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A B S T R A C T   

The Piedmont Region in NW Italy has recently deployed an ambitious and pioneering agricultural water pricing 
reform aimed at integrating and effectively enforcing EU’s Water Framework Directive principles of cost re
covery, polluter-pays and affordability. This paper develops a multi-model ensemble framework encompassing 5 
mathematical programming models (2 Positive Mathematical Programming models, 2 Positive Multi-Attribute 
Utility Programming models and 1 Weighted Goal Programming model) that represent the observed behavior 
of socioeconomic agents to: 1) simulate the impacts of the Piedmontese water pricing reform on land use allo
cation and management, water conservation, profit and water tariff revenue; 2) sample modeling uncertainty 
through the ensemble spread; and 3) explore potential tipping points through use of scenario-discovery tech
niques. Our research suggests that the key challenge to the reform lies in the management of rice fields, an 
extensive (17% of the agricultural area), water-demanding and relatively low-added-value crop that nonetheless 
delivers significant ecosystem services (e.g. water retention) of historical and cultural relevance to the region. 
The ensemble experiment suggests that rice agriculture rapidly dwindles in the price range 0.012–0.074 EUR/m3 

depending on the model. Before reaching this tipping point, agricultural water pricing can reduce withdrawals 
up to 1.7%–9.5%, while reducing profit between 4.9% and 5.6% and achieving a 57- to 65-fold increase in water 
tariff revenue.   

1. Introduction 

Water scarcity and related crises are among the greatest global so
cietal threats (WEF, 2019). In Europe, water scarcity is particularly felt 
in the closed or closing basins along the Mediterranean Basin, where 
inelastic water supply increasingly often falls short of commitments to 
fulfill growing demand. Restoring the balance in overallocated Medi
terranean basins will necessitate demand-side policies that reallocate 
available resources from commercial uses to the environment while 
enabling economic growth and increasing social welfare. One such 
policy is pricing, the only demand-side instrument explicitly mentioned 
in the EU legal acquis. In its Article 9, the EU Water Framework Directive 
(WFD) states: “[…] water pricing policies provide adequate incentives 
for users to use water resources efficiently, and thereby contribute to the 
environmental objectives of this directive” (OJ, 2000). Despite this solid 

legislative basis, the implementation of pricing policies in the EU has 
been sluggish, also in the agricultural sector, the largest human water 
use (EEA, 2013). Agricultural water prices are often set independently of 
the volume used (e.g. on a per area basis) and present low cost-recovery 
ratios, which prevents incentive-pricing water conservation and reallo
cation to higher value uses. Although EU bodies have reacted to member 
states institutional paralysis with lawsuits, ruling from EU judiciary has 
been dichotomic (J€a€askinen, 2014). As a result, 20 years after the 
adoption of the WFD, no member state in Southern Europe has imple
mented an agricultural water pricing reform that integrates the princi
ples of cost recovery, polluter-pays and affordability as stated in the 
WFD (Rey et al., 2018). 

The Piedmont Region in Northern Italy is set to change this trajec
tory. On July 24th, 2017, the Piedmont Region introduced two addi
tional ex-ante conditionalities to access critical EU’s Common 
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Agricultural Policy (CAP) funding, namely, i) “harmonization of the 
methods for quantifying irrigation water withdrawals and effective 
collection, communication and management of this data”, including the 
compulsory adoption of metering devices; and ii) “introduction of 
environmental and resource costs in the calculation of water prices”, 
while “observing affordability principle” (Regione Piemonte, 2017). 
Users not observing the additional ex-ante conditionalities will not have 
access to critical CAP funding. It should be noted that in Italy, regional 
authorities issue, monitor and enforce water abstraction rights and set 
the corresponding prices; with national institutions and the relevant 
river basin authority (the Po River Basin Authority in the case of Pied
mont) playing a secondary, advisory role (for a detailed description of 
the water allocation system in Italy and Piedmont the reader may refer 
to Santato et al., 2016). Under the current water abstraction regime, 
agricultural licenses are issued by the Piedmont Region for a maximum 
of 40 years, and prices are set on a per area basis (average charge: 1.22 
EUR/ha) or based on the average flow rate capacity (0.56 EUR/l/s). 
Piedmont’s agricultural water pricing reform is set to transition from the 
current pricing structure to a fully metered system (EUR/m3). The new 
pricing structure, which is available in Regione Piemonte (2017), is 
based on a comprehensive methodology that first estimates the finan
cial, environmental and resource costs of agricultural water use to then 
elicit the price increase that would enable a predefined cost recovery 
ratio; where the targeted cost recovery ratio is set based on a discre
tionary expert judgement that factors in affordability/disproportionate 
costs issues. 

Recent institutional reports using this methodology foresee an 
average agricultural water price increase from a 0.00012 EUR/m3 

equivalent under the current pricing structure up to 0.013 EUR/m3, 
which is expected to increase the contribution of agriculture to the re
gion’s water pricing revenues from less than 1% up to 32% (Frontuto 
et al., 2020). Noteworthy, the 0.013 EUR/m3 price increase is set based 
on experts’ opinion: beyond this point the impact of the pricing reform, 
albeit still moderate in terms of foregone income, is expected to have 
significant and potentially irreversible impacts on the structure of 
traditional irrigated agriculture (i.e. rice) and related (ecosystem) pro
cesses and services, which are regarded as disproportionate costs (Fron
tuto et al., 2020). Naturally this subjective pricing target needs to be 
further substantiated through a more profound assessment of irrigators’ 
responses and their impact on economic and environmental (i.e. water 
conservation) performance, the tradeoffs observed between these two 
variables, and an analysis of disproportionate costs. To this end, Regione 
Piemonte and three academic institutions (Universit�a di Torino in Italy, 
and Universidad de Salamanca and Universidad de C�ordoba in Spain) 
have partnered to develop a comprehensive database and calibrate 5 
mathematical programming models that represent the observed 
behavior of socioeconomic agents in an innovative multi-model 
ensemble experiment, in order to: 1) simulate the impacts of water 
pricing reform on land use allocation and management, water conser
vation, employment, profit and water tariff revenue; 2) sample uncer
tainty through the model spread (Cloke et al., 2013; IPCC, 2014); and 3) 
explore potential tipping points, with a focus on rice systems, through a 
scenario-discovery approach (Marchau et al., 2019). Unlike conven
tional consolidative modeling based on a single model and a complete 
probabilistic description of future scenarios, the ensemble experiment 
offers the advantage of providing policymakers with a more compre
hensive overview of possible responses through stress test (alternative 
forcings/scenarios and models). Outputs from multi-model ensemble 
and scenario-discovery techniques can in turn be used to identify 
no-regret water pricing policies through robust decision making 
methods (Marchau et al., 2019). 

