of this PhD 

work demonstrate that the use of these advanced computational methodologies reduces the 

subjectivity in the analyses of complex and large morphological datasets. This PhD thesis 

successfully addresses the issue of small sample sizes in paleoanthropology and archaeology by 

augmentation and simulation of data. Also, a relevant finding of this PhD thesis is the use of 

Artificially Intelligent Algorithms such as Neural Networks and Support Vector Machines for the 

(identification of new specimens). These are very important outcomes in the context of accuracy, 

reproducibility and reliability of the analysis of morphological data.  

This PhD thesis is organized in a series of logical and coherent steps that facilitates its 

comprehension and the applicability of its results. The theoretical framework of this PhD research 

is very well explained and the use of these methodologies for the aims is well justified. The 

discussion is very well developed, and I would like to emphasize the exercise in honesty carried 

out by the candidate by discussing the advantages and disadvantages of the different techniques. 

On top of that, this PhD reflects a rigorous revision of the scientific literature, as the candidate 

not only discusses classic works about the topic, but also very recently published investigations, 

showing an excellent handling of the existing literature.  

The candidate shows the applicability of the methodologies developed in this PhD thesis not only 

to different fields often related to each other, such as archaeology, taphonomy and 

paleoanthropology, but also to ecology and medicine, with important applications to oncology. 

This shows the great potential and utility of the outcomes of this PhD thesis in different research 

fields, which is, in my opinion, one of the most important achievements in any PhD thesis. 



The transdisciplinarity of this PhD thesis is reflected in nine research works that have been already 

published or are in the process of publication in international journals: six articles have been 

published in high impact international journals including Applied Sciences, PloSONE, Scientific 

Reports, Animals and Journal of Clinical Medicine and three are under review in American 

Journal of Biological Anthropology, Quaternary Sciences Reviews and Systematic Biology by 

the time of this PhD thesis submission. In all these publications, the candidate is the first author 

or first co-author, reflecting leadership skills in conceptualization, analyses and writing of the 

manuscripts and associated PhD chapters in an international context.  

In view of the dates of publication of the articles included in this PhD thesis, I assume that a great 

part of the PhD work has been carried out during the COVID-19 pandemic. This pandemic has 

highly impacted the scientific performance of many scientists whose research directly depended 

on the access to the infrastructure and material necessary for their research, bringing the 

importance of the use of open resources to the fore. In this regard, I would like to highlight the 

effort made by the candidate in establishing a workflow based on open-source software in his 

PhD research, making the code and data available in open online repositories. This is a great 

contribution of this PhD thesis, not only because it promotes transparency and reproducibility in 

science, but also because it lays the groundwork for future researchers to continue building their 

research on the outcomes reported therein. As a researcher working on virtual morphology, I am 

very looking forward to putting into practice the methodologies detailed in this PhD research.  

I can confirm that this PhD thesis meets the requirements to be submitted to the Escuela de 

Doctorado of the Universidad de Salamanca as part of the Programa de Doctorado 

interuniversitario en Geotecnologías aplicadas a la Construcción, Energía e Industria, within the 

framework of an international PhD and to be defended by the candidate and evaluated by a PhD 

committee of international experts. I consider that the PhD thesis, together with the scientific 

articles that are part of it, show that the candidate is ready to become an independent researcher 

in a post-doctoral stage. 

I remain at your disposal to answer any question you may have.  

Yours faithfully, 

 

 

 
 

 

Dr. Nicole Torres-Tamayo 

School of Life and Health Sciences 

University of Roehampton (London, UK) 

E-mail: n.tamayo@roehampton.ac.uk 
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Abstract

Notions of geometry and morphology are a fundamental component of the way we perceive, describe,
and essentially interact with objects. The shape and size of an element can be highly informative, and
will thus condition the way we carry out basic functions in our daily lives. Morphology can be useful
for; the detection of anomalies and patterns, the characterisation of an object or organism, as well as the
identification of casuality (cause and effect). Nevertheless, finding an efficient and objective means of
characterising morphology in both micro and macroscopic elements is often a great challenge in many
fields of science. While many approaches to these types of tasks have long relied on a visual or qualitative
description of shape and form, unfortunately most of these methods are influenced by notable degrees of
subjectivity, typically product of human-based error and dependent on experience and perspective.

In the present Doctoral Thesis, a wide array of different techniques for the extraction and analysis
of morphological data is explored and discussed. Specifically, the main goals of this study are to define a
general workflow that can be used for the quantification of different elements, with the hope of developing
a transparent and transdisciplinary approach that can be applied to many fields of science.

For this purpose, multiple techniques for the digitisation of both 2D and 3D data have been used, in-
cluding (in order of prevalence); structured light surface scanning, micro-computed tomography, 3D-digital
microscopy, and traditional photography for clinical imaging. Investigation into the best means of extract-
ing morphological information was then explored, primarily including geometric morphometric analyses,
while also testing combinations of traditional metric and elliptic Fourier analyses as well. Following this,
the present Doctoral Thesis dedicates a significant portion of research into finding the best means of statisti-
cally analysing this type of information. Here the use of multiple robust statistical approaches is employed,
as well as both parametric and non-parametric testing, in order to obtain the highest possible accuracy in
the conclusions withdrawn.

So as to leverage this information for tasks such as classification or diagnostics, this Doctoral The-
sis also focuses great attention on the use of Computational Learning for the development of Artificially
Intelligent algorithms in decision-making tasks. Prior to the development of classification algorithms, how-
ever, research delved into the possible limitations present in data science. Namely, problems due to sample
size and the "curse of dimensionality". So as to overcome these limitations, different research lines were
developed; first exploring the multitude of available techniques for data augmentation and simulation, fol-
lowed by experimentation with different types of algorithms for classification tasks.

The results obtained from this study reveal many different techniques to be useful for the mod-
elling, extraction, and study of morphological information. Here it has been shown in a variety of different
scenarios how, especially when combined with robust statistical approaches, both geometric morphomet-
rics and elliptic Fourier analyses are powerful tools for the description of shape and form. Throughout this
research, data simulation has also proven to be a fundamental step in the workflow, providing Artificially
Intelligent Algorithms such as Neural Networks and Support Vector Machines sufficient information for the
identification of new specimens.

So as to promote transparency and improve reproducibility, the present doctoral thesis is also ac-
companied by a large collection of open-source code, datasets, and different software.

The applicability of these methodological approaches, and thus their transdisciplinary nature, has
been demonstrated across multiple case studies. These include applications in archaeological and palaeon-
tological taphonomy, palaeoanthropology, animal wellfare, and dermatology. Through this compendium
of research articles, the presented methods have been able to discover a number of different features from
each of these fields. These range from the ability to identify extinct carnivore taxa in archaeological sites
based on their tooth marks, to the first empirical quantification of skin lesion asymmetry as a diagnostic

x



Abstract xi

tool in dermatological oncology. In addition, through the presentation of a new mathematical model for
the description of morphology, this study has been able to provide a new, more efficient, means of ex-
tracting biomechanical information from great primate limb long bones. Each of these discoveries present
promising advantages for the study of other types of morphological data as well.

The present Doctoral Thesis thus hopes to provide a new perspective on the means in which the
morphology of different elements can be studied, promoting a more robust, transdisciplinary approach.
Through this, future research will focus on applying these techniques to other fields of science, while
working on fine tuning this methodological workflow to obtain higher precision and accuracy.



Resumen

Las nociones de geometría y morfología son un componente fundamental del modo en que percibimos,
describimos y esencialmente interactuamos con los objetos. La forma y el tamaño de un elemento pueden
ser altamente informativos, y condicionan el modo en que realizamos funciones básicas en nuestra vida
cotidiana. La morfología puede ser útil para; la detección de anomalías y patrones, la caracterización de un
objeto u organismo, así como la identificación de la casualidad (causa y efecto). Sin embargo, encontrar
un acercamiento eficaz y objetivo de caracterizar la morfología de los elementos micro y macroscópicos
suele ser un gran reto en muchos campos de la ciencia. Aunque muchos enfoques de este tipo de tareas
se han basado durante mucho tiempo en una descripción visual o cualitativa de la forma, lamentablemente
la mayoría de estos métodos están influenciados por notables grados de subjetividad, típicamente producto
del error humano y dependiente de la experiencia y el conocimiento.

En la presente Tesis Doctoral, se explora una amplia gama de diferentes técnicas para la extracción
y el análisis de datos morfológicos. En concreto, los principales objetivos de este estudio son definir un flujo
de trabajo general que pueda ser utilizado para la cuantificación de diferentes elementos, con la esperanza de
desarrollar un enfoque transparente e transdisciplinar que pueda aplicarse a muchos campos de la ciencia.

Para ello, se han utilizado múltiples técnicas de digitalización de datos tanto en 2D como en 3D,
entre ellas (por orden de prevalencia): escaneo de superficies con luz estructurada, tomografía microcom-
putada, microscopía digital 3D y la fotografía para la obtención de imágenes clínicas. A continuación, se
investigó cuál era el mejor medio para extraer información morfológica, principalmente mediante análisis
de Morfometría Geométrica, aunque también se probaron combinaciones de análisis métricos tradicionales
y avanzados basados en análisis de Fourier elípticos. A raíz de esto, la presente Tesis Doctoral dedica una
parte importante de la investigación a la búsqueda de los mejores medios de análisis estadístico de este tipo
de información. Más concretamente, se emplea el uso de múltiples enfoques estadísticos robustos, así como
pruebas paramétricas y no paramétricas, con el fin de obtener la mayor precisión posible en las conclusiones
extraídas.

Con el fin de aprovechar esta información para tareas como la clasificación o el diagnóstico, esta
Tesis Doctoral también presta gran atención al uso del Aprendizaje Computacional para el desarrollo de
algoritmos de la Inteligencia Artificial en tareas de toma de decisiones. Sin embargo, antes del desarrollo de
algoritmos de clasificación, la investigación profundizó en las posibles limitaciones presentes en la ciencia
de datos. A saber, los problemas debidos al tamaño de la muestra y la "maldición de la dimensionalidad".
Para superar estas limitaciones, se desarrollaron diferentes líneas de investigación; primero explorando la
multitud de técnicas disponibles para el aumento de datos y la simulación; seguido por la experimentación
con diferentes tipos de algoritmos para tareas de clasificación.

Los resultados obtenidos en este estudio revelan que muchas técnicas diferentes son útiles para el
modelado, extracción y estudio de la información morfológica. Aquí se ha demostrado en una variedad
de diferentes escenarios diferentes cómo, especialmente cuando se combinan con enfoques estadísticos
robustos, tanto la morfometría geométrica y los análisis de Fourier elípticos son herramientas poderosas para
la descripción de la forma. A lo largo de esta investigación, la simulación de datos también ha demostrado
ser un paso fundamental en el flujo de trabajo, proporcionando mediante técnicas de inteligencia artificial
(ej. redes neuronales, máquina de soporte de vectores) información suficiente para la identificación de
nuevos especímenes.

Con el fin de promover la transparencia y mejorar la reproducibilidad, la presente Tesis Doctoral
también va acompañada de una amplia colección de código abierto, conjuntos de datos y diferentes progra-
mas informáticos.
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Resumen xiii

La aplicabilidad de estos enfoques metodológicos, y por tanto, su carácter transdisciplinar, ha
quedado demostrado a través de múltiples casos de estudio validados con éxito. Entre ellos se incluyen
aplicaciones en arqueología y paleontología, la paleoantropología, el bienestar animal, y la dermatología.
A través de este compendio de artículos de investigación, los métodos presentados han sido capaces de
contribuir con una serie de características en cada uno de estos campos. Estas van desde la capacidad de
identificar taxones de carnívoros extintos en yacimientos arqueológicos basándose en sus marcas dentales,
hasta la primera cuantificación empírica de la asimetría de las lesiones cutáneas como herramienta de di-
agnóstico en oncología dermatológica. Además, mediante la presentación de un nuevo modelo matemático
para la descripción de la morfología, este estudio ha sido capaz de proporcionar un nuevo medio, más
eficiente, de extraer información biomecánica de los huesos largos de las extremidades de los grandes pri-
mates. En definitiva, cada uno de estos descubrimientos presenta prometedoras ventajas para el estudio de
otros tipos de datos morfológicos.

La presente Tesis Doctoral pretende, por tanto, aportar una nueva perspectiva sobre los medios con
los que se puede estudiar la morfología de diferentes elementos, promoviendo un enfoque más robusto y
transdisciplinar. Por ello, las investigaciones futuras se centrarán en aplicar estas técnicas a otros campos
de la ciencia, al tiempo que permitan trabajar en el ajuste de este flujo de trabajo metodológico para obtener
una mayor precisión y exactitud.
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Chapter 1

Presentation of Doctoral Thesis

1.1 Presentation

This Doctoral Thesis, titled Robust Statistical and Artificially Intelligent Approaches for the Analysis of 2D

and 3D Morphological Data, presents approximately 4 years of research with a background that stretches
back to the mid-2010’s. While the focus of this line of research has shifted over the years, providing a
greater protagonism to engineering and data science, as opposed to archaeological science, the objectives
of the present study are to develop tools that are widely applicable to different case studies, thus hoping to
benefit the scientific community as a whole.

Finding efficiency and objectivity in the inspection and analysis of micro and macroscopic elements
is a great challenge in many fields of science. For many years, multiple lines of research have relied on the
visual (in-visu) description and characterisation of an element’s morphology. Unfortunately, most of these
methods are subject to significant degrees of human-based error that could be a product of experience,
perspective, and the general subjectivity induced by the analyst.

The most innovative techniques that provide a means of overcoming these issues have been made
available through the use of advanced Computer Vision applications, including the generation and handling
of three-dimensional data. Both 2D and 3D information are a valuable source of data that can overcome
numerous limitations through their generally non-destructive nature. Furthermore, the wide array of differ-
ent techniques for the creation and obtaining of this data make many types of analyses easy to compute,
fast, and geometrically quantifiable. Through this, researchers are required to adapt according to; (1) the
methods available for obtaining this information, (2) the means in which data is extracted from them, and
(3) the techniques used to process the final dataset.

Geomatics engineering and remote sensing are valuable fields that have greatly contributed to re-
search of this nature. Remote sensing provides multiple means of modelling real world elements with
increased resolution, regardless of the object’s shape or size. These disciplines work best when combining
different imaging techniques and sensors. From a different perspective, Geometric Morphometrics (GMM)
is a powerful mathematical tool for the quantification of different morphologies, having had great success
in multiple fields, such as systematic biology, physical anthropology, palaeoanthropology and archaeology,
among others. GMMs allows for the quantification of both 2D and 3D elements using sets of homologous
Cartesian coordinates, known as landmarks, that describe the general morphology of an element under
study. In a similar light, Fourier Shape Descriptors (FSD) are also useful mathematical tools for the decom-
position of shape into a set of manageable variables, especially in cases where landmarks are either hard
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or impossible to locate. Finally, Artificially Intelligent Algorithms (AIAs) and the field of computational
learning provide an efficient means of processing highly complex and noisy datasets with greater accuracy
and objectivity.

The combination of techniques from different fields of research is a very common practice in sci-
ence. It should even be argued that collaboration is fundamental for research to grow and evolve. Neverthe-
less, the degree of interaction across disciplines is often limited, and can be referred to as multidisciplinary

research. Intedisciplinary research, on the other hand, is used to refer to collaborations where integration
between the disciplines is much greater, and finally Transdisciplinarity refers to research when two or more
disciplinary perspectives transcend to form a new holistic approach. As will be shown throughout this body
of research, the methodological approaches described here are applicable to a wide range of different appli-
cations, with case-studies in fields of archaeology, taphonomy, palaeoanthropology, modern day ecology,
and even medicine. This Doctoral Thesis can thus be considered a development and valuable contribution
to modern day research in many fields, promoting a more transdisciplinary approach to scientific analyses.

1.2 Objectives and Hypotheses

The objectives of the present Doctoral Thesis are to exploit methods for the extraction and analysis of
morphological data, as well as the use of computational learning for the processing of this information, with
the intention of objectively quantifying different morphologies. Here, numerous different mathematical and
statistical models will be explored in a number of transdisciplinary applications. This body of work can thus
be summarised in the investigation of the following primary objectives;

• The development of new techniques for the detection and modelling of micro- and macroscopic
elements.

• The reduction of analyst induced subjectivity, employing methods from applied mathematics, robust
statistics, and computational sciences, for the processing of highly complex and large datasets with
greater efficiency and objectivity.

• Through points 1 and 2, this Doctoral Thesis will provide innovative approaches for the quantifica-
tion of morphology, essentially presenting a methodology that can be incorporated into numerous
disciplines of applied sciences, proposing a more transdisciplinary approach to scientific research.

As a bi-product, this body of research also aims to fulfill the following secondary objectives;

• The development of open-source software for the study of morphological data.

• The promotion of transparency and reproducibility in each of the methodological approaches.

In fulfilling these objectives, this body of research aims to answer the following parting hypotheses;

1. The use of advanced computational resources and robust statistical techniques can greatly improve
the accuracy of studies that are typically performed using visual and qualitative criteria.

2. Mathematical tools, that are typically used in biological and anthropological contexts for the quan-
tification of different morphologies, can be useful for the study of non-biological elements as well.

3. Artificially Intelligent Algorithms, especially when fuelled by advanced numeric and categorical sim-
ulation techniques, can prove a very powerful tool in the classification of elements based on their
morphology.
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1.3 Structure

In this first chapter, the objectives of the Doctoral Thesis are explained, followed by their theoretical jus-
tification in Chapter 2, specifying the advantages these types of approaches may have in transdisciplinary
applications. The theory behind the obtaining and handling of morphological data will be discussed, fol-
lowed by a description of the current statistical tools available for processing this data. An introduction to
the key concepts of AI will also be presented, including a debate on the advantages and disadvantages of
these techniques.

The third chapter will be dedicated to the scientific articles published as a product of this Doctoral
Thesis. This chapter is split into 5 sections;

1. Obtaining Data and Robust Statistics

In this section, both the extraction of data from 3D models and the processing of this data using
robust statistics are explored.

In Courtenay et al. (2020a), the reproducibility and reliability of different landmark models is eval-
uated, in relation to the extraction of morphological information from 3D models in the field of taphonomy.
For this purpose, the authors explore different techniques for the analysis of inter and intra-observer error,
using robust statistics to refine the calculation of error, and thus assess the method’s reproducibility. A
development is then proposed for the use of computational techniques (sliding semilandmarks) for the col-
lection of 3D coordinate data, so as to improve GMM resolution and results. This study uses structured light
surface scanning to produce 3D models, and is focused on the analysis of carnivore chewing modifications
produced on the surfaces of bones, namely their tooth pits.

Building on this, Courtenay et al. (2021a) use the landmark model presented in Courtenay et al.
(2020a) for a case study in ecological research, both applicable to ecological contexts of the past and
present. Developments are made comparing and evaluating the processing of 3D information, as well as 2D
information derived from 3D models, while assessing the best statistical tools in order to evaluate this type
of data. In addition, Courtenay et al. (2021a) debate the reliability of experimental samples obtained from
captive and wild carnivores, discussing how animal captivity influences animal stress and the tooth marks
they produce. In order to support their results, the authors employ robust statistical measures, and confront
an important topic regarding the evaluation of statistical p-Values, so as to ensure the highest precision in
all statistical inferences proposed. This study uses structured light surface scanning to produce 3D models,
and focuses primarily on the intraspecies variability of different wolf populations based on their tooth pits
and scores.

2. Data Simulation and Augmentation

This section is dedicated to the simulation and augmentation of datasets, so as to overcome lim-
itations imposed by small sample sizes; a fundamental step that will consequently condition the quality
of results obtained in the third section of scientific publications included in this Doctoral Thesis. In both
Courtenay and González-Aguilera (2020) and Courtenay et al. (Under Review-a), the authors discuss the
possibility of Machine Teaching, as a more powerful means of constructing classification algorithms, while
also exploring the different robust statistical techniques available for the evaluation of simulated data.
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The first study, by Courtenay and González-Aguilera (2020), designs and implements a new ap-
plication of unsupervised Neural Networks, known as Generative Adversarial Networks (GANs), for the
simulation and generation of synthetic, yet realistic, morphological variables. Here the authors discuss
methods for the evaluation of the quality of synthetic numeric data by means of robust statistical approaches
and equivalency testing. This study is mostly focused on the simulation of GMM data of any origin. Fi-
nally, Courtenay and González-Aguilera (2020) present a valuable critique and reflection on the use of
bootstrapping techniques when training classification algorithms.

Following from this, Courtenay et al. (Under Review-a) present an alternative approach to that
of Courtenay and González-Aguilera (2020), proposing the implementation of Monte Carlo (MC) based
algorithms for the simulation of new data, including Markov Chain Monte Carlo algorithms (MCMC).
The main contribution of this work is the additional inclusion of algorithms for the simulation of both
categorical and numeric variables in the field of palaeoanthropology. This study additionally presents a
novel methodological approach for the augmentation of 3D models, simulating 3D data by employing a
combination of MCMCs and GMM tools. Data for this study was obtained using a mixture of micro-
Computed Tomography (µ-CT), and traditional measurements.

In order to support open science, Courtenay et al. (Under Review-a) is also associated with an R
library; AugmentationMC.

3. Artificially Intelligent Classification Algorithms

This section is dedicated to the creation of classification models, using primarily Neural Networks
(NNs), and Support Vector Machines (SVMs), for the processing of morphological data.

Courtenay et al. (2020b) present a NN architecture for the processing of GMM data describing the
difference between cut and trampling marks; two types of structurally similar Bone Surface Modification
(BSM) that are of great importance in the study of human evolution. This study uses digital microscopy
to produce the 3D models from which data is obtained from. This study additionally serves as a basic
introduction to NNs and how they work.

Courtenay et al. (2021b) present two additional powerful models for the classification of morpho-
logical data obtained using the methodological approach of Courtenay et al. (2020a). Here, 3D data for the
description of carnivore tooth pits were obtained using Structured Light Surface Scanning. In this study, the
authors show how (1) the augmentation of data improves classification results (Courtenay and González-
Aguilera, 2020; Courtenay et al., Under Review-a), especially when using Machine Teaching, and (2) how
a large set of carnivores can be differentiated when working with morphological data extracted from their
tooth pits. Courtenay et al. (2021b) also present a direct comparison between GANs and MCMCs for the
augmentation of data, building on the notions discussed in Courtenay and González-Aguilera (2020) and
Courtenay et al. (Under Review-a). From this study, the authors were able to conclude that MCMCs are
much less computationally expensive. This study also reveals how both are equally powerful in producing
statistically equivalent data to the original training data, however MCMCs in general have been found to
produce more realistic simulations.

To perform classification tasks, Courtenay et al. (2021b) describe a fairly new NN architecture,
using NNs as a kernel function, before passing the extracted features into a final SVM output layer. This
algorithm is called a Neural Support Vector Machine (NSVM). Here, the authors additionally use Bayesian
Optimization algorithms to fine tune algorithm hyperparameters. Based on this work, the authors obtain
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above human-level accuracy when differentiating between tooth pits produced by different carnivores, in-
cluding; brown bears, spotted hyenas, wolves, African wild dogs, foxes, jaguars, leopards and lions.

4. Transdisciplinary Applications in Science

This section is dedicated to real-world applications of the different methodological approaches
detailed through Sections 1 through to 3.

Courtenay et al. (2023) present a real world application of the hybrid GMM & AI methodological
approach for the classification of tooth marks in the 1.4 Ma Lower Pleistocene archaeological site of Bar-
ranco León (BL), Orce, Granada, Spain. This builds on the work of Courtenay et al. (2020a), Courtenay
et al. (2021b), and Courtenay et al. (Under Review-a). Using structured light surface scanning as a means
of obtaining 3D models, the authors find the sample of archaeological tooth pits to present morphological
affinities with 5 different extinct carnivore species, with the interesting and novel conclusion that the Mos-
bach wolf (Canis mosbachensis) played an important role in the formation of the BL assemblage. Asides
from the Mosbach wolf, the authors were also able to detect the activity of some saber-tooth (machairodon-
tine) Felids, Homotherium latidens, the giant Hyena, Pachycrocuta brevirostris, as well as other species
such as the lesser known canid Lycaon lycaonoides, and the Etruscan bear, Ursus etruscus. In this study,
the authors debate the interpretation of the BL site, and highlight the usefulness of their methods in the
detection of extinct carnivore species based solely on the chewing damage they produce on bone.

In Courtenay et al. (2022a), the authors describe a novel transdisciplinary approach to the study
of morphology in the field of dermatological oncology. From this perspective, Courtenay et al. (2022a)
propose the use of morphological descriptors to analyse skin lesions, more specifically the case of Non-
Melanoma type skin cancers, as well as benign cutaneous lesions. This study analyses coloured (Red-
Green-Blue, RGB) images of cutaneous Squamous Cell Carcinoma, Basal Cell Carcinoma, Intraepithetal
Carcinoma, as well as Benign Lesions. Due to the difficulty describing the morphology of dermatological
elements without the presence of clear homologous points that could be used as landmarks, the authors
propose the use of a landmark-free approach, known as Elliptic Fourier Analyses (EFA). In order to extract
information from these images, the authors first use a manual segmentation of the images, provided by a
dermatologist, and then refine this segmentation using Computer Vision techniques. Once the outline of
lesions had been defined, EFA coefficients extracted from this data were shown to be a powerful tool for the
analysis of skin lesion morphology, revealing malignant tumours to be mostly described by border irreg-
ularities. Alongside measurements of lesion asymmetry, and combined with machine learning algorithms
such as SVMs, the authors show how benign and malignant lesions can be separated when using EFA co-
efficients and asymmetry metrics. This is one of the first applications of such an approach in dermatology,
and presents a novel insight into cutaneous lesion diagnostics.

5. A New Mathematical Model for Morphological Analyses

In the final section of scientific publications, Courtenay et al. (Under Review-b) present a new
mathematical model for the analysis of landmark data, developing techniques from traditional GMMs, while
integrating new elements from Graph Theory and Geometric Learning. From this perspective, the authors
debate the quality of Dimensionality Reduction (DR) techniques typically used in GMMs, proposing the
hypothesis that traditional DR calculations, such as Principal Component Analyses (PCA), may lose sight
of the relationship landmarks have with the rest of the configuration, and thus produce a drop in quality
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of the final constructed morphological variable feature space. To overcome this issue, the authors propose
the use of message passing and neighborhood aggregation formulae to first embed superimposed landmark
coordinates, before further statistical applications were performed. As a proof of concept, the authors
present an application on data describing the morphology and biomechanics of primate radii.

The proposal of Graph-based GMMs was found to be particularly useful for detecting biomechani-
cal patterns among different great ape radii. While traditional GMMs are informative on the morphological
traits related with primate locomotion and long bone biomechanics, a Graph-based approach was found to
construct more stable feature spaces than traditional PCA approaches, regardless of the data used as input.
From this perspective, Graph-based approaches were able to detect morphological patterns in areas of the
bone that are usually obscured by less powerful DR tehcniques.

The fourth and final chapter briefly explains the final remarks obtained throughout the course of
this research, alongside proposals for future research and perspectives.

In support of the main contents of this body of work, Appendices A through to D present a detailed
theoretical explanation of the different elements presented in the scientific publications. These Appendices
serve as support or supplementary material, that may prove useful in understanding the different topics
touched on in each of the research papers. Appendix A, therefore, details the mathematical theory behind
GMMs, as well as a note in Appendix A.5 on proposals for a more robust approach to landmark super-
imposition. Appendix B describes the formulae and basis behind Fourier transforms as descriptors for
Morphology. Appendix C describes the theory behind p-Value evaluations, as a means of proposing a more
robust approach to hypothesis testing in statistics. Lastly, Appendix D briefly describes the internal func-
tionality of a NN, as well as an explanation on the best practices for evaluating Computational Learning
performance.

Finally, Appendices E and F describe the technical side of this Doctoral Thesis, including a detailed
description of all software developed for each of the studies (Appendix E), as well as the scientific impact
that this body of work has obtained (Appendix F).



Chapter 2

Definitions and Motivation

Geometry is the branch of mathematics that confronts the properties and relations of points, lines, surfaces,
solids, and other high dimensional analogues. From this perspective, geometry defines components of space
with relation to the distance, shape, size and relative position of elements. Coming from the Greek terms
“geo” (earth) and “metron” (measurement), geometry is currently one of the oldest fields in mathematics.

From geometry, many sub-fields have emerged with multiple theoretical as well as real-world
applications. Throughout this Doctoral Thesis, we will be dealing with the concept of morphology, and
the fields related to the study of morphology commonly known as morphometrics. From here, we define
morphometrics as the measurement (“metron”) of shape (“morphe”), while morphology is concerned with
the analysis of structure and form, most typically used in biological contexts.

Geometrical data can be collected from almost any source, from more traditional methods, using
caliper or scribe-based measurements (Corner et al., 1992a; Mortenson and Steinbok, 2006; Mendonca
et al., 2013; Robinson and Terhune, 2017, inter alia), to advanced digitisation techniques such as medical
scans (Mendonca et al., 2013; Robinson and Terhune, 2017; Barbero-García et al., 2019; Bello and Galway-
Witham, 2019, inter alia), high-resolution microscopy (Bello and Soligo, 2008; Boschin and Crezzini,
2012; Ball et al., 2017; Pante et al., 2017; Bello and Galway-Witham, 2019; Souron et al., 2019; Courtenay
et al., 2019a, 2020b,c, inter alia), photographs taken using a camera (Pollefeys, 2004; Luhmann, 2010;
Rodríguez-Martín et al., 2015; Ruiz de Oña et al., 2022, inter alia), or even a mobile phone (Salazar-
Gamarra et al., 2016; Kottner et al., 2017; Barbero-García et al., 2017, 2018, 2019, 2020; Lerma et al.,
2018, inter alia).

In real world applications, notions of geometry and morphology are fundamental in the way we
perceive and describe objects. The shape of an element can be highly informative from multiple different
perspectives, such as the detection or characterization of anomalies, patterns, and other more structural
characteristics of an object or organism. While shapes are geometric elements, however, they are mostly
studied qualitatively; to the human eye a shape can be a triangle, but we seldom describe the triangle
according to the trigonometric properties that lie underneath and define it.

In many cases, decisions about objects are often made using their shape and size (Dryden and
Mardia, 1998). Here we describe just a few;

7
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Medicine

In dermatology, for example, the shape, size and symmetry of a skin lesion are often used to
diagnose possible cases of skin cancer (Friedman et al., 1985; MacKie, 1986; Tsao et al., 2015). While
the use of specific tools, such as dermatoscopes, facilitate the visual inspection of these lesions, observer
subjectivity and inter-observer variability are notable factors in diagnostic accuracy (Kittler et al., 2002;
Piccolo et al., 2002; Friedman et al., 2008; Vestergarrd et al., 2008; Merlino et al., 2016). Similarly, both
physical and mental pathologies or disabilities can also be described and assessed using geometric variables
(e.g. Astley and Clarren, 1995; Drew and Sachs, 1997; Siegenthaler, 2015). In this latter example, however,
methods for the quantification and detection of these biological anomalies have been explored in greater
detail (Mutsvangwa et al., 2010; Barbero-García et al., 2017, 2018, 2019, 2020; Roussos et al., 2021).

Photogrammetry and Computer Vision

Many algorithms and techniques for photogrammetry and Computer Vision (CV) also exploit the
use of geometry and morphology. Photogrammetry, whose main focus is the precise and accurate extrac-
tion of geometric and morphological elements, utilises a multitude of algorithms for the emphasis and
detection of features from images (e.g. Ramer, 1972; Douglas and Peucker, 1973; Canny, 1986; Harris and
Stephens, 1988; Lowe, 1999). Based on these methods, photogrammetric applications can be used to fa-
cilitate more complex applications such as object recognition and 3D modelling (Hartley and Zisserman,
2004; González-Aguilera, 2005; Forbsyth and Ponce, 2011; Demaagd et al., 2012; Föstner and Wrobel,
2016; Ruiz de Oña et al., 2022). CV, on the other hand, is focused on the fast and efficient extraction of
geometric information from image data, presenting a wide array of different applications such as facial
recognition (Bronstein et al., 2005), and character recognition (Fritzche, 1961; Raudseps, 1965; Ferson
et al., 1985). In many of these cases, these types of applications can be useful for the automation of pro-
cesses that could otherwise be costly, complex, or tiring. Moreover, 3D modelling applications have a wide
array of different uses and purposes that are useful in almost any field of science.

Material Sciences

In the industrial sector, techniques for the detection of deformations and faults are also fundamen-
tal. While the majority of this work has been based on the visual inspection of elements, the use of advanced
computer vision techniques such as digital image correlation is proving popular to improve anomaly detec-
tion (Herbert, 2010; Luhmann, 2010; Chen et al., 2011; Hua et al., 2012; Rodríguez-Martín et al., 2015;
Zaczek-Peplinska et al., 2015). The basic principal in this line of research is to rapidly identify defects in
different materials, which in turn ensures the safety of structures and machinery. To provide an example,
the geometric properties of welds are highly informative in the structural integrity of industrial elements. In
this sense, the analysis of plane misalignment (Rodríguez-Martín et al., 2016a), thickness and excess weld
materials (Ruiz de Oña et al., 2022), weld bead geometry and surface imperfections (Gong et al., 2018;
Rodríguez-Gonzálvez and Rodríguez-Martín, 2018), as well as problematic fissures and cracks (Henkel
et al., 2016; Rodríguez-Martín et al., 2016b, 2020), are highly influenced by morphological and geomet-
ric variables. From this perspective, morphological descriptors may be of use in the fast and empirical
identification of possible anomalies.

Archaeology

Morphological trends and patterns are also highly informative in the study of archaeological mate-
rials. For example, the emergence of symmetric stone tools in the Lower Palaeolithic, known as handaxes,
is of great interest for the development of early Homo (Lepre et al., 2011; Diez-Martín et al., 2019; Sano
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et al., 2020, inter alia). Morphological studies of handaxes are thus useful to characterise and understand
degrees of symmetry, as well as the general emergence of the shape of these tools (Costa, 2010; Serwatka,
2015; Iovita et al., 2017; García-Medrano et al., 2019), which can essentailly have both functional (Key
et al., 2016; Key and Lycett, 2017a,b,c), and cognitive (Stout et al., 2000, 2006, 2008, 2015; Stout and
Chaminade, 2012; Geribàs et al., 2010; Lombao et al., 2017; Muller et al., 2017), implications in early
human evolution. Similar notions, however, can be equally important in the characterisation of other ar-
chaeological materials, such as other types of stone tools, rock and mobile art, ceramics, metal objects such
as swords, broaches, belt buckles, and many others.

Taphonomy

Taphonomists dedicated to the identification of microscopic marks on archaeological and palaeon-
tological bones, known as Bone Surface Modifications (BSMs), also rely heavily on the in-visu charac-
terisation of different traces. In most early research, the marks left by stone tools when cutting meat (cut

marks), those left by carnivores when feeding and chewing (tooth marks), as well as naturally produced
marks typically produced by sedimentary abrasion (trampling marks), were originally described using a
combination of qualitative features, as well as general description of their cross-section profile morphology.
Throughout literature, references can be found to "V" shaped cut marks (Olsen and Shipman, 1988; Ship-
man, 1988; Domínguez-Rodrigo et al., 2009, inter alia), "U" shaped tooth marks (Binford, 1981; Haynes,
1983; Blumenschine, 1995, inter alia), and "\_/" shaped trampling marks (Brain, 1967; Behrensmeyer et al.,
1986; Andrews and Cook, 1985, inter alia). Nevertheless, the majority of these types of identification are
heavily influenced by analyst experience and overall subjectivity (Domínguez-Rodrigo et al., 2017; Courte-
nay, 2019). In light of this, more detailed research into quantitatively describing and quantifying these
morphological differences are relatively new, and have proven to be highly useful in the identification of
problematic traces (Bello and Soligo, 2008; Boschin and Crezzini, 2012; Aramendi et al., 2017; Pante et al.,
2017; Courtenay et al., 2017, 2019a, 2020c; Yravedra et al., 2017; Courtenay, 2019; Souron et al., 2019,
inter alia).

Systematic Biology and Palaeoanthropology

Finally, for systematic biologists and palaeoanthropologists, morphology can be used as a diagnos-
tic feature to identify species (Henning, 1966; Hawks, 2004), or describe evolutionary changes. The first
descriptions of the hominin species Zinjanthropus boisei (Leakey, 1959), for example, originally described
the OH5 skull (Olduvai Gorge, Tanzania) using 20 features, of which the terms “size”, “shape” and “form”,
as well as other descriptors related to morphology, are used in all of the features. From this perspective,
criteria such as the “less elongated” foramen magnum, or the “more steeply” rise of the occipital poste-
riar wall, were used to establish diagnostic criteria that could identify this species in other skulls (Leakey,
1959; Tobias, 1967). Beyond these qualitative variables, however, the definition of Zinjanthropus boisei

was challenged, considering many of the “features” to not be entirely unique to the OH5 specimen, with the
only difference with other genus, such as Paranthropus, being a change in size (Robinson, 1960). Since the
incorporation of much more sophisticated techniques has become standard practice, however, our knowl-
edge and ability to describe this species, Paranthropus boisei, has greatly improved (O’Higgins et al., 2011;
Benazzi et al., 2011; Domínguez-Rodrigo et al., 2013; Daver et al., 2018; Lague et al., 2019; Richmond
et al., 2020; Aramendi, 2021, inter alia).

While this is only a brief overview of the multiple number of applications morphological research
can have, it can be seen that a more detailed look into quantifying morphology can be fundamental, as
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opposed to simple in-visu descriptions. These types of approaches can be considered optimal to obtain a
more objective and empirically accurate look into the data at hand.

2.1 Notions of Shape and Form

Two words that are commonly used in the study of morphology are "shape" and "form"; two terms that need
clarification and definition before more complex notions of geometry can be described. In the visual arts,
and many fields that have been developed since, the term shape refers to a flat representation of an element,
which can usually be deconstructed into different shapes, such as simple collections of lines, triangles,
circles, or other polygonal geometries. Form, on the other hand, is often defined as the three-dimensional
composition of these elements (Rowland, 1966). In topology, Borsuk (1975) provided a complex definition
of shape that describes a more global view of topological spaces, and the maps between them. Nevertheless,
here we will be using the definitions of Kendall (1977, 1984), and Goodall (1991), that are more specific to
the empirical and mathematical processing of "real" shape from a morphological perspective, as opposed to
a topological one;

Definition 1 Shape What is left when the differences which can be attributed to translations,
rotations, and dilations have been quotiented out.

Definition 2 Form What is left when the differences which can be attributed to translations
and rotations have been quotiented out.

Figure 2.1: Figure presenting differences in shape and form. Triangles A and B are of the same shape yet
have different form, while pentagon C is of a different shape and form.

Shape is thus considered as a representation of the pure morphology of an element, excluding its
size, position, and orientation. Form, on the other hand, includes size (Fig. 2.1). Appendix A.1 provides a
more specific mathematical definition of these concepts in equations A.1 and A.2.

The importance of separating between shape and form is fundamental, especially in biological
contexts. In general, shape is more informative on the internal constitution or structure of an organism
(Jolicoeur and Mosimann, 1981), as the variable size is usually conditioned by many other variables that
may not be of interest to the researcher. For example, the size of an animal is often strongly conditioned by
external factors, such as ecological context and temperature (Bergman, 1847; Allen, 1877; Peters, 1983).
Similarly, size can also influenced by the behavioural and physiological attributes of animals and organ-
isms (McMahon and Bonner, 1983; Schmidt-Nielsen, 1984; Jungers, 1985; Jungers et al., 1995). From a
different perspective, an animal’s size is influenced to different degrees by other variables, such as sex-
ual dimorphism (Sundberg, 1989; Formicola and Franceschi, 1996; Franklin et al., 2006, 2007; Plavacan,
2012; del Bove et al., 2020), and development with age (Sundberg, 1989; Enlow and Hans, 1996; Rice,
1997; Lieberman et al., 2002; Cobb and O’Higgins, 2004; Mitteroecker et al., 2004a; Bastir and Rosas,
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2004; Bastir et al., 2006; Aramendi, 2015; Freidline et al., 2015). Figure 2.2 provides an example of these
conditioning variables.

Figure 2.2: Examples of cases where the variable ’size’ can have great influence on morphology,
including differences in age, and sexual dimorphism. Examples of differences in age include two skulls of
Australopithecus afarensis individuals, including the male adult skull (AL 444-2) recovered from Hadar

(Ethiopia), in comparison with the three-year-old "Salem" (DIK-1-1) individual, from Dikika (Afar,
Ethiopia). Examples of sexual dimorphism compare the differences in femoral proximal epiphyses of a

male and female Gorilla.

Each of the aforementioned points will condition the weight size has on morphology. This rela-
tionship is typically studied and described in terms of two main types of shape-size relationships (Jungers
et al., 1995);

Definition 3 Isometry Shape is preserved among entities of different sizes.
Definition 4 Allometry Shape changes as a function of size.

In light of these relationships, researchers are conditioned to initially assess the weight size may
have on morphological patterns, and in the case of detecting allometry, perform their research without
scaling their data, or at least utilise size to understand and assess how these variables influence their study.

The issue behind ignoring this relationship is especially evident from a methodological and sta-
tistical perspective. As will be discussed in the following section, many techniques for the study of shape
and form are conditioned by the high correlation linear distances evidently have with an individual’s size
(Bookstein et al., 1985). Likewise, the weight this variable has on many types of multivariate analyses,
such as Principal Components Analyses (PCA), overwhelms other variables that may be equally, or more,
important (Jolicoeur, 1963; Sundberg, 1989; Jungers et al., 1995).

To demonstrate this point, if we were to take the extreme example of comparing the humeri of
two male Tragelaphine African bovids (Fig. 2.3), Tragelaphus imberbis (≈ 92-108 kg) and Taurotragus

derbianus (≈ 900 kg), despite them both being male individuals of the same taxonomic tribe, little could
be said about morphological differences and similarities between the two beyond the extreme differences
in size (Jungers et al., 1995). If we were to exclude the variable size from this analysis, however, we would
likely begin to detect more interesting patterns in African bovid biomechanics.
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Figure 2.3: A comparison in average size of Tragelaphus imberbis and Taurotragus derbianus. Drawings
are from Kingdon (2015)

2.2 Methods in the Study of Morphological Data

For many years, morphological studies were performed using the measurement of linear distances, curvi-
linear distances, ratios, and angles (Atchley et al., 1976; Atchley and Anderson, 1978; Dodson, 1978;
Humphries et al., 1981; Howells, 1989; Jungers et al., 1995, inter alia). Through combinations of these
variables, analysts could then perform multivariate statistical analyses in order to assess and understand
possible underlying patterns (Slice, 2005). In many cases, these methods have been refered to as Tradi-

tional Morphometrics (Marcus, 1990). Nevertheless, while linear measurements can be informative for
many applications, they also have some limitations. As pointed out by Bookstein et al. (1985), these types
of measurements are highly sensitive to variations in size. While many methods of size correction have been
proposed, most provide different results with little agreement. Similarly, Humphries et al. (1981) stated that
size cannot be estimated by using a single linear measurement; the same measurement can be obtained
from different points, without necessarily sharing geometric or structural meaning. Finally, an oval and a
teardrop might have different shapes, but could very easily have the same measurement of maximal length
and width, which would provide misleading information about their true morphology (Adams et al., 2004).

Towards the end of the XXth century we begin to find the use of Cartesian coordinate systems for
the extraction of morphological variables, leading to some of the largest advances in this field (Bookstein,
1978, 1986a; Bookstein et al., 1985). The use of Cartesian coordinates in this sense is generally dominated
by the term landmark-based analyses, where landmarks are;

Definition 5 Landmark A homologous point of correspondence on each object, of anatomical or
geometric significance, that matches between and within populations.

The use of landmarks overcomes many of the aforementioned issues, as seen through the use of the
terms “homologous”, and “anatomical or geometric significance” (see Appendix A.1). Using this definition,
an individual can only be studied if presenting all of the referential loci, while loci have to be defined to
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a sufficient degree so that they can be easily located on each individual (Corner et al., 1992b; Yezerniac
et al., 1992; Robinson and Terhune, 2017). While it is true that further research has found different means
to overcome the issue of missing landmarks in some specimens (Gunz, 2005; Gunz et al., 2005a, 2009),
these methods can be sensitive to the data used as input and are not always applicable to certain specimens.
In this sense, it is generally stressed that all landmarks must be present in order to study an individual. In
light of these specifications, this type of landmark can also be referred to as a fixed landmark, and can be
recorded in both 2D or 3D.

Three main types of fixed landmarks exist (Dryden and Mardia, 1998), with their categories being
defined as follows;

Definition 6 Anatomical Landmark Landmarks of biological and anatomical meaning.
Definition 7 Mathematical Landmark Landmarks that are located based on some mathematical or

geometrical property.
Definition 8 Pseudo-Landmark Landmarks that are constructed based on, or around, already

present landmarks or local elements of the object under study.

As can be seen, these definitions rely heavily on biological features, and are thus quite restrictive
to those interested in studying the shape and form of different types of elements. From this perspective,
we can develop Definition 6 to be referred to as Scientific landmarks, where domain-based knowledge of
general points of interest can also be used to define the landmark.

Another more specific definition of landmarks provided by Bookstein (1991) considers;

Definition 9 Type I Landmarks that occur at the intersection or joints between tissue and bone,
and that are easily recognisable to the trained eye.

Definition 10 Type II Landmarks that are defined by local properties, such as points of maximal
curvature, that usually present some biological significance.

Definition 11 Type III Landmarks that are constructed across the element under study, and that
are of no biological significance, such as centroids, or points between Type
I and II landmarks.

When comparing both of these sets of definitions, Type I landmarks can be considered to be both
anatomical and mathematical landmarks, while Type II landmarks can essentially be considered anatomical,
mathematical and pseudo-landmarks. Type III landmarks are exclusively pseudo-landmarks. Each of these
definitions show how different landmarks have their advantages and disadvantages, with the degree of
subjectivity and human-induced error likely to increase for Type III as opposed to Type I landmarks (see
analysis and references therein of Courtenay et al. (2020a)). Type III landmarks, however, are common,
and can be useful for the definition of of interest on more complex surfaces where biological meaning is
either scarce or completely absent.

Once a set of Cartesian coordinates has been defined, a number of different approaches exist to
convert this data into more meaningful variables of morphological significance. The first considers the de-
velopment of the aforementioned traditional morphometric studies by using landmark coordinates to extract
measurements and ratios. This type of analysis is generally known as Euclidean Distance Matrix Analyses
(EDMA), and uses the calculation of inter-landmark distances in order to characterise the morphology of
the element under study (Lele, 1991; Richtsmeier et al., 1992, inter alia). Another approach performs an
initial triangulation of landmark coordinates, describing morphology as a function of each triangle’s interior
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angles (Rao and Suryawanshi, 1996, 1998). Nevertheless, the most innovative and powerful advances in
landmark-based analyses are from the field of Geometric Morphometrics (GMMs).

Definition 12 Geometric Morphometrics The suite of methods for the acquisition, processing,
analysis, and visualisation, of morphological variables,
that retain all of the geometric information contained
within the data.

The objectives of GMMs are to analyse landmark coordinates directly, as opposed to the distances
between them (Slice, 2005). From this perspective, GMMs focuses on the analysis and characterisation of
landmark displacements consequent to a common cause, while trying to determine what this cause may be
(Bookstein, 1991). Raw coordinates thus provide perspective into the position, size and orientation of the
configuration, and present a more efficient means of analysing both shape and form (Fig. 2.4).

Figure 2.4: Diagram explaining the theory behind shape and form variation using landmark theory, where
landmarks 1-3 are sufficient in describing the pure morphological shape of an individual, while distances

a, b and c are more indicative of form from a traditional morphometric perspective.

One way to analyse the total variation of the landmark configurations is by superimposing all land-
marks onto a common reference system. While multiple techniques exist for this superimposition procedure
(see Appendix A and references therein), we generally refer to this process as Generalised Procrustes Anal-
ysis (GPA) (Appendix A.2).

The advantages of superimposing coordinates are multiple, as this technique allows for the direct
comparison of landmark configurations, thus quantifying minute displacements of individual landmarks
in space (Bookstein, 1991; Richtsmeier et al., 2002). Moreover, the superimposition procedure is also
affected by the relationship landmarks have with each other in the context of the configuration, a feature
that can be exploited in greater detail, as will be discussed in Courtenay et al. (Under Review-b). This
phenomenon, known as the Pinocchio effect (Fig. 2.5), can be described by how the displacement of only a
single landmark can cause all landmarks to shift in the final superimposed configuration (Chapman, 1990;
Walker, 2000; Hallgrimsson et al., 2015; Klingenberg, 2021; Courtenay et al., Under Review-b, Sup. File
2).
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Figure 2.5: A demonstration of the Pinocchio effect from Courtenay et al. (Under Review-b),
Supplementary File 2. Left panel: the original two icons, where only a single landmark presents a

displacement along the y-axis. Right panel: the two icons after procrustes superimposition in shape space.

GMM analyses are also highly useful for the visualisation of shape and form changes, a concept
that is lost in most traditional morphometric analyses. The Thin Plate Spline (TPS), for example, is a
mathematical model proposed by Bookstein (1989), and developed from Thompson (1917), that employs
a two-dimensional grid to visualise and express both local and global deformations when comparing two
landmark configurations (Fig. 2.6, A.9, and Appendix A.4). TPS transformation grids are thus a valuable
tool for the visualisation of shape and form changes across any feature space, providing more comprehen-
sible meaning to the morphological variables obtained. With the additional advantage of using landmarks,
as opposed to simple measurements, we can also localise shape changes to specific anatomically or scien-
tifically defined points of interest, producing results that are easier to interpret and understand.

Figure 2.6: Two Thin Plate Spline warpgrids visualising shape change between male and female
orangutan (Pongo pygmaeus) individuals. Data from O’Higgins and Dryden (1993).
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One of the early limitations, however, of landmark-based approaches, was the ability to objectively
quantify curves and surfaces where morphological information is valuable, but no homologous points of
interest can be defined (Bookstein, 1997). For this purpose, the proposal of a new type of landmark, known
as a sliding semilandmark, has proven a valuable means of reducing the excessive use of Type III landmarks,
and is a more precise means of digitising curves and surfaces (Bookstein, 1991, 1997; Gunz et al., 2005b;
Gunz and Mitteroecker, 2013).

Definition 13 Sliding Semilandmark A computational landmark placed on a curve or sur-
face which is allowed to slide with respect to neigh-
bouring landmarks so as to establish geometric homol-
ogy.

Originally proposed for 2D samples (Bookstein, 1991, 1997), and later developed in 3D (Gunz
et al., 2005b), semilandmarks are a means of modeling from homologous curves and surfaces, that can
then be combined with information from fixed landmarks in a final complete landmark model (Fig. 2.7).
Methodologically, the process of sliding semilandmarks consists in designing a template that can be pro-
jected onto a specimen, where the semilandmarks are then slid across a plane tangent to the surface so as
to minimise differences between the reference and target elements (i.e. find homology). This minimisation
can be performed either by reducing bending energy (Bookstein, 1991; Gunz et al., 2005b), or by reduc-
ing Procrustes distances during superimposition procedures (Rohlf and Slice, 1990). The former, however,
is generally the most accepted and produces the best results (Gunz and Mitteroecker, 2013). Moreover,
sliding is an iterative process (Bookstein, 1997; Gunz et al., 2005b; Gunz and Mitteroecker, 2013), where
semilandmarks slide simultaneously and are constrained by neighbouring fixed landmarks that define the
starting and finishing points of the sliding process.

Figure 2.7: Examples of both landmarks and semilandmarks from case studies published by Robinson and
Terhune (2017) (left) and Mitteroecker and Bookstein (2011) (right). Left Panel: examples of fixed

landmarks, including Type I (LM3: Nasion), Type II (LM18: Right Alare) and Type III (LM4: Glabella)
landmarks. Right Panel: Examples of sliding semilandmarks (blue and orange dots).
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It is important to point out, however, that the digitisation of a curve or surface using semilandmarks
does not gaurantee, nor imply, equidistance. While equidistance may seem a logical means of computing the
position of semilandmarks, this does not necessarily lead to geometric or biological significance, thus may
not imply homology (Bookstein, 1997; Gunz et al., 2005b; Gunz and Mitteroecker, 2013). Semilandmarks
are therefore projected in such a manner that they optimize their position with reference to both the surface,
and the average shape of the sample (usually the average of Procrustes shape coordinates), thus establishing
geometric correspondence and homology (Gunz and Mitteroecker, 2013).

Nevertheless, regardless of the digitisation technique, GMMs are not applicable to all types of
elements. If homology between points cannot be established, then a GMM approach will not work.

A different technique for the extraction of morphological variables from (namely) 2D data, where
no homologous loci of biological or geometric significance can be identified, consists in the fitting of a
mathematical function, or curve, to the empirical curve or outline being studied (Rohlf, 1990). These
techniques can often be found referred to as outline analyses. Many techniques exist to perform this type
of analysis, however the most common and popular is known as Fourier Analyses (FA). FA describes shape
(and sometimes form) as a series of periodic functions along the curve or outline of the object being studied
(see Appendix B).

FA exists in three main variants; Fourier Radius Variation (FRV, Appendix B.3), Fourier Tangent
Angle (FTA, Appendix B.4), and Elliptic Fourier Analyses (EFA, Appendix B.5). Each have their advan-
tages and disadvantages, while some are more conditioned by the complexity of the outline being analysed.
FRV and FTA, for example, are better suited for simple outlines, where radii of the outline do not intersect.
EFA is more adaptable to complex outlines that present convexities and concavities. While each of these
functions are technically suited for the study of closed outlines, they are still able to perform well on open
outlines if the objectives of the study are to produce discriminant functions. More complex evolutionary
studies, however, should use other types of functions (see Rohlf, 1990).

The use of fourier descriptors for the analysis of shape thus utilises Fourier series to deconstruct
each outline into a series of harmonics, the sum of which can be used to reconstruct the entire shape (Fig.
2.8). Each harmonic can then be described by a series of coefficients which serve as morphological variables
for further statistical analyses.

Figure 2.8: Diagram presenting the reconstruction of a bottle’s outline based on the cumulative
contributions of the first 10 harmonics.
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2.3 Statistical Approaches to Processing Morphological Data

Similar to the way the collection of morphological data has evolved in the last century, so has the way this
data is processed.

Morphological data is typically analysed in a number of ways and from a number of different
perspectives. The most common approaches part from a Frequentist perspective (Blackith and Reyment,
1971; Carroll and Green, 1997), however Bayesian statistics can also be found in morphometric analyses
(e.g. Otárola-Castillo et al., 2017). Within the branch of Frequentist statistics, data is then often described
univariately, either through descriptive statistics or hypothesis testing, or multivariately, using multivariate
hypothesis tests.

A brief overview of statistical analyses in morphometric studies highlights the use of a specific
set of very popular univariate tests for the comparison of single variables that describe samples. These
mostly include the t-test, F-test, and Analyses of Variance (ANOVA) (Pearson, 1895; Student, 1908; Fisher,
1925; Chambers et al., 1992). The latter is frequently found in the form of Type II ANOVA, and typically
accompanied with a Tukey’s pairwise post-hoc analysis (Tukey, 1949). When comparing data multivari-
ately, ANOVA is usually developed into a Multivariate Analysis of Variance (MANOVA) (Lawley, 1938;
Hotelling, 1951). When comparing the relationships between sets of variables, correlations are often calcu-
lated using Pearson’s r, while linear regressions are also frequently used (Pearson, 1895).

As for ordination, one of the most popular techniques for analysing multiple variables simulta-
neously is through the use of general scatter plots, or the eigendecomposition of datasets using Principal
Component Analyses (PCA) (Jollife, 2002; Bishop, 2006).

In GMM analyses, a number of other tools are also available. For example, common practice in
GMMs is the use of Procrustes distance calculations to measure similarities and morphological affinities
between entire landmark configurations (Gower, 1975; Rohlf and Slice, 1990; Goodall, 1991; Kent, 1994;
Rohlf, 1996; Dryden and Mardia, 1998; Rohlf, 2000; Slice, 2001). Using this measure, tests such as Goodall
(1991)’s F test have been shown to be particularly powerful and stable for the identification of similarities
and differences between individuals (Rohlf, 2000). Developing from Goodall’s F test, GMMs present a
series of tools that are particularly useful for assessing shape-size relationships as well (Mitteroecker et al.,
2004b; Drake and Klingenberg, 2008; Adams and Nistri, 2010). Using multiple linear regressions, the F test
can be used similar to ANOVA to assess the significance of shape-size relationships. From this perspective,
the degree of influence a measurement of size has on a set of shape variables can be used to assess how
changes in size affect changes in shape (Adams and Nistri, 2010). For GMMs, the centroid size (and its
logarithm) is typically used for this test.

In terms of ordination, Cannonical Variance Analysis (CVA) and between-group PCA (bgPCA)
are also popular ordination tools to understand inter and intra-group variance (Campbell and Atchley, 1981;
Albrecht, 1992; Boulesteix, 2004; Mitteroecker and Bookstein, 2011; Rohlf, 2021). CVA is based on the
decomposition and visualisation of sample covariance matrices, thus visually describing the statistical sep-
aration among groups. bgPCA, on the other hand, is mathematically more similar to PCA, where data is
projected onto the principal components of group means (Barker and Rayens, 2003; Boulesteix, 2004; Car-
dini et al., 2019; Rohlf, 2021). Both CVA and bgPCA are tools applicable to any type of data, nevertheless,
in morphology it is seen most frequently when applied to GMM data. Needless to say, one of the most
common approaches to processing GMM data is first to decompose form and shape variables into lower
dimensions via PCA or Relative Warp Analysis (RWA) (Bookstein, 1989, 1991; Rohlf, 1993, 1996, 1999).
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PCA reduces coordinate data into a set of more manageable correlated variables that can be repre-
sented by much fewer dimensions, while accounting for as much of the original distribution’s variation as
possible (Jollife, 2002; Bishop, 2006). This is computed via the eigendecomposition of data, mostly using
Single Value Decomposition (SVD). RWA, on the other hand, calculates the eigendecomposition of bending
energy matrices derived from Thin Plate Splines (Bookstein, 1989; Rohlf, 1993, 1996, and Appendix A.4),
performing a similar task to PCA, however deriving morphological variables from a different source. More-
over, RWA has an additional α parameter that can be used to stress local or global morphological changes
(Bookstein, 1991; Rohlf, 1993, 1996, 1999; Rohlf et al., 1996; Walker, 1996). While these are both popular
techniques for pattern recognition and dimensionality reduction in GMMs, PCA is generally more widely
used. Once either PCA or RWA has been performed, the scores (i.e. dimensions) presenting the highest
morphological variance are then separated and subjected to a series of univariate and multivariate statistical
tests, as described above.

While each of these tests are perfectly valid and useful in a number of applications, they are all
parametric, and are thus often unlikely to capture the true nature of variances in sample distributions. We
define parametric and nonparametric tests as;

Definition 14 Parametric Test A statistical test that is conditioned by assumptions
about the underlying properties of a distribution.

Definition 15 Nonparametric Test A statistical test that is either not conditioned by as-
sumptions about the underlying properties of a distri-
bution, or if these assumptions are made, the precise
properties of the distribution are unknown.

In these definitions, the "assumption about the underlying properties of a distribution" is commonly
that the data is normally or homogeneously distributed, i.e. the data fits a Gaussian distribution. Gaussian
distributions, characterised by their "bell"-shaped Probability Density Function (PDF), can be defined by
a series of very specific properties. Firstly, measures of central tendency of the distribution, such as the
mean (µ) and median (x̃), are approximately equal (µ ≈ x̃). Second, the PDF is symmetric, such that the
area under the PDF marked by the first standard deviation (σ ) represents ≈ 68.27% of the information, the
second standard deviation accounts for ≈ 95.45%, and the third standard deviation accounts for ≈ 99.73%
(Fig. 2.9). Finally, both the skewness and kurtosis parameters of the distribution are equal to 0.
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Figure 2.9: Visualisation of a simple Gaussian distribution (µ = 0, σ = 1), marking both the location of
the mean (µ) and the ammount of information captured by each degree of the standard deviation (σ )

While other types of statistical distributions exist, and are equally as common with their own partic-
ularities, in most cases these distributions eventually approximate a Gaussian distribution. For example, the
popular t-distribution is conditioned by the degree of freedom parameter, while higher degrees of freedom
cause the t-distribution’s PDF to approximate a Gaussian distribution.

While it is true that many sources of morphological data tend to display some degree of homogene-
ity, especially data that has been pre-processed using PCA (Diaconsis and Freedman, 1984), this assumption
cannot be considered a global law of morphology. In many cases, especially when sample sizes are small
in relation to the general population, data is less likely to appear homogeneous. From this perspective,
nonparametric statistical tests are typically more reliable when sample sizes are small. Likewise, in non-
biological morphological studies, homogeneity is less common (Courtenay et al., 2020a, Under Review-b).
In palaeoanthropology, for example, the additional likelihood that a dataset is noise-free is very low. While
nonparametric tests can also be found in morphometric literature, such as the Mann-Whitney U test (Mann
and Whitney, 1947), they are generally used to a lesser extent.

When deviations from normality occur, a number of the aforementioned characteristics of the
Gaussian PDF are no longer representative of the empirical distribution under study (Fig. 2.10). For ex-
ample, the mean and median of a skewed distribution are not the same (µ ̸= x̃), while σ no longer reflects
the same amount of information on either side of the mean. Statistical tests, such as ANOVA that rely
on sample means (Pearson, 1895; Student, 1908; Fisher, 1925; Chambers et al., 1992), are thus unreliable
under these conditions. In light of this, if our data is skewed, noisy, or presents a PDF with a complex and
unusual shape, how can this data be processed?
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Figure 2.10: Diagram demonstrating the difference between mean and median as a measure of central
tendency according to the homogeneity of the distribution.

In these cases, the increasingly popular field of robust statistics, that includes the use of nonpara-
metric testing, is the most accurate solution;

Definition 16 Robust Statistics The branch of statistics that is designed to be resistant to deviations
from assumptions about the underlying distribution of data.

From a robust statistical perspective, descriptive statistics such as the mean and standard deviation
are replaced by other metrics less sensitive to the presence of outliers. For central tendency this is usually
the median. For deviation, the Median Absolute Deviation (MAD), and its normalised version (NMAD),
are frequently used (Höhle and Höhle, 2009; Hasan et al., 2011; Rodríguez-Gonzálvez et al., 2014; Ariza-
López et al., 2019; Herrero-Huerta et al., 2018; Rodríguez-Martín et al., 2019a; Courtenay et al., 2020a,
2021c). As will be discussed in Courtenay et al. (2020a), the Square Root of the Biweight Midvariance
(
√

BWMV ) is also a reliable measure of sample dispersal (see also Nocerino et al., 2017; Rodríguez-Martín
et al., 2019b; Courtenay and González-Aguilera, 2020; Courtenay et al., 2020a, 2021c). When calculating
confidence intervals, robust statistical approaches use the calculation of quantiles (Höhle and Höhle, 2009),
thus providing a non-symmetric means of describing the upper and lower confidence interval according to a
set probability range. For hypothesis testing, we can replace tests such as ANOVA with the Kruskal-Wallis
nonparametric rank test (Kruskal and Wallis, 1952; Vargha and Delaney, 1998), for example. In the case
of MANOVA, instead of using the Hotelling-Lawley test statistic (Lawley, 1938; Hotelling, 1951), we can
use the more robust Wilk’s Lambda (Coombs et al., 1996). Pearson’s r for correlation can be substituted by
Kendall’s τ (Kendall, 1955), and linear regressions can be replaced with other non-linear functions, such as
polynomial functions, or substituted with robust or generalised regression models.

As will be discussed in Courtenay et al. (Under Review-b), other statistical methods, such as PCA,
can also be made robust, removing the assumption of linearity among data. From this perspective, non-
linear Dimensionality Reduction (DR) can be considered a valuable new contribution to morphological
studies.

Finally, in terms of interpreting these results, a more robust approach to statistical hypothesis test-
ing should take into consideration other factors as well, such as the probability a p-value could lead to
a mistaken conclusion (Colquhoun, 2017; Held and Ott, 2018; Colquhoun, 2019; Benjamin and Berger,
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2019). In most traditional statistical applications throughout the XXth century, scientists, especially those
without a statistical background, have used the (in)famous p < 0.05 as a criteria to accept or reject a hy-
pothesis regarding their data (Wasserstein and Lazar, 2016; Kennedy-Schaffer, 2019; Wasserstein et al.,
2019). Recent debate in the statistical community (Wasserstein and Lazar, 2016; Wasserstein et al., 2019),
however, has pushed for the renewal of acceptance criteria, stating p < 0.05 to be a value associated with a
high probability of reporting a False Positive (Colquhoun, 2019). The present body of work supports this,
and proposes the use of p < 0.003, providing a detailed justification behind this observation in Appendix
C.

2.4 Classification and Artificially Intelligent Algorithms

2.4.1 Traditional Morphometrics and Geometric Morphometrics

A very common goal in morphological analyses is classification. Once variables have been extracted and
analysed statistically, analysts tend to seek a means in which to use this data to classify new samples.
This could be useful for many purposes, including the identification of new species, identifying anomalies,
or as a helpful tool that the analyst can exploit to make more empirically informed decisions. The idea
behind classification is to take a set of observations (x), of known origin (i.e. presenting class labels y),
and construct a mathematical function, f (x), that maps these variables to their origin ( f (x) = y) (Fig.
2.11). Additionally, for scientific rigour, classification tasks tend to stress the importance of calculating
the probability that the observations originate from their corresponding class. In other words, given a new
observation, if we were to use f (x) to predict its origin, we would like to know the probability that this
prediction is correct.

Figure 2.11: Description of how a classification algorithm constructs a discriminant function ( f (X)) to
assign new observations (white dots) to either one of the groups (blue and green dots).

Currently the most popular used classification algorithms in morphometrics are the Linear Dis-
criminant and Partial Least Square Discriminant functions. Use of these algorithms in a study is typi-
cally referred to as Linear Discriminant Analysis (LDA) and Partial Least Square Discriminant Analysis
(PLSDA), respectively. LDA utilises a maximum likelihood classification rule to assign individuals to a
group. This is done by maximising the ratio of between-group sum of squares to within-group sum of
squares (Fisher, 1936; Mitteroecker and Bookstein, 2011). PLSDA, on the other hand, attempts to regress
sample information so as to maximise the covariance between independent variables and class information
(Barker and Rayens, 2003).
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LDA is similar to CVA as Fisher (1936)’s linear function is equivalent to the first Canonical Variate
from CVA (Mardia et al., 1997). Nevertheless, CVA is mostly used for ordination purposes (Mitteroecker
and Bookstein, 2011). From this perspective, CVA can be considered a more “visual” discriminant function,
seeing how separation among samples in just a single CV score is indicative that the distributions are
separate (Mitteroecker and Bookstein, 2011). This particular property has been exploited in the past with
the use of statistical distances, such as the Mahalanobis distance, to perform a more statistically oriented
type of classification (Albrecht, 1992; Klingenberg and Monteiro, 2005). LDA, however, provides a direct
means of constructing a decision boundary that can be used to calculate the probability of class association.

Both CVA and LDA are closely related to analyses such as PCA (Fig. 2.12), as they construct
feature spaces that are derived from the eigendecomposition of data. In contrast to PCA, however, CVA
and LDA take into account group labels during this procedure, constructing decision boundaries in feature
spaces according to group covariance matrices. One alternative to CVA is the projection of data onto the
principal components of the group averages, commonly referred to as bgPCA. As opposed to CVA, the PC
scores from bgPCA are now orthogonal, and are also equivalent to the feature space used by PLSDA in the
construction of decision boundaries (Barker and Rayens, 2003; Boulesteix, 2004).

Figure 2.12: Examples of ordination and discrimination of 3 different species studied using geometric
morphometrics from O’Higgins and Dryden (1993). Left panel - traditional ordination of data using

Principal Component Analysis (PCA). Middle panel - Canonical Variate feature space (CVA). Right panel
- Between-group Principal Component feature space (bgPCA). Linear Discriminant Analyses construct

decision boundaries from a similar feature space to CVA, while Partial Least Discriminant Analyses
construct these boundaries from bgPCA.

A strong limitation both LDA and PLSDA have in common are their underlying parametric nature.
LDA, for example, makes the assumption that the PDF of each group’s multivariate distribution is Gaussian
in nature. PLSDA, on the other hand, uses orthogonal and linear transformations to construct a feature
space for discrimination, a process which is also parametric (Barker and Rayens, 2003; Boulesteix, 2004;
Mitteroecker and Bookstein, 2011).

2.4.2 Basic Notions of Artificial Intelligence

Over the years, a field that has become a growing protagonist in classification tasks is the field of Artificial
Intelligence (AI), and the use of Artificially Intelligent Algorithms (AIAs). AIAs are highly versatile, and
in many cases, much more robust with less parametric restrictions. Likewise, they have proven highly
successful over the years in the processing of morphological data (Dobigny et al., 2002; Baylac et al., 2003;
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Lorenz et al., 2015; Soda et al., 2017; Cuthill et al., 2019; Courtenay, 2019; Courtenay et al., 2019b, 2020b;
Quenu et al., 2020; Aramendi, 2021).

AI is the field of science dedicated to the development of computer systems able to perform tasks
that would normally require biological intelligence. From this perspective, the goal of AI is to construct
algorithms that replicate our own cognitive functions, such as seeing, hearing, and decision making. AIAs
are thus tools that can be used in devices that can interpret external data, and make decisions that optimise
the chances of achieving a goal (Nilsson, 1998; Poole et al., 1998; Russel and Norvig, 2003; Legg and
Hutter, 2007; Kaplan and Haenlein, 2018).

The basis of all AI is the concept of learning. As with human cognition, learning can be sum-
marised by the ability to take experience, and utilize it in order to improve its performance on similar
experiences in the future (Mitchell, 1997). The basic learning process thus consists in data retrieval (input),
whether this be through memory, observations, or experience, which is then translated into a broader repre-
sentation of data (abstraction), with a final output where the abstract data is used to form the basis behind
an action (generalisation). This concept can be used to find a mathematical function that maps the input to
the output, known as a model. Models represent explicit descriptions of data through structured patterns,
and the process of learning these patterns is known as training.

The actual training of an AIA is performed using a series of mathematical concepts that employ a
combination of linear algebra, calculus, probability theory, and statistics (Bishop, 1995, 2006; Goodfellow
et al., 2016). Through the combination of these tools, AIAs adjust their own internal parameters, known as
weights, that are used to minimise the error (the loss) of the algorithm (Zhang, 2004b; Duchi et al., 2011;
Kingma and Ba, 2015). Nevertheless, while reduction of error is important, a fundamental component of
any AIA is the concept of generalisation (Goodfellow et al., 2016). An algorithm is only powerful if it is
able to apply the information it has learnt to external and foreign problem solving tasks. If an algorithm
is found to systematically reach imprecise conclusions, then this is often referred to as model bias (Cover
and Thomas, 1991). On the other hand, if algorithms are found to be overly sensitive to small fluctuations
in data (such as noise), then this is referred to as a model’s variance (ibid). The bias-variance tradeoff
(Breiman, 1996a,b), therefore, is a fundamental means of detecting or controlling whether an algorithm is
underfitting, or overfitting (Fig. 2.13);

Figure 2.13: Examples of mathematical functions that have either under or overfit on a set of data for
classification.
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Definition 17 Overfitting Overfitted models are those that fit a function too closely to a partic-
ular dataset, and are, therefore, unable to adapt to unknown observa-
tions reliably.

Definition 18 Underfitting Underfitted models are those that are unable to adequately capture the
underlying structure of data.

Underfitting and overfitting can be produced under many different circumstances. To provide
analogies with the previously discussed concepts of parametric and nonparametric statistical models, an
algorithm may underfit due to an incorrect selection of an AIA (e.g. using a linear model to perform non-
linear tasks). Overfitting, on the other hand, is often produced when the data used to train the algorithm
poorly represents the true domain, or the dataset is too small.

Detecting this phenomenon is often difficult. Nevertheless, the most common means of assess-
ing an algorithm’s performance is through their evaluation during and after training. AIAs are typically
evaluated using subsets of the dataset, known as training, testing and validation sets (Goodfellow et al.,
2016; Chollet, 2017). The training data is provided to the algorithm alongside the validation set, using the
training data to fit the model, and then performing self-evaluation on the validation set so as to learn from
its mistakes and adjust the internal weights (Goodfellow et al., 2016). The test set is kept separate at all
times, and only used once the process of training has finished so as to evaluate the real performance of the
AIA (see Appendix D.3).

The means in which the algorithm is exposed to the validation set may vary, with a number of
different algorithms available for this process. One of the most common techniques is known as cross-

validation; a resampling technique that uses different portions of the data to provide an algorithm with a
train and validation set (Stone, 1974, 1977). For more traditional approaches, such as PLSDA and LDA,
Leave-One-Out Cross Validation (LOOCV) is normally used. LOOCV consists in fitting the algorithm over
a number of iterations, and with each iteration a single observation is removed and separated for validation,
while all other observations are used for training. This method is powerful for assessing how robust an
algorithm is to outliers. In most AI applications, however, the k-fold cross-validation algorithm is more
popular (Bengio and Grandvalet, 2004). In k-fold cross-validation, the training data is split into k sets,
the smaller set is used for validation, while the larger set is used for training. For each iteration of cross-
validation, the algorithm is fit to the training data, and adjusts its own weights by assessing the error when
used to predict the validation data. Finally, in more advanced applications, algorithms are exposed to a fixed
percentage of data for both training and validation, while over each iteration (known as an epoch), the data
is typically shuffled (Bishop, 1995).

Training and validation are used for the algorithm to adjust its own parameters, however, a true
test of the AIA’s ability to process new data is by exposing it to the test set. The algorithm is thus used to
classify the test set, and a confusion matrix is calculated to evaluate the number of times the algorithm has
correctly or incorrectly classified the data (see Appendix D.3). From this perspective, powerful algorithms
should be able to perform well on both the training and test sets. In cases where algorithms have learned
the training data well, but fail to perform on the test set, this is a strong indication of overfitting.

2.4.3 Machine, Deep, and Computational Learning

Many learning paradigms exist in AI (e.g. Caruana, 1997; Ben-David et al., 2010; Zhang and Ma, 2012;
Ravichandiran, 2018a; Kuow and Loog, 2019; Wirsansky, 2020), however the most common three means
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of training an algorithm are known as Supervised, Unsupervised, and Reinforcement learning (Ravichandi-
ran, 2018b; Bonaccorso, 2019). The present Doctoral Thesis focuses primarily on supervised approaches,
however some unsupervised approaches have also been explored throughout this body of research (e.g.
Courtenay and González-Aguilera, 2020; Courtenay et al., 2021b).

Definition 19 Supervised Learning The process of training an algorithm to learn on data
while explicitly defining the objectives of the task at
hand; given a particular input, we wish to map this in-
put to a specific output ( f (x) = y).

Definition 20 Unsupervised Learning The process of training an algorithm to learn on data
without explicitly defining the objectives of the task at
hand; given a particular input, the algorithm is required
to detect patterns or learn the overall representation of
the data without external help (typically represented as
f (x) = x′).

The main difference between the two is the type of output that is produced. Supervised approaches
have a defined output (y) that the algorithm has to predict. Supervised algorithms are very popular, espe-
cially for classification and regression tasks. In unsupervised learning, however, most algorithms are asked
to reconstruct the input, thus producing a version of the input as output (x′). The internal properties of these
algorithms can then be used for pattern recognition to detect clusters or underlying features of the data. In
other unsupervised approaches, the algorithm simply tries to detect patterns based on the density of infor-
mation, or a defined mathematical function that can be used to propose a means of evaluating error. The
means in which error is then reduced for both supervised and unsupervised approaches is often performed
using "back propogation" (Fig. 2.14), where the error produced by the algorithm is passed back and used
to adjust the internal algorithm’s weights (Zhang, 2004b; Duchi et al., 2011; Kingma and Ba, 2015).

Figure 2.14: A figurative description of how supervised and unsupervised algorithms learning work.

Nevertheless, the two most common words that are associated with the term "learning" in AI are
the terms Machine and Deep Learning (ML & DL). ML can simply be defined as;

Definition 21 Machine Learning The field of computer science focused on the development of algo-
rithms for transforming data into intelligent actions.
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Machine learning algorithms can be divided into a number of different categories (Fig. 2.15). Some
of the most common types of algorithms are Decision Tree based algorithms, distance based algorithms,
probabilistic algorithms, Discriminant Functions, and Neural Networks (NNs).

Figure 2.15: Graphic examples of AI classification algorithms, including (A) a Decision Tree, (B) a
Nearest Neighbour Classification algorithm, (C) a Naïve Bayes Classifier, (D) a Discriminant Function

using a Support Vector Machine with maximised margins, and (E) an example of a Convolutional Neural
Network. For each example, variables x1 and x2 ∈ X are used to predict the label y. In (A) variables α and

β indicate any threshold or acceptance criterion, and in (C) the formula uses Bayes Theorem to predict
the probability (P()) of the label y given values of x ∈ X

Decision tree based algorithms, such as the Conditional Inference Tree (CTREE: Hothorn et al.
(2006)), the C5.0 decision tree algorithm (C5.0: Quinlan (1992)), and more complex variants such as the
Random Forest (RF: Ho (1995)) or Gradient Boosting (GB: Friedman (2002)) algorithm, generally present
a flowchart-like structure, whereby decisions are made by following each branch of the tree according to a
set of criteria, until reaching a final leaf or “node” that defines the final decision to be made by the tree (Fig.
2.15a). Distance based algorithms, such as the k-Nearest Neighbour algorithm (KNN: Breiman (1951)),
are typically used for unsupervised learning tasks (e.g. clustering). Nonetheless, distance based algorithms
can also be leveraged for classification by predicting class labels for observations based on the group they
are closest to (Fig. 2.15b). Probabilistic algorithms, such as Naïve Bayes (NB: Zhang (2004a)), utilise
some form of probability theory, typically Bayes’ theorem, to calculate the probability of association of an
observation to a group (Fig. 2.15c).

From the perspective of discriminant functions, both the aforementioned LDA and PLSDA algo-
rithms from traditional morphometrics can be trained using ML based approaches. Nevertheless, one of
the most powerful algorithms for classification tasks of this nature is the Support Vector Machine (SVMs:
Cortes and Vapnik (1995)). SVMs are a highly powerful modeling algorithm, useful for many types of AI
tasks. Unlike typical discriminant functions, SVMs use "soft maximised-margins" (Fig. 2.16), conditioned
by a cost (c) parameter, that define the decision boundary. The term "maximised-margins" introduces two
main concepts; (1) a margin is the perpendicular distance between the closest data point and the decision
boundary, while (2) the objective of an SVM is to maximise this margin. A decision boundary is then con-
sidered to be soft if the algorithm is allowed to account for outliers. From this perspective, the c parameter
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of an SVM defines how lenient the decision boundary may be. This is a fundamental means of avoiding
overfitting.

The main power of the SVM, however, is found in the concept of a kernel trick, which is used to
overcome traditional limitations imposed by linearity (Bishop, 2006). A kernel is a mathematical function
that performs a pre-transformation of the data (Fig. 2.16a), projecting data-points into an implicit feature
space (Fig. 2.16b), where the construction of a linear function is easier to compute. If we were to flatten this
implicit feature space back to the original dimensions of the dataset, then the decision boundary constructed
using the kernel will appear to be non-linear (Fig. 2.16d). This decision boundary is typically referred to
as a hyperplane, as it is essentially a linear function that exists across the multiple dimensions of both the
original and the constructed domain. A number of kernel functions exist for SVMs, however two of the
most popular are the Polynomial function, and the Radial Basis Function (Bishop, 2006).

Figure 2.16: Theoretical examples of non-linear Support Vector Machine maximised margin decision
boundaries and kernel functions. (A) A simple univariate dataset where constructing a linear decision

boundary to separate between the two groups is not possible. (B) A transformation of variable x from part
(A), using x2 as a kernel, i.e. a basic polynomial kernel. A decision boundary separating the two groups

can now be easily constructed in the new feature space. (C) A typical linear example of an SVM with
maximised-margins. (D) An example of a non-linear SVM with maximised-margins implementing a kernel.

The final main type of algorithm is the Neural Network (NN). NNs, originally called Multilayer
Perceptrons (McClelland and Rumelhart, 1986; Rumelhart et al., 1986), are models that attempt to replicate
the functionality of a biological brain. They do so by using a simple mathematical formula that represents
a neuron, which can then be linked to other nodes in a "Network" (see Appendix D). From this perspective,
having hundreds of interconnected nodes can be considered a computational analogy of a biological brain.
So as to truly replicate the brain, NNs additionally have a series of activation functions, that define how
information flows through the network (see Appendix D.1 and D.2). These activation functions are the
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most efficient means of designing a non-linear algorithm that is capable of sorting through information.
NNs are also typically referred to in relation with the word architecture, which defines the way layers of
neurons are arranged (Fig. 2.17). From this perspective, the use of different architectures reveal NNs to be
highly versatile, but can also be very complicated to design, implement and train. NNs additionally have
hundreds of different internal parameters that can be used to fine tune and improve learning performance,
and are thus considered one of the most powerful AIAs to exist.

Figure 2.17: Some figurative examples of Neural Network architectures. The yellow NN represents a
simple Feed Forward Neural Network. The blue NN represents an Autoencoder, which is typically used for

unsupervised tasks such as dimensionality reduction. The red NN represents a Convolutional Neural
Network, which is popular for the processing of image data. The green NN represents a Siamese Neural

Network; a useful algorithm for comparing pairs of observations. For ease of visualisation, no Bias
neurons (see Appendix D) have been included in this figure.

NNs, however, are not typically used in ML, and when they are, they are relatively small (only a
few neurons in a single layer). From this perspective we begin to define the concept of DL, where the NN
is the protagonist.

The difference between ML and DL is often confuse, with DL presenting a number of possible
definitions (Brownlee, 2016). DL is a subfield of ML, primarily defined by the use of NNs. ML on the
other hand, tends to envelope the much wider range of different algorithms previously described. The
word “Deep”, for many, refers directly to the “depth” of the NN, i.e. the number of layers included in the
algorithm. For others, NNs are only considered deep if they include a particular architecture, known as a
Convolutional Neural Network (CNN). Nevertheless, the question is: how many layers does a NN need to
be considered deep?

Here we will refer mostly to DL in light of the definition from Goodfellow et al. (2016)’s iconic
book, aptly titled Deep Learning:

"Deep learning is a particular kind of machine learning that achieves great power and flexibility by

learning to represent the world as a nested hierarchy of concepts, with each concept defined in relation to

simpler concepts, and more abstract representations computed in terms of less abstract ones." -
Goodfellow et al. (2016), Page 8

This quote touches directly on a component frequently mentioned in DL literature, which is the
concept of high- and low-level features. Bengio (2012) defines DL to be algorithms that “seek to exploit

the unknown structure in the input distribution [. . . ] often at multiple levels, with higher-level learned
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features defined in terms of lower-level features”. Similarly, LeCun et al. (2015) state DL algorithms to
present “. . . multiple levels of representation, obtained by composing simple but non-linear models that

each transform the representation at one level [. . . ] into a representation at a higher, slightly more abstract

level. . . ”. Analogous to how the human brain is capable of deconstructing a complex element into multiple
smaller and simpler components (Fig. 2.18), DL algorithms aim to convey and extract the most important
features of data where the majority of meaning is held, and use these extracted features to make decisions.
This is especially important if we consider the amount of noise typically found within data, where AIAs are
more likely to be able to extract the essential features that convey meaning.

Figure 2.18: Examples of different levels of abstraction, as displayed by six of the lithographs from Pablo
Picasso’s Le Taureau, stages II to VII (left to right, top to bottom). Here Picasso begins with a more

realistic representation of the bull, followed by the extraction of basic features that still convey and depict
the general essence of the animal, despite being represented by gradually less features. Images were

obtained from the Musée National Picasso-Paris’ online collection
(https://www.museepicassoparis.fr - Accessed: 07/07/2022).

As will be seen throughout this Doctoral Thesis, the words Deep and Machine will be used often.
Nevertheless, over the course of this research, a more general term has become more apparent, which
encompasses elements of both ML and DL; Computational Learning (CL). Our proposal for the use of the
term CL over ML and DL stems mostly from the concept of an algorithm’s Hyperparameters.

Hyperparameters are internal parameters that each algorithm has which are used to fine-tune and
control the learning process. These should be differentiated from traditional AI parameters, which are
typically the internal weights of an algorithm. Additionally, hyperparameters are defined by the user, while
parameters are adjusted by the computer during the learning process. SVMs, for example, have three main
hyperparameters; the cost (c) of the hyperplane, the type of kernel to be used, and the parameter that defines
how much influence the kernel has on the new dimension (typically referred to as d, α , or γ , depending on
the kernel) (Rahimi and Recht, 2007; Wiering et al., 2013; Jacot et al., 2020; Tancik et al., 2020; Courtenay
et al., 2022b). The NN, however, has hundreds of hyperparameters, of which the "depth" (e.g. number of
neurons or layers), is just one of them (Brownlee, 2019).

