
1. Introduction
Throughout the world, the surface and subsurface return flows that leave agricultural systems following water 
withdrawal and application have created and sustained wetlands, forested areas and other green infrastructures 
that supply valuable ecosystem services (Grafton et al., 2018). Examples of irrigation-dependent ecosystem ser-
vices include habitat conservation (e.g., wetlands for migrating waterfowl), climate regulation (e.g., carbon se-
questration), soil retention, cultural heritage (e.g., spiritual fulfillment, intellectual development) and amenity 
services (such as esthetic enjoyment or recreation), among others. Since these ecosystem services are typically 
outside of the market, their provision by irrigated systems is not included in the valuation of agricultural produc-
tion, nor is their eventual loss where the underlying green infrastructure is degraded (TEEB, 2015).

Irrigation-dependent ecosystem services are under threat by rising water scarcity and adaptive responses by 
farmers through modern irrigation systems, such as sprinkler or drip irrigation systems, laser leveling of fields, 
piped delivery systems, canal lining, and other physical rehabilitation of irrigation and delivery systems (Perry 
& Steduto, 2017). Modern irrigation systems are designed to increase the proportion of beneficial consumption 
per unit of water use. As scarcity grows, this allows irrigators to negate reductions in biophysical production from 
diminished water supply. This increased beneficial consumption is partially sourced by lower non-beneficial con-
sumption (e.g., evaporation from wet fields), but the predominant source is a reduction in return flows—runoff 
and percolation—back into the environment, which are often reused by irrigation-dependent ecosystem services 
downstream. The upshot is a sustained reduction of return flows due to increased beneficial consumption, degrad-
ed green infrastructures and a deterioration of irrigation-dependent ecosystem services (Figure 1; Pérez-Blanco 
et al., 2020).

Exceptions will arise in cases where irrigators can participate in incentive schemes that encourage environmental 
performance, such as payments for ecosystem services (PES). PES are a pecuniary compensation that internalizes 
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the positive externalities generated by providers (e.g., irrigators) through the protection or enhancement of green 
infrastructure (Asbjornsen et al., 2015). PES include both private (where individuals and/or private and non-gov-
ernmental organizations are the sole buyer) and public sector payments, although there are relatively few exam-
ples of the former in the case of watershed ecosystem services, where most funding comes from supranational, 
national or regional governments acting on behalf of their constituency. PES have received growing attention 
and funding due to their perceived capacity to enhance environmental and economic performance, including 
through the generation of relevant co-benefits such as increased and/or more stable incomes in rural areas (Brem-
er et al., 2016). The literature records over 400 water-related PES (also known as Payment for Watershed Ser-
vices, PWS) in more than 60 countries, rehabilitating a surface one and a half times the size of India for a total 
financial value of $25 billion (Bennett & Franziksa, 2016). However, “few rigorous evaluations” on the economic 
performance of PWS programs exist (Bhaduri et al., 2021). Lack of economic rigor is attributed to two main fac-
tors: (a) the oversimplistic representation of human agency and (b) the treatment of uncertainty (or lack thereof).

1.  Most economic assessments of PWS rely on oversimplistic representations of human agency (e.g., through 
linear objective functions) built entirely on the basis of relationships observed in historical data (e.g., pro-
jections from baseline conditions; Bhaduri et al., 2021; Harou et al., 2009; Pérez-Blanco et al., 2021). This 
contravenes the Lucas Critique, after the Nobel Laureate Robert Lucas, which states that it is inadequate 
to predict the effects of policy shocks on human behavior entirely on the basis of relationships observed in 
historical data (Lucas, 1976). This is because the parameters of models elicited this way are not structural, 
that is, not policy-invariant, and would necessarily change whenever the policy (e.g., PWS adoption) changes. 
Instead, historical data should be used to reveal the micro-foundations or deep parameters (utility, preferenc-
es, resource constraints) driving agent's responses, for example, through mathematical programming models 
(Graveline, 2016); and use these models for prediction.

2.  Available PWS economic assessments typically disregard scenario and modeling uncertainty. Scenarios in 
PWS studies are typically built either using simplistic point predictions or through probabilistic descriptions 
of plausible future states; which are then fed to a single model that is used to produce a forecast. Yet, in deeply 
uncertain socio-ecological systems, where researchers and stakeholders typically do not know/cannot agree 
on the model that relates scenarios to outputs, or the probability of these scenarios, such consolidative ap-
proach risks providing more information than what we can reasonably claim to know (Marchau et al., 2019). 
Disregard of scenario and modeling uncertainty becomes problematic where PWS performance is highly 
sensitive to future states. For example, a recent assessment of PWS in Colorado (US) found that the potential 
financial returns to beneficiaries was expected to be positive, but also warned that these returns would vary 
considerably depending on the scenario and only hold under specific model assumptions (Jones et al., 2017). 
Unfavorable surprises, especially those resulting in abrupt change, can lead to tipping points that significantly 
and irreversibly deviate expected from realized policy performance (Anderies, 2015). This is closely related 
to issues of permanence, that is, whether PWS will lead to sustained restoration/conservation of water-related 
ecosystem services, especially when future conditions (e.g., climate) may abruptly change (Rode et al., 2015).

This paper builds on the concepts of micro-foundations (Lucas,  1976), exploratory modeling (Kwakkel & 
Pruyt, 2013) and multi-model ensemble (IPCC, 2014; Sapino et al., 2020) to develop an economic assessment 
framework for PWS that uses mathematical programming methods to elicit the deep parameters driving human 
behavior, while thoroughly sampling scenario and modeling uncertainty in the analysis of irrigators' responses. 
The ensemble includes 2 Positive Mathematical Programming (PMP) models, 2 Positive Multi-Attribute Utility 
Programming (PMAUP) models and 1 Linear Programming (LP) model. The assessment framework is used to 
simulate the economic performance (through utility) of an hypothetical conservationist strategy (i.e., no irrigation 
modernization and reallocation of water toward the environment) v. autonomous adaptation strategy (i.e., irriga-
tion modernization and reallocation of water toward agriculture). By comparing the monetized foregone utility 
experienced by irrigators under the conservationist strategy v. the monetized foregone utility experienced by 
irrigators under the autonomous adaptation strategy we can obtain the minimum compensation irrigators would 
be willing to accept to sustain the PWS scheme. This information is subsequently compared with estimates of 
the economic value of ecosystem services to assess the economic performance of the proposed PWS. Repeating 
this process for multiple models and scenarios (climate change, irrigation modernization costs, economic values 
of ecosystem services) yields a database of forecasts that represents the range of plausible future states. Coupled 
with automated robust decision methods, this database is used to identify robust adaptation strategies that avoid 
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unfavorable outcomes that can be identified ex-ante. Methods are flexible and replicable, and are illustrated with 
an application to the PWS program presently being discussed between the Regione Emilia Romagna and the Reno 
River Land Reclamation and Irrigation Board (Reno River LRIB, in Italian: Bonifica Renana) to conserve the 
ecosystem services provided by irrigation-dependent wetlands in NE Italy.