The paper is structured as follows: Section 2 introduces the case 
study area, the Piedmont Region in the northwest of Italy; Section 3 
presents the multi-model ensemble framework; Sections 4 and 5 present 
and discuss, respectively, the results achieved; and Section 6 concludes. 

2. Case study area: The Piedmont Region in Italy 

The Piedmont Region is located in the Northwest of Italy, has a 
population of 4,392,526 (2017) and spreads over 25,387 km2 (Eurostat, 
2017). The region is located within the Po River Basin District (PRBD), 
the largest (24% of Italian territory and 21% of its agricultural area) and 
most economically relevant Italian river basin (35% of Italian GDP and 
30% of agricultural Gross Value Added (GVA)). The region comprises 
the upper stretches of the PRBD and 43% of its territory is classified as 
mountainous area (mostly the Alps), making the Piedmont Region a 
relatively water-abundant basin capable of supporting a water-intensive 
agriculture comprising 396,000 ha and largely based on annual crops 
such as rice, corn and cereal fodders (70% of Piedmont’s agricultural 
area). Rice, which is supplied through the third largest artificial 
watercourse in Italy, the Canale Cavour, with a flow rate of 110 m3/s 
and a length of 83 km, is the most iconic crop of the region. Piedmont’s 
rice represents 52% of total production of Italy, which is in turn the 
largest rice producer in Europe (ISTAT, 2016), and is the largest water 
user in the region (nearly 31,500 m3/ha on average) (Augusti et al., 
2018), although its profit-to-water use ratio is relatively low compared 
to that of other crops in the region (1300 EUR/ha on average, as 
compared to e.g. 1200 EUR/ha profit and 3400 m3/ha water use for 
corn) (INEA, 2018). Besides its market relevance, rice supplies relevant 
ecosystem services, most notably water retention services during the Po 
River’s discharge peak in the spring, with subsequent water release 
throughout the summer season (about 150 m3/s discharge in July), 
which is made available for other uses (Director of the Est Sesia Land 
Reclamation and Irrigation Board, 2019); but also historical and cultural 
services (rice production and the construction of related water draining 
and supply infrastructure in the Piedmont Region started in the 
mid-15th century) and aesthetic values, with rice fields defining the 
characteristic range of colors of the Piedmontese plains (blue in spring, 
green in summer, yellow in early autumn). Grassland is the most rele
vant crop in mountainous areas and represents 8% of Piedmont’s agri
cultural area. Among permanent crops (12% of agricultural area) 
vineyard stands out, with the Piedmont Region representing 12% of 
Italian DOC1 wine production (see Fig. 1). 

Agriculture represents 3.5% of the Piedmontese GVA, above the 
national average of 2.8% (Banca D’Italia, 2018), and 75%þ of the 
regional water withdrawals, approximately 5000 million m3/y (Regione 
Piemonte, 2018). Agricultural water use has significantly increased 
during the last 50 years due to wide-scale adoption of irrigated fodder 
and corn. This is coupled with a sustained reduction in average pre
cipitation and in the number of rainfall days, and retreating Alps’ gla
ciers (Regione Piemonte, 2018). As a result, the basin-wide water 
exploitation index (ratio of withdrawals to renewable resources) has 
increased from less than 20% (no water stress) to between 35% and 65% 
(severe water stress) over the last two decades (EEA, 2016). ARPA Pie
monte (2018) estimates that half of Piedmont Region water bodies are 
already affected by water scarcity during the irrigation campaign and do 
not reach the good ecological status. Scarcity is amplified downstream in 
the PRBD, where more vulnerable regions dependent on the runoff 
generated within the Piedmont Region, such as the Emilia Romagna 
Region, are located. 

3. Methods: the multi-model ensemble 

Conventional consolidative modeling relies on a known set of 
possible states and related probabilities to identify a single optimal 
strategy through optimization in a single-model environment. Learning 
is acquired through observation, interpreting signals that constrain the 
set of possible states and updating probabilities according to Bayes’ rule; 

1 Denominazione di Origine Controllata (controlled designation of origin): 
quality assurance for Italian wine. 
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Fig. 1. Location of the Piedmont Region in Italy and detail of agricultural land use. 
Legend: 1 Piedmont region, 2 Po River Basin District, 3 Po River. 
Source: own elaboration from CORINE land cover (EEA, 2018). 
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and revising model design in order to better represent observed de
cisions. However, modeling errors arising from “parameter and struc
tural uncertainties in the model design” (Tebaldi and Knutti, 2007) and 
the “impossible task” (Marchau et al., 2019) of accurately forecasting all 
possible future states in non-mechanistic complex socio-ecological sys
tems imply that conventional consolidative modeling may not be 
capable of predicting contingencies arising from policy choices (Hino 
and Hall, 2017), including catastrophic and potentially irreversible 
outcomes (tipping points). In our research, modeling and scenario un
certainties are addressed through: i) a multi-model ensemble framework 
that samples modeling uncertainty through the model spread (this sec
tion); and ii) the use of scenario-discovery techniques to relate alter
native simulation scenarios (water pricing scenarios in this case) to their 
implied consequences (see Section 4.1) (Marchau et al., 2019). The 
ensemble is populated with 5 positive economic calibrated models: 2 
Positive Mathematical Programming (PMP) models, 2 Positive 
Multi-Attribute Utility Programming (PMAUP) models and 1 Weighted 
Goal Programming (WGP) model. The following sub-sections present the 
basics of the 3 modeling families and the 5 models considered. For a 
more detailed description of each ensemble component, the reader may 
refer to Howitt (1995) and Júdez et al. (2002) (PMP) (G�omez-Lim�on 
et al., 2016; Guti�errez-Martín and G�omez, 2011); (PMAUP); and Sumpsi 
et al. (1997) (WGP). 