While a simple SVM can be programmed in just a few lines of code, more complex SVMs (e.g.
Courtenay et al., 2021b, 2023) can also be defined customising every element of the algorithm’s internal
functioning. Likewise, the NN from Courtenay et al. (2021b) consists in 118 lines of functional Python
code, however the simplest of NNs can also be defined using a single line of R code as well. From this
perspective, even if a NN is not used in a study, this is not to imply that the complexity of the AIA is any
less than that of a "deep" NN. In light of this, a different type of "depth" can be proposed, defining the depth
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of the algorithm in terms of its hyperparameters. So as to avoid the assumption that DL is exclusive to the
use of NNs, we propose the use of the term CL, that encompasses all types of AIAs, without the need to
specify how "deep" the programmer goes into the internal functioning of the algorithm.

2.4.4 Limitations of AI

AI popularity has grown exponentially only over the last 10 years, especially due to its impressive above-
human level performance in many CV based tasks. Nevertheless, as with any major trend in scientific
research, the eventual discovery of a method’s limitations can cause major problems in a widespread use of
these techniques, leading to the need for research in the overcoming of these limitations (Fenn and Rasinko,
2008). While a chapter on the limitations of AI could confront this topic from a number of different angles,
the present Doctoral Thesis will focus primarily on a limitation known as the "Curse of Dimensionality".

The "Curse of Dimensionality", a term originally coined by Bellman (1957, 1961), refers to the
difficulties of modelling from complex and high dimensional data, especially when used to describe a
small set of observations. Given a high number of variables, each with their own statistical properties and
complexities, analysts need increasingly larger sample sizes in order to capture the true variability of the
population. Nevertheless, as is common knowledge in most fields of science, large sample sizes are very
hard to obtain.

AIAs are notorious for needing very large datasets, especially in the case of NNs. The pioneering
study by LeCun et al. (1998), for example, reached > 95% accuracy with a dataset of 58,527 monochrome
28× 28 px images (the MNIST dataset1). Between the years 2009 and 2012 pivotal research in AI was
carried out using two very large datasets, one containing 60,000 coloured 32×32 px images (the CIFAR-
10 dataset2), and the second containing 15 million coloured 469×387 px images (the ImageNet dataset3).
In most of these cases, authors struggled to reach 80% accuracy in image classification (Deng et al., 2009,
2010; Krizhevsky and Hinton, 2009; Krizhevsky, 2010; Krizhevsky et al., 2012). Nevertheless, considering
the complexity of these images, as well as the number of image classes in each dataset, these studies can
still be considered some of the most important advances in CV to date. In Szegedy et al. (2014a), the
authors publish more innovations in NN architectures that are able to reach 90% classification with 1.35
million images from the ImageNet dataset. Similarly, Redmon et al. (2016) reach > 90% accuracy for
object detection and recognition when using 9 million coloured video frames (the ImageNet10k dataset4).

While in each of these cases the input to algorithms are images, as opposed to measurements, these
present perfect examples of how much information many algorithms require in order to learn a specific task.
In many applications the human eye is able to almost immediately detect that two images are different. For
an AIA, however, this task is much more difficult, as most AIAs still struggle to capture fundamental compo-
nents of human cognition, such as common sense (George et al., 2017), true generalised knowledge across
different tasks (Finn et al., 2017; Ravichandiran, 2018a), the leveraging of prior knowledge (Fink, 2004;
Santoro et al., 2016), and foresight (Finn and Levine, 2017). This forms a fundamental component of bio-
logical cognition and conditions how we make decisions. In the case of numeric data such as measurements
and coordinates, the complexity of an algorithm is dependent on the underlying statistical properties of the
data; high overlap between complex multivariate and non-parametric distributions implicates the need for

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/~kriz/cifar.html
3https://www.image-net.org/
4http://lear.inrialpes.fr/~akata/ImageNet_res.php
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increasingly more complex algorithms in order to model from this information (Diakonikolas et al., 2017,
2019).

From the perspective of classification tasks in traditional morphometrics, much debate has gone
into the required sample sizes needed for different types of analyses (Cardini and Elton, 2007; Cardini
et al., 2015; Bookstein, 2017). LDA, for example, is known to require that the size of the smallest group
be larger than the number of predictor variables (Mitteroecker and Bookstein, 2011). This is due to how,
given a sufficiently large number of variables, Canonical Variates separate groups regardless of the actual
probability distribution (ibid). PLSDA, on the other hand, was long considered a better algorithm for
the analysis of smaller datasets (Barker and Rayens, 2003; Mitteroecker and Bookstein, 2011). Recent
investigation into the algebraic properties of bgPCA, however, has led researchers to retract this statement
(Bookstein, 2019), considering PLSDA to be equally problematic (see Fig. 2.19). From this perspective,
the ability of bgPCA to produce the spurious separation of small groups in ordination tasks is likely to imply
an exaggerated accuracy of PLSDA (Cardini et al., 2019; Cardini and Polly, 2020).

Figure 2.19: An example of how the curse of dimensionality has an effect on traditional morphometric and
Geometric Morphometric tests such as bgPCA (upper panels) and CVA (lower panels). This in turn will
effect their algebraic classification counterparts; PLSDA and LDA. The phenomenon described in this
figure consists in first simulating a theoretical three-group set of identical centagons, described by 100

landmarks in two dimensions (200 morphological variables in total). The number of individuals per group
on all accounts are lower than the required sample sizes for these types of analyses. As can be seen,
although differences between groups should not exist, the curse of dimensionality for these particular

ordination tasks produces the spurious separation between groups.

As a basic rule of thumb, the minimum sample size needed for most classification tasks in tradi-
tional morphometrics, therefore, must be larger than the number of measurements taken (Bookstein, 2017,
2019). Unfortunately, this rule is slightly harder to fulfil in GMMs. The number of predictor variables in
GMMs is Rp×k, where p is the number of landmarks, and k the number of dimensions. In the example
of a simple two-dimensional triangle, morphological variables lie in a R3×2 feature space, therefore over
6 individuals are needed per group. Even when performing analyses on variables pre-processed via PCA,
in many cases the number of individuals is still lower than the number of variables (e.g. the cases of Wu
et al., 2010; Freidline et al., 2012; Daver et al., 2018; Détroit et al., 2019), while the selection criteria for the
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optimal number of PC scores is usually unclear (Jollife, 2002; Bishop, 2006). For analyses such as EDMA,
the number of predictor variables can be much greater, considering a simple interlandmark distance matrix
for a single individual to be of size Rp×p.

Beyond dataset size, however, the importance of dataset quality is evidently equally as important.
For an algorithm to successfully learn how to perform a task and generalise weights to be robust to new
observations, the data provided must capture, to the best of its abilities, the natural variability of the popula-
tion. Evidently this is a hard task to perform, as in most cases the true nature of the population is unknown,
and sampling bias is likely to introduce noise.

Over the years, some research into how and why NNs fail to perform tasks has led to a number of
interesting lines of research. Su et al. (2019), for example, prove how the modification of just a single pixel
causes algorithms to incorrectly classify images (Fig. 2.20), even if their original performance reached
≈ 87% accuracy when trained on the CIFAR-10 dataset. In this study, authors showed how the perturbation
of a single pixel can cause a drop in accuracy as low as 19.82%. Similarly, in both Szegedy et al. (2014b)
and Goodfellow et al. (2015), the authors present how a slight, imperceptible perturbation to the input of a
neural network causes an algorithm to fail (Fig. 2.20).

Figure 2.20: Examples of studies that have shown the limitations of NNs by fooling them during image
classification. Upper panels: examples of how eliminating a single pixel causes NNs to fail; a ship is
predicted to be a car with 99.7% confidence, a horse a frog (99.9%), and a deer an airplane (85.3%).

Source: Su et al. (2019). Lower panels: examples of how introducing a fine layer of slight Gaussian noise
causes algorithms to fail; a panda is predicted to be a gibbon with 99.3% confidence. Source: Goodfellow

et al. (2015)

In each of these cases, it can be seen how, even when a large dataset is provided and found to train
an algorithm efficiently, the introduction of a slight amount of noise causes algorithms to produce erroneous
classifications. This proves how not all algorithms are necessarily robust unless they are provided with the
correct type of data that allows them to be. Algorithms are thus unable to capture the true variability of the
domain and fail to generalise when exposed to new observations.
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One of the means of overcoming some of these issues is known as Data Augmentation;

Definition 22 Data Augmentation A technique used to simulate new data by increasing the
density and diversity of the original data provided.

In most CL literature, data augmentation is typically used in CV applications as a means of slightly
transforming a set of images, so that they appear to be slightly different, and thus allow algorithms to learn
more robust features. This technique typically includes the rotation, shearing, flipping, and adjustment of
contrast/brightness of an image (Goodfellow et al., 2016). Beyond image data, however, data augmentation
techniques aim to simulate new information based on statistical and probabilistic criteria. From this per-
spective, algorithms are used to model from a distribution, and thus try and increase the variability of the
sample based on the information that is already there. This approach can additionally be performed using
AI itself, in the context of unsupervised learning algorithms. Means in which to overcome problems with
sample size, however, will be discussed in greater detail in Courtenay and González-Aguilera (2020) amd
Courtenay et al. (Under Review-a) (Chapter 3, Section 2).



Chapter 3

Scientific Publications

This chapter is dedicated to the scientific publications produced over the course of this Doctoral Thesis.
A total of nine articles are presented, seven accepted and published, with an additional two under review,
confronting multiple topics in relation with the extraction of morphological data (Courtenay et al., 2020a),
statistical processing of this information (Courtenay et al., 2021a), simulation of new data for the purpose of
data augmentation (Courtenay and González-Aguilera, 2020; Courtenay et al., Under Review-a), as well as
the construction of classification algorithms (Courtenay et al., 2020b, 2021b). In addition to these method-
ological studies, we present two case-studies, one application using Geometric Morphometrics Courtenay
et al. (2023), and a second using Fourier Descriptors to analyse "forms without landmarks" (Courtenay
et al., 2022a). Finally, as a proposal for improvements in future research, we describe a new mathematical
model for the analysis of Geometric Morphometric data (Courtenay et al., Under Review-b).

Prior to each article, a Spanish translation of the title and abstract have been provided, as well as
the links to all associated Supplementary Materials and code.
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Obtaining Data and Robust Statistics
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Spanish Translation of Title and Abstract

Alcanzando nuevas resoluciones en el análisis morfológico de las
marcas de dientes de carnívoros: Una nueva actualización

metodológica para la tafonomía digital.

La investigación actual en los campos de la arqueología y paleontología se caracteriza por un crecimiento
exponencial de la integración de nuevas tecnologías. No obstante, aunque dichos avances son de gran
importancia para las múltiples líneas de investigación relacionadas con estos dos campos, su mejora y ac-
tualización debería ser una prioridad. Aquí presentamos un análisis del error inter e intraobservador en los
análisis morfométricos de las marcas de dientes tipo depresión, fossa o "pit", generadas por carnívoros. Para
ello, aplicamos múltiples herramientas de la estadística robusta a muestras experimentales de carnívoros
modernos. Primero, con el objetivo de comprender la influencia de los errores de medición en la recopi-
lación de datos morfométricos, realizamos una evaluación estadística sobre las coordenadas de landmarks

3D en bruto, las coordenadas totalmente superpuestas, y las coordenadas parcialmente superpuestas. Los
modelos 3D fueron obtenidos mediante escáneres de luz estructurada. Las muestras experimentales uti-
lizadas para realizar este análisis incluyen depresiones de dientes producidas por perros y lobos en difer-
enctes contextos, originalmente utilizadas en el análisis de ataques al ganado extensivo. Los resultados de
este estudio remarcan la importancia del tipo de landmark a la hora de estudiar el error inter e intraobser-
vador. También demuestra el valor que pueden tener los modelos de semilandmarks deslizantes, por encima
de los landmarks fijos tipo III. Además de esto, los datos revelan la importancia de la experiencia del ob-
servador a la hora de tomar los datos, junto con un aumento del error cuando se trabaja con coordenadas
totalmente superpuestas, debido al "efecto Pinocho". Gracias a este estudio se ha podido actualizar los mod-
elos de morfometría geométrica para el estudio de marcas de dientes tipo depresión. Este modelo híbrido
de landmarks fijos tipo II y semilandmarks deslizantes reducen considerablemente el error inducido por
el observador, generando un método más fiable desde el punto de vista métrico. Estos resultados pueden
considerarse un avance fundamental para los estudios sobre carnívoros, con impacto en la investigación
arqueológica, paleontológica y ecológica actual, así como en otras ciencias forenses.

Supplementary Information and Links

Supplementary Information available from:
https://doi.org/10.1371/journal.pone.0240328.s001

https://doi.org/10.1371/journal.pone.0240328.s002

https://vimeo.com/409256777

Code and data available from:
https://github.com/LACourtenay/GMM_Measurement_Accuracy_Tools

https://doi.org/10.1371/journal.pone.0240328.s001
https://doi.org/10.1371/journal.pone.0240328.s002
https://vimeo.com/409256777
https://github.com/LACourtenay/GMM_Measurement_Accuracy_Tools
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Abstract

Modern day investigation in fields of archaeology and palaeontology can be greatly charac-

terised by an exponential growth of integrated new technologies, nevertheless, while these

advances are of great significance to multiple lines of research, their evaluation and update

over time is equally as important. Here we present an application of inter and intra-observer

analysis in taphonomy based geometric morphometrics, employing robust non-parametric

statistical analyses for the study of experimental carnivore tooth pit morphologies. To fully

understand the influence of measurement errors in the collection of this data, our statistical

assessment was performed on fully superimposed, partially superimposed and raw land-

mark coordinates collected from 3D surface scanning. Experimental samples used to

assess these errors includes wolf and dog tooth pits used in modern day ecological livestock

predation analysis. Results obtained from this study highlight the importance of landmark

type in the assessment of error, emphasising the value of semi-landmark models over the

use of ambiguous Type III landmarks. In addition to this, data also reveals the importance of

observer experience for the collection of data alongside an interesting increase in error

when working with fully superimposed landmarks due to the “Pinocchio Effect”. Through this

study we are able to redefine the geometric morphometric models used for tooth pit morpho-

logical analyses. This final hybrid Type II fixed landmark and semi-landmark model presents

a significant reduction in human induced error, generating a more metrically reliable and rep-

licable method that can be used for data pooling in future inter-institutional research. These

results can be considered a fundamental step forward for carnivore inspired studies, having

an impact on archaeological, palaeontological, modern-day ecological research as well as

applications in other forensic sciences.
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1. Introduction

The identification and analysis of the Bone Surface Modifications (BSMs) produced by differ-

ent taphonomic agents is a fundamental component in modern archaeological, palaeontologi-

cal and, more recently fields of applied forensic sciences. Among the different types of BSMs,

in prehistory tooth marks present valuable information that greatly contribute to the under-

standing of site formation processes, palaeolandscapes and their associated ecologies. Under

this premise, many authors have paid particular attention to the different tooth marks that dif-

ferent animals may produce, whether this be for the consumption of meat or other practices of

biological origin such as osteophagia or general foraging activities.

Among tooth mark studies, mammalian carnivores are a particularly important protagonist

in archaeological research [1–5], considering their competition for resources with hominins

throughout the Pleistocene. Interestingly herbivores [6–8], omnivores [9, 10], insects [11], and

birds [12, 13], are also known modifiers of osteological remains, causing some confusion in

the classification and interpretation of BSMs. Rodents such as the porcupine (Hystrix sp.) are

an additional well documented bone accumulator [4, 14–16], proving to be problematic agents

in the interpretation of faunal accumulations. Likewise, chondrichthyans [17, 18] as well as

large [19, 20], and very large reptiles [21–23], are also of great importance especially in paleon-

tological research. Last but not least, human tooth modifications to bone are also a compelling

line of investigation with great value in archaeology [24, 25].

Through these studies, current understanding of carnivore BSMs enumerate 4 main types

of alterations produced by teeth [1, 5]. These include rounded circular depressions caused by

the direct imprint of the cuspid on bone (pits); elongated depressions with a circular base pro-

duced by the dragging of teeth across the cortical surface (scores); circular holes produced by

the direct penetration of the tooth through the cortical walls (puncture); and the progressive

deletion of large portions of bone through continuous chewing (furrowing).
To date a great deal of investigation has focused their efforts on the systematic study of pits

and scores. This type of research has gone through numerous different phases, starting with a

simple qualitative in-visu characterisation of these traces [1–5, 17, 18, 22, 23], to a more in

depth integration of quantitative analyses [10, 21, 25–29]. In many cases, the use of metric vari-

ables such as the length and width of tooth marks have proven valuable variables in the inter-

pretation of archaeological and paleontological sites [19, 30–34, inter alia]. Nevertheless, a

common limitation noted by most is the ability to go beyond the size of the carnivore chewing

and specifically identify the agent(s) present in a site.

New possibilities have recently been made available through Geometric Morphometric

Methods (GMM). GMM are a powerful multivariate statistical toolset for morphological anal-

yses [35, 36], originating primarily from fields of biology, evolutionary sciences, systematics,

and physical anthropology [37–44]. Outside of anatomy, however, GMM has had other suc-

cessful integrations into other aspects of archaeology, such as the study of lithic materials [45,

46, inter alia].

For geometric morphometric analysis, the identification and quantification of points of

interest, known as landmarks, are required. These points can be defined as “a point of corre-

spondence on an object that matches between and within populations” [47: pg. 3]. One advan-

tage of landmarks is that they can either be recorded as 2D or 3D coordinates in space,

providing a direct means of visualising variations between morphologies through the distor-

tion or displacement of each landmark on each individual [48, 49]. The configuration of these

points in space additionally present the advantage of preserving the full geometry of the speci-

mens being studied [37]. Finally with the introduction of powerful 3D modelling equipment

and methodological protocols, the capturing of morphological data is much more precise.
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In BSM taphonomy, GMM were initially introduced as a means of quantifying cut mark

morphologies for both 2D derived data [50] and entire 3D models [51]. These advances have

obtained exceptional resolutions, presenting means of identifying the lithic tool and raw mate-

rial used to produce each cut mark in archaeology [50–52, inter alia], while also arising in

forensic research for sharp force trauma identification [53, 54, inter alia]. Likewise, initial

efforts in the quantification of tooth score and pit morphologies reached up to 80% classifica-

tion rates differentiating between carnivore agencies [55–58], with Machine Learning algo-

rithms obtaining > 95% accuracy [58, 59].

Regardless of this success, however, it is important to consider the value of the landmark models

being used for geometric morphometric data collection. To name one primary issue, landmarks

can be further divided into three different types; easily locatable landmarks (Type I) and landmarks

whose location are more ambiguous (Types II and III). Type I landmarks in biology are usually

anatomical features of a precisely defined nature (e.g. tendon insertions), while Type II landmarks

are defined by local properties (e.g. maximum curvature) and Type III landmarks are constructed

points across the structure (e.g. a centroid) [35, 47: pg. 3–4]. From this concept, each type of land-

mark possesses a certain degree of error and subjectivity that must be addressed [60, 61]. Possible

issues can be extrapolated to include; the experience of the researcher placing the landmark and

analyst inconsistencies throughout measuring sessions [62–69]; the natural variability and preser-

vation rate of the landmark itself [62, 70–73]; the landmark’s definition and how easy it is to pin-

point [60–62, 67, 70]; and finally the precision of the measuring device being used [67–69].

Similarly, variability according to inter- and intra-observer error additionally has a signifi-

cant effect on the comparison of information produced in different studies [67]. The ability to

share data is a fundamental component of modern day research [74], especially in areas where

accessibility to certain types of data is costly. This is a considerable issue when considering

data derived from carnivore feeding, where in many cases large sample sizes are hard to obtain

or access to wild animals may not be easy for researchers who reside on different continents

[75]. Moreover, special care must be taken when working with animals, considering the condi-

tions required to ensure correct welfare practices [76]. Under this premise, the ability to share

data must be considered fundamental in order for research to advance.

While some initial approximations have been made to assess the reliability of geometric

morphometric models in carnivore BSM analyses [55: pg. 97, 57: S2 Appendix], an in-depth

study is yet to be carried out. For example, the current model for tooth pit analyses is known

to produce highly complex dataset of high dimensionality. One particular issue with these

datasets also includes the low proportion of cumulative variability represented by each variable

[59]. Moreover, tooth pit models are based primarily on Type III landmarks, some of which

are questionably much harder to locate than others. To ensure the reliability of this methodo-

logical approach, and where possible improve its precision, a detailed assessment is necessary.

The present study thus demonstrates how a detailed revision and update of Aramendi et al.

[55]’s original model can facilitate future analyses of carnivore tooth pits with greater statistical

reliability and accuracy. This in turn can be considered an important obstacle to supersede in

order to make carnivore tooth mark data readily available to other researchers. Such advances

are of great value to the study of carnivore BSMs; applicable to archaeological, palaeontological

and modern day ecological research.

2. Methods

2.1. Tooth mark samples and digitisation

A total of 60 carnivore tooth pits were studied and compared for the purpose of this study. All

marks were collected on the long bone diaphyses of large sized animals, including tibiae and
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radii. Diaphyses were chosen considering their greater density than epiphyses and are thus

more likely to survive during carnivore feeding. Samples were produced in a controlled setting

and include tooth marks produced by Canis lupus signatus wolves (pits = 30) and an Irish Set-

ter gundog (pits = 30). Tooth mark samples from both carnivores were obtained in a con-

trolled setting during the feeding of these animals. For the case of wolves, these samples were

obtained from semi-captive animals (>1000m2) from the Cabárceno natural park (Cantabria,

Spain, http://www.parquedecabarceno.com) following standard feeding protocol established

by the park. Wolves were left with the bones for 1 week before the samples were recollected by

park employees. In the case of gundog tooth samples, bones were provided using product

obtained from a local butcher. In this case, bones were left with the dogs for less than a day in

an equally controlled environment. All samples were donated for use in the study, and no per-

mits were required for their collection. Once collected, if necessary bones were cleaned in boil-

ing water prior to analysis.

Each of these samples were originally studied by Yravedra et al. [58], identifying significant

differences in tooth pit morphology for the identification of livestock predation in Europe.

These bone surface modifications can thus be used as a control sample considering how mor-

phological variations are already known in detail.

Digital reconstructions (Fig 1) of each mark were performed using the DAVID SLS-2 Struc-

tured Light Surface Scanner located at the TIDOP Research Group of the Higher Polytechnic

School of Ávila (University of Salamanca, Spain). Equipment was calibrated using a 15 mm

marker board while both the projector and the camera were equipped with additional macro-

lenses (x2 to x10) for optimal resolution at microscopic scales [77]. Digitisations using this

equipment are carried out in ca. 1 minute producing a point cloud density of up to 1.2 million

points.

Fig 1. A graphical description of the digital reconstruction protocol used in the present study; producing 3D models of carnivore tooth

marks on bone according to Maté-González et al. [77].

https://doi.org/10.1371/journal.pone.0240328.g001
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2.2. Geometric morphometric data collection

For the purpose of this study, landmark data collection was performed by three separate indi-

viduals (A1-3) with varying degrees of experience. The first analyst (A1) is an experienced

taphonomist, familiar with the different types of bone surface modifications produced by car-

nivores, yet has no prior experience working with geometric morphometric data. This analyst

was chosen as a true analogy of a researcher in taphonomy who may be interested in applying

GMM to their own analyses. The second analyst (A2), on the other hand, is a specialist in

remote sensing and the handling of three-dimensional data, having worked in the past with

geometric morphometric data. Finally, the third analyst (A3) is both a specialist in taphonomy

and has the greatest extent of experience working with geometric morphometric data.

The main landmark configuration used for this study was that proposed by Aramendi et al.

[55], consisting in a mixture of 17 fixed Type II and Type III 3D landmark points on the exte-

rior and interior surfaces of each pit (Fig 2A). Each of the analysts performed collection of

landmark data in separate locations, all using the free Landmark Editor software v. 3.0.0.6 [78].

Before data collection began, each of the participants were provided with the original paper

[55] describing the landmark configuration to be used, alongside some general instructions on

how to use the software. Throughout the process, none of the participants were allowed con-

tact during the procedure so as to avoid influencing their placement of points.

To ensure an identical orientation of the pit by each observer, thus facilitating any conse-

quent analyses, the only additional instruction provided was on how to identify the position of

landmark n˚1. Landmark n˚1 was thus defined as the point along the axis marking the maxi-

mum length furthest away from the perpendicular axis marking the maximum width.

Once 3D landmark data had been collected by each of the analysts, coordinates were format-

ted and imported into R v. 3.5.1. (https://www.r-project.org/) for further statistical processing.

2.3. Inter- and intra-observer analyses

As described by Cramon-Taubadel et al. [65], four main approaches exist for the comparison

of inter and intra-observer errors. The first, and arguably most common approach, consists in

projecting repeated measurements onto a common coordinate system [79]. This is most com-

monly performed through Generalised Procrustes Analyses (GPA) [41, 79, 80], consisting in a

series of superimposition procedures, including scaling, rotation and translation. If after GPA

the measured landmarks fall into a suitable range of variation, then the configuration can be

considered reliable. The second method employs Euclidean distances between repeat measure-

ments and the centroid of the configuration to assess the relative repeatability of each land-

mark [38]. The third approach consists in the repeated digitisation of a specimen that is held

in a constant orientation, thereby directly assessing the error of a landmark coordinate

through variation in landmark location [81]. The final approach consists in the partial super-

imposition of landmark configurations so as to reduce the impact of the “Pinocchio effect”
[82], a phenomenon described by the distortion of measurements influenced by scaling proce-

dures in GPA from the first and second approaches [65].

For the purpose of this study, a mixture of these approaches were employed on the analysis

of observers studying different carnivore tooth pits. For the first part of these analyses, Euclid-

ean distance calculations between points placed by each analyst were performed prior to any

superimposition procedures. This was carried out on the raw coordinates obtained directly

from the 3D models, providing a metrically accurate true approximation in millimetres to the

margin of error of each landmark [81]. Additional calculations for inter-analyst variability in

raw feature space was performed by calculating the Euclidean distance between the point

placed by each analyst and the centroid between all three analysts [69].
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This was followed by the full superimposition of landmarks through GPA (shape space) and

the calculation of mean reference configurations for each of the analysts separately, the carni-

vore samples, and for the entire sample as a whole. Principal Components Analyses (PCA)

were then performed to examine the distribution of specimens in morphospace. If error

among analysts is low, PCA should present a tight clustering of individuals regardless of the

analyst recording the data. From the derived PC scores, Multivariate Analyses of Variance

(MANOVA) tests were performed to statistically assess these variances. For MANOVA, either

the “Hotelling-Lawley” or “Wilk’s Lambda” formulae were used for homogenously and inho-

mogeneously distributed coordinates respectively. For homogeneity testing, both numerical

tests and Quantile-Quantile (Q-Q) plots were used on landmark point clouds, PCA results and

distance calculations to avoid issues induced by sample size [83].

Fig 2. A detailed graphical description of the landmark models employed within this study. (A) The original

17-Landmark model [51], placed on the pit presented in (B) and (C). (D) The detailed description of the precise

locations of landmarks 1 to 5 in the revised version of this model.

https://doi.org/10.1371/journal.pone.0240328.g002
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From the fully imposed feature space, Procrustes distances were also calculated between a

reference shape and the configuration of landmarks placed by each of the analysts. Here the

mean configuration of all individuals was used as the reference shape. From these Procrustes

distances, further statistical tests and metrics were used to evaluate the amount of error and

variability produced. While most traditional studies of intra and inter-observer measurement

errors represent within-group variance as an estimation of the within-observer mean squares

or mean distances [e.g. 63, 66, 67], in this study robust statistical metrics were employed [83],

using the Biweight Midvariance (BWMV) (Eqs 2–4), calculated via the median of errors and

their consequent Median Absolute Deviation (MAD) (Eq 1).

MAD ¼ mðjxi � mxjÞ ð1Þ

BWMV ¼
n
Pn

i¼1
aiðxi � mÞ

2
ð1 � U2

i Þ
4

Pn
i¼1
aið1 � U2

i Þð1 � 5U2
i Þ

� �2
ð2Þ

ai ¼
1; if jUij < 1

0; if jUij � 1
ð3Þ

(

U ¼
xi � m
9MAD

ð4Þ

MAD is a calculation of the median (m) of the absolute deviations from the data’s median (mx)
which is normally reported as a normalized value (NMAD). Normalisation of MAD is calcu-

lated through multiplying by the constant 1.4826. This is carried out to provide a scale factor

of the true domain’s standard deviation, using a 0.75 percentile as reference (Eq 5). Under this

premise, MAD values are scaled by a factor of (Eq 5):

1

F� 1 3

4

� � � 1:4826 ð5Þ

Where F-1 is the inverse cumulative distribution function of a standard Gaussian distribution

[84].

NMAD has the distinct advantage of being a more robust measurement that is resilient to

outliers in a dataset [83]. This is particularly useful for the analysis of datasets that do not fol-

low a Gaussian distribution. The BWMV (reported as its square-root) is a further non-

parametric measurement that additionally presents robustness of efficiency, proving a valuable

substitute in non-parametric calculations [85]. NMAD and the square-root of the BWMV

have proven to be important variables in accuracy control and system assessment analysis in

remote sensing applications [83, 85–89]. Because of this, these metrics were employed as a sub-

stitute for standard deviation error calculations where Gaussian distributions were not

detected, while the central tendency is reported as the median. Nevertheless, where deemed

necessary by the normality of the dataset’s distribution, further mean and standard deviation

calculations were also reported.

Likewise, while most traditional analyses of observer measurement errors employ the use of

Type II Analysis of Variance (ANOVA) calculations or Tukey’s pairwise post-hoc comparisons

[63, 64, 66–68, 90, 91, inter alia], these tests are statistically and mathematically conditioned by

the underlying assumption of normality in the data’s distribution [92, 93]. In cases where dis-

tances and errors do not fit a Gaussian distribution, parametric ANOVA tests are unlikely to

truly capture the true nature of variances in sample distributions [94]. Because of this, when
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non-Gaussian distributions were detected, the present study employed the use of an adaptation

of ANOVA known as a non-parametric Kruskal-Wallis robust statistical test to assess differ-

ences in distribution medians [95; pg. 585, 587 & 598]. This test employs a rank-based H statis-

tic, similar to the more traditional x2 or F statistic, that is able to “detect the kinds of difference

of real interest” while making “only general assumptions. . . about the kind of distributions

from which the observations come” [95; pg. 585].

Further testing considered the use of Repeatability Measures (RM); a calculation of the pro-

portion of variance due to true variation among individuals [63, 66]. RMs can be defined as

calculations involving the sum of squared distances (d 2) through (Eq 6):

RM ¼

1

n� I

PJ

j¼1

d2
j

 !

1

n� I

PI

i¼1

PJ

j¼1

d2
ij

 ! ð6Þ

where n is the total number of individuals in all of the samples, I is the total number of samples

and J is the number of individuals in each of the samples. d values used to calculate this metric

were the Procrustes distance. The RM metric is reported as a value ranging from 0 to 1; the lat-

ter indicating variance in measurements being attributable to the analyst under study (Aj),

rather than the true variation within the dataset [63].

From Procrustes distance calculations, further analyses included the generation of

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) trees. UPGMA results

were analysed according to tree topologies, testing to see whether tooth pits clustered together

according to the animal producing the tooth mark or the observer recording landmark data.

Neighbour Joining (NJ) tree algorithms were also contemplated, nevertheless in this case NJ

proved harder to read and was therefore discarded

Following this, two unsupervised Machine Learning algorithms were trained on fully super-

imposed coordinate data to test and see whether landmarks could be clearly defined through

pattern recognition techniques. These analyses were performed in Python v.3.7 (http://www.

python.org), using the SciKit-Learn package. Python applications were additionally imple-

mented into the rest of the R workflow using the reticulate package and the RStudio develop-

ment environment (https://rstudio.com/).

The first algorithm used was a Density-Based Spatial Clustering Algorithm with Noise

(DBSCAN). DBSCAN employs a series of non-parametric mathematical and logical theories

that differentiate between points that can be classed as reachable from its clustering core, and

those that are considered as outliers or noise points ([96]: {P�D|8|i: p =2 Ci where point p in

dataset D is not associable to any of the clusters C). DBSCAN requires the definition of 2

hyperparameters; the ε value defining the neighbourhood of a point and the minimum num-

ber of points (MinPts) that are required to form a cluster (i.e. the density of points). MinPts

was set to 30, considering each of the analysts were required to digitise 30 individuals per sam-

ple for this study. ε values were established in accordance with both the corresponding MinPts

value, as well as the nature of the dataset’s distribution. This value can be objectively defined

mathematically using k-distance graphs according to the nearest neighbour [96], while the

“elbow-joint” method can be used to establish the optimal ε value for a dataset through calcu-

lating the point of maximum curvature in the plotted k-distance graph. The final ε value for

this study was thus calculated at 0.04 using the “kneed” algorithm in Python [97].

The second pattern recognition algorithm used was the non-parametric Mean-Shift algo-

rithm (MS). MS, much like DBSCAN, works through calculating areas of high point density
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with the use of a kernel function, also allowing for the mathematical detection of outliers [98–

100]. MS only requires the definition a single hyperparameter, known as the bandwidth, which

is used to define the size scale of the algorithm’s internal kernel function. In this study, the

bandwidth was established using Scikit-Learn’s bandwidth estimation functions, employing a

calculated quantile value of 0.05 to fine tune this estimation.

The objectives of using pattern recognition algorithms consisted in defining the degree of

separation between landmarks. Landmarks that can be clearly defined by all three analysts

should theoretically appear clearly differentiable by both algorithms with as little noise as pos-

sible. The results produced by these algorithms were evaluated by considering the number of

identified clusters, the number of noise points, and the number of points that were correctly or

incorrectly grouped with other points within each cluster.

The final part of this analysis performed calculations on partially superimposed landmarks,

carried out by removing the scaling procedure from GPA (form space). This ensures that each

of the configurations are centred and superimposed without creating statistical noise from the

scaling process and thus factoring in the possible distortion that could be created by the

“Pinocchio effect” in GMM [65, 82]. On partially superimposed data, PCA and Procrustes dis-

tance calculations were performed. From these distances, UPGMA trees were additionally

calculated.

2.4. Semilandmark models

Once the accuracy and reliability of each landmark had been assessed, trials were performed

removing landmarks most prone to inter and intra-analyst error and replacing them with

semilandmarks (S1 Appendix) [35, 73, 101]. Semilandmarks are computed equidistant points

that slide along the surface of the 3D model [73]. This overcomes many issues in accuracy

when dealing with features that can only be represented by Type III fixed landmarks. Consid-

ering these landmarks are most prone to error and often incorrectly placed [61], substituting

these points with semilandmarks presents a more efficient means of objectively quantifying

complex morphological features such as curves and irregular surfaces [68].

For the process of placement of these semilandmarks, patches were drawn over each pit in

the Landmark Editor v.3.0.0.6 software and different numbers of semilandmarks were com-

puted. Trials were performed to find the optimal number of semilandmarks for tooth pit anal-

ysis, including 5x5, 6x6, 7x7, 8x8, 9x9 and 10x10 configurations.

The final part of this study consisted in both a full and partial GPA of the final landmark

data to assess the variances in shape and form space captured by the newly updated landmark

configurations. PCA were then performed to represent these differences graphically and to

reduce the dimensionality of the dataset for further multivariate statistical processing. Com-

parison of PCA results reported the dimensionality of the consequent feature space (Rn), the

proportion of variance represented by the first 2 PC scores as well as the cumulative propor-

tion of variance represented by the first 10 PC scores. These were followed by MANOVA cal-

culations to assess the degree of separation between wolf and dog samples according to the

landmark configuration used. Finally, a Canonical Variance Analysis (CVA) was performed,

alongside calculations of Mahalanobis and Procrustes distances and permuted (n = 999) p-val-

ues to evaluate the degree of separation between the samples.

3. Results

3.1. Inter- and intra-observer errors

Throughout the study, clear patterns emerged indicating those landmarks that were easier to

locate and those that were more difficult. In all three trials, A1-3 noted difficulties on locating
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Landmarks (LM) 14 through to 17, while LM1-5 were considered the most straightforward.

A1-3 also noted that LM6-13 were easy to locate once LM1-4 had been clearly established.

Nevertheless, in-visu inspection of each of the measurements taken on the 3D models docu-

mented that some analysts were more meticulous upon placing these points than others. Inter-

estingly, A1 and A2 noted that wolf tooth marks were harder to process, observing that the 3D

models obtained from this carnivore presented weaker topographical variations and were thus

harder to analyse. Dog tooth marks on the other hand were noted as much deeper, easier to

recognise and therefore digitisation procedures were easier overall. While the variations

between these marks may be due to a number of variables dependent on the samples used,

these go beyond the scope of the present study and are pending further future research.

3.1.1. Raw measurement calculations. Raw errors obtained directly from the 3D models

indicate an error range of 1.95 mm across the entire data set (Table 1: Min error docu-

mented = 0.095 mm, Max = 2.045 mm). Mean and Median errors for all individuals were

reported at 0.343 mm and 0.303 mm respectively, with a NMAD of 0.119 mm and square root

of the BWMV at 0.121 mm. In all cases, no significant differences were detected when compar-

ing the animal being processed by each analyst (Fig 3: Chi2 = 0.027, p = 0.8682). Nevertheless,

in accordance with the personal observations by A1 and A2, errors calculated on wolf tooth

mark samples still present a slightly more varied distribution as opposed to dogs (Fig 3: Wolf

Skewness = 4.28, Dog Skewness = 1.61). This indicates that wolves may be harder to process.

When separating samples according to the observer (Fig 3), a tendency can be observed for

larger errors to be recorded when comparisons include the least experienced individuals, nev-

ertheless, kruskal-wallis testing indicates no significant differences (Chi2 = 0.98, p = 0.61).

Further experimentation with the number of landmarks included reveal that as LM14-17

are removed, error calculations drop to less than half (Table 1: Median = 0.146 mm,

NMAD = 0.077 mm, BWMV = 0.070 mm). Likewise, when only considering LM1-5, errors

documented on wolf and dog samples are considered the most equivalent (Chi2 = 0.0018,

p = 0.9658). Moreover, when considering each of the LMs separately (Table 2), LM14 presents

the highest recorded error among analysts (Median = 0.352 mm, NMAD = 0.292 mm,

BWMV = 0.175 mm) while LM5 the lowest (Median = 0.175 mm, NMAD = 0.122 mm,

BWMV = 0.075 mm).

When analysing inter-analyst variability according to each individual landmark (Fig 4,

S1-S4 Tables of S1 File), errors begin to appear indicating a significant negative correlation

between the experience of the analyst and the error produced (Kendall’s τ = -0.03, p = 0.017),

proving the error to be significantly lower in analysts of more experience working with GMM

than those in the process of learning. Nevertheless, differences in inter-analyst error are only

Table 1. Overall documented metric errors according to the landmarks included in the study and the animal being analysed. BWMV values are reported as the

square root of the BWMV. All measurements are recorded in mm. For frame of reference; the studied pits range from 1.176 to 4.448mm in total length and 0.8382 to

3.5128mm in total width.

Min Sample Mean Standard Deviation Median NMAD BWMV Max

LM 1–17 Absolute 0.095 0.343 0.227 0.303 0.119 0.121 2.045

Wolf 0.101 0.363 0.291 0.305 0.128 0.130 2.045

Dog 0.095 0.322 0.134 0.303 0.109 0.113 0.966

LM 1–13 Absolute 0.048 0.172 0.084 0.146 0.077 0.070 0.464

Wolf 0.053 0.172 0.090 0.143 0.075 0.084 0.448

Dog 0.048 0.171 0.078 0.158 0.067 0.070 0.464

LM 1–5 Absolute 0.002 0.172 0.107 0.139 0.083 0.092 0.586

Wolf 0.002 0.177 0.120 0.139 0.081 0.097 0.586

Dog 0.009 0.166 0.094 0.140 0.085 0.087 0.509

https://doi.org/10.1371/journal.pone.0240328.t001
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revealed to be significant when considering wolves separately (S3, S4 Tables of S1 File; Chi2 =

11.6, p = 0.003), while landmark placement appears much more consistent among analysts

when analysing dogs (S3, S4 Tables of S1 File; Chi2 = 0.36, p = 0.8).

3.1.2. Fully superimposed calculations. Fully superimposed coordinates present highly

non-Gaussian spatial distributions on all accounts (Shapiro w> 0.78, p< 2.2e-16), while dis-

tribution of landmark centroids reveal interesting differences among the distribution of land-

marks according to the analyst (Figs 5 and 6). In most cases, the greatest differences can be

detected for LM14-17. Moreover, LM14-17 can clearly be seen to present the highest differ-

ences among analysts by observing point cloud distributions (Fig 5) as well as differences in

centroid location (Fig 6). Likewise, LM1 to LM5 appear to be the most consistent.

PCA results on superimposed coordinate data (Fig 7 and S1 Fig of S1 File) reveal an inho-

mogeneous (Shapiro w = 0.99, p = 0.0002) wide dispersal of points with no clustering occur-

ring according to the pit being studied (S1 Fig of S1 File). Clear differences among the analysts

Fig 3. Boxplot representing the distribution of metric errors according to the analyst placing landmarks and the

animal being studied.

https://doi.org/10.1371/journal.pone.0240328.g003
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can be observed with A1 and A2 occupying a vast area of the represented feature space while

A3 presents the least amount of variation (Fig 7). MANOVA calculations obtained from this

data indicate significant differences between observers (p = 0.001). While significant differ-

ences are also detected between wolf and dog samples (p = 0.002), the latter p values are slightly

Table 2. Metric errors according to the landmark being placed. BWMV values are reported as the square root of the

BWMV. All measurements are recorded in mm. For frame of reference; studied pits range from 1.176 to 4.448mm in

total length and 0.8382 to 3.5128mm in total width.

Landmark Median NMAD BWMV

LM1 0.282 0.191 0.108

LM2 0.279 0.216 0.121

LM3 0.324 0.211 0.125

LM4 0.342 0.229 0.137

LM5 0.175 0.122 0.075

LM6 0.279 0.162 0.103

LM7 0.287 0.176 0.111

LM8 0.315 0.216 0.123

LM9 0.271 0.214 0.116

LM10 0.321 0.233 0.121

LM11 0.288 0.221 0.132

LM12 0.339 0.209 0.135

LM13 0.297 0.172 0.114

LM14 0.352 0.292 0.175

LM15 0.26 0.189 0.122

LM16 0.278 0.203 0.123

LM17 0.315 0.202 0.13

https://doi.org/10.1371/journal.pone.0240328.t002

Fig 4. Inter-analyst raw measurement errors for each of the landmarks. Measurements represent the square root of the BWMV of Euclidean distances

(mm) from each of the points placed by the analyst to the landmark’s absolute centroid by all three analysts.

https://doi.org/10.1371/journal.pone.0240328.g004
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higher indicating the observer to have a stronger weight over variations detected in PCA than

the carnivore.

Fig 5. Fully superimposed landmarks in shape space and 95% Confidence ellipses calculated for spatial

distributions (A1 = Red, A2 = Blue, A3 = Black).

https://doi.org/10.1371/journal.pone.0240328.g005

Fig 6. Deviations of landmark centroids calculated from mean configurations in fully superimposed shape space. The origin of each arrow marks

the overall centroid for the corresponding landmark in the absolute mean configuration. The end of each arrow marks the position of the same

landmark’s centroid according to the analyst.

https://doi.org/10.1371/journal.pone.0240328.g006
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Procrustes distance calculations (Table 3) reveal a mixture of significant and insignificant

differences among the different analysts (Table 4), while comparisons with A1 and A3 show

the greatest degrees of variation. These differences are equally evident when comparing carni-

vore samples separately. Overall distances highlight A3 to be the analyst closest to the absolute

mean configuration presenting the least amount of intra-analyst variability (RM = 0.251). Nev-

ertheless, this highlights how analysts with greater experience in GMM are significantly sepa-

rable from those beginning (Table 3). RMs in general (A1 = 0.403, A2 = 0.357, A3 = 0.251)

Fig 7. Scatter plot of principal components analysis results for fully superimposed landmark coordinates. Ellipses represent 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0240328.g007
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indicate that a great degree of variation detected within the samples is due to the analyst rather

than the true variation produced by the carnivores. This is especially worrying considering

how this variation increases according to the experience of the analyst. UPGMA tree topolo-

gies additionally reflect this, with absolutely no grouping according to the carnivore under

study (S2 Fig of S1 File), and a slight agglomeration of A3 individuals grouped towards the

middle of the tree’s branches.

Pattern recognition results classify a high number of points as noise (Fig 8 and S3 Fig & S5

Table of S1 File; DBSCAN = 74, MS = 250), with the least amount of noise detected when only

considering LM1-5 (Fig 8E and 8F). Likewise, the highest misclassification rates appear when

LM14-17 are included in the models (S5 Table of S1 File; DBSCAN = 2110, MS = 167). Visu-

ally, while MS is still able to clearly define the 17 landmarks (Fig 8B), misclassification and

noise rates are considerably higher. DBSCAN on the other hand appears much more suscepti-

ble to confusion created by density, only clearly identifying points of interest when only LM1-

5 are included (Fig 8E). In both cases, pattern recognition helps identify 5 clear points of inter-

est that can be considered key landmarks (Fig 8E and 8F).

3.1.3. Partially superimposed calculations. Partially superimposed coordinates present

highly non-Gaussian spatial distributions on all accounts (Shapiro w> 0.94, p< 1.99e-10).

Procrustes distance calculations (Table 5) reveal insignificant differences among all three ana-

lysts (Table 6), while comparisons with A1 and A3 show the greatest degrees of variation. This

is observed when comparing both carnivore samples together as well as separately (Table 6).

Table 3. Median, NMAD and square root of the BWMV values for Procrustes distances in fully superimposed shape space between each of the tooth pits processed

by the analysts and the mean configuration.

Analyst Median NMAD BWMV

Overall A1 0.230 0.071 0.062

A2 0.205 0.041 0.051

A3 0.165 0.028 0.038

Wolf A1 0.219 0.080 0.067

A2 0.197 0.047 0.057

A3 0.155 0.028 0.034

Dog A1 0.233 0.061 0.054

A2 0.208 0.044 0.052

A3 0.171 0.024 0.037

https://doi.org/10.1371/journal.pone.0240328.t003

Table 4. Kruskal-Wallis Chi2 and p-values comparing Procrustes distances in fully superimposed shape space

between each of the analysts and the overall mean configuration. Calculations are provided for both carnivores as

well as wolf and dog samples separately. Significant p-values under the standard alpha (α) threshold of 0.05 are marked

in bold.

Chi2 p-Value

Overall A1 vs A2 1.56 0.21

A1 vs A3 20.23 6.9e-06

A2 vs A3 16.24 5.6e-05

Wolf A1 vs A2 0.42 0.52

A1 vs A3 9.00 0.0027

A2 vs A3 7.97 0.0047

Dog A1 vs A2 0.50 0.48

A1 vs A3 10.29 0.0013

A2 vs A3 7.89 0.0050

https://doi.org/10.1371/journal.pone.0240328.t004
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Fig 8. Unsupervised DBSCAN (A, C, E) and MS (B, D, F) pattern recognition results trained on fully superimposed

landmark coordinates. Detected clusters are marked by their corresponding colours and calculated convex hulls.

Points classified as noise are marked in black. The centroid or point of interest for each cluster is marked by a single

black �. (A, B) LM1-17; (C, D) LM1-13; (E, F) LM1-5.

https://doi.org/10.1371/journal.pone.0240328.g008
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Considering each of the analyst’s deviation from the mean reference configuration (Table 5),

A3 is seen to present the smallest differences and the greatest consistency when placing land-

marks (RM = 0.301). A2 (RM = 0.328) on the other hand is frequently seen separate while A1

presents the least amount of repeatability (RM = 0.383). Considering all three RM scores, a

moderate degree of variation is detected within the sample due to the analyst rather than the

true variation produced by the carnivore. UPGMA tree topologies additionally reflect this,

with no grouping according to the carnivore under study (S4 Fig of S1 File).

PCA results on partially superimposed coordinate data (Fig 9 and S1 Fig of S1 File) yet

again reveal an inhomogeneous (Shapiro w = 0.90, p = 2.2e-16) distribution of points. As

opposed to fully superimposed data (Fig 7), however, clustering according to the pit being

studied is stronger (S1 Fig of S1 File). At no point, however, is the grouping of points as strong

as should be expected, with great variation within the represented feature space being product

of the analyst. Once again A3 occupies a much more restricted proportion of feature space,

however the difference between distributions is not as extreme. MANOVA calculations indi-

cate equally significant differences between observers as in fully superimposed shape space

(p = 0.001), however differences between animal samples remain significant regardless of the

observer (p = 0.001).

3.2. Overall evaluation of the 17-landmark model

Comparison of results obtained through raw coordinate data as well as fully and partially

superimposed landmarks are sufficient in drawing two main conclusions about the 17

Table 5. Median, NMAD and square root of the BWMV values for Procrustes distances in partially superimposed shape space between each of the tooth pits pro-

cessed by the analysts and the mean configuration.

Analyst Median NMAD BWMV

Overall A1 1.056 0.375 0.410

A2 0.977 0.394 0.420

A3 0.962 0.362 0.329

Wolf A1 0.976 0.450 0.460

A2 1.083 0.445 0.383

A3 0.962 0.417 0.335

Dog A1 1.040 0.318 0.375

A2 0.959 0.351 0.447

A3 0.946 0.382 0.383

https://doi.org/10.1371/journal.pone.0240328.t005

Table 6. Median, NMAD and square root of the BWMV values for Procrustes distances in partially superimposed shape space between each of the tooth pits pro-

cessed by the analysts and the mean configuration.

Analyst Median NMAD BWMV

Overall A1 1.056 0.375 0.410

A2 0.977 0.394 0.420

A3 0.962 0.362 0.329

Wolf A1 0.976 0.450 0.460

A2 1.083 0.445 0.383

A3 0.962 0.417 0.335

Dog A1 1.040 0.318 0.375

A2 0.959 0.351 0.447

A3 0.946 0.382 0.383

https://doi.org/10.1371/journal.pone.0240328.t006
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landmark model proposed by Aramendi et al. [55]; (1) experience in GMM is a highly condi-

tioning factor in the amount of error produced within the model and (2) error is observed to

increase upon the inclusion of LM14-17.

While the observed error does not necessarily correlate with the type of landmark being

used (Kendall’s τ = -0.26, p = 0.14), Type III landmarks such as LM6-13 tend to present lower

degrees of error because their location is influenced by their spatial relationship with Type II

LM1-4. If we were to then exclude LM6-13, the weight of this correlation substantially

Fig 9. Scatter plot of principal components analysis results for partially superimposed landmark coordinates. Ellipses represent

95% confidence intervals.

https://doi.org/10.1371/journal.pone.0240328.g009
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increases (τ = 0.45, p = 0.09), arguing LM14-17 to be the greatest source of error. This logically

agrees with observations made by multiple authors on the value and accuracy of Type III as

opposed to Type II landmarks [60, 61, 72].

From a different perspective, while the relationship between experience and repeatability is

relatively clear and logical to assume [62–68], upon analysing RMs alone no reliable p values

can be used to quantify this correlation for this case study (τ = -1). When including the metric

errors and overall distances between configurations, however, correlations can be successfully

calculated supporting the aforementioned conclusions (Kendall’s τ = -0.03, p = 0.017).

Further in depth analysis of overall results presents A3 to be the most consistent in placing

landmarks regardless of the sample. Nevertheless, other underlying factors may be

Fig 10. Scatter plots for principal components analysis results comparing different landmark configurations for (Red) dog and (Black) wolf tooth pits.

(A) 17-Landmark model in (Left) shape and (Right) form. (B) 5-Landmark model in (Left) shape and (Right) form. (C) 30-landmark model in (Left) shape and

(Right) form. Ellipses represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0240328.g010
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conditioning some of the results that are harder to quantify. For example, A1 and A2 took little

time when placing landmarks (ca. < 1 min), taking a total of approximately 3 hours to process

the entire sample. A3 on the other hand took longer processing each pit (ca. > 1 min), and

took over twice as long to process the entire sample (approximately 6.5 hours). While the time

Fig 11. Distribution density plots for Canonical Variance Analyses in (A, C, E) shape and (B, D, F) form comparing (Red) dog and (Black) wolf tooth pits. (A,

B) 17-landmark model. (C, D) 5-Landmark model. (E, F) 30-Landmark model.

https://doi.org/10.1371/journal.pone.0240328.g011
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taken to process a model might not be the most important variable, here it can be argued that

elements of an observer’s personality are likely to take some effect in the results, as more metic-

ulous individuals can be seen to take longer and may handle the sample differently. These

observations, however, are more subjective and harder to model, stressing the need for analysts

to take exceptional care when processing each individual pit so as to avoid these types of error.

Observations regarding the “Pinocchio Effect” present notable differences between fully

superimposed, partially superimposed and raw data. With regards to geometric morphometric

data, PCA appears to be the test where differences become most notable (S1 Fig of S1 File),

with drastic changes to feature space appearing when including the scaling procedure in GPA.

Finally, considering the vast amount of data produced in this study, deductions can be

made supporting the decision of removing LM14-17 from future analyses so as to reduce sta-

tistical errors. On the other hand, while LM6-13 do not produce significant errors in analyses,

under the premise of reducing as much statistical noise as possible that may be dependent on

the analyst, we have decided to remove all Type III LMs from the rest of this study as well.

According to this decision, the definitive fixed Type II landmarks that will be used in our final

model will be LM1-5.

3.3. Landmark model comparisons

PCAs (Fig 10A) obtained by the original 17-Landmark model present a non-polarized mor-

phospace with relatively high overlapping of wolf and dog samples in both shape and form

space. The defined feature space described by each of these PCAs presents a high number of

dimensions in both shape (R44) and form (R51), representing low overall variability in the first

2 dimensions (shape = 35.39%, form = 74.65%). The first 10 dimensions represent a much

higher cumulative proportion of variance (shape = 83.78%, form = 94.39%), with MANOVA

results highlighting significant statistical differences between carnivore tooth samples in shape

(p = 0.001), but not in form (p = 0.059). CVA results obtained from this model present a much

clearer separation between samples (Fig 11A and 11B), with both significant Procrustes

(D = 0.072, p = 0.002) as well as Mahalanobis distances (D = 3.55, p< 0.0001).

Removal of Type III landmarks with the 5-Landmark model presents a slight increase in

overlapping in PCA (Fig 10B) of carnivore samples in a reduced number of dimensions for

both shape (R8, PC1&2 = 55.50%) and form (R15, PC1&2 = 80.67%). CVA additionally pres-

ents a significant reduction in both Procrustes (D = 0.064, p = 0.04) and Mahalanobis

(D = 1.26, p = 0.009) distances with high overlapping across graphs (Fig 11C and 11D). Like-

wise, MANOVA tests indicate differentiation between carnivores to be less clear when using

only LM1-5 (shape p = 0.029, form p = 0.039).

Of the 6 semilandmark models tried and tested, immediate improvements in results were

noted with the model employing a 5x5 net of semilandmarks with the 5 fixed Type II land-

marks (30 in total, S1 Appendix). PCA results (Fig 10C) display similar graphical results to the

original 17-landmark model, with a relatively highly overlapping non-polarized morphospace.

Nevertheless, inclusion of semilandmarks display a clear increase in the cumulative degree of

variation represented by each graph in both shape (R59, PC1&2 = 53.06%, PC1-10 = 92.60%)

and form (R60, PC1&2 = 81.38%, PC1-10 = 97.91%). These results directly indicate that semi-

landmark based models are able to increase the chance of finding structure within the data by

minimizing bending energy and thus reducing noise [72]. This in turn increases the possibility

of finding statistical separation between the samples. These results are also seen through CVA

results where clear separations between wolf and dog samples are noticeable (Fig 11E and

11F), with equally as significant Mahalanobis (D = 5.88, p< 0.0001) and Procrustes

(D = 0.067, p = 0.012) distance values. While CVA results are likely to be overestimate
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separation considering sample size and the increased number of variables when including

semilandmarks [102, 103], other statistical tests such as those obtained through MANOVA are

also able to highlight significant differences between samples in both shape (p = 0.004) and

form (p = 0.007).

PCA results do not vary to a significant degree upon increasing the number of semiland-

marks, with the total accumulative variance increasing by only 0.002% across the first 10 PC

scores using 36 semilandmarks. Beyond 49 semilandmarks, percentage of represented variance

even begins to decrease and MANOVA results also display poorer separation between samples.

Likewise, CVA results on the other hand deteriorate with the inclusion of more semiland-

marks, with less clear differences between groups. This is to be expected when considering the

sample sizes available, and thus number of semilandmarks should be reduced [102, 103]. This

concludes that the optimal statistical model for discerning between carnivore agencies remains

to be the 30-landmark model presented here (S1 Appendix).

4. Discussion and conclusions

Throughout the years, experimentation has become a fundamental component in archaeological

and palaeontological research. Needless to say, with the ever-growing realisation of the impact

true analogy has on experimental results, creating parallelisms with the fossil record is often diffi-

cult. Product of this is an increasing importance in the availability of experimental samples. This

is especially apparent in geographic regions where the present day wild fauna is drastically differ-

ent to that which existed over 10,000 years ago. In areas such as Europe, access to wild carnivores

such as hyenas, lions and leopards is particularly difficult, highlighting the need for collaborative

efforts in order to study the archaeological/palaeontological register effectively.

In archaeology/palaeontology, a possible response to this situation has been the collection

and pooling of morphometric datasets via online resources [104, 105 inter alia], while some

datasets are available through supplementary materials [e.g. 56–59]. Nevertheless, pooling of

data from different sources is often conflictive, and induced errors are likely to increment if

data collection is not strictly controlled [67]. Moreover, in many cases making 3D models

readily available often requires a certain degree of computational costs and obtaining permis-

sions to share these files can often be problematic. This latter point is unfortunately due to the

additional issue of competitivity amongst many research teams, making scientific progress

much more politically, rather than empirically, oriented.

In fields of data science, the sharing of information can be considered indispensable, con-

tributing to some of the most important advances in applied sciences. This is especially rele-

vant when confronting issues of generalisation in predictive modelling [106]. With the advent

of Domain Adaptation in computational learning [106, 107: pg. 526–531], the development of

artificially intelligent Transfer Learning [108, 109], and the creation of One-Shot/Zero-Shot

models [110–113], new possibilities for collaborative efforts in data science are now available

to solve many research questions. Similar significant advances throughMultimodal and Feder-
ated Optimization strategies present new possibilities for the collaborative integration of differ-

ent datasets [114–116]. Sharing information and training classification models over multiple

datasets in this manner presents the distinct advantage of protecting components of data pri-

vacy and overcoming issues presented by dataset centralisation [117].

Through more open-minded collaborations among teams, and greater efforts to make these

learning strategies available, it may be possible for archaeological and palaeontological

researchers to obtain similar success rates to other fields of science [118–120].

Nevertheless, in order for this to happen, careful attention must be paid to the statistical

quality of the datasets being used. While tooth pit analyses have been able to reach> 95%
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classification using GMMs [58, 59, 121], each of these studies have the distinct advantage of

landmark data being collected by a single experienced individual [personal communication

and direct participation]. Furthermore, while the original 17-landmark model was able to suc-

cessfully draw conclusions from each of these studies (with the inclusion of [58, 59, 121, 122]),

the integration of data produced here may increase the precision of these results. The results

presented within this research thus represent a means of removing as much analyst-induced

subjectivity as possible in the study of carnivore tooth pits. This is achieved through replacing

weak landmark points with more precise computational semilandmarks. Nevertheless, as seen

here, LM1-5 still present an important margin of error that must be confronted.

It is common knowledge that in-person training is the most valuable tool for obtaining

optimal results in any task. Such an observation has been proven true not only for geometric

morphometric research [121], but is also applicable to evolutionary theory [123, 124]. Like-

wise, the descriptive quality of any metric model is fundamental in its reproducibility. Under

this premise, so as to ensure reproducibility and accuracy, a visual guide to the proposed meth-

odological approach has been provided and is available at https://vimeo.com/409256777. This

is further accompanied by a detailed description of the fixed landmarks (LM1-5) employed in

this study (S1 Appendix), and with graphical representation in Fig 2D. Needless to say, on a

practical note the time and care taken to process a 3D model is clearly an important compo-

nent to consider. Although subjective, personal observations of the different analysts process-

ing the models revealed clear differences between some individuals based on how thorough

they were when handling the 3D models. These differences became increasingly obvious as

time went by in each work session. While experience is a clear variable of importance, we

strongly advise that even the most experienced observers carry out digitisation procedures as

meticulously as possible over numerous digitisation sessions and taking full advantage of the

tools in most 3D modelling software (e.g. measurement, zoom, pan, and rotating tools). While

it is true that repeatability measures are likely to be higher in computerised procedures [66,

69], which is one of the clearest advantages to the methodological approach presented here,

work ethic is still a valuable variable that needs to be controlled at all times.

Focusing specifically on the present study, human-induced landmark errors of the new pro-

posed model can be conclusively defined at 0.139 +/- 0.092 2 {0.002:0.586} mm (Median +/-
p

BWMV 2 {Min:Max}). This presents a total drop in error of 164 μm from the original

model which is extrapolated mainly from the statistically noisy landmarks LM14-17. As can be

seen by the error range intervals, differences between samples are highly skewed, supporting

our use for a robust statistical approach in defining the final model [83]. While the impact this

margin of error has on statistical results is arguably not likely to affect the model’s ability to

separate between carnivore samples (as seen through MANOVA results), it is important to

highlight the power that form has over shape in geometric morphometric analysis [47].

While Procrustes analyses are a valuable tool for most applied geometric applications [35,

65, 125, 126], it has been seen throughout our results how full Procrustes superimposition pro-

duces a notable statistical distortion that cannot be ignored in taphonomic GMM. This is

direct evidence of the power the “Pinocchio effect” can have on geometric morphometric data

(Current study: S1 Fig of S1 File; [65, 82]). Nevertheless, recent research into the power of

computational learning algorithms highlight the value of form data in the predictive modelling

of tooth pits [59]. This supports the removal of scaling processes for tooth pit classification

tasks, additionally providing an interesting reflection on form and shape theory in modern

morphometrics [127]. While it is also arguable that the increased presence of a Pinocchio effect
is product of the microscopic scale being used [64, 66, 70], we insist on our recommendations

that form data be used when working with decentralized pooled data for classification tasks on

tooth pits.
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Finally, the variability present in canid tooth marks is of increasing interest, considering the

statistical noise they are frequently noted to produce [28, 56–59]. As seen here both qualita-

tively and quantitatively, wolf tooth marks in general are harder to process and frequently pro-

duce an increase in error (Deviations from absolute error = {+4 μm : +14 μm}, Table 1). This is

primarily due to their more superficial nature and great variability which is an interesting

topic to note and should be explored in detail in the future [58], till then, caution is certainly

advised when working with this animal.

In conclusion, this study presents a detailed revision of the current methodological

approach available for discerning carnivore agencies via tooth pit morphology. Through this

methodological update, we present a means of reducing human induced error in taphonomic

geometric morphometric data collection; facilitating the pooling of inter-institutional datasets

for the training of classification models. While the theoretical and statistical reflections pre-

sented here are extensive, if these protocols are strictly followed and their true implications

considered, tooth pit morphological analyses can have a promising future in applied scientific

research. Under this premise, we predict lines of investigation of this type will be an encourag-

ing development relevant in palaeontological, archaeological, forensic and even modern-day

ecological sciences.
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122. Arriaza MC, Aramendi J, Maté-González MÁ, Yravedra J, Stratford D. Characterising leopard as taph-

onomic agent through the use of micro-photogrammetric reconstruction of tooth marks and pit to score

ration. Hist. Blo. 2019. pp. 1–10.

123. Lombao D, Guardiola M, Mosquera M. Teaching to make stone tools: new experimental evidence sup-

porting a technological hypothesis for the origins of language. Sci. Rep. 2017; 7(1), 1–14. https://doi.

org/10.1038/s41598-016-0028-x PMID: 28127051
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Análisis 3D de los efectos de la cautividad sobre la masticación y las
marcas de diente del lobo; implicaciones en los estudios ecológicos

tanto del presente como del pasado.

Las poblaciones humanas han desarrollado relaciones complejas con las especies de grandes carnívoros
a lo largo del tiempo, con evidencias tanto de competencia como de colaboración para obtener recursos
a lo largo del Pleistoceno. Desde esta perspectiva, muchos yacimientos arqueológicos y paleontológicos
presentan pruebas de modificaciones en los huesos por parte de los carnívoros. Ante ello, los especialistas
en el estudio de las modificaciones microscópicas de la superficie ósea han recurrido tanto al uso de técnicas
de modelado 3D como a la ciencia de datos para la inspección de estos elementos, alcanzando resultados
novedosos para la diferenciación entre la actividad de diferentes carnívoros. El presente estudio analiza la
variabilidad de las marcas de dientes producidas por múltiples grupos de lobo ibérico, con el objetivo de
estudiar cómo el cautiverio puede afectar a las marcas de dientes que dejan en el hueso. Aquí se comparan
cuatro poblaciones de lobo distintas, tanto salvajes como en cautividad, para profundizar en la variabilidad
intraespecífica. Esta investigación muestra estadísticamente que las marcas tipo depresión de los cánidos
son las menos afectadas por el cautiverio, mientras que las marcas tipo surco son más superficiales cuando
son producidas por lobos cautivos. La naturaleza superficial de los surcos producidos por lobos cautivos se
ve además correlacionada con otras características métricas, influyendo así en la morfología general de las
marcas. Desde esta perspectiva, el presente estudio abre un nuevo diálogo sobre las razones que subyacen
a los resultados obtenidos, aconsejando precaución a la hora de utilizar las marcas de diente tipo surco
para la identificación de carnívoros, y contemplando elementos como el estrés como una de las principales
variables que influyen en la morfología de las marcas dejadas por lobos.
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Simple Summary: Recent years have seen major advances in the analysis of carnivore modifications
to bone during feeding, based on the integration of 3D modeling and data science techniques, and
with special attention being paid to tooth marks. From this perspective, carnivore tooth scores
and pits have slowly converted into a protagonist in the identification of the carnivores producing
them. The present study confronts the intra-species variability of tooth mark morphologies produced
by Iberian wolves, taking into account not only different populations but also whether wild and
captive wolves produce different shaped tooth marks. Here we show how, in the case of tooth scores,
differences are notable and should thus be treated with caution. Further conclusions reveal that
carnivore tooth pits are currently the most diagnostic elements for the study of carnivore feeding
traces on bone, pending future studies that compare closely related taxa with sufficient intraspecific
variability. In light of this, further investigation into the possible stress captivity may cause on these
animals could be of great importance for both the study of past and present. If differences were
to exist, these results could implicate a larger margin of error than previously perceived for some
experimental samples, affecting both prehistoric and modern-day ecological studies.

Abstract: Human populations have been known to develop complex relationships with large carni-
vore species throughout time, with evidence of both competition and collaboration to obtain resources
throughout the Pleistocene. From this perspective, many archaeological and palaeontological sites
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present evidence of carnivore modifications to bone. In response to this, specialists in the study of
microscopic bone surface modifications have resorted to the use of 3D modeling and data science
techniques for the inspection of these elements, reaching novel limits for the discerning of carnivore
agencies. The present research analyzes the tooth mark variability produced by multiple Iberian
wolf individuals, with the aim of studying how captivity may affect the nature of tooth marks left
on bone. In addition to this, four different populations of both wild and captive Iberian wolves are
also compared for a more in-depth comparison of intra-species variability. This research statistically
shows that large canid tooth pits are the least affected by captivity, while tooth scores appear more
superficial when produced by captive wolves. The superficial nature of captive wolf tooth scores is
additionally seen to correlate with other metric features, thus influencing overall mark morphologies.
In light of this, the present study opens a new dialogue on the reasons behind this, advising caution
when using tooth scores for carnivore identification and contemplating how elements such as stress
may be affecting the wolves under study.

Keywords: wild wolves; captive wolves; tooth marks; geometric morphometrics; 3D modeling;
advanced statistics; taphonomy

1. Introduction
1.1. The Impact of Wolves Both Past and Present

Wolves are one of the most prominent carnivore taxa of the Northern Hemisphere,
appearing in a number of ancient sites as a competitor with humans [1,2]. The genus
Canis [3] has been most recently estimated to have emerged towards the Messinian stage
of the Miocene, dated at approximately 5.7 Ma, with Bayesian inferred Highest Posterior
Density (HPD) intervals between 8.5 and 4.0 Ma [4]. The evolution of Canis species variants
has since had a long history, with the emergence of a wide array of different sized carnivores,
from the smaller jackals (Canis aureus) to the Dire wolf (Aenocyon dirus) of North America.
The species Canis lupus is considered to have emerged during the Middle Pleistocene,
strongly linked with the evolution of species such as C. mosbachensis, C. etruscus [5,6], and
the recently discovered Canis borjgali [7]. Thereafter, the Canis genus has had a notable
presence in numerous sites throughout the Pleistocene epoch, closely coinciding with the
movement of hominin populations across the globe, and in many cases coexisting with
other competitors of the Canidae family, such as Lycaon lycaonoides, Cuon alpinus and Canis
orcensis [5,8–11].

Canids have been an important protagonist within the European carnivore guild. To
this extent, some authors hypothesize the trophic pressure and competition for resources
among these species [10,12–19]. From a similar perspective, being a close competitor with
large felids at the time, other studies hypothesize these canids to have had a dynamic role
in complex food chains throughout the Pleistocene [1,2]. As of the Upper Palaeolithic,
interactions between canid and hominin species begin to change, with possible evidence of
domestication and collaboration as early as >30 Kya [20–24]. These interactions become
more complex as the increase in human populations induces significant pressure on carni-
vores. From this perspective, animals such as wolves are frequently targeted by farmers
and landowners as a means of protecting their livestock [25–31]. While wolves are typically
the first suspects as culprits for livestock predation, formal clues to differentiate between
potential predators are lacking (e.g., foxes, dogs), especially in cases where flesh evidence
is scarce.

A recent study by Yravedra and colleagues [32] proposes the use of diagnostic criteria
typically used in archaeology and paleontology for the study of carnivore activity. From
this perspective, these authors propose methods on bone as a means of studying the agents
responsible for livestock predation. From this perspective, these authors attempt to unify
ecological studies of both past and present with the use of high-resolution technologies for
3D modeling and advanced statistics, as well as artificially intelligent tools. Nevertheless,
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while this line of research has made important advances in the differentiation between
different species, little is known on the intra-species variability that may be conditioning
these results. Examples of this could include changes due to sexual dimorphism, age
differences, natural inter-individual variability, genetic differences between populations, or
sufficient sample sizes that can capture these differences.

In archaeology and paleontology, the discerning of precise carnivore agents is a
highly informative piece of information, essentially providing a fundamental means of
interpreting carnivore-hominin interactions as well as the general ecology of many sites. In
modern-day ecology, the conservation of carnivores is under threat from human activity,
with livestock predation being a particular source of tension. Research into the types of
damage carnivores can produce on bones can thus be considered an important means
of finding diagnostic criteria and can therefore answer a number of different ecological
questions (e.g., paleoecological modeling, discerning agents involved in contemporary
livestock predation). Nevertheless, prior to any widespread applications, experiments
must be performed to ensure that our comparative samples are truly analogous.

In light of this, the present study attempts to analyze the variability of tooth marks in
wolf populations, testing for the effect of cofounding variables that had not been considered
prior to the present study.

1.2. State of the Art in Wolf Tooth Mark Analyses

Since the beginning of research into the faunal remains of archaeological sites, authors
have noted the presence of large carnivore activity [33]. Among the different tracks and
traces frequently left by carnivores, tooth marks found on bone have been considered
of particular interest [34], providing an indirect trace of carnivore activity in sites where
carnivore bones may not necessarily be present. The field of taphonomy is a particular
protagonist in this type of research, focusing on the multiple agents and processes that
may have modified bones since the life of the organism to the present date. At present,
four main types of carnivore bite damage are typically considered [16,34–36]; (1) circular
depressions or imprints of the tooth’s cusps on bone (tooth pits, Figure 1A); (2) elongated
depressions with a rounded base produced by the dragging of teeth across the surface
(tooth scores, Figure 1); (3) circular holes which are a product of the tooth penetrating the
cortical walls (punctures); and (4) the progressive deletion of large portions of bone by
continuous chewing (furrowing).

Some of the first notable efforts in the study of tooth marks were performed by
Selvaggio and Wilder [37], consisting of the metric analyses of the length and width of
tooth scores and pits. While innovative, these methods present important limitations,
discerning the most likely size of the chewing carnivore rather than inferring precise agents.
More developed attempts were able to augment the size of available datasets, yet with
similar limitations to their predecessors [38,39] (inter alia).

With the integration of advanced 3D modeling, novel efforts were able to improve this
resolution, making closer approximations to the precise agent involved [40–43]. Despite the
great improvement in statistical data processing techniques, these studies still presented
margins of error that were hard to overcome. Likewise, while the inclusion of advanced
data science techniques such as Computational Learning strategies was able to present a
more efficient means of processing this data [44], these studies are still limited in terms
of sample size and can only be considered the first step in a promising direction. From
this point, more consequent efforts have been made to increase sample sizes with equally
promising results [32,45] while also improving the means of extracting this information [46].

Other notable advances in literature have shown how volumetric and
micro-topographical information derived from confocal microscopy can provide valu-
able information [47,48]. Likewise, deep learning-based computer vision techniques have
also been proposed for answering a number of these questions [49,50].
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Figure 1. Photographic documentation of different types and the extent of bite damage. (A) Single
isolated tooth pit observed on the distal metadiaphysis of a horse metatarsal from Villardeciervos.
(B) Tooth-marked bone presenting multiple parallel scores across the diaphysis and pits towards
the distal end of a horse humeral shaft from Cabárceno. (C) Multiple scores along the shaft of
a horse radius-ulna from Villardeciervos. (D) Multiple scores and an occasional pit on the distal
metadiaphysis of a horse tibia from Cabárceno.

While these studies are hopeful for the future of inter-species analyses, the intra-
species perspective has been touched on less [51,52], especially from a morphological
perspective [53]. In light of this, important questions must be raised prior to the large-scale
application of these methods, such as the possible changes to tooth mark morphologies
that may be a product of additional confounding variables. If these variables are found to
be important conditioning factors, this may raise important doubts on the applicability of
these techniques in real-world applications, on an inter-species as well as an intra-species
level. This could essentially alter results in analyses such as the identification of carnivore
activities in archaeological sites or the classification of animals responsible for livestock
predation.

The present study considers these questions from the standpoint of modifications
produced by multiple individuals of the same species; the Iberian wolf. Similarly, consider-
ing how obtaining bones modified by wild carnivores can be notably difficult, this study
additionally tests to see whether using captive animals in parks is the best analogy for
these types of modifications. The present hypotheses to be tested do not consider captivity
to be a conditioning factor in tooth mark morphologies, while the difference between wolf
populations should also be minimal. Under this premise, four large samples of bones
modified by different populations of Canis lupus signatus individuals have been used, two
originating from parks of varying sizes and the remainder of samples originating from
wild wolf packs across the north-western Iberian peninsula.
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2. Materials and Methods
2.1. Samples

For the purpose of understanding intra-species variability in carnivore populations,
four samples of tooth-marked bones produced by Canis lupus signatus individuals were
included in the present study (Figure 2).
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Canis lupus signatus [54], commonly known as the Iberian wolf, is a subspecies of
wolves populating the northwest of the Iberian peninsula. Wolves are social hunters with
a diet predominantly consisting of large and medium-sized game. Wolves additionally
present one of the highest potential bite forces for their size when compared with other
large carnivores, with an estimated bite force of ≈1200 Newtons using the Carnassial
teeth [55]. When chewing, most canids are known to show a preference for the use of
teeth furthest back in the mouth, namely the posterior-most inferior molars and upper
premolars/molars. A recent study has reported the larger cusp of these teeth to have a
mean breadth of 13mm for female wolves and 14mm for male wolves in the case of lower
molars, and 16mm for female wolves and 17mm for male wolves in the case of upper
pre-molars [56].

Two of the present tooth mark samples originated from wild wolf packs residing
in the province of Zamora in north-western Spain, sharing borders with Portugal and
located north of the River Duero (Castilla y León, Figure 2). The first of these samples
originated from the area of Flechas, while the second from Villardeciervos. Both samples
were collected between the months of May and September of 2010, consisting of carcasses
from a wide range of different animals, including equids (Equus ferus), red deer (Cervus
elaphus), wild boars (Sus scrofa), and roe deer (Capreolus capreolus). Control of whether
only wolves had intervened in samples was based on the current knowledge about the
ecology of the area. In both samples, all anatomical elements were present (including the
cranial, axial, and appendicular skeleton); however, only tooth marks originating from the
diaphyses and meta diaphyses of appendicular long bones were considered. From Flechas,
a total of 55 appendicular bone remains were recovered, from which a total of 63 tooth
scores and 49 pits were used. From Villardeciervos, a total of 124 appendicular elements
were recovered, from which a total of 56 scores and 79 pits were used. This results in a total
sample size of 128 wild wolf tooth pits and 119 scores.

Tooth mark samples from captive wolves were obtained from two separate parks, in-
cluding Cabárceno (Obregón, Cantabria, Figure 2) and Hosquillo (Cuenca, Castilla-La Man-
cha, Figure 2). Samples were collected during the winter months of 2010 and 2011. The first
of these samples have been previously included in publications
including [32,41,44–46,50,53,57], while the latter by [45,53,58]. Both samples were pro-
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duced by groups of adult individuals, seven individuals in the case of Cabárceno and
five in the case of Hosquillo. Animals were fed disarticulated limb elements with meat
attached, while some occasional distal epiphyses of humeri and femora have been noted
as still articulated with zygopodials. Bones were exposed to animals for varying periods
of time, as established by the rules and conditions of each park, with Cabárceno wolves
having access to the remains for a single week and Hosquillo individuals for three months.

The Hosquillo sample consists of mainly medium and small-sized animals, including
mouflon (Ovis musimon), Iberian ibex (Capra pyrenaica), roe deer (C. capreolus), and wild boar
(S. scrofa). The Cabárceno sample consists exclusively of large-sized animals; namely, equid
(E. ferus) and some bovid (Bos taurus) remains. Once again, only tooth marks observed
on diaphyses or meta diaphyses of appendicular long bone elements were considered.
From Hosquillo, a total of 420 remains of highly fractured appendicular elements (femora,
humeri, tibiae, and radii) were recovered, from which a total of 113 tooth scores and 113 pits
were used. From Cabárceno, a total of 28 appendicular elements were recovered, from
which a total of 56 scores and 42 pits were used. This resulted in a total of 169 scores and
155 pits from captive animals.

Both parks are dedicated to the conservation and investigation of different species,
some of which are endangered, and keeping animals in open-air enclosures while also being
open to the public for educational purposes. Nevertheless, in the interest of transparency it
is important to point out that, while previous publications have referred to these samples as
a product of semi-captive wolves, after careful evaluation and consideration of how wolves
in the wild typically inhabit a large and variable territory with high mobility (≈10 km per
day, with great variability among some reports [59–66], inter alia), we considered that the
enclosures presented in each of these parks were too small to consider these animals as
anything other than captive. Personal communications by ground keepers have reported
the wolf enclosure in Cabárceno to have an extension of 2700m2, approximately 0.04% of
the total area (740 ha) of the Cabárceno natural park, while the Hosquillo individuals have
a slightly larger enclosure measuring 10,000 m2, approximately 0.1% of the 910 ha of the
Hosquillo natural park. The Cabárceno natural park is a popular year-round destination
housing a multitude of species, with approximately 600,000 visitors per year. The Hosquillo
natural park, on the other hand, is considerably smaller, with a reported 14,426 visitors
during the year 2015 and 20,000 in the year 2018, making it 97 to 98% smaller than that of
Cabárceno. In the interest of understanding the behavior of these animals, we also consider
it important to note that the Cabárceno natural park is accessible almost exclusively by
motor vehicles, implicating that animals are surrounded by additional noise produced by
cars on a daily basis. Hosquillo, on the other hand, while also being accessible by motor
vehicles, provides a larger distance between the asphalt tracks and each enclosure in some
areas while only being open to the public on weekends or festive days, with week days
generally being reserved for scholarly activities, thus ensuring less exposure of the wolves
to the public.

Finally, with regards to the Hosquillo and Cabárceno samples, wolves from both parks
have been estimated to be five years old, with little difference in age between wolves from
these parks.

While many more tooth marks of varying types were observed on these samples, the
selected tooth marks were chosen on the basis of being found on diaphyses; elements more
likely to survive extensive carnivore damage, as well as any other taphonomic processes
frequently encountered in the fossil register. Marks were chosen based on the clarity of their
micro-topography, while only isolated marks with no overlapping of traces were selected.
Inconspicuous marks that would be difficult to model via remote-sensing techniques were
also excluded.

All experiments involving carnivores were performed in accordance with the relevant
guidelines as set forth by park keepers and general park regulations. No animals were
sacrificed specifically for the purpose of these experiments. Likewise, carnivores were not
manipulated or handled at any point throughout the collection of samples. In each of the
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parks, collection of chewed bones was performed directly by park staff, assisted by one
of the authors (J.Y.). No licenses or permits were required to perform these experiments.
In the case of Cabárceno and Hosquillo, bone samples were provided directly by the park
in accordance with their standardized feeding protocols. For wild wolves, carcasses were
collected by one of the authors (J.Y.), additionally aided by forest rangers where necessary.
Once collected, all bone samples were cleaned in boiling water without the use of additional
chemical agents.

Photographic examples of tooth pits and tooth scores from different samples have
been included in Figure 1.

2.2. Data Collection

Tooth marks were digitized using the DAVID SLS-1 Structured-Light Surface Scanner
located at the TIDOP Research Group of the Polytechnic School of Ávila (University of
Salamanca, Spain), identical to the methods described in [46,53,67]. Once 3D models had
been obtained for each of the tooth marks, marks were treated differently according to their
type (Figure 3), following the methodological approaches by Yravedra et al. [40] with slight
adaptations by Courtenay et al. [53] in the case of tooth scores, and Courtenay et al. [46] in
the case of tooth pits.

Tooth scores were analyzed according to the morphology of their cross-sections
(Figure 3), extracted at the mid-point of each score. For this, 2D data were derived from
3D models via the calculation of digital elevation models for micro-topographies. Cross-
sections were thus extracted using the Global Mapper v.18 Geographic Information System
(GIS) software, obtained at mid-length of each tooth score between ≈30% and ≈70% of
the mark’s total length. Cross-section profiles were then exported as images for further
processing in the tpsDig2 (v.2.1.7) software [68].

For each cross-section, 7-landmark 2D coordinates (x, y) are extracted, following the
model proposed by Yravedra et al. [40]. Landmarks 1 and 7 (LM1 & LM7) mark the left and
right shoulder of the scores’ cross-section, respectively, while LM4 marks the deepest-most
point. LM2, LM3, LM5, and LM6 traditionally mark varying points along the marks’ walls.
Nevertheless, these have recently been replaced by computational landmarks so as to
avoid analyst subjectivity [53]. These computational points are therefore calculated at
equidistant intervals by the tpsDig2 software: between LM1/LM4 for the left wall and
LM4/LM7 for the right wall. These landmark coordinates can then be used to calculate the
metric dimensions of each profile, inspired by the methods of Bello and Soligo [69], later
adapted by Maté-González et al. [70] and Yravedra et al. [40]. From this perspective, the
distance between LM1 and LM7 is used to calculate the Width of the Incision at the Surface
(WIS) of the bone, while distances between LM2/LM6 and LM3/LM5 can be used to
define the Width of the Incision Midway (WIM) and the Width of the Incision in proximity
with the Base (WIB), respectively. The Depth of the mark (D) can then be defined taking
the perpendicular distance between LM4 and the plane between LM1/LM7, while the
distance between LM1/LM4 and LM7/LM4 is used to calculate the Left and Right Depth
of the incision at Convergent (LDC and RDC). All the aforementioned measurements were
recorded in millimeters. Finally, the Opening Angle (OA) of the mark is calculated in
degrees (◦) by triangulating LM1, LM4, and LM7, followed by calculating the interior angle
of the LM4 corner.

For further analysis, each of the 2D landmark coordinates was also exported and
formatted into morphologika files for the purpose of Geometric Morphometric statistical
studies.
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Figure 3. Visual description of landmark coordinate positions and the derived measurements.
(A): 2D 7-Landmark model proposed by Yravedra et al. [40] with adaptations for the inclusion of
equidistant computational landmarks by Courtenay et al. [53]. From the 7 landmarks, an additional
7 measurements can be derived, including the Width of Incision at Surface (WIS), Midway (WIM)
and in proximity with the Base (WIB), alongside Depth (D), Left (LDC) and Right (RDC) Depth at
Convergent and finally Opening Angle (OA). (B) 3D 30-Landmark model proposed by Courtenay
et al. [46] with 5 fixed landmarks (Red) and a 5 × 5 computed landmark patch (yellow). The
positioning of the fixed landmarks is dependent on the perpendicular axes that mark the maximum
length (l) and width (w) of the pit, with Landmark 1 (LM1) being positioning the furthest away from
w (distance 1, d1, must be greater than distance 2, d2).