2. Case Study Background: The Reno River Land 
Reclamation and Irrigation Board
Since Roman times, irrigators in Northern Italy have built water retention, 
distribution and drainage infrastructures to expand the surface available for 
agricultural and urban developments. Canals, irrigation systems, detention 
basins, drainage systems and other water works have transformed the land-
scape and created a complex network of man-made gray and green infrastruc-
tures that is managed, monitored, maintained and modernized by LRIBs, a 
public-private partnership that brings together all the owners of land and 
buildings (public and private) within its area of influence.

The Reno River LRIB, located to the Southeast of the Po River Basin, man-
ages an area of 341,953 ha across five provinces (Bologna, Firenze, Modena, 
Ferrara, Ravenna, Prato, and Pistoia). Of this surface, 56,067 ha are lowland 
alluvial plains that are drained using 1,667 km of canals, 26 detention ba-
sins (with the capacity to store over 42 million m3 of rainfall water) and 26 
pumping systems. The same network of infrastructures (plus 63 additional 
pumping systems for irrigation) is used to support the irrigation of 18,000 ha, 
which are divided into 5 irrigation districts (the agents in the mathematical 
programming model): C001 (Dep. Bologna-Po), C002 (Po), C003 (Reno, Re-
no-Po, Dep. Bologna), C004 (Quaderna, Sillaro, Dep. Ozzano Emilia, Dep. 
Castel S. Pietro), C005 (Ghironda, Lavino, Rii Pedecollinari, Dep. Anzola 
Emilia, Dep. Calcara, Dep. Calderara di Reno, Dep. Padulle di Sala). To this 
end, the Reno River LRIB distributes on average 68 million m3/year of wa-
ter for irrigation, which comes exclusively from surface water sources: 73% 
from the nearby Po River, via the Emiliano Romagnolo Canal (in Italian: 
Canale Emiliano-Romagnolo—CER); 16% from the Reno River; and the re-
mainder from detention basins (see Figure 2; Nomisma, 2019a).

Transportation and application technical efficiencies vary across the LRIB, 
being estimated on average at 50% and 85%, respectively (Nomisma, 2019b). 
As a result, drainage and irrigation activities produce non-trivial surface re-
turn flows, which have created and sustain 160 ha of protected areas with 

Figure 1. Water accounting balance. All water entering the irrigation system goes to either: (a) beneficial consumption, water that is purposefully converted to 
water vapor, primarily crop transpiration; (b) non-beneficial consumption, water that is not purposefully converted to vapor, such as through transpiration by weeds 
or evaporation from wet surfaces; (c) reusable return flows, water reaching a useable water body with downstream demand; and (d) non-reusable return flows, water 
flowing without benefit to a sink such as the sea, and therefore not useable.

Figure 2. The Reno river LRIB.
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wetlands across the LRIB. These wetlands provide valuable services beyond the conventional water supply and 
flood protection services typically attributed, and paid, to the Reno River LRIB, including: provisioning (e.g., 
food production, water storage), regulating (e.g., carbon sequestration, water purification), habitat (e.g., genetic 
diversity) and cultural services (e.g., esthetic, spiritual, educational and recreational; Nomisma, 2019a). Annex I 
in the Supporting Information S1 offers a comprehensive description of the ecosystem services provided by the 
Reno LRIB, which leverages on a review of the scientific literature complemented with the feedback provided by 
local stakeholders in a workshop held in Bologna (Italy) in April 2019.

On the other hand, in a context of diminishing water supply due to climate change, the same inefficiencies that 
maintain these valuable ecosystem services constrain water availability for irrigated agriculture. This has led 
agricultural landowners within the Reno River LRIB to call for investments toward the modernization of irriga-
tion and drainage infrastructures, particularly the network of canals. Irrigation modernization plans have been 
received with caution by the government of the Emilia-Romagna Region (where most of the lowlands are located) 
and the Reno River LRIB itself, which are concerned of the impact this intervention would have on protected 
areas and their wetlands (Nomisma, 2019b). Following a series of exchanges between the regional government 
and the Reno River LRIB, a research project was commissioned to the authors to explore the economic feasibility 
and sustainability of a PWS between the regional government (buyer) and the irrigators of the Reno River LRIB 
(providers), whose methods, results and conclusions are reported below.

3. Methods
This paper develops an economic assessment framework for PWS that uses mathematical programming methods 
to elicit the deep parameters driving human behavior, while thoroughly sampling scenario and modeling uncer-
tainty in the analysis of irrigators' responses. This mechanistic methodology is complemented with automated 
robust decision methods to identify a non-regret adaptation strategy.

3.1. Multi-Model Ensemble

While simplification through model conceptualization helps to effectively convey insights into how to better 
allocate resources in complex systems, it also leads to imperfections in the representation of the system and 
errors (Tebaldi & Knutti, 2007). Unawareness of these errors can result in misleading policy recommendations, 
significant deviations of expected from realized performance, and maladaptation (Hino & Hall, 2017), which can 
be aggravated by issues of non-convexity and irreversibility (Anderies, 2015). Despite these problems, economic 
performance evaluations of PES, and PWS specifically, typically rely on a single model and model setting to 
produce forecasts, which makes these schemes vulnerable to modeling uncertainty.

Ecological sciences have addressed modeling uncertainty through ensemble experiments that use multiple models 
to sample uncertainty (see e.g., Cloke et al., 2013; IPCC, 2014). Yet, ensemble experiments are under-researched 
in all disciplines of social sciences. In this paper, we sample uncertainty in human behavior and responses using a 
multi-model ensemble of mathematical programming models consisting of 2 PMP, 2 PMAUP and 1 LP models—
all of which are widely used methods in the literature on economic models for agricultural water management. In 
these models, farmers decide on the crop portfolio so to maximize the utility provided by a set of utility-relevant 
variables, subject to a series of constraints (Graveline, 2016):

Max � (�)
�

= � (�1(�); �2(�); �3(�)… ��(�)) (1)

�.�.∶ 0 ≤ �� ≤ 1 (2)

∑�

�=1
�� = 1 (3)

𝒙𝒙 ∈ 𝐹𝐹 (𝒙𝒙) (4)

𝒛𝒛(𝒙𝒙) ∈ 𝑅𝑅
𝑚𝑚 (5)
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where x is the crop portfolio, a vector representing the share of land allotted to each crop i; z(x) is a vector of 
utility-relevant attributes defined so that “more-is-better” (i.e., increasing the provision of one attribute, caet-
eris paribus, increases utility); U(x) is a parameterized objective function that relates inputs (the provision of 
utility-relevant attributes under a given crop portfolio) to outputs (utility); and F(x) is the set of constraints con-
forming the domain, which are common to all models in the ensemble, and whose mathematical formulation is 
available in Annex II in the Supporting Information S1. Of particular relevance is the water allocation constraint:

∑�

�=1

��

eff�
�� ≤ �� (6)

where wi are the net water needs or evapotranspiration (i.e., excluding inefficiencies) of crop i (in m3/ha), effi is 
the irrigation efficiency (which ranges between 0 and 1), wc/effc are the gross water needs or water applied to crop 
i (i.e., including inefficiencies), xi is the share of land allotted to crop i and Wg is the total water allocation for the 
agent (m3/ha). Adopting modern irrigation systems increases effi and reduces wi/effi.