3.1. Economic calibrated models: objective function and domain 

Economic calibrated models for agricultural water management 
represent the pattern of yields, revenues and costs at different scales, 
from farm to agricultural district (Harou et al., 2009). In these models, 
agents (clusters in our application to the Piedmont Region, see Section 
3.5) decide on crop mix and timing, investments and water application 
in an optimization framework that aims to maximize a single or 
multi-attribute objective function within a domain. This complex choice 
is usually “reduced to a decision on the crop portfolio”, where each 
solution represents a “unique combination of crop, timing, investments 
and water application” (P�erez-Blanco et al., 2017). The general formu
lation of the utility maximization problem is as follows: 

Max UðXÞ¼
�
f
�
z1ðXÞ;…; zpðXÞ;…; zmðXÞ

�
(1) 

Subject to: 

xi � 0 (2)  

Xn

i¼1
xi¼ 1 (3)  

X 2 F (4)  

X 2 Rn (5)  

z1ðXÞ;…; zmðXÞ¼ZðXÞ 2 Rm (6)  

where UðXÞ is the utility/objective function. 
Agents in the model decide on the crop portfolio X 2 Rn, a vector 

representing the fraction of land allotted to each one of the n individual 
crops available xi ði ¼ 1;…;nÞ, so to maximize utility through the pro
vision of utility-relevant attributes z1ðXÞ;…; zmðXÞ (i.e. there are up to m 
relevant attributes), such as profit or avoided risk. Each attribute z1ðXÞ;
…; zmðXÞ 2 ZðXÞin the model is defined so that “more-is-better”, i.e. 
increasing the provision of one attribute while keeping the provision of 
the remaining attributes constant increases utility. Accordingly, “less-is- 
better” attributes such as risk or management complexity are trans
formed into avoided risk/management complexity. Note that each crop 
portfolio X yields a unique provision of attributes z1ðXÞ; …; zmðXÞ. 
Rational agents in the model will choose the crop portfolio that yields 
the provision of utility-relevant attributes that maximizes utility within 

the domain F. 
The individual attributes that conform the attribute set ZðXÞ used in 

the calibration and simulation of the models are described in the 
following paragraphs. We explored the relevance of three attributes in 
the ensemble, namely: expected gross variable margin (z1), risk avoid
ance (z2) and total labor avoidance (z3), a proxy for management 
complexity.  

� Expected profit, measured as the expected gross variable margin (z1). 
This is the only attribute considered in single-attribute mathematical 
programming models (PMP models in this ensemble). It is obtained 
as the summation of the expected per hectare gross margin of each 
crop πi (obtained as price (in EUR/kg) times yield (in kg/ha) plus 
coupled subsidies minus the variable costs (in EUR/ha)) multiplied 
by that crop’s land share (xi): 

z1ðXÞ¼
X

i
xiπi (7)  

where πi is the average gross margin for each crop i in the period 
2008–2016, i.e. the summation of the observed gross margin of crop i for 
every year during the period 2008–2016, divided by the number of years 
with available data in the series. In the case of PMP models, an addi
tional shadow cost is added to profit during calibration. Note that all 
variables used to calculate profit (prices, yield, subsidies, costs) are 
exogenous. In the case of prices, this implies that crops’ demand is 
perfectly elastic. Such “small open economy assumption” (Sch€ob, 1998) 
is consistent with EU reports showing that “patterns of crop price vari
ations are similar for all member states” (Kampas and Rozakis, 2017). 
Admittedly, regional differences in prices may arise, especially in face of 
asymmetric shocks such as the pricing policy discussed here. This could 
be modeled e.g. coupling the ensemble framework presented in this 
paper with a general equilibrium macroeconomic model (Parrado et al., 
2019). The development of a multi-system ensemble goes beyond the 
scope of the present research; we nonetheless reflect on this in the 
conclusions, where we propose a multi-model and multi-system 
ensemble as a means to explicitly model crops’ demand and prices 
endogenously, while accounting for modeling and scenario uncertainty.  

� Risk avoidance (z2), measured as the difference between the profit 
variability of the profit maximizing crop portfolio bX and that of an 
alternative crop portfolio X (Bartolini et al., 2007): 

z2 ðXÞ¼ bX
t
VCVðπÞbX � XtVCVðπÞX (8)  

where VCVðπÞ is the variance and covariance matrix of profit in the time 
period for which data is available (2008–2016). The first term in the 
right-hand side of the equation, bX

t
VCVðπÞbX, yields the risk of the profit 

maximizing crop portfolio, while the second term, XtVCVðπÞX, yields 
the risk of the observed crop portfolio. Provided there is a tradeoff be
tween risk and profit (the higher the profit, the higher the risk) 
(Guti�errez-Martín and G�omez, 2011), risk avoidance (z2 ðXÞ) will be 
positive.  

� Total labor avoidance (z3), a proxy for management complexity 
avoidance (Bartolini et al., 2007; Sumpsi et al., 1997) measured here 
as the difference between the total (family plus hired labor) expected 
(i.e. multi-annual average) labor requirements of the crop portfolio 
with the highest possible labor requirements within the domain, X, 
and those of an alternative crop portfolio X. 

z3 ðXÞ¼
X

i
xiNi �

X

i
xiNi (9)  

where Ni is the expected total labor requirements per hectare of crop i. 
Note that in PMP models profit is the only utility-relevant attribute 

explored in the objective function, while the WGP and the two PMAUP 
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models also explore the relevance of risk and management complexity 
aversion (multi-attribute). Accordingly, some of the constraints that 
conform the domain are not applicable/binding to all models, i.e. those 
referring to risk aversion and management complexity attributes do not 
apply in single-attribute PMP models. 

The set of constraints that conform the domain F used in the cali
bration and simulation of the models are described in the following 
paragraphs.  

� Land availability. Available agricultural land is assumed constant and 
equals the summation of observed agricultural land uses (see equa
tions (2) and (3)).  
� Water availability. It is assumed that water abstraction licenses 

remain constant before and after every simulation run, i.e.: 

Xn

i¼1
wixi � w (10)  

where wi is crop i’s specific water requirements and w is the total water 
allotment in the Piedmont Region.  

� Climate and soil. Since each agricultural area/climatic region has its 
own soil and climatic characteristics, agents in the model can only 
grow those crops that are observable in the database (Essenfelder 
et al., 2018). 

Xn

i¼1
yixi ¼ 0

�
�
�
�
�

yi 2 f0; 1g (11)  

where yi ¼ 0 means the crop is observable and yi ¼ 1 means the crop is 
not observable in the area.  