For tooth pits, the entire 3D morphology of marks was analyzed (Figure 3), using the
3D 30-Landmark model proposed by Courtenay et al. [46]. This landmark configuration
consists of five fixed Type II landmarks and a 5 × 5 patch of computational landmarks. Of
the five fixed landmarks, LM1 and LM2 mark the maximal length of each pit, while LM3
and LM4 are used to define the pit’s width. For correct orientation of the pit, LM1 can be
considered to be the point along the maximum length furthest away from the perpendicular
axis marking the maximum width. LM2 is thus the point marking the other extremity of
the pit’s length. LM3 and LM4 then mark the extremities of the perpendicular axis, with
LM3 marking the left-most point of the maximum width and LM4 marking the right-most
point. LM5 is finally defined as the deepest point of the pit. The 5 × 5 computational
landmark patch is then positioned over the entirety of the pit so as to capture the internal
morphology of the mark. For tooth pits, landmark data collection was performed using the
free IDAV Landmark Editor software (v.3.0.0.6), carried out by a single experienced analyst
in accordance with the instructional video and Supplementary Appendix provided by the
original publication of the landmark model [46].

Finally, attempts to adapt and extrapolate the 3D-based methods to the analysis of
tooth score morphologies were tried and tested to see whether the resolution could be
improved. Nevertheless, these experiments yielded limited results (Supplementary File
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S2; Table S2.1) due to the wide variability of tooth score micro-topographies. Under this
premise, only the 2D-based method was used for tooth score analysis (See Supplementary
File S2).

2.3. Statistical Analyses
2.3.1. Metric Analyses

Metric data were subject to both univariate and multivariate analyses. Tests addition-
ally were performed, separating the variable OA from other linear metrics (WIS, WIM,
WIB, LDC, RDC & D).

Prior to any comparative hypotheses tests, homogeneity of data distributions were
checked via multiple Shapiro–Wilks tests [71]. The hypotheses tests employed were
then dependent on Shapiro–Wilk results, employing parametric tests when Gaussian
distributions were detected and non-parametric tests upon rejecting this assumption.
In each of the univariate cases, robust and traditional descriptive statistics were then
employed [46,72–74], using the mean and median to report Gaussian and non-Gaussian
central tendencies, followed by the first standard deviation or the square root of the Bi-
weight Midvariance (BWMV; Supplementary File S3, Equations (S3.1)–(S3.3)). Two-One
Sided equivalency Tests (TOST) were then employed to test for the magnitude of equiv-
alency between samples according to Cohen’s d [75]. For parametric versions of TOST,
Welch’s t-statistic was used [76]. In cases where non-parametric approaches were required,
Yuen’s trimmed robust t-statistic was used [77,78]. For ease of differentiating between
the two, from this point onward, non-parametric robust TOST is referred to as rTOST.
It is important to note that, contrary to many other analyses of variance, both variants
of TOST consider the Null Hypothesis (H0) to indicate differences between samples [79].
Equivalency testing was performed using the equivalence (v.0.7.2) R library.

In the case of circular metrics, a different approach was used, taking into consideration
the trigonometric properties of angular data. Firstly, it is important to point out that on
all accounts, the variable OA fits a Von Mises Distribution [80–82], thus conditioning the
selection of descriptive and hypothesis tests employed (see Supplementary File S1). Under
this premise, descriptive statistics included standardized kurtosis and skewness values [83],
alongside sample circular variance as an evaluation of the symmetry of circular distribu-
tions. For the assessment of circular “normality”, two additional tests were considered.
These included analyses of uniformity, using the Rayleigh test [84], and symmetry, using a
robust reflective symmetry test [85]. Uniformity and symmetry consider the distribution
around the entire circle; it is not the same to have a slight amount of skew as having
an overall symmetrical distribution across the entire circle. From this perspective, the
combination of these tests checks to see whether the distortion for each distribution is of
importance.

Depending on the relative symmetry of the circular distribution, the central tendency
H0 was robustly calculated via either the mean (θ-bar) or median (θ-tilde) angle. Prior to any
of these calculations, angles were converted into radians, and converted back to degrees
only for the purpose of reporting the final results.

For two-sample hypothesis testing, three different approaches were used to assess
differences and similarities between samples. These tests considered; (1) differences in
mean, using a bootstrapped alternative to the Watson test [86]; (2) differences in median,
using the randomized variant of Fisher’s non-parametric test [87]; and (3) differences in
distributions, using the randomized variant of the Mardia–Whatson–Wheeler test [83,88].
In-depth descriptions of these analyses and the reasons behind their adoption can be
consulted in the Supplementary File S1.

For multivariate analyses of these metric variables, dimensionality reduction via
Principal Components Analyses (PCA) was performed. For PCA, the variable OA was
combined with linear variables WIS, WIM, WIB, LDC, RDC, and D by prior transformations
of OA into a new xy variable. This was carried out by first converting OA into radians,
followed by the sum of linear transformations for each of these radian angles using cosine
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and sine calculations (cosθ + sinθ, see Supplementary File S1). This approach was chosen
in light of the considerable decrease in dimensionality reduction error produced when
including this transformed version of OA in PCA (Supplementary File S1, Figure S1.9).
TOST and rTOST tests were then performed across the PC Scores to test for multivariate
equivalence, using the top ranking PC scores explaining up to 95% of total sample variance.

Considering the frequent non-linear relationships between variables, PCA was com-
plemented by non-linear dimensionality reduction technique to observe for possible differ-
ences in conclusions. For this purpose, the t-Distributed Stochastic Neighbor Embedding
(t-SNE) algorithm was chosen, a popular technique used in Machine Learning [89]. t-SNE
was performed using random initialization directly on each of the extracted measurements.
This algorithm was trained for 500 iterations, using a perplexity parameter calculated as the
ceiling of the square root of the sample size (n, i.e., d√ne). t-SNE transformations projected
data into a new R3 feature space. t-SNE was performed using the Rtsne (v.0.15) R library.

Where considered complementary, two additional tests were performed. The first of
these considered correlations between variables to better understand relationships metrics.
For homogenous data, the parametric Pearson test was used [90], whereas inhomogeneous
data were tested using the non-parametric Kendall τ rank-based test [91]. Finally, Bayesian
Inferred effect sizes were also calculated according to Cohen’s δ [75], with the use of 95%
High Posterior Density calculations on the posterior distribution. These were additionally
accompanied by Probability of Superiority (PS) metrics. For Bayesian calculations, a
Student’s t-distribution was used to infer the data’s distribution [92] robustly. For this
analysis, the No-U-Turn (NUTS) extension of the Hamiltonian Markov Chain Monte Carlo
(MCMC) algorithm was employed for sampling [93], as implemented in the PyMC3 (v.3.11)
library of the Python (v.3.7.4) programming language. NUTS was fit using 4 MCMC
chains, sampling using 1000 tuning steps and 5000 draw iterations. To avoid severe
divergences of the NUTS sampling algorithm, a sampling step size of 0.9 was employed.
This parameterization resulted in only three divergences throughout all samples (observed
in the case of the variable D for wild wolves), an Effective Sample Size of >4000, good
mixing across all trace plots, and an R-hat statistic of 1.0 for all parameters. Further details
on the Bayes models are included in Supplementary File S4, including equations (Equations
(S4.1)–(S4.4)) and a visual representation of the models in the form of a Kruschke diagram
(Figure S4.1) [94].

Unless stated otherwise, all statistical applications were performed using the R pro-
gramming language (v.3.5.3) and multiple packages.

2.3.2. Geometric Morphometric Analyses

Geometric Morphometric analyses were performed first, including an orthogonal
tangent projection and full Procrustes fit of landmark data [95]. This is a common tech-
nique in morphological analyses for data preparation and standardization. This process,
frequently referred to as Generalized Procrustes Analysis (GPA), consists of multiple su-
perimposition procedures (translation, rotation, and scaling) that aid in the quantification
and visualization of minute displacements of individual landmarks in space. Nevertheless,
considering observations made by Courtenay et al. [44–46,53], which reveal tooth mark size
to be an important conditioning factor in morphological variance, GPA was then subjected
to multiple allometric analyses to test for shape-size relationships [96]. For allometric
analyses, multiple regressions were performed using the logarithm of centroid size to
estimate shape, testing for the goodness-of-fit to conclude whether (1) shape is notably
affected by size but also (2) to see if differences in shape-size relationships for different
samples are present.

In cases where allometric relationships were concluded to be important, further
geometric morphometric analyses were performed, excluding the scaling process of GPA.
When allometry proved to be unimportant, a full GPA, including the scaling process, was
used. This exclusion of the scaling process is often referred to as the analysis of form, while
the inclusion of scaling during GPA is referred to as analysis of shape [97–99].
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Following GPA, dimensionality reduction in the form of PCA was performed to con-
vert landmark coordinates into a more manageable format. The most important Principal
Component Scores (PC Scores) were then extracted for multivariate testing. Across these PC
Scores, TOST and rTOST tests were carried out, alongside the calculation of transformation
grids and Thin-Plate Splines (TPS) for the visualization of morphological changes [100].

Finally, considering the frequently non-linear relationships that have frequently been
observed to emerge among taphonomic geometric morphometric data [46], PCA was
also complemented by the use of t-SNE. In this case, t-SNE was trained directly on the
superimposed landmark coordinates.

For all Geometric Morphometric analyses, the R programming language (v.3.5.3) was
used, primarily employing the geomorph (v.3.3.1) and shapes (v.1.2.4) R libraries.

2.3.3. Hypothesis Testing

In accordance with the recommendations set forth by the editors and contributors
of the American Statistician, p-values were not evaluated using p < 0.05 as a threshold for
defining statistical significance [101,102]. Likewise, the term “significant” has been avoided
throughout the present study. In its place, all hypotheses testing was performed using
p-value to Bayes Factor Bound (BFB) calibrations in accordance with the recommendations
of Benjamin and Berger [103], as well as the calculation of False Positive Risk (FPR) values
as suggested by Colquhoun [104]. BFB values (Supplementary File S5; Equations (S5.1)
and (S5.2)) represent “the strongest case for the alternative hypothesis [Ha] relative to the
null hypothesis [H0]” [103], in other words, the odds at most of Ha being true. These values
can then be used to derive the final posterior odds by multiplying BFB with the prior odds.
FPR (Equation (S5.3)), on the other hand, is the probability that an observed p-value is a
false positive, otherwise known as a Type I error.

To avoid the inclusion of large strings of numbers in the main text reported values
have been mostly limited to the inclusion of a single probability metric in support of the
Null Hypothesis (H0), referred to here as the Probability of H0, or p(H0), of the probability
of error if Ha were to be true (Equation (S5.5)). This can be calculated using a combination
of FPR and an inverse function (Equation (S5.4)). Considering how Courtenay et al. [45]
found the point of maximum curvature of calibration curves to be at p = 0.3681, p(H0) was
defined here using this value as the optimal limit in Equation (S5.4).

All formulae used for these calculations have been reported in Supplementary File
S5 (Equations (S5.1)–(S5.3)), alongside additional calibration tables (Tables S5.1–S5.4) and
curves (Figure S5.1). Precise BFB and FPR values for a selection of p-values can be consulted
in Tables S5.1–S5.4. Noting the poor quality of p < 0.05 as a boundary for strong evidence
of Ha, the present study chose to adapt Fisher’s [105] definition of the second standard
deviation from the mean (i.e., 0.05), extending this to the third standard deviation from the
mean (100% − 99.7% = 0.3% or 0.003). Finally, unless specified otherwise, all frequentist to
Bayesian calibrations have been performed using a prior probability indicative of complete
randomness (0.5), as suggested by Colquhoun [104].

For more details on the present use of BFB and FPR values, consult [103], ref [104],
or the summary reported in Supplementary Appendix 3 of Courtenay et al. [45]. For
more details on p(H0) consult Courtenay et al. [106]. The code used to perform these
calculations can be obtained from https://github.com/LACourtenay/HyperSkinCare_
Statistics (accessed on 05/08/2021) [106].

3. Results
3.1. Morphometric Analyses
3.1.1. Analyses of Opening Angles (OA)

Opening Angles presented a mixture of “normally” and “abnormally” angular dis-
tributions (Table 1); furthermore, wide variability was observed, with captive wolves
presenting more obtuse (θ-tilde = 151◦) and variable (v = 0.03) tooth scores than wild
wolves.
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Table 1. Descriptive data for tooth score opening angles. k-hat = standardized kurtosis, s-hat = standardized skew, v =
Sample circular variance, t = test statistic, p = p-value. Bold typeface indicates samples where robust statistical measurements
have been used. More details about reported values can be found in Supplementary Materials. p(H0) values have been
excluded from the present table due to space restrictions. General calibrations for these values can thus be consulted in
Supplementary File S5.

Sample Min 1 k-Hat s-Hat v
Uniformity Symmetry

Central 1,2
t p t p

Cabárceno 120.73 2.28 2.28 0.02 0.98 1.1 × 10−23 1.63 0.110 158.67 176.39
Hosquillo 112.00 0.25 1.06 0.02 0.98 1.2 × 10−46 1.77 0.079 147.09 175.12
Flechas 3 101.65 −1.31 −0.14 0.03 0.97 3.1 × 10−26 0.24 0.810 132.51 160.28

Villardeciervos 3 110.80 −1.49 0.41 0.01 0.99 6.3 × 10−24 0.75 0.447 132.19 149.96
Captive 112.00 0.27 1.32 0.03 0.97 3.2 × 10−69 2.60 0.007 151.40 176.39

Wild 101.65 −0.96 −0.03 0.02 0.98 2.0 × 10−49 0.06 0.953 132.36 160.28
1 Values reported in degrees (◦). 2 Central tendencies are measured as a mean (θ-bar) or a median (θ-tilde) depending on whether non-robust
or robust statistical measurements were used. 3 Wild animal samples.

General analyses of differences and similarities among OA results show relatively clear
differences between most samples (Table 2), with the only exception being comparisons
between both wild wolf samples. The greatest magnitude of differences, however, when
considering both calculations for mean, median and overall distribution, are found between
wild and captive wolves (test-statistics > 69.7, p < 0.0001, p(H0) < 0.25%), especially in the
case of the Cabárceno captive and Villardeciervos wild wolf samples (test-statistics > 55.3,
p < 0.0001, p(H0) < 0.25%).

Table 2. Statistical comparisons of Opening Angles between samples testing for common mean, median, and distribution.
Yg, Pg, and Wg are the test statistics for the corresponding p-values (p). Probability in favor of the Null-Hypothesis p(H0)
has also been included. Samples marked with * were produced by wild wolves. Bold typeface indicates samples where
measurements do not follow a Gaussian distribution and have thus been described using robust statistical measurements.

Mean Median Distribution

Sample 1 Sample 2 Yg p p(H0) Pg p p(H0) Wg p p(H0)

Wild * Captive 138.80 0.0001 0.0025 78.53 0.0001 0.0025 69.97 7.3 × 10−16 6.9 × 10−14

Cabárceno Flechas * 105.98 0.0001 0.0025 50.94 0.0001 0.0025 47.06 6.0 × 10−11 3.8 × 10−09

Cabárceno Hosquillo 20.98 0.0001 0.0025 16.99 0.0001 0.0025 12.77 1.7 × 10−03 2.9 × 10−02

Cabárceno Villardeciervos * 143.00 0.0001 0.0025 55.31 0.0001 0.0025 64.27 1.1 × 10−14 9.6 × 10−13

Flechas * Hosquillo 50.69 0.0001 0.0025 29.68 0.0001 0.0025 21.69 2.0 × 10−05 5.9 × 10−04

Flechas * Villardeciervos * 0.022 0.8864 0.7749 0.22 0.6978 0.5943 4.650 0.1000 0.3850
Hosquillo Villardeciervos * 59.03 0.0001 0.0025 41.36 0.0001 0.0025 34.08 4.0 × 10−08 5.0 × 10−07

3.1.2. Analyses of Measurements

Linear measurement values show highly inhomogeneous distributions on all accounts
(W > 0.87, p < 3.7 × 10−06, p(H0) < 0.01%). Univariate tests reveal important similarities
for all metric variables obtained from different wolf populations (rTOST |d| < 0.136,
p < 0.003, p(H0) < 4.5%), with the exception of tooth score depth (|d| ≈ 0.042, p ≈ 0.658,
p(H0) ≈ 57.2%). The magnitude of these differences in D increases when considering
samples according to captivity (|d| = 0.028, p = 0.856, p(H0) = 73.4%), indicating overall
differences in tooth pits to be more likely conditioned by captivity than differences in
wolf populations. Moreover, when considering tooth score widths (WIS), similarities are
minimal (|d| = 0.127, p = 0.145, p(H0) = 43.2%).

In light of these observations, and considering each of the descriptive statistics for the
samples in Table 3, it can be seen that the largest differences between samples are found in
the depth of tooth scores, with captive wolves producing marks approximately 0.4 +/−
0.2 mm shallower than wolves found in the wild. Furthermore, clear relationships can be
established between depth and width (Kendall’s τ = 0.59, p < 2.2 × 10−16, p(H0) < 2.2 ×
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10−12%), as well as OA (Kendall’s τ = −0.5, p < 2.2 × 10−16, p(H0) < 2.2 × 10−12%). From
this perspective, the marked increase in wild wolf tooth score D values is likely to condition
the increased variability and change in tooth score widths (Table 3; Captive

√
BWMV =

0.33, Wild
√

BWMV = 0.27). Nevertheless, the magnitude of these differences according
to Cohen’s δ are relatively small for WIS (δ = 0.26, PS = 0.57), with Bayesian inferred
differences of 0.08mm in central tendencies (95% HDI = [0.015, 0.017]), while differences are
much larger for D (δ = 0.77, PS = 0.71), with differences of 0.048mm in central tendencies
(95% HDI = [0.019, 0.020]).

Table 3. Descriptive data for measurements extracted from tooth score cross-sections. Measurements are all reported in mm.
Bold typeface indicates samples where measurements do not follow a Gaussian distribution.

Measurement Cabárceno Hosquillo Flechas 1 Villardeciervos 1 Captive Wild 1

WIS Min. 0.15 0.07 0.11 0.21 0.07 0.11
Central 2 0.54 0.48 0.47 0.56 0.50 0.49

Deviation 3 0.40 0.27 0.22 0.31 0.33 0.27
Max. 1.75 1.78 1.16 1.38 1.78 0.14

WIM Min. 0.11 0.05 0.08 0.15 0.05 0.08
Central 2 0.37 0.33 0.29 0.39 0.34 0.33

Deviation 3 0.27 0.19 0.15 0.21 0.23 0.18
Max. 1.18 1.20 0.80 0.95 1.20 0.95

WIB Min. 0.06 0.03 0.04 0.08 0.02 0.04
Central 2 0.19 0.17 0.16 0.21 0.18 0.17

Deviation 3 0.14 0.10 0.08 0.11 0.12 0.10
Max. 0.60 0.61 0.43 0.50 0.61 0.50

D Min. 0.00 0.01 0.02 0.04 0.00 0.02
Central 2 0.05 0.07 0.09 0.12 0.07 0.11

Deviation 3 0.05 0.06 0.07 0.08 0.06 0.08
Max. 0.24 0.31 0.31 0.37 0.31 0.37

RDC Min. 0.08 0.04 0.06 0.12 0.04 0.06
Central 2 0.28 0.26 0.24 0.31 0.26 0.27

Deviation 3 0.21 0.15 0.13 0.18 0.17 0.15
Max. 0.90 0.91 0.65 0.76 0.91 0.76

LDC Min. 0.08 0.04 0.06 0.11 0.04 0.06
Central 2 0.29 0.26 0.24 0.31 0.27 0.26

Deviation 3 0.21 0.16 0.13 0.17 0.17 0.15
Max. 0.90 0.92 0.65 0.78 0.92 0.78

1 Wild animal samples. 2 Central tendencies are measured as mean or median for Gaussian and non-Gaussian distributed data, respectively.
3 Central tendencies are measured as the standard deviation or square root of the biweight mid variance for Gaussian and non-Gaussian
distributed data, respectively.

Coupled with previous observations regarding the notably larger opening angles of
these scores (Table 1), it can be predicted prior to any multivariate or geometric morpho-
metric tests that the overall morphology of tooth scores will be different between wild and
captive wolves.

When combining all 7 variables multivariately, both PCA and t-SNE (Figure 4) show
clear separations between wild and captive wolves, while populations intermingle with
no clear patterns. t-SNE results show high clustering of groups, with occasional overlap
across all three dimensions. When considering PCA, the first PC Score (PC1) representing
81.5% of sample variance and is represented primarily by variables WIS, WIM, WIB,
LDC y RDC, while the second component is strongly conditioned by the prior-mentioned
patterns between D and OA, representing 17.6% of the variance. PCs 3 through to 7,
however, are mostly residual (Cumulative variance = 0.9%). rTOST results strongly confirm
previous observations, highlighting the greatest magnitude of differences to occur across
PC2 (D & OA; |d| = 0.85, p = 0.99, p(H0) = 97.4%), while differences in tooth score width
measurements across PC1 are much smaller, yet still fairly conclusive (|d| = 0.15, p = 0.146,
p(H0) = 43.3%).
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3.2. Geometric Morphometrics
3.2.1. Allometric Analyses

Shape-size relationships and simple allometric patterns reveal fairly strong tendencies
for size to influence morphology in the case of pits (F = 2.8, p = 0.009, p(H0) = 10.3%),
while scores tend towards the contrary (F = 2.627, p = 0.082, BFB = 1.79, p(H0) = 35.8%)
(Figure 5). Nevertheless, variations in results begin to appear when calculating differences
across samples according to groupings.

Scores present inconclusive shape-size relationships when considering variables such
as captivity (F = 0.23, p = 0.8, p(H0) = 67.3%), however studies regarding populations argue
otherwise (F = 3.15, p = 0.01, p(H0) = 11.1%). In-depth analysis of tooth-score residual
data, however, presents strong deviations from normality (w > 0.87, p < 2.0 × 10−12,
p(H0) < 1.5 × 10−08%), with a high level of standardized residual disbalance across both
Euclidean distances and fitted values. This is especially relevant considering residuals
when plotted against the first principal component (w = 0.88, p = 8.9 × 10−15, p(H0) =
7.8 × 10−11%, |skewness| = 1.4), and predicted values through regression models (w =
0.87, p = 5.8 × 10−15, p(H0) = 5.2 × 10−11%, |skewness| = 1.48). Additionally, considering
the irregular residual spread with no concentration around the line of best fit (|kurtosis|
= 2.5), regressions estimating linear relationships between logarithmic centroid size and
morphological variance according to samples are unlikely to detect true relationships
efficiently.

While the p = 0.01 for population differences in scores is indicative of allometry, this
p-Value corresponds to an upper bound on the Bayes factor of 7.98, which combined with
diffuse prior odds of 1:2, would imply posterior odds of 3.99 in favor of the alternative
hypothesis and an 11.1% chance of being a false positive. Nevertheless, considering the
important levels of residuals produced by these models, it can be assumed that some of
these relationships are being exaggerated by the parametric nature of the regression model.
In order to adjust for this bias, it could be argued that a more conservative prior probability
of 3:10 be adopted. Under this premise, the false-positive risk increases to 22.6%, associated
with posterior odds of 2.40 in favor of the alternative hypothesis, and thus presenting a
corrected p(Ha) value of 77.4% (1- p(H0)). From a critical perspective, it can thus be argued
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that shape-size relationships according to scores be inconclusive based on the present data,
especially when withdrawing finite conclusions according to samples.
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When considering pits (Figure 5), unimportant relationships are revealed for both
captivity (F = 0.7, p = 0.62, p(H0) = 55.4%) and population (F = 1.3, p = 0.139, p(H0) = 42.7%),
with highly notable deviations from normality when considering residual data as well
(w > 0.83, p < 2.6 × 10−09, p(H0) < 1.4 × 10−05%). Nevertheless, residual data for pits
present a much stronger concentration around the line of best fit (|kurtosis| = {4.55:4.59}),
alongside a more even spread across fitted values.

When exploring other possible noise generated within the samples and revisiting the
effects observed when studying prey size [53], the present study is able to consolidate the
argument that animal size is not the conditioning factor for the morphological variation
observed within these samples (Figure 5; F = 1.17, p = 0.25, p(H0) = 48.5%). Nevertheless,
strong allometric correlations do begin to emerge when considering tooth scores from the
Cabárceno (p < 2.2 × 10−16, p(H0) < 2.2 × 10−12%) and Hosquillo (p < 2.2 × 10−16, p(H0) <
2.2 × 10−12%) samples separately. Under this premise, additional tests were performed
using metadata obtained from both parks to analyze the effects of captivity-related stress.
For these analyses, stress was modeled considering the number of individuals kept in the
space provided by each park as well as the number of individuals in said space. Important
correlations were detected (p < 2.2 × 10−16, p(H0) < 2.2 × 10−12%), resulting in an equally
strong effects on morphology (F = 3.1, p = 0.001, p(H0) = 1.8%). While residuals remain
distinguishably high (w = 0.91, p = 7.8 × 10−09, p(H0) = 4.0 × 10−05%), adopting a rigorous
prior probability of 3:10 still reveals only a 4.2% probability of these observations being a
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false positive, posterior odds of 15.98 in favor of the alternative hypothesis, upper bound
Bayes Factor of 53:1 against H0, and thus a corrected p(Ha) of 95.8%.

From this perspective, data from the present study indicate that stress may be an
important conditioning factor in tooth score morphology, an observation that warrants
further in-depth investigation.

3.2.2. Analysis of Variance

When analyzing tooth mark variability in pure morphological shape space, scores
continue to appear to present notable differences between wild and captive wolves. This
is once again confirmed by very large magnitudes of difference across the first 3 PC scores
(96.0% variance, |d| = 0.15, p = 0.99˙, p(H0) = 99.99%). When considering these differences in
accordance with wolf populations, all samples present morphological differences (Table 4).

Table 4. Absolute difference (|d|), p-values (p), and probability in favor of the null hypothesis (p(H0))
values obtained from equivalency testing using robust two-one-sided tests on tooth scores.

Cabárceno Flechas 1 Hosquillo

Flechas 1 |d| 1.779
p 1.000

p(H0) 0.999
Hosquillo |d| 0.483 1.297

p 0.689 0.995
p(H0) 0.589 0.986

Villardeciervos 1 |d| 2.767 0.988 2.285
p 1.000 0.798 1.000

p(H0) 1.000 0.671 1.000
1 Wild animal samples.

Tooth pits, on the other hand, produce PCA graphs of a much different nature, with
form space revealing unimportant differences between wild and captive wolves across the
first 5 PC scores (86.77% of variance; |d| = 0.13, p = 9.0 × 10−14, p(H0) = 7.4 × 10−10%).
Even if considering a strict prior probability of 3:10, the worst-case scenarios present a
probability of 1.7 × 10−11% of Type I statistical errors. For populations (Table 5), the same
can be said throughout comparisons.

Table 5. Absolute difference (|d|), p-values (p), and probability in favor of the null hypothesis (p(H0))
values obtained from equivalency testing using robust two-one-sided tests on tooth pits.

Cabárceno Flechas 1 Hosquillo

Flechas 1 |d| 0.062
p 2.5 × 10−11

p(H0) 1.7 × 10−09

Hosquillo |d| 0.013 0.050
p 3.2 × 10−18 4.9 × 10−16

p(H0) 3.5 × 10−16 4.7 × 10−14

Villardeciervos 1 |d| 0.034 0.028 0.021
p 6.8 × 10−16 9.4 × 10−19 4.4 × 10−26

p(H0) 6.5 × 10−14 1.0 × 10−15 7.0 × 10−24

1 Wild animal samples.

Upon analyzing projections and morphological variations (Figure 6), Thin-Plate
Splines (TPS) confirm that tooth scores are greatly represented by a shift from deep grooves
in the case of wild wolves (83% of variance) while tooth pits appear much more complex.
Tooth pits show high degrees of overlap throughout while revealing general tendencies for
both wild and captive wolves to produce between circular and ovular pits on numerous
occasions.
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t-SNE results (Figure 7) for both cases similarly show very high clustering of tooth
scores according to group labels, while tooth pits show no clear trends.
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Finally, and in light of observations regarding wolf scores, a detailed analysis of
morphological variations was performed across the first 10 PC scores (Figure 8). As can be
seen, tooth pits present high morphological variability described by a number of features.
Depth of tooth pits does not appear to be a conditioning factor until at least PC8, while only
representing 1.44% of morphological variation. While it is true that wild wolves can be
seen here to produce deeper pits than their captive relatives, geometric morphometric data
highlight tooth pits to be better represented by a number of other morphological factors, as
opposed to solely their depth.
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4. Discussion

The conservation of any animal species requires an in-depth understanding of their
behavior and ecology. The techniques, therefore, required to analyze animal activities are
fundamental. Over the years, archaeologists and paleontologists have developed tools
and techniques for the analysis of carnivore activities. While the objectives and research
questions from these fields greatly differ from those of modern-day ecological studies,
many parallels exist that could benefit from a more transdisciplinary approach to carnivore
research.

The present study has shown through both metric and geometric morphometric ap-
proaches how wolf tooth scores show important differences when samples are obtained
from captive animals. From this perspective, wolf tooth pits have been seen to be more
diagnostic elements, less affected by inter-species variability, and still a valuable tool for
intra-species analyses [45,46]. The discovery that wolf tooth marks are more superficial
among captive wolves raises a number of questions, especially regarding their interpreta-
tion. Under this premise, the following sections attempt to describe and contemplate the
possible conditioning factors that are behind these observed patterns in variance.

4.1. Interpretations behind Morphological Variability
4.1.1. Physiological Stress of Captivity

Imposing captivity on wild animals has a number of functions. From one perspec-
tive, many institutions offer shelter, protection, and health care to species endangered
by numerous external environmental factors (most of which are human-induced) and
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can also serve an educational purpose. In the latter case, this may be for the purpose of
investigation while also serving the purpose of providing basic information to the general
non-specialized public. Needless to say, captivity can have a major impact on an animal’s
behavioral, social, or even physiological attributes. One of the key components involved in
these processes is known as physiological stress [107].

Stressors may include but are not exclusive to the presence or absence of sensory
stimuli (e.g., sound, smell, light, temperature), restrictions of movement (e.g., difficulties
to retreat, forced proximity), abnormal social contexts (lack of possibilities for migration,
forced husbandry), and the forced imposition of routine (feeding times, type of food,
predictable presence or absence of stimuli). Nevertheless, despite the possible combinations
of stressors, what is most likely to produce stress among captive animals is their inability
to control them [107,108]. In the case of sensory stimuli, most animals, when exposed
to uncomfortable situations, have the ability to flee, thus establishing control over the
situation. While many zoos and parks housing captive animals pay particular attention
to the design of enclosures, the impact of these factors is inevitable [109], especially over
prolonged periods of time.

In response to these stressors, captive animals are well known to develop Abnormal
Repetitive Behaviours (ARBs). While, in some cases, ARBs are interpreted as a coping
mechanism, many specialists argue that this is not necessarily the case [110]. The severity
and extent of these ARBs can be dependent on multiple factors; however, they are present
in most, if not all, captive species. From one perspective, Mason [111] and Mason et al. [108]
state that highly migratory animals are more likely to develop negative ARBs. From a
similar perspective, these authors describe how a species’s plasticity and socio-cognitive
attributes are likely to determine how well these animals cope under stress. Nevertheless,
ARBs can not only be seen as an indicator of welfare quality and animal adaptability but, if
too extreme, can also put into question the educational objective of these institutions, as
these behaviors are not a true reflection of the wild animals’ original behavior.

A study by Wells [112] described how correlations exist between the aggressive actions
of captive primates and the number of visitors to the zoo. While the social and cognitive
attributes of primates may be a poor analogy to that of wolves, wild canids are still openly
sociable animals with particular tendencies to interact with, or at least be acutely susceptible
to, human-induced stimuli [113]. Likewise, studies carried out on smaller canids show an
important change in fox behavior related to the higher peaks in visitors [114]. In each of
these cases, the forced proximity with humans is likely to trigger different reactions among
animals, which can be perceived as either a threat or a simple annoyance depending on the
species [107].

Wild wolves typically modify the extension of their territories in order to avoid other
wolf packs but are also frequently found to make particular efforts to avoid humans
or human-made structures [66]. A study by Clubb and Mason [115], with the subtitle
“Animals that roam over a large territory in the wild do not take kindly to being confined”,
found correlations between natural territoriality and most ARBs in a number of different
animals. From this perspective, and given the reduced amount of “territory size” provided
by both the Cabárceno and Hosquillo centers, the size of enclosures and number of visitors
are likely to have a joint impact on wolf behavior.

From another perspective, animals tend to eat when they need to, while the added
removal of the thrill of the hunt is likely to agitate carnivores [116]. Likewise, the added
security of being fed regularly is likely to affect their physiological stress levels.

Finally, chewing is known to calm domestic dogs when they get agitated [117]. Do-
mestic dogs suffering from confinement distress have also been known to chew and destroy
items, the latter more common when combined with noise aversion [118,119]. From this
perspective, it is a well-known phenomenon that canine species are more prone to noise-
related stress, with sounds such as gun-shots, fireworks, people yelling, and heavy traffic
causing many dogs to react negatively. Destructive behavior, for example, is one of the
most common reactions of dogs in these situations [118]. While many dog species are more
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accustomed to gun sounds, desensitized to loud noises, and are thus generally less prone
to destructive behavior, this is a product of gradual introduction to these experiences, and
in some cases, have become a genetic characteristic developed over time [120].

Closely related to some of these points, the lack of new stimuli in most captive
environments is a major component in animal temperament. In more general terms, this
can be summarized in the simple term “boredom”, and is especially relevant in animals
of naturally high mobility confined in small spaces [115]. While canids are frequently
known to chew on objects to relieve stress, this can sometimes be referred to also as a
pass-time and is common, especially in bones found from wild wolf dens or domestic
dog yards/kennels [16,35,121]. Analogies of ARBs in taphonomic analyses are commonly
known, as in the case study presented by Gidna et al. [51], who found that the number of
tooth marks left by captive lions (from Cabárceno, Spain) was almost twice the amount
than those left by wild lions (Tarangire, Tanzania). A comparable study by the same authors
showed leopards to produce even more extreme differences in the case of captive (Bahari
Zoo, Dar es Salaam, Tanzania) and wild (Tarangire, Tanzania) leopards [52]. Likewise,
studies by Saladié et al. [122] with captive bears originating from the Barcelona Zoo and
Hosquillo Park present much higher tooth mark frequencies than data presented by Sala
and Arsuaga [123] and Arilla et al. [124], with wild bears from Cantabria (Spain) and areas
of the Spanish Pyrenees. While a full taphonomic analysis of the samples at hand is beyond
the scope of the present study, similar observations have been made here (Supplementary
Tables S6.1–S6.3).

In each of these examples, evidence points towards captivity being a stressful situation
for animals; whether this physiological stress is enhanced by the presence of noise, crowds,
lack of space, lack of external stimuli, or a combination of all of the above. In the case of
Cabárceno and Hosquillo, both wolf groups are limited to a considerably smaller amount
of space than they would experience in the wild. Moreover, this small space is shared
between five to seven wolf individuals. Both samples also originate from parks frequently
visited by large numbers of people, all of whom carry out their visit by motorized vehicles.
Both of these factors are accompanied by the associated noise of both the crowds and the
engines. Finally, alongside the established routines and lack of external stimuli, wolves are
likely to present signs of boredom, which is commonly associated with excessive chewing.

While it could be hypothesized that the combination of these factors might cause
wolves to bite harder, leaving deeper pits, if these continuous chewing behaviors persisted
over long periods, this ARB might cause cusps to wear down through excessive use. This
would explain the shallower marks. Nevertheless, further research would be required in
order to prove this point.

4.1.2. The Biomechanics of Mastication & Additional Reflections on Courtenay et al. “The
Effects of Prey Size on Carnivore Tooth Mark Morphologies”

Multiple factors are involved behind the mechanics of mastication, many of which are
highly complex, having evolved over millions of years. A previous study by the present
authors performed analyses on how tooth mark morphology may be dependent on prey
size [53]. Said study statistically concluded that evidence was “insignificant”, especially
in the case of tooth pits. The discussion of the said study made reference to the influence
of skull morphology, tooth morphology, and muscular functions, as well as attributes
concerning lifestyle (see discussion of Courtenay et al., [53] and citations therein). While
some of these conditioning factors are still to be experimented with, the present study
provides a much larger sample size, providing a more empirical means of responding to
some of these questions.

First, considering how the aforementioned behavioral attributes behind “playing”
and “feeding” are likely to produce different biomechanical movements, it is likely that
this is a notable change in the way force is exerted. From another perspective, comments
by Toledo–González et al. [56] note that sexual dimorphism is an important component in
wolf dental attributes. While controlling the intervention of different sexes in tooth marked
samples is difficult, especially in the case of wild wolf samples, the lack of intra-group
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clusters and detectable patterns in each of the projected feature spaces (Figure 6) is likely
to imply that this is not a significant conditioning factor in the case of tooth pits and scores.

In hindsight, and in light of the present study’s more rigorous use of p-values [103,104],
it can be argued that in the case of tooth scores, the probability of these observations being
a Type I statistical error falls to 30% for Large vs. Small-sized prey, 11% for Large vs. Medium-
sized prey, and 8.7% for Medium vs. Small-sized prey. For tooth pits, Type I statistical error
probabilities are between 25 and 4%, with the former calculation being relevant to tooth
marks on large-sized animals. From this perspective, the difference between tooth scores
on Large and Small-sized prey as originally reported [53] is likely to be an overestimate.
Likewise, tooth pits show larger animals to be more problematic. When paired with a
much larger sample here, comparing different populations, these patterns notably decrease.
Once again, tooth marks in both wild wolf samples present a lack of separation between
different sized animals, with an even smaller probability of being a False Positive for tooth
pits (new p = 3.2 × 10−18, FPR = 3.5 × 10−16%). Likewise, when compared in a broader
context across an additional 144 tooth marks, allometric relationships are revealed to be
unimportant when considering prey size (Figure 5; F = 1.17, p = 0.25, p(H0) = 48.5%). From
this perspective, the present study can thus consolidate previous hypotheses and conclude
with more certainty that an animal’s prey size is not a powerful conditioning factor.

4.2. Implications for Carnivore Based Research

The present study has provided new insights into the effects captivity may have on
typical carnivore modifications to bone, supporting and contributing to the discussions
proposed by Gidna et al. [51] and Sala et al. [125]. Here we have found that tooth scores
are notably different, while tooth pits are more dependent on other morphological features,
leading captivity to be an unimportant conditioning variable. Nevertheless, to what extent
are these observations likely to affect other research using carnivore tooth scores?

At present, multiple different techniques exist for the study of carnivore tooth marks,
from more traditional metric variables based on simple measurements [37–39], to more com-
plex means of extracting these measurements via 3D models and
micro-topographies [40,41,46–48], as well as visual elements extracted from images [49,50].
The present study paid particular attention to how captivity affects variables such as WIS,
which can be considered an analogy with any of the metric variables described by authors
for the metric study of scores [37–39]. Likewise, the evident changes to score depth, and
in turn, the correlated effect this has on WIS, WIM, and WIB variables, surely affects the
volumetric properties of these marks [47,48]. From a multivariate approach and consider-
ing overall morphology, this has an evident impact on how tooth scores can be studied in
geometric morphometric approaches as well [40]. While the present study has not directly
considered qualitative components, the aforementioned effects of metric variability are
also likely to condition the appearance of these traces in some way or another [49,50].

As noted by Clubb and Mason [115], the ability of a carnivore to adapt to captivity
is greatly conditioned by their natural mobility and territoriality in the wild, as well as
other factors, including behavioral and physiological attributes [107,108]. Wolves are well
known for their high mobility [59–66], and therefore, are more likely to be susceptible to
stressors. Nevertheless, the way a wolf deals with this stress may be different from that
of other animals. Felids and ursids, for example, have been observed to develop ARBs in
the form of extensive pacing [110]. Likewise, these animals are much less durophagous,
therefore can be assumed to be less likely to modify bones to the same extent, while truly
durophagous animals such as hyaenids have dentition specifically evolved for these types
of repetitive forces [126]. This hypothesis, however, is yet to be supported by empirical
evidence.

Mindful of all these elements, the present results advise caution when working with
tooth scores, especially in the case of wolves. Until further experimentation has been
carried out on felids, ursids, and hyaenids, as well as other canids, care must also be taken.
Finally, it is important to encourage caution for taphonomists and analysts when publishing
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samples using the terms “semi-captive”, as this term can be considered misleading. The
term “semi” should thus consider a number of different factors, including the general size,
physiology, and natural behavior of the animal in the wild while factoring in the conditions
under which the animals are enclosed.

5. Conclusions

The present study started with the hypothesis that, regardless of the population or
state of captivity, tooth mark morphologies among wolf populations would not vary. While
this hypothesis has been confirmed in the case of tooth pits, tooth scores have presented a
notable deviation from our original theories.

The present study has shown a wide array of different perspectives on the effect cap-
tivity may have on the morphology of tooth marks. The importance of these observations
has an impact on both past and present ecological studies. In conclusion, tooth scores have
been shown to present notable variability and should thus be approached with caution
when used as a diagnostic tool in tooth-marked assemblages. Nevertheless, pits are less
dependent on these variables and are more likely to be a more reliable diagnostic tool for
carnivore identification. Future investigation should take into account further interspecific
analyses.
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23. Wilczyński, J.; Haynes, G.; Sobczyk, Ł.; Svoboda, J.; Roblíčková, M.; Wojtal, P. Friend or Foe? Large canid remains from Pavlovian
sites and their archaeozoological context. J. Anthr. Arch. 2020, 59, 101197. [CrossRef]

24. Larson, G.; Karlsson, E.K.; Perri, A.; Webster, M.T.; Ho, S.Y.W.; Peters, J.; Stahl, P.W.; Piper, P.J.; Lingaas, F.; Fredholm, M.; et al.
Rethinking dog domestication by integrating genetics, archaeological and biogeography. Proc. Natl. Acad. Sci. USA 2012, 109,
8878–8883. [CrossRef] [PubMed]

25. Cayuela, L. Habitat evaluation for the Iberian wolf Canis lupus in Picos de Europa National Park, Spain. Appl. Geogr. 2004, 24,
199–215. [CrossRef]

26. Blanco, J.C.; Cortes, Y. Ecological and social constraints of wolf recovery in Spain, A New Era for Wolves and People. In Wolf
Recovery, Human Attitudes and Policy; Musiani, M., Boitani, L., Paquet, P.C., Eds.; University of Calargy Press: Calargy, AB, Canada,
2009; pp. 41–66.

27. Woodroffe, R.; Redpath, S.M. When the hunter becomes the hunted. Science 2015, 348, 1312–1314. [CrossRef]



Animals 2021, 11, 2323 24 of 27

28. Pimenta, V.; Barroso, I.; Boitani, L.; Beja, P. Wolf predation on cattle in Portugal: Assessing the effects of husbandry systems. Biol.
Conserv. 2017, 207, 17–26. [CrossRef]

29. Pimenta, V.; Barroso, I.; Boitani, L.; Beja, P. Risks a la carte: Modelling the occurrence and intensity of wolf predation on multiple
livestock species. Biol. Conserv. 2018, 228, 331–342. [CrossRef]

30. Ericsson, G.; Heberlein, T.A.; Karlsson, J.; Bjärvall, A.; Lundvall, A. Support for hunting as a means of wolf Canis lupus population
control in Sweden. Wildlife Biol. 2004, 10, 269–276. [CrossRef]
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Aumento de datos de morfometría geométrica mediante el uso de
algoritmos de redes generativas antagónicas

El registro fósil es notorio por ser incompleto y estar distorsionado, lo que frecuentemente condiciona el
tipo de conocimiento que se puede extraer a partir de él. En muchos casos, esto suele plantear problemas
a la hora de realizar análisis estadísticos complejos empleando la morfometría geométrica, como tareas de
clasificación, modelización predictiva, y análisis de varianza. En este artículo, se experimenta con difer-
entes arquitecturas de redes generativas antagónicas, comprobando cómo influyen variables como el tamaño
de la muestra y la dimensionalidad del dominio en la calidad de los resultados. Para evaluar la calidad de
los datos aumentados, utilizamos métodos de la estadística robusta. A partir de este estudio, se observa
que todos los algoritmos son capaces de producir datos realistas. Además, la red generativa antagónica,
empleando diferentes funciones de pérdida, produce datos sintéticos multidimensionales significativamente
equivalentes a los datos de entrenamiento originales. No obstante, las redes generativas antagónicas condi-
cionales no tuvieron tanto éxito. Los métodos propuestos pueden reducir el impacto del tamaño de la
muestra en futuras aplicaciones de aprendizaje estadístico. Aunque las redes generativas antagónicas no
son la solución de todos los problemas relacionados con el tamaño de la muestra, estos pueden superarse si
se combinan con otros pasos de preprocesamiento. Por tanto, este acercamiento presenta un medio valioso
para aumentar los conjuntos de datos de la morfometría geométrica.
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Featured Application: Geometric Morphometrics are a powerful multivariate statistical toolset
for the analysis of morphology. While typically used in the study of biological and anatomical
variance, modern applications now incorporate these tools into a number of different fields of
non-biological origin. Nevertheless, as with many fields of data science, Geometric Morphometric
techniques are often impeded by issues concerning sample size. The present study thus evaluates
a number of different computational learning algorithms for the augmentation of different
datasets. Here we show how generative algorithms from Artificial Intelligence are able to
produce highly realistic synthetic data; helping improve the quality of any statistical or predictive
modelling applications that may follow.

Abstract: The fossil record is notorious for being incomplete and distorted, frequently conditioning
the type of knowledge that can be extracted from it. In many cases, this often leads to issues
when performing complex statistical analyses, such as classification tasks, predictive modelling,
and variance analyses, such as those used in Geometric Morphometrics. Here different Generative
Adversarial Network architectures are experimented with, testing the effects of sample size and
domain dimensionality on model performance. For model evaluation, robust statistical methods
were used. Each of the algorithms were observed to produce realistic data. Generative Adversarial
Networks using different loss functions produced multidimensional synthetic data significantly
equivalent to the original training data. Conditional Generative Adversarial Networks were not
as successful. The methods proposed are likely to reduce the impact of sample size and bias on
a number of statistical learning applications. While Generative Adversarial Networks are not the
solution to all sample-size related issues, combined with other pre-processing steps these limitations
may be overcome. This presents a valuable means of augmenting geometric morphometric datasets
for greater predictive visualization.

Keywords: archaeological data science; artificial intelligence; unsupervised learning; generative
adversarial networks; robust statistics

1. Introduction

1.1. Geometric Morphometrics

Geometric Morphometrics (GM) is a powerful multivariate statistical toolset for the analysis of
morphology [1]. These methods are of a growing importance in fields such as biology and physical
anthropology, with many implications for evolutionary theory and systematics. GM applications
employ the use of two or three dimensional homologous points of interest, known as landmarks,
to quantify geometric variances among individuals [1–4].

Appl. Sci. 2020, 10, 9133; doi:10.3390/app10249133 www.mdpi.com/journal/applsci
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GM practices first project landmark configurations onto a common coordinate system. This process
is carried out via a series of superimposition procedures, including scaling, rotation and translation,
frequently known as Generalized Procrustes Analyses (GPA). GPA is a powerful technique that allows
for the direct comparison of landmark configurations, quantifying minute displacements of individual
landmarks in space [5,6]. These distortions and deformations can then be used to highlight geometric
variations among organisms and can be visualized with ease.

From these superimposed configurations, matrix operations from linear algebra can be performed
to project each element under study as a single multidimensional (Rn) point in a newly constructed
feature space. This procedure, known as Principal Components Analysis (PCA) is useful for
dimensionality reduction and converting landmarks into more manageable data for complex statistical
applications [7,8].

A wide array of techniques are known for different pattern recognition and classification tasks in
GM. From one perspective, more traditional parametric and non-parametric multivariate statistical
analyses can be performed to assess differences and similarities among sample distributions [7].
Likewise, generalized distances and group association probabilities can be used to compare groups of
organisms and trends in variation and covariation [9]. Moreover, many popular classification tasks
rely on parametric discriminant functions [10,11].

In more recent years, tasks in pattern recognition and classification have received an increase in
efficiency and precision with the implementation of Artificially Intelligent Algorithms (AIAs), reporting
>90% accuracy in GM applications. In a broad sense, AIAs are algorithms designed to “learn” from
data so as to perform a wide array of different tasks. In this context, AIAs can be programmed to
automatically learn from subsets of data to adjust their internal parameters, while using other subsets
to validate these parameters for performing a certain task [12]. Among the multitude of available
algorithms, the most popular AIAs for classification purposes in GM currently include Support Vector
Machines (SVM) [13–16], and Artificial Neural Networks (ANN) [17–21]. Both algorithms present
distinct advantages, especially in the processing of complex high-dimensional data. As opposed to
traditional Linear and/or Partial Least-Squares Discriminant Analyses (LDA and PLSDA), SVMs and
ANNs are less susceptible to underlying assumptions within model properties. SVMs, for example,
are able to use numerous different kernel functions to overcome issues imposed by linearity [22,23].
ANNs, on the other hand, are highly versatile non-linear algorithms inspired by information processing
in the brain, achieving above human performance in a multitude of real-life situations [23–25].

Nevertheless, each of these types of analyses are susceptible to a number of different problems,
all of which can affect the reliability of the extracted data. From one perspective, numerous studies
have focused on the error produced through data collection procedures, whether this type of error be
induced by analyst experience, collection protocols or the definition of the landmark itself [26–29].

Landmarks, for example, can be divided into several different types. While some of the original
definitions of landmark types were based on strictly biological features [30], these definitions can
be considered somewhat restrictive for morphological analyses outside of anatomy. Under this
premise, we prefer to define landmarks in a more general sense (Figure 1), referring to Type I
landmarks as anatomical points of biological significance [3,30]; Type II landmarks can be defined as
points of mathematical significance (e.g., maximal curvature or length) [3]; and Type III landmarks
can be considered constructed points located around outlines or in relation to other landmarks [3].
From another perspective, valuable contributions in the field of GMs have seen the incorporation of
computational landmarks into analyses. From this perspective “semi-landmarks” can be computed that
“slide” over curves and surfaces in an attempt to reduce bending energy [4]. Finally other promising
efforts have been made to develop automated tools for landmark digitization [31].

With both a more generalized definition of landmark types, as well as the inclusion of computational
tools for their digitization, GMs have been able to quantify morphological traits across a wide array of
different objects (Figure 1), including stone implements and tools [32], as well as microscopic anomalies
found on bone [14–16,21,29].
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Figure 1. Examples of landmark types on different artefacts in the fossil register. Type I landmarks
(black) refer to points of biological and anatomical interest, such as the meeting of two sutures or a
foramen as represented on the skull above. Type II landmarks (red) are mathematically defined points
of interest, such as those points marking the maximal curvature of one, the length of an item, or the
deepest point in a microscopic groove. Type III landmarks (blue) are constructed points of interest
located in approximation or relation with other elements, such as the centroid of an eye-socket, the
general outline of an object, or points in between other landmark types.

More often than not, however, the preservation rate of fossils results in the loss of landmarks,
impeding many types of analyses [33,34]. The completeness of the fossil record is thus a major
conditioning factor in archaeological and paleontological GM analyses. Considering the number of
available fossils for certain species, construction of reliable datasets is difficult, resulting in sample
bias. Statistical tests such as Canonical Variant Analyses (CVA), for example, are highly sensitive to
small or imbalanced datasets [9]. Moreover, the impact of bias is directly proportional to the number
of variables included in multivariate analyses [35]. Even if samples are balanced, in fields such as
paleoanthropology obtaining large sample sizes is often difficult, and thus the predictive capacity of
discriminant models may fall significantly.

1.2. Data Augmentation

Resampling techniques in traditional statistics have had great success in providing more robust
methods to test statistical approximations and p-value calculations. Tests requiring permutations as well
as more computationally efficient Monte Carlo simulations have been a standard procedure in statistical
practices for over half a century [36,37]. Their versatility to both parametric and non-parametric
assumptions makes handling imbalanced and skewed data much more reliable, while proving less
sensitive to samples of smaller sizes [38]. Nevertheless, a critical issue when considering small sample
sizes are an “insufficiency of information density” that is able to correctly provide a general overview of
the population’s distribution [39]. This issue becomes apparent when trying to classify new individuals.
With insufficient knowledge of the true coverage of a domain, the interpretation of new information is
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much more difficult. In data science this phenomenon is usually known as overfitting for classification
algorithms [25].

One statistical technique frequently used to overcome this issue is resampling with replacement,
known as bootstrapping. Bootstrapping duplicates the data multiple times creating a virtual population
from a distribution sample [40,41]. As opposed to resampling techniques without replacement (e.g.,
permutation, cross-validation, jackknife), bootstrap procedures are efficient in inferential tasks helping
to simulate the general nature of the population. Nevertheless, neither of these resampling procedures,
in truth, simulate new information. While they may be useful for inflating the dataset and providing
enough information for a model to adjust its weights, overfitting is likely, as the space between data
points can still be considered “uncharted territory”.

In response, data scientists and specialists in AIAs propose the use of synthetically produced new
data to overcome these problems [42]. While using synthetic “fake” data has drawn some skepticism
from scientists, numerous experiments in predictive modelling have empirically shown how these
synthetic datasets not only reduce overfitting, but actually produce an increase in accuracy [43]. This is
achieved through creating new data that is “meaningful” to the real distribution by adapting the data
that is already available [44] (Tanaka and Aranha, 2019). These advances have had a major impact
on scientific disciplines dedicated to computational learning, especially in the case of highly complex
applications for computer vision [25]. One of the key AIAs responsible for this success is the Generative
Adversarial Network (GAN).

GANs were originally presented as an unsupervised AIA capable of creating new data, based on
the training data provided [45]. In less than a decade, GANs have been efficiently incorporated into a
wide variety of applications, especially in fields of computer vision and image processing. A GAN
consists of two neural networks trained simultaneously. The first model, known as the Generator,
is trained to produce synthetic information which the second model, the Discriminator, evaluates for
authenticity. The two models are trained in competition (i.e., adversarial), with the generator working
to produce data that the discriminator is unable to classify as synthetic. The final product is a generator
model capable of producing completely new data that is indistinguishable from the real training set.
With the additional advantage of a neural network’s non-linear internal configuration, GANs are
highly efficient in mapping out any type of probability distribution. From this perspective, GANs have
been used for a wide arrange of different applications, including the generation of photo-realistic
images, anomaly detection, music generation, and the approximation of a number of different statistical
distributions [46,47].

2. Materials and Methods

This study presents an experimental protocol used to evaluate and assess different types of GANs
for augmenting GM datasets. Through experimenting with different architectures, configurations and
training strategies, this study aims to propose an optimal architecture for augmenting data of this type.
In order to evaluate these results, both descriptive statistics and equivalency testing have been used.
Figure 2 presents a general visualization of the described workflow.
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2.1. Datasets

Experiments included within this study were performed on a total of three GM datasets.
These datasets originated from experimental archaeology samples in taphonomy. Each of these
samples thus represent the morphological features of microscopic alterations observed on bone,
using GM to quantify these morphologies for diagnostic purposes.

Nevertheless, considering the objective of this study is to observe the effects of generative learning
for GM data augmentation, the origin of these datasets was considered unimportant. The reason
behind this lies in how, regardless of the element under study, data used for GM analysis consists
of superimposed landmark coordinates (Figures 1 and 2). From these coordinates, dimensionality
reduction can be used to convert each element into a single vector from which models can learn
from (Figure 2). Therefore, irrespective of whether the raw landmark data was obtained from
paleoanthropological specimens, lithic tools or carnivore feeding samples (Figure 1), all landmarks are
similarly embedded into a single vector that can be used as the input to our computational models.
Additional use of these three case studies was based on how each dataset was personally generated by
the corresponding author, providing a means of controlling the origin of information.

The 3 datasets used consists of a mixture of manually placed landmarks (Type II or III; Figure 1),
as well as some computational semi-landmarks [3,4]. The three datasets include;

• Dataset 1 (DS1); canid tooth score dataset [16]. This dataset consists of 105 individuals from three
different experimental carnivore feeding samples (labelled foxes, dogs and wolves). 3D models
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for data extraction were generated using a low-cost structured light surface scanner (David SLS-2).
The topography of each 3D digital model was then used to extract 2D images where landmarks
could be placed. Landmark data consist of a mixture of Type II and Type III 2D landmarks.

• Dataset 2 (DS2); scratch and graze trampling dataset [15]. This dataset consists of 60 individuals
from two different experimental trampling mark samples (labelled scratches and grazes). Each of
the elements under study were digitized employing a 3D Digital Microscope (HIROX KH-8700),
using between 100× and 200×magnification. Collection of landmark data was then performed
following a series of measurements that established a 3D coordinate system across the model.
Landmark data consist of a mixture of Type II and Type III 3D landmarks.

• Dataset 3 (DS3); semi-landmark based tooth pit dataset [29]. This dataset consists of an adaptation
of DS1 using 60 individuals from two carnivore feeding samples (labelled dogs and wolves).
3D models for data extraction were generated using a low-cost structured light surface scanner
(David SLS-2). Landmark data consist of a mixture of 3D Type II landmarks and a mesh
of semi-landmarks.

These three datasets were chosen considering the dimensionality of the corresponding
feature-space produced for GM analysis (R14, R39 and R60 respectively). With each of these datasets
presenting different dimensionalities, optimal GAN architectures could therefore be proposed so as to
establish a standardized protocol, regardless of the target domain’s Rn size.

These datasets were also chosen to observe the effect original sample size has on the accuracy of
synthetic data. The latter was tested via minimum sample size calculations according to Cohen’s d
(power = 0.8, d = 0.8, α = 0.05, ratio = 1:1) [35]. This established a minimum sample size for two-sample
statistical comparisons of 26 individuals, rounded up to 30 for simplicity. In accordance with this
calculation, experiments were performed by randomly sampling 30 real individuals and comparing
them with 30 synthetic individuals. In datasets where larger samples were available, 60 real individuals
were sampled and compared with 60 synthetic data points.

2.2. Baseline Geometric Morphometric Data Acquisition

Each of the datasets were prepared using traditional GM techniques, first performing a full
Procrustes fit of landmark coordinates via GPA (Figure 2), followed by the extraction of multivariate
features through PCA [7,8]. Considering how the objectives of this study are to find the optimal
algorithm for mapping out multidimensional distributions, differences in shape-size relationships were
considered irrelevant for this study. GPA was therefore only performed using fully superimposed
coordinates in shape feature space.

From here, PC scores were analyzed evaluating their dimensionality and the proportion of variance
represented across each of the decomposed eigenvectors and their eigenvalues. Considering how the
final eigenvalues begin to represent little or no variance within the landmark configuration, preference
was given to those PC scores representing up to 95% of sample variance for statistical evaluations.

For the purpose of this study, GM pre-processing of samples was performed in the free statistical
software R (https://www.r-project.org/, v.3.5.1 64-bit).

2.3. Generative Adversarial Networks

A GAN is a Deep Learning (DL) architecture used for the synthesis of data via a generator model.
GANs are fit to data using an unsupervised approach, where the generator is trained by competing
with a discriminator that evaluates the authenticity of the synthetic data produced [24,41]. While the
basic concept behind a GAN is relatively straightforward, the theory behind their configuration and
training can be incredibly challenging [25,48–51].

To generate new data, the generator samples from a random Gaussian distribution (e.g., µ = 0,
σ = 1), finding the best means of mapping this data out onto the real sample domain. A fixed-length
random vector is used as input, triggering the generative process. Once trained, this vector
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space can essentially be considered a compressed representation of the real data’s distribution.
This multidimensional vector space is most commonly referred to in DL literature as latent space [21,48].

The discriminator model takes as input the output of the generator. This discriminator can then be
used to predict a class label (real or fake) for the generated data. In some cases, this model is referred
to as a critic model [52,53].

For the purpose of this study, multiple experiments were performed to define an optimal GAN
architecture. These experiments followed standard DL protocol, finding the optimal neural network
configurations by evaluating the effects of each hyperparameter on model performance. Summaries of
the hyperparameters tested are included in Table 1.

Table 1. List of hyperparameters and settings tested during optimization of GAN model architectures.

Hyperparameter Tested Settings

Number of Layers −
Node Density −

Activation Functions ReLU, Leaky ReLU, Tanh, Swish, ELU, Sigmoid, Linear
Kernel Initializer None, Uniform, Normal and their Random, Truncated or Glorot variants.

Dropout None, Present with thresholds between 0.01 and 0.9
Weight Regularizer None, l2 with thresholds between 0.01 and 0.0001
Weight Constraint UnitNorm, MaxNorm, MinMaxNorm

Batch Normalization Present, Absent
Training Epochs Between 100 and 2000

Batch Size 4, 8, 16, 32
Optimizers Adam, RMSprop, Stochastic Gradient Descent. Adagrad

Learning Rate Between 0.1 and 0.00001
Decay Between 0.9 and 0.0001

Momentum Between 0.99 and 0.1

Loss Binary cross-entropy, Mean Squared Error, Least Squares, Wasserstein Loss,
Wasserstein Gradient Penalty Loss.

In addition to this, the extensive literature on the “best-practices” in GAN research and different
heuristics in GAN hyperparameter selection were considered [48,49,51,54]. Among these, common
“GAN-Hacks” were evaluated, including:

• Use of the Adam optimization algorithm (α = 0.0002, β1 = 0.5)
• Use of dropout in the generator with a probability threshold of 0.3
• Use of Leaky ReLU (slope = 0.2)
• Stack hidden layers with increasing size in the generator and decreasing size in the discriminator.

For training, trials experimenting with the number of epochs and batch sizes were performed.
The final values were chosen in accordance with the requirements of the model in order to reach an
acceptable stability.

While binary cross-entropy is typically a recommended loss function for training, this study
experimented with alternatives, such as the Least Squares loss function (LSGAN) and two versions
of Wasserstein loss (WGAN). LSGAN was originally proposed as a means of overcoming small or
vanishing gradients, which are frequently observed when using binary cross-entropy [50,52]. In LSGAN,
the discriminator (D) attempts to minimize the loss (L), using the sum squared difference between the
predicted and expected values for real and fake data (Equation (1)), while the generator (G) attempts to
minimize this difference assuming data is real (Equation (2)):

LLSGAN
D = −Ex∼pd

[
(D(x) − 1)2

]
+ Ex̂∼pg

[
D(x̂)2

]
(1)

LSGAN
G = −Ex̂∼pg

[
(D(x̂− 1))2

]
(2)
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This results in a greater penalization of larger errors (E) which forces the model to update weights
more frequently, therefore avoiding vanishing gradients [55]. WGAN, on the other hand, is based on the
theory of Earth-Mover’s distance [52], calculating the distance between the two probability distributions
so that one distribution can be converted into another (Equations (3) and (4)):

LWGAN
D = −Ex∼pd [D(x)] + Ex̂∼pg [D(x̂)] (3)

LSGAN
G = −Ex̂∼pg [D(x̂)] (4)

WGAN additionally uses weight constraints (hypercube of [−0.01, 0.01]) to ensure that the
discriminator lies within a 1-Lipschitz function. In certain cases, however, this has been reported to
produce some undesired effects [53]. As an alternative, a proposed adaptation, in the form of gradient
penalty WGAN (WGAN-GP), includes the same loss for the generator (Equation (4)) but a modified
discriminator (eg., 5) with no weight constraints [53,56]:

LWGANGP
D = LWGAN

D + λEx̂∼pg

[
(‖∇D(αx + (1− αx̂))‖2 − 1)2

]
(5)

For both loss functions to work, the output of D requires a linear activation function.
Finally, optimization tests were performed using Adam (α = 0.0002, β1 = 0.5) and RMSprop
(α = 0.00005) [50,53,57,58].

More details on the mathematical components of each GAN loss function can be consulted in the
corresponding references [25,50,52,53,55].

GANs were trained on scaled PCA feature spaces with 64-bit values ranging between 1 and −1.
This scaling procedure was performed to boost neural network performance and optimization by
helping reduce the size of weight updates [24]. For these experiments, GANs were trained on all data
within the dataset, regardless of label. This approach was chosen to directly observe how GANs handle
this type of input data before considering more complex applications, including sample labels. (See
Section 2.4)

All experiments were performed in the Python programming language (https://www.python.org/,
v.3.7 64-bit) using TensorFlow (https://www.tensorflow.org/, v.2.0). Neural networks were compiled
and trained on the CPU of an ASUS X550VX laptop (Intel® CoreTM i5 6300HQ).

2.4. Conditional Generative Adversarial Networks

The final GAN trials performed adapted the optimally defined model in Section 3.1 for Conditional
GAN tasks (CGAN). A CGAN is an extension of traditional GANs that incorporate class labels into the
input, thus conditioning the generation process. Class labels are encoded and used as input alongside
both the latent vector and the original vector in order for the GAN to learn targeted distributions within
the dataset [59]. This can be done by using an embedding layer and concatenating the embedded
information with the original input [60]. It is recommended that the embedding layer is kept as small
as possible [51], with some of the original implementations of CGANs using an embedding layer with
a size of only ≈5% of the original flattened generator’s output. Because 5% of our largest dataset would
still have been <1, experiments were performed with different sized embedding layers to find the
optimal configuration. The best results came out using a d1/4 • ne sized embedding layer, where n
corresponds to the number of dimensions in Rn for each of the targeted feature spaces.

For comparison of GAN and CGAN performance, these models were used separately to augment
the DS3. This dataset was chosen considering it was the most complex feature space to map, the most
balanced (when compared with DS1), and the most difficult to study (seeing how DS2 presents the
highest natural separability).
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2.5. Synthetic Data Evaluation

Evaluation of GANs is a complex issue with little general agreement on suitable evaluation
metrics [49]. Considering how most practitioners in GAN research work with computer vision
applications, many papers use manual inspection of images to evaluate synthesized data [61].
Image evaluation, for example, often consists in the visualization of GAN outputs to check whether
they are realistic or not, or the use of specified algorithms that are very image-specific [61]. For the
synthesis of numeric data, manual inspection is evidently a very subjective means of evaluating
information, while calculations such as Inception-score are not applicable to this type of data [49,61,62].
Under this premise, the majority of metrics used in GAN literature is of little value to the present study,
as they almost exclusively focus on the evaluation of images [60,62].

Multidimensional numbers are incredibly difficult to visualize, meaning that precise human
inspection of this data is impossible. To overcome this, a number of statistical metrics were adopted for
GAN evaluation.

Firstly homogeneity of GM data was tested. In most traditional cases, the elimination of size
and preservation of allometry in GPA is known to normalize data [63]. Nevertheless, this assumption
does not always hold true. The first logical step was to therefore evaluate distribution homogeneity
and normality via multiple Shapiro tests. Synthetic distributions were then compared with the real
data to assess the magnitude of differences and the significance of overlapping. For this, a “Two
One-Sided” equivalency Test (TOST) was performed. TOST evaluates the magnitude of similarities
between samples by using upper (εS) and lower (εI) equivalence bounds that can be established via
Cohen’s d. This assesses H0 and Ha using an α threshold of p < 0.05, with Ha implicating significant
similarities among samples [35,64–67]. For TOST the test statistics used to assess these similarities were
dependent on distribution normality. These varied between the traditional parametric method using
Welch’s t-statistic [68], or a trimmed non-parametric approach using Yuen’s robust t-statistic [69,70].
To differentiate between the two, from this point onwards non-parametric robust TOST will be referred
to as rTOST.

More traditional univariate descriptive statistics were also employed. For distributions matching
Gaussian properties, sample means and standard deviations were calculated. These were accompanied
by calculations of sample skewness and kurtosis. For significantly non-Gaussian distributions, robust
statistical metrics were used instead. In these cases, measurements of central tendency were established
using the sample median (m), while deviations were calculated using the square root of the Biweight
Midvariance (BWMV) (Equations (6)–(9)) [29,71,72].

MAD = m(|xi −mx|) (6)

U =
xi −m
9MAD

(7)

ai =

{
1, i f |Ui| < 1
0, i f |Ui| ≥ 1

(8)

BWMV =
n
∑n

i=1 ai(xi −m)2
(
1−U2

i

)4

(∑n
i=1 ai

(
1−U2

i

)(
1− 5U2

i

))2 (9)

Robust skewness and kurtosis values were calculated using trimmed distributions. Trims were
established using Interquatile Ranges (IR) [71], with confidence intervals of p = [0.05:0.95]. Both the IR
range and the trimmed skewness and kurtosis values were reported.

Finally, wherever possible, correlations were calculated to compare the effect of hyperparameters
on the quality of synthesized data. For homogeneous data, the parametric Pearson test was used [73],
whereas inhomogeneous data was tested using the non-parametric Kendall τ rank-based test [74].
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Considering neural networks are stochastic in nature, these correlations were performed using data
obtained from multiple training runs of each GAN to ensure a more robust calculation.

3. Results

All three datasets analyzed present highly inhomogeneous multivariate distributions
(p < 2.2 × 10−16). Univariate comparisons (Table 2), however, present a mixture of both inhomogeneous
and homogeneous distributions across PC1 and PC2, where the majority of variance is represented.

Table 2. Summary of each dataset’s target domain with univariate calculations of distribution normality
in the top two PC scores.

Domain
Dimensionality

PCs with 95%
Cumulative Variance

PC1 PC2

Variance
(%)

Shapiro Test w
(p)

Variance
(%)

Shapiro Test w
(p)

DS1 R14 4 69.92 0.95 (0.02) 14.37 0.97 (0.15)
DS2 R39 11 32.27 0.96 (0.05) 25.70 0.98 (0.31)
DS3 R60 13 32.83 0.99 (0.75) 19.55 0.98 (0.30)

GAN failure through mode collapse was frequently observed throughout most of the initial trials,
characterized by an intense clustering of points with little to no variation in feature space (Figure 3).
Qualitatively, this type of failure is easily diagnosed by visual inspection of graphs. Quantitatively,
mode failure can be characterized by a dramatic decrease in variance seen through deviation metrics.
To provide an example, Figure 1 presents the use of a vanilla GAN trained on DS2. At first, training
can be seen to start well with the closest (yet not optimal) approximation to the target domain’s median
(Figure 3A). Nevertheless, little variation is present (BWMV of PC1 = 0.14, target BWMV = 0.38).
As training continues, the algorithm is unable to find the correct median, and performance is seen
to deteriorate (Figure 3B). This presents an exponential decrease in the variance of synthetic data
(Figure 3B PC1 BWMV = 0.02, Figure 3C PC1 BWMV = 0.0002). Likewise, through mode collapse,
the generator is unable to map the true normality of the distribution, generating increasingly normal
data in PC1 (Shapiro w > 0.98, p > 0.56).
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Replacing Leaky ReLU with tanh activation functions resulted in a significant improvement of
generated sample medians (difference in median for Leaky ReLU = 0.78; tanh = 0.26), yet with little
improvement in BWMV.

To overcome mode collapse, kernel initializers and batch normalization algorithms were
incorporated into both the generator and the discriminator. Batch normalization was included
before activation, presenting an increase in BWMV. Initializers required careful adjustment, with small
standard deviation values resulting in mode collapse. Additional experiments found the discriminator
to require a more intense initializer (σ = 0.1) than the generator (σ = 0.7), while optimal results were
obtained using a random normal distribution. Such a configuration allows the generator more room to
adjust its weights, finding the best way of reaching the target domain’s median and absolute deviation
while preventing the discriminator from learning too quickly.

Experiments adjusting hidden layer densities found symmetry between the generator and the
discriminator to be unnecessary. The generator was seen to require more hidden layers in order to
learn the distributions efficiently, while a larger density than the output in the last hidden layer also
produced an increase in performance. The discriminator worked best with just two hidden layers.

3.1. Optimal Architectures

To optimally adjust these finds with all three datasets, the best GAN architecture that presented
no mode collapse was obtained using 3 hidden layers in the generator and two hidden layers in the
discriminator. The size of hidden layers are conditioned by the size of the target feature space (Figure 4).
To use the example of the largest target domain (DS3 = R60), the generator is programmed so that
the first hidden layer (Gh1) is a quarter of the size of the target vector (in this case Gh1 = 60·1/4= 15).
If this calculation produces a decimal value (e.g., 59/4 = 14.75), the ceiling of this number is taken
(d1/4·59e = 15). This is followed by a layer half the size of the target vector (Gh2 = d1/2·60e = 30).
The generator’s final hidden layer is the size of the vector plus one quarter (Gh3 = d1/4·60e + 60 = 75).
The discriminator, on the other hand, is composed of two hidden layers, with the first hidden layer
being the same size as Gh2, and the second hidden layer equivalent to Gh1. Each hidden layer is
followed by a batch normalization algorithm before being activated using the tanh function. Tanh works
best considering the target domain is scaled to values between -1 and 1. Other components of the
algorithm include a dropout layer (p = 0.4) prior to the discriminator’s output and random normal
kernel initializers in both models (discriminator σ = 0.1, generator σ = 0.7).

Experiments with loss functions and optimization algorithms showed a significant improvement
in performance using LSGAN and WGAN variants when compared with vanilla GAN’s binary
cross-entropy (rTOST p < 0.05, Table 3 with more details explained in Section 3.2). All three GANs
were able to generate realistic distributions, with WGAN-GP outperforming WGAN in some cases
(Table 3). LSGAN additionally worked best when using Adam optimization (α = 0.0002, β1 = 0.5),
while WGAN and WGAN-GP excelled using RMSprop (α = 0.00005).

Table 3. Best obtained absolute difference and p value calculations for robust equivalency testing of
each of the synthesized distributions using different GANs.

LSGAN WGAN WGAN-GP

|d| p |d| p |d| p

DS1 0.187 0.0105 0.075 2.9 × 10−6 0.169 0.0013
DS2 0.019 2.2 × 10−16 0.043 1.3 × 10−11 0.002 2.1 × 10−20

DS3 0.052 7.3 × 10−20 0.040 6.7 × 10−23 0.031 3.6 × 10−22

The optimal batch number was found at 16. This allowed the discriminator enough data to
objectively evaluate performance and, thus, resulted in more efficient weight updates for the generator.
The number of epochs, however, were highly dependent on the number of individuals used for training.
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Finally, the dimensionality of latent space was also found to be conditioned by the size of the target
domain, as will be explained in continuation.
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Figure 4. Descriptive figure presenting the optimal GAN architecture for geometric morphometric
data augmentation. Input (I) and output (O) neurons are represented in black with bias (b) in green.
The output of the generator and the input of the discriminator is represented by the n number of
dimensions in the Rn dimensional target feature space. The latent vector (L) input for the generator
must be adjusted according to the dimensionality of the target feature space. Hidden neurons (h) in
layers hn have a density (d) that is also conditioned by the shape of the target distribution. Finally,
the discriminator has an additional dropout layer (red) with a threshold of p = 0.4.

3.2. Experiments with Dimensionality and Sample Size

Initial trials with latent space found R50 to produce the best results on average, especially in the
case of DS2 (results of which have already been reported in Table 2). Nevertheless, interesting patterns
emerged when experimenting with larger and smaller latent vector inputs. Starting with the case
of the smallest target domain (DS1, Table 4), a significant negative correlation was detected when
observing rTOST p values compared with the size of the latent vector over numerous runs (Kendall’s
τ = −0.44, p = 0.001). This is also true when considering rTOST absolute difference values (τ = −0.41,
p = 0.003). This correlation highlights larger Rns to work best when working with smaller target
domains. When training on larger feature spaces (e.g., DS3, Table 5), correlations proved insignificant
for both rTOST p values (Kendall’s τ = −0.21, p = 0.13) and absolute difference calculations (τ = −0.29,
p = 0.15). Nevertheless, while correlations remain insignificant, smaller latent vectors were seen to
create more predictable and stable data (Figure 5).

Table 4. Best obtained absolute difference and p value calculations for robust equivalency testing.
Values calculated comparing the original target distribution (DS1) with synthetic data generated by
different GANs with different sized latent vectors as generator input.

LSGAN WGAN WGAN-GP

|d| p |d| p |d| p

R25 0.337 0.726 0.179 0.014 0.199 0.017
R50 0.116 2.0×10−4 0.157 0.004 0.203 0.026
R75 0.187 0.0105 0.075 2.9 × 10−6 0.169 0.0013
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Table 5. Best obtained absolute difference and p value calculations for robust equivalency testing.
Values calculated comparing the original target distribution (DS3) with synthetic data generated by
different GANs with different sized latent vectors as generator input.

LSGAN WGAN WGAN-GP

|d| p |d| p |d| p

R25 0.052 7.3 × 10−20 0.039 6.7 × 10−23 0.031 3.6 × 10−22

R50 0.032 1.7 × 10−24 0.025 2.6 × 10−25 0.025 1.0 × 10−23

R75 0.014 1.2 × 10−25 0.043 3.9 × 10−22 0.050 2.4 × 10−20Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 26 

 
Figure 5. rTOST absolute difference values obtained comparing synthetic data generated over 
multiple training steps with the original distribution (example of DS3). Upper and lower panels 
compare different GANs using different sized latent vector inputs to the generator. GANs were 
trained for 400 epochs with batch sizes of 16. Here 3 training steps are considered an epoch. 

Figure 6 provides a visual summary of the absolute difference results obtained from each of 
these experiments (Tables 3–6, Figure 6). 

Figure 5. rTOST absolute difference values obtained comparing synthetic data generated over multiple
training steps with the original distribution (example of DS3). Upper and lower panels compare
different GANs using different sized latent vector inputs to the generator. GANs were trained for 400
epochs with batch sizes of 16. Here 3 training steps are considered an epoch.

In most experiments, 400 epochs were considered enough for GANs to produce realistic data.
Moreover, the best results of each GAN began appearing after approximately 100-130 epochs.
Performance significantly decreased, however, when trained on the same number of epochs using less
data. To test this, subsets of each dataset were taken for experimentation (e.g., 30 out of 60 samples
from DS2, Table 6). On all accounts, significant correlations were detected, finding smaller datasets to
need more training time in order to obtain optimal results (Pearson’s r = 0.65, p = 0.0005). Likewise,
LSGAN appeared to be the model least affected by dataset size, producing the most realistic distributions
in each of the cases (Table 6). While training GANs using 400 epochs is still able to produce realistic
data on small datasets, when considering the optimal number of epochs, increasing this number to
1000 produces a significant improvement in results.
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Table 6. Best obtained absolute difference and p value calculations for robust equivalency testing after
x number of epochs. Example of GANs trained on a subset of 30 individuals from DS2.

Results Obtained after x Epochs
LSGAN WGAN WGAN-GP

|d| p |d| p |d| p

400 0.052 6.0 × 10−16 0.098 2.4 × 10−12 0.095 3.8 × 10−12

800 0.059 3.3 × 10−15 0.077 9.4 × 10−13 0.075 6.02 × 10−13

1000 0.013 3.8 × 10−22 0.066 1.5 × 10−18 0.054 5.0 × 10−16

Figure 6 provides a visual summary of the absolute difference results obtained from each of these
experiments (Tables 3–6, Figure 6).Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 26 
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3.3. Data Augmentation Results

3.3.1. General GAN Performance

All three GANs are highly successful in replicating sample distributions, effectively augmenting
each of the distributions without too much distortion (Figure 7, Tables S1–S6). While evaluating
standalone synthetic data creates some confusion, seen in some deviations of synthetic central tendency
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values and IR intervals (Tables S1, S3 and S5), the true value of GANs are observed when considering
the augmented sample as a whole (Tables S2, S4 and S6).
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Figure 7. Plots of distributions both before (black) and after (red) GAN data augmentation, using the
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Tables S2, S4 and S6.

In most cases, it can be seen how even the worst performing algorithms are able to maintain the
central tendency of samples while boosting the variance represented. It is also important to highlight
that, while in some cases central tendency can be seen to deviate slightly from the original distribution
(e.g., LSGAN on DS2, Table S2), this is normally only true of one PC score and is still insignificant
(rTOST p < 0.05). Some algorithms are also seen to affect the normality of sample distributions, creating
distortion that is reflected in increased sample skewness. Nevertheless, these distortions are still unable
to modify the general magnitude of similarities between synthetic and real data.

The greatest value of GANs can, therefore, be seen in increases in overall sample variance without
significant distortion of the real sample’s distribution. Deviation values and IR intervals increase,
representing more variability without significantly shifting central tendency and without generating
outliers. This shows how each algorithm is able to essentially “fill in the gaps” for each distribution
while staying true to the original domain.

If GAN performance were to be compared with more traditional augmentation procedures, such as
bootstrap, GANs can be seen to smooth out the distribution curve (Figure 8), creating a more general
and complete mapping of the target domain. Bootstrapping procedures, on the other hand, tend to
exaggerate gaps in the distribution. This can mostly be characterized by noticeable modifications to
sample kurtosis while maintaining the general variation (Table 7).
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Table 7. Comparison of descriptive statistics obtained when comparing traditional bootstrapping
procedures for numeric data augmentation and the best performing GAN on DS3. Dataset was
augmented to size 100.

Original Data Bootstrap GAN

PC1 PC2 PC1 PC2 PC1 PC2

Shapiro w 0.99 0.98 0.98 0.98 0.99 0.98
Shapiro p 0.75 0.30 0.25 0.18 0.92 0.10

Central Tendency ‡ −0.10 −0.16 −0.14 −0.21 −0.06 −0.04
Deviation § 0.41 0.43 0.40 0.43 0.41 0.49

Minimum Value −1.00 −1.00 −1.00 −1.00 −1.00 −1.00
IR 0.05 Limit −0.81 −0.98 −0.81 −0.99 −0.78 −0.85
IR 0.95 Limit 0.47 0.61 0.47 0.52 0.55 0.84

Maximum Value 1.00 1.00 1.00 1.00 1.00 1.00
Kurtosis −0.33 0.19 −0.43 −0.24 −0.49 −0.65

Skewness −0.02 0.35 −0.01 0.21 0.05 0.18
‡ Metric used = mean; § Metric used = standard deviation.

3.3.2. Conditional GAN Performance

CGAN presented limited success when augmenting datasets, with only Wasserstein Gradient
Penalty loss succeeding in overcoming mode collapse. Nevertheless, CGAN was still able to generate
data with insignificant differences (Table 8), successfully augmenting the targeted datasets (Table 9 and
Figure 9).
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Table 8. Best obtained absolute difference and p value calculations for robust equivalency testing when
comparing targeted generation of data using CGAN and GAN on DS3. Both CGAN and GAN were
trained using Wasserstein Gradient Penalty loss.

Sample 1 Sample 2

|d| p |d| p

CGAN −0.100 1.3 × 10−8 −0.035 2.0 × 10−10

GAN −0.039 2.0 × 10−10 −0.074 2.9 × 10−10

Table 9. Descriptive statistics for augmented DS3 targeting label values specifically. Numbers marked
in bold indicate the synthetic data that obtained the most significant rTOST equivalency p-values. Both
CGAN and GAN were trained using Wasserstein Gradient Penalty loss.

Original Data CGAN GAN

PC1 PC2 PC1 PC2 PC1 PC2

Sample 1

Shapiro w 0.98 0.97 0.97 0.97 0.98 0.98
Shapiro p 0.75 0.59 0.25 0.25 0.31 0.31

Central Tendency ‡ −0.03 −0.33 −0.14 −0.26 0.003 −0.21
Deviation § 0.43 0.37 0.41 0.42 0.47 0.34

Minimum Value −0.87 −1.00 −0.89 −1.00 −0.87 −1.00
IR 0.05 Limit −0.79 −0.99 −0.81 −0.98 −0.79 −0.98
IR 0.95 Limit 0.64 0.13 0.47 0.52 0.69 0.22

Maximum Value 1.00 0.52 1.00 0.66 1.00 0.62
Kurtosis −0.44 −0.49 −0.49 −0.53 −0.97 0.20

Skewness 0.06 −0.09 0.12 0.34 −0.02 −0.20

Sample 2

Shapiro w 0.98 0.97 0.98 0.97 0.97 0.98
Shapiro p 0.70 0.43 0.61 0.13 0.20 0.28

Central Tendency ‡ −0.17 0.01 −0.08 0.19 −0.14 0.03
Deviation § 0.38 0.44 0.43 0.46 0.50 0.40

Minimum Value −1.00 −0.85 −1.00 −0.85 −1.00 −0.85
IR 0.05 Limit −0.81 −0.59 −0.78 −0.59 −0.85 −0.55
IR 0.95 Limit 0.43 0.85 0.51 0.85 0.75 0.81

Maximum Value 0.47 1.00 0.92 1.00 0.97 1.00
Kurtosis −0.78 −0.23 −0.58 −1.00 −0.79 −0.46

Skewness −0.28 0.42 0.18 −0.14 0.31 0.39
‡ Metric used = mean; § Metric used = standard deviation.
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Figure 9. PCA scatter plot presenting data augmentation techniques on DS3. Ellipses mark 95%
confidence intervals. Both CGAN and GAN were trained using Wasserstein Gradient Penalty loss.

When taking a closer look at the performance of CGAN, however, it is important to note that,
while the magnitude of differences between synthetic and real data are insignificant, CGAN distorts
the original distribution to a greater degree (Figure 9). In both samples, CGAN deviates greatly
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from the target central tendency (Table 9) and appears to shift the general skew of the distribution
(Figure 9). When using GANs to augment each of the samples separately, however, the generated
data is arguably truer to the original domain. This is not to say, however, that CGANs are unable to
augment feature spaces successfully. With the right configuration, CGANs are likely to reach similar
results to traditional GANs. This, however, goes beyond the scope of the present study.