Differences across the mathematical programming models considered in the ensemble stem from the form and 
calibration of the utility function (Graveline, 2016). Regarding the form, the utility functions used by mathe-
matical programming models can be single- (the case of PMP) or multi-attribute (the case of LP and PMAUP). 
Single-attribute utility functions use expected profit as the sole utility-relevant attribute; while multi-attribute 
utility functions typically explore the relevance of expected profit, risk aversion, and management complexity 
aversion. A comprehensive description and mathematical formulation of the attributes explored in the ensemble 
(namely, expected profit, risk aversion and management complexity aversion), as well as the related data inputs, 
is available in Annex III in the Supporting Information S1. Utility functions can also adopt different functional 
forms across mathematical programming models, typically Cobb-Douglas (PMAUP), additive (LP) and quadratic 
(PMP).

Regarding the calibration, each mathematical programming model used in the ensemble (PMP, LP, PMAUP) has 
a unique calibration method, which are discussed in Annex IV in the Supporting Information S1. The calibration 
results for the five irrigation districts/agents in the Reno River LRIB using the five models above are presented 
in Annex V in the Supporting Information S1.

3.2. Exploratory Modeling and Scenarios

Exploratory modeling is a technique that uses computational experiments to study the behavior of complex sys-
tems over a set of plausible scenarios given a priori knowledge (Kwakkel & Pruyt, 2013). Exploratory modeling 
has been used to study structural transformations under uncertainty, and to inform the design of robust adaptation 
strategies (Bankes et al., 2013; Marchau et al., 2019). In this paper, exploratory modeling is used to create a set of 
plausible scenarios whose outcomes are subsequently tested, for each adaptation strategy (conservationist v. au-
tonomous adaptation strategy), using the multi-model ensemble of mathematical programming models presented 
above. The following sets of scenarios are considered: (a) climate change, (b) irrigation modernization, and (c) 
environmental valuation scenarios.

Climate change scenarios. Climate change scenarios are based on the hydrologic projections for the Po River 
Basin in the Italian Climate Change Adaptation Plan (MITE, 2018), which are summarized in Annex VI in the 
Supporting Information S1. The Italian Climate Change Adaptation Plan foresees a reduction in runoff for the 
Po River Basin that ranges between 30% (RCP4.5) and 45% (RCP8.5) by 2,080, which will be coupled with an 
increase in upstream demand of up to 25% due to irrigation expansion. This will lead to increased agricultural 
water deficit, particularly downstream (up to 20%–40% reduction in agricultural water allocation). A total of 45 
climate change scenarios were simulated using mathematical programming methods (agricultural water alloca-
tion reduction in Equation 6 from 0% to 45% at discrete intervals of 1%).

Irrigation modernization scenarios. The Reno River LRIB has designed a plan to implement canal lining and 
increase the average technical efficiency of transportation systems from 50% to 85%. The cost of canal lining for 
irrigators, based on available budget estimates, interviews with local experts (which were asked to account for 
overbudgeting in their responses) and subsidies (the modernization of collective irrigation infrastructures such 
as canals is eligible to receive direct payments from the Common Agricultural Policy (CAP) of 40%–90% of the 
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investment cost, on the basis of a supposedly higher environmental performance (Official Journal of the Euro-
pean Union, 2013)), is estimated at 90,000–120,000 EUR/km (9,000–72,000 EUR/km with subsidies); which 
applying the standard amortization period (50 years) and interest rate (2%; Nomisma, 2019a) yields an annuity 
of 2,865–3,820 EUR/km (286.5–2,291 EUR/km with subsidy). This value is then multiplied by the total length 
of the canals in the lowlands, divided by the total number of irrigated hectares in the lowlands, and multiplied 
by the number of irrigated hectares in each irrigation district to obtain the irrigation modernization cost for each 
economic agent/irrigation district. Irrigation modernization costs are then charged to economic agents through 
a flat rate (EUR/ha). Local experts advised against using a volumetric charge (i.e., EUR/m3) because metering 
devices are still unavailable for most irrigators in the area. A total of 112 irrigation modernization scenarios 
were simulated using mathematical programming methods (irrigation modernization costs from 9,000 to 120,000 
EUR/km, at intervals of 1,000 EUR/km).

Environmental valuation scenarios. The two sets of scenarios above are used to estimate the utility perceived 
by irrigators under the two alternative strategies considered (conservationist v. autonomous adaptation), and the 
minimum compensation irrigators would be willing to accept to sustain the PWS scheme. This information is 
subsequently compared with the economic value provided by these ecosystems, to assess the economic perfor-
mance of the PWS scheme.

The literature on ecosystem services does not prescribe a single technique to measure their economic value, and 
several methods can be used to this end (TEEB, 2015). With sufficient time and resources, original environmental 
valuation studies (such as contingent valuation or contingent ranking) are typically preferred (Arrow et al., 1993). 
However, original environmental valuation studies demand large research teams, and necessitate careful study 
design and data analysis before methods and results can be validated. Alternatively, benefit transfer methods can 
be used to approximate the economic value of ecosystem services through estimates obtained by other studies 
performed elsewhere. The benefit transfer approach, which is adopted here, transfers an “estimate from another 
study/studies to a different context”, usually by multiplying the mean economic value for a person/family of the 
ecosystem service(s) X in location A by the population/number of families in location B, so to obtain the value of 
the ecosystem service(s) in B (Rosenberger & Loomis, 2003). Use of benefit transfer has the additional advantage 
of generating multiple plausible environmental valuation estimates for ecosystem services (one per study in the 
sample), instead of one point prediction as original valuation studies would do. This can be used to create multiple 
environmental valuation scenarios that more thoroughly sample scenario uncertainty.

Annex VII in the Supporting Information S1 presents the outcome of a literature survey from the Environmental 
Values Reference Inventory (www.evri.ca) on the economic benefits of the ecosystem services generated by (ir-
rigated) agriculture. The relevant studies for our research were screened in three stages: (a) a review of the gray 
and academic literature concerned with the measurement of the total economic value of the ecosystem services 
provided by water-dependent ecosystems was performed, which led to 323 studies; (b) of this list, those studies 
that focused on at least 4 of the ecosystem services of relevance for the Reno River LRIB (see Annex I in the 
Supporting Information S1) were selected, which led to 47 studies; (c) the list was further reduced to account only 
for the most recent studies (last 15 years, 2007–2021), studies estimating annuity values (instead of lump sum 
values, to avoid discount rate uncertainties) and studies providing pecuniary values (i.e., qualitative studies were 
excluded), which led to 9 studies. Estimates in the original studies are reported in Annex VII in the Supporting 
Information S1 in current year's values in foreign currency, either per person, family or unit of surface, and were 
converted to 2,020 values using exchange rate and GDP deflator data from World Bank (2020). This resulted in 
an annuity value of ecosystem services in the Reno River LRIB that ranges between 57 and 372.4 EUR/ha/year, 
with a median of 126 EUR/ha/year.