� Crop-specific constraints. Some crops in the portfolio have an upper 
and/or lower area bound because of specific policy restrictions. In 
our application to the Piedmont Region, this restriction is used to set 
a minimum/maximum threshold for ligneous trees of �5%. Admit
tedly, since the pricing policy instrument is designed to work in the 
long run, it could result in major crop portfolio changes involving 
permanent crops, which could eventually go beyond the 5% 
threshold. On the other hand, the reduction or expansion in the 
acreage of permanent crops beyond the 5% threshold would result in 
significant (dis)investments with potentially large impacts on e.g. 
carbon sequestration, whose economic value is not accounted for in 
the models, which focus on yearly market variables (notably profit) 
(Essenfelder et al., 2018). Accurately modeling agent’s responses in 
terms of permanent crops necessitates the inclusion of other relevant 
variables, notably carbon prices and/or Payments for Ecosystem 
Services, which are at present being tested in the European context; 
yet, this is beyond the scope of this paper. Against this backdrop, 
setting a minimum/maximum threshold for ligneous trees is com
mon practice in the literature (Guti�errez-Martín and G�omez, 2011; 
Parrado et al., 2019).  
� Crop rotation. In some cases, it is possible to observe that two or more 

crops rotate with each other. For example, if farmers in an area 
yearly rotate wheat with sunflower, aggregation over a sufficient 
number of farms (e.g. at a municipality level) typically results in a 
similar surface of wheat and sunflower (G�omez-Lim�on et al., 2016). 
Accordingly, the surface of wheat in the simulations cannot exceed 
the surface of sunflower, and vice versa. If the surface of sunflower 
(wheat) becomes binding and decreases below the surface of wheat 
(sunflower) (e.g. due to higher water prices), the surface of wheat 
(sunflower) must decrease to match that of sunflower. 

3.2. Calibration 

Economic calibrated models follow an inductive approach that aims 

to eliciting the parameters of an objective/utility function capable of 
reproducing observed agents’ choices within a domain/set of con
straints, in order to accurately predict future responses to policy shocks 
through simulation. Noteworthy, each modeling family considered ex
plores one specific functional form for the objective function: additive 
(WGP), Cobb-Douglas (PMAUP) and quadratic (PMP). 

The WGP approach used in our ensemble framework relies on the 
calibration method developed by Sumpsi et al. (1997) to elicit the pa
rameters of a multi-attribute, additive objective function. Note that due 
to the definition of the attributes above, our application includes a 
non-linear component in the additive objective function through the risk 
attribute. WGP allows for both single- and multi-attribute specifications, 
which makes the approach consistent with the Theory of Planned 
Behavior (TPB) (Ajzen, 1991). The TPB argues that decision-making is 
driven by “the multiple attributes of objects (including but not limited to 
profit) and farmers’ beliefs regarding these attributes” (P�erez-Blanco 
et al., 2017). TPB’s theoretical construct is substantiated by a large body 
of empirical research on the relevance that attributes other than profit, 
such as risk aversion or management complexity aversion, have in 
explaining agent’s behavior and choices (see e.g. G�omez-Lim�on et al. 
(2016)). On the other hand, use of an additive function may lead to 
over-specialized responses and even corner solutions: the agent sets the 
crop that delivers highest utility at the maximum level until a binding 
constraint prevents further specialization, which often results in a 
characteristic “jumpy behavior” (Graveline, 2016). 

PMP is possibly the most popular economic calibrated model to 
assess the behavior of agricultural agents, and irrigators in particular 
(Graveline, 2016). PMP relies on non-linear objective functions to cali
brate and accurately reproduce observed agent behavior. Through the 
use of non-linear functions, PMP avoids unrealistic outcomes such as 
corner solutions or abrupt discontinuities in agent’s responses, yielding 
instead smooth calibration results (Howitt, 1995). Due to these obvious 
advantages, PMP has been consistently used to assess agricultural and 
water policies, including water pricing, in several regions worldwide 
(Graveline, 2016). PMP calibration uses “information contained in dual 
variables of calibration constraints, which bound the solution of the 
original linear programming problem to observed activity levels” to 
“specify a non-linear objective function such that observed activity 
levels are reproduced by the optimal solution of the new programming 
problem without bounds” (Heckelei and Britz, 2005). This is done in 
three steps: (i) an additional area constraint that bounds the model 
calibration results to observed choices is introduced in the domain and 
the dual values associated to the constraint for each crop obtained; (ii) 
these dual values are used to add a non-linear component to the utility 
function (typically a quadratic cost function, or shadow cost); and (iii) 
the utility non-linear function obtained in (ii) is maximized subject to a 
similar set of constraints to those considered in the original problem, 
which perfectly reproduces the observed agent’s behavior (Henry de 
Frahan et al., 2007). The main critique to PMP modeling regards the 
challenge of providing an “economic or technological rationale for the 
non-linear terms in the objective function” (Heckelei et al., 2012). As a 
result, a modeler needs to resort to ad-hoc arguments to elucidate the 
outcomes of PMP models following a policy shock (Graveline, 2016). 
Moreover, while PMP has modeled risk aversion in a single-attribute 
environment through the use of mean-variance approach, its 
single-attribute approach struggles to explicitly measure and account for 
the utility-relevance of alternative attributes such as management 
complexity aversion. The ensemble framework in this paper relies on the 
classic calibration method (PMP_1) (Howitt, 1995) and a variation 
proposed by Júdez et al. (2002), that skips the first step using the 
average rent of land as dual value (PMP_2). 

PMAUP models “build on the axioms of revealed preference to 
construct a multi-attribute objective function that is both consistent with 
an observed (and finite) set of choices and prices and suitable as a basis 
for empirical analysis” (Parrado et al., 2019). PMAUP replaces the dual 
variables that would traditionally be added to the objective function to 
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make calibration possible in PMP with agent’s preference parameters 
represented as shares of a non-linear (typically Cobb-Douglas) utility 
function, the arguments of which are competing attributes (e.g. profits v. 
avoided management complexity). PMAUP is a data and computation
ally intensive approach consistent with the TPB that has been used to 
empirically explore the relevance of attributes other than profit 
(G�omez-Lim�on et al., 2016; Guti�errez-Martín and G�omez, 2011), 
particularly during the last decade, propelled by expanding frontiers in 
computational power and micro-data. Yet, since only observed behavior 
is used as an input and assumptions are limited (no engineering-based 
yield functions, no assumptions of fixed proportions, no limitation to 
profits as the sole relevant attribute of farmers), the calibration of 
PMAUP models is challenging where there is a large number of choice 
variables (several alternatives in the crop portfolio) and cross-sectional 
variation is low (time-series variation might be confounded with other 
trends), which may lead to some instability in the model calibration that 
is difficult to rationalize (e.g. abrupt changes in parameter values 
following the introduction of an additional attribute). The ensemble 
framework in this paper relies on two specific calibration methods: the 
projection method (Guti�errez-Martín and G�omez, 2011) (PMAUP_1) and 
the iteration method (G�omez-Lim�on et al., 2016) (PMAUP_2). 