4. Discussion

Many algorithms require large amounts of data in order to efficiently extract information, a task
which is particularly difficult when considering data derived from the fossil record. To confront this
topic, this study presents a new integration of AIAs into archaeological and paleontological sciences.
Here GANs have been shown to be a new and valuable tool for the modelling and augmentation
of GM data. Moreover, these algorithms can additionally be employed on a number of different
types of datasets and applications; whether this be the handling of paleoanthropological, biological,
taphonomic or lithic specimens via GM landmark data.

To demonstrate this latter point, and applying typical geometric morphometric techniques for
classification on the O’Higgins and Dryden [75] Hominoid skull dataset, the present study is able to
increment balanced accuracy of traditional LDA up to ca. 5% (Figure 10a) with a significant increase in
generalization (Figure 10b,c). For this demonstration LDA was trained using a traditional approach [11],
as well as an augmented approach based on Machine Teaching [43]. It can be seen how applying
Machine Teaching using 100 realistic synthetic points per sample for training, and the original data
was used for testing, helps the generalization process (Figure 10b) while providing clearer boundaries
for each of the sample domains (Figure 10c).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 26 

4. Discussion 

Many algorithms require large amounts of data in order to efficiently extract information, a task 
which is particularly difficult when considering data derived from the fossil record. To confront this 
topic, this study presents a new integration of AIAs into archaeological and paleontological sciences. 
Here GANs have been shown to be a new and valuable tool for the modelling and augmentation of 
GM data. Moreover, these algorithms can additionally be employed on a number of different types 
of datasets and applications; whether this be the handling of paleoanthropological, biological, 
taphonomic or lithic specimens via GM landmark data. 

To demonstrate this latter point, and applying typical geometric morphometric techniques for 
classification on the O’Higgins and Dryden [75] Hominoid skull dataset, the present study is able to 
increment balanced accuracy of traditional LDA up to ca. 5% (Figure 10a) with a significant increase 
in generalization (Figure 10b,c). For this demonstration LDA was trained using a traditional approach 
[11], as well as an augmented approach based on Machine Teaching [43]. It can be seen how applying 
Machine Teaching using 100 realistic synthetic points per sample for training, and the original data 
was used for testing, helps the generalization process (Figure 10b) while providing clearer boundaries 
for each of the sample domains (Figure 10c). 

It is important to point out, however, that this is not the solution to all sample-size related issues, 
and a number of components have to be discussed before more advanced applications can be carried 
out. 

Missing data and the availability of fossil finds are a major handicap in prehistoric research. This 
is increasingly relevant when considering fossils of older ages, such as individuals of the 
Australopithecus, Paranthropus and early Homo genera. In a number of cases, for example, the 
representation of Australopithecine or Homo erectus/ergaster specimens may not even surpass 10 
individuals [76–78], while Homo sapiens specimens are in abundance. In these cases, and in accordance 
with the data presented here, GANs would not be able to successfully augment the targeted minority 
distributions from scratch. Other options, however, could entail the use of algorithms for pre-
processing, using variations of the Synthetic Minority Oversampling Technique (SMOTE & 
Borderline-SMOTE) [79–81], or the adapted version Adaptive Synthetic Sampling (ADASYN) [82]. 

 
Figure 10. Example of the Augmentation (LSGAN x100) of O’Higgins and Dryden’s Hominoid dataset 
comparing gorilla (Gorilla gorilla), chimpanzee (Pan troglodytes) and orangutan (Pongo pygmaeus) skulls 
[75]. (A) Example of both the original and augmented datasets. Percentages next to each group 
represent the accuracy obtained by a more traditional Linear Discriminant Analysis algorithm. (B) 

Figure 10. Example of the Augmentation (LSGAN ×100) of O’Higgins and Dryden’s Hominoid
dataset comparing gorilla (Gorilla gorilla), chimpanzee (Pan troglodytes) and orangutan (Pongo pygmaeus)
skulls [75]. (A) Example of both the original and augmented datasets. Percentages next to each
group represent the accuracy obtained by a more traditional Linear Discriminant Analysis algorithm.
(B) Boxplots presenting the loss and confidence of predictions made using both the original and
the augmented data set. To the right Receiver Operator Characteristic curves describe the overall
performance of models on both datasets. (C) Decision boundaries drawn by LDA across PC1 (x-axis)
and PC2 (y-axis). The upper panel and lower panel of C represent the original and the augmented
datasets respectively.
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It is important to point out, however, that this is not the solution to all sample-size related
issues, and a number of components have to be discussed before more advanced applications can be
carried out.

Missing data and the availability of fossil finds are a major handicap in prehistoric research. This is
increasingly relevant when considering fossils of older ages, such as individuals of the Australopithecus,
Paranthropus and early Homo genera. In a number of cases, for example, the representation of
Australopithecine or Homo erectus/ergaster specimens may not even surpass 10 individuals [76–78],
while Homo sapiens specimens are in abundance. In these cases, and in accordance with the data
presented here, GANs would not be able to successfully augment the targeted minority distributions
from scratch. Other options, however, could entail the use of algorithms for pre-processing, using
variations of the Synthetic Minority Oversampling Technique (SMOTE & Borderline-SMOTE) [79–81],
or the adapted version Adaptive Synthetic Sampling (ADASYN) [82].

Both SMOTE and ADASYN are useful, easy to implement algorithms that augment minority
samples in imbalanced datasets. SMOTE generates synthetic data in the feature spaces that join
data points (e.g., according to k nearest-neighbor theory), thus filling in regions of the target
domain [79–81]. ADASYN takes this a step further by modelling on sample distributions based
on data-density [82]. Both are valuable algorithms that have become popular in imbalanced learning
tasks, generally improving predictive model generalization. Nevertheless, their application should be
confronted conservatively.

Preliminary experiments within this study found that resampling via bootstrapping prior to the
training of GANs resulted in severe mode collapse. This can be theoretically explained by the manner
in which bootstrapping is over-inflating the domain and highlighting very specific regions which
the model then learns from. This results in overfitting as the model is repeatedly learning to map
out the same value multiple times, boosting the probability of mode collapse through an enhanced
lack of variation in the original trainset. Considering how SMOTE and ADASYN produce more
“meaningful” data [44,79], these algorithms are more likely to aid the training process rather than
produce the adverse effect. Nevertheless, overuse of SMOTE/ADASYN is likely to have a similar effect
to bootstrapping, where linear regions of feature space between data points are enhanced while other
regions are left empty.

Through this, the current study proposes that a conservative use of SMOTE or ADASYN variants
prior to the training of GANs may be able to boost performance on overly-scarce datasets (e.g., the cases
of [76–78]). This practice would be able to augment minority samples to a suitable threshold (n = 30),
preparing the dataset for more complex generative modelling and enabling an improved generalization
of any predictive models used in analyses that follow.

From a similar perspective, the use of Bayesian Inference Algorithms such as Markov Chain
Monte Carlo (MCMC) and Metropolis-Hastings algorithms have also been known to effectively model
from multiple types of probability distributions [83–85]. In some cases, it may be possible to use these
approaches to sample from the probability distribution at hand, and produce simulated information
from the target distribution which would essentially be more realistic than simple bootstrap approaches.
Further research into how these approaches may be applied could provide a powerful insight into
GAN alternatives for different types of numerical data in GM.

In the general context of computational modelling, common criticism of neural network
applications in archaeology and paleoanthropology argue that GM datasets are generally insufficient
for the training of AIAs. This is based on the fact that most DL algorithms require much more data
to avoid overfitting. From this point of view, why would training a GAN on such little data be any
different? The present study proves that this is not an issue, considering how, with only 30 individuals,
GANs are still able to produce highly realistic synthetic data (LSGAN rTOST p = 3.8 × 10−22).

In common DL literature, state-of-the-art models are reported to obtain ≈80% accuracy when
trained on thousands to millions of specimens [25]. It is important to consider, however, that in the
majority of these cases AIAs are trained on images (i.e., computer vision applications). To provide an
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example, Karras et al. [54] present a GAN capable of producing hyper-realistic fake images of people’s
faces, building from a subset of the CelebA-HQ dataset using ≈30,000 images. Two main components
must be considered in order to understand why such a large dataset is required for their model;

• Karras et al. [54] present a GAN capable of producing high resolution 1024x1024 pixel RGB images.
In computer vision applications, each image is conceptualized as a multidimensional numeric
matrix (i.e., a tensor). Each of the numbers within the tensor can essentially be considered a
variable, resulting in a dataset of approx. three million variables per individual photo.

• In order to efficiently map out these three million numeric values, the featured GAN uses
progressively growing convolutional layers (nº layers≈ 60) with 23.1 million adjustable parameters.

• The present study uses feature spaces that have already undergone dimensionality reduction
derived from GM landmark data. In the case of the largest dataset, this results in a target vector of
60 variables that need to be generated. The present study additionally only uses fully connected
layers with no convolutional filters, resulting in a model of <11,000 adjustable parameters. A GAN
targeting three million values with 23.1 million parameters would thus require a far larger dataset
than one targeting 60 values with 11 thousand parameters, explaining why with just 30 specimens,
GAN convergence is still possible.

Regardless of the mathematics behind DL theory, the statistical results presented here provide
enough empirical evidence to argue the value of the proposed GAN with as little as 30 individuals.
Nevertheless, even in cases where datasets are too scarce for GANs to be developed from scratch,
pre-trained models can be adjusted to different domains via multiple DL techniques. This arguably
opens up new possibilities for the incorporation of Transfer Learning into GMs [25].

Finally, it is important to highlight how no absolute protocol can be established for generative
modelling of any type. DL practitioners are usually required to adapt their model according to the
dataset at hand, using the best practices established in other studies as a baseline from which to work
from. Under this premise, recommendations established for the augmentation of GM datasets using
GANs can be listed as follows:

• Best results are obtained when scaling the target domain to values between −1 and 1.
• Hidden layer densities should be adjusted according to the number of dimensions within the

target domain (Figure 4). Tanh activation functions in both the generator and the discriminator
are recommended.

• Dropout, batch normalization and kernel initializers (discriminator σ = 0.1, generator σ = 0.7) are
recommended to regulate the learning process and avoid mode collapse.

• The Adam optimization algorithm is recommended when using Least-Square loss, while RMSProp
is more efficient when using the Wasserstein (WGAN or WGAN-GP) function. A minimum batch
size of 16 obtains the best results.

• LSGAN is recommended when training data is limited, increasing the number of epochs to at
least 1000.

• WGAN and WGAN-GP work best on larger datasets, while approximately 400 epochs are usually
enough to produce realistic data.

• The smaller the target domain, the larger the latent vector required for generator input.
• For conditional augmentation, optimal results are obtained by training GANs on each sample

separately, rather than using CGANs.

5. Prospective and Future Research

While GANs are difficult to develop, the complexity of these AIAs should not be cause for
discouragement. There currently exists a wide range of literature and helpful guides dedicated to
teaching scientists about AIA development, even for those with no background in mathematics or
applied statistics. With platforms such as ScienceDirect (https://www.sciencedirect.com/) in 2019 alone
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reporting over 3000 papers including the term Deep Learning (in keywords, title or abstract), and ca. 6000
for Machine Learning, AI can be considered one of the most popular lines of research in modern science.
This presents a promising future for applications in archaeological and paleontological research.

Future lines will thus address the testing of GAN performance in actual archaeological and
paleontological studies. Likewise, it would be highly recommendable to test whether these algorithms
can effectively model data of a non-GM origin, employing the robust statistical techniques described
here for more empirical evaluations of numeric data. Finally, comparisons with other augmentation
techniques could help provide a more global view of the tools available for researchers.

6. Conclusions

To the authors’ knowledge, this is the first comparative study in DL and GM using GANs for
high dimensional numeric simulations that further employ advanced descriptive statistical metrics
for evaluation. While augmented data is by no means a substitute for real data, real-life DL practices
and applications have shown “meaningful” synthetic data to significantly increase the confidence and
power of statistical models. In many cases, this has even been seen to exceed human-level precision.

The present paper has shown how GANs can be trained efficiently on numerical data obtained
using geometric morphometrics. Under this premise, whether geometric morphometrics be used
for the analysis of biological or non-biological individuals, GANs can effectively be used for data
augmentation techniques prior to any consequent statistical modelling or learning tasks. The present
study has additionally shown that three different loss functions are able to effectively learn from this
type of data. Finally, robust statistical metrics have proven a valuable tool for performance evaluation.
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Reclutando a una tripulación de esqueletos – Métodos para la
simulación y aumentación de datos paleoantropológicos mediante el

uso de algoritmos tipo Monte Carlo.

La recogida de datos es uno de los mayores obstáculos en muchos tipos de análisis dentro del campo de
la evolución humana. Aunque el aumento de conjuntos de datos y repositorios de libre acceso ha ayudado
a paliar estas limitaciones, algunos investigadores, en un ejemplo de mala praxis científica, siguen siendo
reacios a compartir datos. Esta cuestión resulta aún más importante si se tiene en cuenta la escasez y calidad
de los datos. Desde esta perspectiva, muchos proyectos de investigación están limitados por la cantidad de
datos que pueden tener a la hora de realizar tareas como la clasificación y la modelización predictiva. En
este artículo se presenta el uso de métodos basados en algoritmos de tipo Monte Carlo, incluyendo el
algoritmo Markov Chain Monte Carlo, para la simulación de datos paleoantropológicos. Utilizando dos
conjuntos de datos, mostramos cómo se pueden simular datos sintéticos, pero realistas, para mejorar cada
conjunto de datos y proporcionar nueva información con la que realizar tareas más complejas. Además,
presentamos estos algoritmos en una nueva librería de R: AugmentationMC. A partir de un conjunto de datos
multimodal que contiene datos categóricos y numéricos, mostramos cómo la biblioteca AugmentationMC

puede mejorar la variabilidad de la muestra sin cambiar significativamente la naturaleza de la distribución de
probabilidad. También empleamos un conjunto de datos de morfometría geométrica para simular modelos
3D. Por último, enfatizamos el poder de la enseñanza máquina (Machine Teaching), en contraposición al
aprendizaje máquina (Machine Learning). Aunque los conjuntos de datos sintéticos nunca deberían sustituir
a los grandes conjuntos de datos, esto puede considerarse un avance importante en la forma de manejar datos
paleantropológicos.
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Abstract 
 
Objectives 
Data collection is a major hindrance in many types of analyses in human evolutionary studies. This 
issue is fundamental when considering the scarcity and quality of fossil data to begin with. From this 
perspective, many research projects are impeded by the amount of data they may have to perform tasks 
such as classification and predictive modelling. 
 
Materials and Methods 
Here we present the use of Monte Carlo based methods, including the Markov Chain Monte Carlo 
algorithm, for the simulation of paleoanthropological data. Using two datasets, we show how synthetic, 
yet realistic, data can be simulated to enhance each dataset, and provide new information from which 
to perform complex tasks with, in particular classification. We additionally present these algorithms in 
the form of an R library; AugmentationMC. We also use a geometric morphometric dataset to simulate 
3D models, and emphasize the power of Machine Teaching, as opposed to Machine Learning. 
 
Results 
Our results show how Markov Chain Monte Carlo algorithms, and Monte Carlo algorithms, are useful 
for the simulation of this type of data, providing synthetic yet highly realistic data that has been tested 
statistically to be equivalent to the original data. We additionally provide a critical overview of 
bootstrapping techniques, showing how Monte Carlo based methods excell over bootstrapping as the 
data simulated is not an exact copy of the original sample. 
 
Discussion 
While synthetic datasets should never replace large and real datasets, this can be considered an 
important advance in how paleoanthropological data can be handled. 

 



 

Key Words: Data Augmentation, Geometric Morphometrics, Markov Chain Monte Carlo, Machine 
Teaching, 3D Model Simulation. 
 
1. Introduction 
 

The incomplete nature of the fossil record is one of the greatest obstacles that archaeologists, 
paleontologists, and paleoanthropologists, have to face. Considering the number of available fossils for 
certain species, most studies are hindered by a distorted view of the population due to small samples. 
While this is an inevitable phenomenon, especially for sites of an older geological age, sample size 
conditions the quality of the analyses and results that can be extracted from this type of data. This is 
increasingly relevant in contemporary research, where data science and advanced statistics are at the 
forefront of virtual paleoanthropological analyses. 

All statistical tests are conditioned by sample size, regardless of the field of science (Cohen, 
1988). This is especially relevant in paleoanthropology, when considering how some species are only 
known via a single, or at most, a handful, of specimens. Even in cases where multiple individuals are 
available, the likelihood that the same region or even the same anatomical element will coincide 
between two specimens is extremely low. This is even before taking into account the possible distortion 
or damage this fossil may have suffered over time (Gunz, Mitteroecker, Bookstein & Webber, 2004; 
Gunz, Mitteroecker, Neubaeuer, Weber & Bookstein, 2009). Any type of calculation that considers 
sample variance or covariance matrices (e.g., Mahalanobis distances, Analyses of Variance), are also 
fundamentally conditioned by the amount of information available (Greenwood & Sandomire, 1950; 
Gupta and Gupta, 1987; Cohen, 1988; Takeshita, Nozawa & Kimura, 1993). This increases as the 
number of dimensions (or essentially the number of variables) increases (Gupta & Gupta, 1987; 
Bookstein, 2017, 2019, Cardini, O’Higgins & Rohlf, 2019), and is evidently important when estimating 
parameters of normality or general and descriptive statistics (LaPlace, 1823; Pearson, 1900; Gosset, 
1908; Razali, 2011). Building from this, Principal Components Analyses (PCA) are also affected by 
sample size (Takeshita et al., 1993; Jollife, 2002; Bishop, 2006, Bookstein, 2017), while statistical tests 
such as Canonical Variance Analyses (CVA), and between-group PCA (bg-PCA), are highly sensitive 
to data size and balance (Albrecht, 1992; Mitteroecker and Bookstein, 2011; Bookstein, 2019; Cardini 
et al., 2019). Finally, any type of Discriminant Analyses (e.g., Linear Discriminant Analysis) is strongly 
hindered by a lack of information density. 

In most statistical applications, resampling techniques have proven to be a popular means of 
estimating population parameters robustly, even when data is limited (Fisher, 1935; Efron, 1979). 
Resampling consists in randomly drawing observations from a dataset. This can either be done by 
extracting subsets of data (e.g., Jackknife and cross-validation), or drawing an observation with 
(bootstrap), or without (permutation), replacing it. These procedures are valid ways of emulating what 
the general nature of the population may look like. Nevertheless, these techniques are only able to 
duplicate this data, as opposed to generating new information. 

The duplication of information in this way can be problematic for a number of reasons. Firstly, 
inferences and exploratory analyses are still limited to the information density available (Fernández et 
al., 2018). This, in turn, leads to the concept of overfitting, where we are unable to extract information 
from the true coverage of a domain, making the processing of new information difficult. From this 
perspective, duplicating data can be considered insufficient when trying to construct a more generalized 
view of the population (Courtenay & González-Aguilera, 2020; McPherron, Archer, Otárola-Castillo, 
Torquato & Keevil, 2022). 

Beyond the Frequentist perspective, Bayesian statisticians often use inference engines for the 
approximation of probability distributions (Gamerman & Lopes, 2006). In this sense, Bayesian statistics 
uses Bayes’ theorem to calculate an updated probability of a set of observations, based on the 



 

information provided, and a prior probability typically used to account for uncertainty (Martin, 2018). 
The final calculated probability distribution is then sampled from and used to infer or explain the 
original distribution, often based on Monte Carlo methods (Gordon, Salmond & Smith, 1993). Because 
this approach is based on distributions, as opposed to the observations themselves, Bayesian approaches 
produce observations that are not exact duplicates of the original dataset, providing a more generalized 
view of the possible original domain. 

While Bayesian based algorithms are powerful approaches to estimating properties of the 
population, they are often computationally expensive, and can be difficult to implement (Carlin & 
Louis, 2008; Martin, 2018). Likewise, some criticism towards the Bayesian perspective considers this 
approach to statistics somewhat subjective, due to the nature of prior probability definitions. Needless 
to say, and with regards to the latter point, prior probabilities can easily be defined as diffuse, or weakly 
informative, diminishing the subjectivity of this type of approach (Carlin & Louis, 2008; Martin, 2018). 

Building from this, Data Augmentation can be defined as a means of increasing a given sample 
by producing synthetic (yet realistic) data that is meaningful to the original distribution (Tanaka and 
Aranha, 2019; Courtenay & González-Aguilera, 2020).  Computational tools can be developed to 
approximate a distribution, and estimate what the population may look like without creating exact 
copies of the original information. 

Courtenay and González-Aguilera (2020) recently proposed a Neural Network (NN) and 
unsupervised deep learning approach for the simulation of new geometric morphometric data, paying 
particular attention to the use of such methods for the improvement of classification algorithm 
performance. In this study, these authors used Generative Adversarial Networks (GAN) with a Gradient 
Penalty Wasserstein loss function to simulate new information (Goodfellow et al., 2014; Gulrajani, 
Ahmed, Arjovsky, Dumoulin, Courville, 2017), useful for more efficient classification tasks. The 
present analysis develops from this, proposing the use of more computationally and statistically efficient 
Monte Carlo (MC) based methods. Additionally, we expand beyond this by including the simulation of 
both quantitative and qualitative data, not exclusive to geometric morphometrics, and two important 
sources of information that are highly relevant in paleoanthropological and archaeological research. To 
ensure reproducibility, here we present a new R library, named “AugmentationMC”, for the 
implementation of MC and Markov Chain Monte Carlo (MCMC) based methods for data augmentation. 

 
2. Materials and methods 
 

This study presents the use of MC and MCMC for the augmentation of both qualitative and 
quantitative data. For this purpose, we build on research presented by Courtenay and González-Aguilera 
(2020), as well as Courtenay and colleagues (2021), to define a protocol for the simulation and 
evaluation of synthetic data. Once generated, this data can be used for more complex applications such 
as those typically used in computational learning. 

 
2.1. Datasets 
 

In order to prove the efficiency and power of MC and MCMC based approaches, the present 
study was performed using 2 separate datasets containing different types of data (Fig. 1). Each of these 
datasets are paleoanthropological in nature, and can be used to describe the morphological and 
mechanical properties of great ape femora. 

 



 

 
 

Figure 1. Left: original Anatomically Modern Human (AMH) biomechanical data used in the present 
study were extracted at the 80% length of the femur from the proximal shaft end by Ruff (1995); 

Right: original landmark data were obtained for the present study using 40 fixed anatomical 
landmarks (red) and a dense point net (n = 160) comprised of 8 fixed points (yellow) meant to limit 

the projection and sliding process of the remaining 152 sliding semilandmarks (black). 
 

 
2.1.1. Dataset 1: Ruff (1995) femur biomechanical dataset. 
 

This dataset contains information ranging from a number of publications, including data from 
Ruff & Hayes (1983), Ruff (1991, 1995), and Ruff and colleagues (2018), provided by the 
corresponding author of each of these papers (C.B. Ruff). The sample used in the present study consists 
of 100 femora, 60 from the Pecos Pueblo skeletal collections (Ruff & Hayes, 1983; Ruff, 1991), housed 
in the Harvard Peabody Museum by the time those studies were performed, and 40 East African 
individuals, 10 of which are from the Makerere University (Kampala, Uganda), and 30 from the Kenyan 
National Museum (Nairobi, Kenya) (Ruff, 1995). Individuals range in age between 20 and 55 years and 
include both male and female individuals. North American individuals were recovered from a site in 
New Mexico (1300-1828 CE), and are believed to have been dedicated to agricultural labors. The 
occupation of Eastern African individuals is unknown, however considering the time the collection was 
curated (1960), and the tribes and cultures these individuals were associated with (Acholi, Lango, 
Etesot, Lugbara, Maasai & Kikuyu), it can be assumed that these individuals were not highly urbanized, 
and likely dedicated to manual labor. A total of 51 males and 49 females are included within this dataset. 
Nowadays the use of recent human populations in anthropological studies is questioned as it raises 
ethical issues. We are aware of the problematic of this type of studies and agree on the need of returning 
the remains of the ancestors to their descendant communities. That is why we would like to stress that 
no new study was performed on these materials by the authors on the American and East African 
populations, neither were their data used to infer any kind of anthropological conclusions on these 
populations. Only raw data extracted several years ago by C.B. Ruff which has already published was 
used with the solely purpose of data augmentation. 



 

The data obtained from these individuals was extracted from the 80% cross-section 
(subtrochanteric) at the proximal end of the femoral head. For the North American sample, these cross-
sections were originally obtained in Ruff & Hayes (1983) by directly sectioning femora using a water-
cooled diamond-bladed circular saw. For the East African sample, cross-sections were extracted using 
Computed Tomographic (CT) scans. From these cross-sections, 5 quantitative measurements were 
included within this portion of the study (sensu Ruff, 1987). These include the maximum (Imax) and 
minimum (Imin) moments of area, used to calculate the relative maximum bending strength of the bone, 
as well as the second moments of area around the medio-lateral breadth (Ix), and supero-inferior breadth 
(Iy). Finally, the polar moment of area (J) was also provided by this dataset (Fig. 1). For a more detailed 
description of these variables and how they are extracted see Ruff & Hayes (1983) and Ruff (1995). 

 
2.1.2. Dataset 2: femur geometric dataset 
 

The geometric morphometric dataset contains 80 femora belonging to four modern great ape 
genera; Pan, Pongo, Gorilla and Homo. Non-human samples were compiled from two online open-
source archives; the Digital Morphology Museum KUPRI, as well as MorphoSource. Both sources 
provided 3D models in the form of CT scans. Samples downloaded from KUPRI include specimens 
that have already been segmented and cropped, as well as whole bodies or limbs. In the case of 
MorphoSource, specimens were already cropped, and in some cases rendered as ply or stl files. The 
human sample was obtained through the New Mexico Decedent Image Database (NMDID), which 
complies with the Declaration of Helsinki and thus meets the ethical standards that serve to promote 
and ensure respect for all human beings and to protect their health and individual rights. NMDID 
contains complete body CT scans of each individual that had to be segmented in order to isolate the 
right femora. The final sample thus consists of 30 Anatomically Modern Human (AMH), 36 
Chimpanzee (C), 9 Gorilla (G), and 5 Orangutan (O) femora (see Supplementary File 1 for further 
details on sample processing and sources). 

A total of 200 points were used to describe the 3D models of the femora, including a set of 40 
fixed anatomical landmarks (red points in Fig. 1), and 152 sliding semilandmarks (black points in Fig. 
1) constrained by 8 fixed points (yellow points in Fig. 1) to describe the morphology of the diaphysis. 
The process of template creation involves the digitization of a semilandmark mesh, as explained in 
Aramendi (2021). This template consists of a geometric model based on a cylinder, so as to facilitate 
the positioning of the semilandmark net, which is then used to project and slide points along the surface 
of the diaphysis. All 160 points are distributed in 20 equally spaced rings along the cylinder, with each 
horizontal ring containing 8 homogeneously distributed points (see Sup. File 1 for further details). This 
process was performed using the EVAN toolbox (http://evan-society.org/). 

Once digitized, landmark data was processed using traditional geometric morphometric 
techniques. First coordinates were superimposed by means of a full Procrustes fit (Bookstein, 1991; 
Dryden & Mardia, 1998), using the shapes R library. Superimposed landmarks were then subjected to 
dimensionality reduction via PCA. Finally, the corresponding feature spaces were analyzed to assess 
the degree of represented morphological variance, extracting only those principal component (PC) 
scores representing up to 90% of morphological variance. This resulted in a final representation of each 
individual as ℝ12 vectors containing morphological shape variables. 

 
 
 
 
 
 



 

2.2. Data augmentation algorithms 
 
2.2.1. Monte Carlo algorithms 
 

MC computing methods include a group of algorithms that employ the use of random sampling 
to extract data from a probability distribution. This is a highly popular technique in the world of data 
simulation, proving particularly efficient at solving mathematical and physical problems, with ample 
applications in ecology (Giró, Padró, Valls & Wagensberg, 1985), chemistry (Souza, Matos, Oliveira-
Neto & Albuquerque, 2020), and engineering (García-Martín, Bautista-De Castro, Sáncehz-Aparicio, 
Fueto & González-Aguilera, 2018; Pisonero et al., 2021), among others. 

MC algorithms work by computing a set of possible observations by modelling from a 
probability distribution. As MCs work with distribution densities, they can randomly sample a value 
taking into consideration the most probable outcome. 

Let x


 be a set of observations describing a single variable in dataset X. The probability of x 
(p(x)) being a value higher or lower than a given threshold can be calculated through an estimation of 
X’s Probability Density Function (PDF). For PDF, the frequency of data in the domain is first calculated, 
and smoothed using a cubic Hermite spline interpolation. The consequent interpolated frequencies thus 
define the density of information in the given domain. For the multivariate integration of these 

calculations, precise value of p(xi)∀ x∈ x


can then be used to build a more complex equation using the 
chain rule from probability theory (eq. 1); 
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The chain rule provides a means of computing the conditional probability of a multivariate 

event or vector, describing categorical or numeric variables respectively. 
In the present methodology, when working with both qualitative and quantitative variables in 

the same dataset, we calculate multivariate conditional probability by using P(X | A), where P(A) is 
typically used to describe the probability of an event (a categorical observation), and P(X) is the 
probability of a value (as described above). 

Once multivariate probability distributions have been defined, the MC algorithm randomly 
samples points that belong to this distribution, evidently favoring the selection of observations that are 
more likely to occur. 

 
2.2.2. Markov Chain Monte Carlo algorithms 
 

MCMC algorithms are a family of statistic algorithms that are frequently employed as inference 
engines in probabilistic programming, advanced calculus applications, and data simulation purposes. 
MCMCs inherit from MC based methods by generating random values from a given probability 
distribution, while employing the use of Markovian Chains to stochastically explore these distributions 
via “random walks” (Gamerman & Lopes, 2006). The Markovian element of MCMC ensures that chain 
movement across dimensions is based solely on the chain’s position at its present state and the 
probability of transition to the next. The result of these transitions is a convergence on the target 
probability distribution, favoring areas of high information density over unknown regions within the 
domain. 



 

The present study employed the use of the Metropolis-Hastings 1st Order variant of MCMC 
(Metropolis, Rosebluth, Rosenbulth., Teller & Teller, 1953; Hastings, 1970), for the simulation of 
numeric data. The Metropolis-Hastings algorithm includes a defined acceptance criterion (eq. 2: pa), 
that reduces correlation between successive states in the Markov chain (Metropolis et al., 1953; 
Hastings, 1970). To compute this, first the chain proposes a new state (xk+1), by sampling a given step 
size (δ) from a given theoretical probability distribution (e.g., Gaussian). δ is then added to the present 
state, thus defining the proposed state (xk+1 = xk + δ). The probability of this new point is then calculated, 
and used to compute the criterion of acceptance (eq. 2); 
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where p(x) is the probability of event or value x, and q(x) is the probability of the event or value not 
occurring. If p(xk+1|xk) is larger than a random value sampled from a uniform [0, 1] distribution, then 
xk+1 is accepted. If xk+1 is rejected, then the chain remains in state xk. 

The step size (δ) used for MCMC is a debated issue (Graves, 2011), with many applications 
requiring the user to define a predetermined value of δ. Nevertheless, in the case of highly complex, 
inhomogeneous, and multidimensional feature spaces, no uniform value of δ can be easily defined. The 
present study robustly defined δ by using the scale of the distribution, as estimated using the Square 
Root of the Biweight Midvariance (√BWMV; Rodríguez-Martín, Rodríguez-Gonzálvez, Ruiz de Oña 
Crespo & González-Aguilera, 2019; Courtenay & González-Aguilera, 2020), which is more robust to 
limitations imposed by distribution normality (Höhle & Höhle, 2009). Nevertheless, future 
implementations of MCMCs should consider adaptive step sizes, with the possible integration of a 
decay parameter for the fine tuning of calculations. 
 MCMCs are typically run for 10,000 iterations, discarding a percentage of the first iterations as 
a “burn-in period”. For this study, 2,500 iterations were discarded. From the remaining values, 100 

unique x


 values were extracted and appended to the original dataset. 
 
2.3. Synthetic data evaluation 
 

MC and MCMC algorithm’s performance was evaluated following the recommendations of 
Courtenay & González-Aguilera (2020). This approach evaluates augmented data from a purely 
statistical perspective. For numeric data, homogeneity was first evaluated through multiple Shapiro 
tests. Synthetic distributions were then compared with the original data to assess the magnitude of 
similarities according to Cohen’s δ. For this purpose, the Two One-Sided Test (TOST) of equivalence 
was used (Lakens, 2017). TOST evaluates the degree of overlapping between samples by assessing 
upper (ϵS) and lower (ϵI) equivalence bounds. For homogeneous distributions, parametric methods were 
used to calculate TOST according to Welch’s t-statistic (Schurimann, 1987). For inhomogeneous 
distributions, a trimmed (t = 0.2) non-parametric approach was used according to Yuen’s robust t-
statistic (Yuen & Dixon, 1973; Yuen, 1974). In either test, H0 considers both samples to be different. 

In the case of categorical variables, evaluations were performed testing the frequency of 
observations for equal proportions, according to Pearson’s χ2 test statistic. 

So as to assess the effect of sample size on augmentation results, experiments were performed 
taking subsets of data, augmenting the subset, and comparing the augmented data with the original 
sample as a whole. For this experiment, the largest sample of Dataset 2 was taken (chimpanzee). For 
each iteration of the experiment, an individual was removed, creating gradually smaller subsets of the 
sample, and the remaining data was then augmented. TOST was then used to compare the augmented 



 

data and the original dataset. Correlations were then calculated between the corresponding test statistics 
and the sample size, followed by the use of the Chow test to estimate a structural break in patterns 
(Chow, 1960). 

p-Values in this study were not evaluated using the traditional p < 0.05 as a threshold for 
defining statistical significance. Likewise, the term “significant” has been avoided. Instead, the present 
study uses, and recommends the use of, p < 0.003 (3σ) as an indicator of more conclusive results 
(Courtenay, Herranz-Rodrigo, González-Aguilera & Yravedra, 2021). This p-value was robustly 
defined considering the probability of Type I statistical errors at this threshold to be as low as 4.5 +/- 
[1.2, 15.9] %, using priors of 0.5 +/- [0.2, 0.8]. Likewise, where necessary (p < 0.3681, sensu Courtenay 
et al., 2021), statistical calculations were accompanied by the corresponding probability calculation of 
each observation being a Type I statistical error. This probability is known as the False Positive Risk 
(FPR, sensu Colquhoun, 2019). 

 
2.4. Machine Teaching 
 

As a means of evaluating the advantages of data augmentation, the present study additionally 
used augmented data for the construction of classification models. For this purpose, a Machine Teaching 
(MT) approach was adopted (Such, Rawal, Lehman, Stanley & Clune, 2019; Courtenay & González-
Aguilera, 2020), to observe classification rates when separating between great apes based on femoral 
morphology. This entails the training of Machine Learning (ML) algorithms only on the synthetic data 
produced through data augmentation. Through MT, the real dataset is maintained separate throughout 
the training process. Once the ML algorithm is trained, it is then used to classify the original data, 
providing a direct means of evaluating model performance realistically. If models were to overfit on the 
synthetic data, then their classification performance on the real data would be poor. On the other hand, 
if algorithms perform well on the real data, then the algorithm can be considered a truly powerful 
classifier for real world applications. 

The ML algorithm employed in the present study included Support Vector Machines (SVM; 
Cortes & Vapnik, 1995), trained similarly to the algorithms described in Courtenay et al. (2021). For 
SVMs, a radial basis kernel function was used, tuning both the c and γ hyperparameters using Bayesian 
Optimization Algorithms (BOAs) (Bergstra & Bengio, 2012; Snoek, Larochelle & Adams, 2012; 
Shahriari, Swersky, Wang, Adams & Freitas, 2016). BOA was initialized using the results from a 
random optimization algorithm as prior for hyperparameter selection (Bergstra & Bengio, 2012). Next 
an Expected Improvement (EI) Bayesian model was tuned for 50 iterations so as to define the final 
optimal c and γ values. SVMs were then trained using k-fold cross validation (k = 10), and a 70:30% 
train:test split. 

For model evaluation, careful deliberation was taken in the selection of evaluation metrics. 
When considering the imbalance observed between each of the samples (≈ 6:1, in the case of 
chimpanzees and orangutans), the present study considered evaluation metrics less susceptible to 
changes in sample balance to be more reliable (He & Ma, 2013). These include; balanced accuracy, 
precision, recall, the F1-Measure, and the Kappa (κ) statistic where binary classification was performed. 
Alongside these metrics, model loss was calculated via the Root of the Mean Squared Error (RMSE), 
so as to calculate an estimation of overall model confidence when classifying new individuals. 
 So as to assess the power of MT techniques over traditional ML, all experiments were repeated 
excluding the data augmentation step in the process. For this purpose, each of the samples was divided 
into 70:30% train:test sets, and then subjected to the same processes as described above. As a means 
of testing the possible contamination that may be present product of performing the train:test split after 
performing PCA (sensu Calder et al., 2022), two experiments were devised. Experiment 1 performed 
train:test splits after PCA had been performed on the entire dataset, and was then subjected to MT. 



 

Experiment 2, however, performed the train:test split on the Procrustes Superimposed coordinates. The 
train set was then used to calculate PC scores, which were then augmented and the synthetic values 
used to train a SVM. Next, the eigenvectors computed from the training data were used to predict the 
PC scores of the test set, and the trained SVM algorithm was used to predict the corresponding class 
labels. 
 Finally, and as a means of testing the advantages augmentation has over bootstrapping of 
samples, tests were performed training SVMs on bootstrapped datasets, and datasets augmented using 
MC based methods. To test the possibility of overfitting, the final evaluation of these tests was 
performed using adversarial examples, as described by Szegedy et al. (2014) and Goodfellow, Schlens 
& Szegedy (2015). For this purpose, a layer of Gaussian noise (ϵ = 0.2) was added to landmark data 
prior to any of the analyses. The noisy data was then classified using the SVMs trained on bootstrapped 
data and MCMC augmented data. To simplify this experiment and see how different approaches affect 
both imbalance and small-sized samples, tests were performed to differentiate between male (n = 22), 
and female (n = 8) AMH femora. 
  
2.5. 3D model simulation 
 

For the purpose of simulating 3D models, the present study performed augmentation on 
geometric morphometric data in form feature space as well, i.e., excluding Procrustes scaling 
procedures during Procrustes superimposition. Augmented feature spaces were then reverse engineered 
to reconstruct landmark configurations using Least Square Regressions and Thin Plate Spline (TPS) 
interpolations (Bookstein, 1989). Once augmented landmark configurations had been calculated, these 
were used to warp surface meshes and produce a final simulation of a synthetic 3D model. 

For mesh warpings, the median individual of each species was used (Rohlf, 1996, 1998). Due 
to intraspecific differences related to sexual dimorphism in modern great ape groups, calculations were 
performed using median male and median female meshes, if available. 
 
2.6. The AugmentationMC library 
 

In order to ensure reproducibility of the proposed augmentation approaches, all augmentation 
applications were programmed in the R programming language (v.4.0, with v.3 compatibility), and 
implemented as a library. The AugmentationMC library is available on GitHub 
(https://github.com/LACourtenay/AugmentationMC). This R library contains functions for both the use 
of MC and MCMC algorithms, alongside some additional functions for augmented data evaluation. The 
AugmentationMC library has only a single dependency (the abind library for more efficient tensor 
computing tasks), and was written using a mixture of an object-oriented and a functional programming 
paradigm. Object-oriented programming was performed using S4 type classes. 

For the calibration of p-values and calculation of FPR values, formulae were implemented in 
the pValueRobust R library (https://github.com/LACourtenay/pValueRobust). A manual and 
description of the library has been included as Supplementary File 2. 

 
2.7. Additional sample pre-processing 
 

To deal with any possible issues that could be produced by sample imbalance (He & Ma, 2013), 
pre-processing of some samples was performed using an Adaptive Synthetic Sampling (ADASYN) 
algorithm. 

ADASYN is a powerful adaptation of the Synthetic Minority Oversampling Technique 
(Chawla, Bowyer, Hall & Kegelmeyer, 2002), a popular algorithm used to augment minority samples 



 

in imbalanced datasets (He, Bai, Garcia & Li, 2008). ADASYN constructs functions on sample 
distributions, using calculations of data-density to generate new points that fill in empty regions of the 
target domain. This technique is powerful for the balancing of small datasets, however, should be used 
with caution. This is important considering how overuse of such algorithms may enhance a linear nature 
within the distribution that may not be a true representation of the original target domain (Courtenay & 
González-Aguilera, 2020). From this perspective, ADASYN was only used to balance the orangutan 
and gorilla samples from dataset 2 until they were approximately the same size as AMH and 
chimpanzees. Once balanced, all four samples were passed into MCMCs for more advanced numeric 
simulation modelling. Only data produced by MCMCs were included in the final study, while all 
ADASYN produced data were discarded. ADASYN was implemented in the Python (v.3.7.4) 
programming language. 
 
3. Results 
 
3.1. Monte Carlo based methods 
 

MC based algorithms proved highly successful in simulating new data for each of the sample 
distributions, regardless of the data type (categorical or numeric). Beginning with the simplest and most 
common example of data augmentation, it can be seen how any type of Monte Carlo based algorithms 
(MC or MCMC) can effectively perform numeric simulations regardless of distribution normality. 

For example, Ruff’s (1995) Ix variable presents an inhomogeneous distribution (w = 0.99, p = 
0.003, FPR = 4.5%), yet numeric simulations of this univariate data produce highly realistic examples 
of Ix values (|d| = 0.009, t(103) = 12.8, p = 1.2e-23, FPR = 1.8e-19%). When separating this variable by 
sex, normality is observed for both male (w = 0.97, p = 0.21, FPR = 47.1%) and female (w = 0.96, p = 
0.10, FPR = 38.5%) femora. In each of these cases, simulations produced almost exact replicas of 
sample distributions (Fig. 2), with highly realistic examples of Ix values for both males (|d| = 0.040, 
t(108) = -1.0, p = 4.4e-45, FPR = 1.2e-40%) and females (|d| = 0.003, t(104) = 0.07, p = 1.2e-44, FPR 
= 3.2e-40%). Moreover, in all of these examples, exact replicas of the original data are non-existent. 

 

 
Figure 2 – Example of original and augmented numeric distributions of the Ix variable from Ruff’s 

(1995) dataset, augmented using Monte Carlo based algorithms. 
 
 



 

Similarly, when considering MC algorithm performance for modelling categorical variables, 
algorithms are seen to successfully produce 1,000 examples of different sets of qualitative observations 
(Fig. 3), while maintaining the original proportions of observations (Table 1), such that the augmented 
and original data are almost statistically identical (p ≈ 1). 

 
 

Table 1 – Statistical test results of equal proportion according to Pearson’s χ2 test between 
different qualitative variables from Ruff’s (1995) dataset, when simulating 1,000 examples using 

MC based algorithms. p Cal. refers to the calibration of this p-Value to a Probability of Null 
Hypothesis value, ergo, the probability that the analyst is wrong if concluding the alternative 

hypothesis (sample proportions are different). 

  Original % Augmented % χ2 df p p Cal. 

Eastern Africa 39.4 39.3 5.1e-31 1 >0.99 >97.3 
North America 60.6 60.7 5.1e-30 1 >0.99 >97.3 
Male 51.5 53.2 0.046 1 0.83 70.4 
Female 48.5 46.8 0.046 1 0.83 70.4 

 
 
 

 
Figure 3 – Barplots describing the proportion of different categorical variables from Ruff’s (1995) 

dataset before (original), and after (augmented), simulating 1,000 new values via MC based 
algorithms. 

 
 
When confronting a multimodal problem, such as the mixture of both categorical and numeric 

variables, MC algorithms can be used in a number of ways. One approach considers the conditional 
augmentation of variables (e.g., Fig. 4), where a qualitative factor (such as sex), can be used to condition 
the simulation of numeric variables. In all cases, the distribution of both male and female Ix and Iy values 
appear to be almost identical to the original distributions, while increasing sample variance. Statistically 
these synthetic distributions are highly equivalent to the original distributions they were modelled from 



 

(Table 2). If this component was to be developed further by augmenting a multitude of both qualitative 
and quantitative variables, MC performance would continue to prove highly efficient at replicating the 
original distributions (Fig. 5), with high rates of equivalency (Table 3). 

 

 
Figure 4 – Density plots comparing the distribution of numeric values from Ruff’s (1995) dataset 

before (Original) and after (Augmented) simulating 100 new values via MC based algorithms, 
conditioned by a single categorical variable (sex). 

 
 

Table 2 – TOST results when augmenting numeric distributions (Ix & Iy) from Ruff’s (1995) 
dataset, when conditioned by a qualitative variable (sex), producing 100 synthetic observations 

using MC based approaches. |d| is the normalised absolute difference. t is the test-statistic. df are 
degrees of freedom. FPR is the False Positive Risk. Samples marked with an * were tested using 

TOST, while those without were tested using rTOST. 

 |d| t df p-Value FPR (%) 

Ix Male* 0.0116 -0.2959 97.98 6.49E-45 1.79E-40 
Ix Female <0.0001 8.5627 59.93 2.73E-12 1.97E-08 
Iy Male 0.015 5.324 59.97 7.99E-07 0.003 

Iy Female 0.0032 5.1289 60 1.65E-06 0.006 

 



 

 
Figure 5 – Examples of the original (left) and augmented (right) scatter plots of Ruff’s (1995) dataset, 

augmented using MC based algorithms of both categorical and numeric data. 
 

 
Table 3 – TOST results when augmenting the entire Ruff’s (1995) dataset, including both numeric 

and categorical variables. 100 synthetic observations were produced using MC based 
approaches. |d| is the normalized absolute difference. t is the test-statistic. df are degrees of 
freedom. FPR is the False Positive Risk. Samples marked with an * were tested using TOST, 

while those without were tested using rTOST. 

 |d| t df p FPR (%) 

Imax 0.016 13.5 72.3 1.0E-21 1.3E-17 
Imin* 0.002 0.08 117.6 3.5E-84 1.8E-79 

Ix 0.008 15.8 73.5 1.3E-25 2.0E-21 
Iy 0.012 14.0 73.8 1.0E-22 1.4E-18 
J* 0.017 -0.74 113.7 2.1E-73 9.7E-69 

 
 

 
 
 
 
 
 
 



 

3.2. Markov Chain Monte Carlo 
 

MCMC algorithms proved to be highly efficient for the augmentation of numeric data. When 
used to augment geometric morphometric data, MCMCs simulated extremely realistic 
multidimensional distributions in a ℝ12 feature space (Table 4, Fig. 6). The poorest performance was 
observed when trying to augment the gorilla and orangutan samples. This is logical considering their 
much smaller sample size, which may not capture the true variability of the population. Nevertheless, 
sample distributions on all accounts have been tested to be highly equivalent to the original data, 
maintaining overall descriptive features such as central tendency yet increasing sample variance. This 
proves MCMCs to be efficient when modelling multivariate data, while maintaining the degree of 
separation between samples as realistically as possible. 

 

 
Figure 6 – PCA scatter plots in shape space of great ape femora. Left panel: the original PCA. Right 

panel: the original PCA alongside 100 simulated individuals using MCMC. AMH = Anatomically 
Modern Humans, C = Chimpanzees, G = Gorillas, O = Orangutans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 4 – TOST results when augmenting geometric morphometric data in shape space (Fig. 6). 
100 synthetic observations were produced using MCMC. PC scores are displayed alongside the 

percentage of explained variance. Samples include Anatomically Modern Humans (AMH), 
Chimpanzees (C), Orangutans (O) and Gorillas (G). |d| is the normalized absolute difference. t is 

the test-statistic. df are degrees of freedom. FPR is the False Positive Risk. All samples were 
tested using rTOST. 

  PC1 PC2 PC3 PC4 PC5 

  53.4% 10.5% 6.9% 4.5% 3.9% 

AMH |d| 0.004 0.000 0.008 0.002 0.001 

 t 8.30 8.05 9.14 11.93 12.34 

 df 140.2 140.0 142.1 142.2 138.9 

 p 3.9E-14 1.6E-13 3.0E-16 1.8e-23 2.2e-24 

 FPR (%) 3.3E-10 1.3E-09 2.9E-12 2.5e-19 3.2e-20 
C |d| 0.005 0.011 0.008 0.001 0.003 

 t 15.10 8.34 11.38 12.65 12.09 

 df 133.8 131.7 131.9 135.9 132.4 

 p 5.5E-31 4.3E-14 1.3E-21 5.1e-25 1.9e-23 

 FPR (%) 1.0E-26 3.6E-10 1.6E-17 7.7e-21 2.7e-19 
O |d| 0.000 0.001 0.001 0.000 0.001 

 t 9.73 7.90 6.09 15.38 8.62 

 df 129.7 129.6 129.9 129.4 130.0 

 p 2.0E-17 5.1E-13 5.9E-09 2.7e-31 9.7e-15 

 FPR (%) 2.1E-13 3.9E-09 3.0E-05 5.2e-27 8.5e-11 
G |d| 0.002 0.003 0.005 0.001 0.001 

 t 10.38 12.61 8.30 12.29 12.66 

 df 137.0 136.4 136.6 136.3 136.3 

 p 2.7E-19 5.8E-25 4.4E-14 3.9e-24 4.4e-25 

 FPR (%) 3.2E-15 8.8E-21 3.7E-10 5.7e-20 6.7e-21 
 
 

3.3. Machine Teaching 
 

Considering the already existing high degree of separation between great ape groups, most 
discriminant functions are already capable of separating between the different genera. For instance, a 
standard cross-validated Linear Discriminant Analysis (LDA) typically used in Geometric 
Morphometrics on PC scores obtained after PCA dimensionality reduction already reaches 98.7% 
accuracy when separating between groups, with only a single gorilla individual being assigned to the 
chimpanzee class. When using more sophisticated algorithms, such as SVM, accuracy drops drastically 
(Table 5), due to the very small amount of data available which is typically needed for ML applications, 
while error rates are unacceptably high (RMSE loss = 0.724). MT approaches, however, reach 100% 
classification with extremely low loss values (RMSE = 0.033). 

When performing the second experiment (Exp. 2, Table 5), which included the separation of 
training data and testing data prior to the calculation of PCA, algorithms maintain high classification 
rates, with even lower loss values (RMSE = 0.017). This proves that even when trying to reduce the 
possible contamination of the testing set related to PCA preprocessing as described by Calder et al. 



 

(2022), MT approaches presented here are able to produce highly powerful classification algorithms 
that may be more realistically applicable to the fossil record. 

 
Table 5 – Results of SVMs when used to differentiate between great ape samples based on 

geometric morphometric data. SVMs were trained either on the raw data, or datasets augmented 
using MCMC approaches. RMSE = Root Mean Square Error. Exp 1 = Experiment 1, augmenting 

PC scores after the train/test split. Experiment 2 = augmenting PC scores before the train/test 
split. 

 Raw Augmented Exp. 1 Augmented Exp. 2 

Accuracy 0.55 1.00 1.00 
Precision 0.38 1.00 1.00 

Recall 0.31 1.00 1.00 
F1-Score 0.26 1.00 1.00 
RMSE 0.724 0.033 0.017 

 
 
3.4. MCMC vs bootstrap 
 

Experiments performed to evaluate the difference between bootstrap methods as opposed to 
MCMC augmentation reveal that both approaches are able to reach high accuracy values (Table 6). 
Nevertheless, SVMs suffer more from dataset imbalance as seen in a drop in F1-scores, as well as a 
considerable difference in the loss values when used to differentiate between male and female femora 
based on geometric morphometric data. This is logical considering how bootstrap techniques only 
resample and reshuffle the data that is already present, while MCMCs generate a completely new 
example of what a male or female femur may look like. Likewise, while accuracy is high for bootstrap 
models, the authors still feel that this is an inflated observation which, in more complex cases, would 
be a perfect example of model overfitting. 
 

Table 6 – SVM evaluation results on noisy data when differentiating between male and female 
AMH femora using bootstrap and MCMC based augmentation techniques. RMSE = Root Mean 

Square Error. 

 Bootstrap MCMC 

Accuracy 0.90 0.90 
Precision 0.86 0.78 

Recall 0.75 0.88 
F1-Score 0.80 0.82 
Kappa (κ) 0.73 0.75 

RMSE Male 0.248 0.302 
RMSE Female 0.401 0.349 

 
 
 
 
 
 
 



 

3.5. Data augmentation for the simulation of 3D models 
 

Considering the weight the variable size has on Geometric Morphometric form feature spaces, 
13 variables were included for 3D model simulation. In this particular case, 90% of shape variation is 
described by 12 PC scores, and the first PC score of form space strongly represents the variable size. 
Once these variables had been defined, MCMCs were found to efficiently augment each of the ℝ13 

distributions (Table 7, Fig. 7), similar to the observations made in section 3.2. 
 

 
Figure 7 – PCA scatter plots in form space of great primate femora. Left panel: the original PCA. 

Right panel: the original PCA alongside 100 simulated individuals using Monte Carlo Markov 
Chains. AMH = Anatomically Modern Humans, C = Chimpanzees, G = Gorillas, O = Orangutans. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 7 – TOST results when augmenting geometric morphometric data in form space (Fig. 7). 
100 synthetic observations were produced using MCMC. PC scores are displayed alongside the 

percentage of explained variance. Samples include Anatomically Modern Humans (AMH), 
Chimpanzees (C), Orangutans (O) and Gorillas (G). |d| is the normalized absolute difference. t is 

the test-statistic. df are degrees of freedom. FPR is the False Positive Risk. All samples were 
tested using rTOST. 

    PC1 PC2 PC3 PC4 PC5 
    90.9 4.5 0.7 0.5 0.4 

AMH |d| 0.002 0.003 0 0.007 0.004 

 t 9.94 7.92 9.55 14.26 9.26 

 df 129 127.4 129.9 125.9 127.9 

 p 6.1E-18 5.0E-13 5.3E-17 2.4E-28 3.1E-16 

 FPR (%) 6.6E-14 3.8E-09 5.4E-13 4.1E-24 3.0E-12 
C |d| 0.011 0.009 0.01 0.001 0.007 

 t 8.48 13.44 11.11 10.08 13.07 

 df 126.3 122.2 126.5 124.1 125.2 

 p 2.6E-14 3.8E-26 9.7E-21 3.9E-18 1.9E-25 

 FPR (%) 2.2E-10 6.1E-22 1.2E-16 4.3E-14 3.0E-21 
O |d| 0.002 0.001 0 0.001 0 

 t 8.36 9.14 8.21 5.79 17.06 

 df 127.8 127.8 128 127.6 127.7 

 p 4.6E-14 6.2E-16 1.0E-13 2.6E-08 5.0E-35 

 FPR (%) 3.8E-10 5.9E-12 8.3E-10 1.0E-04 1.1E-30 
G |d| 0.009 0.011 0.001 0.002 0.001 

 t 6.96 6.85 2.72 8.46 8.72 

 df 132.9 132.7 132.6 132.6 132.5 

 p 7.2E-11 1.2E-10 1.6E-11 2.2E-14 5.1E-15 
  FPR (%) 4.6E-07 7.7E-07 1.1E-07 1.9E-10 4.5E-11 

 
 
Once each of the augmented feature spaces had been reverse engineered to produce a set of 

synthetic landmark coordinates, mesh warping’s and the resultant simulated 3D models were found to 
appear highly realistic. Detailed inspection of these models found simulations to effectively capture the 
natural variability of femoral morphology as much as possible based on the samples provided (Fig. 8 & 
9). While it is true that the displacements of some fixed landmarks along the femoral shaft cause a slight 
distortion to small localized areas of the 3D models (e.g., LM34, LM37 and LM40, see Supplementary 
File 1, Table S2), these changes are negligible, while the majority of general diaphyseal morphological 
feature traits are still captured by the semilandmark mesh. In light of this, however, it must be stated 
that the quality of 3D model simulations will be entirely dependent on the number and quality of 
landmarks included in the model. Meshes cannot be warped if information is lacking on how 
morphological changes occur in this area. Likewise, the choice of a female or male individual as the 
reference mesh will also condition results. In the present study, analyses were performed warping 
meshes to both the male and female reference models, and then inspected to see which models present 
the least amount of non-biological distortion. Future research, however, should include a much larger 
sample of both female and male individuals for all species so as to obtain optimal results. 

 
 



 

 
 

Figure 8 – Examples of real 3D models of Anatomically Modern Human (AMH) and chimpanzee 
femora, alongside 4 simulations of synthetic 3D models. Of the original models, the left femora 
belong to male individuals, while the right femora belong to females. The first two simulated 3D 

models are based on the model of male femora, while the final two simulated 3D models are based on 
female femora. 

 



 

 
 
Figure 9 – Examples of real 3D models of gorilla and orangutan femora, alongside 4 simulations of 

synthetic 3D models. Of the original models, and where available, the left femora belong to male 
individuals, while the right femora belong to females. The first two simulated 3D models are based on 

the model of male femora, while the final two simulated 3D models are based on female femora. In 
the case of orangutans, all femora belong to female individuals. 

 
 
3.6. Minimum sample sizes and general recommendations 
 

Performing experiments on subsets of samples reveal a negative correlation between sample 
size and the variation presented within the augmented sample (Pearson’s ρ = 0.66), while a positive 
correlation exists between sample size and TOST’s |d| (ρ = 0.63). This implies that as sample size 
decreases, the distribution of simulated data begins to present a higher variance than the original data, 
and thus begins to lose equivalency. Nevertheless, this observation at present can only be considered of 
notable importance in the case of |d| values (t = -4.39, p = 0.0001, FPR = 0.34%), as the negative 



 

correlation between sample size and sample variation was revealed to be inconclusive based on the 
present data (t = -0.45, p = 0.66). Chow’s test revealed that correlation coefficients are continuous (F = 
1.56, p = 0.23), indicating no particular decrease in sample size to produce a notable change in the 
magnitude of equivalency. 

While it is logical to assume that the size of the dataset used for augmentation will affect the 
quality of the augmented data, our intuition when observing these results finds augmenting sample sizes 
of n < 10 to present important differences that no longer represent the variability of the original data. 
Likewise, samples of n < 15 also run a risk of losing reliability. From this perspective, we recommend 
that either (1) a sample size of n > 10 be used for augmentation, (2) if sample sizes are 15 < n > 10 then 
extreme care be taken, and/or (3) where possible, algorithms such as ADASYN be used to preprocess 
data that fall within this range. 
 

4. Discussion 
 

Sample size is a fundamental component of all elements of science. Both statistical tests and 
artificially intelligent algorithms are dependent on the amount of data available, which is often hindered 
by the quality of the fossil record. Multiple techniques exist to overcome some of these limitations. 
Nevertheless, not all may be suitable for particular types of analyses. Here we have shown how MC 
based algorithms are highly efficient at simulating probability distributions of categorical, numeric, and 
multimodal datasets. On all accounts, statistical tests show how the simulated data is (1) highly 
equivalent to the original data, but (2) not identical. Similar to the observations made by Courtenay & 
González-Aguilera (2020), augmentation procedures thus increase the represented variability without 
significantly shifting the distribution’s central tendency, while maintaining the general properties of the 
distribution. This can have great advantages in improving classification algorithm performance, as well 
as providing more robust measures for statistical applications. 

 
4.1. Recruiting a skeleton crew: How can we enhance the fossil record? 
 

In paleoanthropological research, analysts are inevitably restricted to make predictions about 
the population of a species based usually on very few remains due to the scarcity and fragmentary nature 
of the fossil record. Difficulties in analyzing large sets of specimens increase due to the common 
reluctance in data sharing, especially in the case of the very much appreciated fossil hominins, that are 
usually underrepresented in most studies in comparison to modern data (e.g., Lague, 2002; Harmon, 
2009; Tallman, 2012, 2014). The estimation of population parameters such as central tendency and 
deviation, for example, are the most easily affected by incomplete or imbalanced datasets. Likewise, 
more sophisticated analyses, such as CVA, bgPCA, or tests commonly employed to address ‘modularity 
vs integration’ or phylogenetic questions, are highly dependent on the data used as input (Albrecht, 
1992; Mitteroecker & Gunz, 2009; Mitteroecker & Bookstein, 2011, Bookstein, 2017, 2019; Cardini et 
al., 2019), which will essentially condition the type of conclusions drawn from the results. 

Fossil sample size is also very much affected by the difficulty in finding either homologous 
specimens, or specimens that preserve conspicuous portions for morphological, or any other type, of 
quantitative analysis that might require the integrity of specific bone areas. Two procedures are 
available in these cases; researchers might opt for restricting the area of study and sample size to 
incorporate only original data in their analysis (Trinkaus, Ruff, Churchill & Vandermeersch, 1998; 
Ruff, McHenry & Thackeray, 1999; Tallman, 2012, 2014; Tallman, Almécija, Reber, Alba & Moyà-
Solà, 2013; Almécija et al., 2013, 2019; Lague, 2015; Beaudet, Heaton, L’Abbé, Pickering & Stratford, 
2018; Daver et al., 2018; Lague et al, 2019a,b), or they can reconstruct the missing or deformed bone 



 

portions through (TPS) estimations and/or mirroring and merging tools in case of symmetric structures 
(Gunz & Harvati, 2007; Friedline, Gunz, Janković, Harvati & Hublin, 2012; Gunz, Mitteroecker, 
Neubauer, Weber & Bookstein, 2009; Gunz et al., 2020; Claxton, Hammond, Romano & Oleinik, 
DeSilva, 2016; Mori, Profico, Reyes-Centeno & Harvati, 2020; Davis, Profico & Kappelman, 2021; 
Beaudet et al., 2022), before data collection for statistical analysis and comparison.  

Hominin or other fossil primate remains are not only commonly incomplete but they also often 
appear in isolation (e.g., Leakey, 1971; Di Vincenzo et al, 2015), or in the form of very partial skeletons 
(e.g., Wood, 1974; Susman, 1989; Clarke, 1998; Susman, Ruiter & Brain, 2001; Domínguez-Rodrigo 
et al., 2013; Lague et al, 2019a), providing thus very limited windows to the study of our ancestors. The 
finding of complete or moderately complete skeletons is very rare (e.g. Lucy: Johanson & Edey, 1981; 
the Turkana Boy: Brown, Harris, Leakey & Walker, 1985; DIK-1-1: Alemseged et al., 2006; Mtoto: 
Martinón-Torres et al, 2021), but even more so is the discovery of fossil hominin groups or populations 
in a single spot (e.g., the First Family: Johanson, Taieb & Coppens, 1982; Sima de los Huesos: Arsuaga, 
Martínez, Gracia, Carretero & Carbonell, 1993; Dinaledi and Lesedi chambers: Berger et al., 2015, 
Hawks et al., 2017; Dmanisi, Lordkipanidze et al, 2013; Kanapoi: Ward, Plavcan & Manthi, 2020; Spy 
Cave: Crevecoeur et al, 2010; Malapa: Berger et al, 2010). The difficulties in finding a group of 
individuals, or even complete or well-preserved specimens, increases as paleoanthropologists go back 
in geological time. In those cases, where two or more individuals of the same species have been found, 
certain parameters related to intraspecific variation regarding sexual dimorphism, or ontogenetic 
patterns, might be easier to detect. Nevertheless, even in the cases where the number of individuals is 
relatively high, fully understanding intraspecific variability of long-lasting fossil groups results difficult 
based on very specific populations.  

Additionally, most statistical studies require larger sample sizes than those encountered in the 
most abundant examples (estimated number of individuals in the Rising Star Cave = 18: Berger et al. 
(2015), Hawks et al. (2017); estimated number of individuals in Sima de los Huesos = 29: Bermúdez 
de Castro, Martínez, Gracia-Téllez, Martinón-Torres & Arsuaga, 2020). 

Datasets such as those from the Sima de los Huesos or Rising Star might thus provide a more 
anatomically and morphologically restricted source to generate synthetic data. Nevertheless, they could 
be more reliable in certain cases as well (though not always, see for instance; Grine, 2019), as they offer 
a sample of spatially and chronologically well-defined individuals, in contrast to the combination of 
individuals from different areas, and geological strata, whose taxonomic allocation might still be 
uncertain. Likewise, it is also logical to assume that it is not the same to estimate data of a specific taxon 
based on 10 than on 100 individuals, as also highlighted by the experiments performed on sample size. 
Paleoanthropologists must thus consider all these questions before conducting data augmentation so as 
to be aware of the possible shortcomings of their simulated group. Additionally, while MC approaches 
are able to provide a more robust means of making statistical inferences, analysts must remember that 
augmented data cannot simulate variables or variability that are completely unknown to the analyst and 
should never be used to replace real datasets.  

The present study has taken two datasets describing multiple features of primate femoral 
attributes, ranging from external morphology, to biomechanical cross-sectional parameters and 
qualitative data. Using these datasets, results prove the validity of MC based algorithms to generate new 
synthetic data (minimum of 100 new individuals for each of the case studies), without altering the nature 
of the probability distribution. Results also show how these methods might be valid for 
paleoanthropological studies as they perform well in multimodal problems, even those that are affected 
by inhomogeneous distribution patterns or sample size imbalance. Very small groups, such as those 
usually encountered in the fossil record, might however present more difficulties, as highlighted by the 
orangutan (n = 5) and gorilla (n = 9) samples, and require preprocessing steps before data augmentation. 



 

Augmented samples should thus ideally include more than 10 (or even better, 15) individuals so as to 
perform more reliable classification analyses.  

Though not ideal, even in the cases where sample size is very limited, 3D reproductions of the 
synthetic data based on reverse engineering (and with the help of preprocessing steps such as ADASYN) 
indicate that MC calculations provided very realistic results, opening the doors to further analytical 
possibilities. Results thus suggest that the application of MC based algorithms, though not fully solve 
the problem of scarcity and fragility of the fossil record, provide important advantages for 
paleoanthropological data management and statistical robustness. 
 
4.2. Methodological reflections on data augmentation for classification tasks 
 

The majority of research into data augmentation is primarily driven by the rising interest in 
Computer Vision (CV) applications in Artificial Intelligence (AI). In CV, images are “augmented” 
through a series of transformations; including the scaling, rotation, flipping, cropping and alteration of 
an image brightness (Goodfellow, Bengio & Courville, 2016). In these approaches, algorithms simply 
shift and distort the matrix, trying to capture possible changes that could be produced by changes in 
angle or perspective of the camera or sensor. Nevertheless, this does not truly simulate the variability 
an object may have, as they are not conditioned by anything more than the original image. 

In the context of simulating 3D models, some promising work has been done using Generative 
Adversarial Network (GAN) based architectures (Wu, Zhang, Xue, Freeman & Tenenbaum, 2017; 
Achlioptas, Diamanti, Mitliagkas & Guibas, 2018), with exciting contributions from the field of 
geometric learning (Shu, Park & Kwon, 2019; Valsesia, Magli & Fracastoro, 2019). Nevertheless, in 
the majority of these cases algorithms were implemented using datasets of ≈ 4,000 (ModelNet dataset 
from Wu et al., 2015) or ≈ 51,000 (ShapeNet dataset from Chang et al., 2015) point clouds. The present 
study uses a dataset 50 to 600 times smaller, while still efficiently simulating a set of 400 3D models. 
This is possible through the augmentation of geometric morphometric shape variables, as opposed to 
directly augmenting coordinate point clouds. A geometric morphometric based approach thus uses 
statistical calculations of the most probable example of an individual’s femur, and exploits already 
existent geometric information to simulate what a new individual may look like. This has numerous 
advantages for the possible integration of Geometric Learning applications into Geometric 
Morphometrics (Bronstein et al., 2017; Kipf & Welling, 2017; Qi, Yi, Su & Guibas, 2017; Wang et al., 
2019). 

 In other lines of research, the augmentation of datasets using GANs has become very popular, 
and has been known to be useful for building much more robust classification models (Such et al., 2019; 
Courtenay & González-Aguilera, 2020; Courtenay et al., 2021). For the simulation of numeric variables, 
Courtenay & González-Aguilera (2020) presented the use of GANs for the augmentation of three 
different geometric morphometric datasets with statistically powerful results (p < 0.001, FPR = 1.8%). 
In an applied case study, Courtenay et al. (2021) found these algorithms to work well (p = 2.4e-13, FPR 
= 1.9e-09%), however were vulnerable to the presence of outliers and still faced some problems if the 
original training datasets are small. In this same study, these authors presented a comparison with 
MCMCs for the augmentation of geometric morphometric data with much greater success (p = 1.2e-57, 
FPR = 4.2e-53%). 

At present, both GANs and MCMCs can be considered very powerful algorithms for the 
modelling of data. The present study displays evidence that MCMCs may be more powerful. Firstly, 
MC based approaches are less computationally expensive than GANs (Courtenay et al., 2021). 
Secondly, MC algorithms directly model from the dataset’s probability distribution, which implies that 
outliers are given less weight in the final modelling of the predicted population distribution. Needless 
to say, and especially when comparing MC based algorithms and MCMCs, MCMCs can prove difficult 



 

to implement and train in many cases (Gelman, Roberts & Gilks, 1995; Graves, 2011). This is mostly 
evident when modelling from highly complex distributions in large dimensional feature spaces (e.g., 
Fig. 6 and 7). When modelling from complex sets of PC scores, the first set of PC scores are easy to 
simulate as they contain the majority of distribution variation information. Nevertheless, as we increase 
the number of PC scores included in a study, the number of residual data increases, which consequently 
hinders MCMC performance. In some preliminary cases from the present study, the inclusion of all PC 
scores produced similar results to the “slight mode collapse” observed by Courtenay & González-
Aguilera (2021: Fig. 3). In other cases, MCMCs were unable to reach convergence. 

Some of the first introductions of AI algorithms into archaeology have been mostly 
accompanied by the use of bootstrapping procedures to “increase” small sample sizes (Domínguez-
Rodrigo, 2018; Courtenay et al., 2019, Courtenay, Huguet, González-Aguilera & Yravedra, 2020, 
Moclán, Domínguez-Rodrigo & Yravedra, 2019; inter alia). While bootstrapping is a valid and useful 
technique for statistical inference, it has received some criticism in the context of training classification 
algorithms (Courtenay & González-Aguilera, 2020; McPherron, Archer, Otárola-Castillo, Torquato & 
Keevil, 2022). Bootstrapping is a resampling technique, therefore is unable to generate new 
observations. From this perspective, the misconception that x1,000 bootstrapped sample is larger than 
the original dataset is misinformed, as no new information is available (i.e., the dataset essentially 
remains the same size, just reshuffled). The objective of classification algorithms is to generate 
mathematical functions that are generalizable to unknown paleoanthropological cases, however, the 
bootstrap approach does not complete areas of poor information density (Courtenay & González-
Aguilera, 2020). When algorithms are then exposed to new observations, they are likely to perform 
poorer predictions, or unrealistically high accuracies. 

In the present study, we have shown how bootstrapping fails to overcome issues presented by 
sample imbalance. This can be seen in how the confidence of SVMs drops significantly when predicting 
the class of adversarial examples of female individuals. In a study by Moclán et al. (2019), experiments 
performed with and without bootstrapping showed how even without bootstrapping, separation among 
samples is very high. While bootstrapped samples produce even higher accuracy rates, we strongly 
believe that this is due to an overrepresentation of resampled (i.e., repeated) case studies, while a MC 
based approach, as presented here, would produce more favorable results. Finally, although the present 
authors are also guilty of having presented bootstrapped results (Courtenay et al., 2019), we have since 
shown how even when using MCMCs and GANs for data augmentation, the construction of highly 
powerful classification algorithms is still possible for the same type of data (Courtenay et al., 2021). 

 
5. Conclusions 
 

This study presents the value of MC based algorithms for the simulation of numeric and 
categorical data. Here we have applied these methods to two different types of paleoanthropological 
datasets, with an additional example of how these methods can be leveraged for the simulation of 3D 
models as well. As can be seen, MC based approaches are a powerful tool to generate synthetic, yet 
statistically realistic data, that can be used to power more robust statistical tests. This holds numerous 
distinct advantages over the frequently (and often inaptly) used bootstrapping technique. 

There are two main limitations of any data augmentation technique; (1) even though 
augmentation exists, it should never be used to replace a large sample size; and (2) the quality of 
augmented data is only as good as the input data. In the present study, this can be seen in the example 
of simulated orangutan data, which was restricted by the small size of the original sample and its 
homogeneity (no male individuals were included).  

Nevertheless, here we present a toolkit for the handling of multimodal datasets, with the hope 
to implement more versatile and adaptable versions of MCs and MCMCs in future releases of the 



 

AugmentationMC library. Future research will thus focus on improving the computational cost of these 
algorithms and enhance their precision. 
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Una aproximación híbrida a través de morfometría geométrica y
aprendizaje profundo para la clasificación de marcas de corte y

pisoteo.

El concepto de equifinalidad es actualmente uno de los mayores problemas de la tafonomía, que con fre-
cuencia lleva a los analistas a interpretar erróneamente la formación y funcionalidad de los yacimientos
arqueológicos y paleontológicos. Un ejemplo de esta equifinalidad se encuentra en la diferenciación en-
tre las marcas de corte antrópicas, y otros rastros en el hueso producidos por agentes naturales, como la
abrasión sedimentaria y el pisoteo. Estas cuestiones son un componente clave para la comprensión de la
evolución humana temprana, pero a menudo se basan en rasgos cualitativos para su identificación. Desafor-
tunadamente, los datos cualitativos suelen ser susceptibles a errores debido a la subjetividad, a veces fruto
de la experiencia del analista. El presente estudio pretende afrontar estas cuestiones mediante un enfoque
metodológico híbrido. En este caso, combinamos datos de morfometría geométrica, microscopía digital
3D, y aprendizaje profundo mediante redes neuronales, para proporcionar un medio para la clasificación
empírica de las huellas tafonómicas en el hueso. Los resultados obtenidos alcanzan una tasa de clasificación
superior al 95%, proporcionando un posible medio para superar la equifinalidad tafonómica en el registro
arqueológico y paleontológico.
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Featured Application: Cut mark identification and analysis is a fundamental component for
archaeological investigation. Cut mark analysis, however, has been the root of great debates,
with some authors claiming to have the oldest cut marks in or outside of Africa. If these marks
were to truly be anthropic in nature, then the repercussions of these findings would produce
a paradigm shift for our understanding of human evolution. Unfortunately, the majority of
methods available for cut mark classification are namely qualitative in nature. Here we provide a
new, highly powerful artificially intelligent neural network classification model that can be used
to quantitatively and more objectively overcome these issues, using 3D digital microscopy, Deep
Learning and Geometric Morphometrics to obtain up to 100% accuracy in some cases.

Abstract: The concept of equifinality is currently one of the largest issues in taphonomy, frequently
leading analysts to erroneously interpret the formation and functionality of archaeological and
paleontological sites. An example of this equifinality can be found in the differentiation between
anthropic cut marks and other traces on bone produced by natural agents, such as that of sedimentary
abrasion and trampling. These issues are a key component in the understanding of early human
evolution, yet frequently rely on qualitative features for their identification. Unfortunately, qualitative
data is commonly susceptible to subjectivity, producing insecurity in research through analyst
experience. The present study intends to confront these issues through a hybrid methodological
approach. Here, we combine Geometric Morphometric data, 3D digital microscopy, and Deep
Learning Neural Networks to provide a means of empirically classifying taphonomic traces on bone.
Results obtained are able to reach over 95% classification, providing a possible means of overcoming
taphonomic equifinality in the archaeological and paleontological register.

Keywords: taphonomy; microscopy; equifinality; archaeological data science
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1. Introduction

The publication of the ‘oldest’ anthropic evidence of any type is always a problematic issue,
usually drawing attention, criticism, and eventual debate on the quality of these findings from the
entire archeological and paleontological community. Perfect examples of such debates can be observed
in the claims of ~3.4 Ma cut marks from Dikika, Ehtiopia [1], which have since been heavily criticized
and rejected [2,3]. Likewise, sites claiming to have ~2.6 Ma cut marks outside of Africa in the province
of Quranwala, India [4], have drawn some speculation to their authenticity. In the Americas, ~130 ka
anthropic bone breakage [5] are also noted to be located in areas with highly abrasive sediments and
problematic taphonomic contexts. The current consensus for the oldest cut marks in Africa, however,
remains to be those of Gona [6], dated to approximately between 2.1 and 2.58 Ma, while other promising
results have been localized with 1.9 and 2.4 Ma in Northern Africa [7].

Taphonomic debates revolving around these topics are essential in understanding features of
human evolution, considering how current theories argue meat-eating to be a fundamental component
of our evolution [8–11]. The concept of butchery contains a multitude of different implications beginning
with resource acquisition [8,12–15], as well as the cognitive technical capacities to manufacture the
instruments used for such activities [16–20]. Dates of cut marks at 3.3 Ma implicate Australopithecine
populations to be the first users of tools and butcherers in hominin pre-history [1], however authors
are yet to come to an agreement as to whether these individuals were physically capable of such
practices [16–20]. While an argument has been proposed to say that natural edges of unknapped
stones could be used for butchery practices [1], other authors argue that experimentation is yet to be
found that supports this claim [3]. Nevertheless, if these findings were to be real, then strong empirical
evidence would be needed in support of such a hypothesis.

Recent advances in the development of new methodologies for the study of Bone Surface
Modifications (BSMs) have been able to reveal interesting patterns in the in-depth study of taphonomic
traces. The implementation of Geometric Morphometric studies has been able to reveal a means
of inferring different tool use [21] as well as raw material management [21–23] through cut mark
morphologies. Moreover, when applied to the carnivore induced BSMs, analysts have been able to
differentiate between carnivore agents based on tooth mark morphologies [24–27]. The innovative
introduction of Artificial Intelligence (AI) in taphonomy [26–31] has additionally been able to overcome
multiple barriers imposed by subjectivity [32]. This presents a powerful tool for the construction of
classification models, presenting a series of efficient tools for the processing of complex data.

Here we present the power of Feed Forward Neural Networks (FFNN) trained through Deep
Learning (DL) for the processing of morphological data obtained with advanced 3D digital microscopy.
These efforts attempt to overcome issues imposed by equifinality and subjectivity in taphonomic
research, as well as complement previously obtained data regarding the effectivity of Machine Learning
(ML) algorithms for the processing of Geometric Morphometric information [26]. Through this,
we present a new means of classifying cut marks and trampling marks through their morphological
attributes, as well as an empirically objective and quantitative approximation to their morphological
description and characterization.

2. Materials and Methods

Experimental samples consisted of 80 cut marks and 251 trampling marks (Figure 1). Sample sizes
where chosen in accordance with statistical power tests [33,34], defining a minimum sample size of
59 individuals as significant for the type of analysis performed within this paper (Cohen’s d = 0.52,
α = 0.05, power = 0.8).
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that could be cut marks and (D) clear cut marks found on antelope bone from Frida Leakey Korongo 
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Figure 1. Photographic examples of (A,B) experimental and (C,D) archaeological taphonomic traces.
Photographic documentation using the HIROX KH-8700 microscope of experimental (A) cut and (B)
trampling marks. Scanning Electron Microscope photographs of (C) inconspicuous taphonomic traces
that could be cut marks and (D) clear cut marks found on antelope bone from Frida Leakey Korongo
West of the Olduvai Gorge (Tanzania). Photos by L.A.C. Archaeological remains studied first by J.Y. [35]
and later by L.A.C.

Cut marks (Figure 1A) were produced using simple flakes knapped by a single right-handed
individual, experienced and familiar with lithic materials from the Olduvai Gorge and other Lower
Pleistocene sites. The raw material used for these experiments was obtained directly from the Naibor
Soit Inselberg of the Olduvai Gorge (Tanzania) [23]. This raw material consists of a coarse-grained
quartzite frequently found in multiple sites of Beds I and II of the Olduvai Gorge. Cut marks were
produced on a mixture of adult bovid and suid individuals on a number of different anatomical
elements, including femora, tibiae, and humerii. All cut marks were produced by a single right-handed
individual, perpendicular to the bone while the bone was fresh and the meat intact.

Trampling mark samples (Figure 1B) were obtained from Domínguez-Rodrigo et al. [36]’s sample.
These traces were produced under a number of different experimental conditions. Experiments were
carried out using cervid bones obtained from a legal organized hunting party. Anatomical elements
present a mixture of axial and appendicular elements, including femora, tibiae, radii, ulnae, humerii,
vertebrae, ribs, and scapulae. The majority of the meat from these bones were removed with metal
knives, then sectioned into smaller pieces using an electric saw. Each bone was then examined to
avoid misclassifying BSMs produced by the defleshing and sectioning processes. The sample was
then separated into multiple subsamples that were subjected to different experimental conditions.
The first variable considered was the sediment type. Five different sedimentary conditions were
used, the first consisting in fine-grained sands (60–200 µm), followed by medium-grained sands
(200–600 µm), coarse-grained sands (0.6–2 mm), a combination of the different sand types in a clay
stratum, and finally gravels (>2 mm). Additional variables considered the time exposed to trampling
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(10 s or 2 min), the individuals producing the trampling (all students of varying weights), and whether
the bones were dry or fresh when buried. For more details consult citation reference [36].

2.1. Digital Reconstruction Technique

A combination of two different methodological approaches was used for this study, the first
concerning the 3D digital reconstruction protocol via advanced digital microscopy [37] followed by the
processing of this data via a 3D 13-landmark model [21].

The digitalization process was performed using the HIROX KH-8700 3D Digital Microscope
with an MXG-5000 REZ triple objective revolving lens located in the Institut Català de Paleoecologia
Humana I Evolució Social (IPHES), Tarragona, Spain. The HIROX is equipped with a high intensity
LED light source that can be positioned around the subject of study. For this study, the light source
was positioned directly above the object, combining both coaxial and ring lighting conditions without
the use of any polarized filters. Digital reconstructions of each trace were performed between 100×
(Field of View (FOV) = 1516 µm) and 200x (FOV = 3032 µm) magnification, using either the low or
medium range lens. Three-dimensional reconstructions were produced using the HIROX’s mosaic
tiling function, specifying a minimum of 30 photos per tile. This process takes approximately 13 min to
complete per mark [37]. Collection of 3D landmark data was performed directly within the HIROX’s
system software, employing the use of multiple measurement systems to obtain x, y, and z coordinates
for the position of each landmark. This landmark data was then formatted and imported into R
(https://www.r-project.org/) for further statistical analysis.

Further technical details regarding the microscope and a detailed description of the reconstruction
protocol can be consulted in [37], as briefly and graphically described in Figure 2.
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2.2. Geometric Morphometrics

Geometric morphometric analysis was performed in the free statistical software R (https://www.r-
project.org/), employing the use of multiple packages that can be consulted in Appendix A Table A1.

For the Geometric Morphometric analysis of both linear traces, a 3D 13-landmark model was
used [21]. This model combines landmark types I and II to capture the internal as well as external
morphological features of each trace. Landmark data is fist processed using a full Procrustes
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fit and an orthogonal tangent projection [38], known as Generalized Procrustes Analysis (GPA),
normalizing data for further multivariate statistical analyses. GPA is a common practice in Geometric
Morphometrics for the standardization of form information through multiple superimposition
procedures, including translation, rotation, and scaling. Differences through this are revealed through
patterns of variation and covariation that can be assessed statistically [39,40]. Principal Components
Analyses (PCA) are performed on this data to reduce the complex combination of variables to fewer
dimensions [39]. Additional thin plate splines, grid warpings, and mean shapes were calculated to
visualize morphological variation across the Principal Component (PC) scores [39]. Degree of variance
is then assessed using pairwise Multiple Variance Analyses (MANOVA). Depending on the inter-group
homogeneity within each sample, MANOVA calculations were adjusted either using the Wilks or
Hotelling–Lawley formula for inhomogeneous and homogeneous samples, respectively.

Samples were also processed using a Canonical Variance Analysis (CVA). CVA consists in the
transformation of the raw PCA data, whereby pooled within-group dispersion are manipulated in a
scaling process, thus standardizing within-group variance, and finally rotating the axes to be redrawn
as a CVA graph [40]. Distances were then calculated between the groups with permutated p-values from
the pooled within-group covariance matrices, calculating the degree of separation between samples in
the form of Procrustes and Mahalanobis distances with their associated p-values of significance.

To ensure the efficiency of the learning process, PC scores were bootstrapped 1000× and extracted
for the construction of Deep Learning Feed Forward Neural Network models.

2.3. Deep Learning

Deep Learning applications were programmed in Python (https://www.python.org/), using a
number of different packages that can be consulted in Appendix A Table A2. Algorithms conceptualized
for supervised training and classification of samples consisted in the development of Feed Forward
Neural Networks (FFNN). Neural Networks are modeled and coded to replicate brain patterns
that are able to process highly complex and large sets of data [41], consisting of multiple nodes or
perceptrons, which are connected by weighted axons or edges. These networks are designed to
recognize patterns in order to interpret data, utilizing components of mathematics, calculus, linear
algebra, and statistics to train and perform different tasks [42,43]. Likewise, this can be performed in a
supervised, semisupervized, or unsupervised manner.