3.3. Managing Uncertainty Through Robustness

Arguably, model selection techniques could be used to choose among candidates the model that performs better, 
for example, through minimization of calibration errors (see Annex V in the Supporting Information S1), instead 
of relying on an ensemble. Nonetheless, assessing model performance is controversial and goes beyond a straight-
forward comparison of calibration errors. Notably, models in our ensemble are designed as a substitute for direct 
experimentation, which means that we cannot evaluate the predictive performance of the models within the en-
semble, a critical step in model selection (Konishi & Kitagawa, 2008). It may occur that a model with a relatively 
low calibration error performs poorly against non-observed data as compared to alternatives (poor predictive 
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performance; Pindyck, 2015). Moreover, calibration errors are not directly comparable among different models, 
since modeling errors are independent (Cloke et al., 2013). Alternatively, multi-model ensemble modeling can be 
used to generate a probability distribution function that combines all models to generate a point prediction that 
avoids model selection bias. Yet, this is challenging due to the subjectivity involved in defining prior assumptions 
about the distribution and the accuracy and weight attributable to each model (Tebaldi & Knutti, 2007). Besides, 
a populated ensemble including several models is necessary to infer an accurate probability distribution function, 
and this requires a large amount of resources (computational, personnel, etc.) that may not be available. A similar 
argument could be made for consolidative v. multi-scenario analysis, since scenarios are typically the result of 
model predictions (e.g., climate models, environmental valuation models).

Therefore, rather than selecting those models/scenarios that better predict or using a weighting approach, which 
may artificially reduce uncertainty (Hino & Hall, 2017), this work considers multiple scenarios/models and an 
un-weighted approach. The result is a database that offers information on uncertainty regarding model design 
through the ensemble spread, as well as on scenario uncertainty through exploratory modeling. It has been argued 
that when “probabilistic information is not considered, each potential vulnerability is equally important on the 
overall robustness, which can also be interpreted as an implicitly equal weighting” (Taner et al., 2019). Yet, as 
noted above, in our case we cannot claim that each scenario/model has an equal weight, because these weights are 
essentially unknown. In this context, robustness is advised in decision making, so to minimize potential regret.

A robust decision can be informed through heuristic (i.e., inductive reasoning, building on the expertise of de-
cision makers) and/or mechanistic methods. Since the design of the PWS in the Reno River LRIB is still in an 
exploratory stage, and a formal and structured discussion of the results that allows to articulate heuristic-based 
robust decision methods is ahead in time, this research adopts two widely used mechanistic robust decision 
algorithms to inform PWS performance: Minimization of maximum loss (Minimax) and Minimization of Max-
imum regret (MinMax regret; Aissi et al., 2009), two conservative decision making approaches that choose the 
strategy that minimizes the potential loss (Minmax) and regret (Minmax regret) under the models and scenarios 
considered.

4. Results
4.1. Simulation Results

The methods proposed above are used to assess the performance of the conservationist strategy (i.e., no irrigation 
modernization and reallocation of water toward the environment) v. autonomous adaptation strategy (i.e., irriga-
tion modernization and reallocation of water toward agriculture) under multiple scenarios and models. The up-
shot is a database of simulations informing on the expected irrigators' choices and related economic performance 
of the two strategies (including profit, employment, Gross Value Added and, most notably, utility). Figure 3 
informs on the crop portfolio choices of irrigators under alternative climate change scenarios/reductions in water 
allocations, for the conservationist strategy (Figure 3a) and the autonomous adaptation strategy (Figure 3b), in 
each model of the ensemble. Note that since irrigation modernization costs/PWS are charged/paid through a flat 
rate on a per hectare basis, they do not alter the relative position in terms of utility return among alternative crops, 
and do not affect crop portfolio responses.

Irrigation modernization under the autonomous adaptation strategy increases the proportion of beneficial con-
sumption per unit of water allocated for irrigation, which increases efficiency (effi) and allows irrigators to reduce 
the gross water needs of each crop i, or wi/effi (see Equation 6), and thus negate/reduce the impacts of climate 
change and water scarcity on yields. As a result, under the autonomous adaptation strategy, the crop portfolio 
remains largely stable (although marginal changes are observed) under all scenarios and models, until water 
allocation is reduced by >30%. When water allocation is reduced by 30% or more, those irrigated crops with a 
lower utility return (mostly corn) are partially replaced by rainfed cereals (mostly wheat or barley, depending on 
the model). On the other hand, under the conservationist strategy where no irrigation modernization plan is im-
plemented, the reduction of water allocation constrains water availability and leads to a substitution of relatively 
low return irrigated crops (corn, sugar beet and pasture) by rainfed wheat or barley (depending on the model) 
from the onset (>0% water allocation reduction). The surface of high return irrigated crops (vegetables, fruit 
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Figure 3. Crop portfolio choices: conservationist strategy (Figure 3a) v. autonomous adaptation strategy (Figure 3b).
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trees) remains constant in the initial simulation steps (<20% water allocation reduction); and is progressively 
substituted by less water intensive irrigated and/or rainfed (wheat or barley) crops with a lower return when water 
allocation is reduced by >20%.

Figure 4 assesses the economic performance of the PWS scheme by comparing the willingness to accept (WTA) 
to the willingness to pay (WTP) for an hypothetical PWS in the Reno LRIB, under alternative combinations of 
scenarios and models. The WTP is obtained from a literature review using benefit transfer methods (see Annex 
VII in the Supporting Information S1). The WTA is obtained in two stages using mathematical programming 
methods. First, we use the utility function calibrated in Equations 1–6 to calculate the monetized foregone util-
ity (through the compensating variation, CV) experienced by irrigators in every possible scenario g under each 
strategy s, as follows:

CV𝑔𝑔𝑔𝑔𝑔 =
𝑒𝑒 (𝑈𝑈𝑔𝑔=0𝑔𝑔𝑔𝑔𝑊𝑊𝑔𝑔)

Surface
 (7)

Where e is an expenditure function representing the minimum amount of money agents would need to attain 
the utility level they experience in the baseline scenario g = 0 (Ug=0), where there is neither climate change nor 
irrigation modernization, starting from an alternative scenario g.

Figure 4. Willingness to accept v. Willingness to pay for PWS in the Reno LRIB for (a) each model of the ensemble and (b) all models of the ensemble.
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Second, by comparing the CV of the autonomous adaptation strategy (s = A) v. conservationist strategy (s = C), 
the WTA in every possible scenario g is obtained as follows:

WTA𝑔𝑔 = CV𝑔𝑔𝑔𝑔𝑔 − CV𝑔𝑔𝑔𝑔𝑔 (8)

A positive WTA denotes a preference for the autonomous adaptation strategy; while a negative WTA indicates 
that irrigators would experience a higher utility loss from the adoption of irrigation modernization v. the conser-
vationist strategy, and therefore the latter would be preferred even in the absence of pecuniary compensations to 
irrigators through PWS.