3.3. Management of uncertainty and robust decision making 

Apart from PMP, which is a special case where the estimated residual 
is adjusted to zero, all economic calibrated models considered in our 
ensemble yield calibration residuals, which can be used to assess the 
internal performance of each model (readers can refer to Annex I in the 
supplementary material for a complete description of the calibration 
residuals used in the ensemble models). This does not mean PMP models 
can perfectly forecast behavioral responses to policy shocks; there 
remain “significant” sources of uncertainty outside calibration residuals, 
including those models where residuals are adjusted to zero (Phillips 
et al., 2001). Note also that calibration residuals are not directly com
parable between families of models, since modeling errors are inde
pendent (Cloke et al., 2013). 

The difficulty in assigning a reasonable metric of uncertainty to each 
model is at the core of the use of multi-model ensemble frameworks. 
Admittedly, forecasts from different models do not have the same like
lihood; however, since we do not know their probability and to the 
extent modeling errors are independent, we can explore uncertainty 
through the model spread (IPCC, 2014). It would be possible as well to 
apply Laplace “Principle of insufficient reason” to assume the ensemble 
behaves as a Bayesian System, and obtain a “best estimate” as the simple 
arithmetic mean of the forecasts from each model in every scenario 
considered. This approach may nonetheless assume more than is granted 
by available evidence (recall the likelihood of forecasts from different 
models is unknown) (Hino and Hall, 2017); to avoid maladaptation, this 
research adopts a robust decision making approach that minimizes 
regret. 

Robust decision making is a method that uses results from several 
simulation runs (using alternative models and/or scenarios through 
scenario-discovery techniques) to connect policy makers with model(s) 
capable of exploring uncertainty, so to identify robust adaptation 

options as those that “perform well compared to alternatives” (Marchau 
et al., 2019) and “hedge against uncertainty” (Graveline, 2019). Robust 
decision making process typically follows an iterative process between 
researchers and stakeholders/policy makers in five steps (Marchau et al., 
2019). Step 1 involves the definition of the decision-making framework, 
which in our case involves the exploration of alternative agricultural 
water pricing strategies through simulation, leveraging on 
scenario-discovery and multi-model ensemble techniques. Step 2 is the 
evaluation of the proposed pricing strategies (see Section 4.1). Step 3 
assesses vulnerabilities to pricing strategies, notably through the iden
tification of potential tipping points (Section 4.2). Step 4 assesses the 
tradeoffs between alternative strategies and involves the identification 
of robust policies that avoid tipping points and unfavorable surprises 
(decision-making process) (Section 4.2). The decision-making process 
can be implemented through the use of heuristics (expert judgement), 
through mechanistic constrained optimization algorithms, or through a 
combination of both (Marchau et al., 2019). If the 4 steps above do not 
yield a satisfactory outcome, an additional Step 5 can be included to 
explore alternative adaptation strategies. This step was not necessary in 
our research, since the task commissioned from Regione Piemonte 
explicitly demanded an analysis of incremental volumetric water prices 
in the agricultural sector, and no alternative policy was considered. 

3.4. Data 

Data was collected for the period 2008–2016, with 2016 as the 
calibration year. The database includes 28 crops representing 95% of 
total irrigated surface in the region. All attributes are defined so that 
“more-is-better” and are quantities of dimension one (i.e. normalized) 
(G�omez-Lim�on et al., 2016). Table 1 summarizes data inputs and related 
data providers. 

The only non-primary data source in the database are water with
drawals. The water abstraction license regime in Italy is “byzantine and 
substandard” (Santato et al., 2016): relevant data gaps on water with
drawals exist, and public statistics underestimate actual water use. Ac
cording to Regione Piemonte (2018) estimates, total withdrawals from 
irrigation amount to 5000 million m3/year; while ISTAT (2010) water 
use statistics (primary data source) set total withdrawals in the region at 
0.7 billion m3/year. To circumvent this data mismatch, we measured 
irrigation water withdrawals using the per crop irrigation water con
sumption estimates and irrigation efficiency data from Augusti et al. 
(2018), and obtained a figure of 4750 million m3 annual withdrawals. 

3.5. Economic agents and results aggregation 

The decision variable (i.e. land use) is available at a municipality 
level. This means that we have 1204 potential economic agents for the 
models. During the robust decision-making process, policy makers and 
stakeholders argued in favor of aggregating these 1204 units into more 
tractable agents that could yield easy-to-understand results and better 
inform their decisions. In order to define tractable agents for the cali
bration and policy simulation, this paper follows the work by 
G�omez-Lim�on et al. (2012) and handles municipalities as local aggre
gation units that can be grouped into clusters. To this end, we first obtain 

Table 1 
Models’ inputs and data providers.  

ID Data provider Variable Ref. year Disaggregation 

Agricultural land use Sistemapiemonte (2018) Crop portfolio 2016 Hectares per crop at a municipality level 
Crop yields, prices and costs INEA (2018) Crop yields (kg/ha), prices (EUR/kg) and 

costs (EUR/kg) 
2008–2016 Per crop and province (NUTS3) 

Water withdrawals and 
consumption and irrigation 
technology 

Adapted from Augusti 
et al. (2018) 

Water withdrawals, water consumption 
(m3/ha) and irrigation technology (%) 

2016 Per crop at regional level (water withdrawals and 
consumption); at regional level (irrigation 
efficiency) 

Working days (labor) INEA (2016) Number of working days 2016 Per crop at a regional level (NUTS2) 

Source: own elaboration. 
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Fig. 2. Piedmont agricultural clusters. 
Source: own elaboration. 
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information on the relevant data inputs described above for 1204 unique 
aggregation units/municipalities. We then employ a hierarchical ag
gregation procedure using the Euclidean distance measure and the 
Ward’s agglomeration algorithm to maximize the internal homogeneity 
of clusters (Murtagh and Legendre, 2014). The results of the hierarchical 
clustering are usually presented in dendrograms from which, after visual 
inspection, the number of clusters is selected. The visual criterion can 
nonetheless be misleading and inefficient in identifying the optimal 
number of clusters, and this research adopts instead numerical criteria. 
Different indices have been proposed to find the optimal number of 
clusters. Following Charrad et al. (2014), we use a set of 30 indices 
instead of just one of them. The clustering procedure is performed using 
the NbClust package of the R software and is available in Annex II in the 
supplementary material, along with the list of the indices used. Note that 
the results of the different indices may not be univocal; when this hap
pens, a simple majority rule is applied, which in our case led to 6 clusters 
as optimal grouping (Charrad et al., 2014) (see Fig. 2). 