The FFNN designed for this study was constructed in TensorFlow 2.0 using the Keras API [41].
All Deep Learning implications were therefore run using TensorFlow as a backend engine on a portable
laptop’s CPU (Intel® CoreTM i5 6300HQ), executed in a Conda (https://www.anaconda.com) virtual
environment. The network was trained using the PC scores as dependencies, employing NumPy
to convert PC scores into 64-bit floating point matrices. The associated class labels were indexed as
separate 64-bit floating point vectors. PC scores are frequently used in Machine and Deep Learning as
a method for projecting high-dimensional data into a new feature space that is useful for the training
of AI models. Here we used the top 10 PC scores, representing 93% of the sample’s variance, using
these PC scores to train models to classify unknown individuals.

A combination of neurons in a mixture of hidden layers are then used to map out the relationships
between the dependency inputs (x) and the label outputs (y) [42,43]. A generalized mathematical
representation of a single neuron can thus be represented as [42]:

y(x) = f




n∑

i=1

wixi


 (1)

where w are the weights connecting each neuron and f() represents an activation function that varies
according to the position within the network [42]. Considering the case at hand consists in a binary
classification problem, the label values were converted into a string of 1s and 0s indicating whether
the taphonomic trace is anthropic (1) or not (0). In order to ensure that the model therefore only
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produces an output between 1 and 0, a sigmoid activation function is used for the final layer, described
mathematically as [42]:

f (x) =
1

1 + e−x (2)

While all hidden layers were activated using the Rectified Linear Unit (ReLU) function [42]:

f (x) = max(0, x) (3)

During the learning process, the training of the model searches for the optimal combination of
weights that can efficiently map out the y(x) relationship. Neural Networks are stochastic; therefore,
weight initialization is performed at random [41–44]. The tuning of these weights was performed
using back propagation and gradient descent via a stochastic optimization algorithm [42,43,45–48] and
a binary cross entropy loss function [42,43].

For the purpose of configuring the neural network and finding the right hyperparameters during
optimization, a series of trial runs were performed. These alternated between different combinations
of hyperparameters, searching for the best results without overfitting. These trials employed typical
practices of Deep Learning techniques [44], including changing the number of hidden layers, number
of neurons per layer, batch size, epoch size, kernel constraints, weight regularization, the presence,
position, or threshold of dropout layers as well as different optimization algorithms and learning rates.
A summary of the hyperparameters tested can be consulted in Table 1.

Table 1. List of hyperparameters and settings tested during optimization of final Feed Forward Neural
Networks (FFNN) model architecture and configurations.

Hyperparameter Tested Settings References

Number of Layers Between 1 and 7 [41,42,44]
Node Density * Between 3 and 20 [41,42,44]
Activation Function * ReLU, Leaky ReLU, Tanh [49–52]
Kernel Initializer None, Uniform [51,53]
Dropout ** None, Present with a threshold of 0.5 between 0.5 and 0.9 [54]
Weight Regularizer None, l2 with a threshold between 0.01 and 0.00001 [53]
Weight Constraint UnitNorm, MaxNorm, MinMaxNorm [54]
Training Epochs Between 150 and 2000 [41,42,44]
Batch Size 4, 8, 16, 32, 64, 128, 256 [41,42,44]
Optimizer Stochastic Gradient Descent, RMSProp, AdaGrad, Adam [45–48]

Learning Rate Between 0.1 and 0.00001
Decay Between 0.9 and 0.0001
Momentum Between 0.99 and 0.1

* With exception of the final layer of the network which always consisted of 1 neuron with a sigmoid activation
function. ** Positioning of dropout layers within the model’s architecture was also tested.

Models were trained and evaluated using training, validation, and test splits. This is common
practice in both Machine and Deep Learning [41,44,55]. The train-test split consisted of a 70:30% split
ratio, respectively. During training, the training sample was further split using 30% for validation.
FFNN were then trained on training and validation data, optimizing weights to improve the accuracy
and reduce the loss. Learning curves were plotted to evaluate the increase/decrease of accuracy and
loss over each iteration epoch. The metric used to evaluate the learning process while the model was
being fit was set to ‘accuracy’. These learning curves could then be used to diagnose model behavior,
thus evaluating whether the model was under- or overfitting on the training and validation data [44].

Final evaluation of the model was performed using the test set. The model was used to predict
this ‘unknown’ data, recording both the accuracy and the loss obtained when predicting the missing
label values from this data. The final metrics employed and evaluated using the test set consisted of
sensitivity, specificity, and kappa values obtained via confusion matrices. The kappa (κ) statistic adjusts
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accuracy by considering the possibility of a correct prediction by change alone [55]. The resulting value
is presented between−1 and 1, with a κ> 0.8 considered as a powerful predictive model. Sensitivity and
specificity tests combine the frequencies and ratios of Type I and Type II statistical errors in proportion
with the rest of the confusion matrix [56]. Values between 0 (poor) and 1 (high performing) indicate
the predictive power of the model [55–57]. Further examination of the relationship between sensitivity
and specificity in models was performed through the plotting of Receiver Operating Characteristic
(ROC) curves and calculation of Area Under Curve (AUC) values [55,56]. ROC curves and AUC results
are interpreted through the amount of space represented underneath the curve: the larger the area
(AUC ≈ 1), the more accurate the model is when making predictions [55].

Considering the stochastic nature of FFNNs, evaluation and training was performed 30 times,
taking averages of each numeric result to provide the final results. Results across all 30 iterations
are provided as Tables S1 and S2. Confidence intervals were then calculated using the 2nd Standard
Deviation (±2SD), thus representing approximately 95% of the deviation from the mean.

The final Python code used for this study is available in the form of a Jupyter Notebook online at
https://github.com/LACourtenay/Deep-Neural-Network-for-Cut-Mark-Classification.

3. Results

3.1. Geometric Morphometrics

PCA was able to produce up to 32 PC scores, with the first 10 representing up to 93% of the total
variance (Figure 3). The first two components of this analysis represent a cumulative variance of 52%
of the sample, displaying a high degree of overlapping among trampling samples and anthropogenic
cut marks. Regardless, trampling marks can be seen to represent a much greater degree of variability,
with a much larger proportion of the sample displaying a trend toward a wider and more superficial
morphology. Cut marks occupy a much smaller percentage of the overall feature space, leaning much
closer to the end of PC1 that is represented by a finer groove. Additionally, trampling marks are also
seen to vary greatly across the second principal component, which is represented by variations in
groove trajectory. Contrarily, cut marks display a restricted distribution. Analysis of thin plate splines
across PC3 displays a much clearer tendency for cut marks to lean toward deeper marks (Figure 4A),
with trampling marks occupying primarily a percentage of feature space that is represented by very
superficial traces.

Appl. Sci. 2020, 10, 150 7 of 16 

1 (high performing) indicate the predictive power of the model [55–57]. Further examination of the 
relationship between sensitivity and specificity in models was performed through the plotting of 
Receiver Operating Characteristic (ROC) curves and calculation of Area Under Curve (AUC) values 
[55,56]. ROC curves and AUC results are interpreted through the amount of space represented 
underneath the curve: the larger the area (AUC ≈ 1), the more accurate the model is when making 
predictions [55]. 

Considering the stochastic nature of FFNNs, evaluation and training was performed 30 times, 
taking averages of each numeric result to provide the final results. Results across all 30 iterations are 
provided as Tables S1 and S2. Confidence intervals were then calculated using the 2nd Standard 
Deviation (±2SD), thus representing approximately 95% of the deviation from the mean. 

The final Python code used for this study is available in the form of a Jupyter Notebook online 
at https://github.com/LACourtenay/Deep-Neural-Network-for-Cut-Mark-Classification. 

3. Results 

3.1. Geometric Morphometrics 

PCA was able to produce up to 32 PC scores, with the first 10 representing up to 93% of the total 
variance (Figure 3). The first two components of this analysis represent a cumulative variance of 52% 
of the sample, displaying a high degree of overlapping among trampling samples and anthropogenic 
cut marks. Regardless, trampling marks can be seen to represent a much greater degree of variability, 
with a much larger proportion of the sample displaying a trend toward a wider and more superficial 
morphology. Cut marks occupy a much smaller percentage of the overall feature space, leaning much 
closer to the end of PC1 that is represented by a finer groove. Additionally, trampling marks are also 
seen to vary greatly across the second principal component, which is represented by variations in 
groove trajectory. Contrarily, cut marks display a restricted distribution. Analysis of thin plate splines 
across PC3 displays a much clearer tendency for cut marks to lean toward deeper marks (Figure 4A), 
with trampling marks occupying primarily a percentage of feature space that is represented by very 
superficial traces. 

Exploring these variations through numerical results highlight significant differences between 
samples, with MANOVA of p = 0.001 between both groups. Mahalanobis (D = 3.4403, p < 0.0001) and 
Procrustes (D = 0.0297, p = 0.0001) distance calculations also concur, with a clear separation between 
groups in CVA graphs (Figure 4B), represented by a total of 100% across the single axis of this figure. 

 
Figure 3. Principal Components Analysis comparing Cut and Trampling Mark morphologies. 
Extreme shape changes can be observed at the extremity of each PC score. 

Figure 3. Principal Components Analysis comparing Cut and Trampling Mark morphologies. Extreme
shape changes can be observed at the extremity of each PC score.



Appl. Sci. 2020, 10, 150 8 of 16
Appl. Sci. 2020, 10, 150 8 of 16 

 

Figure 4. Principal components and Canonical Variance Analysis comparing Cut and Trampling 
Mark morphologies. (A) Distribution of samples across Principal Component 3 with extreme shape 
changes graphically presented at the extremity of each side of the axis. (B) Distribution of samples in 
Canonical Variance Analyses. 

3.2. Deep Learning 

Initial trials prior to hyperparameter optimization and tuning began by achieving a model 
accuracy of approximately 70%, while overfitting proved to be a considerable issue with most model 
training and validation sets, even at this low degree of accuracy. After hyperparameter optimization, 
the final model obtained between 97.63% and 100% accuracy differentiating between trampling and 
cut marks (Figure 5, Table 2), presenting variation due to the stochastic nature of the model during 
weight initialization. The final model employed the use of 6 layers, 5 standard neural layers, and 1 
dropout layer (Figures 5A and S1). The inclusion of a larger density layer after the input (number of 
neurons = 20) produced a significant boost in accuracy, yet in order to prevent this additional layer 
from producing an over generalization of the data, a dropout layer with a constraint threshold of 0.5 
was included directly afterwards (Figures 5A and S1). A number of different positions for the dropout 
layer were tried and tested, yet the best results were obtained positioning said dropout in-between 
layers 3 and 5. An additional “UnitNorm” weight constraint was used to reduce overfitting, while 
the best training performance was obtained using the Adam optimization algorithm (learning rate 
(α) = 0.001, decay (β1) = 0.9). No additional regularization or kernel initialization techniques were 
found necessary for the final model. 

The final training process used 900 epochs and a microbatch size of 64, obtaining an average 
accuracy of 99.55 ± 1.32% across training, testing, and validation samples (Figure 5B, Table 2 & S1). 
Loss on all accounts highlights the FFNN to be a powerful classifier with high confidence when 
assigning class labels to new individuals (Figure 5C). In training the average loss was recorded at 
0.05, while 0.02 was recorded for validation and 0.01 for testing (Table 2, Table S1). 

Further model evaluation through confusion matrices obtained on model testing was able to 
confirm the FFNN to be a highly efficient classification model, differentiating between cut and 
trampling marks with κ values of 1 ± 0.008 (Table 3, Table S2). Likewise, both sensitivity and 
specificity values averaged at 1 with the lowest specificity value being recorded at 0.995 and all 
sensitivity values obtaining 1 as well (Figure 6, Table 3, Table S2). ROC graphs almost always display 
a perfect right hand angle rather than a curve (Figure 6), with AUC values averaging at 1 ± 1.2 x 10-4. 

Finally, FFNN training time averaged at 10.87 s while taking as little as ~17 milliseconds when 
making predictions. 

Figure 4. Principal components and Canonical Variance Analysis comparing Cut and Trampling Mark
morphologies. (A) Distribution of samples across Principal Component 3 with extreme shape changes
graphically presented at the extremity of each side of the axis. (B) Distribution of samples in Canonical
Variance Analyses.

Exploring these variations through numerical results highlight significant differences between
samples, with MANOVA of p = 0.001 between both groups. Mahalanobis (D = 3.4403, p < 0.0001) and
Procrustes (D = 0.0297, p = 0.0001) distance calculations also concur, with a clear separation between
groups in CVA graphs (Figure 4B), represented by a total of 100% across the single axis of this figure.

3.2. Deep Learning

Initial trials prior to hyperparameter optimization and tuning began by achieving a model accuracy
of approximately 70%, while overfitting proved to be a considerable issue with most model training
and validation sets, even at this low degree of accuracy. After hyperparameter optimization, the final
model obtained between 97.63% and 100% accuracy differentiating between trampling and cut marks
(Figure 5, Table 2), presenting variation due to the stochastic nature of the model during weight
initialization. The final model employed the use of 6 layers, 5 standard neural layers, and 1 dropout
layer (Figure 5A and Figure S1). The inclusion of a larger density layer after the input (number of
neurons = 20) produced a significant boost in accuracy, yet in order to prevent this additional layer
from producing an over generalization of the data, a dropout layer with a constraint threshold of
0.5 was included directly afterwards (Figure 5A and Figure S1). A number of different positions for
the dropout layer were tried and tested, yet the best results were obtained positioning said dropout
in-between layers 3 and 5. An additional “UnitNorm” weight constraint was used to reduce overfitting,
while the best training performance was obtained using the Adam optimization algorithm (learning
rate (α) = 0.001, decay (β1) = 0.9). No additional regularization or kernel initialization techniques were
found necessary for the final model.

Table 2. Performance accuracy and loss of training, validation, and testing of Neural Network after 30
iterations. All accuracy values are presented in percentages.

Training Validation Testing

Accuracy Max 100.00 100.00 100.00
Mean 99.56 99.50 99.59

Upper CI 100.00 100.00 100.00
Lower CI 98.97 98.74 98.95

Min 98.43 97.63 98.00
Loss Max 0.13 0.09 0.02

Mean 0.05 0.02 0.01
Upper CI 0.08 0.05 0.01
Lower CI 0.02 0.00 0.00

Min 0.00 0.00 0.00
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Figure 5. Feed Forward Neural Network Architecture and Learning Curve. (A) Visualization of
the Neural Network Architecture including input and output shape for each layer, n◦ of adjustable
parameters, and the type of layer. A graphical representation of this has been provided as Supplementary
Figure S1. (B) Accuracy learning curve for validation and training over epochs. (C) Loss learning curve
for validation and training over epochs.

The final training process used 900 epochs and a microbatch size of 64, obtaining an average
accuracy of 99.55 ± 1.32% across training, testing, and validation samples (Figure 5B, Table 2 & Table S1).
Loss on all accounts highlights the FFNN to be a powerful classifier with high confidence when
assigning class labels to new individuals (Figure 5C). In training the average loss was recorded at 0.05,
while 0.02 was recorded for validation and 0.01 for testing (Table 2, Table S1).

Further model evaluation through confusion matrices obtained on model testing was able to
confirm the FFNN to be a highly efficient classification model, differentiating between cut and trampling
marks with κ values of 1 ± 0.008 (Table 3, Table S2). Likewise, both sensitivity and specificity values
averaged at 1 with the lowest specificity value being recorded at 0.995 and all sensitivity values
obtaining 1 as well (Figure 6, Table 3, Table S2). ROC graphs almost always display a perfect right
hand angle rather than a curve (Figure 6), with AUC values averaging at 1 ± 1.2 x 10-4.

Table 3. Average Neural Network performance evaluation on test sets.

Mean 2 SD

Sensitivity 1.000 0.000
Specificity 0.999 0.004

Kappa 0.997 0.008
AUC 1.000 0.000
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Figure 6. ROC curves with AUC values for Neural Network performance. (A) Worst recorded
performance of the Neural Network model, obtaining an AUC of 0.9999. (B) best recorded performance
of the Neural Network model, obtaining an AUC of 1. (C) Detail of dotted-square in (A), showing the
slight perfection affecting this model’s achievement of a perfect right-angle “curve”.

Finally, FFNN training time averaged at 10.87 s while taking as little as ~17 milliseconds when
making predictions.

4. Discussion and Conclusions

BSM analysis remains to be a very important component of taphonomic studies, whereby
their identification and in-depth analysis can reveal multiple components regarding early hominin
populations [11–15], their development [6,7,23], and their associated paleoecologies [14,24,28].
Nevertheless, issues imposed by equifinality have led to complications in their identification and
interpretation [1–5], requiring more objective and empirical methods that can be used for BSM
classification and characterization [21–27,30,58].

In recent years, debates regarding the protocol used to identify cut marks have ranged from
simple observational criteria [58] to developments with a more complex multivariate protocol [36]
and advanced microscopic studies [59]. With the integration of ML to the processing of qualitative
data, analysts have been able to improve the processing of archaeological data sets to a considerable
degree [29]; nevertheless, the subjective nature upon which this data is obtained makes some of
these advances debatable [32]. One alternative has been proposed utilizing DL convolutional neural
network architectures for image processing and classification [30], presenting promising results for
automated BSM identification. Here, we additionally present the combined usage of advanced digital
microscopy, Geometric Morphometrics, and artificially intelligent computational algorithms for cut



Appl. Sci. 2020, 10, 150 11 of 16

mark identification and characterization. On both accounts, ML and DL have effectively proven to
outperform human performance [29,30,32], presenting a more objective and precise means of studying
microscopic traces.

The present results are able to develop data observed by multiple authors [12,36,37,58],
yet employing new empirical means of quantifying these conclusions. Geometric morphometric
characterization of trampling and cut marks concur that the most significant features of cut marks are
their depth and straight trajectory, while trampling marks are more variable presenting much more
superficial morphologies alongside other irregularities [37]. Furthermore, the ability of high-resolution
3D digital microscopy to overcome limitations imposed by the superficial nature of some traces [37]
can also be considered a significant improvement from previous efforts [21,22]. While equifinality can
still be observed to a certain degree, considering the high degree of overlap in most of these samples,
it is important to point out the high dimensionality of PCA results derived from morphological data,
as seen in how MANOVA testing is still able to identify significant differences between samples.
Moreover, FFNN efficiently differentiates experimental samples with high levels of confidence on all
accounts, considering their ability to extract complex patterns from difficult data [60].

The present study additionally complements previous efforts to implement ML algorithms
in Geometric Morphometric analyses, expanding the available toolbox for morphological
studies [26,61–66]. Courtenay et al. [26]’s original attempts to implement neural network architectures
for tooth mark classification performed poorly, attributed by the authors to the model’s superficial
nature. The complexity of the model here supports this observation. These results thus confirm model
configuration and tuning to be essential for efficient classification, requiring extensive experimentation
to find the optimal model. This would also explain the mixed results obtained by similarly superficial
models in applications for systematic biology [61–66].

The field of AI can be seen to have exponentially grown since its conceptualization, providing
algorithmic computational means of processing complex data sets. Many of these algorithms have
presented significant advances for other disciplines, including medical research [67], pharmaceutics [68],
business studies [69], engineering [70], and any other fields that require the advanced processing of
large and complex data sets [60]. In prehistoric archaeology, ML and DL have arrived relatively late,
yet present promising results. Nevertheless, problems of true experimental analogy are needed before
these approaches can be applied on a broader scale. Here, Naibor Soit quartzite is used, considering this
raw material’s importance in many Pleistocene sites of the Olduvai Gorge; however, if this approach
were to be applied to other sites in Europe, Asia, or the Americas, then the experimental protocol and
reference sample should be adjusted accordingly. Moreover, analysts should be aware of the possible
overlapping traces that may increase the effects of taphonomic equifinality over time, such as fluvial
abrasion, chemical alterations, and general loss of cortical surfaces [71,72], to name a few.

In other practical cases, the drawbacks of DL can be presented by limited sample sizes as well as
the cost of training. This is especially apparent in archaeology and palaeoanthropology considering
the conservation and preservation of the fossil record present considerable limitations. Nevertheless,
Geometric Morphometric data has still proven to be a powerful type of input data for training, proving
relatively fast to learn patterns from >1 min. Furthermore, considering the nature of the landmark data
involved and its consequent transformation through GPA and PCA dimensionality reduction methods,
this type of input data is less prone to issues presented by sample size as opposed to studies concerning,
for example, Computer Vision and image processing-based techniques [54,73–76], the latter requiring
large amounts of parameters (usually in the millions), which are hard to learn from small datasets [76].

Needless to say, as with the case of any innovative methodological introduction in archaeological
and paleontological research, a large-scale use of these techniques is usually slow and requires large
experimental programs to truly fine tune these results and examine their limitations.
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DL and ML provide a significant advance for classification problems and predictive modeling [55],
almost regardless of the type of data being analyzed. Advances in data science are presenting new
means of automating data collection and processing, presenting a new empirical basis that can be
used to confirm or reject cases of controversial taphonomic interpretations [1,4,5]. Neural Networks
are highly versatile computational algorithms and can be adapted to most data sets [41,60]. Their
success, however, is highly dependent on the tuning of their configuration and the developments
available when considering the options feature engineering and hyperparameter optimization may
provide [44,54,60,75,76]. Here, we have tested the potential of Deep Learning on the processing of
morphological data to provide a hybrid approach that efficiently overcomes one of the taphonomy’s
biggest questions. The present work thus demonstrates an example of how advanced microscopy and
developed artificially intelligent algorithms may provide a promising future for archaeological and
paleontological science.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/1/150/s1:
Figure S1: Visualization of the Neural Network Architecture. Bias neurons are represented in green, hidden
neurons in blue and the dropout layer in red., Table S1: Accuracy and Loss Results from 30 prediction iterations
on training, validation and test data, and Table S2: Results from 30 prediction iterations on test data
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Appendix A

For the purpose of this study, a mixture of R (https://www.r-project.org/) (Table A1) and Python
(https://www.python.org/) (Table A2) were used for data science applications.

Table A1. Table presenting the R libraries used for geometric morphometric applications.

Library Used For: Link

Geomorph
Generalized Procrustes Analysis
Principal Components Analysis

Thin Plate Splines

https://cran.r-project.org/web/packages/
geomorph/geomorph.pdf

Shapes Canonical Variate Analysis https://cran.r-project.org/web/packages/
shapes/shapes.pdf

RVAideMemoire Multivariate Variance Analysis https://cran.r-project.org/web/packages/
RVAideMemoire/RVAideMemoire.pdf
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Table A2. Table presenting the Python libraries used for Deep Learning applications.

Library Used for: Link

TensorFlow 2.0.
Keras API

Neural Network Construction
Hyperparameter Optimization

https://www.tensorflow.org/
https://keras.io/

Numpy Numerical applications and operations
Slicing, indexing and transformation of data https://www.numpy.org/

Pandas Loading data https://pandas.pydata.org/

Matplotlib Plotting learning curves and ROC results https://matplotlib.org/

Scikit-Learn Model evaluation https://scikit-learn.org/

For handling of Python and Deep Learning applications, the open source Anaconda (https://www.
anaconda.com/) software was used to manage libraries and internal environments for Deep Learning.
For debugging of Python code Jupyter Notebook (https://jupyter.org/) was used. For debugging of R
code, R-Studio was used (https://www.rstudio.com/).
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Avances en la ciencia de datos para clasificar las marcas de dientes
del tipo depresión de carnívoros

Comprender la competencia por los recursos es una cuestión clave para el estudio de la evolución humana.
Desde la presencia de los primeros grupos de homininos, los carnívoros han desempeñado un papel fun-
damental en el ecosistema. Por ello, el conocimiento de la presión trófica existente entre homininos y
carnívoros puede proporcionar una importante fuente de información para entender cómo los humanos so-
brevivieron e interactuaron con su entorno y, por lo tanto, evolucionaron. Aunque ya existen numerosas téc-
nicas para detectar la actividad de los carnívoros en yacimientos arqueológicos y paleontológicos, muchas
de estas técnicas presentan importantes limitaciones. El presente estudio se basa en una serie de técnicas
avanzadas de la ciencia de datos para afrontar estos problemas, definiendo métodos para la identificación
de los diferentes agentes implicados en el consumo y manipulación de las presas. Para ello, se presenta
una amplia muestra de 620 marcas de dientes tipo depresión, generada por carnívoros, incluyendo muestras
de osos, hienas, jaguares, leopardos, leones, lobos, zorros, y licaones. A partir del uso de modelos 3D,
técnicas de morfometría geométrica, la modelización de datos mediante estadística robusta, y algoritmos de
inteligencia artificial, el presente estudio obtiene una precisión de entre el 88% y el 98%, con unas métricas
de evaluación equilibradas en todos los conjuntos de datos. Además, cuando estas técnicas avanzadas de
la ciencia de datos se combinan con otras fuentes de datos tafonómicos, los resultados demuestran su valía
para futuros estudios tafónomicos, sobre todo para la identificación de la acción de carnívoros a partir de
las depresiones de dientes que generan.
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Developments in data science 
solutions for carnivore tooth pit 
classification
Lloyd A. Courtenay 1*, Darío Herranz‑Rodrigo2,3, Diego González‑Aguilera1 & 
José Yravedra 2,3

Competition for resources is a key question in the study of our early human evolution. From the first 
hominin groups, carnivores have played a fundamental role in the ecosystem. From this perspective, 
understanding the trophic pressure between hominins and carnivores can provide valuable insights 
into the context in which humans survived, interacted with their surroundings, and consequently 
evolved. While numerous techniques already exist for the detection of carnivore activity in 
archaeological and palaeontological sites, many of these techniques present important limitations. 
The present study builds on a number of advanced data science techniques to confront these issues, 
defining methods for the identification of the precise agents involved in carcass consumption and 
manipulation. For the purpose of this study, a large sample of 620 carnivore tooth pits is presented, 
including samples from bears, hyenas, jaguars, leopards, lions, wolves, foxes and African wild dogs. 
Using 3D modelling, geometric morphometrics, robust data modelling, and artificial intelligence 
algorithms, the present study obtains between 88 and 98% accuracy, with balanced overall evaluation 
metrics across all datasets. From this perspective, and when combined with other sources of 
taphonomic evidence, these results show that advanced data science techniques can be considered 
a valuable addition to the taphonomist’s toolkit for the identification of precise carnivore agents via 
tooth pit morphology.

Throughout history, humans and carnivores have been documented to have complex  relationships1–4. From a 
more traditional perspective, competition for resources is the most  documented4. Nevertheless, conflict between 
these taxonomic orders is also well known, especially in the context of dynamic shifts in who plays the role of 
predator and who plays the role of  prey1,5–9. Among the many sites of global importance, interactions of these 
types have been documented across most continents, including notable cases from the Olduvai Gorge (Tanza-
nia)4,8, Thomas Quarry (Morocco)9, Schöningen (Germany)7,10, Zhoukoudian (China)11, and the classic sites of 
Makapansgat (South Africa)1. Moreover, in more recent periods collaboration between these two orders have 
also been  recorded2.

From multiple perspectives, carnivore–hominin interactions have thus been a topic of great interest, in both 
the study of how humans survived and adapted, as well as the contexts in which this occurred. These types 
of analyses, however, have not been free of debate. In certain case studies, issues of equifinality have led ana-
lysts to propose problematic interpretations. The famous long bone fragment from Divje Babe (Slovenia) was 
originally interpreted as a 43 Ka Middle Palaeolithic flute. Nevertheless, subsequent analyses have discredited 
these finds and found the perforations to be product of carnivore bite  damage12,13. Likewise, the sites of Sima 
de los Huesos (Atapuerca, Spain) and the Dinaledi Rock Chamber (South Africa), have been interpreted as the 
deliberate anthropic accumulations of human  remains14,15. Needless to say, not all researchers agree with these 
 conclusions5,16.

The discipline of taphonomy has frequently been at the forefront of these  debates4. Taphonomy employs 
numerous tools for the detection, documentation, and consequent interpretation of carnivore and human activi-
ties involved in the formation of a  site2,3. Nevertheless, diagnostic tools are frequently subjective, thus requiring 
a search for more empirical and accurate techniques in the identification and interpretation of Bone Surface 
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Modifications (BSM)17. This is especially relevant when considering techniques available for discerning of the 
precise carnivore agencies involved in site formation processes.

Geometric Morphometrics (GM) are a popular multivariate statistical tool for the analysis of morphological 
variance typically in biological  systems18,19. Recent years, however, have seen an increase in GM applications 
outside of anatomy. Applications in taphonomy have yielded impressive results when using GM as a tool for 
morphological analyses and visualisation. From this perspective, multiple attempts have been made to use GM 
as a diagnostic tool in carnivore  taphonomy8,20–25. With the inclusion of Machine Learning (ML) algorithms, data 
presented by Courtenay et al.20 present a promising advance for the integration of Artificial Intelligence (AI) and 
advanced Data Science techniques with GM. Nevertheless, considering the relatively small sample size, these 
results can also be considered optimistic. Likewise, in a recent study the original landmark model  proposed24 was 
found to present important margins of error product of landmark quality. These observations infer that analyst 
experience condition the quality of  results21.

Under this premise, the present study uses an updated version of the landmark model using semi-landmarks21, 
and a much larger sample size to expand on the current referential samples available for taphonomic analyses. 
These efforts aim to provide high quality data that can aid in the understanding of modern carnivore taxa that 
are frequently found across Eurasia, Africa and the Americas. Samples include three types of felids (Panthera 
leo, Panthera onca & Panthera pardus), three types of canids (Canis lupus, Vulpes vulpes & Lycaon pictus), the 
spotted hyena (Crocuta crocuta), and the brown bear (Ursus arctos), that have been frequently subject of study 
in Pleistocene  research1,26–36. This larger sample allows us to conclude that > 90% separation of carnivore taxa is 
still possible, with possibilities for even higher classification rates in the future.

Results
Geometric morphometrics. All samples are described by notable allometric patterns (Squared Residuals 
= 0.006, F = 4.1, Effect Size = 2.7, p = 0.005, Bayes Factor Bound (BFB) = 13.88 against H0 ), indicating tooth pit 
size to be an important conditioning factor in morphological variation. This is equally reflected when simply 
considering Centroid Size values for each of the carnivores (Fig. 1, Table S1), with suggestive to strongly indica-
tive differences detected across most species ( χ2 = [5.08, 85.03], p < 0.007 , BFB > 10.59). Exceptions to this 
include C. crocuta, L. pictus and P. onca when these taxa are compared together ( χ2 = [0.14, 1.21], p > 0.27, BFB 
< 1.04), as well as P. pardus when compared with C. lupus ( χ2 = 0.42, p = 0.51, BFB = 1.07 against Ha).

When considering multivariate morphological tendencies in form, general patterns reveal significant dif-
ferences throughout comparisons, with each of the taxonomic families being clearly separable (p ≈ 0.001, BFB 
≈ 53.25). While the statistical separation was weakest when comparing Canidae and Ursidae (p = 0.003, BFB 
= 21.11), as well as Ursidae and Hyaenidae (p = 0.006, BFB = 11.98), in both these cases differences remain of 
notable interest ( p < 0.05 ). From a similar perspective, species within the families Canidae and Felidae appear 
easily separable (p = 0.001, BFB = 53.25). When describing patterns of variation on a species-specific level, most 
carnivores present statistical differences (p ≈ 0.001, BFB ≈ 53.26, Table S2 & S3), nevertheless, exceptions to 
this can still be found. From this perspective, some degrees of equifinality are therefore still likely to exist when 

Figure 1.  Variations in Form and Shape across tooth pits made by different taxa. (a) Variations in mean shape-
size relationships (top-view used for general morphology and front-view for depth). (b) Boxplot diagrams 
representing centroid size distributions for each species (See Supplementary Table 1). (c) Mean landmark 
configurations for carnivore tooth pits using Delaunay 2.5D Triangulation algorithms for mesh visualisations. 
AfWD = Lycaon pictus. Figures created using the ggplot2 and scikit-learn Python and R libraries.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10209  | https://doi.org/10.1038/s41598-021-89518-4

www.nature.com/scientificreports/

comparing L. pictus, C. crocuta and P. onca (p > 0.8, BFB > 2.06 against Ha ), as well as when comparing C. crocuta 
and P. onca (p = 0.17, BFB = 1.22).

Exploring morphological variation through visualisations of mean landmark configurations reveal that the 
greatest differences appear when considering landmark displacements across the z-axis (Fig. 1). From this it can 
be seen that C. lupus tend to leave the most superficial traces, while P. leo leave some of the deepest and largest 
tooth pits of the entire sample. Interestingly, V. vulpes and L. pictus appear to leave very deep pits in relation to 
their size. Likewise, when considering variations across a horizontal plane (x and y axes), slight variations can 
be seen with some of the canids such as C. lupus and V. vulpes leaving more circular marks, while felids appear 
to leave more elongated pits (Fig. 1).

When analysing these central morphological tendencies in accordance with taxonomic groupings, very weak 
phylogenetic signals are detected, indicating other confounding variables, such as biomechanics, exert a much 
stronger influence on tooth pit formation than cuspid morphology (Effect Size = − 0.99, p = 0.81, BFB = 2.16 
against Ha . Fig. S1).

Unsupervised computational learning. Dimensionality reduction of datasets through Principal Com-
ponents Analysis (PCA) produced high dimensional, non-homogeneously distributed and noisy datasets on 
all accounts. General analyses showed PCA in form space to produce a total of 90 Principal Component (PC) 
Scores, of which the first 6 PC Scores represent over 95% of the total sample variance. Analyses of optimal num-
ber of components observed 5 PC scores to be the most representative. Nevertheless high residuals were still 
noted across a number of these dimensions.

When preparing datasets for further processing, Isolation Forests (IF) proved effective for the elimination 
of anomalies across all 5 dimensions (Fig. 2). Nevertheless, a relatively high anomalous score threshold was 
needed for most anomaly detection tasks, considering how species like P. leo and C. lupus presented very high 
variability in comparison with other samples. This natural variability consequently produced a global increase 
of variance across all dimensions, frequently resulting in the adversarial effect of IFs over-classifying entire spe-
cies as anomalies due to their abnormally large morphological variations. Under this premise, anomaly score 
distributions were allowed a slight positive tail, with thresholds in the present study defined between 0.625 and 
0.700. Using these thresholds, IFs were seen to remove between 3 and 10 pits for each dataset, with the most 
extreme removal of 10 pits occurring in the European Taxa dataset. Nevertheless, upon inspection of anomaly 
score distributions (Top right panel; Fig. 2), it can be argued that IFs were still able to preserve the majority of 
natural variability, only eliminating the most extreme of cases. In light of this, IFs were only seen to remove at 
most 2.3% of the original sample.

Once datasets had been cleaned, data augmentation proved successful on all accounts with the generation of 
highly realistic synthetic data by both algorithms. Of the two algorithms tried and tested, Markov Chain Monte 
Carlo (MCMC, Fig. 3) algorithms appeared the fastest at generating new data with very high equivalency scores 
(Table 1). Experimentation found MCMCs to produce the most realistic data when sampling from robustly 
defined gaussian target distributions ( |d| = 0.004, p = 1.2e−57, BFB = 2.3e+54), as opposed to the skewed-normal 
( |d| = 0.06, p = 1.3e−05, BFB = 2515). This was especially evident when considering the skewed-normal had the 

Figure 2.  Anomaly detection results using Isolation Forests. Top Left Panel: Density of information within 
Principal Components Analysis. Top Right Panel: Distribution of Anomaly Scores; Vertical red line marks the 
acceptable threshold. Bottom Left Panel: Scatter plot heat map indicating the anomaly scores for each point. 
Bottom Right Panel: Final classifications of points as anomalies (True) or not (False). Figure created using the 
ggplot2 R library.
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tendency to exaggerate non-Gaussian elements, which may not be a true reflection of the population distribution 
(original skew = 0.18, augmented skew = 0.97).

From the perspective of generative neural networks, of the three Generative Adversarial Networks (GANs), 
Wasserstein Gradient-Penalty loss GANs (WGAN-GP) produced the best results ( |d| = 0.012, p = 2.4e−13, BFB 
= 5.3e+10). Nevertheless, while WGAN-GP proved successful on all datasets, the training of GAN models 
proved to be computationally expensive, with iterations taking ≈25,000 times longer than MCMC ( χ2 = 5.6, p 
= 0.018, BFB = 5.10).

For final data augmentation tasks both MCMC and WGAN-GP were used, with the best performing algo-
rithm being chosen to augment each dataset prior to supervised training (Tables 1, S4-7).

Supervised computational learning. Both supervised models provided high accuracy in the classifica-
tion of carnivore taxa (Tables 2 & S8-12, Figs. 4, 5 and 6), in most cases producing >90% accuracy (Area Under 
Curve (AUC) > 0.94, F-Measure > 0.93, κ > 0.86). The only exception to this can be found in the case of the 
Pleistocene European Taxa dataset, which only produced >85% accuracy (AUC ≈ 0.90, F ≈ 0.89, κ ≈ 0.85). Upon 
analysing the overall performance of each dataset, the greatest results are obtained when differentiating between 
taxonomic families (Accuracy > 96%, AUC > 0.97, F > 0.97, κ > 0.92), as well as the specific species within these 
families (Table S11 & S12). This can be seen in the cases of the Canidae (Acc. > 97%, AUC > 0.98, F > 0.98, κ > 
0.95), and the Felidae datasets (Acc. > 96%, AUC > 0.97, F > 0.97, κ > 0.95).

When pooling many labels, especially with taxa from different families, overall classification rates tend to 
drop. Nevertheless, while classification rates may fall below 90% accuracy, miss-classification rates and the fre-
quency of Type I and Type II errors do not rise above 0.2 when considering overall performance (Fig. 4), resulting 
in very high AUC, Kappa and F scores as well. Under this premise, both Support Vector Machines (SVM) and 
Neural SVMs (NSVM) can be considered highly efficient classifiers of carnivore tooth marks, yet with greater 
performance when working with a smaller number of labels. Needless to say, when considering loss values, with 
the exception of the Pleistocene European dataset, both SVM and NSVM appear to be confident when making 
new predicitons (Fig. 6).

By considering model performance on individual samples (Tables S8-S12), differentiating between taxa 
appears to depend on the species being used for comparison. Under this premise, V. vulpes (Tables S8) and P. leo 
(Tables S9) appear to be the easiest of the Pleistocene European and African carnivores to identify (SVM Acc. = 
{95%, 95%} , NSVM Acc. = {94%, 96%} , respectively). On the scale of taxonomic families, L. pictus can be con-
sidered the easiest canid to identify (SVM Acc. = 98%, NSVM Acc. = 100%), while P. leo remains the felid with 
the highest classification rates (SVM Acc. = 96%, NSVM Acc. = 99%). Each of these observations are especially 

Figure 3.  Example of trace figures, target density and histograms of the augmented and original datasets as 
generated using Markov Chain Monte Carlo algorithms. Figure created using the ggplot2 R library.
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interesting considering these species have been associated with either the largest or the smallest centroid sizes 
respectively (Fig. 1, Table S1).

While P. pardus presents the lowest recorded individual classification rates across all datasets (NSVM Acc. = 
0.79, Table S8), this does not have a significant impact on overall model performance (Fig. 4). Even when con-
sidering the poorer classification rates presented by P. pardus, all algorithms achieve evaluation metrics above 

Table 1.  Examples of absolute difference ( |d| ), p-Values and Bayes Factor Bounds (BFB) obtained when 
assessing the robust equivalency of synthetic data and real data using Gradient Penalty Wasserstein Loss 
Generative Adversarial Networks (WGAN-GP) and Markov Chain Monte Carlo (MCMC) Algorithms for 
data augmentation of the African Taxa dataset. Time values reported represent the number of miliseconds per 
epoch or iteration of the algorithm.

Algorithm Animal Measure PC1 PC2 PC3 PC4 PC5 Time (Ms)

WGAN-GP

C. crocuta

|d| 0.007 0.011 0.016 0.115 0.037

p 4.9e−13 2.7e−09 6.8e−16 1.3e−08 8.9e−22 1311

BFB 2.6e+10 6.9e+06 1.5e+13 1.6e+06 8.5e+18

P. pardus

|d| 0.092 0.010 0.022 0.007 0.016

p 3.4e−18 3.6e−37 2.9e−32 1.5e−36 1.4e−36 1194

BFB 2.7e+15 1.2e+34 1.7e+29 3.0e+33 3.2e+33

L. pictus

|d| 0.034 0.009 0.046 0.001 0.004

p 1.2e−08 1.0e−12 1.4e−19 4.8e−33 4.0e−16 1296

BFB 1.7e+06 1.3e+10 6.1e+16 1.0e+30 2.6e+13

P. leo

|d| 0.097 0.005 0.008 0.043 0.003

p 6.3e−03 5.5e−10 5.8e−10 1.5e−08 1.6e−15 915

BFB 11.52 3.1e+07 3.0e+07 1.4e+06 6.7e+12

MCMC

C. crocuta

|d| 0.055 0.010 0.010 0.004 0.003

p 5.8e−13 4.3e−40 8.5e−73 6.0e−63 3.6e−62 0.048

BFB 2.3e+10 9.4e+36 2.6e+69 4.3e+59 7.2e+58

P. pardus

|d| 0.004 0.007 0.004 0.003 0.007

p 6.9e−29 4.8e−70 1.5e−104 2.8e−75 1.0e−85 0.048

BFB 8.2e+25 4.8e+66 1.0e+101 7.7e+71 1.9e+82

L . pictus

|d| 0.007 0.010 0.003 0.004 0.003

p 9.6e−12 3.3e−42 4.5e−83 1.7e−67 2.5e−57 0.047

BFB 1.5e+09 1.2e+39 4.3e+79 1.4e+64 1.1e+54

P. leo

|d| 0.023 0.010 0.002 0.004 0.001

p 1.1e−05 1.0e−32 3.4e−54 8.6e−39 1.5e−50 0.048

BFB 2.9e+03 5.0e+29 8.8e+50 4.9+e35 2.1e+47

Table 2.  Overall classification results obtained for all samples using Support Vector Machines (SVM) and 
Neural Support Vector Machines (NSVM). Reported values include; Accuracy (Acc.), Sensitivity (Sens.), 
Specificity (Spec.), Precision (Prec.), Recall (Rec.), Area Under Curve (AUC), F-Measure (F), Kappa ( κ ) and 
Loss. All evaluation metrics (with the exception of loss) are recorded as values between 0 and 1, with 1 being 
the highest obtainable value. Values reported over 0.8 are considered an acceptable threshold for powerful 
classification models. Loss considers values closer to 0 as the most confident models.

Sample Algorithm Acc. Sens. Spec. Prec. Rec. AUC F κ Loss

Pleistocene European Taxa
SVM 0.89 0.81 0.96 1.00 0.81 0.87 0.90 0.85 0.16

NSVM 0.88 0.91 0.95 0.88 0.91 0.94 0.88 0.85 0.26

African Taxa
SVM 0.93 0.89 0.96 1.00 0.89 0.94 0.94 0.86 0.09

NSVM 0.93 0.93 0.98 0.93 0.93 0.97 0.93 0.91 0.10

Taxonomic family
SVM 0.96 0.93 0.98 1.00 0.93 0.97 0.97 0.92 0.05

NSVM 0.97 0.96 0.99 0.96 0.96 0.98 0.97 0.96 0.06

Canidae
SVM 0.97 0.97 0.98 1.00 0.97 0.98 0.98 0.95 0.05

NSVM 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.97 0.01

Felidae
SVM 0.96 0.94 0.98 1.00 0.94 0.97 0.97 0.95 0.04

NSVM 0.97 0.97 0.99 0.97 0.97 0.98 0.97 0.96 0.01



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10209  | https://doi.org/10.1038/s41598-021-89518-4

www.nature.com/scientificreports/

the acceptable 0.8 threshold. Likewise, a 97% to 99% accuracy has still been obtained when comparing P. pardus 
with other felids (Fig. 5), and a 92% to 93% accuracy when compared with other African species.

Although an element of equifinality is still present, as detected through inconclusive statistical differences in 
some tooth pit morphologies, both SVM and NSVM are still able to accurately differentiate between L. pictus 
and C. crocuta with over 90% success. Nevertheless, algorithm confidence when performing classifications on 
these species drops, as seen through a large increase in loss values (Table S9). This results in the overall rise in 
loss and decrease in other performance metrics when these two species are included in a dataset (Table 2, Fig. 6).

Observations comparing SVM with NSVM prove both algorithms to be equally powerful when discerning 
between carnivore taxa. While NSVM may be seen to have a slight advantage over SVM in some evaluation 
metrics (Fig. 4), SVM loss rates are generally lower (Fig. 6). Similiarly, NSVM can be seen in some datasets to 
have very low loss rates for some groups (e.g. Table S10, Canidae loss = 0.001), while especially high loss rates 
for others (e.g. Table S10, Hyaenidae loss = 0.19). In sum, both SVM and NSVM are valid options for carnivore 
differentiation, while choice of one or the other must be dependent on the specific case study at hand as well as 
the analyst’s needs.

When observing general performance in model loss (Fig. 6), algorithms produce powerful predictions, with 
very confident decision boundaries in many cases (Fig. 5).

Finally, when training algorithms without the use of data augmentation (Sup. Appendix 7), it can be seen 
how the average accuracy slightly drops, with SVM performing 4% worse on non-augmented datasets and 
NSVM performing 6% worse. While this change is minute, the greatest differences between augmented and 
non-augmented datasets can be found across loss values, with both SVM and NSVM loosing an average of 
10% confidence with each prediction made. As would be expected, algorithms also appear to perform worse on 
unbalanced datasets, with the Taxonomic Family dataset presenting F-Measure values 0.25 lower, especially in 
the case of NSVM (Sup. Appendix 7).

Discussion
In recent years, GM have been applied to a wide array of different applications outside of biology. Among these 
applications, these tools have shown promising results when applied to the study of  BSMs8,20–25,37. While subse-
quent analyses have identified some issues with these techniques for carnivore BSM  applications21, the present 
study has shown that high quality results are still realistically obtainable (Accuracy > 90 %, AUC > 0.8, κ > 0.8, 
Fig. 6). Likewise, the results reported here are supported by considerably larger sample  sizes20,22,24.

Here we have shown how a number of different data science tools can be employed for GM analyses. From one 
perspective, unsupervised computational learning approaches were able to produce highly realistic augmented 

Figure 4.  Radar plots representing supervised classification results for each of the datasets. Evaluation 
metrics were calculated on test sets when using both Support Vector Machines (SVM) and Neural Support 
Vector Machines (NSVM). The blue line marking 0.8 across all graphs represents a standard threshold for the 
evaluation of good performance for each of the metrics used. Figure created using the amCharts4 JavaScript 
library.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10209  | https://doi.org/10.1038/s41598-021-89518-4

www.nature.com/scientificreports/

datasets, using both neural network based  approaches38–41, as well as Bayesian Inference  Engines42–45. While the 
use of Graphics Processing Units (GPUs) are likely to speed up GAN performance, MCMC can still be consid-
ered the fastest approach to modelling these datasets with exceptional synthetic-data quality. From a Bayesian 
perspective, considering how the use of Gaussian distributions is usually seen as a “crude approximation” to the 
problem solving questions at  hand45, most of the times this also allows models greater generalization capabili-
ties. In addition, this theoretically reduces chance of overfitting supervised models on one particular skewed 
distribution that may not be a true reflection of the population distribution (Sup. Appendix 4). Moreover, to 
ensure the present study does not fall into the trap of over-generalising the Gaussian nature of the population, 
the precise definitions of our target probability distributions were robustly  defined41,46,47.

Figure 5.  Example of tooth pit classifications using Neural Support Vector Machines (NSVM). The select tooth 
pits were chosen randomly and excluded from the training data so as to avoid bias. NSVMs were then trained 
on the remaining data and used to classify the present tooth marks, taking note of the algorithms confidence 
when making predictions. 3D visualisations were created using MeshLab.
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From the perspective of supervised learning, the present study reveals the capabilities of computational learn-
ing algorithms for the differentiation of carnivore taxa based on the morphology of carnivore tooth pits. Firstly, 
prior augmentation of each dataset provided both algorithms with enough information to learn from, obtaining 
above average accuracy when used to classify the original samples. While the present datasets are unable to reach 
the 100% accuracy reported originally using  SVMs20, this is likely due to the use of bootstrapping in the original 
 study41. Here, more robust data augmentation techniques produced completely new synthetic data from which 
to learn from, providing a more general overview of the target domain. Under this premise, while 100% accu-
racy was not obtained, our reported >90% can be considered much more reliable. From a similar perspective, 
while the changes to the original landmark model have shown a reduction in inter-analyst error by 164µm21, the 
inclusion of semi-landmark patches has been observed to substantially increase the dimensionality of these GM 
datasets. In light of this, the new datasets are likely to be harder to model from. Needless to say, considering the 
increased precision of the landmark model, alongside more robust augmentation techniques, it can be argued 
that the present results are not only more reliable, but also worth the slight drop in accuracy.

Despite the increase in landmark model complexity, both Radial kernel functions and Laplacian fourier 
mappings were able to provide SVMs with an appropriate transformed feature space to learn from. Neverthe-
less, both SVM and NSVM have their advantages and disadvantages. NSVM, for example, can be considered a 
complex model, with the additional requirement of fine tuning a neural network architecture for feature map-
pings. NSVM thus presents a large number of parameters and hyperparametrs that have to be adjusted by both 
the analyst and the model itself. SVM, on the other hand, has the distinct advantage of being easier to tune and 
train, yet, when using Bayesian algorithms for SVM hyperparameter optimization, training time can increase 
significantly (Table S13), while NSVMs still perform better on some datasets.

From the perspective of combining supervised and unsupervised learning approaches, the present study can 
be considered another example of how powerful data augmentation can be for improving classification model 
performance. Data augmentation is a very popular technique in computer vision, nevertheless, not all of these 
algorithms are readily applicable to numeric data of this  type48. Here augmentation has been shown to not only 
improve the accuracy of most models (Tables 2, S8-S12 & S23-S28, Supplementary Appendix 7), but also improve 
the generalization capabilities of both SVMs and  NSVMs41,49. This is mostly seen through the decrease in loss 
values across taxa (Tables S8-S12 & S23-S28), thus supporting observations made by Courtenay and González-
Aguilera41 when applied to other GM datasets of palaeoanthropological and primatological origin. Similarly, 
the impact dataset imbalance has on algorithm performance is clearly evident, as seen through great drops in 

Figure 6.  Top Panel: Radar plot summarising and comparing performance of the best computational learning 
models for each of the datasets. Bottom panel: Line graph representing the mean reported loss for both Support 
Vector Machines (SVM) and Neural Support Vector Machines (NSVM) on each of the datasets. Figure created 
using the amCharts4 JavaScript library.
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precision, recall and F values (Supplementary Appendix 6, Tables S8-S12 & S23-S28). In light of each of these 
observations, it can be seen how data augmentation can be a valuable tool for archaeological and palaeontological 
 applications41, especially in cases where obtaining large sample sizes is difficult.

In the general context of new technologies applied to the field of taphonomy, it can be noted how the inclusion 
of some carnivore species within the samples have created notable statistical noise. This can be seen through drops 
in performance when increasing the number of target labels used in classification (e.g. the Pleistocene European 
Taxa dataset). From this perspective, it is important to point out that highly sophisticated techniques are not the 
all-encompassing solution that many analysts are looking for. When considering how carnivores can usually 
be described by the  type2,3,30,  ratio27,34,36,50 and size of bite  damage51–53, alongside the  location54–56 and extent of 
 damage57, it can be seen how modelling carnivore behaviour should also take into account a wide range of dif-
ferent factors beyond BSMs. While neither one of these techniques can exclusively answer these questions, when 
combined, taphonomists currently have a very powerful toolkit at their disposal for discerning precise carnivore 
intervention. From a similar perspective, techniques in remote sensing, photogrammetry and microscopy also 
provide distinct advantages for the collection of different types of data, supported in many cases by the use of 
high resolution metric  data37,58–60. Likewise, the use of computational learning has also proven a useful diagnostic 
tool for the analysis of fracture plane  patterns61, obtaining high classification rates when applied to archaeological 
samples as  well62. From another perspective, computer vision applications can also be considered an interesting 
development in the field of  taphonomy63. In sum, and wherever possible, rather than commingling multiple spe-
cies together into one large group, prior processes of elimination based on general taphonomic evidence should 
be performed in order to remove the least likely animals to have intervened. Algorithms will then be much easier 
to train, obtaining state of the art classification rates.

“Occam’s Razor” suggests that a more complex model is not always a better one. As seen here, without the 
use of large kernel machines, SVMs are equally likely to produce high level results. Likewise, while GANs are 
powerful non-parametric generative models, Bayesian inference is still a valuable tool for distribution model-
ling, as seen through better and faster performance in some of the reported cases. From this perspective, data 
science applications and AI can be considered both a very promising field of research, as well as a complex and 
challenging “pandoras box” of algorithms which analysts must take into consideration before planning a study. 
Nevertheless, and in combination with multiple other sources of data, advanced data science techniques can be 
considered a significant contribution to a taphonomist’s arsenal.

Material and methods
Sample. A total of 620 carnivore tooth pits were included in the present study. These samples included tooth 
marks produced by;

• Brown Bears (Ursus arctos, Ursidae, 69 pits)
• Spotted Hyenas (Crocuta crocuta, Hyaenidae, 86 pits)
• Wolves (Canis lupus, Canidae, 80 pits)
• African Wild Dogs (Lycaon pictus, Canidae, 89 pits)
• Foxes (Vulpes vulpes, Canidae, 53 pits)
• Jaguars (Panthera onca, Felidae, 77 pits)
• Leopards (Panthera pardus, Felidae, 84 pits)
• Lions (Panthera leo, Felidae, 82 pits)

Samples originated from a number of different sources, including animals kept in parks as well as wild animals. 
Samples obtained from wild animals included those produced by foxes as well as wolves. The only sample contain-
ing both wild and captive animals was the wolf sample. Preliminary data from these tooth pits revealed animals 
in captivity to have highly equivalent tooth pit morphologies to wild animals ( |d| = 0.125, p = 9.0e−14, BFB = 
1.4e+11), while tooth scores revealed otherwise ( |d| = 0.152, p = 0.99, BFB = 3.7e+01 against Ha ). Under this 
premise, and so as to avoid the influence of confounding variables that go beyond the scope of the present study, 
tooth scores were excluded from the present samples and are under current investigation (data in preperation). 
Nevertheless, other research have shown tooth pits to be more informative than tooth scores when considering 
 morphology20,23.

When working with tooth mark morphologies, preference is usually given to marks found on long bone 
diaphyses. This is preferred considering how diaphyses are denser than epiphyses, and are thus more likely to 
survive during carnivore feeding. Nevertheless, when working with captive or semi-captive animals, controlling 
the bones that carnivores are fed is not always possible. This is due to the rules and regulations established by the 
institution where these animals are  kept64. While this was not an issue for the majority of the animals used within 
the present study, in the case of P. pardus, animals were only fed ribs in articulation with other axial elements. 
In light of this, a careful evaluation on the effects this may have on the analogy of our samples was performed 
(Supplementary Appendix 2). These reflections concluded that in order to maintain a plausible analogy with 
tooth marks produced by other animals on diaphyses, tooth marks could only be used if found on the shaft of 
bovine ribs closest to the tuburcle, coinciding with the posterior and posterior-lateral portions of the rib, and 
farthest away from the costochondral  junction65. This area of the rib corresponds to label RI3 described by Lam 
et al.65. Moreover, with a reported average cortical thickness of 2.3mm (± 0.13 mm) and Bone Mineral Density 
of 4490kg/m3[213.5, 334.6]66, bovine ribs are frequently employed in most bone simulation experiments used in 
agricultural as well as general surgical sciences. Finally, considering the grease, muscle and fat content of typi-
cal domestic bovine  individuals67, alongside the general size of P. pardus teeth, it was concluded that the use of 
rib elements for this sample was the closest possible analogy to the tooth marks collected from other animals.
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Carnivores were fed a number of different sized animals, also dependent in most cases on the regulations 
established by the institution where these animals are  kept64. Nevertheless, recent research has found statistical 
similarities between tooth marks found on different  animals25, with the greatest differences occurring between 
large and small sized animals. Needless to say, considering the typical size of prey some of these carnivores 
typically consume, this factor was not considered of notable importance for the present  study25 (Supplementary 
Appendix 1).

For the purpose of comparisons, animals were split into 5 groups according to ecosystem as well as taxonomic 
family. From an ecological perspective, two datasets were defined; (1) the Pleistocene European Taxa dataset con-
taining U. arctos, V. vulpes, C. crocuta, P. pardus, P. leo and C. lupus; and (2) the African Taxa dataset containing 
C. crocuta, P. pardus, L. pictus and P. leo. When considering taxonomic groupings, animals were separated into 
3 groups, including; (1) the Canidae dataset, including V. vulpes, L. pictus and C. lupus; (2) the Felidae dataset, 
including P. pardus, P. onca and P. leo; and (3) a general Taxonomic Family dataset, including all Canidae in the 
same group, all Felidae in the same group, followed by Hyaenidae and Ursidae. Some complementary details on 
each of these carnivores have been included in Supplementary Appendix 1.

All experiments involving carnivores were performed in accordance with the relevant ethical guidelines as 
set forth by park keepers and general park regulations. No animals were sacrificed specifically for the purpose 
of these experiments. Likewise, carnivores were not manipulated or handled at any point during the collection 
of samples. Collection of chewed bones were performed directly by park staff and assisted by one of the authors 
(JY). The present study followed the guidelines set forth by ARRIVE (https:// arriv eguid elines. org/) wherever 
necessary. No licenses or permits were required in order to perform these experiments. Finally, in the case of 
animals in parks, bone samples were provided by the park according to normal feeding protocols. More details 
can be consulted in the Extended Samples section of the supplementary files.

3D modelling and landmark digitisation. Digital reconstructions of tooth marks were performed using 
Structured Light Surface Scanning (SLSS)68. The equipment used in the present study was the DAVID SLS-2 
Structured Light Surface Scanner located in the C.A.I. Archaeometry and Archaeological Analysis lab of the 
Complutense University of Madrid (Spain). This equipment consists of a DAVID USB CMOS Monochrome 
2-Megapixel camera and ACER K11 LED projector. Both the camera and the projector were connected to a 
portable ASUS X550VX personal laptop (8 GB RAM,  Intel®  CoreTM i5 6300HQ CPU (2.3 GHz), NVIDIA GTX 
950 GPU) via USB and HDMI respectively. The DAVID’s Laser Scanner Professional Edition software is stored 
in a USB Flash Drive. Equipment were calibrated using a 15 mm markerboard, using additional macro lenses 
attached to both the projector and the camera in order to obtain optimal resolution at this scale. Once calibrated 
the DAVID SLS-2 produces a point cloud density of up to 1.2 million points which can be exported for further 
processing via external software.

The landmark configuration used for this study consists of a total of 30 landmarks (LMs)21; 5 fixed Type II 
 landmarks18 and a 5× 5 patch of  semilandmarks69 (Fig. S2). Of the 5 fixed landmarks, LM1 and LM2 mark the 
maximal length (l) of each pit. For the correct orientation of the pit, LM1 can be considered to be the point along 
the maximum length furthest away from the perpendicular axis marking the maximum width (w). LM2 would 
therefore be the point closest to said perpendicular axis (see variables d1 and d2 in Fig. S2 for clarification). LM3 
and LM4 mark the extremities of the perpendicular axis (w) with LM3 being the left-most extremity and LM4 
being the right-most extremity. LM5 is the deepest point of the pit. The semilandmark patch is then positioned 
over the entirety of the pit, so as to capture the internal morphology of the mark.

Landmark collection was performed using the free Landmark Editor software (v.3.0.0.6.) by a single expe-
rienced analyst. Inter-analyst experiments prior to landmark collection revealed the landmark model to have 
a robustly defined human-induced margin of error of 0.14 ± 0.09 mm (Median ± Square Root of the Biweight 
Midvariance). Detailed explanations as well as an instructional video on how to place both landmarks and sem-
ilandmarks can be consulted in the Supplementary Appendix and main text of Courtenay et al.21.

Geometric morphometrics. Once collected, landmarks were formatted as morphologika files and 
imported into the R free software environment (v.3.5.3, https:// www.r- proje ct. org/). Initial processing of these 
files consisted in the orthogonal tangent projection into a new normalized feature space. This process, frequently 
referred to as Generalized Procrustes Analysis (GPA), is a valuable tool that allows for the direct comparison 
of landmark  configurations18,19,70. GPA utilises different superimposition procedures (translation, rotation and 
scaling) to quantify minute displacements of individual landmarks in  space71. This in turn facilitates the com-
parison of landmark configurations, as well as hypothesis testing, using multivariate statistical analyses. Never-
theless, considering observations made by Courtenay et al.20,21,25 revealed tooth mark size to be an important 
conditioning factor in their morphology, prior analyses in allometry were also  performed72. From this perspec-
tive, allometric analyses first considered the calculation of centroid sizes across all individuals; the square root of 
the sum of squared distances of all landmarks of an object from their  centroid18. These calculations were then fol-
lowed by multiple regressions to assess the significance of shape-size relationships. For regression, the logarithm 
of centroid sizes were used. In cases where shape-size relationships proved significant, final superimposition 
procedures were performed excluding the scaling step of GPA (form).

In addition to these analyses, preliminary tests were performed to check for the strength of phylogenetic 
 signals73. This was used as a means of testing whether groups of carnivores produced similar tooth pits to other 
members of the same taxonomic family. For details on the phylogenies used during these tests, consult Fig. S1 
and Supplementary Appendix 1.

For the visualisation of morphological trends and variations, Thin Plate Splines (TPS) and central morpho-
logical tendencies were  calculated19,71. From each of these mean landmark configurations, for ease of pattern 
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visualisation across so many landmarks, final calculations were performed using Delaunay 2.5D Triangulation 
 algorithms74 creating visual meshes of these configurations in Python (v.3.7.4, https:// www. python. org/).

Once normalised, landmark coordinates were processed using dimensionality reduction via Principal Com-
ponents Analyses (PCA). In order to identify the optimal number of Principal Component Scores (PC Scores) 
that best represented morphological variance, permutation tests were performed calculating the observed vari-
ance explained by each PC with the permuted variance over 50 randomized  iterations75. Multivariate Analysis 
of Variance (MANOVA) tests were then performed on these select PCs to assess the significance of multivariate 
morphological variance among samples.

Geometric Morphometric applications were programmed in the R programming language (Sup. Appendix 8).

Robust statistics. While GPA is known to normalize  data76, this does not always hold true. Under this 
premise, caution must be taken when performing statistical analyses on these datasets. Taking this into consid-
eration, prior to all hypothesis testing, normality tests were also performed. These included Shapiro tests and 
the inspection of Quantile–Quantile graphs. In cases where normality was detected, univariate hypothesis tests 
were performed using traditional parametric Analysis of Variance (ANOVA). For multivariate tests, such as 
MANOVA, calculations were derived using the Hotelling-Lawley test-statistic. When normality was rejected, 
robust alternatives to each of these tests were chosen. In the case of univariate testing, the Kruskal–Wallis non-
parametric rank test was prefered, while for MANOVA calculations, Wilk’s Lambda was used.

Finally, in light of some of the recommendations presented by The American Statistical Association (ASA), as 
debated in Volume 73, Issue Sup1 of The American Statistician77,78, the present study considers p-values of > 2σ 
from the mean to indicate only suggestive support for the alternative hypothesis ( Ha ). p > 0.005 , or where 
possible, 3σ was therefore used as a threshold to conclude that Ha is “significant”. In addition, Bayes Factor Bound 
(BFB) values (Eq. 1) have also been included alongside all corresponding p-Values79. Unless stated otherwise, 
BFBs are reported as the odds in favor of the alternative hypothesis (BFB:1). More details on BFB, Bayes Fac-
tors and the p > 3σ threshold have been included in Supplementary Appendix 3. General BFB calibrations in 
accordance with Benjamin and Berger’s Recommendation 0.379, as well as False Positive Risk values according 
to Colquhoun’s  proposals80, have also been included in Table S20 of Supplementary Appendix 3.

All statistical applications were programmed in the R programming language (Sup. Appendix 8).

Computational learning. Computational Learning employed in this study consisted of two main types 
of algorithm; Unsupervised and Supervised algorithms. The concept of “learning” in AI refers primarily to the 
creation of algorithms that are able to extract patterns from raw data (i.e. “learn”), based on their “experience” 
through the construction of mathematical  functions38,81. The basis of all AI learning activities include the com-
bination of multiple components, including; linear algebra, calculus, probability theory and statistics. From this, 
algorithms can create complex mathematical functions using many simpler concepts as building  blocks38. Here 
we use the term “Computational Learning” to refer to a very large group of sub-disciplines and sub-sub-disci-
plines within AI. Deep Learning and Machine Learning are terms frequently used (and often debated), however, 
many more branches and types of learning exist. Under this premise, and so as to avoid complication, the present 
study has chosen to summarise these algorithms using the term “Computational”.

Similar to the concepts of Deep and Machine Learning, many different types of supervision exist. The terms 
supervised and unsupervised refer to the way raw data is fed into the algorithm. In most literature, data will 
be referred to via the algebraic symbol x, whether this be a vector, scalar or matrix. The objective of algorithms 
are to find patterns among a group of x. In an unsupervised context, x is directly fed into the algorithm without 
further explanation. Algorithms are then forced to search for patterns that best explain the data. In the case of 
supervised contexts, x is associated with a label or target usually denominated as y. Here the algorithm will try 
and find the best means of mapping x to y. From a statistical perspective, this can be explained as p

(
y|x

)
 . In sum, 

unsupervised algorithms are typically used for clustering tasks, dimensionality reduction or anomaly detection, 
while supervised learning is typically associated with classification tasks or regression.

The workflow used in the present study begins with dimensionality reduction, as explained earlier with the 
use of PCA. While preliminary experiments were performed using non-linear dimensionality reduction algo-
rithms, such as t-distributed Stochastic Neighbor Embedding (t-SNE)82 and Uniform Manifold Approximation 
and Projection (UMAP)83, PCA was found to be the most consistent across all datasets, a point which should be 
developed in detailed further research. Once dimensionality reduction had been performed, and prior to any 
advanced computational modelling, datasets were cleaned using unsupervised Isolation Forests (IFs)84. Once 
anomalies had been removed, data augmentation was performed using two different unsupervised approaches; 
Generative Adversarial Networks (GANs)38–41 and Markov Chain Monte Carlo (MCMC)  sampling44. Data aug-
mentation was performed for two primary reasons; (1) the simulation of larger datasets to ensure supervised 
algorithms have enough information to train from, and (2) to balance datasets so each sample has the same size. 
Both MCMCs and GANs were trialed and tested using robust statistics to evaluate quality of augmented  data41. 
Once the best model had been determined, each of the datasets were augmented so they had a total sample size 
of n = 100 . In the case of the Taxonomic Family dataset, augmentation was performed until all samples had the 
same size as the largest sample.

Once augmented, samples were used for the training of supervised classification models. Two classifica-
tion models were tried and tested; Support Vector Machines (SVM)85 and Neural Support Vector Machines 
(NSVM)86,87. NSVMs are an extension of SVM using Neural Networks (NNs)38 as feature extractors, in 

(1)BFB =
1

−e p log(p)
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substituting the kernel functions typically used in SVMs. Hyperparameter optimization for both SVMs and 
NSVMs were performed using Bayesian Optimization Algorithms (BOAs)88.

Supervised computational applications were performed in both the R and Python programming languages 
(Sup. Appendix 8). For full details on both unsupervised and supervised computational algorithms, consult the 
Extended Methods section of the Supplementary Materials.

Evaluation of supervised learning algorithms took into account a wide array of different popular evaluation 
metrics in machine and deep learning. These included; Accuracy, Sensitivity, Specificity, Precision, Recall, Area 
Under the receiver operator characteristic Curve (AUC), the F-Measure (also known as the F1 Score), Cohen’s 
Kappa ( κ ) statistic, and model Loss. Each of these metrics, with the exception of loss, are calculated using confu-
sion matrices, measuring the ratio of correctly classified individuals (True Positive & True Negative) as well as 
miss-classified individuals (False Positive & False Negative). For more details see Supplementary Appendix 6.

Accuracy is simply reported as either a decimal [0, 1] or a percentage. Accuracy is a metric often misinter-
preted, as explained in Supplementary Appendix 6, and should always be considered in combination with other 
values, such as Sensitivity or Specificity. Both Sensitivity and Specificity are values reported as decimals [0, 1] , 
and are used to evaluate the proportion of correct classifications and miss-classifications. AUC values are derived 
from receiver operator characteristic curves, a method used to balance and graphically represent the rate of cor-
rectly and incorrectly classified individuals. The closest the curve gets to reaching the top left corner of the graph, 
the better the classifier, while diagonal lines in the graph represent a random classifier (poor model). In order 
to quantify the curvature of the graph, the area under the curve can be calculated (AUC), with AUC = 1 being 
a perfect classifier and AUC = 0.5 being a random classifier. The κ statistic is a measure of observer reliability, 
usually employed to test the agreement between two systems. When applied to confusion matrix evaluations, κ 
can be used to assess the probability that a model will produce an output ŷ that coincides with the real output y. 
κ values typically range between [0, 1] , with κ = 1 meaning perfect agreement, κ = 0 being random agreement, 
and κ = 0.8 typically used as a threshold to define a near-perfect or perfect algorithm.

While in the authors’ opinion, AUC, Sensitivity and Specificity values are the most reliable evaluation metrics 
for studies of this type (Supp. Appendix 6), for ease of comparison with other papers or authors who choose to 
use other metrics, we have also included Precision, Recall and F-Measure values. Precision and Recall values 
play a similar role to sensitivity and specificity, with recall being equivalent to sensitivity, and precision being the 
calculation of the number of correct positive predictions made. Precision and Recall, however, differ from their 
counterparts in being more robust to imbalance in datasets. F-Measures are a combined evaluation of these two 
measures. For more details consult Supplementary Appendix 6.

Loss metrics were reported using the Mean Squared Error (Eq. 2);

Loss values are interpreted considering values closest to 0 as an indicator of greater confidence when using 
the model to make new predictions.

Final evaluation metrics were reported when using algorithms to classify only the original samples, without 
augmented data. Augmented data was, therefore, solely used for training and validation. Finally, so as to assess 
the impact data augmentation has on supervised learning algorithms, algorithms were also trained on the raw 
data. This was performed using 70% of the raw data for training, while the remaining 30% was used as a test set.

Data availability
All the relevant data and code used for the present study have been made readily available online via the cor-
responding author’s GitHub page: https:// github. com/ LACou rtenay/ Carni vore_ Tooth_ Pit_ Class ifica tion. Any 
queries or issues regarding data or code should be directed to L.A. Courtenay (ladc1995@gmail.com).
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La competencia de los carnívoros para los recursos animales en el
yacimiento del Pleistoceno Temprano de Barranco León (1,46 Ma,

Orce, España)

Barranco León (Orce, Guadix Baza, España) es uno de los yacimientos con mayor evidencia de actividad
humana en el Pleistoceno Inferior del suroeste de Europa. En este yacimiento se han encontrado restos
humanos asociados a fauna y artefactos líticos, vinculados a la presencia de marcas de corte y percusión
antropogénicas en los restos osteológicos. Sin embargo, aunque este yacimiento es un claro ejemplo del
acceso de los primeros homíninos europeos a los cadáveres, las acumulaciones se han identificado como un
palimpsesto, en los que múltiples agentes, incluidos los carnívoros, interactuaron y desempeñaron un papel
en la modificación de los procesos de formación del yacimiento. Desde esta perspectiva, la interpretación y
estudio del yacimiento de Barranco León es de gran dificultad. Tradicionalmente, las interpretaciones han
presentado a Barranco León como una zona en la que tanto los homíninos, como la hiena gigante (Pachy-

crocuta brevirostris), competían por el acceso a los cadáveres dejados por félidos machairodontinos, como
el Homotehrium latidens. Sin embargo, como se presentará en este estudio, la complejidad y la presión
trófica de Barranco León es mucho mayor de lo que se había planteado en un principio. Este estudio pre-
senta un detallado análisis tafonómico de las actividades de los carnívoros en el nivel D1 del conjunto de
Barrano León. Mediante la modelización 3D, la morfometría geométrica, y el aprendizaje computacional,
proporcionamos nuevos conocimientos sobre las marcas de dientes tipo depresión observadas en los mate-
riales faunísticos. Aquí mostramos que mientras la Pachycrocuta y Homotherium fueron agentes activos en
la formación del yacimiento, otros carnívoros como Ursus etruscus, Xenocyon (Lycaon) lycaonoides, y, en
particular, Canis mosbachensis, son también agentes importantes a tener en cuenta a la hora de investigar
la región de Guadix Baza.
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a b s t r a c t

Barranco Le�on (Orce, Guadix Baza, Spain) is one of the sites with the oldest evidence of human activity in
south-western Europe. This site has yielded human remains in association with both fauna and lithic
artefacts, linked through the presence of anthropogenic cut and percussion marks. Nevertheless, while
this site is a clear example of early hominin access to carcasses, the accumulations have been identified
as a palimpsest, where multiple agents including carnivorans played a role in modifying and interacting
in site formation processes. From this perspective, the interpretation and study of the Barranco Le�on site
is of great difficulty. Traditionally, interpretations have presented Barranco Le�on as an area where
hominins as well as the giant hyena, Pachycrocuta brevirostris, competed for access to carcasses left by
machairodontine felids, such as the saber-toothed Homotherium latidens. Nevertheless, as will be pre-
sented in this study, the complexity and trophic pressure of Barranco Le�on is much more complicated
than originally hypothesized. This study presents a detailed taphonomic analysis of carnivoran activities
in the level D1 of the Barranco Le�on assemblage. 3D modelling, geometric morphometrics, and
computational learning are used to provide new insights into the tooth pits observed on faunal materials.
Here we show that Canis mosbachensis plays a pivotal role in the formation of the site, followed by
Pachycrocuta, Homotherium, Ursus etruscus, and Xenocyon (Lycaon) lycaonoides. From this perspective,
it can be seen that while Pachycrocuta and Homotherium were active agents in the formation of the site,
other carnivorans are also important agents to consider when investigating the Guadix Baza region.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The Lower Pleistocene of Europe is a key time period that has
provided insights into the activity and biology of some of the first
hominin populations outside of Africa. Throughout this moment in
human evolution, hominins and carnivorans have been

documented to have complex relationships, often competing for
many of the same resources (Binford, 1981; Brain, 1981;
Domínguez-Rodrigo et al., 2007; Rodríguez et al., 2012; Lozano
et al., 2016; Rodríguez-G�omez et al., 2016; inter alia). In light of
the importance of meat consumption in early human evolution,
this topic is especially interesting when considering the intensity of
this competition for some early European sites and the influence
this may have on population dynamics (P�eriquet et al., 2015), or the
basic survival of early Homo (Turner, 1992).

One of the most important sites that presents the earliest evi-
dence of this type of competition outside of Africa is the Eurasian
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site of Dmanisi (Tappen et al., 2007, 2022). While sites predating
1 Ma are scarce in Europe, iconic sites such as Pirro Nord (Cheheb
et al., 2019), Bois de Riquet (Bourguignon et al., 2016), le Vallonet
(Echassoux, 2004), and Sima del Elefante (Huguet et al., 2013), are
also fundamental in the study of this topic in early human evolu-
tion. Likewise, later Early Pleistocene sites such as Barranc de la
Boella (Pineda et al., 2015, 2017), and level TD6 from Gran Dolina
(Saladi�e et al., 2014), are also key case-studies presenting
carnivoran-hominin competition. Each of these cases present
interesting insights into carnivoran-hominin interactions, ranging
from examples of low (e.g. Dmanisi, Bois de Riquet & Barranc de la
Boella; ibid) to high (e.g. TD6; ibid) anthropogenic activity. Other
sites such as Le Vallonet and Sima del Elefante (ibid), on the other
hand, present bones with both carnivoran and anthropogenic cut
marks. In either case, both carnivorans and hominins clearly coin-
cided in these sites with the intent of obtaining nutritional re-
sources of some form.

Barranco Le�on (BL, 1.46 Ma, Orce, Guadix Baza, Spain) is another
example of an emblematic open-air site from this time period,
presenting a clear association between lithic and faunal remains,
while yielding one of the oldest hominin fossils in south-western
Europe (Toro-Moyano et al., 2013). BL is additionally charac-
terised by an intense exploitation of local flint and limestone raw
materials, attributed to the Oldowan techno-complex (Titton et al.,
2018, 2020, 2021). Technological analyses have also identified stone
raw material exploitation to be concentrated on the production of
small flakes in the case of flint, and pounding/percussive activities
in the case of limestone (Barsky et al., 2015a; Titton et al., 2018,
2021).

The faunal assemblage of BL presents a diverse range of species
in association with human activity, including anthropogenically
processed herbivorous large ungulates, such as hippopotamids,
equids and cervids, alongside smaller reptiles such as chelonians
(Espigares et al., 2019; Yravedra et al., 2022a). Nevertheless, while
BL is a site rich with fossil material of archaeological interest, the
nature of hominin intervention in this site is still ambiguous, due to
the large array of carnivoran activity documented. This palimpsest,
alongside other key localities such as Venta Micena (Palmqvist
et al., 2002; Luz�on et al., 2021), and Fuente Nueva 3 (Espigares
et al., 2013; Rodríguez-Gom�ez et al., 2016; Yravedra et al., 2021),
has revealed a great degree of trophic pressure and competition for
resources in the region of Guadix Baza. These observations have led
authors to construct models with carnivores, such as Pachycrocuta
brevirostris, as a protagonist in the modification of sites, feasting on
the remains of carrion left by other interveners, such as hominins
(Espigares et al., 2013), or machairodontine (saber-tooth) felids
(Palmqvist et al., 2007a,b, 2011; Rodríguez-Gom�ez et al., 2016).

Nevertheless, recent taphonomic analyses of the faunal assem-
blages in this area present contradictory views (Espigares et al.,
2019; Yravedra et al., 2021, 2022a), arguing that, at present, insuf-
ficient data is available to support these views. These authors argue
that the frequency and intensity of carnivoran bite damage is not
necessarily analogous with the activity of hyaenids, while the
location of cut marks on anatomical elements of higher nutritional
value is not an indication of secondary access. In contrast, the fre-
quency of these cut marks does not fit in with models where
hominins have primary access to prey (Domínguez-Rodrigo, 1997;
Domínguez-Rodrigo, 1999; Domínguez-Rodrigo and Barba, 2006;
Domínguez-Rodrigo et al., 2007). From this perspective, the inter-
pretation of BL is still open to debate, while more information is
needed in order to truly understand the competition among the
multiple agents present in this region.

This study has the objective of performing an in depth analysis
on the taphonomic evidence of carnivoran activity in the site of
Barranco Le�on, in particular the tooth pits found on bone. The

estimation of trophic pressure will play a fundamental role on the
interpretation of this site, as data of this nature can provide key
insights into the adaptability of early European hominins. Here we
support taphonomic finds with the use of 3D modelling, geometric
morphometrics, robust statistics, and computational learning in
order to present new insights into the bone surface modifications
observed on faunal materials. As a result, this study will demon-
strate the advantages of using new technological advances to
support the interpretation of archaeological and palaeontological
sites.

2. The site of Barranco Le�on

The Early Pleistocene site of Barranco Le�on (BL) is found in the
northeastern part of the Cenozoic Guadix-Baza Basin (Fig. 1). This
area, located in proximity with the town of Orce (Granada, Spain), is
rich with archaeological and palaeontological deposits, all of which
are crucial for the study of early human evolution. BL is an open air
site, consisting of 9 stratigraphic levels (Fig. 1; Anad�on et al., 2003;
Anad�on and Gab�as, 2009; Oms et al., 2011), of which levels D1 and
D2 are the most relevant in archaeological terms. The present study
focuses on the taphonomic analysis of the richest of these layers,
level D1 (BL-D1), dated at 1.46 ± 0.19 Ma using Electron Spin
Resonance (Toro-Moyano et al., 2013), and in accordance with
palaeomagnetic and biostratigraphic data situating this level in the
upper Matuyama chron (Oms et al., 2000).

The site of BL is located on the palaeoshoreline of the Guadix-
Baza lake. This particular locality has thus been characterised by
bordering marginal freshwaters, sourced from the adjacent high-
lands and mixed with surface and hydrothermal waters from the
main saline lake (Anad�on et al., 2015). Geologically, BL-D1 is char-
acterised by sandy gravels, product of a sudden event producing
high-energy currents (Oms et al., 2011). Palaeoenvironmental data
reveal the BL-D1 accumulation to have occurred in aMediterranean
woodland or shrubland environment, yet without an important
grassy component (Saarinen et al., 2021), while precipitation and
temperature levels would have been higher than in present (Blain
et al., 2011, 2016; S�anchez-Bandera et al., 2020; Martínez-Monz�on
et al., 2021).

The lithic assemblage of BL is mostly comprised of local flint and
micritic limestone tools, typical of the Oldowan technocomplex
(Turq et al., 1996; Gibert et al., 1998; Toro-Moyano et al., 2009, 2010,
2011, 2013; Barsky et al., 2010, 2015b; Titton et al., 2018, 2020, 2021,
inter alia), with some quartzite tools as well (Toro-Moyano et al.,
2011). These include cores, flakes, flake fragments, debris,
retouched pieces, angular fragments, hammers, unmodified cob-
bles, and subspheroids (Titton et al., 2020). Specialised use of raw
materials reveal flint to be preferable for the production of small
sharp implements, while limestone is found in the form of
percussive devices (Titton et al., 2018). The integrity of the
assemblage is highlighted by the presence of refitted artefacts
(Toro-Moyano et al., 2013; Titton et al., 2021), additionally high-
lighting in situ knapping processes.

Faunal remains consist mostly of equids, followed by cervids,
hippopotamids and bovids (Fig. 2, Supplementary Materials;
Espigares et al., 2019; Yravedra et al., 2022a). As for the carnivoran
species identified, the BL assemblage contains remains of Hyaeni-
dae such as Pachycrocuta brevirostris; Canidae including Xenocyon
(Lycaon) lycaonoides, Canis mosbachensis and Vulpes cf. alopecoides;
Ursidae including Ursus etruscus; Mustelidae including Meles meles
and Martellictis ardea (Ros-Montoya et al., 2021); and finally, the
felid cf. Homotherium sp. (Martínez-Navarro et al., 2010; Espigares
et al., 2019; Yravedra et al., 2022a). While not directly identified
in the BL assemblage, BL is also contemporaneous with other large
Felidae, including Megantereron cultridens/whitei, Panthera
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Fig. 1. Location of Barranco Le�on (Guadix-Baza Basin). A. General location of the Guadix-Baza Basin in the Iberian penisula, B: Regional location of Barranco Le�on in the area around
the town of Orce. C: Stratigraphy for Barranco Le�on.

Fig. 2. Taxonomic profiles of BL-D1 calculated by Yravedra et al. (2022a) and Espigares et al. (2019), according to Number of Identifiable Specimens (NISP) and Minimum Number of
Individuals (MNI) (See Supplementary Files 1 and 2).
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gombaszoegensis and Acinonyx pardinensis (Turner, 1992, 1995;
Turner and Ant�on, 1997; Ant�on, 2013).

Zooarchaeological analyses reveal the BL-D1 assemblage to be
mostly composed of adult individuals, with the exception of larger
animals (Size 5: 500e1000 kg; Bunn,1982), who are predominantly
represented by non-adult individuals (Supplementary File 2).
Skeletal profiles are fully represented, with a predominance of
appendicular and cranial elements (Supplementary File 3;
Espigares et al., 2019; Yravedra et al., 2022a). Taphonomic data
from these remains highlight an intense degree of fragmentation
and fractured bones. Cut and percussion marks appear on a wide
array of taxa, of all sizes, while carnivoran alterations are inter-
mixed alongside anthropogenic alterations.

Nevertheless, the interpretation of this data is debated by au-
thors, with Yravedra et al. (2022a) proposing carnivorans to have
had a more secondary access to faunal remains, as seen through
low tooth mark frequencies, as opposed to the primary access
proposed by Espigares et al. (2019).

3. Materials and methods

3.1. Sample

The osteological samples obtained from BL-D1 that have been
analysed here include 10,848 specimens, excavated between the
years 2016 and 2020. The present study thus complements prior
zooarchaeological and taphonomic research associated with the
levels BL-D1 and BL-D2 (Yravedra et al., 2022a). From this
perspective, here we develop a more detailed perspective on the
carnivorans who have interacted with the fossil accumulations of
BL-D1, and how they may have affected human activities. For the
purpose of this study, only bones presenting good cortical surface
preservation rates were included, reducing the original sample size
to 3559 specimens. Bones were considered to present good cortical
preservation if overlying taphonomic processes, such as abrasion or
weathering, hindered the ability to inspect cortical surfaces and
identify anthropogenic or carnivoran traces (Yravedra, 2005). These
specimens were then inspected for the presence of tooth marks.

Tooth marks can be typically categorised into 4 main groups,
including (Haynes, 1980, 1983; Binford, 1981; Brain, 1981;
Blumenschine, 1995); rounded circular depressions (pits), elon-
gated depressions or linear marks with a rounded base (scores),
circular holes (punctures), and the progressive deletion of bones
seen by damage to edges (furrowing). The present study has focused
the in-depth analysis of tooth marks to only consider tooth pits.
This criteria was chosen considering tooth scores to be problematic
when including captive carnivorans as a reference sample
(Courtenay et al., 2021b), while the use of tooth pits have in general
been found to produce higher quality results (ibid; Courtenay et al.,
2019, 2020a).