When reductions in water allocation are null or low (<9%), the WTA is negative for all models and scenarios con-
sidered. At this stage the costs of irrigation modernization exceed the benefits from additional water availability, 
which is mostly used to irrigate crops with a low utility return. This results in a lower utility and higher CV under 
the autonomous adaptation strategy relative to the conservationist strategy, and a negative WTA. As climate 
change strengthens the water allocation constraint and threatens the irrigation of crops with a higher return, utility 
(CV) under the autonomous adaptation strategy increases (decreases) relative to utility (CV) under the conser-
vationist strategy, and the WTA for the PWS scheme increases. Beyond a water allocation reduction of 9%, the 
WTA starts exceeding a value of 0 EUR/ha for some models and scenarios—meaning that irrigators will demand 
a compensation for not adopting irrigation modernization and conserving the Reno LRIB green infrastructures 
and ecosystem services instead. Beyond a water allocation reduction of 22%, the WTA starts exceeding the lower 
threshold of the WTP for some models and scenarios, indicating that irrigators would prefer the autonomous ad-
aptation to the conservationist strategy even in presence of a pecuniary compensation (minimum WTP) through 
PWS. Eventually, the median WTP is also surpassed, although this only happens for severe climate change 

Figure 4. (Continued)
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scenarios (water allocation reduction >38%) and only in a few models and irrigation modernization scenarios. No 
combination of models and scenarios leads to a WTA that exceeds the maximum WTP.

Importantly, in the absence of irrigation modernization subsidies the WTA only becomes positive beyond a water 
allocation reduction of 26%; and exceeds the minimum WTP beyond a water allocation reduction of 35%. Neither 
the median nor the maximum WTP are surpassed by the WTA in those scenarios without irrigation moderniza-
tion subsidies.

Figure 5 compares the WTP to the WTA for each agent/irrigation district under selected scenarios. This informa-
tion is relevant to identify and redress potential asymmetries in the implementation of PWS (e.g., through direct 
payments to those who experience losses and/or water reallocations among farmers). The WTA is calculated 
here as a simple average of all the models in the ensemble—sometimes referred to as best estimate (IPCC, 2014).

Those irrigation districts with a larger share of high return crops (mostly vegetables) are more likely to experience 
losses from the adoption of PWS, especially under severe climate change scenarios. Under a water allocation 
reduction of 40%, the irrigation district C004 is better off adopting the autonomous adaptation strategy, provided 
infrastructures are subsidized and the minimum or median WTP is paid. The irrigation district C005 is better 
off adopting the autonomous adaptation strategy even if no subsidy toward the adoption of modern irrigation 
infrastructures is paid.

4.2. Robustness

Robustness is assessed using two mechanistic robust decision algorithms: Minimax and Minmax regret.

The performance indicator used in the case of the Minimax algorithm is the gain/loss experienced in each sce-
nario as compared to the baseline scenario g = 0 (no climate change, no irrigation modernization). Under the 
autonomous adaptation strategy, the Minimax performance indicator equates −CVg,A; while under the conser-
vationist strategy, the Minimax performance indicator equates WTP−CVg,C. The Minimax performance indica-
tor is obtained for every model, scenario and strategy considered. Subsequently, for each of the strategies, the 

Figure 5. Economic performance (measured as WTP minus WTA, in EUR/ha) of PWS and spatial asymmetries. (a) 25% of 
water allocation reduction; (b) 40% of water allocation reduction.
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maximum loss is obtained across all models and scenarios. The strategy that minimizes the maximum potential 
loss (Minmax) is found to be more robust; which in our case is the conservationist strategy.

The performance indicator used in the case of the Minmax regret is obtained in two steps. First, the best perfor-
mance indicator for each scenario among the Minmax performance indicators (see above) is obtained. Then, a 
regret indicator is obtained by subtracting actual gain/loss (again obtained as −CVg,A for the autonomous adap-
tation strategy, and as WTP−CVg,C for the conservationist strategy) from the best performance indicator under a 
given scenario. The strategy that minimizes regret is then chosen; which is found to be, again, the conservationist 
strategy.

4.3. Discussion

Farmers are in charge of managing the land and are given the responsibility to protect it. An important part of 
this stewardship role involves the conservation of natural resources, such as water, and the environmental assets 
and ecosystem services that depend on them. Historically, landscape stewardship has included environmentally 
friendly adaptive strategies such as no-till, planting cover crops, collecting water runoff to reduce nutrient load to 
water bodies, integrating crop and pasture rotations, and others. However, without adequate rules and incentives, 
adaptation strategies may as well be unsustainable (e.g., water theft, aquifer overdraft).

We show that as climate and water resource allocations change, farmers may decide to deploy modern irrigation 
systems that increase agricultural water consumption to mitigate/negate production losses, while reducing water 
availability for other uses—including valuable ecosystems and their services. This autonomous adaptation strat-
egy is being encouraged by ill-designed incentive schemes—most notably the subsidization of modern irrigation 
systems (Perry & Steduto, 2017). In our study in the Reno LRIB we find that, under mild to moderate climate 
change scenarios (water allocation reduction <26%), removing infrastructure subsidies is sufficient to prevent 
maladaptation through modern irrigation technologies that deplete environmental water allocations. This critical 
result aligns well with research at the global (Pérez-Blanco et al., 2020) and private irrigator level (Adamson & 
Loch, 2021), which has shown that when subsidies are removed, expected water savings are often insufficient on 
their own to motivate private irrigation modernization investments.

Figure 5. (Continued)
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This is likely to change under moderate to severe climate change scenarios, when water scarcity will affect in-
creasingly valuable crops and new schemes of incentives such as PWS may be necessary to prevent autonomous 
(mal)adaptation. In our study in the Reno LRIB we find that, if no infrastructure subsidies are applied, PWS 
would have a cost (measured through the WTA) that is below the minimum WTP for irrigation-dependent eco-
system services until a water allocation reduction of >35%; and below the median and maximum WTP for all 
scenarios considered. In the presence of subsidies, the cost of PWS can exceed the minimum WTP earlier (water 
allocation reduction >22%), while the median WTP can be also surpassed, albeit only at severe climate change 
scenarios (water allocation reduction >38%). This suggests a satisfactory economic performance of PWS for 
most scenarios and models considered. Applying automatic robust decision-making methods, the PWS is found 
to be a more robust strategy than the adoption of modern irrigation systems.

Our findings have relevant implications for water policy design in the EU and in other areas where modern ir-
rigation systems are being adopted, often with the support of public subsidization programmes (Pérez-Blanco 
et al., 2020). In the EU, the Common Agricultural Policy (CAP) subsidizes up to 90% of the investment cost of 
modern irrigation systems, on the basis of a supposedly higher environmental performance of these technologies 
(Official Journal of the European Union, 2013). According to CAP reasoning, if an irrigation system X with 50% 
technical efficiency is substituted with an irrigation system Y with 75% technical efficiency, the original water 
needs can be satisfied with a fraction (50/75) of the original water applied (e.g., 100 v. 66.67 units of water), and 
therefore 33.33 units of water will be saved. This confuses water applied with water consumed and assumes that 
economic agents will behave the same way (planting exactly the same crop portfolio) after the modernization, as 
before—two widespread but incorrect assumptions among policymakers. In reality, unless water use is curtailed 
following the adoption of modern irrigation systems, we should expect the farmer to increase consumption, re-
duce return flows, and limit water availability for third party uses, including green infrastructures, so to increase 
farm income (Grafton et al., 2018; Pérez-Blanco et al., 2020; Perry & Steduto, 2017). Therefore, subsidies to 
modern irrigation technologies are not only ineffective to save water—they can also exacerbate water scarcity by 
increasing the consumed fraction of water applied.