The resultant clusters are: C1 – Cereals and cereal fodders, which 
features cereals (29%), cereal fodders (60%) and permanent crops (6%); 
C2 – Mountains, largely devoted to the production of fodders (48%) and 
corn (42%); C3 – Cereals, including corn (29%), wheat (22%) and cereal 
fodders (28%); C4 – Rice (76% of land use in the cluster); C5 – Perma
nent crops, which encompasses vineyards (12%), other permanent crops 
(25%) and cereals (32%); C6 – Vineyards (48% of land use). These 
clusters are the agents of the mathematical programming models in the 
ensemble. Calibration results for these agents are presented in Annex III 
in the supplementary material. 

Notably, simulation results using clusters as agents do not differ 
significantly from those obtained using individual municipalities as 
agents, which ensures consistence between the two aggregation levels 
while allowing for an easier-to-understand presentation of the results 
using a tractable number of agents (6 clusters v. 1204 municipalities). 

Finally, results are aggregated at regional level as the weighted mean 
of the 6 clusters using clusters’ land use shares as the weighting variable; 
i.e. attribute values for the Piedmont Region for every simulation run are 
obtained as the simulated attribute value for each cluster (per hectare), 
times the cluster’s corresponding land use share. On the other hand, the 
crop portfolio at a regional level is obtained from the aggregation of the 
simulated crop portfolios for every cluster. 

4. Results 

4.1. Simulation 

Once the five models are calibrated, they are used to run a number of 
simulations in which water prices are increased from 0 (baseline sce
nario) to 0.2 EUR/m3 (i.e. 1666.7 times higher than the original price of 
0.00012 EUR/m3) at 0.002 EUR/m3 intervals. Such pricing scenarios 
were co-developed with Regione Piemonte following a series of itera
tions (see Robust decision-making steps in Section 3.4). After every 
simulation run, agents in the model reassess their crop portfolio choices 
so to maximize their utility function within the domain. The result is a 
database representing the socio-economic effects of agricultural water 
pricing reform under multiple plausible futures, which is used to detect 
pricing policies that may potentially lead to contingencies/tipping 
points and underpin the implementation of a robust pricing policy. 

Fig. 3 summarizes crop portfolio responses by ensemble component/ 
model for relevant crops, namely fodders, corn, rice, wheat and grass
land. The complete results including all crops are presented in Annex IV 
in the supplementary material. Fig. 3 also includes a “best estimate” 
obtained as the arithmetic mean of the forecasts from ensemble com
ponents in every scenario considered. It should be recalled that the “best 
estimate” is merely informative, since the likelihood of forecasts from 
different models is unknown, and the objective of this work is finding a 
robust pricing policy. 

Overall, ensemble simulation results for the Piedmont Region show a 

Fig. 3. Crop portfolio responses to incremental water prices for selected crops. 
Source: own elaboration. 
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trend towards the progressive substitution of water-intensive crops, such 
as corn and cereal fodders, by rainfed crops (wheat and grassland), 
although adaptation patterns to incremental prices may differ between 
models. For the case of cereal fodders, acreage reduction is constant and 
consistent across models. A similar trend is observed for corn, which 
nonetheless shows higher resilience to price increases and retains a 
relevant crop portfolio share throughout all simulations. Note that the 
land share of corn and cereal fodders (models WGP, PMAUP_1 and 
PMAUP_2) may experience some acreage expansion in the price range 
0.012–0.032 EUR/m3, as irrigators adapt to the new water price by 
substituting rice by less water intensive crops. Such land use changes are 
not observed in PMP models, where corn and cereal fodders experience a 
continued decrease and rice is substituted solely by grassland. 

Rice responses to price shocks are heterogeneous and complex: while 
WGP and PMAUP models predict a significant reduction of rice beyond a 
price increase of 0.008 EUR/m3 (PMAUP_1) and 0.018 EUR/m3 (WGP 
and PMAUP_2), PMP models show a smooth reduction in acreage along 
price increases. In a series of interviews with representatives from the 
regional authority, river basin authority and Piedmontese land recla
mation and irrigation boards, all stakeholders showed concern 
regarding this potential outcome, which had already been identified in a 
previous report as a critical barrier to the pricing reform (Frontuto et al., 
2020) due to its potentially irreversible impact on the structure of 
traditional irrigated agriculture (i.e. rice) and related (ecosystem) pro
cesses and services of historical and cultural relevance to the region. 
Finally, like corn, cereal fodders and rice subside, grassland and wheat 
expand their acreage along with price increases. 

Most water conservation is achieved at the 0.008–0.032 EUR/m3 

interval (0–0.074 EUR/m3 for PMP models), when rice is replaced by 
less water-intensive corn/cereal fodders and rainfed crops in all the 
models, and water withdrawals fall from an average of 7000 m3/ha to 
1800 m3/ha (see Fig. 4). Price increases below 0.012 EUR/m3 slightly 
affect cereal fodders and yield modest water conservation figures. Price 
increases in the range of 0.034–0.19 EUR/m3 for PMAUP and WGP 
models and 0.07–0.19 EUR/m3 for PMP models lead to the gradual 
substitution of fodder and corn by rainfed crops, reducing water with
drawals from 1800 to 800 m3/ha. Further price increases >0.19 EUR/m3 

meet an inelastic demand curve and are ineffective towards water 
conservation in the price range considered. This is explained because i) 
water withdrawals have already been removed from marginal lands and 

are now concentrated in highly productive areas capable of absorbing 
the price shock; and ii) agronomic restrictions, including crop rotations 
and planting constraints. Notably, although irrigators can reduce or 
expand permanent crops such as vineyard, we set a lower and upper 
bound of �5% deviations from the original crop area. This is done to 
prevent significant capital (dis)investments, including the disruption in 
the provision of carbon sequestration services, which may conflict with 
other policies such as the Common Agricultural Policy (Essenfelder 
et al., 2018). Note that this constraint does not become binding until 
price increases beyond 0.19 EUR/m3 due to the profitability of vine
yards in the Piedmont Region. 

Profit (see Fig. 5) falls consistently along price increases in both 
single-attribute PMP and multi-attribute PMAUP models, although the 
impact on PMP models is initially higher due to the presence of the 
quadratic cost function, which penalizes the shift towards less water 
intensive and/or rainfed crops that occupy a marginal area in the 
observed crop portfolio. WGP features a characteristic “jumpy” behavior 
where profit typically decreases but can also increase despite growing 
water prices. 