Once localised, only entire tooth pits found on the diaphyseal
portion of long bones were then separated for digital modelling.
This is preferred considering how diaphyses are denser than
epiphyses, and are thus more likely to survive both carnivoran
feeding as well as taphonomic processes. Carnivorans were fed a
number of different sized animals, dependent on the regulations
established by the institution where each animal is kept (where
applicable). Nevertheless, considering the typical size of prey some
of these carnivorans are known to consume, as well as additional
data regarding the statistical equivalency of marks on different
sized animals, these variables were also considered to be unim-
portant when selecting tooth pits (Courtenay et al., 2020a, 2021b).
Once modified, bones were collected and cleaned in boiling water
for 12 h, without the use of additional chemicals.

Fossil materials were cleanedwith great care, employing the use

of a brush and water solvent, while considering recommendations
described by Valtierra et al. (2020).

For the analysis of tooth pit morphologies, the selected fossil
tooth marks were then analysed alongside modern comparative
materials, consisting of 613 tooth pits originally described and
studied by Courtenay et al. (2021a). These include tooth pits by
brown bears (Ursus arctos, Ursidae, n¼ 69), spotted hyenas (Crocuta
crocuta, Hyaenidae, n ¼ 86), foxes (Vulpes vulpes, Canidae, n ¼ 53),
wolves (Canis lupus, Canidae, n ¼ 80), African wild dogs (Lycaon
pictus, Canidae, n ¼ 89), leopards (Panthera pardus, Felidae, n ¼ 77),
jaguars (Panthera onca, Felidae, n ¼ 77), and lions (Panthera leo,
Felidae, n ¼ 82). Samples include tooth pits produced by a mixture
of both wild and captive carnivorans. Nevertheless, considering
observations made by Courtenay et al. (2020a), captivity is not
likely to be a major conditioning factor in tooth pit morphology.

Alongside these modern samples, fossil tooth mark samples
attributed to Pachycrocuta brevirostris, originating from the Early
Pleistocene site of Venta Micena 3 (VM3), were also used for
comparative purposes (Yravedra et al., 2022b).

For more details on the modern comparative samples, consult
Courtenay et al. (2021a) and their corresponding supplementary
materials. For more details on the comparative fossil samples,
consult Yravedra et al. (2022a, 2022b).

3.2. Methods

The objectives of the present study are to characterise the
interaction of carnivorans with the osteological accumulations
found at BL-D1. For this purpose, the present study will be limited
only to the description and analysis of carnivoran alterations,
including bite damage, fracture planes, as well as digestive alter-
ations. For details on other non-carnivoran related taphonomic
processes, consult Yravedra et al. (2022a).

3.2.1. Taphonomic analyses of Carnivoran activity
To characterise the activity of carnivorans in BL-D1, osteological

remains were classified and grouped into bones that are taxo-
nomically determinable, or bones that are indeterminable. Wher-
ever possible, indeterminable bones were grouped according to
size, following the categories described by Bunn (1982) and Bunn
and Pickering (2010). From this perspective, and following the
same criteria described by Yravedra et al. (2021, 2022a), faunawere
divided into six groups; Microfauna (Size 0), including species
weighing less than 25 kg; Very Small Size (1), including macro-
vertebrates species weighing 25e50 kg; Small Size (2), including
species weighing 50e125 kg; Intermediate Size (3), including
species weighing 125e500 kg, with an additional division between
3a (125e250 kg) and 3 b (250e500 kg); Large Size (4), including
species weighing 500e1000 kg; and Very Large Size (5) for species
weighing >1000 kg. Carnivorans were classified according to three
separate size classes: small carnivorans (e.g., foxes, lynxes, and
mustelids); intermediate carnivorans (e.g., Canis mosbachensis);
and large carnivorans (e.g., Homotherium, Megantereon, Ursus and
Pachycrocuta), following Espigares et al. (2019).

Bone cortical surfaces were then inspected using 10e40x
handheld lenses. Tooth marks were classified either as pits, scores
or punctures, while furrowing damage was also analysed (Binford,
1981; Blumenschine, 1995; Blumenschine et al., 1996). Modifica-
tions were quantified for specimens with well-preserved bone
surfaces, in terms of NISP values.

Once identified, marks were quantified considering their dis-
tribution according to anatomic element, while also inspecting the
intensity of modifications. This included the calculation of pit-score
ratios on long bone diaphyses, which could then be compared with
modern day comparative samples described by Arriaza et al. (2019).
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Furrowing was also considered following the “taphotype” classes
described by Domínguez-Rodrigo et al. (2015), however as this
alteration has only been observed on 0.5% of the sample (n ¼ 18,
Yravedra et al., 2022a), insufficient information is available for an
in-depth characterization.

Bone breakage was assessed following the suggestions of mul-
tiple authors (Villa and Mahieu, 1991; Alc�antara-García et al., 2006;
Pickering and Egeland, 2006; Mocl�an et al., 2019), taking into
consideration fracture plane type, metric properties, as well as the
presence, absence and type of notch. From this perspective, all
green fracture planes were measured using a goniometer (mea-
surement error z 5�), as described by Villa and Mahieu (1991).
Notches were then analysed through both descriptive and metric
approaches. Considering the current available reference samples
for this type of data, only appendicular bones could be used for this
analysis, excluding metapodials. Likewise, equids, as well as small
(0e2) and large (4& 5) sized animals had to be excluded. Once data
had been collected, these were compared with experimental
samples provided by Mocl�an et al. (2019), which include bones
broken by anthropogenic, hyaenid, and canid activities. For this,
qualitative and quantitative data were assessed using a Factor
Analysis of Mixed Data (FAMD) (Pag�es, 2004), followed by the
classification approaches described by Mocl�an et al. (2019). The
best performing algorithm obtained for this purpose was the
Random Forest (RF; 88.3% Accuracy, Kappa ¼ 0.80).

Finally, when considered necessary, conclusions drawn from
zooarchaeological and taphonomic data were supported by com-
plimentary statistical tests. These included tests for equal pro-
portions according to Pearson's c2 test statistic, as well as c2

contingency table tests. Where tests on contingency tables were
found to compute an unreliable test statistic, this test was replaced
by the G correction of the test statistic (Sokal and Rohlf, 1981).

All statistics were computed using the R v4.0.4 programming
language.

3.2.2. 3D modelling and landmark digitization procedures
3D modelling procedures of the selected tooth pits were per-

formed using Structured Light Surface Scanning (Fig. 3). The
equipment used was the DAVID SLS-2 located in the C.A.I.
Archaeometry and Archaeological lab of the Complutense

University of Madrid (Spain). This is a low-cost, powerful, and
portable piece of equipment (Mat�e-Gonz�alez et al., 2017), which
could be easily transported to the Museum where fossil materials
are located.

Once models had been constructed, tooth pits were digitized
using a landmark configuration consisting of 25 landmarks (Fig. 4);
five fixed Type II landmarks located on the exterior and interior of
each pit, and a 5 � 5 sliding semilandmark patch, removing semi-
landmarks that overlap with the 5 fixed landmarks (Courtenay
et al., 2020b). The 5 fixed landmark are used to mark the
maximal length (LM1 & LM2), width (LM3 & LM4), and depth
(LM5) of each pit. For the correct orientation of the pit, LM1 is
placed farthest away from the perpendicular axis marking the
maximal width, and LM2 is thus placed on the opposite extremity.
LM3 and LM4 are then placed along this perpendicular axis
marking the left (LM3) and right (LM4) maximum extremities. The
semilandmark patch is then positioned over the entirety of the pit,
so as to capture the internal morphology of the mark and its walls
(Fig. 4). Sliding of semilandmarks was performed by minimising

Fig. 3. D models of bite damage produced by carnivorans in the site of Barranco Le�on. 3D models were obtained using Structured Light Surface Scanning.

Fig. 4. Detailed graphical description of the landmark model employed.
LM ¼ Landmark. w ¼ maximum width. d ¼ distance.
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bending energy based on the Thin Plate Spline (TPS) approach
(Bookstein, 1991, 1997; Gunz and Mitteroecker, 2013).

The repeatability of this landmark model was robustly defined
as 0.139 ± 0.092 2 {0.002:0.586} mm (Courtenay et al., 2020b).
These human-induced errors are product of analyst experience, and
the time taken to perform the study. All landmarking procedures
should thus follow the detailed instructions provided in the main
paper and supplementary materials of Courtenay et al. (2020b),
while digitization sessions should be performed with as much care
and metric accuracy (for defining LM1 to LM5) as possible.

3.2.3. Geometric morphometrics
Once digitized, landmarks were formatted into morphologika

files and imported into the R environment (v.4.0.4). Landmarks
were first subjected to a Generalized Procrustes Analysis (GPA), so
as to normalize data and project landmarks into a new super-
imposed feature space (Bookstein, 1991; Rohlf, 1999). In order to
take into account observations on the weight of tooth pit size
(Aramendi et al., 2017; Courtenay et al., 2019, 2021a, b), GPA was
performed excluding the scaling procedure, so as to analyse pits in
form space. Once superimposed, landmark configurations were
analysed in terms of the Procrustes distances between each other,
and Centroid Size (CS) distributions.

For Procrustes distances and CS analysis, distributions were first
analysed for homogeneity using Shapiro-Wilk tests. All following
statistical tests were then conditioned by these results, using
traditional statistical approaches where homogeneity was found to
be present, and robust statistical approaches otherwise (H€ohle and
H€ohle, 2009; Rodríguez-Martín, 2019; Courtenay et al., 2020b).
Descriptive statistics are then calculated considering the mean or
median measurement of central tendency (for Gaussian and non-
Gaussian data respectively), while distribution variability is
measured in terms of the standard deviation or the Median Abso-
lute Deviation (MAD). From a different perspective, univariate
statistical tests were also performed, using a linear ANOVA model,
or the Kruskal-Wallis test.

Procrustes distance calculations are additionally used to calcu-
late the reference sample with the closest morphological affinity to
each of the fossil tooth pits. From this perspective, the original
statistical analysis can be used as a first approximation to the
classification of each of the tooth pits, which can later be confirmed
or fine-tuned using computational learning.

Formultivariate analyses, dimensionality reduction via Principal
Component Analysis (PCA) was performed. The PC scores repre-
senting up to 99% ofmorphological variancewere then selected and
used for further statistical processing. Multivariate Analyses of
Variance (MANOVA) were used to assess for differences in form
feature space, using either the Hotelling-Lawley or Wilk's Lambda
test statistic. Finally, Thin Plate Splines (TPS) were also calculated,
using a Delaunay 2.5D Triangulation algorithm to facilitate the
visualization of landmark configuration patterns (Bookstein, 1989;
Lopez-Fernandez et al., 2017).

All statistics were performed in the R (v.4.0.4) programming
language.

3.2.4. Computational learning
Once analysed statistically, the observations made calculating

morphological affinity with Procrustes distances were then sup-
ported by classification algorithms that could provide a final more
concrete label to each of the tooth pits.

For the classification of each of the fossil tooth marks, compu-
tational learning algorithms were trained, following the procedure
recommended by Courtenay et al. (2021a). This methodological
workflow consists in (1) the augmentation (x100) of each dataset
via an unsupervised approach, followed by (2) the training of

supervised classification algorithms (Courtenay and Gonz�alez-
Aguilera, 2020; Courtenay et al., 2021a). For data augmentation, a
multivariate Monte Carlo Markov Chain was used to simulate the
morphological characteristics of 100 tooth marks per sample. This
was performed for the balancing of data set sizes, while also pre-
venting over/underfitting in later supervised analyses (Courtenay
and Gonz�alez-Aguilera, 2020). Quality of augmented data was
then evaluated following the suggestions of Courtenay and
Gonz�alez-Aguilera (2020). The final augmented datasets were
found to be highly equivalent to the original data (|d| ¼ 0.004,
p ¼ 6.9e-29).

Once augmented, Support Vector Machines (SVM) and Neural
Support Vector Machines (NSVM) were trained (Courtenay et al.,
2021a). SVMs were trained using a k-fold cross-validated
approach (k ¼ 10), and a Radial Basis Function kernel. Optimal
configuration of the kernel was computed using Bayesian Optimi-
sation algorithms (Snoek et al., 2012; Shahriari et al., 2016). NSVMs
were trained using typical deep learning approaches (Goodfellow
et al., 2016), first employing the use of a Laplacian Random Four-
ier Function (RFF) -based neural network (Rahimi and Recht, 2007;
TancikSrinivasan et al., 2020), and then replacing the final activa-
tion layer with a linear SVM (Wieringvan der Ree et al., 2013;
Courtenay et al., 2021a). NSVMs were trained in batches of 32 pits
for 1000 epochs. The Adam optimizer and a triangular cyclic
learning rate were employed. Additional tuning of the SVM acti-
vation layer was also performed using Bayesian approaches (Snoek
et al., 2012; Shahriari et al., 2016).

Both SVM and NSVM were trained on 80:20% train:test sets,
using only augmented data for training. Evaluation was performed
on the original dataset. Once trained, algorithms were then used to
predict labels and label probabilities for each of the fossil in-
dividuals. The summary of the two trained algorithm performance
on test sets is provided in Table 1.

SVMs were programmed in the R programming language
(v.4.0.4), while NSVMs were programmed in Python (v.3.7.4). For
more details see Courtenay et al. (2021a).

Once marks had been classified, fossil tooth pits were separated
into their corresponding groups for amore detailed assessment and
characterization of the fossil species present. This was performed
using the same methodological procedure as the geometric
morphometric analyses described above, while additionally testing
for morphological equivalence using a Two One-Sided Equivalency
tests (TOST), according to Cohen's d (Lakens, 2017). For homoge-
neous distributions, Welch's t-statistic was used, while non-
parametric approaches employed the use of Yuen's trimmed
robust t-statistic.

Finally, TPS were used to calculate mean configurations of
different samples, convert these configurations into meshes, and
calculate the distance between the faces of each mesh so as to
quantify differences between the mean configurations. Distance
calculations were computed using the nearest neighbour distance

Table 1
Evaluation results on the trained computational learning algorithms that will be
used for the classification of Barranco Le�on tooth marks. SVM ¼ Support Vector
Machines. NSVM ¼ Neural SVM. Accuracy, Sensitivity and Specificity are values
between 0 and 1, with 1 being the highest obtainab1e value. Kappa values are
between 0 and 1, with values above 0.8 being considered a powerful model. Loss
considers values closer to 0 as the most accurate models.

SVM NSVM

Accuracy 0.93 0.89
Kappa 0.86 0.85
Sensitivity 0.89 0.81
Specificity 0.96 0.96
Loss 0.09 0.10
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from a referencemesh to awarpedmesh, using as a reference mesh
the 3D model corresponding to the median individual of one of the
groups (Rohlf, 1998).

3.2.5. Hypothesis testing
In accordance with the recommendations set forth by the edi-

tors and contributors of the American Statistician, p-values were not
evaluated using p < 0.05 as a threshold for defining statistical sig-
nificance (Wasserstein et al., 2019), while the term “significant” has
also been avoided. In its place, all hypothesis testing was performed
using Bayesian calibrations for the evaluation of p-values. Under
this premise, the False Positive Risk (FPR) was calculated for each p-
value (Colquhoun, 2019), using the Selle-Berger approach
(Benjamin and Berger, 2019) for the definition of Null Hypothesis
(H0) and Alternative Hypothesis (Ha) ratios. Where necessary, FPR
was also used to derive Probability of H0 values (p(H0)), providing a
means to calibrate p values over 0.3681 (Courtenay et al., 2021a, c).
Unless specified otherwise, prior probabilities in support ofHawere
set at 0.5, indicating complete randomness, as recommended by
Colquhoun (2019).

In light of these calibrations, p-values were thus evaluated using
a robust value of 0.003 (3s) as a threshold for more conclusive
results. This p-value can be considered to have and a FPR of 4.5 þ/�
[1.2, 15.9] %, using priors of 0.5 þ/� [0.2, 0.8] (Courtenay et al.,
2021c).

4. Results

4.1. Taphonomic analyses of carnivore activity

Among the 3559 fossils analysed in this study, 368 tooth marks
were identified on 167 bones (4.7%) from BL-D1 (Supplementary
File 4 & 5). Tooth marks were found on all taxonomic groups and
anatomical elements, nevertheless, appendicular long bones were
found to present the highest number of tooth marks (Sup. File 5).

The frequency of tooth marks identified are relatively low, with
<5% of the osteological sample presenting carnivoranmodifications
(c2 ¼ 79.2, p ¼ 2.2e-16, FPR ¼ 2.2e-12%; Sup. File 4). When
considering only appendicular elements, only 74 bones have been
observed to present carnivoran bite damage, which is still <20% of
the total sample of appendicular elements from BL-D1 (c2 ¼ 34.8,
p ¼ 3.6e-09, FPR ¼ 1.9e-05%; Sup. File 5 & 6). The intensity of car-
nivoran damage can additionally be considered low (c2 ¼ 157.5,
p ¼ 2.2e-16, FPR ¼ 2.2e-12%), when observing 90% of bite marked
bones to present less than 5 marks per bone, and no specimen has
been observed to present over 10 marks (Sup. File 7). Finally, only
1% of specimens present digestive alterations.

When testing for trends according to animal size, no notable
patterns can be observed for neither the presence of bite damage
(G ¼ 2.9, p ¼ 0.57, p(H0) ¼ 53.4%), nor the frequency of tooth marks
per bone (G ¼ 0.23, p ¼ 0.99, p(H0) ¼ 97.4%).

Analysing the type of bite damage, punctures are rarely found in
BL-D1 (n ¼ 13), while pits (n ¼ 199) and scores (n ¼ 156) are the
most common type of tooth mark (c2 ¼ 231.9, p < 2.2e-16, FPR
<2.2e-12%; Sup. File 7 & 8). When analysing these frequencies in
more detail, it can be observed that pits dominate on long bones of
animals Size 1, 2 and 3 (pit: score z 59.9 : 40.1%), while larger
animals present a predominance of scores (pit: score ¼ 20.0 :
80.0%).

The relationship of pit/score ratios according to animal size has
also tested to be of notable importance (c2 ¼ 16.1, p ¼ 0.0003,
FPR¼ 0.69%). Nevertheless, pit/score ratios have only been found to
be important in the case of animal Sizes 4e5 (c2 ¼ 19.3, p¼ 1.1e-05,
FPR ¼ 0.03%), while Sizes 1e2 can only be considered to be slightly
conclusive (c2 ¼ 8.3, p ¼ 0.004, FPR ¼ 5.5%). Animals of Size 3 do

not present sufficient differences to be considered conclusive
(c2 ¼ 1.1, p ¼ 0.30, FPR ¼ 49.5%). When considering the possible
effects that small sample sizes may have on these results, corrected
prior probabilities for FPR (priors¼ 0.2; Courtenay et al., 2021c) still
reveal a 2.8% probability that this observation is a false positive in
the case of animals of size 4e5. Nevertheless, these corrected priors
put into question the reliability of observations made for animals of
Sizes 1e2 (FPR ¼ 18.97%). In light of these results, tooth mark fre-
quencies observed on animals of Sizes 4 and 5 can be considered to
be similar to those produced by modern day large felids
(Domínguez-Rodrigo et al., 2012), nevertheless, score:pit ratios
alone are not a diagnostic trait for carnivoran activity, while
insufficient data is available to provide a conclusionwith regards to
smaller animals.

Only a very small sample size of 10 bones (0.3%) were found
suitable for fracture pattern analysis. These include a mixture of
indeterminable long bone shafts from a mixture of Size 3a and 3 b
animals. Among this sample, no epiphyseal regions were found to
be present, while the average fragment length was measured at
58.4 mm (Interval 2, according to Mocl�an et al., 2019). The average
number of fracture planes was calculated to be 1, while 70% of this
sample present longitudinal fracture planes, followed by oblique
fracture planes (30%). Plane angles were mostly measured to be
acute (n ¼ 5, Circular Mean ¼ 71.6�), followed by obtuse (n ¼ 3,
Circular Mean ¼ 107.3�). Notches are present on all accounts,
varying in number between 1 and 9 notches (average ¼ 3.7), while
notch typologies for this sample are mostly incomplete (n ¼ 6),
followed by simple notches (n ¼ 2) and micro-notches (n ¼ 2).
When performing classifications on these samples, calculations
reveal 6 of the bones to have been broken by canids (87.0% confi-
dence), 2 bones to have been broken by anthropogenic agents
(74.9% confidence), while 2 bones remain indeterminable (<65%
confidence). None of the bones in this sample were found to be
product of hyaenid activity. When analysing this data statistically
(Fig. 5), the BL-D1 sample is described mostly by low number of
fracture planes, small fragment sizes, and mostly acute angles,
similar to patterns described multivariately by modern day Canis
lupus. Nevertheless, this archaeological sample must be increased
in future.

4.2. The classification of tooth pits from BL-D1

The BL-D1 tooth mark sample analysed in the present study
consist of 64 pits observed on 29 specimens. The majority of tooth
pits originate from indeterminable fragments (n ¼ 11, 37.9%;
Table 2), followed by Size 3 (n ¼ 9, 31.0%) and Size 2 animals (n ¼ 7,
24.1%). In addition, a single fragment originates from a Size 4 ani-
mal (3.4%). Of the 29 bones, only three have been classed as iden-
tifiable on a species level, including Capra alba (BL19-J48-D1-1),
Equus sp. (BL20-F47-D1-66), and a single carnivoran individual;
Ursus etruscus (BL19-F47-D1-29).

The majority of these pits are small (CS Median ¼ 4.4 mm,
MAD¼ 2.6). Robustly calculated 95% confidence intervals ([1.6,11.8]
mm) additionally approximate these samples more in the range of
modern wolves (Median ¼ 5.0 mm, MAD ¼ 2.4, 95% CI ¼ [2.8, 9.5]),
than any other of the modern comparative samples (Courtenay
et al., 2021a). When analysing statistical differences, the BL-D1
sample appears to be more similar to canids of the Canis genus
(c2 ¼ 0.2, p ¼ 0.7, p(H0) ¼ 57.2%), while also revealing some prox-
imities with ursids (c2 ¼ 2.7, p ¼ 0.1, p(H0) ¼ 38.7%). Similarly, the
majority of the sample is found to be different in size to the tooth
pits left by large felids (c2 ¼ 61.7, p ¼ 4.1e-15, FPR ¼ 3.7e-13%),
followed by Hyaenids (c2 ¼ 30.19, p ¼ 3.9e-08, FPR ¼ 1.8e-06%).
Nevertheless, the BL-D1 sample presents an inhomogeneous dis-
tribution (w¼ 0.9, p¼ 0.0002, FPR¼ 0.005%), with large variability,
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indicating the possible intervention of multiple sized carnivorans,
with a predominance of smaller animals.

In terms of Procrustes distances, a strong morphological signal
can be detected when comparing the entirety of the BL-D1 sample
with wolves (d ¼ 2.5), with some affinities with ursids (d ¼ 2.7).
Procrustes distances are greatest when comparing with hyaenids
(d ¼ 3.5), followed by large felids (d ¼ 3.3), while the genus Lycaon
is also noted to be different (d ¼ 3.1).

When combining both morphological and metric variables in
form space, the BL-D1 sample exclusively approximates the
morphology of modern day Canis lupus (p ¼ 0.45, p(H0) ¼ 50.6%),
while presenting notable differences with all other samples
(p < 0.001, FPR <1.8%).

Classifications of the BL-D1 sample using computational
learning confirm these observations, with the majority of samples
being classed as morphologically similar to modern day Canis lupus
(n ¼ 33, 51.6%). Nevertheless, as indicated by the large mixture of
different sized tooth pits, other carnivorans have also been detec-
ted, including large members of the Felidae family (n ¼ 8, 12.5%),
Ursidae (n ¼ 7, 10.9%), and Hyaenidae (n ¼ 6, 9.4%). Alongside the
genus Canis, algorithmswere able to detect 5 additional canid tooth
marks (7.8%), morphologically similar with modern day Lycaon
pictus.

Finally, a handful of tooth marks were found to be indetermin-
able (n¼ 5, 7.8%), with both algorithms unable to reach a consensus
(probabilities of <70%). Nevertheless, evaluation of these traces
reveal them to be much smaller in size than any of the comparative
samples (CS mean ¼ 1.9 mm, sd ¼ 0.4, 95% CI ¼ [1.5, 2.3]), with the
smallest tooth marks used for comparisons originating from Vulpes
vulpes (CS mean ¼ 4.1 mm, sd ¼ 1.8, 95% CI ¼ [1.8, 7.8]). From this
perspective, it can be hypothesized that these marks originate from
amuch smaller carnivoran, or an animal capable of producing small
tooth pits, not included within the present comparative sample.

When assessing the carnivorans identified according to each
fossil specimen, interesting possible interactions between multiple
carnivorans can be observed through tooth marks from different
species found on the same specimen. This possible competition for
resources can be observed in a number of cases, with the tooth
marks of both ursids and canids (specimen BL19-K48-D1-172 and

BL-14-I52-D1-152), large felids and canids (BL15-F51-D1-45 and
BL16-F53-D1-24), large felids and ursids (BL-16-I52-D1-sn and
BL17-H56-D1-16), Lycaon and Canis (BL18-H47-D1-21), and Lycaon
and hyaenids (BL19-J48-D1-1), being predicted to have been found
on the same bone. Possible competition between canids and
hyaenids is also frequent (BL18-L48-D1-71, DL14-I51-D1-26 and
DL15-I52-D1-1). The two additional cases of overlap between two
species is observed in the presence of smaller tooth pits in associ-
ation with large carnivorans (BL-15-F50-D1-4 and BL-19-K48-D1-
12).

4.3. Characterizing the BL-D1 tooth pit sample

Visualizing morphological variation in accordance with the final
classified samples confirms a separation between the predicted
species (Fig. 6a), with PC1 (86.53% variance) primarily representing
differences in size, and PC2 (1.95% variance) representing variations
in shape. Similarly, when comparing the classified fossil samples
with the central tendency of their modern day equivalents (Fig. 6b),
distributions in form feature space effectively confirm these
morphological affinities. From this perspective, each of the detec-
ted fossil tooth marks appears to present strong similarities with
their modern day relatives (Table 3). In light of this, the suggested
Canis tooth marks can be associated with Canis mosbachensis, the
Hyaenidae tooth marks with Pachycrocuta brevirostris, Lycaon tooth
marks with Lycaon lycaonoides, and Ursidae tooth marks with Ursus
etruscus. While some overlap still exists between samples seen
through some equifinality in form Procrustes distances, general
trends in multivariate feature space seem to separate Canis in-
dividuals from both Ursidae, Hyaenidae, and Licaon, while Felidae
samples are restricted to one extreme of feature space. The smaller
size of the BL-D1 Canis toothmarks also create somemorphological
affinities with modern day Vulpes vulpes, however this point will be
explored in further detail in the following section.

In the case of Felidae, the tooth pits from the present sample are
slightly smaller than that of the modern day Panthera leo (Table 4;
Fig. 7), however larger than both that of Panthera pardus and Pan-
thera onca. Similarly, morphological data reveals the felid tooth pits
at BL-D1 to be closer in form to Panthera leo (Table 3), while

Fig. 5. Factor Analysis of Mixed Data plot of fracture plane variables from modern day carnivore reference samples (Mocl�an et al., 2019), and the preliminary Barranco Le�on sample
(black circles).
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Procrustes distances are much greater when compared with both
other species of felid. From this perspective, and using Homo-
therium latidens as the closest analogy with Panthera leo in size
(Turner and Ant�on,1997; Ant�on et al., 2005, 2014; Ant�on, 2013), the

BL-D1 sample can therefore be approximated to H. latidens, as
opposed to the smaller Megantereon cultridens, and Panthera gom-
baszoegensis, which are more similar to the modern day Panthera
onca.

Table 2
Classification results, Procrustes Form Distances (Proc. D), and Centroid Sizes, for each of the Barranco Le�on tooth marks analysed in the present study. Sp. ID indicates the
Specimen's ID (Site-Year-Square-Level-Number). Where possible, animal size classes have been included. Procrustes distances are calculated from each pit to their corre-
sponding classified label. Computational Learning (CL) classification percentages are obtained from the most confident classification algorithm (Support Vector Machines
(SVM) or Neural Support Vector Machines (NSVM).

Sp. ID Size Class Label Proc. D CL Probability Algorithm Centroid Size

BL-14-G49-D1-105 Indet Felidae 2.47 83.07% SVM 11.77
Felidae 1.92 83.05% SVM 10.14

Sn 3 b Lycaon 0.9 93.12% SVM 6.72
Lycaon 1.32 86.54% SVM 6.26

BL-14-F52-D1-116 Indet Canis 1.08 75.96% SVM 3.47
Canis 1.54 95.61% SVM 2.98
Canis 1.14 82.30% SVM 5.01

BL-14-I52-D1-152 Indet Canis 0.29 100.00% SVM 4.46
Ursidae 1.06 79.06% SVM 5.89
Ursidae 1.24 89.83% SVM 5.49

Sn 4 Felidae 2.85 85.37% SVM 12.46
BL-16-F53-D1-24 3 Canis 2.98 96.05% SVM 1.48

Canis 2.86 97.39% SVM 1.61
Canis 1.44 99.16% NSVM 5.27
Felidae 1.95 88.31% SVM 11.77

BL-14-I51-D1-26 3a Hyaenidae 0.56 82.65% NSVM 5.1
Canis 0.96 74.64% NSVM 4.33

BL-15-I52-D1-1 3 Hyaenidae 1.8 85.24% SVM 7.96
Canis 1.25 81.07% SVM 3.73

BL-15-F50-D1-4 Indet Canis 1.68 89.67% SVM 2.7
Indet 1.9

BL-15-G51-D1-22 Indet Indet 1.63
BL-15-F50-D1-46 Indet Canis 1.37 85.01% NSVM 3.69
BL-15-F51-D1-45 Indet Felidae 2.37 90.45% SVM 8.99

Canis 1.45 90.78% NSVM 3.05
Canis 2.86 75.95% SVM 5.9
Felidae 1.3 81.69% SVM 8.32

BL-17-H56-D1-16 2 Ursidae 0.70 98.96% NSVM 7.34
Ursidae 1 89.55% NSVM 4.97
Felidae 2.66 85.37% SVM 10.51

BL-17-F48-D1-22 Indet Canis 2.59 87.05% SVM 1.88
Canis 2.08 77.96% NSVM 2.39

BL-17-I48-D1-200 Indet Canis 1.68 97.39% SVM 2.83
BL-18-J48-D1-10 3 b Canis 0.79 94.51% NSVM 4.12

Canis 1.1 91.44% NSVM 2.3
Canis 2.16 90.28% NSVM 2.1

BL-18-L48-D1-71 2 Hyaenidae 1.68 75.15% NSVM 6.97
Hyaenidae 2.17 98.29% NSVM 9.2
Canis 1.16 80.56% SVM 3.47
Canis 0.94 100.00% SVM 3.63

BL-18-J48-D1-144 2 Canis 0.98 97.07% SVM 3.64
BL-18-H47-D1-21 3 Canis 0.8 100.00% SVM 4.44

Canis 1.63 80.67% NSVM 2.92
Lycaon 1.16 85.65% NSVM 6.01

BL-18-K48-D1-223 2 Canis 1.04 98.79% SVM 3.49
Canis 0.88 80.84% SVM 3.77

BL-19-J48-D1-1 2 Lycaon 1.10 83.44% SVM 7.12
Lycaon 1 90.48% NSVM 5.62
Hyaenidae 1.58 87.81% NSVM 8.06

BL-19-L48-D1-15 2 Canis 1.16 84.22% NSVM 4.24
BL-19-K48-D1-12 Indet Indet 2.33

Indet 2.15
Indet 1.47
Canis 1.04 84.27% SVM 3.6

BL-19-K48-D1-172 2 Canis 2.66 86.30% NSVM 1.8
Canis 1.67 85.50% NSVM 2.82
Canis 2.52 85.17% NSVM 1.98
Ursidae 0.84 83.92% NSVM 6.85

BL-19-F47-D1-29 Carn3 Hyaenidae 1.55 79.55% NSVM 6.17
BL-20-F47-D1-11 3 Ursidae 1.40 90.30% SVM 5.2
BL-20-F47-D1-26 3 b Canis 0.43 91.81% SVM 4.37
BL-20-L48-D1-99 3 b Canis 0.49 93.01% SVM 4.21
BL-16-I52-D1-sn Indet Felidae 1.62 87.08% SVM 12.09

Ursidae 1.14 89.40% NSVM 6.51
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4.4. Characterising fossil carnivorans from orce

Due to the smaller sample sizes of fossil Homotherium latidens
and Ursus etruscus tooth pits, the detailed characterization of the
fossil tooth pits will focus solely on the analysis of suggested Can-
idae from BL-D1, as well as predicted Hyaenidae tooth marks
combining data from BL-D1 and VM3 (Yravedra et al., 2022b).

4.4.1. Canis mosbachensis
The sample classed as Canis mosbachensis is very similar to the

comparative samples produced by modern day Canis lupus, pre-
senting noticeable overlap in form feature space (Fig. 8). Based on
this data, morphologically speaking Canis mosbachensis can be
described by presenting mostly superficial pits. This links strongly
with observations made on Canis lupus specimens by multiple au-
thors (Yravedra et al., 2019; Courtenay et al., 2020a, 2021a, b).
When compared in general with other large canids, both species of
Canis are restricted to a portion of feature space described by more
asymmetrical pits, with the point of maximal depth shifting closer
to one edge of the pit than the other (PC1 ¼ 87.02% variance). The
predicted Lycaon samples, on the other hand, are observed to be
much deeper, with a greater variance across feature space, while
their tooth pits are observed to bemore elongated, with the point of
maximal depth shifting along the LM1-LM2 axis.

When considering size, allometry is present between Lycaon
and Canis samples (F ¼ 22.3, Residuals2 ¼ 0.027, Effect Size
(ES)¼ 5.7, p¼ 0.001, FPR¼ 1.8%), as well as between Canis lupus and
Canis mosbachensis (F ¼ 19.0, Res.2 ¼ 0.030, ES ¼ 0.3, p ¼ 0.001,
FPR ¼ 1.8%). Allometry between Canis mosbachensis and Vulpes
vulpes is much less evident (F ¼ 2.72, Res2 ¼ 0.008, ES ¼ 2.1,
p ¼ 0.02, FPR ¼ 19.1%). These observations indicate size to be a
conditioning factor in the morphological variation between most

Fig. 6. e Principal Component Analyses (PCA) in Form feature space characterizing (A)
the morphological variation of each of the BL-D1 samples, and (B) the mean PCA
comparing modern day carnivoran central configurations with each of the main BL-D1
samples. For the purpose of visual clarity, ursids, Lycaon and any indeterminable marks
have been excluded from panel B. Predicted form deformations via thin plate splines
are depicted on each extremity of their corresponding PC score in panel B, employing
the use of a 2.5D Triangulation algorithm.

Table 3
Procrustes distances calculated in form associating the final classified fossil species from BL-D1 with their extant relatives. *Including only BL-D1 fossil specimens. **Including
both BL-D1 and VM3 fossil specimens.

C. lupus L. pictus C. crocuta U. arctos P. leo P. onca P. pardus V. vulpes

C. mosbachensis 1.233 3.641 4.387 2.595 8.074 3.943 0.993 0.255
L. lycaonoides 2.302 0.799 1.321 1.312 4.749 1.149 2.606 3.470
P. brevirostris* 1.282 1.270 2.433 0.641 5.676 1.572 1.523 2.433
P. brevirostris** 1.005 1.592 2.329 0.692 5.992 1.869 1.203 2.124
U. etruscus 2.173 0.790 1.418 0.908 4.884 0.948 2.378 3.319
H. latidens 7.160 4.806 4.054 5.847 1.125 4.514 7.415 8.336

Table 4
Descriptive statistics comparing centroid sizes of each of the samples analysed within this study. *Samples from Barranco Le�on. **Samples from Barranco Le�on and Venta
Micena 3 (Yravedra et al., 2022b). Lower and Upper Confidence Intervals (CI) are calculated using robust 95% quantile intervals.

Min Lower CI Central Deviation Upper CI Max

Canidae Lycaon pictus 2.23 3.13 6.65 3.06 17.24 22.09
Lycaon lycaonoides* 5.76 5.76 6.44 0.56 7.19 7.19
Canis lupus 2.14 2.52 4.56 2.18 8.59 14.18
Canis mosbachensis* 1.49 1.62 3.45 1.15 5.42 6.49
Vulpes vulpes 1.10 1.73 3.74 1.63 7.02 7.49

Felidae Panthera leo 3.90 4.52 11.00 6.00 24.67 31.51
Homotherium latidens* 8.34 8.34 10.92 1.56 12.64 12.64
Panthera onca 1.68 2.55 6.94 3.86 19.42 28.90
Panthera pardus 2.44 2.67 4.40 1.92 8.53 10.65

Hyaenidae Crocuta crocuta 2.62 3.50 7.38 3.21 15.93 23.64
Pachycrocuta brevirostris** 2.49 2.57 5.40 2.54 12.16 14.93

Ursidae Ursus arctos 1.54 1.63 5.87 3.67 12.69 16.90
Ursus etruscus* 4.99 4.99 6.11 0.86 7.37 7.37

BL-D1 Indeterminable 1.48 1.48 1.92 0.36 2.36 2.36
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species, while Canis mosbachensis and Vulpes vulpes present the
least amount of morphological variation dependent on size. CS
between both C. lupus and C. mosbachensis are not the same (TOST
t ¼ �0.8, p ¼ 0.98, p (H0) ¼ 94.9%), with Canis lupus producing
larger tooth marks than that of Canis mosbachensis (Table 4), while
CS between Vulpes vulpes and C. mosbachensis are similar (TOST
t ¼ �3.3, p ¼ 0.40, p (H0) ¼ 50.1%). In this context, Lycaon pictus
proves to be the member of the Canidae family with the largest and
deepest tooth pits, while the five Lycaon lycaonoides pits detected in
BL-D1 fall well within the 95% confidence interval (TOST t ¼ �3.8,
p ¼ 0.86, p (H0) ¼ 73.9%).

Nevertheless, despite the morphological affinities presented
between Canis lupus and Canis mosbachensis, some multivariate
differences in form space can still be noted to some extent (MAN-
OVA p ¼ 0.009, FPR ¼ 10.3%). Lycaon pictus can be observed to be
very different in form space (p ¼ 0.001, FPR ¼ 1.8%). This indicates
both species of Canis to be clearly separable from the Lycaon genus,
while intra-genus differentiation may be possible.

While the proposed C. mosbachensis samples also present
morphological affinities with Vulpes vulpes as well, the closest early
relative of this species, Vulpes cf. alopecoides, was known to be
much smaller than modern day Vulpes (Garrido, 2008; Lucenti and

Fig. 7. Graphical representation of the centroid sizes described in Table 4. Highlighted boxplots refer to fossil carnivoran species.

Fig. 8. Principal Component Analysis in form feature space characterizing the tooth pit morphologies of the Barranco Le�on and modern day Canidae samples. Predicted form
deformations via thin plate splines are depicted on each extremity of the graph. Form deformations are visualized using a 2.5D Triangulation algorithm.
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Madurell-Malapeira, 2020). Based on this observation, the original
classification results, and the fact that C. mosbachensis samples fall
between both modern day C. lupus and V. vulpes, we can confirm
our original proposal of assigning these pits to C. mosbachensis,
defining the morphological variability of these pits to be much
closer to C. lupus, with a size more similar to modern day V. vulpes.

Finally, when computing the difference in calculated meshes
obtained from central morphological tendencies, the proposed
C. mosbachensis sample can be found to present the lowest overall
distance with C. lupus and V. vulpes (Table 5), while appearing very
different from Lycaon pictus. When observing heat maps that
display these differences (Fig. 9), the majority of changes appear
across the upper extremities of the pit, likely indicating differences
in the circular-like nature described in Fig. 6, as well as around LM5
(the deepest point). It can be seen how C. mosbachensis is charac-
terised by more superficial pits, as opposed to the deeper pits
produced by V. vulpes; a characteristic of which supports the pre-
diction that these pits are closer to Canis as opposed to Vulpes
(Courtenay et al., 2021a). When observing differences with the
Lycaon, both samples appear to be much deeper than Canis, while
also presenting stronger deformations in the LM1-LM2 axis of the
pit. This indicates a greater elongation in the tooth pit. Finally,
when considering Lycaon pictus as a reference, it can be observed
that the two possible Lycaon lycaonoides pits are very similar to
Lycaon pictus (Table 5), with slight differences in some features of
the pit between LM5 and L4.

4.4.2. Pachycrocuta brevirostris
The present sample associated to Pachycrocuta brevirostris is

described by 31 tooth pits in total; 20 tooth pits originally detected
from VM3, alongside 11 tooth pits from BL-D1. Similar to the ob-
servationsmade by Yravedra et al. (2022b), the present toothmarks
are observed to present greater morphological affinity to modern
day Crocuta crocuta than any other carnivoran (Table 3). When
combining the two samples, these tendencies increase, with those
pits associated with Pachycrocuta brevirostris appearing slightly
closer to Crocuta crocuta, while the degree of separation from other
samples increases (Table 3). When analysing the differences be-
tween samples, VM3 and BL-D1 appear to present strong
morphological affinities between each other (Proc. d ¼ 2.13,
p ¼ 0.29). Nevertheless, the tooth marks from BL-D1 appear to be
slightly larger (CS mean¼ 7.3 mm, sd¼ 1.5, 95% CI¼ [5.1, 9.3]) than
those from VM3 (median ¼ 5.01 mm, MAD ¼ 2.6, 95% CI ¼ [2.5,
12.2]). The combination of these two samples thus captures a
broader spectrum of the proposed Pachycrocuta tooth mark
morphological variability.

As previously observed, allometry is still an important compo-
nent of Hyaenidae tooth pit morphological variation (F ¼ 7.6,
Res.2 ¼ 0.02, ES¼ 5.80, p < 0.001, FPR <1.8%) (Aramendi et al., 2017;
Arriaza et al., 2019, 2021; Courtenay et al., 2021a; Yravedra et al.,
2022b), nevertheless, allometric differences between Crocuta cro-
cuta and Pachycrocuta brevirostris are unimportant (F ¼ 7.6,
Res.2 ¼ 0.016, ES ¼ 3.6, p ¼ 0.225, FPR ¼ 47.7%). While the current
Pachycrocuta pits can be observed to be slightly smaller than

Crocuta crocuta (Table 4), the magnitude of similarities or differ-
ences is not of notable value based on the present data (t ¼ �2.8,
p ¼ 0.65, p (H0) ¼ 56.7%).

Analysis of morphological traits in form space (Fig. 10) reveal
both BL-D1 and VM3 samples to greatly overlap with modern day
Crocuta crocuta. All three Hyaenidae samples can be described by
mostly elongated pits, different to those traits previously described
for Canis, and more similar to the Lycaon samples described above.
The main morphological patterns that can be described are asso-
ciated with the position of LM5, and the sliding semilandmarks that
shift around it. Similarly, both species of hyaenid present great
morphological variance, with the ability to produce a combination
of small, large, deep and superficial pits, all within the same sample.

When computing deformations in central configurations
(Fig. 9), results only differ slightly from original observations by
Yravedra et al. (2022b), in that the change in size is lower than in
the present sample, while the average deformation in mesh faces
slightly increases from those originally published (0.06 ± 0.04mm).

5. Discussion

This study presents a detailed analysis and description of tooth
pits obtained from level D1 of the Lower Pleistocene site of Bar-
ranco Le�on. As has been seen throughout this study, the tapho-
nomic story of BL-D1 is much more complex than originally
perceived. In previous research, authors propose Pachycrocuta
brevirostris as the main carnivoran to have intervened in the for-
mation of BL-D1 (Rodríguez-G�omez et al., 2016; Espigares et al.,
2019). Nevertheless, the data obtained here reveal the presence
of a larger number of carnivorans, with a notable contribution by a
relatively small canid which we have associated with Canis mos-
bachensis, thus shedding new light on the interpretation of this site.

Although the present study has been able to detect the activity
of Pachycrocuta brevirostris, the impact this carnivoran has had on
the formation of BL-D1 site is likely smaller than previously
considered (Espigares et al., 2019). First of all, the low overall fre-
quency of tooth marks in BL-D1 is not a likely indicator of hyaenid
activity (Espigares et al., 2019; Yravedra et al., 2022b: Supple-
mentary File 6), while only 6 of the tooth pits (9.4%) analysed here
have been detected to present morphological affinities with hyae-
nid species (Table 2). Overall fracture patterns, frequency of fur-
rowing, and a <10 number of tooth marks per specimen (Yravedra
et al., 2022a), also contradict patterns produced by hyaenid species
(Kuhn et al., 2009).

From a different perspective, the role machairodontine felids
had in the Orce sites is frequently proposed as being the primary
predator, with hominins and hyaenids opportunistically scavenging
the remaining carrion (Palmqvist et al., 2007a,b, 2011; Rodríguez-
G�omez et al., 2016). From a taphonomic perspective, however, lit-
tle evidence has been presented that directly detects the action of
these carnivorans in the Orce sites. This is due to the proposal that
machairodontine felids are unlikely to mark bone during feeding
(Marean, 1989; Palmqvist et al., 2007a,b). While this hypothesis is
supported by compelling biomechanical data (Palmqvist et al.,

Table 5
Description of distances (mm) from the reference mesh to the compared mesh, visualized graphically in Fig. 9.

Lycaon pictus Canis lupus Vulpes vulpes

Min Central Dev. Max Min Central Dev. Max Min Central Dev. Max
L. pictus 0.00 0.00 0.00 0.00 0.06 0.34 0.20 0.64 0.09 0.53 0.27 0.98
L. lycaonoides 0.00 0.04 0.04 0.17 0.04 0.33 0.19 0.56 0.11 0.52 0.25 0.88
C. lupus 0.03 0.07 0.02 0.13 0.00 0.00 0.00 0.00 0.00 0.16 0.11 0.34
C. mosbachensis 0.09 0.11 0.02 0.15 0.00 0.03 0.02 0.06 0.00 0.01 0.01 0.03
V. vulpes 0.08 0.10 0.02 0.14 0.00 0.02 0.02 0.05 0.00 0.00 0.00 0.00
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2007a,b), it is important to note that tooth marks are often acci-
dental. Furthermore, data from other sites have still been able to

attribute the presence of tooth marks to machairodontine feeding
habits (Marean and Ehrhardt, 1995; Domínguez-Rodrigo et al.,

Fig. 9. Heatmaps obtained from 3D meshes, computed using the central configuration of each carnivoran sample. Changes in colour indicate how similar one mesh is when
compared with the reference mesh, with shades of blue indicating negative deformations and shades of red indicating positive deformations. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. Principal Component Analysis in form feature space characterizing the tooth pit morphologies of the Barranco Le�on, Venta Micena 3, and modern day Hyaenidae samples.
Predicted form deformations via thin plate splines are depicted on each extremity of the graph. Form deformations are visualized using a 2.5D Triangulation algorithm.
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2022). In light of this, bite damage cannot be exclusively related to
the chewing or consumption of bone-related nutrients, high-
lighting a lack of evidence to say that machairodontines were not
able to produce tooth marks, just less likely.

While both Pachycrocuta and Homotherium have been identified
here as being likely contributors to both the BL-D1 and VM3 as-
semblages (Yravedra et al., 2022b), the majority of data from the
present sample has been found to be product of Canis mosbachensis
activity (n ¼ 33; 51.6%). Canis mosbachensis is mostly known as an
omnivorous species (Palmqvist et al., 2008), of smaller size than
modern day Canis lupus. Modern day Canis lupus are social hunters,
enabling them to hunt prey larger than themselves (Gittleman,
1985; Vezina, 1985; Yravedra et al., 2011). Nevertheless, consid-
ering the physiology of Canis mosbachensis, as well as the signifi-
cantly larger trophic pressure observed in the Early Pleistocene
carnivoran guild of Guadix Baza (Rodríguez et al., 2012; Lozano
et al., 2016), it is unlikely that Canis mosbachensis would have
been the predator responsible for the large ungulate carcasses
recovered from BL-D1. From this perspective, and also considering
the adult-rich age profiles (Yravedra et al., 2022a), Canis mosba-
chensis can be interpreted to have had a secondary role in the
modification of fossils. This is especially relevant when considering
tooth marks made by different carnivorans on the same specimen
(Table 2), implying Canis mosbachensis to have scavenged the kills
of other carnivorans, such as Homotherium latidens.

From the perspective of the other taphonomic agents, remains
of both Lycaon lycaonoides and Ursus etruscus have been identified
in BL-D1, represented by a single adult individual each (Espigares
et al., 2019; Yravedra et al., 2022a). Here we have been even able
to infer the interaction of these species with the assemblage, as
seen through the presence of 5 and 7 tooth marks respectively.
While Ursus etruscus is believed to be an omnivorous species, pri-
marily feeding on plants (Palmqvist et al., 2008; Medin et al., 2017),
most bears, such as the brown bear (Ursus arctos), are known to
scavenge and sporadically hunt (Mattson, 1997). Likewise, ursids
from the Venta Micena localities have also been interpreted to
present an increased intake of animal based foods (Medin et al.,
2017). Lycaon, on the other hand, are hypercarnivorous hunters
(Estes and Goddard, 1967; Malcolm and Van-Lawick, 1975; Rhodes
and Rhodes, 2004). Nevertheless, modern-day African Wild Dogs
are not known for generating intense bone surface modifications
(Yravedra et al., 2013; Fourvel et al., 2018). In light of these obser-
vations, the importance of the present study can be found in the
ability to detect these carnivorans, despite their lack of general
prevalence as taphonomic agents in many sites. Likewise, while the
present study has been unable to specify the precise agents
responsible for the smaller marks in BL-D1, the presence of smaller
carnivorans such as mustelids in the Guadix Baza region (Madurell-
Malapeira et al., 2011; Martínez-Navarro et al., 2010; Ros-Montoya
et al., 2021), suggest that they could be a plausible candidate for
these marks. Nevertheless, the possibility that other larger carni-
vorans, external to and not yet detected in this region, could have
entered the site and left marks. Finally, the presence of

anthropogenic modifications in BL-D1 cannot be ignored (Yravedra
et al., 2022a), especially considering the 9 specimens observed to
have both cut and tooth marks. While, in general, the percentages
of cut and percussion marked bones are relatively low, their loca-
tion across the appendicular skeleton indicate early access of
hominins to the animal resources at this site. Among these evi-
dence, authors have identified both filleting and evisceration ac-
tivities by human populations (Espigares et al., 2019; Yravedra
et al., 2022a). Nevertheless, a more detailed investigation must be
carried out into the nature of these alterations.

Finding direct analogies with fossil carnivorans is a complicated
process, conditioned by the fragile and incomplete nature of the
fossil record. While it is impossible to state with 100% confidence
the precise agents intervening in a site (Marean and Ehrhardt,
1995), the proposed methodological approaches can be consid-
ered a more empirical advance in identifying these agents
(Courtenay et al., 2019, 2021a; Courtenay and Gonz�alez-Aguilera,
2020). The use of computational learning algorithms has been
able to make predictions with 88.77 ± 7.49% confidence, assigning
each tooth pit to their closest modern day analogy. In light of these
calculations, as well as the assessment of Procrustes distances and
centroid sizes, this can be considered a valuable new perspective on
the interpretation of archaeological and palaeontological sites.

The original hypotheses surrounding the interpretation of the
Orce sites primarily identifies Pachycrocuta and hominins as the
sole modifiers of bones. From the perspective of carnivorans, this
theory is based on the “large size” of tooth pits (Espigares et al.,
2019). The assumption that large tooth pits are indicatory of
Pachycrocuta excludes the fact that tooth pits are often produced
accidently. Therefore, while large felids may not have been con-
sumers of bone-type nutrients, this does not imply that machair-
odontines could not have left tooth pits. Likewise, modern day lions
are not osteo or durophagic, yet still leave tooth marks (Gidna et al.,
2013). Here we have shown that the larger tooth pits of BL-D1
present a greater morphological affinity to Felidae (Proc.
D ¼ 1.125), than Hyaenidae (4.054). While it could be argued that
allometry is conditioning these results, if size is eliminated from
analyses, Procrustes distances of shape still reveal these tooth
marks to be analogous with a species of felid, over Crocuta crocuta
(Table 6). Moreover, over 50% of the present sample have been
associated with Canis mosbachensis, which are closer in
morphology to smaller canids than Pachycrocuta (Table 6). While
Procrustes distances in form space approximate these marks to
Vulpes as well, shape space highlights the affinities with Canis
(Table 6), thus enforcing our predictions. Finally, as seen in the
present sample, the majority of tooth pits analysed would fall into
the range of smaller carnivorans (Andr�es et al., 2012, Fig. 5), which
contradicts the Pachycrocuta based hypothesis.

From the perspective of inter-carnivoran competition for re-
sources, the observation that multiple carnivorans fed on the same
bone could be of great interest to taphonomic research. While a
possibility remains that some of these examples of “competition”
are misclassifications by the algorithms, the morphological

Table 6
e Procrustes distances of shape between each of the fossil carnivore species detected, and their modern day analogues. Both the Pachycrocuta and Homotherium samples
include tooth pits detected from Barranco Le�on and Venta Micena 3 (Yravedra et al. 2022b).

C. lupus L. pictus C. crocuta U. arctos P. leo P. onca P. pardus V. vulpes

C. mosbachensis 0.043 0.060 0.060 0.087 0.069 0.078 0.082 0.050
L. lycaonoides 0.082 0.092 0.101 0.109 0.100 0.112 0.120 0.116
P. brevirostris* 0.036 0.039 0.032 0.053 0.051 0.048 0.046 0.042
P. brevirostris** 0.035 0.041 0.032 0.053 0.054 0.050 0.048 0.043
U. etruscus 0.062 0.075 0.086 0.062 0.090 0.079 0.079 0.112
H. latidens 0.062 0.051 0.054 0.059 0.062 0.046 0.046 0.067
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affinities described by Procrustes distances, and differences in tooth
mark sizes, seem to support a differential classification. Future
research into the spatial distribution of these traces may help
develop our understanding of the order in which different species
intervened on carrion (Parkinson et al., 2014, 2015, 2022;
Parkinson, 2018; Mora et al., 2022).

In summary, the trophic pressure of the Orce region is of
increasing complexity, with evidence of multiple agents competing
for resources in the same region. While the most logical hypothesis
would place large felids at the top of the food chain, it cannot be
denied that both Pachycrocuta (Kruuk, 1972; Bearder, 1977; Tilson
and Henschel, 1986; Mills, 1984a & b; Henshel, 1986; Cooper,
1990; Turner and Ant�on, 1996) and hominins (Domínguez-
Rodrigo, 1999; Domínguez-Rodrigo et al., 2007), could have
played a major role in this ecosystem. From this perspective, BL-D1
can be considered a palimpsest where both carnivorans and
hominins would have had to frequently adapt to survive.

6. Conclusion

In this paper, 3D modelling, geometric morphometrics, and
computational learning were used to provide new insights into the
tooth pits observed on faunal materials at Barranco Le�on (Orce,
Granada, Spain). Regardless of the scenario, here we present
empirical data that strongly implicate the morphological affinities
between the tooth marks of BL-D1 with the genus Canis. While
errors may exist, the present study has based the identification of
fossil carnivoran species on an extensive collection of modern an-
alogues. Likewise, this study has been able to detect a number of
different carnivorans, including; canids, large felids, hyaenids and
ursids, sometimes interacting on the same bones. The most notable
carnivore to have been estimated to have intervened in BL-D1 being
Canis mosbachensis. These observations thus add to the ecological
complexity of the Guadix Baza region and highlight a more
prominent role of large canids in the southern European Early
Pleistocene.

From this perspective, the data collected can be considered a
valuable and novel reference collection for the study of extinct
carnivoran species. Nevertheless, the site of Barranco Le�on is still
under excavation, and a larger sample could be considered funda-
mental so as to provide an in depth characterization and inter-
pretation of the site.

The nature of the BL-D1 palimpsest is thus gradually appearing
to be much more complex than originally perceived, shedding new
light on the hominin populations z1.4 Ma in the Guadix-Baza re-
gion. As can be seen, a number of carnivores contributed to this
accumulation, mixing the fossil remains with those that may have
already been present. From this perspective, computational
learning and robust statistics can be considered a valuable contri-
bution to deciphering hominin activities in the taphonomic
register.
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Abstract: The early detection of Non-Melanoma Skin Cancer (NMSC) is crucial to achieve the best 

treatment outcomes. Shape is considered one of the main parameters taken for the detection of some 

types of skin cancer such as melanoma. For NMSC, the importance of shape as a visual detection 

parameter is not well-studied. A dataset of 993 standard camera images containing different types 

of NMSC and benign skin lesions was analysed. For each image, the lesion boundaries were 

extracted. After an alignment and scaling, Elliptic Fourier Analysis (EFA) coefficients were 

calculated for the boundary of each lesion. The asymmetry of lesions was also calculated. Then, 

multivariate statistics were employed for dimensionality reduction and finally computational 

learning classification was employed to evaluate the separability of the classes. The separation 

between malignant and benign samples was successful in most cases. The best-performing 

approach was the combination of EFA coefficients and asymmetry. The combination of EFA and 

asymmetry resulted in a balanced accuracy of 0.786 and an Area Under Curve of 0.735. The 

combination of EFA and asymmetry for lesion classification resulted in notable success rates when 

distinguishing between benign and malignant lesions. In light of these results, skin lesions’ shape 

should be integrated as a fundamental part of future detection techniques in clinical screening. 

Keywords: Non-Melanoma Skin Cancer; Elliptic Fourier Analysis; Shape analysis; Skin lesion 

asymmetry; clinical images; computer vision 

 

1. Introduction 

Non-melanoma skin cancer (NMSC) is one of the most common malignancies, with 

an especially high incidence rate among elderly and white-skinned populations. NMSC 

includes different pathologies, with Basal Cell Carcinoma (BCC) and Squamous Cell 

Carcinoma (SCC) being the most common. The early detection and diagnosis of NMSC 
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reduces the risk of bad prognoses, as well as the costs these pathologies entail on health 

systems due to their high incidence [1,2]. 

The first step in skin cancer diagnosis, including melanoma and NMSC, is a visual 

examination. For the detection of melanoma, the ABCDE mnemonic is a widely used tool 

[3,4], which considers the following variables: Asymmetry, Border irregularity, Colour 

uniformity, Diameter, and Evolution. In ABCDE, shape can be considered a combination 

of asymmetry and border irregularity. Other identification methodologies also include 

parameters that can be considered an important component of overall morphology, such 

as border irregularities, as presented by MacKie [5]. 

For NMSC, the dermoscopic features of its lesions are well-studied [6]. Nevertheless, 

studies taking shape into consideration are very limited, while this parameter is mostly 

evaluated in combination with others, such as lesion colour and texture [7]. 

While asymmetry is considered an important parameter for the visual detection of 

skin cancer, there is a lack of empirical data that relates the shape of the lesion to the 

probability of it being malignant. From this perspective, an objective characterisation and 

definition of lesions’ shape may not only be useful for visual examination but could also 

aid the development of more precise and non-invasive methodologies. This variable can 

additionally be integrated into more developed methodologies using images and 

Artificial Intelligence, a field of research that has been of growing importance over the last 

few years [8,9]. 

The study of morphology is of growing interest in several fields of science [10], fueled 

primarily by the integration and improvement of advanced computer vision techniques 

towards the manipulation of different types of data. Many methods exist for the study of 

morphology, varying mostly by the means in which the data are defined and extracted. 

One common approach to the study of morphology is that of Geometric Morphometrics 

(GMM) [11–13]. GMM is a growing protagonist in fields related to biology and evolution 

[10], with other interesting applications in forensic sciences [14,15] and the study of 

microscopic elements on bones [16–18]. Nevertheless, GMM analyses are often hindered 

by the definition of landmark data; landmarks are precise homologous loci, of biological 

or geometric significance, that must always be identifiable across the sample [12,19]. 

In response to this, analysts began developing a different yet closely linked approach, 

making use of Fourier descriptors as a function of shape [20–22]. The principle of Fourier 

Analyses (FA) is to describe shape as a series of periodic functions along the curvature of 

an outline [21]. From this perspective, FA overcomes the limitations presented by GMM 

approaches, providing a means of analysing forms without a strict definition of 

homologous landmarks [11,13]. This type of methodology has been employed in a wide 

array of applications, ranging from the study of leaf shapes in biology [23], 

anthropological applications [24], or even the analysis of object design over time [25,26]. 

In this study, we present a novel approach to analysing skin lesions’ shape, 

employing FA to investigate the shape of different skin lesion outlines. Thus, the aim of 

this research is to highlight the possible differences among NMSCs and benign skin 

lesions, proposing shape as a useful parameter for skin lesion classification. From this 

perspective, the data presented may provide an empirical approximation to the 

characterisation of skin lesions’ shape. 

2. Materials and Methods 

2.1. Image Dataset 

The images used for the analysis were obtained from the Dermofit Dataset [7] (Figure 

1), provided by the University of Edinburgh. This dataset has proven to be useful for the 

training of neural networks for skin lesion classification [27,28] and the segmentation of 

images via generative adversarial networks [29]. The scale of each image is unknown, and 

they were taken using a standard camera, thereby covering the visible area of the 
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electromagnetic spectrum. No dermoscopes were employed for the collection of data. The 

Dermofit dataset additionally contains a mask delimiting each lesion area. 

The original dataset consists of 10 classes, covering different cutaneous lesions. For 

the present study, the number of classes included was reduced, giving preference to well-

defined NMSC lesions, and joining benign pathologies into one class, as a distinction 

between them was not considered clinically relevant. Under this premise, this study 

analyses a total of 4 different skin lesion types: Basal Cell Carcinoma (BCC, n = 239; Figure 

1a), Intraepithelial Carcinoma (IEC, n = 78; Figure 1b), Squamous Cell Carcinoma (SCC, n 

= 88; Figure 1c), and a collection of benign lesions (BEN, n = 588), joining Seborrhoeic 

Keratosis (Figure 1d) and Melanocytic Nevus (Figure 1e). 

 

Figure 1. Example images for the different skin lesions, including BCC (a), IEC (b), SCC (c), and 

BEN: Seborrhoeic Keratosis (d) and Melanocytic Nevus (e). 

2.2. Definition of Lesion Boundaries 

To define the borders of the lesions, a combined approach was followed. First, the 

original image segmentation provided by the Dermofit dataset was considered. This 

segmentation was manually established by the medical experts who curated the dataset. 

Nevertheless, in some cases, these classifications were found to have important 

differences regarding visual segmentation (the visual appearance of lesions; Figure 2a), 

resulting in a simplification of the boundaries (Figure 2b). The expert definition of 

boundaries is considered the optimal segmentation from a medical point of view; 

nevertheless, pixel level analyses to fit these boundaries to the point of highest spectral 

change can yield a higher level of detail and precision, thus providing a more empirical 

definition of the visual shape of the lesion. From this perspective, the automated 

refinement of segmentations using computer vision-based techniques allow for a more 

reproducible segmentation of the image, while the criteria given by the dermatologist 

remains crucial. 

To obtain pixel-level segmentation, the present approach modified the manual 

technique by including an automatic computer vision technique. For this, each image was 

segmented using a k-means clustering algorithm [30] with 4 classes, defining areas mostly 

inside the pre-established boundary as a lesion, and thus refining the manual 

segmentation, based on their characteristics in the visual spectrum. Then, this was 

followed by a morphological closing algorithm [31], removing isolated areas and thus 

cleaning the segmented image to provide a single outline. This technique facilitated a 

better definition of lesion borders, especially in images where manual segmentation was 

observed to not fit well around the visual edges of the lesion (Figure 2b,c). 

The obtained lesion boundary for each image was defined by 300 points, which were 

considered enough for a detailed representation of shape (Figure 2d). 

Segmentation processes were performed using the Python programming language 

(v.3.7.6) and the OpenCV library. 
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Figure 2. Example of original image (a), lesion mask provided as part of Dermofit dataset (b), 

recalculated lesion mask using k-means clustering (c), and obtained lesion boundary (d). 

2.3. Elliptic Fourier Analyses 

Once outlines had been extracted, geometries were aligned and centered using 

variance–covariance matrices and eigenvalues. This step ensures that further calculations 

are invariant of the outline location, rotation, and origin. Outlines were also scaled using 

geometry centroid sizes as a scale factor (measured in pixels) to ensure pixel size and 

camera distance were not conditioning factors for the description of morphology. 

Centroid size was calculated as the distance from the edge to the centre (centroid) of each 

lesion along multiple points along the outline. Size features could not be further 

considered in the analyses because the Dermofit dataset does not provide a scale bar for 

each photo, which also obstructs any type of analysis of the lesion’s form (shape + size; 

[32]). After normalisation procedures, outlines were analysed using an FA approach. 

Fourier series are used to describe shapes by decomposing a periodic function into a 

sum of simpler trigonometric functions, such as sine and cosine values. These periodic 

functions can consider: (1) the distance of any point on the outline to the centroid [33], (2) 

the variation of the tangent angle for any point [33], or (3) a series of linearly transformed 

circular coordinates [34,35]. These approaches are known as Fourier Radius Variation, 

Fourier Tangent Angle, and Elliptic Fourier analyses, respectively. While each approach 

has its advantages and disadvantages, Elliptic Fourier Analyses (EFA) are more robust to 

irregularities along the outline [34,35] without the need for points to be equally spaced, 

thus enabling EFA to be easily fitted to any type of geometry. For this reason, EFA was 

selected as the most optimal approach for the present study. 

Once calculated, each of these periodic functions can then be decomposed using 

Fourier series, resulting in a harmonic sum of trigonometric functions weighted with 

harmonic coefficients. Using EFA, Fourier coefficients are divided into 4 main groups, 

labelled a through d. Coefficients a and b can be simply defined as the trigonometric 

moments around x coordinate values, while coefficients c and d define the y coordinate 

projection from circular to linear space [21,34,35]. Depending on the number of harmonics 

(n) used to describe the Fourier series, a set of coefficients—an, bn, cn and dn—can then be 

subjected to multivariate statistical analyses to empirically define each outline. 

2.4. Multivariate Statistics 

For the present study, the first 19 harmonics of the elliptical Fourier series were used 

as descriptors of skin lesions’ outlines. The optimal number of harmonics was calculated 

by estimating the cumulative power for each harmonic, with 19 harmonics representing 

up to 98.3% of the cumulative power. As is common practice in EFA, coefficients a1, b1, 

and c1 were then used to normalise data [21], eliminating any remaining influence that 

size or rotation may have on subsequent analyses. This resulted in a final dataset of 73 

morphological descriptors per individual. 

Following this, dimensionality reduction was performed across coefficients through 

Principal Components Analyses (PCA). Principal Component (PC) Scores were then 

carefully assessed to evaluate the percentage of variance represented, selecting only those 

PC scores representing up to 95% of variance. Following PCA, analyses were carried out 
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to assess the homogeneity of sample distributions using multiple Shapiro tests [36]. If 

samples were found to fit a Gaussian distribution, then subsequent analyses adopted a 

parametric approach, while non-Gaussian distributions were studied using robust 

statistical methods [8,37]. 

To assess statistical differences and similarities among groups, Multivariate Analyses 

of Variance (MANOVA) were performed. For normally distributed PC scores, the 

Hotelling–Lawley test statistic was used [38]. When normality was rejected, robust 

alternatives such as the Wilk’s Lambda test statistic were used [39]. 

Additional analyses considered the use of Mahalanobis distances. For this purpose, 

within-group covariance distributions were first calculated, and then compared with 

distances to members of other groups. Statistical assessments of distribution differences 

were performed using either univariate Analysis of Variance tests (ANOVA) or Kruskal–

Wallis tests, for Gaussian and Non-Gaussian distributions, respectively [40]. 

Changes in outline shape were visualised with the aid of transformation grids and 

warpings, computed using Thin Plate Splines (TPS) [41]. TPS grids minimise the bending 

between shapes to express changes in the relative position of points along the outline as 

the deformation of a grid. Therefore, TPS were used to fit central shape configurations for 

each of the groups separately and to visually calculate deformations when compared with 

other samples. Final calculations of outline deformations were then performed with the 

help of an isoline contour function. Additionally, oscilloscopes were used to evaluate 

changes in x and y coordinates across outlines. A trapezoidal integration was then 

computed to approximate an estimation of the area of each function (α), thus evaluating 

the smoothness of oscilloscope curves. To provide a frame of reference, a perfect 

theoretical ellipsoid was computed to have an α = 0.0. 

Considering recent criticism on the “blind” use of p-values in applied statistics, the 

present study evaluated the hypothetical results while excluding the p < 0.05 rule for 

defining “statistical significance”. In accordance with the most recent recommendations 

set forth by the American Statistician [42,43], p-values were evaluated by accompanying 

calculations of the probability of observations being a Type I statistical error, or the False 

Positive Risk (FPR) [44]. FPR values were calculated using the Sellke–Berger approach to 

define the likelihood ratio of the null hypothesis against the alternative hypothesis [45,46]. 

In general, prior probabilities of 0.5 were used for p-value calibrations, as suggested by 

Colquhoun [44,47]. Nevertheless, where possible, calibration confidence intervals were 

constructed using prior probabilities of 0.8 and 0.2 as well [8]. Throughout the study, FPR 

value calculations were only excluded for p-values over a 0.368 threshold, considering 

these values to be too high to accept the alternative hypothesis on any grounds [8]. Finally, 

a more robust p-value threshold of 0.003 was adopted as a threshold for more conclusive 

results, considering how this value is 3 standard deviations (3σ) from the mean, and 

associated with a 4.5% chance of being a Type I statistical error when using 0.5 prior 

probabilities [8]. 

All statistical applications were performed in the R (v.4.0.4) programming language. 

The R code to calculate EFA coefficients is available in the Supplementary Materials. 

Visualisations of EFA results were performed, in part, using the Momocs R library [48]. 

2.5. Asymmetry Calculations 

To empirically quantify and analyse lesion asymmetry, an index was designed and 

implemented. For each lesion, the centroid was calculated and then used to transpose 

outlines so that the x or y axis aligned with 0. Once centered, the absolute values of the 

axis in question were calculated, removing the line of “symmetry” between each value (x 

or y) and the corresponding point on the opposite side of the outline (x’ or y’). The 

Euclidean distance, d (xi, x’i), was then calculated between each point, and used to derive 

a quantitative measurement of outline displacement. An asymmetry index (a(x) or a(y)) 

was then assigned to axis x and axis y, respectively, through the root mean square 

Euclidean distance across each outline (Equation (1)); 
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The final asymmetry index for each skin lesion was calculated as the maximum index 

among the x and y axes. 

Once asymmetry indices had been obtained for each sample, samples were tested for 

normality using Shapiro–Wilk tests, and then described using either traditional or robust 

statistical approaches [8,37,49]. For traditional descriptive statistics, sample mean and 

standard deviation were used to calculate central tendency and dispersion, respectively. 

For robust statistics, these were replaced by the median and the Square Root of the 

Biweight Midvariance (√BWMV). Similarly, 95% confidence intervals were also 

constructed using a [0.05, 0.95] interquartile range. Next, distributions of samples were 

analysed for statistical differences via ANOVA or Kruskal–Wallis tests. In addition to this, 

all aforementioned Fourier analyses were then repeated incorporating the asymmetry 

index into PCA, including the calculation of multivariate differences through MANOVA 

and Mahalanobis distances. 

2.6. Machine Learning 

To test the degree of separation amongst samples, classification tasks were 

performed using machine learning techniques. Therefore, a k-fold cross-validated (k = 10) 

Support Vector Machine (SVM) with a Radial Basis Function (RBF) was used [50]. SVMs 

are customizable and flexible models that use a kernel-trick to adjust for the existence or 

inexistence of parametric components, such as normality. Thus, this kernel-trick allows 

SVMs to construct non-linear decision boundaries. The SVM is additionally characterised 

using a soft maximised-margin as a decision boundary, thus avoiding overfitting of the 

data used for training. 

SVMs were trained on 70% of data, separating the remaining 30% for testing and 

model evaluation. SVMs were mostly trained on raw PC scores, filtering only those PC 

scores representing up to 95% sample variance. For this purpose, the first experiment 

trained SVMs on PC scores obtained from EFA coefficients (Figure 3), while the second 

experiment trained SVMs on PC scores calculated when asymmetry indices were also 

included. Nevertheless, two additional experiments were also performed (Figure 3): one 

calculating the degree of univariate separability on asymmetry indices alone, and a final 

experiment appending the PC scores obtained from EFA coefficients with the asymmetry 

indices, enabling an assessment of the effect asymmetry has on classification results prior 

to a combined dimensionality reduction (Figure 3). 

 

Figure 3. Methodological workflow. 

For the selection of each SVM’s optimal cost (c) and gamma (γ) hyperparameters, 

Bayesian Optimization Algorithms (BOAs) were employed [51–53]. BOA was initialised 

using a random optimization algorithm, thus defining the prior distribution for 

hyperparameter selection [53]. This was then followed by an Expected Improvement (EI) 

BOA algorithm for 50 iterations. While Gaussian Process Upper Confidence Bound 
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(GPUCB) and Probability of Improvement (PI) selection functions were also experimented 

with, they did not provide notable differences from their EI counterpart [53,54]. 

SVMs were evaluated on test sets, taking into consideration the general balance and 

imbalance of different sample sizes within the dataset while choosing appropriate 

evaluation criterion. While the selection of lesions from the Dermofit dataset does not 

present an extreme imbalance between benign and malignant tumours (≈29:20), when 

comparing between individual samples, this imbalance increases greatly (≈97:13 in the 

worst of cases). From this perspective, the present study chose to use evaluation metrics 

less susceptible to changes in sample balance [55], namely, Accuracy, Precision, Recall, the 

F1 Score, and the Area Under the precision–recall Curve (AUC). Each of these metrics, 

except for AUC, were calculated using confusion matrices, measuring the ratio of correctly 

classified individuals (True Positive & True Negative), as well as miss-classified 

individuals (False Positive & False Negative). AUC curves were calculated on the 

probability of label association values. 

Machine learning applications were performed in the R programming language 

(v.4.0.4), primarily using the “caret” library. 

3. Experimental Results 

3.1. Elliptic Fourier Analyses 

The analyses of the skin lesion morphologies revealed border irregularity to be a 

fundamental descriptive component of mainly malignant tumours. In general, PCA 

dimensionality reduction produces a high number of inhomogeneous PC scores (Shapiro 

w = 0.86, p = 1.1 × 10−28, FPR = 2.0 × 10−24%), with the first 15 PC scores representing ≈90% 

of variance and 21 PC scores reaching ≈95% cumulative variance. The PCA plots (Figure 

4) reveal a strong concentration of benign lesions (red colour in Figure 4) in the centre of 

each dimension (median [x, y] shape space coordinates = [0.009, 0.0009]), represented by 

more circular lesions, while all three malignant samples present much higher variance 

across the shape space (√BWMV Benign = 0.094 and Malignant = 0.115). 

 

Figure 4. Principal Component Analysis (PCA) scatter plots with 95% confidence intervals 

presenting variance in skin lesions’ shape, as represented by Elliptic Fourier Analyses. 
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Morphological variance calculated through Thin Plate Spline grid warpings are presented at the 

extremity of each PC score in grey. Shape space coordinate (0,0) is represented by circular lesions 

with no border irregularities. BCC = Basal Cell Carcinoma, BEN = Benign, IEC = Intraepithelial 

Carcinoma, SCC = Squamous Cell Carcinoma. 

Upon analysing the projection and the morphological variations along the 

curvilinear abscissa (Figure 5), the oscilloscopes confirmed Benign samples to be the most 

elliptical lesions in nature (α = 0.78), with hardly any deviations from a theoretical 

ellipsoid (Figure 5). The SCC (α = 3.46) and IEC (α = 4.22) samples, on the other hand, 

appear to deviate the most along the outline, with frequent irregularities along the lesion 

borders. Interestingly, the BCC samples present a relatively smooth curve, where the 

malignant samples are of the greatest spherical nature (α = 1.06). 

 

Figure 5. Oscilloscope curves reflecting variations along the outline of each of the samples according 

to elliptical Fourier descriptors. α values represent the results obtained from computing the area of 

each oscilloscope function. Perfect elliptical outlines would be presented by smooth sinusoidal 

curves with no irregular deviations (α = 0.0). 

When analysing the differences between each of the malign lesions in comparison 

with the benign samples, the Thin Plate Splines (TPS) and isoline plots confirm these 

deformations (Figure 6), with samples such as SCC and IEC presenting distinct lateral 

constrictions. The BCC samples, on the other hand, are characterised by a more irregular-

oval shape. Overall, the isoline heatmaps reveal all the malignant samples to present 

highly localised deformations, which would indicate shape variation to be a product of 

edge irregularities, as opposed to an overall change across the entire elliptical nature of 

the lesion. From this perspective, it could be assumed that lesion asymmetry is a powerful 

conditioning factor in diagnoses of malignant and benign lesions. 
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Figure 6. Deformation grid visualisations via isoline plots, projecting each of the central 

configurations for malignant samples onto the central shape of benign skin lesions. Red areas reflect 

areas of greater deformation from benign samples. 

The multivariate quantification of the sample differences based on EFA shows that 

benign lesions frequently separate from all three types of malignant samples (MANOVA 

p = 0.002, FPR = 3.3 +/− [0.8, 11.9]%). When considering the Fourier coefficients alone, the 

separation between the Benign and IEC samples becomes a little less clear (Table 1), with 

a 5.7 +/− [1.5, 19.4]% chance of being a Type I statistical error when using MANOVA 

testing. Similarly, while the MANOVA results hint towards a possible separation among 

some of the malignant samples, the FPR calculations are too high to consider these 

observations conclusive, indicating that the malignant tumours are morphologically 

similar among themselves. 

Table 1. Multivariate Analysis of Variance (MANOVA) and Mahalanobis distance testing to assess 

the degree of statistical differences between sample outlines. BCC = Basal Cell Carcinoma, BEN = 

Benign, IEC = Intraepithelial Carcinoma, SCC = Squamous Cell Carcinoma. 

  MANOVA Mahalanobis Distances 

  BCC BEN IEC BCC BEN IEC 

BEN p-Value 0.001   9.7 × 10−47   

 FPR 1.8%   2.8 × 10−42%   

IEC p-Value 0.756 0.004  0.228 1.6 × 10−27  

 FPR - 5.7%  37.9% 2.7 × 10−23%  

SCC p-Value 0.030 0.001 0.023 0.738 2.9 × 10−22 0.292 

 FPR 22.2% 1.8% 19.1% - 2.9 × 10−10% 49.4% 

When considering the Mahalanobis distances (Table 1), the calculations reveal much 

larger differences between the sample distributions, especially when separating between 

the Benign and Malignant lesions as a whole (p = 2.5 × 10−74, FPR = 1.2 × 10−69 +/− [2.9 × 10—

70, 4.6 × 10−69]%). In this case, none of the malignant lesions appear to be similar, while 

benign lesion multivariate distributions appear to be notably separate from each of the 

carcinoma samples. 

3.2. Lesion Asymmetry 

Upon calculating the asymmetry indices for each of the samples, great differences 

emerged between the benign lesions and each of the carcinoma samples (Table 2, Figure 
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7). In most of the cases, the malignant lesions present much higher variability 

(Interquantile Range = 0.37, √BWMV = 0.093) as opposed to benign lesions (Interquantile 

Range = 0.19, √BWMV = 0.046). The differences between these samples are also of great 

importance (χ2 = 103.3, p = 2.2 × 10−16, FPR = 2.2 × 10−12 +/− [5.4 × 10−13, 8.6 × 10−12]%). When 

considering each malignant sample separately, boxplots indicate that BCC is the sample 

with the greatest degree of asymmetry (Figure 7); nevertheless, robust metrics (Table 2) 

reveal the IEC and BCC to have the same central index, with IEC presenting the largest 

robust interquartile range (BCC = 0.375, SCC = 0.400, IEC = 0.435). 

 

Figure 7. Boxplots presenting the maximum asymmetry index calculations for each of the samples. 

Table 2. Descriptive statistics for the asymmetry indices of each of the samples. For space 

restrictions, FPR values were excluded from the present table considering all p-values were far 

below the 3σ threshold. L (0.05) = Lower bound 95% confidence interval; U (0.95) Upper bound 95% 

confidence interval; √BWMV = Square Root of the Biweight Midvariance. 

 Shapiro       

 w p Min. L (0.05) Median √BWMV U (0.95) Max. 

BCC * 0.782 2.2 × 10−16 0.131 0.179 0.292 0.099 0.554 1.064 

IEC * 0.647 2.6 × 10−12 0.168 0.186 0.292 0.081 0.621 1.285 

SCC * 0.566 1.2 × 10−14 0.097 0.172 0.270 0.084 0.572 1.390 

BEN 0.616 2.2 × 10−16 0.134 0.183 0.239 0.046 0.373 1.213 

Cancer * 0.679 2.2 × 10−16 0.097 0.183 0.289 0.093 0.554 1.390 

Benign 0.616 2.2 × 10−16 0.134 0.183 0.239 0.046 0.373 1.213 

* Malignant (cancerous) samples. 

Integrating asymmetry indices into the multivariate statistical analyses produces 

similarly complex non-gaussian PCA distributions (w = 0.86, p = 1.1 × 10−28, FPR = 2.0 × 

10−24%), with ≈90% of the cumulative sample variance appearing in the first 15 PC scores 

and ≈95% in the first 21. As can be seen in the sample biplots (Figure 8), the asymmetry 

index represents the variable of greatest importance in the description of the sample 

morphology, correlating strongly with both PC1 (24.8% variance, p = 2.1 × 10−238, FPR = 3.1 

× 10−233%) and PC2 (16.6%, p = 6.5 × 10−24, FPR = 9.5 × 10−20%). 
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Figure 8. PCA biplot combining asymmetry indices with elliptical Fourier coefficients. For visual 

simplicity, only the first 5 most important variables were included in the biplot. Variables a, b, and 

d represent elliptic Fourier coefficients. 

Through an in-depth analysis of the PCA scatter plots, it was observed that the 

asymmetry index produces a notable irregular dispersion among the malignant samples 

(skewness = −3.0, kurtosis = 12.0), pushing the benign lesions into a much more 

concentrated distribution (skewness = −3.9, kurtosis = 33.8), which is better described by 

the original elliptic Fourier coefficients. 

As opposed to the calculations performed on Fourier coefficients alone, the inclusion 

of asymmetry presents a notable improvement in both the MANOVA and Mahalanobis 

results (Table 3), with all malignant lesions appearing clearly separable from benign 

lesions (MANOVA p = 0.001, FPR = 1.8 +/− [0.5, 7.0]%; Mahalanobis p = 3.6 × 10−75, FPR = 

1.7 × 10−70 +/− [4.2 × 10−71, 6.7 × 10−70]%). 

Table 3. Multivariate Analysis of Variance (MANOVA) and Mahalanobis distance testing to assess 

the degree of statistical differences between sample morphologies combining shape information and 

asymmetry. 

  MANOVA Mahalanobis Distances 

  BCC BEN IEC BCC BEN IEC 

BEN p-Value 0.001   3.6× 10—45   

 FPR 1.8%   1.0 × 10—40 %   

IEC p-Value 0.814 0.001  0.242 3.4 × 10—27  

 FPR - 1.8%  48.3% 5.6 × 10—23 %  

SCC p-Value 0.058 0.001 0.021 0.452 4.0 × 10—23 0.051 

 FPR 31.0% 1.8% 18.1% - 5.6 × 10—19 % 29.2% 
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Thus, all the multivariate statistical results conclude asymmetry to be a considerable 

component for the identification of malignant lesions, with benign lesions being mostly 

characterised by their elliptical shape and greater overall symmetry. 

3.3. Machine Learning 

The SVMs were found to successfully learn from the morphological data on most 

accounts (Table 4), with the worst performing models being univariate SVMs trained 

solely on asymmetry indices. The evaluation metrics also concur with the multivariate 

statistical results, revealing the combination of EFA data with the asymmetry index to be 

the most efficient means of differentiating between malignant and benign tumours (Table 

5). Interestingly, SVMs appear to identify benign lesions with much greater accuracy than 

malignant lesions. This is likely because not all malignant lesions present an irregular 

border, while a much greater percentage of benign lesions are found to be concentrated 

around the elliptical-symmetric portion of the shape space. Nevertheless, the true positive 

to true negative rates remain high, resulting in a fairly balanced AUC metric. 

Table 4. Overall evaluation metrics on test sets using Support Vector Machines for the classification 

of Benign and Malignant lesions. AUC = Area Under the precision–recall Curve. The combined EFA 

& Asymmetry category represents PCA dimensionality reduction techniques performed on both 

EFA coefficients and Asymmetry indices, prior to SVM training. 

Training Variables Accuracy Precision Recall F-Statistic AUC 

Asymmetry 0.690 0.646 0.447 0.528 0.696 

EFA Coefficients 0.772 0.887 0.717 0.794 0.693 

EFA & Asymmetry 0.765 0.883 0.711 0.788 0.685 

Combined EFA & Asymmetry 0.786 0.915 0.717 0.804 0.735 

Table 5. Confusion Matrix calculated on test sets using the Combined EFA & Asymmetry dataset. 