In light of the overwhelming available scientific evidence showing that modern irrigation systems increase con-
sumption and aggravate scarcity, why do policymakers continue to subsidize them to save water? First, despite 
the growing consensus among scientists that modern irrigation systems increase water consumption (Grafton 
et al., 2018), there is a widespread belief among non-experts that modern irrigation systems will save water. 
Once a belief has been established, individuals are more likely to accept (or even build) arguments that conform 
to that belief (Nickerson, 1998; Shermer, 2011), even when more recent information discredits it (Johnson & 
Seifert, 1994). This makes very challenging to debias and debunk the belief that modern irrigation systems will 
save water (Lewandowsky et al., 2012), particularly among policymakers that are not familiar with the behavioral 
drivers explaining farmer's responses to modern irrigation systems. Second, those who benefit from modern ir-
rigation systems (e.g., adopting farmers, equipment suppliers) exert political pressure and other lobbying efforts 
to obtain public subsidies that develop new resources and increase farm income—often at a marginal cost that 
exceeds marginal value. This is visible in our study in the Reno River LRIB, where in the absence of public sub-
sidies, the autonomous adaptation strategy is preferred to the conservationist strategy only under severe climate 
change scenarios (water allocation reduction of >35%); while with subsidies, modern irrigation technologies are 
preferred to PWS following a water allocation reduction of >22% (moderate climate change).

Since modern irrigation systems worsen rather than alleviate water scarcity, it is necessary that policymakers 
abandon the preconceived idea that these technologies will almost always save water and start adopting new 
frameworks that contribute to align individual farmer choices with collectively agreed policy goals, such as 
alleviating water scarcity while mitigating and potentially reverting income losses under climate change (i.e., 
sustainable growth). A prerequisite to achieve this goal is to conduct debiasing and debunking exercises among 
policymakers to put to rest the belief that modern irrigation systems will almost always save water (examples 
of debunking and debiasing exercises are available in Cook et  al.,  2018; Lewandowsky et  al.,  2012; Linden 
et  al., 2017). Additionally, achieving sustainable growth under increasing water scarcity necessitates sensible 
water reallocations that conform to basic economic principles, including:

•  The theory of economic policy, which argues that in order to meet a number of goals, an equal number 
of instruments are necessary (Tinbergen, 1952). Thus, if the objective is to save water (objective 1) while 
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enhancing/protecting farm income (objective 2), two instruments will be necessary (e.g., decoupled subsidies 
to farmers to enhance/protect income and quotas to save water)

•  The Assignment Principle, which argues that each instrument should be assigned to the objective to which it 
is best suited, and that this instrument should not be used to pursue another objective (Mundell, 1962). The 
Assignement Principle complements Tinbergen's  (1952) work and can be interpreted as a warning against 
water panaceas or “win-win” solutions, where a single instrument is adopted to pursue two (often conflicting) 
objectives

•  A framework for the effective design of interventions, where the objectives and the instruments set by pol-
icymakers do not directly affect behavioral responses (in our case, the decision of whether to adopt or not 
modern irrigation systems; Ciriacy-Wantrup & Bishop, 1975). For example, instead of subsidizing modern 
irrigation systems (which directly affects behavioral responses by promoting the adoption of modern irriga-
tion technologies by farmers), policymakers should set the objectives to be met (e.g., ecological flows) and the 
instruments to achieve them (e.g., quotas, pricing), and let farmers respond to these new conditions through 
changes in inputs and technology (e.g., reduced water use, modern irrigation technologies)

These basic economic principles suggest that the failure of modern irrigation systems to save water is the con-
sequence of flawed policy design. Policymakers promoting subsidies to modern irrigation systems “talk” about 
saving water but “dream” about increasing production (Connell, 2007), and thus violate the Tinbergen Principle 
(two objectives, one instrument). Moreover, scientific evidence shows that there are “much more cost-effective” 
alternatives to save water than modern irrigation systems (Qureshi et al., 2011), such as quotas or pricing, mean-
ing modern irrigation systems also violate the Assignement Principle. Finally, coupled subsidies such as subsi-
dies to modern irrigation systems directly affect the operational decisions by farmers, instead of setting objectives 
and instruments farmers have to comply/deal with. These basic economic principles further underpin the findings 
obtained using our quantitative framework, namely, that the conservationist strategy (sometimes complemented 
with PWS) has a superior economic performance than the (subsidized) autonomous adaptation strategy where 
modern irrigation systems are adopted under most models and scenarios, and is also more robust.

Does all the above mean that modern irrigation systems are always ineffective toward saving water? No. Modern 
irrigation systems can yield savings while protecting and/or enhancing agricultural income if they are comple-
mented with effective water saving policies (such as quotas or pricing) that strengthen water allocations to farm-
ers, so to ensure that any additional agricultural consumption following the adoption of modern irrigation systems 
is equal or lower than the foregone non-beneficial consumption and non-beneficial return flows (see Figure 1). 
Under conventional return flow regimes where return flows are beneficial, the water savings and/or additional 
farm income that can be achieved this way are rather marginal, and typically do not justify investments in modern 
irrigation systems (Adamson & Loch, 2021). This is not the case under (infrequent) escape flow regimes where 
return flows are non-beneficial and can be appropriated by farmers at no economic cost (i.e., higher farm income 
without reducing water availability to third party users; Huffaker, 2008).

5. Conclusions
This paper develops a multi-model and multi-scenario method to assess irrigators' responses to, and the economic 
performance of, pecuniary compensations designed to sustain irrigation-dependent ecosystem services through 
PWS. We find that, under most models and scenarios, the conservationist strategy (sometimes complemented 
with PWS) has a superior economic performance than the autonomous adaptation strategy where modern irriga-
tion systems are adopted. The conservationist strategy is also found more robust than the autonomous strategy.

We envision several ways in which our model and research could be improved. First, the ensemble of mathe-
matical programming models used in this paper could be expanded by including other models available in the 
literature, so to more thoroughly sample uncertainty. Second, a sensitivity analysis is also warranted to further 
sample uncertainty. This could be done exploring additional attributes in the multi-attribute models, PMAUP 1 
and PMAUP 2; or considering alternative crops and adaptation strategies in the portfolio, for example, allow-
ing for continuous yield functions and deficit irrigation instead of fully irrigated v. rainfed crops (Graveline & 
Mérel, 2014). Third, our ensemble focuses on the microeconomic aspect of a human system, which is one of 
the two components of complex human-water systems. Future research should study the interconnection of our 
human system multi-model ensemble with existing multi-model ensembles that represent the water system (see 
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e.g., Cloke et al., 2013). This would make possible to model the two-way feedbacks between human and water 
systems and their consequences (e.g., how the value of ecosystem services increases/decreases during periods 
of scarcity/abundance; Sivapalan et al., 2014), and sample the cascading uncertainties across them. Fourth, the 
representation of the human system could be also enhanced by modeling the interconnection between the micro 
level explored in this paper and the macro level, for example, through price feedbacks, which can be modeled 
endogenously in macroeconomic models (Parrado et al., 2020). Finally, efforts to produce more comprehensive 
and robust models should be complemented with debiasing and debunking exercises—a prerequisite to over-
come locked-in policy failures that subsidize ineffective water saving policies (Cook et al., 2018; Lewandowsky 
et al., 2012).