The impacts of agricultural water pricing on employment (hired and 
family labor) is reported by the three multi-attribute ensemble compo
nents (PMAUP_1, PMAUP_2 and WGP). Initially employment increases 
along with prices, as rice is substituted by more labor-intensive corn. 
After a price increase of 0.096 EUR/m3, when corn starts to decline 
consistently in all multi-attribute models, labor decreases as well (see 
Fig. 6). Note that information on employment (hired labor) is valuable 
to obtain information on GVA beyond profit/gross margin (the other 
component of GVA being labor income). For consistency among single- 
and multi-attribute models, this study reports information on profit and 
employment separately. 

Water tariff revenue refers to the public revenue obtained directly 
from water pricing. Tariff revenue does not include other impacts on 
public revenue e.g. through a reduction in the income tax due to 
declining farmers’ profits. Simulation results show that tariff revenue 
typically increases along with higher prices, although there are some 
significant exceptions where price increases trigger the substitution of 
water-intensive crops by less water intensive and rainfed crops (see 
Fig. 7). This is particularly visible for rice in the price range 0.012–0.074 
EUR/m3 for all models in the ensemble, and for corn in the price range 
0.084–0.094 EUR/m3 for multi-attribute PMAUP and WGP models. In 

Fig. 4. Agricultural water demand curve. 
Source: own elaboration. 
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these instances, the water conservation effect overcomes the price in
crease effect and tariff revenue falls. 

4.2. Robust decision making 

Robust decision making was implemented following the steps 

described in Section 3.3. In Step 1, the two leading authors, policy 
makers (Regione Piemonte) and stakeholders (representatives from 
Land Reclamation and Irrigation Boards) gathered in a kick-off meeting 
to discuss and agree on the methodological approach to the research, 
and the initial set of pricing scenarios. In Step 2, preliminary results 
obtained using the approach agreed in Step 1 were presented and 

Fig. 5. Profit. 
Source: own elaboration. 

Fig. 6. Employment. 
Source: own elaboration. 
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discussed in a second meeting. The range of pricing scenarios was 
revised and delimited to increase detail (from an initial range of 0–1 
EUR/m3 at 0.01 EUR/m3 intervals to a range of 0–0.2 EUR/m3 at 0.002 
EUR/m3 intervals, which remained unchanged), and the ensemble 
approach and its components were validated. In Step 3, the results ob
tained in Step 2 were used to assess vulnerabilities to pricing strategies. 

At the beginning of the research, policy makers and stakeholders had 
already shown concern on the impact that water pricing policies may 
have on traditional rice fields and permanent crops, most notably 
vineyard. Simulations showed resilience of the latter crop to price in
creases; in contrast, rice systems were found to be highly vulnerable, 
with their area completely disappearing in all ensemble components in 
the price range 0.032–0.074 EUR/m3. This was somewhat expected due 
to its intensive use of water (nearly 31,500 m3/ha on average) and 
relatively low return as compared to alternative crops in the region 
(average, 1300 EUR/ha). As shown in the previous section, multi- 
attribute models suggest a rapid reduction in rice area in the interval 
0.008–0.032 EUR/m3, while single-attribute PMP models predict a less 
sharp, yet steady decrease in the interval 0–0.074 EUR/m3. Among 
multi-attribute models, PMAUP_1 predicts a smooth decline of rice in the 
interval 0.008–0.012 EUR/m3, which becomes more pronounced in the 
interval 0.012–0.018 EUR/m3 (44% of rice area has already disappeared 
at this point) and again in the interval 0.02–0.032 EUR/m3, after which 
rice systems disappear; PMAUP_2 predicts a faster decline of rice area, 
which goes from 18% to 0% of agricultural area in the interval 
0.02–0.024 EUR/m3; while WGP predicts the almost complete with
drawal of rice from the crop portfolio after prices increases of 0.02 EUR/ 
m3 (83% of the original area), followed by a progressive reduction of the 
remaining rice area in the interval 0.02–0.032 EUR/m3. This suggests 
the existence of a tipping point for rice systems beyond a price increase 
of 0.012–0.02 EUR/m3 for 3 of the 5 ensemble components. 

Step 4 involves the decision on the policy to be adopted. We started 
by using constrained optimization methods through the utilization of 
the Minimization of Maximum regret algorithm (MinMax regret). Min
Max regret measures regret as “the distance between the indicator for an 
instrument and the best indicator in a given scenario” (Graveline, 2019). 

In our case, we are looking for the pricing policy that yields the mini
mum maximum regret considering results from all models; in other 
words, the pricing policy that minimizes surprise/tipping points with 
potential disproportionate costs. The MinMax regret approach does not 
demand any additional information besides what is already available in 
the previous section; however, it tends to be highly conservative. Use of 
the MinMax regret approach suggested a maximum price increase of 
0.008 EUR/m3, i.e. the price at which the maximum regret is 0 (no loss 
of rice area in any model). At this price increase, water conservation is 
fairly small (0–650 m3/ha), profit falls slightly (49–57 EUR/ha) and 
tariff revenue is quite significant (35–38 EUR/ha). 

Constrained optimization methods were subsequently com
plemented with the use of heuristics through expert judgement, with the 
aim of exploring more ambitious and feasible water conservation-rice 
area tradeoffs. Through expert judgement, the feasible price increase 
was expanded to 0.012 EUR/m3, right before the tipping point identified 
in Step 3. At a price increase of 0.012 EUR/m3, the rice area diminishes 
but the impact is still moderate (16.7% reduction in PMP, 5.6% in 
PMAUP and 0% in WGP models), water conservation is limited (84–985 
m3/ha), foregone profit is small (73–85 EUR/ha) and tariff revenue is 
significant (49–56 EUR/ha). It should be noted that this price increase is 
slightly lower but still close to the 0.013 EUR/m3 (Frontuto et al., 2020) 
price increase proposed by experts in a report prior to our analysis. 

5. Discussion 

Water crisis are among the greatest global societal threats – and 
Europe is not spared (WEF, 2019). The “total cost of droughts over the 
past thirty years amounts to EUR 100 billion”, with the yearly average 
cost quadrupling over the same period (EC, 2017). Structural water 
scarcity is an expanding phenomenon affecting at least 17% of the Eu
ropean territory. 55% of surface water bodies in the EU have failed to 
meet good ecological status, and although the first cycle River Basin 
Management Plans predicted a 10% improvement in this figure by 2015, 
“delays in implementing many of the improving measures” have caused 
deferrals, further disruptions and irreversible damage in the supply of 

Fig. 7. Tariff revenue. 
Source: own elaboration. 
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valuable ecosystem services (EC, 2017). Against this backdrop, EU in
stitutions have called on policy makers to find “the right price tag on 
water” (EC, 2012). Such price should: i) be volumetric to enhance 
incentive-pricing water conservation; ii) recover not only financial, but 
also resource and environmental costs to convey adequate price signals; 
and iii) avoid disproportionate costs through affordable prices for stra
tegic sectors and related users. 