  True 

  Benign Malignant 

Predicted 
Benign 71.67% 10.53% 

Malignant 28.33% 89.47% 

4. Discussion 

A well-known feature for the characterisation of malignant and benign skin lesions 

is their shape. While most diagnostic criteria try to assess these variables as a function of 

border regularity and overall symmetry, few studies have tried to empirically quantify 

these morphological traits. The present study analyses the morphological differences 

amongst NMSC and benign lesions using Fourier descriptors and asymmetry 

calculations. To the authors’ knowledge, this is one of the first approximations to 

objectively defining these dermatological criteria using computer vision and multivariate 

statistical techniques. 

In recent years, morphological tools such as GMM and EFA have proven highly 

efficient in the evaluation of medical data. From this perspective, interesting studies have 

employed landmark-based techniques for the diagnosis and evaluation of patients with 

several diseases and syndromes. These include, but are not exclusive to, Beta 

Thalassaemia [56], Glut1 Deficiency Syndrome [57], Fetal Alcohol Syndrome [58], 

Obstructive Sleep Apnea Syndrome [59], and (though not strictly using GMM) the study 

of Down Syndrome patients [60]. Fourier descriptors, on the other hand, have been used 

to a lesser extent, with applications in ovarian tumour analysis [61], as well as the study 

of optic nerve head morphology and glaucoma [62]. The present study contributes to these 

efforts, expanding dermatological analyses to include these types of tools as well. 
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While GMM has proven to be more popular in medical analyses over EFA, this is 

likely due to the large corpus of pre-existing research using GMM in the analysis of cranial 

morphology in physical anthropology [10]. From this perspective, the definition of 

landmarks for these types of analyses are already well-defined, while post-cranial soft-

tissue research in medicine is notably lacking. Considering the difficulties that may exist 

in defining truly homologous landmarks on soft tissue, EFA presents the distinct 

advantage of being able to describe morphological data in elements where landmarks may 

not exist. Nevertheless, a fundamental component in any of these studies is the method 

though which these data are obtained. 

A correct and objective definition of skin lesions’ boundaries is a complex task, with 

most advanced techniques involving methodologies such as spectroscopy or 

hyperspectral imaging [8,29,63,64]. The task is especially challenging given the nature of 

the images used for this study, covering only the visible area of the spectrum. Similarly, 

while benign samples are composed mostly of pigmented lesions, NMSC classes often 

contain un-pigmented lesions, whose delimitation is especially complex. For this reason, 

the present study worked with a dataset of visually delimited lesions, whose boundaries 

could later be refined using K-means algorithms. From this perspective, future research 

should address the use of morphological analyses on boundaries that have been extracted 

using automated methods. These could include techniques such as those provided when 

combining multispectral or hyperspectral imagery, alongside advanced computational 

learning techniques. 

Employing image segmentation techniques on ultrasound images, a 

methodologically similar study by Martínez-Más and colleagues [61] was able to 

successfully characterize ovarian tumours, reaching up to ≈87% accuracy and an ≈0.87 

Area under the Receiver Operator Characteristic Curve. While applied to a different 

medical case study, these authors present an additional account of how Fourier shape 

descriptors and machine learning algorithms can be considered useful tools in medical 

diagnostics. 

The present study revealed notable statistical differences between benign and 

malignant skin samples, wherein most of the statistical tests appeared conclusive (FPR < 

6%). In addition, machine learning algorithms were able to reach up to 78.6% accuracy 

(AUC = 0.735). If integrated into a practical tool, combining both the use of automated 

outline extraction using computer vision techniques and the additional analyses of these 

outlines via Fourier shape descriptors, this methodological workflow could prove to be a 

powerful tool, especially at the screening stage of skin cancer diagnoses. 

Clearly, the present results reveal shape and asymmetry to be more of an indicator 

of malignancy than the type of malignancy. The results obtained within this study hint 

that all malignant cutaneous tumours are mainly characterised by morphological 

irregularities in comparison with asymmetry, while not much else can be obtained 

through the current methodology. Nevertheless, it is important to note that most 

diagnostic criteria in skin lesion research are based on a combination of variables [3–5] 

and no single variable alone. At present, the EFA approaches described herein have been 

limited to a description of pure shape, while the lack of a scale bar in the Dermofit dataset 

hinders the possibility of studying form (shape & size; [32]). Likewise, an important 

component of skin lesion diagnostics is found in colour [3–5], a variable that may be 

integrated into future analyses through more advanced computer vision techniques. 

In conclusion, this study describes a new methodological approach to the 

characterisation of non-melanoma- as well as benign-type skin lesions. Through a 

combined use of computer vision techniques, elliptical Fourier analyses, and 

computational learning, a ≈79% separation has been achieved between malignant and 

benign lesions, supported by notable statistical results (p < 0.003). Similarly, asymmetry 

has been found to be a fundamental variable in the description of cutaneous carcinomas. 

Nevertheless, future investigation should be dedicated to the analysis of more efficient 

and accurate segmentation procedures, while searching for means to integrate 
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morphological and electromagnetic information into a more robust and well-rounded 

diagnostic tool. 
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Abstract 

Geometric Morphometrics is a tool that describes morphology as a series of coordinates 
after the effects of variation in translation, rotation, and scale are removed. This can be 
further divided into the notion of shape and form, where the latter excludes the scaling 
procedure from analyses. Dimensionality reduction in geometric morphometrics is 
necessary for the representation of this data in a more simplistic feature space, while 
maintaining as much of the original variation as possible. Here we present a new 
mathematical model that can be used to enhance the quality of dimensionality reduction 
techniques such as Principal Component Analyses. Integrated into a new R library, the 
GraphGMM framework uses elements of geometric learning and graph theory to 
aggregate and embed morphological information into a new set of transformed 
coordinates, posterior to Procrustes superimposition. Using a case study of great ape radii, 
we show how embedded landmarks efficiently capture morphological information prior 
to dimensionality reduction, leading to a more efficient construction of the final feature 
space. With the help of this model, in combination with landmarks and semilandmarks, 
we have been able to detect morphological patterns in the radius midshaft that are usually 
obscured in traditional approaches based on less powerful dimensionality reduction 
techniques, or as a result of the unavailability of descriptors in certain bone portions. 
Furthermore, the application of the techniques presented here also provide more stable 
morphometric affinities among groups, regardless of the data input, which could be very 
beneficial for paleoanthropological studies in which data collection tends to be limited by 
the fragmentary nature of the fossil record. 

Key Words: Graph Theory, Neighbourhood Aggregation and Embedding, 
Dimensionality Reduction, Human Evolution, Morphology, Biomechanics. 



1. Introduction 

Morphology is a key source of information for the study of biological organisms. 
This type of data combines insights into structure and geometry in order to understand 
and classify evolutionary traits. The integration of morphological analyses has thus 
played a particular role in the field of human evolution. Nevertheless, this branch of 
science has seen a long evolution itself, with multiple innovations and debates into the 
most optimal means of capturing morphological patterns. 

Most early research into the description of evolutionary morphological traits can 
be found to work from linear measurements, known as traditional morphometrics (Rohlf 
and Marcus, 1993). From this perspective, shape was described as a series of Euclidean 
distances, and an evaluation of their ratios (Dodson, 1978; Humphries et al., 1981; 
Jungers et al., 1995, inter alia). This was closely followed by the advent of both landmark 
(O’Higgins and Johnson, 1988; Bookstein, 1991; Rohlf and Marcus, 1993), and outline 
(Rohlf and Archie, 1984; Ferson et al., 1985; Rohlf, 1986), based approaches, specialised 
more in the recovery of geometric representations and original morphologies from which 
measurements are obtained. In development of both traditional morphometric, and 
landmark based studies, Euclidean Distance Matrix Analyses (EDMA), are also based on 
the construction of pairwise matrices of distances, describing metric relationships 
between landmarks (Lele and Richtsmeier, 1991). Finally, other approaches exist and are 
under current development, such as diffeomorphism based analyses, which are landmark 
free (e.g. Avants et al., 2006; Millet et al., 2014; Beaudet et al., 2017, Braga et al., 2019; 
Urciuoli et al., 2021; Zanolli et al., 2022). 

Currently landmark based approaches are by far the most widely used with a 
variety of applications. This particular discipline within Virtual Anthropology is known 
as Geometric Morphometrics (GMM). GMMs describe shape and form through the 
digitisation of a set of anatomically, mathematically, or geometrically distributed 
homologous loci (Bookstein, 1991, 1997; Dryden and Mardia, 1998). Landmarks are 
represented as coordinates in 2D or 3D space, which are then projected onto a common 
coordinate system. This process involves the superimposition of landmarks through a 
series of procedures, including scaling, rotation and translation, based on the algorithm 
first published by Gower (1975), known as Generalised Procrustes Analyses (GPA) 
(Rohlf and Slice, 1990). GPA is thus useful for the direct comparison and visualisation 
of landmark configurations, providing a means of quantifying minute displacements of 
coordinates in space (Bookstein, 1989). 

An additional advantage of superimposed coordinates is the ability to calculate 
multivariate statistical data regarding their overall position within the configuration. A 
popular technique for analysing this type of data consists in the eigendecomposition of 
superimposed landmark coordinates (Rohlf, 1996, 2000; Klingenberg and Monteiro, 
2005).  In this context, Principal Component Analyses (PCA) are used to describe the 
major trends of landmark variation in as “few statistically orthogonal dimensions as 
possible” (Rohlf, 1996). From this perspective, linear and orthogonal relationships are 
constructed to describe slight displacements in coordinate values along the x, y, and when 
included, z axes. 



The present study parts from the hypothesis that this approach may result in the 
loss of information on the integrity of the landmark in the configuration as a whole when 
visualising this data, as we are blind to the existing relationships among multiple 
landmarks and their neighbours. While this technique is a necessary step for 
Dimensionality Reduction, and facilitates many subsequent statistical analyses, as will be 
shown in the present study, these approaches are prone to losing some structural 
information. 

The present study intends to rectify some of these issues by adapting graph 
theory for a more structurally aware visual representation of landmark data. Here we show 
that a Graph-based GMM approach is able to represent a higher degree of morphological 
variability in fewer dimensions of feature space. We additionally discuss the advantages 
of using non-linear dimensionality reduction techniques for the study and representation 
of this type of information. Finally, and as a means of testing this mathematical model, 
we use Graph-based GMM to analyse the morphological variability of modern day great 
ape radii, with implications for the analysis of biomechanical traits in evolution. 

 
 

2. Methods 

2.1. The GraphGMM R library 
 
 All of the methods described in the present paper have been implemented in the 
R programming language, compatible with R v.3.0 and R v.4.0, and are available from 
the corresponding author’s GitHub page (https://github.com/LACourtenay/GraphGMM). 
A detailed description of the library, alongside instructions and a guide to its installation 
and usage, have also been provided as supplementary materials (Sup. Files 1 & 2).  
 

2.1.1. Mathematical Model: Graph-based Geometric Morphometrics 

The mathematical model described in this study proposes a means of embedding 
landmark configurations into a new geometrically and structurally-meaningful feature 
space, prior to dimensionality reduction. The goal of information embedding is to map 
data into a new ℝk feature space, with k being the number of dimensions, such that entities 
that are structurally similar are embedded closer together (Hoff et al., 2012; Grover and 
Leskovec, 2016; Hamilton et al., 2018; Leskovec, 2019). For this purpose, we use a 
message passing mechanism for neighbourhood aggregation (Fig. 1a). In the context of 
GMM, this can be adapted as a means of mapping landmark configurations into a new 
feature space, such that similarity in the embedded feature space approximates similarity 
in biological and geometrical structure (Fig. 1b). This proximity in the new feature space 
can be considered a means of revealing landmark homophily (Fortunato, 2010; Yang and 
Leskovec, 2014), as well as structural equivalence (Henderson et al., 2012), in the global 
context of the entire configuration (Fig. 1c). 



 
Figure 1 – Graphic visualisation of the core concepts behind Graph-based Geometric 
Morphometrics. (A) The message passing mechanism used to represent each node v as a function 
of itself and its neighbours (u). (B) The core concept that the distance between landmark 
configurations (d(X’i,X’j)) in the embedded feature space approximates similarity in geometric 
structure. (C) A visual representation of similarity matrix constructions, representing each 
landmark configuration as a matrix of similarity measurements, such as cosine similarities, 
between landmark vertices in the embedded feature space. 

 
Let each set of landmarks (LM) be represented as a series of vertices LMv ∈ V, 

with neighbours LMu, connected by a series of undirected edges in a computational graph 
G. LMs should also be connected through a self-looping edge. Each configuration of G 
can thus be represented as an adjacency matrix A ∈ ℝp× p, with feature matrix X ∈ ℝp× k of 
Procrustes superimposed landmark coordinates, where p is the number of landmarks, and 
k is the number of dimensions. Landmarks can then be embedded using a message-
passing mechanism (eq. 1, Fig. 1a), similar to those proposed by Kipf and Welling (2017); 
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where )1( m
iv ∈ ℝX are the node features of node i in layer (m-1), with each node j and i ∈ G 

being connected by an edge ej,i ∈ ℝK. 
The definition of ej,i can be computed in a number of ways, either by the use of 

biological data (sensu Adams, 1999), or using vertex spatial distributions (see Section 3 
and Supplementary File 1). The spatial attributes of a given landmark in layer m can thus 
be redefined by aggregating the spatial attributes of neighbouring landmarks in layer m-
1, with the landmark’s own spatial attributes, and N being the neighbourhood of 
landmarks (Fig. 1a). F (eq. 1) is a differentiable, permutation invariant function that 
convolves freely over G (Kipf and Welling, 2017; Wang et al., 2019). In this application, 
let F be (eq. 2); 
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which can be simplified using adjacency matrix A, identity matrix IN of A, feature matrix 
X, and the landmark degree centrality D ∀ v ∈ G, to embed landmarks X’ into a new 
feature space (eq. 3-5); 
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Through this, the neighbourhood of a node (v) is computed using the square root 

of the identity matrix to normalise the effect of highly central landmarks in the context of 
G (Kipf and Welling, 2017). 

The convolutional operation across G is calculated by (eq. 6-8); 
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where z is the output of each prior embedding in layer h (sensu Bruna et al., 2014), with 
LMi’ ∈ G now being represented by feature matrices X’ in a new ℝk feature space. From 
this perspective, the attributes of neighbouring landmarks can be passed through the 
computational graph in a series of convolutional steps. With a single pass, LMi’ is now a 
function and representation of its own attributes, as well as the attributes of neighbouring 
vertices (Fig. 1a).  

Once projected into the new feature space, landmark configurations can be 
represented in two different ways; (1) using the raw embedded landmark coordinates, or 
(2) in terms of a similarity matrix (Fig. 1c). The first representation can be processed 
using eigendecomposition to visualise patterns in a similar way to traditional GMM 
approaches, with the new PCA feature space presenting the added advantage of 
preserving more geometrical and structurally meaningful data from the feature matrix. 
The second representation, on the other hand, assess and quantifies the degree of 
landmark homophily and structural equivalence, by computing the proximity of 
landmarks in the embedded feature space (Grover and Lescovec, 2016; Hamilton et al., 
2018). The most common means of calculating this is through the cosine distance (eq. 9), 
between landmarks X and Y; 
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This results in a distance value between [0, 1], with 1 describing structurally 

similar landmarks. 
The resulting representations can then be flattened into vectors and processed 

using different dimensionality reduction techniques. Nevertheless, each approach results 
in different sized matrices (eq. 10, 11), which may prove computationally expensive to 
process. From this perspective, the embedded landmark configurations will result in 
vectors equal in size to those used in traditional GMMs (eq. 10); 
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while similarity matrices result in vectors of exponentially increasing sizes (eq. 11); 
 

2

2 pp

x


R        (11) 
 

As opposed to Representation and Geometric Learning applications, where an 
additional complexity is required in formulae (eq. 1, 2, 6-8) to ensure generalizability 
(Bronstein and Kokkinos, 2010; Bruna et al., 2014; Henaff et al., 2015; Bronstein et al., 
2017; Kipf and Welling, 2017; Murphy et al., 2019; Wang et al., 2019; Xu et al., 2019), 
the use of Procrustes-based feature matrices as input simplifies the message passing 
mechanism in a number of ways. Firstly, the laws behind landmark homology ensures a 
standardised topological structure across graphs, while graph size also remains constant 
(Bookstein, 1990, 1991; Rohlf, 1996; Dryden and Mardia, 1998). Secondly, Procrustes 
superimposition procedures remove the need for F to be invariant to vertex rotation and 
relative position, as Generalised Procrustes Analysis (GPA) already ensures this. Finally, 
due to points 1 and 2, dataset sizes are no longer as large an issue as no learnable 
parameters are needed to optimise graph embeddings. 

It is also important to point out that the depth of convolutions across graphs is 
not analogous with the concept of “depth” in computer vision (Henaff et al., 2015). While 
graph- and image-based convolutions are similar in how their receptive field captures 
neighbouring nodes or pixels, as opposed to computer vision, the depth of a graph 
convolution is dependent on the total number of nodes in the graph (i.e., the diameter of 
G). From this perspective, a single convolution represents the neighbours of a vertex, as 
well as the vertex itself. A second convolution will then represent the neighbours of the 
neighbouring vertices, as well as the vertex itself (Fig. 2). As we increase the number of 
convolutions, the embedded feature space will capture more information from vertices 
further across the graph, which may not be relevant to the vertex itself. In light of this, 
graph-based convolutions are typically restricted to a few convolutions (typically between 
two and five), while convolving beyond the natural diameter of the graph is theoretically 
superfluous. 



Additionally, the embedding process can also be considered an approximation 
to a non-linear exponential transformation (see proofs for Theorem 1, Sup. File 3), yet 
remains in Euclidean space. In that sense, the first convolution produces a linear 
transformation of coordinates into a new embedded coordinate space, while subsequent 
convolutions produce a gradually non-linear transformation. 

While this transformation can be considered increasingly “non-linear” with each 
convolution, coordinates still lie in a Euclidean feature space. From this perspective, 
performing PCA on the embedded shape variables will still produce a feature space of 
structural variables that present a linear relationship with the original Procrustes 
coordinates. Therefore, linear models can be used to predict landmark coordinates, 
facilitating the visualisation of morphological patterns across the feature space using 
methods such as Thin Plate Splines (TPS; Bookstein, 1989). 

It must be noted that the use of embedded landmarks or cosine-similarity 
matrices present both advantages and disadvantages. The cosine-similarity approach is 
theoretically similar to Euclidean Distance Matrix Analysis (EDMA), in that pairwise 
relationships are described without the need for superimposition (Lele, 1991; Richtsmeier 
et al., 1992). Nevertheless, as pointed out by O’Higgins and Dryden (1993), as well as 
Rohlf (1996), this results in a large increase of variables (eq. 11), and a loss of reflection 
information. The Graph-based GMM approach overcomes the latter point by deriving 
matrices from Procrustes data, while cosine similarity is used as a means of measuring 
homophily, not distance. In addition, the use of the cosine as a metric for measuring 
similarity is theoretically and mathematically more adept to the characteristics of shape 
space (Slice, 2001). Nevertheless, the size of similarity matrices can still prove to be 
computationally expensive for models with high numbers of landmarks. 
 

 
Figure 2 – Graphic visualisation of the message passing mechanism after three convolutions 
across a set of landmarks placed on the proximal epiphysis of a chimpanzee radius. Landmark 13 
(LM13) can thus be represented as a function of itself, and its neighbours (u). 

 
 
 
 



2.1.2. Mathematical Model: Kernel-PCA Dimensionality Reduction 
 
 The process of embedding landmarks is useful for the compression and 
representation of geometric information. Feature matrices can then be subject to 
dimensionality reduction, such as eigendecomposition. The present study discusses three 
main dimensionality reduction techniques that can be applied to; (1) the original landmark 
data, (2) the embedded landmark data, as well as the (3) embedded cosine-similarity 
matrices. These include; (1) traditional linear Principal Component Analyses (PCA), via 
single value decomposition; and (2) an adaptation of PCA (kernel-PCA) for the 
description of non-linear relationships using kernel functions (Schölkopf et al., 1998). 
 Traditional GMM applications use PCA as means of representing multivariate 
relationships efficiently (Rohlf, 2000; Klingenberg and Monteiro, 2005). Nevertheless, 
PCA is a dimensionality reduction technique that works by finding linear and orthogonal 
relationships, thus proving to be statistically parametric in nature. As is common-
knowledge, statistical normality and linearity is not always present in real-world 
applications (Diaconsis and Freedman, 1984), implying that PCA may not be the most 
efficient means of representing certain types of data. 
 Let each individual landmark configuration be represented as a vector x

 in dataset 
X, with features {xi,1, …, xi,n}. The objective of PCA originally would be to calculate the 
covariance matrix of a centred and scaled version of X, followed by the 
eigendecomposition of this matrix. This transformation is linear in nature. Nevertheless, 
non-linearity can be imposed prior to decomposition through the use of kernel functions, 
(xi, X:, n) (Bishop, 2006). 
 Many kernels exist for the non-linear transformation of data, almost all of which 
are computed considering the spatial proximity of each point with the rest of X. From this 
perspective, we define Δ as the distance between each point with the rest of the 
observations in each dimension; xi – X:,n . Once Δ has been defined, the kernel 
transformation of each individual can be defined through each of the kernels described 
by; 
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where equation 12 is the Gaussian kernel (Rahimi and Recht, 2007), equation 13 is the 
Laplacian kernel (Rahimi and Recht, 2007), equation 14 is the Polynomial kernel 
(Bishop, 2006; Cortes and Vapnik, 1995), equation 15 is the Radial Basis Function kernel 



(Bishop, 2006; Cortes and Vapnik, 1995), equation 16 is an adaptation of the Spline 
kernel (Gunn, 1998), and equation 17 is an adaptation of the Cauchy kernel (Rahimi and 
Recht, 2007). 
 Considering how there are multiple means of describing non-linear relationships, 
the majority of these functions are dependent on a hyperparameter (α, d, γ), defining the 
degree of the transformation. Values approaching 0 thus imply an increasingly linear 
transformation (Fig. 3). Equations 16 and 17 are yet to be adapted into tuneable non-linear 
functions in the present line of research. Nevertheless, a trainable version of the Cauchy 
kernel (eq. 17) does exist in neural-network applications (Rahimi and Recht, 2007). 

Once coordinates are projected into the new feature space, PCA is performed for 
the extraction of final eigenvectors and eigenvalues.  
 

 

Figure 3 – Graphic demonstrations of the types of non-linear transformations that can be 
performed using Kernel functions prior to dimensionality reduction. 

 
2.1.3. Additional Reflections on Graph Theory 
 
 The advantages of representing GMM data as a set of graphs goes beyond 
embedding and dimensionality reduction techniques for ordination. Graph theory presents 
numerous possibilities for the analysis of landmark configurations as a whole, once 
transformed into a connected graph. From this perspective, metrics such as Eigenvector, 
Betweenness and Degree centrality calculations can indicate landmark importance in the 
context of N, and more importantly G. These metrics have been found to be particularly 
important in defining the degree of transformation observed during embedding processes 
(see proofs for Theorem 1, Sup. File 3). Likewise, landmark community detection using 
different algorithms (e.g., the Louvian algorithm: Blondel et al, 2008), can be used for a 
more automated and empirically defined modularity analyses (Klingenberg, 2009). 
Finally, the representation of data as a structured graph can be considered a valuable 



contribution to morphological visualisation techniques, alongside other approaches (some 
similar), proposed by Bookstein (1978, 1989), O’Higgins and Dryden (1993), among 
others. 
 

2.2. Sample 
 

The present study demonstrates the applicability of Graph-based GMM using 
three open-source case studies, available from the geomorph (v.4.0.2; Adams et al., 2021) 
and shapes (v.1.2.6; Dryden, 2021) R libraries. These include the graph-based analysis 
of; (1) 167 large primate skulls described using 2D 8-landmark models, originally 
presented by O’Higgins and Dryden (1993); (2) 40 Plethodon jordani and Plethodon 
teyahlee heads described using 2D 12-landmark models, originally described by Adams 
(2004, 2010); (3) 18 Macaque skulls described using 3D 7-landmark models, originally 
described by Dryden and Mardia (1998). In each of these case studies, Supplementary 
File 1 presents how graph embeddings can be used in replicable case-studies, 
demonstrating a number of different techniques for Graph-based GMM. 

 

 In case study 1, we show how Graph-based GMM is able to describe greater 
morphological variability across multiple PC scores, while the use of cosine-
similarity matrices reveals a new source of information for the description of 
morphological variability. 

 In case study 2, we show the different possible techniques available for the 
conversion of landmark data into graphs, as well as the different patterns these 
techniques may reveal. 

 In case study 3, we show how these techniques are applicable to both 2D and 
3D data, as well as the statistical differences that can be revealed when using 
kernel-PCA approaches. 
 

Additionally, for the purpose of the present study, 3D models of 84 modern great 
ape radii, including chimpanzees (n = 20), gorillas (n = 17), orangutans (n = 17) and 
anatomically modern humans (n = 30), were analysed using the mathematical models 
provided in the GraphGMM library. The materials used in this study come from different 
open-access online archives (e.g., MorphoSource, KUPRI, NMDID), where either the 
raw CT data, or the rendered 3D volumes from the CT files, are available (see Table S1 
in Sup. File 4 for further details).  

Image data were processed based on the available information to generate 3D 
meshes of the external surface of the radii, including volume cropping, segmenting, 
rendering, translation and mirroring when necessary. For this purpose, the morphomap R 
package (Profico et al., 2021), and Avizo software (Solid Works, Visualisation Sciences 
Group, USA), were used. 

Radii were landmarked in two steps using the EVAN Toolbox (http://evan-
society.org/). First, 41 fixed anatomical landmarks (Fig. 4) were identified following 
previous works (Pérez-Criado and Rosas, 2017). Most of these points are located on the 
epiphyses (Table S2 in Sup. File 4). A net made of 160 points (10 fixed landmarks and 



150 sliding semilandmarks) was then projected and slid along the diaphysis, covering 
from below the radial tuberosity to the proximal point of the sigmoid notch (Fig.4; see 
Sup. File 4 for further details). The sliding process proposed by Bookstein (1991, 1997) 
based on the TPS formalism was used to minimise the bending energy between a 
calculated mean specimen used as reference and the rest of the sample through repetitive 
sliding of all semilandmarks simultaneously. The application of this technique accounts 
for local shape deformation using a mathematical model that interpolates the space found 
between two sets of homologous landmarks as smoothly as possible. The sliding process 
is constrained by the adjacent fixed landmarks and semilandmarks that act as starting 
point for the sliding algorithm (Gunz and Mitteroecker, 2013; Mitteroecker and Gunz, 
2009). The sliding process was repeated five times per specimen in order to get the best 
minimisation of the bending energy. 

 
Figure 4 – (Left) Example of both fixed (red) and sliding semilandmarks (black) placed on an 
example of an Anatomically Modern Human radii, alongside the constructed graph using pivot-
ball triangulation (Right). 

 
Once digitised, landmarks were superimposed using full GPA both in shape (with 

scaling) and form (without scaling), producing a set of orthogonally projected Procrustes 
coordinates. An experiment was also performed excluding semilandmarks, however the 
majority of this study includes them. For graph construction, we used a pivot ball 
triangulation algorithm (radius ρ = 25.5: Bernardini et al. 1999) on the median shape and 



form configuration, using triangulation so as to compute landmark relationships spatially. 
The characteristics of each of the computed graphs are explained in Table 1. Graphs were 
then embedded using two convolutions. The resulting landmark embeddings were used 
for dimensionality reduction, according to the optimal means of representing this type of 
data. Experiments were performed calculating both linear and kernel PCA on the original 
Procrustes coordinates (here referred to as Original PCA), landmark embeddings, and 
similarity matrices. 
 

Table 1. Descriptive statistics and characteristics of landmark graphs in shape and form, 
while including or excluding semilandmarks. 

 
 Landmarks & 

Semilandmarks 
Landmarks 

 Shape Form Shape Form 
Graph diameter 23 22 4 4 
Clustering coefficient 0.394 0.393 0.474 0.483 
Graph Density 0.032 0.031 0.121 0.115 
Mean LM degree 6.45 6.35 4.83 4.59 

 
 

3. Results  
 

Initial observations of PCA distributions reveal sample scattering among the 
different approaches to present more pronounced differences in shape space (Fig. 5), as 
opposed to form space (Fig. 6). This is likely due to the weight allometry has on the first 
principal components in any GMM analysis (Jungers et al., 1995), and the influence 
Centroid Size has on the apparition of the Pinocchio effect (Klingenberg, 2021, inter alia; 
Fig. S13 and proofs for Theorems 1 & 2, from Sup. File 3). Sample distributions are 
relatively stable across reduction techniques in shape space, including degrees of 
overlapping among samples, and the established variational relationships among groups. 
From this perspective, chimpanzees and gorillas slightly overlap on all accounts, while 
AMH and orangutans constitute their own independent clusters. AMH and orangutans 
only present a slight overlap in the highly explanatory Polynomial Graph-based PCA 
(Fig. 5). Despite certain differences in general robusticity and straightness of radii, the 
majority of morphological changes expressed by PC1 tend to be relatively stable, with all 
types of PCA representing similar traits. 
 



 
Figure 5 – Examples of the three different Dimensionality Reduction results in shape space using 
traditional Principal Component Analyses in Geometric Morphometrics, as well as linear and 
non-linear Graph-based Principal Component Analyses to analyse the radius morphology in great 
apes using anatomical landmarks and sliding semilandmarks. Changes in shape space are 
visualised across the extremities of PC1. AMH = Anatomically Modern Human, C = Chimpanzee, 
G = Gorilla, O = Orangutan. 
 

 
Figure 6 – Examples of the three different Dimensionality Reduction results in form space using 
traditional Principal Component Analyses in Geometric Morphometrics, and linear and non-linear 
Graph-based Principal Component Analyses, to analyse the radius morphology in great apes using 
anatomical landmarks and sliding semilandmarks. Changes in form space are visualised across 
the extremities of PC1. AMH = Anatomically Modern Human, C = Chimpanzee, G = Gorilla, O 
= Orangutan. 



 
The largest differences among analyses, however, can be observed in 

dimensionality reduction performance. The original PCA-based method explains slightly 
more than 50% of the total variance along the first two PCs, whereas the Graph-based 
technique on the embedded data (64.1%), and the non-linear Graph-based PCA on the 
cosine-similarity matrices (74.1%), using a polynomial kernel (d = 10), are able to 
increase the amount of variance contained in the first two components. The original PCA 
reaches the same percentage of variance explained in the linear and non-linear Graph-
based versions of the PCA in the first three and five PCs, respectively. Graph-based 
methods also imply a considerable reduction of morphologically significant variables 
(Fig. 7), particularly in the non-linear version of the analysis, where significant 
explanatory power is provided by just one PC.  
 

 
Figure 7 – Plots describing the percentage of morphological variance represented across Principal 
Component (PC) Scores using each of the different techniques. (A) Comparisons of percentage 
of morphological variance explained by PC scores and the percentage of morphological variance 
explained by chance after 10,000 permutations. FPR = False Positive Risk. (B) Percentage of 
cumulative morphological variance in PC1 and PC2 when performing PCA on the original 
landmarks, the embedded landmarks, and the similarity vectors, after different numbers of graph 
convolutions. 

 
Form PCAs do not vary that extremely in terms of explained variance in PC1 

versus PC2 space, although a slight increase in explanatory power can be observed in the 
two Graph-based methods. This is especially relevant when comparing the original PCA 
with the graph-based PCA, where PC1 presents an increase by 3.9%. Thus, contrary to 



the results in shape space, linear approaches on embedded data in form space provide a 
better reduction of morphologically significant variables than the non-linear Graph-based 
PCA using a Laplacian kernel (α = 5000). In general, graphical sample distribution is very 
similar regardless of the dimensionality reduction technique, with orangutans and AMH 
being clearly separated in form space, while chimpanzees and gorillas tend to slightly 
overlap when larger percentages of variance are considered. Differences in the 
morphological variance expressed by PC1 are more pronounced in the non-linear Graph-
based PCA, where the slenderness and straightness of the radius is more marked towards 
the positive extremity of PC1, as opposed to a more robust radius towards the negative 
extremities, where AMH are located (Fig. 6). PC1 in the original and linear Graph-based 
methods do not only account for a larger percentage of form variance than PC1 in the 
non-linear Graph-based method, but also contain more similar morphological features, 
that diverge from the extremely slender and straight representation of the radius in the 
Laplacian approach, by providing a slightly more curved, less slender midshaft portion, 
and a more angled-positioned distal epiphysis towards the positive PC1 axis end. 

When considering PCA biplots (Fig. 8), so as to understand the specific variables 
conditioning sample distributions, traditional PCA reveals shape space to be conditioned 
strongly by displacements in the y coordinates of landmarks 1, 4, 10, 21 and 22. This is 
relevant considering landmarks 1 to 10 are located on the head of the radius, while 
landmarks 21 and 22 delimit the proximal and distal extremes of the pronator teres 
attachment (Fig. 8). In the non-linear Graph-based PCA, sample distributions are 
determined by the structural relationship between pairs of landmarks. The most 
significant pairs contain landmarks located in the midshaft of the radius (see Table S2 in 
Sup. File 4), of which structural relationships are more significant in the human radius 
(Fig. 8). Landmark 77 plays a pivotal role, and its structural relationship with the rest of 
the landmarks seems to be particularly relevant, seeing how the established links are 
equally important in defining each specimen’s position along the first two PCs. On the 
contrary, in original PCA space, eigenvectors y21 and y22 seem to play a major role in 
morphological variance along PC2, whereas differences in the head of the radius are 
represented by eigenvectors y1, y4 and y10, carrying almost the same weight along PC1. 
 



 
Figure 8 –PCA biplots comparing (Left panels) dimensionality reduction performed on the 
original landmark data, and (Right panels) the best performing Graph-Based PCAs. 3D models 
represent the calculated median configurations for each group. AMH = Anatomically Modern 
Human, C = Chimpanzee, G = Gorilla, O = Orangutan. 

 
Such differences are also palpable when great ape groups are compared in pairs 

(Fig. 9, Fig. S2 in Sup. File 4), though in most cases differences tend to be subtle, with 
the non-linear Graph-based approach providing more marked differences among the 
sample as a result of a more effective compression of information. Most differences are 
assembled on the proximal and distal portions of the bone, especially in the head and neck 
of the radius, the radial tuberosity, the sigmoid notch, the scaphoid, and the styloid 
process. Many of the differences are not only related to changes in relative proportions 
(e.g., distance between the head and the radial tuberosity), but also in the orientation and 
location of certain osseous landmarks (e.g., the angle of the sigmoid notch relative to the 
bone’s longitudinal axis, the position of the radial tuberosity relative to the interosseous 
crest). Although the diaphysis presents less abrupt changes, important differences in 



curvature and width are observed among groups. Morphological differences along the 
shaft are variably marked based on the PCA approach (as expected from the results in 
Fig. 8), though in general terms midshaft curvature degree along the posterior view 
presents the most notable changes on the diaphysis. In certain cases, however, important 
differences are also observed in the distal diaphyseal portion (e.g., when comparing 
orangutan versus gorilla). 

 
 

 
Figure 9 – Calculations of the differences between mesh warpings when predicting median shape 
changes using traditional Geometric Morphometrics (Upper) and cosine-similarity matrices 
(Lower). Heat maps indicate areas where mesh warpings differ from the original Thin Plate Spline 
prediction (red = positive deformations, blue = negative deformations). AMH = Anatomically 
Modern Human, C = Chimpanzee, G = Gorilla, O = Orangutan. 

 
As expected from the homogeneity observed across form PCA biplots in Figure 

6, the exploratory power of morphological features underlying variance in PC1 versus 
PC2 form space are also similar, with displacements in singular coordinate values located 
in the distal (y39, y35; y31, y40) and proximal (y1, y4, y10; y3, y8, y11) epiphyses, 
conditioning sample scattering along PC1. This structure is clearly associated with the 
importance of size in form space, in this occasion mainly related to differences in length, 



with orangutans presenting the longest radii in opposition to AMH, who have the shortest 
radii among modern great apes in relative and absolute terms. 

When the morphology of the radii in different great ape groups is analysed by 
means of fixed anatomical landmarks (most of them situated on the proximal and distal 
epiphyses), more strongly marked changes in shape space can be observed depending on 
the dimensionality reduction technique (Fig. 10). The traditional GMM approach results 
in a biplot that does not resemble those seen in Figure 5, but instead presents different 
clustering patterns, with AMH clearly separated from nonhuman great apes, and 
orangutans and gorillas overlapping with chimpanzees, which fall right in between the 
former groups. On the other hand, Graph-based PCAs show a sample distribution that 
resembles those seen in Figure 5 across all PCAs, with four distinct clusters slightly 
overlapping in pairs formed by AMH and orangutans, on one side, and chimpanzees and 
gorillas, on the other side. Hence, Graph-based PCAs, apart from achieving a more 
comprehensive two-dimensional graphical representation of morphological variance, 
tend to be more stable regardless of the data input. Traditional GMM PCAs, on the other 
hand, are more volatile and dependent upon the availability on morphological 
information. When comparing the warped surfaces using both methods, differences are 
most noticeable in the way of capturing changes in diaphyses (Fig. 5). 
 

 
 
Figure 10 – Dimensionality reduction on fixed anatomical landmarks using; (A) traditional PCA 
in Geometric Morphometrics and (B) linear Graph-based PCA. Changes in shape space are 
visualised across the extremities of PC1 and PC2. AMH = Anatomically Modern Human, C = 
Chimpanzee, G = Gorilla, O = Orangutan. 

 
Differences in PCA performance based on the technique are not that evident in 

form space (Fig. S3 in Sup. File 4), though great ape groups appear to be graphically 
closer in the highly explanatory PC1 versus PC2 space resulted from the Graph-based 
technique (99.32%). Separation between groups in form space is less marked when 
semilandmarks are not considered, regardless of the approach. Once again, this is proof 
of the weight size has on the type of information represented in each type of PCA. 



Finally, experiments adjusting the number of convolutions represented in Figure 
S4 (Supplementary File 4) show how adjusting this parameter can fine tune the 
visualisation of regional or global structural features as convolutions increase. In the case 
of the present study, just 2 convolutions is sufficient in capturing a large percentage of 
morphological variance, however other studies may wish to weight their feature spaces 
according to the research questions at hand. 
  
4. Discussion 
4.1. Graph-Based methods in Geometric Morphometrics 
 

Dimensionality Reduction (DR) techniques are an extremely useful tool in data 
science for a more efficient representation of information. They are additionally 
frequently used as a means and basis of pattern recognition (Bishop, 2006). PCA is an 
essential means of performing DR in GMM, as it extracts vectors from a large set of 
variables (eq. 10), that allow for the compression of information into fewer dimensions. 
This additionally maintains the Procrustes distances between the different specimens, 
accounting for as much of the original variation as possible. The objective of DR in GMM 
should therefore be to compress information into as little and as meaningful dimensions 
as possible, presenting a more manageable dataset describing morphological, structural, 
biomechanical and evolutionary patterns, as well as providing a direct means of testing 
hypotheses regarding this data. 

Eigendecomposition reduces matrices into constituent parts which successively 
explain decreasing proportions of the total variance. This orthogonal projection of data 
onto a lower dimensional principal subspace also has the additional function of 
normalising data, however this does not necessarily guarantee a Gaussian feature space 
(Diaconsis and Freedman, 1984). In most cases, this technique is used to extract the most 
relevant information from a dataset in the form of the first few PC scores of PCA, thus 
removing any residual noise that may impede more complex analyses. Nevertheless, the 
elimination of the “least important” PC scores often raises concerns, as no unique 
accepted rule exists for this selection (Jolliffe, 2002). In many types of analyses, the first 
few PC scores may not explain all of the necessary variance to capture true morphological 
patterns. The only exception to this is if a strong distinctive feature is existent, such as the 
variable size. However, in these cases, form feature spaces are mostly biased, with the 
first PC being explained almost exclusively by size, with little explanatory power in terms 
of shape. 

The present study parted from the hypothesis that traditional approaches to DR in 
GMM result in the slight loss of information in higher dimensions of principal subspace. 
In general, the majority of the feature spaces described in this study seem to prove this 
hypothesis, as almost all graph-based approaches describe higher levels of variance in 
just two PC scores as opposed to other methods. If we consider the type of information 
represented in PCA biplots derived from coordinate data, most trends appear to be 
analysed in terms of slight displacements of single coordinate values in only one 
dimension (e.g., the most important variable of the first panel of Fig. 8 is the movement 
of LM22 along the y axis). Our original hypothesis considered this to be a poor 



representation of the landmark configuration as a whole, as this single eigenvalue loses 
sight of how a singular displacement may affect the point’s neighbours. Nevertheless, it 
could also be argued that this statement is an oversimplification of the problem at hand. 

The displacement of even a single landmark, no matter how small, will have a 
consequent effect on the entire configuration during superimposition procedures. This, in 
part, is a product of a phenomenon known as the Pinocchio effect (Chapman, 1990; 
Walker, 2000; Hallgrimson et al., 2015; Klingenberg, 2021; Supplementary File 3; 
Theorem 1 & 2). From this perspective, it can be argued that variations in morphology 
cannot be ascribed to an individual landmark, but more to the relationship between the 
landmarks (Klingenberg, 2021). This is due to how landmark displacements consequently 
adjust the position of the configuration’s centroid as well, resulting in a change not only 
in the point of reference for superimposition procedures, but also in centroid size 
(Supplementary File 3, Theorem 2 & 3). Nevertheless, while this is true during Procrustes 
analyses, the moment this information is subject to PCA, the constructed feature space 
loses sight of these processes. 
While the objective of any multivariate analysis is the evaluation of multiple variables, 
and no single PC score alone, the embedding procedures described here are more likely 
to encode inter-landmark and global relationships prior to PCA (Supplementary File 3, 
Theorem 3). The embedding procedure is thus able to capture geometric properties of 
coordinate data, prior to any type of GMM analyses (Supplementary File 3, Theorem 3). 

Finally, it is common knowledge that few real-world cases comply with the 
assumptions made by parametric statistics. The present study has attempted to present 
just some of the methods available for analysts to extract and visualise non-linear 
relationships from morphological data. In most cases, non-linear PCAs have additionally 
proved to present the most efficient means of DR, representing the highest degree of 
morphological variance. The only downside is the possible “subjective” nature of 
selecting and fine tuning a kernel function for these purposes. 
 
4.2. The link between form and function in the radius of extant great apes 
 

From a locomotor point of view, modern great apes could first be split into two 
groups: (1) humans and (2) nonhuman great apes. Humans are characterised by 
possessing an  upper limb free from locomotor impositions, while in the latter group the 
arm, forearm and hand are involved in day-to-day locomotion, although to different 
extents and in different ways. In fact, there are two main patterns among nonhuman great 
apes that also help distinguish between extant African and Asian great apes: the larger the 
body mass, the less arboreal are great apes, as in gorillas; while the more arboreal, the 
more elongated is the upper limb, especially the forearm, as in orangutans. 

Most anatomical specialisations shared among great apes are concentrated on the 
trunk and upper limbs, in response to the requirements imposed by positional and 
locomotor behaviours, as well as the acquisition of food that might appear differently 
dispersed in the landscape (Aiello, 1981; Fleagle, 1998; Larson 1998; Young, 2003; Hunt, 
2016; Schmitt et al., 2016). Such shared features have been originally associated to 
suspensory behaviours between discontinuous supports that, nevertheless, encompass a 



wide range of locomotor patterns and thus require different adaptations (Hunt, 1991; 
Fleagle, 1998; Ward, 2007). Terrestrial locomotion is also important among great apes. 
Not only humans move on the ground, but also nonhuman great apes have developed 
particular ways of dealing with the stresses imposed by terrestrial locomotion, and 
through adopting different quadrupedal strategies (Tuttle, 1967, 1969; Susman, 1974; 
Doran, 1992; Schmitt et al., 2016).  

Orangutans present extreme specialisations (e.g., very long forelimbs, hook-like 
hands and feet, short and extremely mobile lower limb), adapted for suspensory 
locomotion in the upland forest areas, including hand-foot hanging, quadramanous 
climbing, bridging or transferring (Cant, 1987; Thorpe and Crompton, 2005, 2006; 
Thorpe et al., 2009; Manduell et al., 2011), whereas no significant anatomical features 
have been associated with quadrupedal fist-walking. 

In accordance with their large bodies, gorillas are the most terrestrial nonhuman 
great apes, though arboreal locomotion has been also detected in variable degrees among 
species (e.g., the western lowland gorilla versus the mountain gorilla). This is especially 
relevant amongst the smaller specimens, namely females and subadults (Remis, 1995; 
Doran, 1997; Doran and McNeilage, 1998; Fleagle, 1998; Remis, 1998). When on the 
ground, gorillas are knuckle-walkers (Schmitt et al., 2016). Gorilla’s locomotion 
repertoire is reflected in its anatomy, characterised by the presence of a short and broad 
thorax, accompanied by long forelimbs relative to the short hindlimbs.   

Chimpanzees are somehow intermediate between gorillas and orangutans and 
have adopted a “compromise” anatomy that is neither fully adapted to the demands 
imposed by arboreal nor terrestrial locomotion (Hunt, 2016). While suspensory 
behaviours such as vertical climbing or arm-hanging are vital for fruit harvesting (Susman 
et al. 1980; Doran, 1993; Thorpe and Crompton, 2006), terrestrial and on-branches 
knuckle-walking is one of the main locomotion modes recorded among chimpanzees 
(Tuttle, 1967, 1969; Inouye, 1989; Doran, 1992; Schmitt et al., 2016). In order to practise 
efficient suspensory behaviours, chimpanzees display more balanced fore-to-hindlimb 
lengths; narrower scapulae, hands and feet; and more markedly curved and slenderer 
digits, in comparison to gorillas, which present anatomical compromises that might have 
decreased the efficiency during knuckle-walking (Pontzer and Wrangham, 2004). 

On the other hand, bipedalism in humans provides a particular advantage by 
freeing the upper limb from locomotor purposes, and thus enabling the appearance of 
adaptations for additional functions (Napier, 1956; Marzke, 1986). The hyper-specialised 
locomotor repertoire and anatomy in modern humans alongside its more in-depth study, 
has helped establish more clear links between form and function in the human 
musculoskeletal system, whereas the more varied locomotor repertoire in nonhuman great 
apes often makes it difficult to link certain biomechanical behaviours to specific 
anatomical morphologies (Rose, 1991; Tallman, 2012; Thomson, 2021). 

The generalised division among modern great apes based on the preferential use 
of the landscape (terrestrial versus arboreal), and the main modes of locomotion (e.g., 
bipedalism, suspension, quadrupedal walking), is well-reflected in the results obtained in 
the present study. 



Morphological similarities in the radius between chimpanzees and gorillas seem 
to be the most strongly marked among the four groups, probably in accordance with the 
weight-bearing function of the radius during knuckle-walking in both groups. Differences 
in the range of movement at the elbow and wrist joints are noticeable among modern 
humans and apes, being movements in the latter group much more restricted due to the 
constraints imposed by locomotion (Carlsoo and Johansson, 1962; Tuttle, 1967, 1969; 
Jenkins, 1973; Jenkins and Fleagle, 1975; Corruccini, 1978; Sarmiento, 1985, 1988; 
Rose, 1988, 1993). Differences in this sense are also remarkable between the more 
terrestrial and the more arboreal nonhuman great apes, with orangutans displaying the 
largest range of motion (Begun, 2003; Drapeau, 2008). Meanwhile, humans are 
characterised by having a much more flexible range of motions that provide high dexterity 
in relation to the habitual manufacture and use of tools (Napier, 1962; Marzke, 1971, 
1986; Wolfe et al., 2006).  

The main anatomical differences in the radius that have been linked to weight-
bearing functions and stability maintenance during quadrupedal locomotion are located 
in the proximal (e.g., bevelled head of the radius) and distal epiphyses (e.g., angled, 
rectangular and deeply concave radiocarpal articular surface; enlarged, deep and concave 
scaphoid articulation relative to a small lunate articulation). These features are meant to 
provide a close-packing mechanism at the wrist, and to avoid displacement at the elbow 
during full pronation. On the other hand, both humans and orangutans display a wider 
range of movements that do not result, however, in the same morphologies (e.g., more 
angled distal epiphysis in orangutans, more marked styloid process in humans), which, in 
turn, might cause a clearer distinction between these two groups. This is reflected by the 
results obtained in the present study, through all types of PCA and their derived TPS 
warpings. 

Differences are more remarkable when size is included in the analyses, since 
orangutans are characterised by having exceptionally long and slender radii in 
comparison to the straight and short human radius, which provides greater efficiency for 
carrying loads. Anatomical differences along the diaphysis of the radius are not only 
perceptible in overall size-related features or curvature degrees, but also in the relative 
position and orientation of specific osseous landmarks linked to the attachment of soft 
tissues (e.g., the medially positioned radial tuberosity in orangutans and chimpanzees 
increases the lever advantage of biceps brachii in supination, whereas the posteriorly 
placed interosseous crest with respect to the radial tuberosity in humans serves radio-
ulnar stabilisation and load transfer). The presence of morphologically and 
biomechanically significant features along the midshaft, highlights the relevance of 
incorporating detailed quantitative descriptions of the diaphyseal portion of the radius in 
morphometric studies. This is also noteworthy for the detection of form-and-function 
relationships in the primate postcranial skeleton. Likewise, the application of alternative 
DR techniques, as the ones presented here, can be seen important in exploring intra and 
interspecific variability in skeletal elements, which, in turn, might be an interesting way 
of revealing morphological patterns that are significant in group characterisation. 

Despite the links that have been established between form and function in modern 
great apes, the translation of specific biomechanical capabilities to the skeleton and vice 



versa, as well as the evolution of certain anatomical traits, are not fully understood yet. 
On top of that, the increasing and heterogeneous hominoid fossil record has emphasised 
the multiple appearance and mosaic nature of certain osseous features associated to 
suspensory behaviours (e.g., Pilbeam et al., 1990; Moyà-Solà and Köhler, 1996; Finarelli 
and Clyde, 2004; Moyà-Solà et al., 2004; Almécija et al., 2007, 2009; Begun, 2010). This 
in turn has resulted in the proposal of different hypotheses which aim at explaining the 
appearance of specific morphological characteristics throughout hominoid evolution, and 
more specifically, throughout human evolution (Gregory, 1927, 1928; Morton, 1926; 
Washburn, 1967; Tuttle, 1967, 1969; Stern, 1975; Fleagle et al., 1981; Tuttle, 1981; Gebo, 
1992, 1996; Richmond and Strait, 2000; Thorpe et al., 2007; Crompton et al., 2008; 
Arias-Martorell et al., 2014). 

In conclusion, the combination of different techniques that enable researchers to 
look at already repeatedly studied skeletal structures from more varied perspectives, 
which in the present case also appear to provide more stable morphometric affinities 
regardless of the data input, could be very beneficial for future studies. In this sense, not 
only the anatomical characterisation of living primates could benefit from a wider range 
of available ordination, visualisation and analytical approaches, but also paleontological 
studies, which tend to be limited by the fragmentary nature of the fossil record. From this 
perspective, the GraphGMM framework provides a toolkit that is less sensitive to data 
input, and thus is able to maintain interspecific morphometric relationships across highly 
explanatory and easily interpretable graphics. 
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Chapter 4

Conclusions

4.1 Conclusions

Geometry, and our subconscious perception of morphology, form a fundamental part of the way we see
the world. The shape or form of an element may condition the decisions we make, while our ability to
describe our surroundings are often highly dependent on these variables as well. The research detailed
in this Doctoral Thesis presents a development of the tools available to describe morphology, proposing
a series of precise and high resolution techniques for an empirical characterisation of shape and form.
These approaches, and their possible applications, can thus be considered a valuable contribution to science,
worthy of further investigation so as to improve their accuracy and transparency.

This study set out to develop new techniques for the detection and modelling of micro- and macro-
scopic elements, under the premise of reducing subjectivity, improving analytical efficiency and accuracy,
while proposing a number of transdisciplinary applications that could benefit multiple fields of science.
We have successfully accomplished each of these goals, while taking research a step forward by proposing
a new mathematical model that provides a powerful means of extracting and representing morphological
data. This study has additionally fulfilled all secondary objectives, with the development of 3 R libraries
(pValueRobust, AugmentationMC and GraphGMM), and 2 open-source software (the TPS Measurement

Software and the Trampling algorithm) to ensure the reproducibility of all elements presented within this
body of research. Likewise, wherever possible, all data and additional code have been published to ensure
transparency.

Considering the original hypotheses proposed at the beginning of this study, we can draw the
following conclusions;

Hypothesis 1. The use of advanced computational resources and robust statistical techniques can
greatly improve the accuracy of studies that are typically performed using visual and qualitative
criteria.

As has been seen throughout the course of this Doctoral Thesis, many tasks for the identification
or characterisation of elements are traditionally performed visually. From the "U" shaped tooth marks left
by carnivores, to the "irregular and asymmetric" skin lesions of a skin-cancer patient, morphology forms
an important component of almost any analysis. Here we have shown how tools such as GMMs, or FA, are
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able to empirically quantify these features, with high statistical differentiation between samples (Courtenay
et al., 2020a,b, 2021b, 2022a, 2023, Under Review-a).

Both GMM and FA are very informative methods, presenting not only a means of extracting
morphological variables, but also a number of different techniques for the visualisation of morphological
changes. Across all studies presented here, both types of analyses have provided a wide array of different
means of statistically analysing data, producing very attractive visual representations of data as well. This
ensures that results are easy to interpret, and also provides a more empirical way of initially describing
a shape or form (Courtenay et al., 2020b, 2021a,b, 2022a, 2023, Under Review-b). This is true of both
two-dimensional, and three-dimensional, data, with computer-based analyses proving highly useful for the
handling and extraction of data.

We have also shown throughout this study the importance and power of robust statistical ap-
proaches (Courtenay et al., 2020a). An in-depth understanding of a dataset is essential prior to any analysis,
especially in terms of the data’s distribution. As shown throughout this body of research, the correct use
of statistical testing is fundamental in order to extract reliable and empirically accurate results (Courtenay
et al., 2020a, 2021b). It is notable that for many years analysts have incorrectly used statistical tests, espe-
cially in terms of the interpretaion of p-Values (see main text and Supplementary Materials of Courtenay
et al., 2021a,b). Throughout this body of research, we have proposed a large number of different techniques
for the correct and robust evaluation of data, ranging from descriptive statistics, to non-parametric testing
both uni- and multivariately, and finally a means of evaluating p-Values while proposing p < 0.003 as the
most empirically reliable p-Value threshold (Courtenay et al., 2021b).

The present study has also used robust statistical approaches to fine tune the methodological ap-
proaches presented, using these techniques to define as best as possible a means of extracting morphological
variables with the least amount of human induced error possible (Courtenay et al., 2020a). Nevertheless,
other interesting insights using robust statistics have shown that great care is needed when collecting exper-
imental and referential data, so as to ensure that the conditioning factors being observed are product of the
analysis, and not being caused by other confounding or contributing variables (Courtenay et al., 2021a).

Hypothesis 2. Mathematical tools, that are typically used in biological and anthropological contexts
for the quantification of different morphologies, can be useful for the study of non-biological elements
as well.

Both GMMs and FA are techniques traditionally used for the description of biological organisms,
however, with the exception of two of the studies included in this body of research (Courtenay et al.,
Under Review-a, b), the majority of our research successfully applied these techniques to the study of non-
anatomical elements, including; tooth marks on bone (Courtenay et al., 2020a, 2021a,b, 2023), cut marks
on bone (Courtenay et al., 2020b), as well as skin lesions (Courtenay et al., 2022a).

While not necessarily applied here, many of these techniques are applicable in other contexts as
well, including forensic sciences (identification of contemporary BSMs in crime scenes), the study of other
types of soft-tissue deformities (e.g. skin ulcers, facial deformities, disabilities), and may even be applicable
to material inspection and quality control (e.g. deformation on the surface of different materials, fabrication
errors).

An important component of the present Doctoral Thesis is the additional use of applied case stud-
ies, beyond the experimental and methodological research included as well. The majority of the presented
studies are mostly methodological (Courtenay and González-Aguilera, 2020; Courtenay et al., 2020b,a,
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2021a,b, Under Review-a), however, the application of each of these methods to a real-life case study can
be considered a strong indicator of the power and effectiveness this line of investigation has (Courtenay
et al., 2022a, 2023).

From this perspective, this Doctoral Thesis not only presents a versatile toolset for the description
of morphological data, but can also be considered the first case study to identify the activity of an extinct
carnivore, based on the marks they leave on bone (Courtenay et al., 2023), as well as the first attempt
to quantify skin cancer morphology, while successfully differentiating between NMSC patients in 78.6%
of the cases (Courtenay et al., 2022a). From this perspective, the parting hypothesis that "tools typically
used in biological and anthropological contexts can be applied to non-biological contexts as well" has been
directly proven, not just in experimental settings, but in actual case studies as well.

Hypothesis 3. Artificially Intelligent Algorithms, especially when fuelled by advanced numeric and
categorical simulation techniques, can prove a very powerful tool in the classification of elements
based on their morphology.

AIAs have proven highly successful throughout this Doctoral Thesis, and from multiple perspec-
tives. In general, classification rates of both NNs and SVMs across each study have shown between a 69.0%
and 99.9% accuracy, with a median accuracy of > 90%. This is a true testament that AIAs can achieve
above human-level performance, especially considering the difficulties in differentiating between cut and
trampling marks on bone (Courtenay et al., 2020b), the issues when identifying precise carnivore agents
based on their tooth marks (Courtenay et al., 2021b), as well as the low sensitivity rates when diagnosing
skin cancer patients (Courtenay et al., 2022a).

We have additionally highlighted the great potential of NNs, SVMs, and a combination of the two
in a Neural Support Vector Machine model (NSVM). From this perspective, AIAs can be considered some
of the most highly versatile algorithms available, with great potential in multiple applications.

Nevertheless, the true contribution of this investigation in AIA applications, especially in con-
texts where large datasets are scarce (e.g. archaeology, palaeoanthropology, palaeontology), is the use of
unsupervised learning and Monte Carlo based techniques for numeric simulation (Courtenay and González-
Aguilera, 2020; Courtenay et al., Under Review-a), alongside the use of robust statistical equivalency testing
for the evaluation of synthetic data. Here we have shown the great potential of Machine Teaching (Courte-
nay and González-Aguilera, 2020; Courtenay et al., 2021b, Under Review-a), whereby AIAs are trained
only on synthetic data, and the original data is used for testing, with an increase not only in accuracy, but
also in confidence when algorithms are used to make new predictions (Courtenay et al., 2021b). We have
additionally been able to prove that bootstrap techniques are problematic and should be avoided in CL ap-
plications (Courtenay et al., Under Review-a).

Although not originally hypothesised during the conceptualisation of this Doctoral Thesis, another
line of research has become apparent throughout the process of this study. Parallel with the concept of
parametric and non-parametric analyses, in Courtenay et al. (Under Review-b) we have been able to present
a new mathematical model for the extraction and analysis of morphological data that is not necessarily
bound by the linear constraints in typical PCAs. This observation, and proposal of Graph-based GMMs, has
consequently increased the resolution of the type of information obtainable from landmark data. Alongside
the theoretical reflections provided both in this scientific publication, and those outlined in Appendix A, we



4.2 Prospective and Future Research 265

believe this to be a valuable contribution to the field of GMMs, and could prove valuable when improving
the results of many other applications.

In general, the present Doctoral Thesis presents a strong starting point for future research into
transdisciplinary applications of morphological analyses, and hopes to provide a new perspective on the
means in which different elements can be studied.

4.2 Prospective and Future Research

Overall, this Doctoral Thesis has proven useful for the construction of a methodological framework that
can be used in multiple transdisciplinary applications for morphological analyses. Limitations still exist,
however, and will be the focus of future research. Augmentation techniques, for example, should never
replace real data, as these algorithms cannot invent new variability, only model on the variability that already
exists in the sample. Similarly, we wish to stress the importance of correctly using parametric and non-
parametric algorithms, whereby analysts should be aware of the limitations that some statistical tests or
AIAs have. It is advisable that analysts use the tools suitable for the type of research they are carrying out,
and constantly update their knowledge on these methods.

In light of this, we are interested in seeing how the MCMCs from Courtenay et al. (Under Review-
a) can be improved, using more complex versions of the algorithm, such as including the implementation of
adaptive learning rates, robust step sizes, and other mathematical formulae for the definition of acceptance
criterion that may be used to increase the quality of synthetic data.

It would also be interesting to see how the new mathematical model proposed by Courtenay et al.
(Under Review-b) affects the study of elements such as tooth pits, cut marks, or other elements that have
also been explored in this body of research. Similarly, in Courtenay et al. (Under Review-b) we show how
the mathematical and theoretical components of GMMs help simplify the computational complexity of the
message passing mechanism. Nevertheless, most graph embedding applications typically include additional
parameters that can be learnt in a supervised learning context, typically referred to as Graph Convolutional
Networks (GCN). From this perspective, we would be interested in seeing how the use of GCNs could
improve classification results in GMMs.

Future research will also focus on how the combination of variables, beyond morphology, may
contribute to the accuracy of both statistical results and AIA performance. For example, the shape of a
lesion is only one of the variables that are used for skin cancer diagnosis. Other variables, such as colour,
texture, and size, are used in combination with border irregularities and symmetry. Courtenay et al. (2022a)
present the first quantitative assessment of skin lesion shape, however form could not be calculated due to
the lack of a scale bar in each of the photos. In the coming years we will try and rectify this, while assessing
how the combination of other types of information (e.g. hyperspectral signatures, sensu Courtenay et al.,
2021c, 2022b), may improve overall classification rates.

From a different perspective, the present Doctoral Thesis has focused primarily on the processing
of morphological variables, however, the available techniques for obtaining 3D models has been mostly
omitted. From this point of view, we propose that future research be oriented not only on improving the
type of analyses presented here, but also focus on how this information is obtained.

This study has mostly used structured light surface scanning, µ-CT scans, and digital microscopy
as a means of obtaining 3D models. Nevertheless, many other techniques exist, and may present more
precise means of extracting morphological variables. Current research that has already begun parallel to
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this Doctoral Thesis, in collaboration with the University of Bordeaux, and the Institut Catalá de Paleoe-
coloia Humana I Evolució Social (IPHES), is considering robust statistical techniques for the analysis and
evaluation of reconstruction error when comparing multiple 3D modelling techniques. In this study, we are
considering methods such as Confocal microscopy, Scanning Electron Microscopy, as well as other high-
resolution techniques for the study of microscopic elements on bone. We believe it would be interesting to
increase this sample, and compare not only the resolution, but also the flexibility and cost of this equipment,
so as to propose an optimal workflow for morphological analyses on all levels.

Nevertheless, the primary objective of future research at this moment in time is the diffusion of
these techniques in more transdisciplinary applications, so as to assess the true extent to which these meth-
ods are applicable. Future research will also consider their limitations, so as to develop more investigation
into the creation of a more generalised methodological workflow that can benefit all fields of science.
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Appendix A

Geometric Morphometrics

A.1 Procrustes Superimposition Procedures

Sets of landmark configurations can be described as a set of matrices Xi ∈ X , consisting of n individuals,
with p landmarks in k dimensions. Two geometrical icons, X1 and X2, can be superimposed and described
in terms of shape and form (see Chapter 2.1). For Geometric Morphometrics to work this superimposition
must be congruent by a rigid body transformation (Lord and Wilson, 1984), therefore X1 : p×k and X2 : p×k

must fulfill the following rule: p1 ≡ p2 and k1 ≡ k2.
From this perspective, X1 will have the same form as X2 if:

X2 = X1Γ+ 1⃗pα (A.1)

where Γ defines the square (k × k) rotation matrix, and α describes the location parameter containing k

values. Additionally, 1⃗p describes a p-vector of ones.
In extension, X1 and X2 can be considered to have the same shape if:

X2 = βX1Γ+ 1⃗pα (A.2)

where β describes a scalar parameter. Thus (α,Γ,β ) are used to define the translation, scale and rotation
components for the superimposition of X .

A number of methods have been proposed for the Procrustes superimposition of two icons, with
their eventual extension to include a set of configurations. The most popular methods are typically known
to produce two different types of coordinates; Bookstein and Kendall coordinates, named after the authors
who initially defined them (Bookstein, 1984; Kendall, 1984; Bookstein, 1986b).

A.1.1 Bookstein Coordinates

The majority of the work presented by Bookstein (1984, 1986b) was primarily focused on the superimpo-
sition of 2D data, however registration can be expanded to 3D data as will be discussed briefly here.

The basis of Bookstein (1984, 1986b)’s approach consists in defining a baseline that can be used
as a point of reference for projecting coordinates onto the new coordinate system. The baseline is defined
by a pair of landmarks, p1 (or a), and p2 (or b). Depending on the definition, the objective is to translate
coordinates so that points a and b have a fixed set of coordinates, sometimes described as (0,0) and (1,0)
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(Bookstein, 1991; Rohlf, 1999), or (−1/2,0) and (1/2,0) (Dryden and Mardia, 1998) 1. These two points
are used to calculate the baseline size (i.e. the Euclidean distance between a and b), which can be used to
represent β from Equation A.2. Using these two points and the baseline size, Bookstein coordinates define
2D baseline registered configurations Xb:,1 and Xb:,2 using;

Xb:,1 =
(b1 −a1)(X:,1 −a1)+(b2 −a2)(X:,2 −a2)

β
− 1

2
(A.3)

Xb:,2 =
(b1 −a1)(X:,2 −a2)+(b2 −a2)(X:,1 −a1)

β
(A.4)

∀Xi ∈ X , configurations can then be considered to be expressed in a p× (2−4)k space (Claude, 2008).
When extending this concept for coordinates in three dimensions, coordinates a and b are simply

developed to be defined as (−1/2,0,0) and (1/2,0,0). Nevertheless, for superimposition along the third
dimension, a third basepoint is required, c, which is set to be positive on the x, y plane, such that Xc =

(Xb:,1,Xb:,2,0).
In three dimensions coordinate registration can be broken down into 3 translation, 1 scaling, and

3 rotation procedures (Bookstein, 1991; Dryden and Mardia, 1998; Claude, 2008). The consequent con-
structed space is thus defined in R3×p−7. The first translation ensures that the midpoint between Xa and Xb

coincides with (0,0), defining the translated Xt such that;

Xt:,k = X:,k − 1⃗p
ak +bk

2
(A.5)

Xt can then be converted, if required, to a scaled version Xts by dividing by β .
Finally, rotation is performed calculating a series of rotation matrices defining clockwise rotations

around x, y and z separately. Thus we define θ as the rotation along the z axis, ω as the rotation along the y

axis, and φ as the rotation along the x axis. Rotation matrices are now;

Γz =




cosθ sinθ 0
−sinθ cosθ 0

0 0 1


 (A.6)

Γy =




cosω 0 −sinω

0 1 0
sinω 0 cosω


 (A.7)

Γx =




1 0 0
0 cosφ sinφ

0 −sinφ cosφ


 (A.8)

Therefore;

X ′ =
(
ΓxΓyΓzXtsT )T

(A.9)

are the final X ′ coordinates projected into the new shape space. Figure A.1 presents an example of the
superimposition of two triangles using Bookstein coordinate registration.

1The latter will be used in the present document
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As a concluding remark, Bookstein coordinates present one distinct disadvantage, being the some-
what subjective definition of basepoints which consequently condition the superimposition procedure. From
one perspective, the definition of points to be fixed can be considered problematic in many studies (espe-
cially with an elevated number of landmarks), while the quality of superimposition is also dependent on
the distance between points; the farther away the reference points, the more distorted the transformation
(Rohlf, 1999).

Figure A.1: Example of two triangles superimposed using Bookstein registration. a and b indicate the
basepoints of each triangle used for superimposition.

A.1.2 Kendall Coordinates

The methods discussed by Kendall (1984) can be performed using a (p−1)× p Helmert matrix (H). This
subset of H (or a sub-Helmert matrix) is premultiplied by the transpose of X to compute a centering matrix.
H can be defined as an orthogonal matrix whose first row of elements are equal to 1/

√
p. Additionally,

row i has i− 1 elements equal to −1/
√

i(i−1), followed by one element equal to (i− 1)× 1/
√

i(i−1),
and p− i zeros. The corresponding transformation of X to X ′ can be considered a configuration lying in
pre-form space, as only the translation of X has been performed (Rohlf, 1996). The pre-shape space (Z)
and centred pre-shape (ZC) space of X can then be obtained by scaling the centred configuration and the
Helmertized configuration.

The process of scaling, and essentially defining β , is performed by calculating the sum of squared
deviations of landmarks from the centroid of the configuration (i.e. centroid size). In most traditional
GMM literature, the centroid is defined by the mean, however, in this Doctoral Thesis we also consider the
possibility of defining the centroid using a more robust metric, such as the median (see Appendix A.5).

An interesting property of the pre-defined spaces is their non-Euclidean nature, defined as the
surface of a hypersphere of radius 1 in (p−1)× k dimensions. In pre-shape space, all possible rotations of
a given shape are organised along an orbit called a fiber (Kendall, 1983). A fiber additionally corresponds
to a shape in Kendall’s shape space (the space where translation, rotation and scaling have been removed).
To find Γ between two shapes, we thus need to find the shortest distance between the two fibers in pre-shape
space.
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As this space is non-Euclidean in nature, we can define a distance between fibers a number of
ways (Gower, 1975; Rohlf and Slice, 1990; Goodall, 1991; Kent, 1994; Rohlf, 1996; Dryden and Mardia,
1998; Slice, 2001). These measurements of distance are known as Procrustes distances. Two main types of
Procrustes distance exist; the "chord" (∆) and the "angular" (ρ) distance (eq. A.10 and A.11);

∆ =
√

tr (DT D)) (A.10)

where D is a p× k matrix of differences between two configurations. ∆ is related to ρ through;

ρ = 2sin−1
(

∆

2

)
(A.11)

ρ thus defines the angular distance in radians (See Fig. A.2 in Appendix A.3).
To integrate these notions of distance in non-Euclidean space as a means of estimating Γ, we can

consider solving the following equation;

min∥Z2 −β1Z1Γ∥ (A.12)

where the objective is to find the smallest distance between two fibers (Zi). We can solve for Γ by using the
singular-value decomposition Γ =UV T , which can be performed on the product of the transpose of X1 and
X2 through XT

2 X1 =V ∆UT .
The parameter that we wish to optimise to define a best fit can be computed using the following

measure of distance;

√
tr
(
(X2 −βX1Γ)T (X2 −βX1Γ)

)
(A.13)

We can thus define Kendall’s form and shape space as the non-Euclidean spaces where configurations have
been centred and rotated in the former, as well as scaled in the latter.

A.2 Generalised Procrustes Analysis

When this procedure is performed on two configurations, as theoretically described above, this procedure is
known either as a full or partial Procrustes analysis. The distinction between these two approaches is depen-
dent on how the scaling procedure is performed. From this perspective, Goodall (1991) and (Kent, 1994)
define partial scaling as that which uses unit centroid size, while full scaling uses cos(ρ) (Slice, 2001).
When extending this notion to consider the superimposition of more than two configurations, a number of
techniques exist. The most common approach, Generalised Procrustes Analyses (GPA), considers minimiz-
ing the sum of squared norms of pairwise differences between the shapes;

Q = min

(
1
n

n

∑
i=1

n

∑
j=1

∥
(

βiXiΓi + 1⃗pαi

)
−
(

β jX jΓ j + 1⃗pα j

)
∥2

)
(A.14)

where Q is the criteria we wish to minimise. GPA is thus performed in three steps; (1) the centred pre-
shapes or preforms are calculated, followed by the (2) rotation (and scaling) of the configuration using a
measurement of central tendency as a reference point, finally (3) step 2 is iterated until Q can no longer be
reduced.
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As in the case of calculating a configuration’s centroid, the majority of traditional approaches
consider using the mean configuration as a measurement of central tendency. Throughout this Doctoral
Thesis, we have also considered using the median configuration to adjust for a more robust superimposition
(see reflections in Appendix A.5).

Gower (1975) and Rohlf and Slice (1990) offer a means of optimising this approach by adding
some additional steps to the algorithm. These authors recommend the rescaling of parameters during every
iteration. Additionally, Dryden and Mardia (2016) present an optimised version of the algorithm that is
computationally much faster.

A.3 Non-Euclidean Spaces and a Theoretical Exploration of Shape
Space

As previously stated, morphological spaces are not Euclidean in nature, which hinders many statistical
tests that can be performed on them. From this perspective, coordinates must first be projected onto a
tangent space. Nevertheless, the complexity of morphological space is entirely dependent on the number
of landmarks included in our model. We can describe Kendall’s shape space for a set of triangles simply
as a sphere in k(p− 1) dimensions with a radius of 0.5, while the Procrustes hemisphere has a radius of
1.0 (Kendall, 1983; Slice, 2001) (Fig. A.2). It is important to note that, despite k(p− 1) = 4 for the case
of triangles, only three of these dimensions present values greater than 0, and can thus be visualised on the
surface of a sphere in 3 dimensions.

Figure A.2: A figure describing the geometric relationship between different triangles in different types of
shape space. X̄ is the central configuration (typically the mean configuration). XK is a target individual in
Kendall’s shape space, with its corresponding reflection (XrK) and the corresponding representation of the

same triangle on the Procrustes Hemisphere (XP) (Slice, 2001). XPO and XKO describe the Orthogonal
projection of Kendall and Procrustes coordinates (respectively) onto tangent space. XKst represents the
Stereographic projection. Finally, ρ refers to the full Procrustes distance from the reference shape to the

target shape, and ∆ the partial Procrustes distance.

For the present theoretical explanation, the easiest way to describe and visualise Kendall’s shape
space is by using triangles. For this purpose, an equilateral triangle was used as a reference shape, adding
σ = 0.05 Gaussian noise to each corner of the triangle to generate 30 random triangles. Theoretically,
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Gaussian displacements of points will fit a uniform distribution in Kendall’s shape space (Kendall, 1985).
The coordinates of each triangle on Kendall’s sphere can be calculated via;

x =
1
2

cosθ , y =
1
2

sinθ cosφ , z =
1
2

sinθ sinφ (A.15)

where θ can be considered analogous with the latitude of the sphere, and φ the longitude. (θ ,φ) are 1 for
X̄ , while x2 + y2 + z2 = 1

4 . Similarly, φ is defined in accordance with Procrustes estimates of the Uniform
Shape component (Bookstein, 1989, 1996; Rohlf and Bookstein, 2003). We can derive coordinates through
solving the following relationships;

1
2

cosθ =
XK:,2

1+ r2 ,
1
2

sinθ cosφ =
1− r2

2(1+ r2)
,

1
2

sinθ sinφ =
XK:,1

1+ r2 (A.16)

XK:,1 =
sinθ sinφ

1+ sinθ cosφ
(A.17)

XK:,2 =
cosθ

1+ sinθ cosφ
(A.18)

Where r2 =
(
XK:,1

)2
+
(
XK:,2

)2 (Mardia, 1989; Dryden and Mardia, 1998; Kendall et al., 1999).
For the case of our equilateral triangle, we can visualise the corresponding shapes and their pro-

jection into shape space in Figure A.3.

Figure A.3: A plot of a set of superimposed equilateral triangles, alongside the visualisation of their
coordinates on the Procrustes (hyper)hemisphere (bottom left) and Kendall’s Hypersphere (bottom right).

Figures created using the tpsTri software by Rohlf (2015).
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A study by Slice (2001) describes how, while the geometry of Kendall’s shape space is reasonable
in theory, practical applications are likely to find landmarks to lie on a shape space not exactly like Kendall’s
shape space, but in approximation with it (Procrustes Hemisphere, bottom right, Fig. A.2). This is due
to how the scaling procedure originally described in Kendall’s work performed scaling according to unit
centroid size (a Partial Procrustes fit, sensu Goodall (1991); Kent (1994)), while most GPA procedures use
a Full Procrustes fit for superimposition. Thus, the corresponding surface of a Fully superimposed and a
Partially superimposed shape space may be similar on localised regions of the surface, but are not exactly
the same. Similarly, large deviations from the pole will imply greater differences between the two shape
spaces. This is an important observation, considering how natural biological variation tends to occupy a
very small patch on the surface of the manifold (Slice, 2001), and would thus imply a limited difference
between the two shape spaces.

Procrustes shape space and Kendall’s shape space are directly related for triangles, as the scaling of
points on the hemisphere by cos(ρ) will project points onto the hypersphere (Slice, 2001). For more com-
plex configurations (p > 3), however, the relationship between Kendall’s hypersphere and the Procrustes
(hyper)hemisphere is no longer as simple (ibid). This is due to how the equator of the Procrustes (hy-
per)hemisphere would no longer coincide with that of Kendall’s, as it corresponds to a complex projection
into a Rp−3 space (Kendall, 1984).

As has already been noted, this space is evidently not Euclidean, while the complexity of both
Kendall’s shape space and the Procrustes hemisphere is much greater when k> 2 and p> 3. The constructed
morphological feature space in these cases can thus be described as a complex manifold, whose surface is
also non-Euclidean in nature. In order to project these coordinates into a feature space that is processable
via traditional Euclidean based statistical metrics, we project coordinate values onto the tangent space of
the manifold. When this projection is performed on Kendall coordinates, the corresponding tangent space
is referred to as Kendall’s Tangent Space (Rohlf, 1996).

Projections of coordinates can be performed in two ways, either using an orthogonal or stere-
ographic projection. Stereographic projections are computed by dividing the coordinates of the aligned
configurations by the cosine of ρ between the shape to be projected and the central configuration reference
shape (known typically as the pole);

XKst =
XK

cosρ
(A.19)

While the orthogonal projection is computed through;

XKO = XK

(
Ikp − ⃗̄XT ⃗̄X

)
(A.20)

where ⃗̄X is a vectorised version of the pole, and Ikp is a kp× kp identity matrix. As would be expected
of any projection from a circular to a non-circular cartesian system, this process induces different levels
of distorsion that should be taken into consideration. This is especially relevant considering the process of
projection is dependent on the pole, or central configuration. Thus shapes farthest away from the pole may
be distorted more than those closest.

Stereographic projections are known to accentuate large differences of shapes farthest away from
the pole. This is logical considering this type of projection maps points beyond the equator of the hy-
persphere (Slice, 2001) (Fig. A.2). Orthogonal projections, on the other hand, do not have this problem.
Nevertheless, orthogonal projections are known to minimise certain levels of shape distortion and varia-
tion. Figure A.3 visualises the difference when projecting into tangent shape space from the Procrustes
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(hyper)hemisphere for the case of equilateral triangles. Note the present theoretical sample presents low
degrees of shape variation (σ = 0.05), thus points appear to be closely clustered on the surface of the sphere.
If simulations are performed with extreme variations from the mean, then these projections would produce
large distortions in the reconstructed superimposed shapes in tangent shape space (Fig. A.4).

Figure A.4: Examples of the two types of projection from Kendall’s hypersphere to Kendall’s tangent
shape space. Figures created using the tpsTri software by Rohlf (2015).

In general, the orthogonal projection is considered to be the most reliable projection of shapes onto
their corresponding point in tangent space (Rohlf, 1996, 1999). Likewise, the orthogonal projection from
the Procrustes hemisphere has been found to be a much closer approximation to real shape variation, as
opposed to coordinates projected from Kendall’s shape space (Slice, 2001) (Fig. A.2).

If we theoretically explore and visualise how changes occur across the surface of Procrustes tan-
gent space (Fig. A.5), it can be see how the center of tangent space (i.e. the pole, θ = 0 from the original
sphere) represents the equilateral triangle used to generate the theoretical data presented here. As we move
to the edge of Procrustes shape space (θ = π), which would relatively correspond to the south pole of
Kendall’s shape space, it can be seen how reflection is represented by this region with the equilateral tri-
angle appearing upside-down. In proximity with the pole (around the northern tropic), shape changes are
reduced to slight distortions, with shifts to the right or left resulting in right and left-hand right-angle trian-
gles (sinθ cos(φ − (2kπ/3)) = 1/2), while shifts downwards generate scalene triangles (in proximity with
meridian φ = π/3), and shifts upwards describe isosceles triangles (φ = π) (Klingenberg, 2015). Shape
spaces in proximity with the equator (θ = π

2 ) of the hypersphere represent “splinters”, in other words ex-
tremely tall or extremely flat triangles (Kendall, 1989; Kendall et al., 1999).
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Figure A.5: Visualisation of shape change across tangent space. The blue line represents the equator from
Kendall’s hypersphere. Figures created using the tpsTri software by Rohlf (2015).

If we use this sphere to construct a new set of triangles, we can observe how the two different sets
of triangles superimpose (Fig. A.6 & A.7);

Figure A.6: A plot of a set of superimposed non-equilateral triangles, alongside the visualisation of their
coordinates on the Procrustes (hyper)hemisphere (bottom left) and Kendall’s Hypersphere (bottom right).

Figures created using the tpsTri software by Rohlf (2015).
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Figure A.7: Scatter plots of the superimposed coordinates from two sets of triangles in Kendall’s tangent
space.

Through calculating a PCA (Fig. A.8), and visualising the variations across PC scores using Thin
Plate Splines, we can see how the movement in Kendall’s shape space described throughout this chapter
results in shape changes we are accustomed to seeing in Geometric Morphometrics.

Figure A.8: PCA derived from the simulated coordinates of triangles expressed throughout this chapter.
Thin Plate Spline grid warpings visualise shape changes on the extremity of each PC score.

A.4 Thin Plate Splines and Bending Energy

Thin Plate Splines (TPS) are used to mathematically express the deformation of one specimen when mapped
onto another (Bookstein, 1989). Building from concepts described by Thompson (1917), where the physical
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bending energy of deforming a thin metal plate is used as an analogy for shape deformation, Bookstein
(1989) defines the formula;

U(r) = r2 logr2 (A.21)

as the interpolation function for 2D data between two different configurations, where r is the Euclidean
distance between two landmark coordinates in the reference configuration. From this function, we define a
series of matrices (Bookstein, 1989), P, Q and L;

P =




0 U (r12) ... U (r1n)

U (r21) 0 ... (r2n)

... ... ... ...

U (rn1) U (rn2) ... 0



∀p ∈ X (A.22)

Q =




1 x1 y1

1 x2 y2

... ... ...

1 xp yp



∀p ∈ X (A.23)

L =

(
P Q

QT 0

)
(A.24)

Where Q defines the x and y coordinates of the reference shape. L−1
p , being the p× p upper-left submatrix of

L−1, defines the Bending Energy Matrix. This matrix is already a useful component to calculate coefficients
of non-affine transformations for all individuals when compared with a reference by simply computing
L−1

p Xi ∀ i ∈ n. Affine coefficients, on the other hand, are obtained by L−1
q Xi ∀ i ∈ n, where L−1

q is the p×3
upper-right submatrix of L−1.

From L−1
p , we can perform eigenvalue decomposition; L−1

p = EΛET , such that Λ defines the diago-
nal matrix of eigenvalues, and E the eigenvectors. E:,p−k−1 is known in Geometric Morphometric literature
as the Principal Warps (Bookstein, 1989; Rohlf, 1996, 1999), while Partial Warps are when these parame-
ters are used to express deformations of shape, rather than in terms of the original coordinates (Bookstein,
1989; Rohlf, 1996). Partial Warp Scores are thus obtained by projecting X onto the Principal Warps, result-
ing in a weighted matrix 2;

W =
1√
n

V
(

I2 ⊗EΛ
−α
2

)
(A.25)

Where V is the inner product of each row; Vi = Xi − X̄ . α , in this formula, is an important component of
analyses as it can be used to fine-tune the type of information represented in subsequent analyses (as will
be explained in continuation).

The Singular-Value Decomposition (SVD) of W yields the Relative Warps, R, whose definition
can vary according to the source (Bookstein, 1991; Rohlf, 1993). In this case, we will define this SVD
according to Rohlf (1993), as W = SDRT . Similar to the definition of Equation A.25, we can compute
Relative Warp Loadings through;

2⊗ is the Kronecker tensor product operator, written in the R programming language as %x%, and implemented in Python as a
function of the Numpy library; numpy.kron
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R′ = R
(

I2 ⊗EΛ
−α
2

)
(A.26)

While the SVD of W can also be visualised in terms of a PCA, typically referred to as a Relative Warp
Analysis (RWA) (Bookstein, 1991).

Finally, the Uniform Component of Shape Variation can also be derived from these calculations
(among other techniques discussed by Rohlf and Bookstein (2003)), through;

N = Ip −E
(
ET E

)−1
ET , : E = E:,p−k−1 (A.27)

A SVD is once again calculated on N in the form of the matrix LSRT = V (B⊗ Ik), where V = X − 1nX̄ ,
defining the differences between X and the reference configuration 3. The product of LS can be used to
describe the uniform component of shape differences, by extracting n rows of the first two columns for 2D
data, and the first five columns for 3D data. Similarly, Rkp,: of the same number of columns provides the
uniform component coefficients in the form of linear combinations of kp coordinates (Rohlf and Bookstein,
2003). Nevertheless, the Uniform Component of Shape appears to be a concept of ongoing discussion, with
a number of authors proposing different means in which to calculate it (Bookstein, 1989, 1991; Rohlf, 1996;
Rohlf and Bookstein, 2003).