Data Availability Statement
The data used for the calibration of the ensemble of mathematical programming models and for the benefit 
transfer exercise is available free of charge at the online supplementary material and in an online repository at the 
following link: https://doi.org/10.5281/zenodo.5578968.

References
Adamson, D., & Loch, A. (2021). Incorporating uncertainty in the economic evaluation of capital investments for water use efficiency improve-

ments. Land Economics, 97(3), 655–671. 10.3368/wple.97.3.100119-0143R
Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret versions of combinatorial optimization problems: A survey. 

European Journal of Operational Research, 197, 427–438. https://doi.org/10.1016/j.ejor.2008.09.012
Anderies, J. M. (2015). Managing variance: Key policy challenges for the Anthropocene. Proceedings of the National Academy of Sciences, 112, 

14402–14403. https://doi.org/10.1073/pnas.1519071112
Arrow, K., Solow, R., Portney, P., Leamer, E., Radner, R., & Schuman, H. (1993). Report of the NOAA panel on contingent valuation (report). 

National Oceanic and Atmospheric Administration.
Asbjornsen, H., Mayer, A. S., Jones, K. W., Selfa, T., Saenz, L., Kolka, R. K., & Halvorsen, K. E. (2015). Assessing impacts of payments for 

watershed services on sustainability in coupled human and natural systems. BioScience, 65, 579–591. https://doi.org/10.1093/biosci/biv051
Bankes, S., Walker, W. E., & Kwakkel, J. H. (2013). Exploratory modeling and analysis. In S. I. Gass & M. C. Fu (Eds.), Encyclopedia of opera-

tions research and management science (pp. 532–537). Springer US. https://doi.org/10.1007/978-1-4419-1153-7_314
Bennett, G., & Franziksa, R., (2016). Alliances for green infrastructure: State of watershed investment 2016, PreventionWeb.net. Ecosystem 

Marketplace.
Bhaduri, A., Pérez-Blanco, C. D., Rey, D., Iftekhar, M. S., Kaushik, A., Escriva-Bou, A., et al. (2021). Economics of water security. In Handbook 

of water resources management: Discourses, concepts and examples, handbook of water resouces. Springer International Publishing.
Bremer, L. L., Auerbach, D. A., Goldstein, J. H., Vogl, A. L., Shemie, D., Kroeger, T., et  al. (2016). One size does not fit all: Natural in-

frastructure investments within the Latin American Water Funds Partnership. Ecosystem Services, 17, 217–236. https://doi.org/10.1016/j.
ecoser.2015.12.006

Ciriacy-Wantrup, S., & Bishop, R. (1975). Common property as a concept in natural resources policy. Natural Resources Journal, 15, 713–727.
Cloke, H. L., Pappenberger, F., van Andel, S. J., Schaake, J., Thielen, J., & Ramos, M. H. (2013). Hydrological ensemble prediction systems. 

Hydrological Processes, 27, 1–4. https://doi.org/10.1002/hyp.9679
Connell, D. (2007). Water politics in the Murray-darling basin. Federation Press.
Cook, J., Ellerton, P., & Kinkead, D. (2018). Deconstructing climate misinformation to identify reasoning errors. Environmental Research Letters, 

13, 024018. https://doi.org/10.1088/1748-9326/aaa49f
Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., et al. (2018). The paradox of irrigation efficiency. Science, 361, 

748–750. https://doi.org/10.1126/science.aat9314
Graveline, N. (2016). Economic calibrated models for water allocation in agricultural production: A review. Environmental Modelling & Soft-

ware, 81, 12–25. https://doi.org/10.1016/j.envsoft.2016.03.004
Graveline, N., & Mérel, P. (2014). Intensive and extensive margin adjustments to water scarcity in France’s Cereal Belt. European Review of 

Agricultural Economics, 41, 707–743. https://doi.org/10.1093/erae/jbt039
Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Con-

cepts, design, applications, and future prospects. Journal of Hydrology, 375, 627–643. https://doi.org/10.1016/j.jhydrol.2009.06.037
Hino, M., & Hall, J. W. (2017). Real options analysis of adaptation to changing flood risk: Structural and nonstructural measures. ASCE-ASME 

Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3, 04017005. https://doi.org/10.1061/AJRUA6.0000905
Huffaker, R. (2008). Conservation potential of agricultural water conservation subsidies. Water Resources Research, 44, W00E01. https://doi.

org/10.1029/2007WR006183
IPCC. (2014). IPCC fifth assessment report (AR5) (No. WGII). Intergovernmental Panel on Climate Change.
Johnson, H. M., & Seifert, C. M. (1994). Sources of the continued influence effect: When misinformation in memory affects later inferences. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1420–1436. https://doi.org/10.1037/0278-7393.20.6.1420
Jones, K. W., Cannon, J. B., Saavedra, F. A., Kampf, S. K., Addington, R. N., Cheng, A. S., et al. (2017). Return on investment from fuel treat-

ments to reduce severe wildfire and erosion in a watershed investment program in Colorado. Journal of Environmental Management, 198, 
66–77. https://doi.org/10.1016/j.jenvman.2017.05.023

Konishi, S., & Kitagawa, G. (2008). Information criteria and statistical modeling. In Springer Series in Statistics. Springer-Verlag.
Kwakkel, J. H., & Pruyt, E. (2013). Exploratory modeling and analysis, an approach for model-based foresight under deep uncertainty. Tech-

nological forecasting and social change. Future-Oriented Technology Analysis, 80, 419–431. https://doi.org/10.1016/j.techfore.2012.10.005
Lewandowsky, S., Ecker, U. K. H., Seifert, C. M., Schwarz, N., & Cook, J. (2012). Misinformation and its correction: Continued influence and 

successful debiasing. Psychological Science in the Public Interest, 13, 106–131. https://doi.org/10.1177/1529100612451018

Acknowledgments
The research leading to these results has 
been developed with the support of the 
Program for the Attraction of Scientific 
Talent's SWAN (Sustainable Watersheds: 
Emerging Economic Instruments for 
Water and Food Security) Project; of the 
Ministerio para la Transición Ecológica 
y el Reto Demográfico, through Fun-
dación Biodiversidad (ATACC Project 
- Adaptación Transformativa al Cambio 
Climático en el Regadío); and of the 
PRIMA Foundation's TALANOA-WA-
TER Project (Talanoa Water Dialogue 
for Transformational Adaptation to Water 
Scarcity under Climate Change).