Balancing these three aspects has proven to be challenging. While the 
seminal literature on water pricing substantiates the effectiveness of the 
instrument towards achieving water conservation (Dinar and Sub
ramanian, 1997), full cost recovery in overallocated basins typically 
involves a significant increase in prices with non-negligible impacts on 
income and employment (Perry, 2005). Where water has been histori
cally perceived as plentiful and irrigation techniques have remained 
essentially unchanged for decades or even centuries, responses to pric
ing generally involve reducing water use. This results in significant 
water conservation at low or medium price ranges (Rey et al., 2018), 
albeit (traditional) agricultural systems may suffer abrupt trans
formations with non-trivial impacts on the local economy, which can be 
further amplified economy-wide (Parrado et al., 2019). On the other 
hand, where autonomous adaptation to water scarcity has given rise to 
sophisticated and relatively profitable irrigation systems, we may 
observe high ability to pay and inelastic responses to prices at low or 
medium price ranges, which results in limited crop portfolio changes 
despite significant pricing-induced income losses (Zuo et al., 2015). This 
is e.g. the case of the absolute water scarce basins of southern Spain, 
where farmers have invested on greenhouses or irrigation moderniza
tion, among other techniques (Berbel and Mateos, 2014). The upshot is 
that farmers will shift to less-water intensive and less profitable crops at 
relatively high prices, thus increasing the economic costs of water con
servation. This can be aggravated by non-virtuous adaptation strategies 
such as shifting from surface water to more loosely controlled ground
water, thus transferring the overallocation problem to water bodies 
where norms and regulations are more difficult to supervise and enforce 
(G�omez and P�erez-Blanco, 2012). 

The non-trivial tradeoffs between economic efficiency and water 
conservation highlighted above raise barriers to the political accept
ability of pricing (Rausser et al., 2011), which have de facto precluded 
the implementation of full cost recovery (Berbel and Mateos, 2014). 
Notwithstanding the difficulty to fully recover water use costs, pricing 
still represents a powerful incentive that can contribute towards 
achieving collectively agreed environmental goals if certain conditions 
are met. For example, where demand is inelastic, pricing can be 
“leveraged against the high willingness to pay of users” to raise revenues 
that contribute towards enhancing the environmental status of water 
bodies (e.g. payment for ecosystem services). 

The challenges and opportunities above are observable in our case 
study area in the Piedmont Region. According to Piedmont Region es
timates, achieving full cost recovery necessitates a 2500-fold water price 
increase (0.30 EUR/m3 price increase equivalent) (Frontuto et al., 
2020), which following our estimates would not only significantly 
reduce agricultural profit (� 36% on average) but also be inconsequen
tial in terms of water conservation beyond a price increase of 0.2 
EUR/m3 (ensemble average) due to increasingly inelastic response to 
higher prices. Perhaps not surprisingly, experts advising the water policy 
reform found the costs of such price increase disproportionate, also on 
the grounds of potential irreversible impacts on the structure of tradi
tional irrigated agriculture, and suggested a (maximum) price increase 
of up to 0.014 EUR/m3 (Frontuto et al., 2020). According to our 
modeling exercise, although the impacts in terms of foregone profit may 
not be regarded as disproportionate (5%–11% foregone profit in the 
price increase interval 0.012–0.032 EUR/m3, up to 20% in PMP at 0.074 
EUR/m3), a price increase beyond 0.012 EUR/m3 results in the rapid 
substitution of the traditional Piedmontese rice landscape by rainfed 
crops and corn, with rice completely disappearing from the crop port
folio following a price increase of 0.032 EUR/m3 (0.074 EUR/m3 for 

PMP). This is expected to have a critical impact on water retention ca
pacity during the summer discharge peak. Furthermore, the forward and 
backward linkages of agriculture with related economic sectors (e.g. 
food industry) are likely to amplify the economic impact of rice systems 
removal, which may also affect historical water drainage and supply 
infrastructures. 

The downside of setting a maximum 0.012 EUR/m3 price increase is 
a modest water conservation potential: an ensemble average of 350 
million m3 of water conserved annually, or 6.82% of current with
drawals (between 1.7% and 9.5% depending on the ensemble compo
nent). On the other hand, tariff revenues increase consistently and 
almost peak for some models in the price interval 0–0.012 EUR/m3 (up 
to 56 EUR/ha), while profit reduction is relatively low (4.9%–5.7% 
depending on the model). This suggests that if rice systems are to be 
preserved, water pricing is not an effective instrument to conserve 
water, but still retains some potential as a revenue raising tool. 

6. Conclusions 

This work develops a mathematical programming multi-model 
ensemble framework to sample uncertainty and underpin robust deci
sion making. This is, to the best of our knowledge, the first ensemble 
experiment to assess the local impacts of agricultural water policy re
form. Its development, implementation and subsequent iterative policy 
formulation along with stakeholders provided insights into modeling 
and scenario uncertainty that proved valuable towards the identification 
of robust pricing policy in the Piedmont Region. The ensemble could be 
improved through its connection to complementary ensemble experi
ments that sample uncertainty in physical systems, notably the water 
system (Cloke et al., 2013), and in other human systems (e.g. macro
economics, which would allow us to model crops’ demand and prices 
endogenously) (Parrado et al., 2019). Modularity and protocols could be 
used to connect such complex systems among them, in line with recent 
contributions to the area of socio-hydrology (Essenfelder et al., 2018). 
The ensemble could be also expanded through the inclusion of addi
tional mathematical programming models (Graveline, 2016). The indi
vidual ensemble components could also benefit from further research 
through: i) exploration of new attributes in multi-attribute models, such 
as seasonal forecasts, where this data is available; and ii) expansion of 
the crop portfolio to explicitly differentiate management techniques in 
agriculture in general and irrigation in particular. Such improved 
ensemble could be used to assess the impact of adaptation policies other 
than pricing in the irrigation sector, to complement our assessment of 
agricultural water pricing with that of alternative/complementary pol
icies; although the current institutional and legal context and policy 
agenda suggest the feasibility of such instruments in the Piedmont 
Region/Italy may be unclear, as previously discussed. 
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