The interpretation of this data considers the TPS interpolation function to be a description of a
smooth function from one shape to another, such that its deconstruction can be used to define combinations
of the affine (uniform) and non-affine (not uniform) deformations between two shapes. Affine transforma-
tions include processes such as translation, scaling, and shearing of the overall configuration, without being
localised to any particular region of the configuration (subsets of landmarks). Non-affine transformations,
on the other hand, refer to the expansion, compression, or bending, of local regions (Rohlf et al., 1996).

Returning to the α value described in Equations A.26 and A.25, this parameter can be used to
scale the effects of non-affine variation in consequent analyses (Bookstein, 1991; Rohlf, 1993, 1996). For
α values of 0, research has revealed that RWA feature spaces closely approximate a PCA calculated directly
on landmark coordinates (Walker, 1996; Rohlf et al., 1996; Rohlf, 1999), with almost perfect correlation
between feature spaces. α values approximating 1, however, can be used to enhance global shape varia-
tion, highlighting geometrically large-scale variations. α values approximating -1, however, perform the
opposite, focusing on local shape variation.

Beyond the use of TPS interpolation functions as descriptors of morphology, TPS are a very pow-
erful visualisation tool, and are more often used for this purpose.

The basis of TPS functions for visualisation builds on the concept of mapping shape changes
between two configurations onto an orthogonal grid. In order to map differences between X and a reference
configuration, e.g. X̄ , the TPS warping of the x coordinates of a grid is performed by first defining a column
vector Vx = (X:,1,0,0,0), which in turn is transformed to

L−1Vx = (w1,w2, ...,wp,a1,ax,ay) (A.28)

Using the a coefficients from this vector, we can calculate the transformation function fx (x,y) of
the x-coordiantes of a point on the plane Z through with respect to a landmark Xi,: using;

3Rohlf and Bookstein describe this formula using the
⊕

operator in the equation, however, in their description of the formulae
they refer to the ⊗ operator instead (see Equation 4, Rohlf and Bookstein (2003)). For frame of reference the

⊕
operator is the “direct

sum” operator. At present this operator is not available in Python/R and has to be programmed by hand.
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fx (x,y) = a1 +axx+ayy+
p

∑
i=1

U (∥Xi,:Z∥) (A.29)

fy (x,y) is similarly defined as;

Vy = (X:,2,0,0,0) (A.30)

L−1Vy = (w1,w2, ...,wp,a1,ax,ay) (A.31)

fy (x,y) = a1 +axx+ayy+
p

∑
i=1

U (∥Xi,:Z∥) (A.32)

An example of the resulting product for two simple icons is presented in Figure A.9.

Figure A.9: Example of a Thin Plate Spline grid warping visualisation with the reference shape in the left
panel, and a target shape in the right panel

A.5 Some final notes on X̄ , and proposals for the robust X̃

Common practice in geometric morphometric practice is to use the mean landmark configuration as a ref-
erence, not only for the calculation of superimposition procedures, as described above, but also for the
computation of TPS interpolation functions. Here we call the mean landmark configuration X̄ : p× k of
X : p× k×n. We can define a landmark p in X̄ through the following formulae;

X̄p,1 =
1
n

n

∑
i=1

Xp,1,i , X̄p,2 =
1
n

n

∑
i=1

Xp,2,i (A.33)
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and for landmark configurations in three dimensions;

Xµp,3 =
1
n

n

∑
i=1

Xp,3,i (A.34)

which is essentially the arithmatic mean coordinate of each point p. Likewise, the centroid of a single icon
is typically calculated using the mean point of landmark coordinates.

Nevertheless, and in light of the observations and research carried out in the present Doctoral
Thesis, it can be argued that X̄ might be susceptible to the presence of outliers, and thus condition subsquent
results. From this perspective, and so as to propose a means of integrating robust statistical measures into
Geometric Morphometric analyses, we propose the possibilitiy of substituting X̄ with X̃ .

X̃ is the median landmark configuration, and can be calculated by first transforming X into an
ordered array {X:,:,(1), ...,X:,:,(n)} where X:,:,(n−1) ≤ X:,:,(n). A landmark p in X̃ is now calculated as;

X̃p,1 = Xp,1,(⌈0.5n⌉) , X̃p,2 = Xp,2,(⌈0.5n⌉) (A.35)

and for landmark configurations in three dimensions;

X̃p,3 = Xp,3,(⌈0.5n⌉) (A.36)

While this modification is relatively small, this proposal can be considered to be mathematically
and theoretically important when considering the observations made throughout this Doctoral Thesis. Addi-
tionally, the supplementary materials of Courtenay et al. (Under Review-b) found the use of not only X̃ , but
also the use of robust statistics to identify a configuration centroid, to be a much more robust means of per-
forming GPA. When compared with the Generalised Resistant Fit (GRF) algorithm proposed by Siegel and
Benson (1982), Siegel and Pinkerton (1982), Rohlf and Slice (1990), Slice (1996), and Dryden and Walker
(1999), the Generalised Robust Fit (GRoF) proposed by Courtenay et al. (Under Review-b) was found to
not only be equally useful in performing a robust version of GPA, less affected by the Pinnochio effect, but
is also much more computationally efficient. From this perspective, GRoF was found to fit ≈ 200 landmarks
in 2.37 seconds on a standard laptop, while GRF took 21:37 hours to converge on a supercomputer.



Appendix B

Fourier Shape Descriptors

In response to the limitations presented by landmark based analyses, analysts began developing a different,
yet closely linked approach, making use of Fourier descriptors as a function of shape (Rohlf and Archie,
1984; Ferson et al., 1985; Rohlf, 1986a). The principle of Fourier Analysis (FA) is to describe shape as a
series of periodic functions along the curvature of an outline (Ferson et al., 1985). These types of analyses
are based on prior observations that “look-alike” shapes have a tendency of occupying similar positions in
the Fourier descriptor feature space (Fritzche, 1961; Raudseps, 1965). The advantage of calculating shape
descriptors in this way is that FA does not require the definition of homologous landmarks; i.e. the number
of points along the outline can vary.

Fourier based analyses can be performed in a number of ways; (1) by calculating the distance
of any point on the outline to the centroid (Zahn and Roskies, 1972); (2) calculating the variation of the
tangent angle for any point (Zahn and Roskies, 1972); or (3), analysing a series of linearly transformed
circular coordinates (Giardina and Kuhl, 1977; Kuhl and Giardina, 1982). These approaches are known
as Fourier Radius Variation (FRV), Fourier Tangent Angle (FTA), and Elliptic Fourier Analyses (EFA),
respectively. While each approach has its advantages and disadvantages, EFA are the best suited for most
type of outlines, as EFA is more robust to irregularities along the series (Rohlf, 1986b).

To demonstrate the functionality of these formulae, we will be using a single example of a mosquito
wing (Fig. B.1) published by Rohlf and Archie (1984), whose dataset is openly available in the Momocs
library (Bonhomme et al., 2014). Each mosquito wing in this dataset is described by 100 points along
the outline. For each of the techniques, the reconstruction of the wing’s outline will be presented using the
cumulative contributions of the first 10 harmonics. All calculations were programmed in the R programming
language (v.4.0) by L.A. Courtenay, without the use of external dependencies.
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Figure B.1: An example of a mosquito wing from Rohlf and Archie (1984) that will be used to demonstrate
the functionality of FA in the description of shape.

B.1 Outline Superimposition

While Fourier Shape Descriptors are not used for the analysis of Procrustes superimposed coordinates,
a certain level of superimposition may be required prior to analyses. This can be performed using the
left-singular unitary matrix (U), obtained from the Single Value Decomposition (UΣV T ) of the covariance
matrix (C), for each set of coordinates (X);

σ (x,y) =
1

n−1

n

∑
i=1

(xi − x̄)(yi − ȳ) (B.1)

C =

[
σ (x,x) σ (x,y)

σ (y,x) σ (y,y)

]
(B.2)

C =UΣV T (B.3)

X ′ = XU (B.4)

producing aligned coordinates X ′.

B.2 Fourier Series

Fourier series are used to describe shapes by decomposing a periodic function into a sum of more simple
trigonometric functions, such as sine and cosine values. The Fourier Series formula can be described as
follows;

f (x) =
a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx) (B.5)

where;

a0 =
1
π

∫
π

−π

f (x)dx (B.6)

an =
1
π

∫
π

−π

f (x)cos(nx)dx (B.7)
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bn =
1
π

∫
π

−π

f (x)sin(nx)dx (B.8)

If we describe an outline as a set of coordinates, f (x) can be converted into x(t) and y(t), repre-
senting both the x and y coordinates as functions, and where t is the curvilinear abscissa from 0 to T . In this
sense, T is defined as;

T =
n

∑
i=1

√
∆x2

i +∆y2
i (B.9)

which describes the perimeter (period of the signal, or fundamental frequency) of the profile. Following
this, the pulse, or angular frequency of the signal, can be defined through;

ω =
2π

T
(B.10)

We can thus replace π from eq. B.6-B.7 with T , and insert ω to define the formulae;

x(t) =
a0

2
+

∞

∑
n=1

an cos(nωt)+
∞

∑
n=1

bn sin(nωt) (B.11)

y(t) =
c0

2
+

∞

∑
n=1

cn cos(nωt)+
∞

∑
n=1

dn sin(nωt) (B.12)

an =
2
T

∫ T

0
x(t)cos(nωt)dt (B.13)

bn =
2
T

∫ T

0
x(t)sin(nωt)dt (B.14)

cn =
2
T

∫ T

0
y(t)cos(nωt)dt (B.15)

dn =
2
T

∫ T

0
y(t)sin(nωt)dt (B.16)

B.3 Fourier Radius Variation Coefficients as Descriptors of Morphol-
ogy

Fourier Radius Variation formulae for a given curve can be defined as the distance from the centroid to the
outline, i.e. the radius r. We can describe this as a function of t through;

r(t) = µ0 +
∞

∑
i=1

(ai cos(nt)+bi sin(nt)) (B.17)

where

µ0 =
1

2π

∫ 2π

0
r(t)dt (B.18)

an =
1
π

∫ 2π

0
r(t)cosnt dt (B.19)
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bn =
1
π

∫ 2π

0
r(t)sinnt dt (B.20)

If we describe the curve as a set of points p along the outline, we can calculate the radius r, being
a measurement of the distance from pi to the centroid (Fig. B.2), as a periodic function, and thus expand
the previous formulae such that;

r(θ) =
1
2

a0 +
p

∑
n=1

an cos(ωnt)+bn sin(ωnt) (B.21)

where n is the number of harmonics describing the series. Using this expansion of the original formulae, an

and bn are now defined as;

an =
2
p

p

∑
i=1

ri cos(nti) (B.22)

bn =
2
p

p

∑
i=1

ri sin(nti) (B.23)

and we substitue µ0 for a0 as;

a0 =

√
2
p

p

∑
i=1

ri (B.24)

Figure B.2: A diagram representing the means in which outlines are described using Fourier Radius Vari-
ation

Figure B.3 demonstrates how FRV harmonics can be used to reconstruct the shape of the mosquito
wing presented in Figure B.1.

Figure B.3: Diagram presenting the reconstruction of a mosquito wing’s outline based on the cumulative
contributions of the first 10 Fourier Radius Variation harmonics
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B.4 Fourier Tangent Angle Coefficients as Descriptors of Morphol-
ogy

Fourier Tangent Angles as descriptors of morphology are very similar to the previously defined Radius
Variation descriptors. From this perspective, most formulae remain the same, with the exception that instead
of calculating the distance from a point to the centroid, FTA formulae take a scaled outline with range
[0,2π], and express change through a function of φ (t). φ (t) is expressed as the angle from a point at a
certain distance (t) along the line (θt ) to the starting point (θ0), and is calculated as φ (t) = θt − θ0 − t

(Fig. B.4). We can substitute this measure into the FRV formulae (Appendix B.4) such that coefficients are
calculated through;

a0 =

√
2
p

p

∑
i=1

φ (t) (B.25)

an =
2
p

p

∑
i=1

φ (t)cos(nθi) (B.26)

bn =
2
p

p

∑
i=1

φ (t)sin(nθi) (B.27)

Figure B.4: A diagram representing the means in which outlines are described using Fourier Tangent
Angles

Figure B.5 demonstrates how FTA harmonics can be used to reconstruct the shape of the mosquito
wing presented in Figure B.1.

Figure B.5: Diagram presenting the reconstruction of a mosquito wing’s outline based on the cumulative
contributions of the first 10 Fourier Tangent Angle harmonics
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B.5 Elliptic Fourier Coefficients as Descriptors of Morphology

Shapes and outlines can be described by a set of Fourier series coefficients, an, bn, cn and dn, where n is the
number of harmonics used to describe the series (Ferson et al., 1985), and k is the number of points along
the outline (i). Fourier transforms are thus used to analyse the displacement of x and y coordinates along
the outline (Fig. B.6). Each harmonic n can be calculated through;

an =
T

2π2n2

p

∑
i=1

∆xi

∆ti

(
cos

2πnti
T

− cos
2πnti−1

T

)
(B.28)

bn =
T

2π2n2

p

∑
i=1

∆xi

∆ti

(
sin

2πnti
T

− sin
2πnti−1

T

)
(B.29)

cn =
T

2π2n2

p

∑
i=1

∆yi

∆ti

(
cos

2πnti
T

− cos
2πnti−1

T

)
(B.30)

dn =
T

2π2n2

p

∑
i=1

∆yi

∆ti

(
sin

2πnti
T

− sin
2πnti−1

T

)
(B.31)

These coefficients can be directly used for multivariate analyses, however, in the case where coef-
ficients are to be used as descriptors of shape, as opposed to form, values are additionally normalized and
scaled (Ferson et al., 1985). This normalization process is computed using;

[
An Bn

Cn Dn

]
=

1
λ

[
cosψ sinψ

−sinψ cosψ

][
an bn

cn dn

][
cosnθ −sinnθ

sinnθ cosnθ

]
(B.32)

Here λ defines the “semimajor axis of the best fitting ellipse” (Ferson et al., 1985);

a′ = A1 cosθ +B1 sinθ (B.33)

c′ =C1 cosθ +D1 sinθ (B.34)

λ =
√

a′ 2 + c′ 2 (B.35)

θ is the orientation of said ellipse in radians;

θ = arctan
(

c′

a′

)
, 0 ≤ θ < 2π (B.36)

and ψ is the rotation of the starting point from the end of the ellipse;

ψ =
1
2

arctan
2(a1b1 + c1d1)

a2
1 + c2

1 −b2
1 −d2

1
, 0 ≤ θ < π (B.37)

The result of this transformation is the cancelling out of coefficients a1, b1 and c1, as well as the elimination
of size.
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Figure B.6: A diagram representing the means in which outlines are described using Elliptic Fourier
Analyses. For the purpose of describing morphology, coefficients are based on x and y coordinates along
the outline, for this reason only the oscilloscope has been displayed in this figure.

Figure B.7 demonstrates how EFA harmonics can be used to reconstruct the shape of the mosquito
wing presented in Figure B.1.

Figure B.7: Diagram presenting the reconstruction of a mosquito wing’s outline based on the cumulative
contributions of the first 10 Elliptic Fourier harmonics

B.6 Defining an Optimal Number of Harmonics

As can be seen throughout this section, the use of Fourier Descriptors is dependent on the definition of
n. The first few harmonics, regardless of the technique, describe morphology as very abstract and vague
representations of the overall shape, generally represented as a circle or an ellipsis. As harmonics are added,
the cumulative contribution of harmonics begin to resemble the original shape.

Little agreement exists on the precise number of harmonics to be used (Claude, 2008), while in
general higher level harmonics are mostly described by noise of minor deviations in outline morphologies.
Nevertheless, we can calculate the descriptive power (P) of FRV and FTA harmonics through;

Pn =
A2

n +B2
n

2
(B.38)

and we can calculate the descriptive power of EFA harmonics through;

Pn =
A2

n +B2
n +C2

n +D2
n

2
(B.39)



Appendix C

p-Value Evaluation

In the October of 2017, the American Statistical Association (ASA) held a 2 day symposium to discuss the
use of p-Values and Statistical Significance. Product of said symposium can be summarised in the 73rd
Volume (Issue Sup1) of The American Statistician; a collection of 43 detailed articles on the use and mis-
use of p-Values, where the term "Statistically significant", alongside recommendations on how to proceed
in a world beyond p<0.05 (Wasserstein et al., 2019), are discussed in great detail. While this collection
builds on the original statements and principles proposed by the ASA after the symposium of October,
2015, and published in 2016 (Wasserstein and Lazar, 2016), the more extensive special issue of 2019
strongly discourages the use of the term "significant". Under this premise, careful evaluation of each of the
proposals has led to the conclusion that 0.05 is no longer an acceptable threshold. Throughout the present
Doctoral Thesis, arguments are proposed to substitute 0.05 with 0.003, as will be explained in continuation.

C.1 A Brief Overview of p-Value Historiography

The p-value has a long history, arguably dating back to the XVIIIth century, while popularised and stan-
dardised during the beginning of the XXth century (Kennedy-Schaffer, 2019). Among the many possible
authors, notable early usage of p-values include some of the most relevant names in statistics; Laplace
(1827), Poisson (1837), and Pearson (1900), inter alia. Nevertheless, few authors actually make an attempt
at clarifying an acceptable "threshold" or norm from which future analysts can base their work on. While
as early as Edgeworth (1885)’s article we can find a possible reference to a certain threshold of importance;

"by far the greater proportion (namely 0.995)... Accordingly, if out of a set of [...] N statistical numbers

which fulfil the law of error, we take one at random, it is exceedingly improbable that it will differ from the

Mean to the extent of twice, and à fortiori thrice, the modulus... Such is the nature of the law of error" -
Edgeworth (1885), Page 185

To some, at the time, 0.005 was considered excessive and not adaptable to all situations.
Building on this, the most notable and widely-accepted contributions in this field of research,

therefore, are not found until the later works of Pearson (1900), Elderton (1902) and Student (1908) (whose
real name was William Sealy Gosset). From each of these studies, we find valuable insights into early
statistical reasoning, namely with the definition of probability distributions that laid down a framework from
which p-value calculations would be standardised and developed (χ2, t & z distributions). Product of these
studies are the first detailed publications of p-values, with notable contributions by R.A. Fisher. Alongside
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a series of articles, Fisher published his 1925 book titled Statistical Methods for Research Workers (Fisher,
1925), containing the referential passage;

"The value for which p = 0.05... is convenient to take this point as a limit in judging whether a deviation is

to be considered significant or not. Deviations exceeding twice the standard deviation are thus formally

regarded as significant." - Fisher (1925), Page 47

Here it is important to point out specifically the phrase "twice the standard deviation", from which
it can be seen that 0.05 was not an arbitrarily chosen value, but more theoretically derived from 1− 2σ ≈
0.05. Nevertheless, it is also important to point out that Fisher did not only use 0.05, and in some cases we
find his tables including a large number of different p-values, with reference to 0.01 as another threshold
for different circumstances.

Nevertheless, Fisher’s work was not published without some debate. In a series of studies by Ney-
man and Pearson (1933a,b), we find a slightly different approach to defining, not only p-Value calculations
in hypothesis testing, but also the reasoning behind using 0.05 as a threshold;

"...the testing of statistical hypotheses cannot be treated as a problem of estimation" (pg. 492) "H0 is

accepted when some alternative Hi is true, the conesquences that follow will depend upon the nature of Hi

and its difference from H0... while it is the ’size’ of pI(w) that matters, it is what may be termed the quality

of errors contributing to the risk PII(w), that must be taken into account" - Neyman and Pearson (1933a),
Page 497

"We deal first with the class of alternatives for which α > α0. If ε = 0.05... we shall proabbly decide to

accept the hypothesis H0 as far as this class of alternatives is concerned" - Neyman and Pearson (1933b),
Page 303

Once again, we also find the authors contemplating a more robust threshold of 0.01 depending on the type
of probability distributions at hand (Neyman and Pearson, 1933b).

Here, Neyman and Pearson approach the concept of hypothesis testing from a different perspective,
stating that the acceptance of a hypothesis should not just depend on the Null Hypothesis’ (H0) distribution,
but also be contextualised with the Alternative Hypothesis’ (Ha) distribution (Neyman and Pearson, 1933a).
From this perspective, these authors search for a means of reducing possible error, with Type I (PI) and Type
II (PII) statistical errors being False Positive and False Negative errors accordingly. In sum, Neyman and
Pearson thus discuss a significance level α as 0.05 or 0.01 for PI risk, while β = 1 - statistical power as the
PII risk.

While the p-Value threshold between the two approaches does not differ greatly, the means of
deriving this threshold is quite different. Under this premise, it is possible to argue that this constant
mention of 0.05 across multiple sources, even if derived from different calculations, is what has generated
such confusion in the use of p-Values over the years. As 0.05 appears to resonate throughout history of
applied statistics, with few questions regarding the reliability of this threshold, many authors misuse the
concept of p < 0.05 in hypothesis testing without understanding the true origin of this value.

While the present body of research will refrain from declaring a preference for one approach or the
other, we feel it is important to note both approaches have their advantages and disadvantages, and a general
understanding of their origin is necessary in order to correctly evaluate p-value calculations. If we are to
consider some of the more recent research into fields of robust statistics, it may be considered that 2σ is not
always the best reflection of reality when dealing with non-symmetrical empirical probability distributions.
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While the t and z distributions are more robust to a number of these cases, presenting longer tails and a
means of making general inferences regarding the population, limitations are still present and the definition
of a single p-Value threshold is not always as straightforward.

C.2 p-Value Calibrations and the use of Bayes Theorem

In order to define the methods that can be used to evaluate p-Values, we think it’s important to define what
p-Values and hypothesis testing refer to in the XXIst century. For this purpose we quote Wasserstein and
Lazar’s 2016 ASA statement;

"a p-Value is the probability under a specified statistical model that a statistical summary of the data [...]

would be equal to or more extreme than its observed value." - Wasserstein and Lazar (2016), Page 131

Among the many papers presented by the ASA’s 2019 Special Issue, an important point raised
by most authors builds on the exclusively Frequentist perspective most scientists have upon approaching
hypothesis testing. In as such, most authors who contributed to the Special Issue raised the point that one
of the best means of overcoming p-Value misuse would be to find a compromise between Bayesian and
Frequentist approaches. As pointed out by Colquhoun (2019), however, this is not an easy task and many
analysts are likely to try and avoid these approaches.

Part of the Bayesian-Frequentist conflict stems from the distrust many non-statisticians have with
the concept of Bayesian Priors (Martin, 2018; Colquhoun, 2019). While in many fields of science, a typical
argument against Bayesian approaches consider that not enough is known about certain phenomena in order
to construct truly informative priors for Bayesian analysis, in many cases this does not mean that Bayesian
approaches should be discarded. As pointed out by most Bayesian practitioners, the use of priors is only one

component of the theorem, and while informative priors can be greatly beneficial to the quality of results,
weakly-informative priors, or even diffuse priors, are still an option if little is known about the subject
matter (Martin, 2018). Similarly, weakly-informative priors are a popular technique for regularisation in
many Bayesian learning strategies.

When using Bayes’ theorem for hypothesis testing, we can define the following formula (eq. C.1);

P(A|B) = P(B|A) ·P(A)
P(B)

∴
P(Ha|x)
P(H0|x)

=
P(x|Ha)

P(x|H0)
· P(Ha)

P(H0)
(C.1)

where x is our data, Ha is the alternative and H0 the null hypothesis. Observing this equation, it can
immediately be seen how Bayesian approaches have the distinct advantage of meeting the requirements
set forth by Neyman and Pearson (1933a,b), whereby the equation considers the test’s results not only with
regards to H0 but also in context with Ha. Similarly, Bayesian statistics employ the use of prior and posterior
probabilities to quantify levels of uncertainty within a statement (Martin, 2018), providing statisticians with
a means of defining their certainty or uncertainty about Ha. Furthermore, this not only implies that the
reliability of a p-Value threshold can be empirically assessed, but is also adaptable to the specific data at
hand. In Bayesian statistics, this is usually seen by how the final output of a model is not a single value, but
a probability distribution of all the possible values (Martin, 2018).

The Bayesian alternative to p-Values in hypothesis testing are known as Bayes Factors (BFs). A
BF is the likelihood ratio of the marginal likelihoods of Ha and H0. These values are usually interpreted
in ranges, with BF 1 to 3 being weak, 3 to 10 being moderate, 10 to 30 being substantial, 30 to 100 being
strong, and > 100 being very strong evidence in favour for Ha (Held and Ott, 2018). In a similar sense,
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different authors have made attempts at categorizing p-Values in this manner, with 0.1 to 0.05 implying
weak, 0.05 to 0.01 moderate, 0.01 to 0.001 strong, and <0.001 very strong evidence for Ha (Cox and
Donnelly, 2011; Bland, 2015). Nevertheless, in some senses this still assumes a one-size-fits-all p-Value,
regardless of specific Ha and H0 distributions a study may have. Likewise, this can also create an illusion
that the p-Value is a calculation of the probability of something being true, while being namely conditioned
on the H0 (Held and Ott, 2018).

To directly confront the differences between Frequentist derived p-Values and Bayesian metrics,
multiple efforts have been made to propose a means of "calibrating" p-value with BFs (Sellke et al., 2001;
Held and Ott, 2018; Benjamin and Berger, 2019). Nevertheless, not all produce the same results (Benjamin
and Berger, 2019). In part this can be explained by some of the issues in which p-values have been defined,
whereby the conversion of p-values according to Fisher’s definition require a different formula (eq. C.2)
(Fisher, 1925), to those proposed by Neyman and Pearson (1933a,b) (eq. C.3);

B(p) =−e p log(p) (C.2)

α (p) =
(

1+[−e p log(p)]−1
)−1

(C.3)

Equation C.2 is defined as the lower bound on the odds provided by the data for H0 and Ha. Equa-
tion C.3, on the other hand, is defined as the posterior probability of H0 based on equation C.2, combined
with the assumption of an equal prior probability for Ha and H0 (i.e. 0.5) (Sellke et al., 2001). Under this
premise, we can see how, once again, α(p) fulfills Neyman and Pearson’s criteria on defining probability
distributions for both Ha and H0.

In the 2019 ASA Special Issue, we find an interesting development of these equations by Benajmin
and Berger, providing 3 recommendations for improving the use of p-Values (Benjamin and Berger, 2019).
The authors; (1) argue that 0.05 should be replaced by 0.005, with values between 0.05 and 0.005 being
referred to as "suggestive" evidence, rather than "significant"; (2) suggest that analysts report a Bayes Factor
Bounds (BFB) value that supports the reported p-Value; and (3) suggest that analysts report the posterior
odds of H1 to H0.

Firstly, with regards to point (2), a BFB is the upper bound, or confidence interval, with regards to
traditional BFs. Benjamin and Berger thus define BFB as an indication for "the highest possible BF con-

sistent with the observed p-Value" (Benjamin and Berger, 2019). Adapting equation C.2 to this statement,
BFB can thus be defined as (eq. C.4);

BF ≤ BFB ≡ 1
−e p log(p)

(C.4)

BFBs are generally reported at most as odds against the H0 (Benjamin and Berger, 2019). Their
interpretation, therefore, can consider 0.05, whose corresponding BFB value is 2.44, indicating 2.44:1 odds
that Ha is correct. For those who find odds hard to interpret, and would thus prefer a % value, BFBs can
easily be converted to percentages via the following formula (eq. C.5);

PU (Ha|p) =
BFB(p)

1+BFB(p)
(C.5)

The third recommendation presented by Benjamin and Berger requires these values be presented
as posterior odds. This is simply carried out by multiplying the BFB value by the prior odds.
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One key disadvantage to the use of BFs is that they require the specification of a prior probability
distribution, a topic that frequently produces disagreements, or is too complex to define. In cases where the
prior probabilities are unknown, this value can be derived from other variables (see: http://fpr-calc.ucl.ac.uk/
Colquhoun (2017)), however, as suggested by Colquhoun (2019), one fair assumption to make is that these
probabilities are equal (50:50, a.k.a. random). This is considered a valid diffuse prior for most hypothesis
testing. In light of this, posterior odds for a p-value of e.g. 0.05, would have a posterior probability of
BFB(0.05) ·0.5.

For ease of comparisons, Table C.1 (located towards the end of this Appendix) contains a number
of p-values calibrated with BFB, PU (Ha|p) and their corresponding posterior odds.

The final consideration made regarding p-Values in the present body of research employed the use
of the False Positive Risk (FPR) approach proposed by Colquhoun (2019).

The FPR is a powerful notion developing a number of the components seen up to this point. FPR
attempts to quantify the probability of declaring an effect is real, when it is, in fact, not. This is very
similiar to Neyman and Pearson’s notions of the α threshold and PI risk, considering both refer directly to
the False Positive Rate of a prediction. In order to calculate this, Colquhoun uses Bayes’ theorem to define
the likelihood ratio in favour of Ha as equation C.6, where FPR can then be calculated through equation C.7
and in the case where equal prior probabilities for Ha and H0 are defined we can simplify this equation to
equation C.8;

L10 =
P(x|Ha)

P(x|H0)
(C.6)

FPR =
1

1+L10
P(Ha)

1−P(Ha)

(C.7)

FPR =
1

1+L10
0.5
0.5

=
1

1+L10
(C.8)

Throughout his article, Colquhoun provides three main formulae for defining L10, each with their
own peculiarities. For the purpose of simplicity, however, and so as to provide a means of calibrating
Benjamin and Berger’s BFB calculations with FPR, this Doctoral Thesis has employed the Sellke-Berger
approach, defined in Appendix A2 of Colquhoun (2019), using equation C.4 as L10. Interestingly, using
BFB in this sense forces FPR to be the inverse of PU (Ha|p) (see Fig. C.2), creating a complementary metric
that calculates the probability of Type I errors being present alongside the upper-bound probability of Ha

being true.
In continuation, the following appendix provides a series of tables and figures that can be used

as a frame of reference for both the BFB and FPR approaches. Figures C.1 & C.2 represent a graphical
representation of the trend between p-Values and each of the Bayesian-based metrics. One characteristic
of Figure C.1, that is of notable importance, is the difference between Bayes values when using α(p) and
B(p), especially at p = 0.05. From here it can be seen that only when p ≈ 0.005, or closer to 3σ , do the
two values coincide, likely indicating that 0.005 or 0.003 be a more robust threshold to consider a p-Value
as "significant" or not in the eyes of Benjamin and Berger (2019)’s Recommendation 0.1.

When consulting plots of curves for each of these equations, interesting patterns emerge, namely
a non-symmetric U-shaped curve (Fig. C.1 & C.2), indicating BFB or FPR values to not be unique to one
single p-Value. This can consequently be interpreted as a means for reversing the focus from Ha to H0, with
values falling on one side of the curve supporting either one of these hypotheses. To find the limit between
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p(Ha) and p(H0), a simple experiment was devised, calculating the point of maximum curvature for each
curve using steps of 0.0001 across p-Values. This experiment found p = 0.3681 as the limit between each
hypothesis.

Finally, to observe how different priors influence FPR and PU (Ha|p) curves, Figure C.3 shows
how priors affect the morphology of these curves.

Figure C.1: p-Value calibration curves for p-Values between 0.1 and 0.0001. Top Panel: Visualisation of
calibration curves for different p-Values using the B(p) (black) and α(p) (red) formulas described in

equations C.2 & C.3 respectively. Bottom Panel: Visualisation of the Bayes Factor Bound (BFB)
calibration curve for different p-Values. Vertical grey dotted lines mark p = 0.05 and p = 0.005

respectively. Figure created using base-R.
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Figure C.2: p-Value calibration curves for p-Values between 1 and 0.001. Top Panel: Bayes Factor Bound
calibration curves (eq. C.4). Bottom Panel: Upper bound probability supporting each hypothesis (red; eq.

C.5) and probability of False Positives (black; eq. C.7). Grey line marks the point of maximal curvature
along the lines. Figure created using base-R.

Figure C.3: Plots describing different variations of Fig. C.2’s Bottom Panel using different Priors. Grey
line marks the point of maximal curvature along the lines. Figure created using base-R.
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Table C.1: Bayes Factor Bounds (BFBs), Posterior Probability of Ha values (PU (Ha|p)), Posterior Odds
of Ha to H0 values (Ha:H0), and False Positive Risk (FPR) values, for a number of their corresponding
p-Values. Prior odds for Ha:H0 and FPR calculations were set using a a number of different prior odds

prior p 0.368 0.100 0.050 ∗ 0.010 0.005 0.003 † 0.001 0.0001

BFB 1.000 1.598 2.456 7.988 13.89 21.11 53.26 399.4
PU (Ha|p) 0.500 0.615 0.710 0.889 0.933 0.955 0.982 0.998

0.2 Ha:H0 0.200 0.320 0.491 1.600 2.778 4.222 10.65 79.88
0.2 FPR 0.800 0.715 0.620 0.334 0.224 0.159 0.070 0.010
0.5 Ha:H0 0.500 0.799 1.220 3.994 6.943 10.55 26.63 199.7
0.5 FPR 0.500 0.385 0.289 0.111 0.067 0.045 0.018 0.002
0.8 Ha:H0 0.800 1.278 1.964 6.391 11.11 16.89 42.60 319.5
0.8 FPR 0.200 0.135 0.092 0.030 0.177 0.012 0.005 0.001

∗ p-Values analogous with Fisher (1925)’s definition of "deviations exceeding twice the standard deviation"; †
adaption of Fisher (1925)’s definition using the third standard deviation.

As evidenced by the numerous equations, tables and figures provided within this Appendix, part of
the reasons behind the choice of p < 0.005 as being significant, and where possible our recommendation of
p < 0.003, is based on how p = 0.05 only implies a 71% probability in favour for our Alternative Hypothesis
when our prior probabilities are 1:2, leaving a 28.9% risk for Type I errors, while p = 0.005 lowers this risk
to 6.74%, and p = 0.003 lowers the risk even further to 4.5 % of Type I errors.

Finally, considering observations by Courtenay et al. (2021b) and subsequent studies by Courtenay
et al. (2021c,a), another means of calibrating p-Values, especially those above the 0.3681 threshold, is to
calculate the probability of H0 being true after having accepted Ha. From this perspective, values below
0.3681 will simply be the FPR, while values of p > 0.3681 are calibrated using the inverse of the FPR as
follows;

IFPR =
1

1+L10

(
1−
(

P(Ha)
1−P(Ha)

)) (C.9)

defining P(H0) as;

P(H0) =

{
FPR(p), p ≤ 0.3681,
1− IFPR(p), p > 0.3681

(C.10)

The following table presents some p to P(H0) calibrations;

Table C.2: P(H0) for a number of their corresponding p-Values using different priors

p 0.999 0.800 0.500 0.368 0.100 0.050 0.010 0.005 0.003

0.2 Prior 0.993 0.892 0.809 0.800 0.715 0.620 0.334 0.224 0.159
0.5 Prior 0.974 0.673 0.515 0.500 0.385 0.289 0.111 0.067 0.045
0.8 Prior 0.902 0.340 0.210 0.200 0.135 0.092 0.030 0.018 0.012



Appendix D

The Neural Network "Black Box"

The objectives of this Appendix are to simply visualise the internal properties of a Neural Network. As
has already been presented in Courtenay et al. (2020b), a Neural Network (NN), in its simplest form, is a
series of mathematical operations that try to replicate actual biological neural functionality. These networks
can sometimes consist of hundreds of neurons, organised in successive layers. The simplest of NNs are
represented by a simple input layer, where every variable is introduced into the network by a neuron in the
input layer, which is connected to a hidden layer of neurons, before being mapped out to the output. The
number of neurons in the output depend on the type of output required. NNs are highly versatile and can be
used for many different tasks from regression to classification, among many others.

We can define a NN as;

h1,i = f1

(
n0

∑
j=1

w(1)
i, j x j +b(1)i

)
: i = 1, ...,n1 (D.1)

h2,i = f2

(
n1

∑
j=1

w(2)
i, j h1, j +b(2)i

)
: i = 1, ...,n2 (D.2)

ŷi = f3

(
n2

∑
j=1

w(3)
i, j h2, j +b(3)i

)
: i = 1, ...,n3 (D.3)

where each of the inputs xi are mapped to the output ŷi by a series of weights that pass information from
neuron to the next. Each neuron is additionally connected to a bias neuron b. f () is known as an activation
function, which controls the flow of information from one neuron to the next, and can be tuned to impose
non-linearity on the general functionality of the NN. This is a slightly more complete definition of a NN
than that presented in Courtenay et al. (2020b).

Numerous activation functions exist, however the most common include;

Linear f (x) = x (D.4)

Rectified Linear Unit (ReLU) f (x) = max(0,x) (D.5)

Tanh f (x) =
ex − e−x

ex + e−x (D.6)
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Sigmoid f (x) =
1

1+ e−x (D.7)

Softmax f (⃗x) =
exi

∑
K
j=1 ex j

(D.8)

The simplest of activation functions is the Linear function (eq. D.4), with range (−∞,∞), which
is typically used when NNs are trained to perform tasks such as linear regression. ReLU (eq. D.5) is a
non-linear transformation of this function, with range [0,∞), and is seemly the most popular activation
function. The Tanh activation function (eq. D.6), which is bound between [−1,1] is also a commonly used
activation function, and is used by Courtenay and González-Aguilera (2020) for the augmentation of scaled
values between [−1,1]. Finally, both Sigmoid (eq. D.7) and Softmax (eq. D.8) are commonly used as
activation functions for the output of NNs. Sigmoid is bound between [0,1], and is thus frequently used for
binary classification tasks, e.g. Courtenay et al. (2020b). Softmax, on the other hand, has the additional
property of accepting a vector of x values, x⃗, of length K (eq. D.8). This ensures that the vector produced by
Softmax consists of values bound between [0,1], while the sum of this vector is 1. Softmax is thus useful
for non-binary classification problems, such as those presented in Courtenay et al. (2021b) and Courtenay
et al. (2023).

An increasingly popular development of equation D.5 also exists combining its properties with that
of equation D.7, known as the Self-Gated “Swish” activation function (eq. D.9);

Swish f (x) = x · 1
1+ e−x (D.9)

This is a version of ReLU whose first and second derivatives are much smoother than that of ReLU.
This function can be calculated to be bound between (≈ −0.3,∞), and has been used in Courtenay et al.
(2021b) and Courtenay et al. (2023).

The mathematics behind training a NN are complex and go far beyond the scope of this brief
demonstration. For further reading on this topic consult Goodfellow et al. (2016), or the reference list of
Courtenay et al. (2020b).

D.1 A simple Neural Network

For the purpose of this demonstration, a simple NN was designed for the classification of the different types
of trampling bone surface modifications described by Courtenay et al. (2020c). In the aforementioned study,
Courtenay et al. (2020c) define grazes to be short (≈3.75mm) and wide (≈0.35mm) naturally produced
abrasions on the surface of bone, commonly produced when the bone is dry. Scratches, on the other hand,
are long (≈5.67mm) and thin (≈0.22mm) marks that are more commonly produced when the bone is fresh.

The present demonstration took the measurements of 251 trampling marks provided in the supple-
mentary materials of Courtenay et al. (2020c), and augmented them (x1000) using a Markov Chain Monte
Carlo algorithm as described by Courtenay et al. (Under Review-a). A simple 4 hidden layer neural network
was then trained on this data. This hidden layer consists of 2 input neurons (length & width), followed by a
set of hidden neurons (n = [15,10,5,3]), before being mapped out to a single output neuron for binary clas-
sification (scratch (1) or graze (0)). All hidden layers used ReLU activation functions (eq. D.5), while the
output layer was activated using the Sigmoid function (eq. D.7). Dropout layers were inserted in between
each of the layers with p⃗ = [0.1,0.1,0.1,0.1] (Srivastava, 2013), while a kernel l2 = 1×10−05 regulariser
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was used (Krogh and Hertz, 1991). The network was trained for 1000 epochs with a batch size of 128. Loss
was calculated using the binary crossentropy function (Bishop, 1995, 2006), while back propagation was
performed using the RMSprop optimizer (Kochenderfer and Wheeler, 2019). Training was performed using
a 70:30 Training:Validation split, with 30% of the sample separated prior to this for testing, as is typical in
Deep Learning common practice (Goodfellow et al., 2016).

A visualisation of the neural network, and representation of the training results, have been detailed
in the Figure D.1 and Table D.1;

Figure D.1: Visualisation of the Neural Network used in this demonstration. Yellow neurons represent
input, blue output with sigmoid activation, red neurons represent hidden neurons. Note how no Bias

neurons have been included in this visualisation.

Table D.1: Evaluation matrices for the training of a neural network on the Courtenay et al. (2020c)
dataset. AUC = Area Under the receiver operator characteristic Curve

Metric

Training Accuracy 0.94
Validation Accuracy 0.97

Training Loss 0.16
Validation Loss 0.12

Test Accuracy 0.97
Test Loss 0.13
Test AUC 0.99

Test Sensitivity 0.95
Test Specificity 0.98

Test Kappa 0.93

D.2 Inside the Black Box

Figure D.2 presents the results for this demonstration, visualising how certain regions of the network acti-
vate or disactivate depending on the type of information they are provided with as input. The visualisation
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of activation frequency was performed using a balanced in-out degree, typical of applications in graph the-
ory. Both the in and out-degrees were calculated, and then normalised according to all the possible in or
out connections they may have. Red neurons indicate a high balanced in-out degree, while white neurons
represent a low balanced in-out degree. The edges of the graph (weighted connections) are also visualised
according to the frequency with which information passes through them.

Figure D.2: Visualisation of the balanced degree of each neuron in the Neural Network used for this
demonstration. Neural Network visualisations are presented at the extremity of each axis of the graph,

defining the type of input provided to them. Red neurons are those that are activated the most, white
neurons are activated the least. Edge darkness indicates how often information passes through them.

D.3 How should Computational Learning algorithms be evaluated?

The evaluation of classification algorithms in computational learning is of the upmost importance, however
can often be considered misleading. In most contexts, the words "80% classification" would be seen as a
powerful algorithm, however this is often not the case. In contexts such as medicine, for the construction of
diagnostic tools, more weight is given to evaluation metrics such as sensitivity and specificity. In other cases,
such as economics and supervised anomaly detection in bank fraud, precision and recall are more reliable.
In general, precision/recall values are considered metrics to be used for imbalanced classification, while
sensitivity and specificity are more sensitive to imbalance, thus being more reliable in general classification
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problems (He and Ma, 2013). The term imbalance here refers to where one of the labels we wish to classify
is underrepresented in the dataset.

We can calculate the balance (B) of a dataset using an adaptation of Shannon’s entropy theory
(Shannon, 1948a,b);

B =
−∑

g
i=1

ci
n log ci

n
logg

(D.10)

where c is the count of individuals in group g, and the sum of all values in vector c is n (i.e. the total sample
size). The B index is bound between [0,1], with values of 1 indicating balance and values of 0 indicating
imbalance.

In bank fraud, for example, there may be 100 frauds out of 10,000 examples. In this case, the
imbalance is described as 1:100 (B = 0.08). In medicine, this would be the case of classifying a rare
disease. A balanced problem, on the other hand, would be in the case where we have the same number of
healthy individuals as unhealthy individuals in a clinical trial (1:1, B = 1). Finally, it is not the same for
slight imbalance to exist (1:10, B = 0.43), as slightly more extreme cases (1:100, B = 0.08), or very extreme
cases (1:1000, B = 0.01). In each of these cases different evaluation metrics will be more or less reliable.

From this perspective, each of the metrics are defined for a particular reason, however all carry
out very similar functions. Evaluation metrics can thus be defined as a means of not only calculating
classification accuracy, but also a means of evaluating how often an algorithm is right, wrong, not wrong,
or right in saying the opposite. While this can sometimes be confusing, consider the following situation;
it is not the same for a doctor to diagnose a patient with an illness and they are actually healthy, as it is to
diagnose a patient as healthy and they are in fact ill. In the former case, this could lead to a law suit, while
in the latter this could even lead to death.

In order to perform these evaluations, a Confusion Matrix M is defined;

M =

[
T P FP

FN T N

]

where P refers to positive, N to Negative, T to True and F to False. In the case of the aforementioned
patient, a False Positive would be where we diagnose the patient as ill when they are in fact not. A True
Positive would be if we diagnose the patient as ill and they are in fact ill.

For simplicity, as well as the purpose of demonstrating how model evaluation works, each of the
three matrices that will be tried and tested in this Appendix are defined in the context of binary classification
(ill or healthy, fraud or not-fraud). Evaluation metrics for binary classification in this context can thus be
defined as;

Accuracy =
T P+T N

T P+FP+FN +T N
(D.11)

Sensitivity =
T P

T P+FN
= Recall (D.12)

Speci f icity =
T N

FP+T N
(D.13)

Precision =
T P

T P+FP
(D.14)
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With F-Measure (F):

F =
2 ·Precision ·Recall
Precision+Recall

(D.15)

and Kappa (κ);

Pe = Ppos +Pneg (D.16)

Ppos =
T P+FP

T P+FP+FN +T N
· T P+FN

T P+FP+FN +T N
(D.17)

Pneg =
FN +T N

T P+FP+FN +T N
· FP+T N

T P+FP+FN +T N
(D.18)

Po =
T P+T N

T P+FP+FN +T N
(D.19)

κ =
Po −Pe

1−Pe
(D.20)

For ease of calculation, the Area Under Curve (AUC) of either Receiver Operating Characteristic
(ROC), or Precision-Recall curves, were excluded from this appendix. AUC however can be seen as a
powerful balance between Sensitivity, Specificity and Precision (Sing et al., 2005).

For the purpose of this demonstration we have defined three confusion matrices; A is an example
of a very poor classifier with a misleadingly high accuracy; B is a slightly more evident case of a poor
classifier, with relatively high accuracy; and C is a relatively good classifier with a more balanced accuracy.
Matrices A and C both have 80% classification accuracy, a threshold that would normally be considered
"good". Matrix B, however, has 70% accuracy, a rate that is not particularly good but could be worse.

A =

[
80 20
0 0

]
, B =

[
60 20
10 10

]
, C =

[
50 10
10 30

]

The evaluation results for all three matrices can be consulted in the following table;

Table D.2: Evaluation matrices for Confusion Matrices A, B and C.

Metric Matrix A Matrix B Matrix C

Accuracy 0.80 0.70 0.80
Sensitivity 1.00 0.86 0.83
Specificity 0.00 0.33 0.75
Precision 0.80 0.75 0.83

Recall 1.00 0.86 0.83
F-Measure 0.88 0.80 0.83

Kappa 0.00 0.21 0.58

As can be seen in the table, the most obvious observation is that 80% accuracy is still possible even
if an algorithm is very weak. In this case, "80% accuracy" is completely unreliable. Likewise, for Matrix
B, while the accuracy falls 10% in comparison with other metrics for Matrix A, it is still a much more
powerful classifier. This appears increasingly more obvious as Kappa is calculated. If we can consider how
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the number of True Negatives is 0 in Matrix A, the first fraction in eq. D.18 will equate to 0. A scalar
0 multiplied or divided by anything will condition the formula to reach 0, thus lowering the κ statistic
drastically. Likewise, considering how Matrix A presents evaluation metrics higher than Matrix B, the low
TN value still conditions κ to be much lower. Finally, even in Matrix C, where most values (sensitivity,
precision and recall) are above the acceptable 0.8 threshold, κ still proves to be a strict statistic determining
Matrix C to be a moderate classifier (Landis and Koch, 1977; Foody, 2008; Kuhn and Johnson, 2013).

The next interesting component to consider is how, even in matrices that have been specifically
designed to be bad (A and B), both the Precision, Recall and F-Measure values are very high. This is quite
misleading, and could raise the question: are these really reliable? To simply answer this question, consider
the following matrix;

D =

[
85000 20

30 110

]

Matrix D represents a classification task with an extreme imbalance of B = 0.016, typical of
anomaly detection. The resulting precision and recall in this case study comes to 0.99976 and 0.99964
respectively. This indicates that the algorithm that produced matrix D was a very powerful classifier for
both the smaller and larger class. Specificity, however, would not truly reflect this power with a value of
only 0.85.

From this perspective, it can be seen that different evaluation metrics are designed for different
purposes, and the choice of metrics in a study should reflect this.

Finally, another popular means of evaluating an algorithm is by assessing the model’s loss. Loss
is defined as the error produced when making predictions. There are two very popular formulae for the
classification of loss;

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (D.21)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (D.22)

These are known as the Mean Squared Error (MSE) and the square root of MSE (RMSE), respectively. If
we consider, for example, a binary classification problem, where an algorithm is designed to detect whether
a patient has cancer (1) or not (0), and the algorithm predicts a label of 0.9, then the error for this particular
case is 1.0− 0.9. Evidently, an optimal algorithm will have the least amount of error possible, however
should remain consistent.

In the training of neural networks, measurements of loss are fundamental for the diagnosis of over
and underfitting (Fig. D.3). In cases where training and validation loss are high, this can typically be used
to identify an underfit NN. When training loss is low and the validation loss is high, this is often a sign of
overfitting. When both the training loss and validation loss are low and reach an optimal value at the same
time, this is an indication that an algorithm is well trained.
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Figure D.3: Examples of neural network learning curves in different situations.



Appendix E

Software and Computational Resources

All analyses and applications described throughout the present Doctoral Thesis relied heavily on the devel-
opment and use of multiple computer software, all of which are openly available through multiple reposi-
tories on the author’s GitHub page (https://github.com/LACourtenay), as well as in forks on the
TIDOP research group’s GitHub page (https://github.com/TIDOP-USAL)

For this purpose, the applications presented through this Doctoral Thesis were developed in 4
primary programming languages (in order of relevance); R (v.4.0), Python (v.3.7), JavaScript (v.1.8), and
C++ (v.17).

The main contributions included are the development of 3 R libraries for; (1) the calibration of
p-Values and use of robust statistical tools (Courtenay et al., 2020a, 2021a,b); (2) augmentation of both
numerical and categorical data using Monte Carlo based algorithms (Courtenay et al., Under Review-a), as
well as the evaluation of this data (Courtenay and González-Aguilera, 2020); and (3) the implementation
of Graph-based geometric morphometric tools (Courtenay et al., Under Review-b). In addition to these R
libraries, a software was developed in C++ for the processing of linear measurement data extracted from
tooth scores, following the work of Courtenay et al. (2021a), that can also be applied to the study of cut
marks following the work of other authors, e.g. (Bello and Soligo, 2008). Finally, an additional application
for the classification of trampling marks based on width and length measurements was also developed to
gain a better understanding on how Neural Networks work and can be implemented into a GUI. For this
application, all 4 programming languages were used.

The following subsections of this appendix will describe in detail the different computer software
developed.

E.1 R Libraries

E.1.1 pValueRobust

The pValueRobust library was developed to implement the multiple calculations detailed in Appendix C,
so as to provide tools for the calibration and evaluation of p-Values (Courtenay et al., 2020a, 2021a,b).

This is a simple library, written purely in the base R programming language without any external
dependencies, and is the sole property of L. A. Courtenay (©2022, MIT License). This library was written
following the functional programming paradigm, without the use or implementation of any classes. Most
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functions are simple, with only a single input required (a p-Value), while some accept an optional prior
probability parameter. Table E.1 describes the functions available in this library for p-Value calibrations;

Function Name Description

BFB Bayes Factor Bound (BFB) calculation for a given p-Value.
BFB is the upper bound confidence interval with regards to tra-
ditional Bayes Factors, i.e. the highest possible Bayes Factor
consistent with the observed p-Value. BFBs are generally re-
ported as at most the odds against H0

posterior_odds The posterior odds of BFB, provided a given prior probability.
The default prior probability is 0.5.

p_BFB The equivalent of BFB represented as a percentage value. This
function can be provided with a prior probability. The default
prior is 0.5.

FPR False Positive Risk (FPR) calculation for a given p-Value. The
FPR is the probability of an observation being a False Positive,
or Type I Statistical Error, having accepted Ha. This implemen-
tation of the formula uses BFB as a means of defining the Likeli-
hood ratio in favour of Ha. This function can be provided with a
prior probability. The default prior is 0.5.

p_H0 The Probability of the Null-Hypothesis (H0) having accepted
Ha. This function can be provided with a prior probability. The
default prior is 0.5.

calibration_curve A simple function that can be used to calculate callibration
curves for BFB values, FPR values, pH0 values, and a compari-
son of p_BFB and FPR curves. This function accepts prior prob-
abilities. The default prior is 0.5.

Table E.1: Functions for the calibration and evaluation of p-Values. H0 is the Null Hypothesis, while Ha is
the alternative hypothesis.

In addition to functions oriented towards the calibration of p-Values, the pValueRobust library
also contains a set of miscellaneous functions for the computation of robust descriptive statistical measures.
Each of these functions accept vectors as input. Table E.2 describes each of these functions briefly.
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Function Name Description

median_absolute_deviation A function for the calculation of the Median Absolute
Deviation (MAD) or Normalised MAD (NMAD) for a
univariate distribution. By default the NMAD value is
returned, using the constant 1.4826 for normalisation.
nmad = FALSE can be used to return the non-normalised
MAD value.

biweight_midvariance A function for the calculation of the Biweight Mid-
variance (BWMV) or Square-Root of the BWMV
(
√

BWMV ) for a univariate distribution. By default this
function calculates

√
BWMV

quantile_CI A function that calculates either the quantile value of a
given univariate distribution, or Confidence Intervals for
this distribution.

Table E.2: Additional functions for the calculation of robust statistical metrics

E.1.2 AugmentationMC

The AugmentationMC library was developed for the implementation of Monte Carlo based algorithms,
under the premise that these functions can be used for the augmentation and simulation of both numeric and
categorical data (Courtenay and González-Aguilera, 2020; Courtenay et al., Under Review-a). This library
is written in the base R programming language, and only contains a single dependency, being the abind
library for tensor operations. This library is the sole property of L. A. Courtenay (©2022, MIT License).

AugmentationMC is written using a mixture of functional and object-oriented programming.
For object-oriented programming purposes, a single S4 class was designed and developed, named the
MCMC_Trace class. The MCMC_Trace class is the base of all Markov Chain Monte Carlo algorithms
related to this library. Associated with this class are 5 different methods, as well as one generic method
that accepts input in the form of vectors and matrices as well. Finally, all implementations of Monte Carlo
based algorithms are programmed using functional programming.

The following table describes each of the functions included in the AugmentationMC, their input
type, class as well as a description of the function itself;
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Function Name Class Input Type Description

numericMC MC Numerical Monte Carlo based algorithm for the simulation
of numeric (univariate or multivariate) data.

categoricalMC MC Categorical Monte Carlo based algorithm for the simulation
of categorical (univariate or multivariate) data.

bivariate_multimodalMC MC Both Monte Carlo based algoritm for the simulation
of bivariate datasets consisting of one categorical
and one numeric variables.

conditionalMC MC Both Monte Carlo based algorithm for the conditional
simulation of variables. Provided a dataset of one
categorical variable and numerous numeric vari-
ables, the algorithm will first simulate an instance
of the categorical variable, and then calculate the
most probable numeric values that are associated
with it. Given a single numeric variable, and a set
of categorical variables, the algorithm will do the
same; first simulate an instance of the numeric
variable, and then predict the most probable cate-
gorical values associated with it.

multimodalMC MC Both Monte Carlo based algorithm for the simulation
of both numeric and categorical variables.

MCMC MCMC Numerical Metropolis-Hastings 1st Order Variant of the
Monte Carlo Markov Chain algorithm. This func-
tion produces an S4 class MCMC_Trace object
containing the trace of the Marov Chain over the
number of iterations defined by the user. The user
may also define a step size for the Markov chain.

burn_in MCMC MCMC_Trace A function used to define the burn-in period of
the Markov chain, thus eliminating a percentage
of the chain as defined by the user.

trace_plot MCMC MCMC_Trace A visualisation of the MCMC trace.
autocorrelation MCMC MCMC_Trace A plot of the autocorrelation function, or cor-

relogram, that defines the serial correlation of a
MCMC trace. Powerful chains present correlo-
gram curves that approximate 0 quickly.

effective_sample_size MCMC MCMC_Trace A function used to calculate the effective sam-
ple size for mean estimation from a trace. The
smaller the ESS value, the poorer the chain. For
univariate chains, values above 1000 are recom-
mendable, for multivariate chains values above
100 are recomendable per dimension.
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Function Name Class Input Type Description

sample_from_trace MCMC MCMC_Trace A function used to sample the final augmented
dataset from the MCMC_trace. The user must
define the sample size they wish to obtain, and
the algorithm will extract n number of observa-
tions from the posterior distribution.

TOST Both Numerical A “Two One-Sided Test” of equivalency to com-
pare a simulated dataset and the original dataset.
The robust parameter allows the user to define
whether Welch’s t-statistic or Yuen’s robust t-
statistic will be used for homogeneous and non-
homogeneous distributions respectively.

Table E.3: A detailed description of the functions from the AugmentationMC library. MC = Monte Carlo
based algorithm. MCMC = Markov Chain Monte Carlo

E.1.3 GraphGMM

The GraphGMM library was developed for multiple purposes oriented towards the field of Geometric
Morphometrics, namely the integration of Graph-based tools, following the mathematical models proposed
by Courtenay et al. (Under Review-b). This library is written in the R programming language, however has
multiple dependencies, including;

• shapes. A geometric morphometric library for some basic geometric morphometric functions.

• Morpho. A geometric morphometric library for some basic geometric morphometric functions.

• igraph. A library for network analyses and graph theory.

• abind. A library for tensor operations

• RTriangle. A library with functions for point cloud triangulation.

• ggplot2. A visualisation library.

• philentropy. A library for distance calculations.

• Rtsne. A library for t-Distributed Stochastic Neighbour Embeddings

• rgl. A library for 3D visualisation.

• dplyr. A library for database management.

• sm. A library for the visualisation of probability distributions.

• robustbase. A library with computationally efficient implementations of a colMedian function, as
opposed to colMeans.

• MASS. Statistical library and toolset.

• Rvcg. A library with functions for the triangulation of point clouds.

• RColorBrewer. A miscellaneous library with functions for the creation of colour palattes.

• car. Statistical library and toolset.

• magrittr. A library containing useful tools for handling data in R, especially the pipeline %>%
operator.
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This library is the sole property of L. A. Courtenay (©2022, MIT License).
GraphGMM is written using a functional programming approach, and contains 4 main families

of functions. The first group of functions consists in functions for basic Geometric Morphometric analyses
(Table E.4). These include an implementation of Generalised Procrustes Analyses, with ability to perform
Generalised Robust Procrustes Analyses, as well as functions for Generalised Resistant Fit, Relative Warp
Analyses, and other common tools in Geometric Morphometric research.

The second family includes functions directly associated with Graph-based Geometric Morpho-
metrics (Table E.5), including the graph embedding function, as well as a set of functions for the computa-
tion of graphs based on the spatial distribution of landmarks in the configuration. This set of functions also
includes some miscellaneous and experimental functions for in-depth analyses of a landmark graph.

The third family of functions are oriented towards dimensionality reduction (Table E.6), including
the implementation of Principal Component Analyses functions that plot not only PCA feature space but
also PCA-biplots, as well as functions for non-linear dimensionality reduction, including the t-Distributed
Stochastic Neighbour Embedding algorithm, and non-linear kernel PCA algorithms.

The final family are a simple set of miscellaneous functions (Table E.7).
Future improvements and updates to the GraphGMM library have the intention of improving the

way the library is designed, including an update from a functional programming paradigm to an object-
oriented paradigm with S3 and S4 classes.

A detailed description and manual of the GraphGMM library was included in the supplementary
materials of Courtenay et al. (Under Review-b). We strongly recommend consulting these documents.
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Function Name Input Type Description

GPA LM Array A function that can be used to perform a Generalised
Procrustes Fit (GPA). This function is adaptable for
both shape and form analyses, with additional func-
tions for robust implementations of the algorithm. Using
proc_method = "LS" and robust = "TRUE", this function
can also be used to perform a Generalised Robust Fit.
The proc_method = "optimalLS" performs GPA accord-
ing to Rohlf and Slice (1990) and Dryden and Mardia
(2016)

generalised_resistant_fit LM Array A function that can be used to perform a Generalised
Resistant Fit, following Siegel and Benson (1982) and
Slice (1996). This function is adaptable for both shape
and form analyses, with additional functions for robust
implementations of the algorithm.

relative_warp_analysis Proc. LM Array A functon for the calculation of Relative Warp Analyses,
and their corresponding Principal Component Analysis
plots.

orthogonal_projection Kendall Coords. A function for the orthogonal projection of superim-
posed coordinates from a non-Euclidean space to their
Euclidean tangent space.

stereographic_projection Kendall Coords. A function for the stereographic projection of superim-
posed coordinates from a non-Euclidean space to their
Euclidean tangent space.

calc_central_morph Proc. LM Array A function that can be used to calculate the mean or me-
dian landmark configuration from a landmark array

mahalanobis_dist_matrix PC Scores A function for the calculation of inter- and intra-group
mahalanobis distances and p-Values given a set of PC
Scores

procD_comparisons Proc. LM Array A function for the calculation of inter- and intra-group
Procrustes distance p-Values

morphological_predictor Proc. LM Array
& PC Scores

A function used for the prediction of landmark coordi-
nates using Least Square Regression given a set of mor-
phological variables.

tps_visualisation Proc. LM Array
& PC Scores

A function for the visualisation of shape deformations
across a given feature space using Least Square Regres-
sion and Thin Plate Splines

Table E.4: A detailed description of the functions from the GraphGMM library designed for basic Geo-
metric Morphometric analyses. Proc. LM Array = Procrustes superimposed landmark array. LM Array =
Non-superimposed landmark array. Kendall Coords. = Kendall Shape Coordinates
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Function Name Input Type Description

graph_embeddings Proc. LM Array
& Edges

The primary function of the GraphGMM library, used
for the computation of landmark embeddings according
to the edges connecting each landmark.

similarity_matrix Proc. LM Array A function that can be used to calculate the distance be-
tween landmark pairs, either using the cosine, procrustes,
or Chevyshev distance.

knn_graph X̄ A function to compute the spatial relationships between
landmarks in a given configuration using the KNN near-
est neighbour algorithm.

triangulate2d X̄ in 2D A function to compute the spatial relationships between
landmarks in a given configuration using the Delaunay
2D and 2.5D triangulation algorithm.

triangulate3d X̄ in 3D A function to compute the spatial relationships be-
tween landmarks in a given configuration using the ball-
pivoting triangulation algorithm.

as_edge_list 2×2 Matrix A simple function to convert computed edges into an
edge_list for graph computations.

plot_landmark_graph X̄ & Edges A function that can be used to plot and visualise a land-
mark graph.

graph_configuration_statistics X̄ & Edges A function that can be used to calculate graph proper-
ties, including; the clustering coefficient, graph density,
landmark degree centrality, eigenvector centrality, and
betweenness centrality.

plot_landmark_stats X̄ & Edges A function that can be used to plot and visualise a land-
mark graph incorporating the statistical data provided by
the graph_configuration_statistics function.

create_landmark_graph X̄ & Edges A function that can be used to create an igraph object
for more detailed analyses with the igraph library

landmark_modularity X̄ & Edges A function that can be used to calculate landmark mod-
ules based on the properties of the landmark graph

Table E.5: A detailed description of the functions from the GraphGMM library designed for basic Graph
Embeddings and the analysis of Landmark Graphs. Proc. LM Array = Procrustes superimposed landmark
array. LM Array = Non-superimposed landmark array. X̄ = Central configuration for a landmark array.
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Function Name Input Type Description

pca_plot A dataset A function used to perform Principal Component Analy-
ses

pca_biplot A dataset A function used to perform Principal Component Analy-
ses and plot the PCA bi-plot

calculate_optimal_pc_scores A dataset A function that permutes the number of Principal Com-
ponents to calculate the optimal number of PC Scores
required for statistical analyses

kernel_pca Matrix A function to perform a non-linear Principal Component
Analysis based on the specified kernel function to be
used.

kernel_pca_biplot Matrix A function to perform a non-linear Principal Component
Analysis, based on the specified kernel function to be
used, and plot the PCA bi-plot

kernel_cauchy Matrix A function for the non-linear transformation of data prior
to dimensionality reduction, using the Cauchy kernel.

kernel_gaussian Matrix A function for the non-linear transformation of data prior
to dimensionality reduction, using the Gaussian kernel.

kernel_laplace Matrix A function for the non-linear transformation of data prior
to dimensionality reduction, using the Laplacian kernel.

kernel_poly Matrix A function for the non-linear transformation of data prior
to dimensionality reduction, using the Polynomial kernel.

kernel_rbf Matrix A function for the non-linear transformation of data prior
to dimensionality reduction, using the Radial Basis Func-
tion kernel.

kernel_spline Matrix A function for the non-linear transformation of data prior
to dimensionality reduction, using the Spline kernel.

tsne_plot Matrix A function for the computation of t-Distributed Stochas-
tic Neighbour Embeddings for a given dataset as a means
for non-linear dimensionality reduction.

Table E.6: A detailed description of the functions from the GraphGMM library designed for Dimension-
ality Reduction. Proc. LM Array = Procrustes superimposed landmark array.
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Function Name Input Type Description

separate_samples LM Array A function that can be used to separate landmark sam-
ples into separate groups.

vector_from_landmarks Proc. LM Array A function for the flattening of a tensor containing land-
mark coordinates.

write_morphologika_file LM Array &
labels

A function for the creation of a morphologika file given a
set of landmarks and the labels describing what samples
they come from.

Table E.7: A description of the miscellaneous functions from the GraphGMM library. Proc. LM Array =
Procrustes superimposed landmark array. LM Array = Non-superimposed landmark array.

E.2 TPS Measurement Software

The TPS Measurement Software, available from https://github.com/LACourtenay/Measureme

nt_TPS_GUI, is an application written in C++, using the Qt (v.6.0.4) framework for the Graphical User
Interface (GUI). This application was written and compiled using the Microsoft Visual Studio integrated
development environment (2019 release), in Windows 10. The creation of an installer for this application
was performed using the Inno Setup Compiler (v.6.2.0) software.

This software was created for the purpose of loading a folder containing multiple .tps files, each
of which contain 7 landmark coordinates extracted from a bone surface modification profile. The software
proceeds to extract the coordinate data, scale this data, and either (1) calculate the measurements needed for
further processing, or format these coordinates into a morphologika file. Importantly, the TPS measurement
software takes into consideration the mathematical and statistical properties described by Courtenay et al.
(2021a), with regards to the variable "opening angle". From this perspective, the application calculates not
only the opening angle in degrees, but also performs a linear transformation of this variable for multivariate
statistical purposes.

This software was programmed using both functional and object-oriented programming paradigms.
The Landmark.h header file contains a simple structure, or “struct”, defining the properties of a single
landmark in a configuration. This struct additionaly has a static scale attribute that can be used to scale the
entire configuration at once.

This application is the sole property of L. A. Courtenay (©2021, MIT License).

Figure E.1: TPS Measurement Software Icon

https://github.com/LACourtenay/Measurement_TPS_GUI
https://github.com/LACourtenay/Measurement_TPS_GUI
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Figure E.2: The Graphical User Interface of the TPS Measurement Software

E.3 Trampling Algorithm

The Trampling Algorithm is a simple software implemented in 4 different programming languages; R,
Python, JavaScript, and C++. This software is available from https://github.com/LACourten

ay/Trampling_Algorithm. The purpose of this software is to implement a simple Neural Network,
trained as described in Appendix D. Once trained, the weights of the Neural Network were exctracted and
programmed into a GUI for ease of use. Additional analyses observed how the internal functioning of the
Neural Network works so as to have a better understanding on how they can be implemented and improved
in future. This toy example is simply to show how Neural Networks can be trained and inserted into a GUI
for use by a non-specialist.

The Trampling Algorithm was originally trained and designed in the Python programming lan-
guage (v.3.7), using the TensorFlow (v.2.0) library. Once the algorithm was trained, a GUI was designed
and implemented using the PyQt5 framework, while all linear algebra calculations were performed using
the Numpy (v.1.17.3) library.

For the R release, the neural network was programmed in the base R programming language with
no use of dependencies or libraries. Due to restrictions with R, no GUI framework was implemented.

The JavaScript release used HTML and CSS for the creation and design of the GUI, with JavaScript
underneath for linear algebra applications.

Finally, the C++ release was written using the Eigen library for linear algebra applications, and the
Qt (v.6.0.4) framework for the GUI. Code was compiled originally using Qt Creator (v.4.14.2) in windows.
The creation of an installer for this application was performed using the Inno Setup Compiler (v.6.2.0).

All 4 releases of this algorithm were designed and written using a functional programming ap-
proach, and only used object-oriented programming where necessary for the creation of GUIs (namely
when working with the Qt framework).

The advantages and disadvantages of each of these releases are simple; C++ in general is much
faster than any of the other languages, however if the user wishes to run this application on an apple product
then a macOS specific compilation may be necessary. Python and R are much slower, while the Python
implementation also requires the installation of additional libraries (Numpy and PyQt5) in order to work.

https://github.com/LACourtenay/Trampling_Algorithm
https://github.com/LACourtenay/Trampling_Algorithm
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Finally, the release using JavaScript is likely to be the easiest to use regardless of the user’s operating
system, yet is not as fast as C++.

Figure E.3: Trampling Algorithm Software Icon

Figure E.4: The Graphical User Interface of the Trampling Algorithm Software

E.4 Additional Applications

Wherever applicable, all code related to each of the articles have been published as supplementary materials
to the article, or directly linked to the author’s GitHub page (https://github.com/LACourtenay),
ensuring that the methodology presented in each of the scientific articles is as easy as possible to implement.

For Courtenay et al. (2020a), all code used to perform statistical analyses have been included at ht
tps://github.com/LACourtenay/GMM_Measurement_Accuracy_Tools. This mostly consists
of R code for morphometric and statistical analyses, however, also includes Python code for unsupervised
pattern recognition applications. In addition, a video tutorial on how to replicate the landmark model and

https://github.com/LACourtenay
https://github.com/LACourtenay/GMM_Measurement_Accuracy_Tools
https://github.com/LACourtenay/GMM_Measurement_Accuracy_Tools
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methodological approach were also included in association with this article at https://vimeo.com/40
9256777.

In the case of Courtenay and González-Aguilera (2020), Python code for all 4 types of Generative
Adversarial Networks have been included at https://github.com/LACourtenay/GMM_Generat
ive_Adversarial_Networks.

Both Courtenay et al. (2021b) and Courtenay et al. (2023) use the same code, available at; https:
//github.com/LACourtenay/Carnivore_Tooth_Pit_Classification. This repository
contains R code for Support Vector Machine applications, Python code for Neural Support Vector Machines,
and also contains JavaScript, HTML and CSS code for the purpose of some data visualisations. In the case
of Courtenay et al. (2023), this study used the earliest versions of the AugmentationMC library as well.
Likewise, the python code used to prepare, train and implement neural networks from Courtenay et al.
(2020b) is available at https://github.com/LACourtenay/Deep-Neural-Network-for-Cut
-Mark-Classification.

As for (Courtenay et al., 2021a, Under Review-a, b), the software used for each of these studies
has already been described above.

Finally Courtenay et al. (2022a) includes the code used for Elliptic Fourier Analyses as supple-
mentary files.

E.5 Computational Resources

Three different computer systems were used and experimented with throughout the course of this Doctoral
Thesis. The main computer system used was a Dell Precision T1700 desktop computer located in the
TIDOP lab of the Polytechnic School of Ávila, University of Salamanca. This computer is equipped with
an Intel Xeon E3-1240 v3 CPU processor (4 cores, 3.40 GHz operating Frequency), 8GB of RAM, and
a single NVIDIA Quadro K600 GPU. The second system consists in a ASUS X550VX portable laptop,
equipped with a Intel Core i5-6300HQ CPU processor (4 cores, 2.30 GHz), 8 GB of RAM, and a NVIDIA
GTX 950 GPU.

Finally, access to a supercomputational system was provided by the Supercomputation Center of
Castilla y León (SCAYLE). SCAYLE provides services to researchers throughout the autonomous commu-
nity, and is accessed remotely using a remote computer software and the Secure Shell SSH cryptographic
network protocol. For this study the MobaXterm software was used, accessing a server in SCAYLE with
a Broadwell architecture. The Broadwell architecture is specifically designed for Computational Learning
processes, while SCAYLE provides access to 2 Intel Xeon E5-2695 v4 CPU processors (18 cores each, 2.10
GHz), 384 GB of RAM, and 8 NVidia Tesla v100 GPUs.

https://vimeo.com/409256777
https://vimeo.com/409256777
https://github.com/LACourtenay/GMM_Generative_Adversarial_Networks
https://github.com/LACourtenay/GMM_Generative_Adversarial_Networks
https://github.com/LACourtenay/Carnivore_Tooth_Pit_Classification
https://github.com/LACourtenay/Carnivore_Tooth_Pit_Classification
https://github.com/LACourtenay/Deep-Neural-Network-for-Cut-Mark-Classification
https://github.com/LACourtenay/Deep-Neural-Network-for-Cut-Mark-Classification


Appendix F

Scientific Impact

This doctoral thesis presents a total of nine scientific publications, seven published and two under review, in
a mixture of different indexed journals across multiple fields of science. The following Appendix describes
in detail the impact each of the journals have, sourcing the statistics about a journal’s performance from
the Journal Citation Reports (JCR) database(jcr.clarivate.com), released by Clarivate Analytics, and
integrated into the Web of Science. This is an international and prestigious database that contextualises
journals from all fields of science. The citation metrics reported throughout this Appendix take into account
the status of the journal on the date that each of the articles were published. JCR is annually updated and
released in June.

F.1 Journal Impact Metrics

A journal’s performance is typically measured by its Journal Impact Factor (JIF), the percentile and quartile
which the journal is ranked in their respected field, as well as the Journal Citation Indicator (JCI);

• The JIF is a measure of the volume of publications released by the journal in relation to the number of
citations these publications receive. This metric can be calculated by dividing the number of citations
in a year by the total number of articles published in the two previous years. A JIF of 1 thus implies
that articles published in the present year have been cited an average of one time. A corrected version
of this metric can also be calculated by removing self-citations.

• Using JIF, journals are ranked in their respected fields according to percentiles, which are then used
to establish quartiles (Q numbers). A journal ranking as the top 15th journal in a field containing 100
journals will thus have a percentile of 85.0.

• Quartiles describe a journal’s position in a field in terms of four different groups; Q1 journals are
those that rank in the top 75th percentile of a field, Q2 journals rank between the top 75th and 50th
percentile, Q3 journals rank between the top 50th and 25th percentiles, while Q4 journals are those
journals that fall into the top 25th percentile of a field. Additionally, a journal can be ranked D1 if it
falls in the top 10 percent.

• The JCI is a measure of a journal’s citation impact that is normalised to consider the work published
by a journal over a recent three year period in a particular field. An average JCI for a particualr field
is 1, with a JCI of 1.5, for example, indicating that the journal has 50% more impact than the average.
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Beyond these metrics, a journal can be assessed by considering the overall volume of citations
over time. This can be performed by first analysing how many citations a journal receives a year, while
a distribution graph can also be computed to assess the frequency of publications in a year. A citation
distribution graph thus details the population of articles that are cited in a year and thus helps assess the
contribution of citations to a JIF. High ranking journals are more likely to present an even distribution across
the graph, implying all articles to have the same weight on the journals JIF. More skewed distributions
indicate a handful of articles proving highly influential.

F.2 Scientific Publications and Journals

Table F.1: Summary of articles published in the present Doctoral Thesis in order of their appearance in
the main text. Number of citations are documented using the Scopus database

(https://www.scopus.com/, as of the 13th of December, 2022)

Journal Month Year Open-Access JIF Percentile Q Citations

1 PLoS ONE October 2020 Yes 3.240 64.58 Q2 12
2 Animals August 2021 Yes 3.231 79.84 Q1 4
3 Appl. Sci. December 2020 Yes 2.679 58.33 Q2 3
4 Under Review
5 Appl. Sci. December 2019 Yes 2.474 65.38 Q2 16
6 Sci. Rep. May 2021 Yes 4.380 77.08 Q1 13
7 Quat. Sci. Rev. December 2022 No 4.596 76.37 Q1 0
8 J. Clin. Med. August 2022 Yes 4.964 68.90 Q1 0
9 Under Review

Figure F.1: Doughnut diagram presenting the different fields of science where articles were published
throughout this Doctoral Thesis.

https://www.scopus.com/
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Figure F.2: Doughnut diagram presenting the quartile ranking of each journal where articles were
published throughout this Doctoral Thesis.

Figure F.3: Doughnut diagram presenting the editorials where each of the articles were published
throughout this Doctoral Thesis.
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Figure F.4: Doughnut diagram presenting the proportion of scientific articles that were published as Open-
Access for this Doctoral Thesis.

Figure F.5: Density plot of the JIF metrics associated to each of the articles published in this Doctoral
Thesis, resulting in a median Impact Factor of 3.24

F.2.1 Animals

Animals is an open-access journal affiliated with the World Association of Zoos and Aquariams and the Eu-
ropean College of Animal Welfare and Behavioural Medicine. The journal’s scope focuses on research that;
offers substantial new insights into any field of study that involves animals, including zoology, ethnozoology,

animal science, animal ethics and animal welfare.
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Abbreviation Animals
Editorial MDPI
Address St Alban-Anlage 66, CH-4052 Basel, Switzerland
First Index Year 2018
Current Fields (Rank, Quartile) Agriculture, Dairy & Animal Science (13 / 62, Q1)

Veterinary Sciences (16 / 144, Q1)
Current JIF 3.231
Current JIF (no self-citations) 2.551
Current JCI 1.34
Nº PhD Publications 1

Figure F.6: Journal Impact Factor and percentile ranking of the MDPI journal "Animals".
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Figure F.7: Number of yearly citations for the MDPI journal "Animals".

Figure F.8: Citation Distribution graph describing the number of articles that are cited in a year in the
MDPI journal "Animals". The median article citation is marked by the vertical black line (x̃ = 2)

F.2.2 Applied Sciences

Applied Sciences is an open-access journal whose scope focuses on research that focuses on all aspects of
applied natural sciences, with the additional aim of; encouraging scientists to publish their experimental

and theoretical results in as much detail as possible.
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Abbreviation Appl. Sci.
Editorial MDPI
Address St Alban-Anlage 66, CH-4052 Basel, Switzerland
First Index Year 2014
Current Fields (Rank, Quartile) Multidisciplinary Engineering (39 / 92, Q2)

Multidisciplinary Chemistry (100 / 179, Q3)
Multidisciplinary Materials Science (218 / 345, Q3)
Applied Physics (76 / 161, Q2)

Current JIF 2.838
Current JIF (no self-citations) 2.468
Current JCI 0.59
Nº PhD Publications 2

Figure F.9: Journal Impact Factor and percentile ranking of the MDPI journal "Applied Sciences".
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Figure F.10: Number of yearly citations for the MDPI journal "Applied Sciences".

Figure F.11: Citation Distribution graph describing the number of articles that are cited in a year in the
MDPI journal "Applied Sciences". The median article citation is marked by the vertical black line (x̃ = 2)

F.2.3 Journal of Clinical Medicine

Journal of Clinical Medicine is an open-access journal affiliated with the International Bone Research Asso-
ciation, Italian Resuscitation Council, Spanish Society of Hematology and Hemotherapy, Japan Association
for Clinical Engineers, and the European Independent Foundation in Angiology/Vascular Medicine, among
others. The journal’s scope focuses on both clinical and pre-clinical research.
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Abbreviation J. Clin. Med.
Editorial MDPI
Address St Alban-Anlage 66, CH-4052 Basel, Switzerland
First Index Year 2017
Current Fields (Rank, Quartile) General & Internal Medicine (50 / 329, Q1)
Current JIF 4.964
Current JIF (no self-citations) 4.722
Current JCI 1.01
Nº PhD Publications 1

Figure F.12: Journal Impact Factor and percentile ranking of the MDPI journal "Journal of Clinical
Medicine".
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Figure F.13: Number of yearly citations for the MDPI journal "Journal of Clinical Medicine".

Figure F.14: Citation Distribution graph describing the number of articles that are cited in a year in the
MDPI journal "Journal of Clinical Medicine". The median article citation is marked by the vertical black

line (x̃ = 2)

F.2.4 PLoS ONE

PLoS ONE is a multidisciplinary open-access journal that publishes research related with the natural sci-
ences, medical research, engineering, as well as the related social sciences and humanities.
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Abbreviation PLoS ONE
Editorial Public Library Science
Address 1160 Battery Street, STE100, San Francisco, California, 94111, USA
First Index Year 2009
Current Fields (Rank, Quartile) General & Multidisciplinary Sciences (29 / 73, Q2)
Current JIF 3.752
Current JIF (no self-citations) 3.608
Current JCI 0.88
Nº PhD Publications 1

Figure F.15: Journal Impact Factor and percentile ranking of the Public Library Science journal "PLoS
ONE".
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Figure F.16: Number of yearly citations for the Public Library Science journal "PLoS ONE".

Figure F.17: Citation Distribution graph describing the number of articles that are cited in a year in the
Public Library Science journal "PLoS ONE". The median article citation is marked by the vertical black

line (x̃ = 2)

F.2.5 Quaternary Science Reviews

Quaternary Science Reviews is a journal that publishes research related with all aspects of Quaternary Sci-
ence, including research in geology, geomorphology, geography, archaeology, soil science, palaeobotany,
palaeontology and palaeoclimatology.
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Abbreviation Quat. Sci. Rev.
Editorial Elsevier
Address The Boulevard, Langford Lane, Kidlington, Oxford OX51GB, England
First Index Year 1997
Current Fields (Rank, Quartile) Multidisciplinary Geosciences (48 / 201, Q1)

Physical Geography (12 / 48, Q1)
Current JIF 4.456
Current JIF (no self-citations) 3.916
Current JCI 1.16
Nº PhD Publications 1

Figure F.18: Journal Impact Factor and percentile ranking of the Elsevier journal "Quaternary Science
Reviews".
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Figure F.19: Number of yearly citations for the Elsevier journal "Quaternary Science Reviews".

Figure F.20: Citation Distribution graph describing the number of articles that are cited in a year in the
Elsevier journal "Quaternary Science Reviews". The median article citation is marked by the vertical

black line (x̃ = 3)

F.2.6 Scientific Reports

Scientific Reports is a multidisciplinary open-access journal that publishes research related with all areas of
the natural sciences, psychology, medicine and engineering.
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Abbreviation Sci. Rep.
Editorial Nature Portfolio
Address Heidelberg Platz 3, Berlin 14197, Germany
First Index Year 2011
Current Fields (Rank, Quartile) Multidisciplinary Sciences (19 / 73, Q2)
Current JIF 4.996
Current JIF (no self-citations) 4.784
Current JCI 1.05
Nº PhD Publications 1

Figure F.21: Journal Impact Factor and percentile ranking of the Nature Portfolio journal "Scientific
Reports".
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Figure F.22: Number of yearly citations for the Nature Portfolio journal "Scientific Reports".

Figure F.23: Citation Distribution graph describing the number of articles that are cited in a year in the
Nature Portfolio journal "Scientific Reports". The median article citation is marked by the vertical black

line (x̃ = 3)

F.3 Overall Academic Career of the Doctoral Candidate

Beyond the work of his PhD, the Doctoral Candidate is author and co-author of an additional 33 scientific
publications in multiple fields of research; 10 of these publications were carried out prior to beginning
his PhD, while he is now a corresponding and primary author to a total of 16 articles. As of December,
2022, Lloyd Austin Courtenay’s Scopus profile calculates a h-index (a measure of productivity against
citation impact) of 12, with a total of 402 registered citations of his work. Google Scholar on the other
hand calculates a h-index of 14, with 547 citations. In continuation, a series of figures details the precise
nature of the Doctoral Candidate’s research, including some additional information on the nature of his
collaborations.
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Figure F.24: Doughnut diagram presenting the different fields of science where the Doctoral Candidate
has published, or collaborated in the publication of research, between the years 2017 and 2022

Figure F.25: Doughnut diagram presenting the quartile ranking of each journal where the Doctoral
Candidate has published, or collaborated in the publication of research, between the years 2017 and 2022
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Figure F.26: Doughnut diagram presenting the editorials where the Doctoral Candidate has published, or
collaborated in the publication of research, between the years 2017 and 2022

Figure F.27: Doughnut diagram presenting the proportion of scientific articles published as Open-Access
by, or in collaboration with, the Doctoral Candidate between the years 2017 and 2022
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Figure F.28: Density plot of the JIF metrics associated to each of the articles published by, or in
collaboration with, the Doctoral Candidate between the years 2017 and 2022. The median Impact Factor

(2.84) is indicated by the red line.

Figure F.29: Histogram of the number of times a document published by, or in collaboration with, the
Doctoral Candidate has been cited between the years 2017 and 2022, according to the Scopus database

(https://www.scopus.com/, as of the 13th of December, 2022). The median number of citations (7)
is indicated by the black line.

https://www.scopus.com/
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Figure F.30: Density plots of (black) the general position that the Doctoral Candidate has signed each of
the publications between the years 2017 and 2022 with respect to (red) the total number of authors per

article. The mode position has been calculated at 1, while the mode total number of authors per articles is
7.
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Figure F.31: A map detailing the number of authors from different countries the Doctoral Candidate has
collaborated with in scientific publications between the years 2017 and 2022.
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