 19447973, 2022, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030478 by U

niversidad D
e Salam

anca, W
iley O

nline L
ibrary on [09/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.5578968
http://dx.doi.org/10.3368/wple.97.3.100119-0143R
https://doi.org/10.1016/j.ejor.2008.09.012
https://doi.org/10.1073/pnas.1519071112
https://doi.org/10.1093/biosci/biv051
https://doi.org/10.1007/978-1-4419-1153-7_314
https://doi.org/10.1016/j.ecoser.2015.12.006
https://doi.org/10.1016/j.ecoser.2015.12.006
https://doi.org/10.1002/hyp.9679
https://doi.org/10.1088/1748-9326/aaa49f
https://doi.org/10.1126/science.aat9314
https://doi.org/10.1016/j.envsoft.2016.03.004
https://doi.org/10.1093/erae/jbt039
https://doi.org/10.1016/j.jhydrol.2009.06.037
https://doi.org/10.1061/AJRUA6.0000905
https://doi.org/10.1029/2007WR006183
https://doi.org/10.1029/2007WR006183
https://doi.org/10.1037/0278-7393.20.6.1420
https://doi.org/10.1016/j.jenvman.2017.05.023
https://doi.org/10.1016/j.techfore.2012.10.005
https://doi.org/10.1177/1529100612451018


Water Resources Research

PÉREZ-BLANCO AND SAPINO

10.1029/2021WR030478

16 of 16

Linden, S. van der, Maibach, E., Cook, J., Leiserowitz, A., & Lewandowsky, S. (2017). Inoculating against misinformation. Science, 358, 1141–
1142. https://doi.org/10.1126/science.aar4533

Lucas, R. E. (1976). Econometric policy evaluation: A critique. Carnegie-Rochester Conference Series on Public Policy, 1, 19–46. https://doi.
org/10.1016/S0167-2231(76)80003-6

Marchau, V. A. W. J., Walker, W. E., Bloemen, P., & Popper, S. W. (2019). Decision making under deep uncertainty: From theory to practice 
(2019th ed.). Springer.

MITE. (2018). Piano Nazionale di Adattamento ai Cambiamenti Climatici. Ministero della Transizione Ecologica. https://www.mite.gov.it/
pagina/piano-nazionale-di-adattamento-ai-cambiamenti-climatici

Mundell, R. (1962). The appropriate use of monetary and fiscal policy for internal and external stability. IMF Staff Papers, 9, 70–79.
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175–220. https://doi.

org/10.1037/1089-2680.2.2.175
Nomisma. (2019a). Pagamento dei Servizi Ecosistemici generati dalle attività irrigue (Report No. 2). Nomisma.
Nomisma. (2019b). Valutazione economica degli effetti ecosistemici generati dalle attività irrigue (Report). Nomisma.
Official Journal of the European Union (2013). Regulation (EU) No 1305/2013 of the European parliament and of the council of 17 december 

2013 on support for rural development by the European agricultural fund for rural development (EAFRD) and repealing council regulation 
(EC) No 1698/2005. Official Journal of the European Union - Regulation.

Parrado, R., Pérez-Blanco, C. D., Gutiérrez-Martín, C., & Gil-García, L. (2020). To charge or to cap in agricultural water management. Insights 
from modular iterative modeling for the assessment of bilateral micro-macro-economic feedback links. The Science of the Total Environment, 
742, 140526. https://doi.org/10.1016/j.scitotenv.2020.140526

Pérez-Blanco, C. D., González-López, H., & Hrast-Essenfelder, A. (2021). Beyond piecewise methods: Modular integrated hydroeconomic 
modeling to assess the impacts of adaptation policies in irrigated agriculture. Environmental Modelling & Software, 136, 104943. https://doi.
org/10.1016/j.envsoft.2020.104943

Pérez-Blanco, C. D., Hrast-Essenfelder, A., & Perry, C. (2020). Irrigation technology and water conservation: A review of the theory and evi-
dence. Review of Environmental Economics and Policy, 14, 216–239. https://doi.org/10.1093/reep/reaa004

Perry, C., & Steduto, P. (2017). Does improved irrigation technology save water? A review of the evidence (discussion paper on irrigation and 
sustainable water resources management in the near East and north Africa), regional initiative on water scarcity for the near East and north 
Africa. FAO.

Pindyck, R. S. (2015). The use and Misuse of models for climate policy (working paper No. 21097). National Bureau of Economic Research.
Qureshi, M. E., Grafton, R. Q., Kirby, M., & Hanjra, M. A. (2011). Understanding irrigation water use efficiency at different scales for better 

policy reform: A case study of the murray-darling basin, Australia. Water Policy, 13, 1–17. https://doi.org/10.2166/wp.2010.063
Rode, J., Gómez-Baggethun, E., & Krause, T. (2015). Motivation crowding by economic incentives in conservation policy: A review of the em-

pirical evidence. Ecological Economics, 117, 270–282. https://doi.org/10.1016/j.ecolecon.2014.11.019
Rosenberger, R. S., & Loomis, J. B. (2003). Benefit transfer. In P. Champ, K. Boyle, & T. Brown (Eds.), A primer on nonmarket valuation. 

Springer.
Sapino, F., Pérez-Blanco, C. D., Gutiérrez-Martín, C., & Frontuto, V. (2020). An ensemble experiment of mathematical programming models to 

assess socio-economic effects of agricultural water pricing reform in the Piedmont Region, Italy. Journal of Environmental Management, 267, 
110645. https://doi.org/10.1016/j.jenvman.2020.110645

Shermer, M. (2011). The believing brain: From ghosts and gods to politics and conspiracies---how we construct beliefs and reinforce them as 
truths.

Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., & Wescoat, J. L. (2014). Socio-hydrology: Use-inspired water 
sustainability science for the Anthropocene. Earth's Future, 2, 225–230. https://doi.org/10.1002/2013EF000164

Taner, M. Ü., Ray, P., & Brown, C. (2019). Incorporating multidimensional probabilistic information into robustness-based water systems plan-
ning. Water Resources Research, 55, 3659–3679. https://doi.org/10.1029/2018WR022909

Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the 
Royal Society A: Mathematical, Physical & Engineering Sciences, 365, 2053–2075. https://doi.org/10.1098/rsta.2007.2076

TEEB. (2015). TEEB for agriculture & food interim report (TEEB document). United Nations Environment Programme.
Tinbergen, J. (1952). On the theory of economic policy. North-Holland Pub. Co.

 19447973, 2022, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030478 by U

niversidad D
e Salam

anca, W
iley O

nline L
ibrary on [09/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1126/science.aar4533
https://doi.org/10.1016/S0167-2231(76)80003-6
https://doi.org/10.1016/S0167-2231(76)80003-6
https://www.mite.gov.it/pagina/piano-nazionale-di-adattamento-ai-cambiamenti-climatici
https://www.mite.gov.it/pagina/piano-nazionale-di-adattamento-ai-cambiamenti-climatici
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1016/j.scitotenv.2020.140526
https://doi.org/10.1016/j.envsoft.2020.104943
https://doi.org/10.1016/j.envsoft.2020.104943
https://doi.org/10.1093/reep/reaa004
https://doi.org/10.2166/wp.2010.063
https://doi.org/10.1016/j.ecolecon.2014.11.019
https://doi.org/10.1016/j.jenvman.2020.110645
https://doi.org/10.1002/2013EF000164
https://doi.org/10.1029/2018WR022909
https://doi.org/10.1098/rsta.2007.2076

	Economic Sustainability of Irrigation-Dependent Ecosystem Services Under Growing Water Scarcity. Insights From the Reno River in Italy
	Abstract
	1. Introduction
	2. Case Study Background: The Reno River Land Reclamation and Irrigation Board
	3. Methods
	3.1. Multi-Model Ensemble
	3.2. Exploratory Modeling and Scenarios
	3.3. Managing Uncertainty Through Robustness

	4. Results
	4.1. Simulation Results
	4.2. Robustness
	4.3. Discussion

	5. Conclusions
	Data Availability Statement
	References


