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ABSTRACT Clostridioldes difficife infection (CDf) creates an imbalance in the intesti-
nal microbiota due to the interaction of the components making up this ecosystem,
but little is known about the impact of this disease on other microbial members.
This work has thus been aimed at evaluating the taxonomic compaosition, potential
gene-associated functions, virulence factors, and antimicrobial resistance profiles of
gut microblomes. A total of 48 DNA samples obtained from patients with health
care facility-acquired (HCFO) and community-onset (CO) diarrhea were distributed in
the following four groups according to CDI status: HCFO/+ (n = 13), HCFO/- (n = 8),
CO/+ {n = 13), and CO/- (n = 14). These samples were subjected to shotgun meta-
genomics sequencing. Although the CDI groups’ microbiota had microbiome altera-
tions, the greatest imbalance was observed in the in the HCFO+/- groups, with an
increase in common pathogens and phage populations, as well as a decease in benefical
microorganisms that leads to a negative impact on some intestinal homeostass-related
metabolic processes. A reduction in the relative abundance of butyrate metabolism-assodi-
ated genes was also detected in the HCFO groups (P < 0.01), with an increase in some vir-
ulence factors and antiblotic-resistance markers. A set of 51 differentially abundant speces
in the groups with potential association to CDI enabled its characterization, leading to their
spatial separation by onset. Strong comelations between phages and some archaeal and
bacterial phyla were identified. This highlighted the need to study the microbiota's various
components since thelr imbalance & multifactorial, with some pathogens contributing to a
greater or lesser extent because of their interaction with the ecosystem they inhabit.
IMPORTANCE  Clostridioides difficle infection represents a serious public health problem in
different countries due to its high morbé-mortality and the high costs it represents for
heaith care systems. Studies have shown the impact of this infection on intestinal mico-
biome homeostasis, mainly on bacterial populations. Our research provides evidence of
the impact of CDI at both the compositional (bacteria, archaea, and wviruses), and func-
tional levels, allowing us to understand that the alterations of the microbiota occur sys-
temically and are caused by multiple perturbations generated by different members of
the microbiota as well as by some pathogens that take advantage of the imbalance to
proliferate. Likewise, the 51 differentially abundant species in the study groups with poten-
tial assodation to CDI found in this study could help us envisage future treatments against
this and other inflammatory diseases, improving future therapeutic options for patients.
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Chstndm«ks difficile (a Gram-positive badllus) is considered the main pathogen
causing health care-associated infections in countries worldwide; 15% to 45%
infection frequency has been described regarding community-acquired/onset and hos-
pitalized patients, leading to more than 25,000 deaths annually and multimillion-dollar
costs for health systems (1-5). Jostridioides difficie infection {CDI) can produce multi-
ple afterations in the intestinal microbiota of patients suffering from it; patient state is
aggravated by many factors, such as age, antibiotic use, and other comorbidities (6-
11). Such alterations occur more frequently in an intrahospital setting where patients
are expased to many therapies associated with their delicate state of health, leading to
an adverse effect on intestinal ecosystem equilibrium and thereby facilitating some
pathogens’ growth and proliferation (11-13).

Recent studies have shown that Foecalibactenum, Dorea, and Lachnospira bacterial gen-
era become reduced during CDi, as well as some prokaryotic archaea assodated with pro-
tection against the disease (9). This has been accompanied by an increase in pathogens
from the phylum Pseudomonadota (9-11, 13-15) and an increase in Candida, Malassezia,
and Blastocystis (16-19). Such increase in pathogen populations creates suitable conditions
for CDI maintenance and recurrence (7, 9, 13); this creates an ideal ecosystem for C. difficile
development and profiferation due to a lack of commensal Pseudomonas able to produce
short-chain fatty acids {SCFA) and secondary bile acds, leading to the exacerbation of
symptoms and even death (13, 20).
and metatranscriptomics, has enabled the detailed characterization of changes and rela-
tionships in the intestines of patients suffering inflammatory bowel diseases (1BD), such as
Crohn's disease (CD), ulcerative colitis (UC), iritable bowel syndrome (IBD), and colorectal
cancer (CRC). Such an approach highlighting taxonomic, functional, and biochemical altera-
tions has enabled the identification of biomarkers for such diseases’ diagnosis and treat-
ment (21, 22). Most (DI studies have focused on delving into the taxonomic differences
produced by C. diffiale; this has led to some microorganisms being selected which have
potential therapeutic use due to their protective role against CDY, as well as to exploring
differences regarding fungal taxa abundance (10, 11, 23, 24).

However, studies conceming CDi-related intestinal microbiota disruption do not
account for relationships among all the domains represented by a host’s wild intestinal
ecosystem. This results in a lack of understanding about the complex processes associ-
ated with such disruption, highlighting the need for focusing on the study of micro-
biomes and considering a broader range of elements making up such ecosystems for
improving our understanding of what happens regarding CDL

Thes study used shotgun metagenomics for detenmining the composition of microbial com-
munities (archaea, bacteria, and viruses), their functional profiles, and the relationships between
the members of the microbiota and intestinal virulence- and antibiotic-resistance-associated mo-
lecular markers in patients suffering community-onset (CO) and HCFO (Dl-associated diarhea,
compared to C(Diree diarheal patients. Taxonomic composition profies were found which
agread with those described in the pertinent Iterature, along with sets of charactenistic differen-
tially abundant species in the groups with potential association to (DL Some metabolic proc-
esses’ functional profiling highlighted centain Archaea and Foecalibocterium speces’ potential
role in butyrate metabolsm and axidoreduction. Each group's virulence and resistance profiles
were determined; this led to inareasing knowledge about the changes in microbial ecology
potentially associated with CDI and improving a therapeutic approach to CDI patients.
RESULTS

The study groups presented differentially abundant bacterial and archaeal

spedes. Samples were grouped according to previously defined groups for highlighting dif-
ferences in terms of taxonomic composition; an average of 16.4 million reads were obtained
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Gut Micubiome Changes under C difficile Infection Microbiology Spectrum
TABLE 1 General statistics of taxonomical assignment of shotgun metagenomic reads
Datas for bacteria Data for viruses Data for archaes
Total reads hits % Mean 5D % sD % sD

CO/- 197,797 349 51 48 6,792810 3,571,867 007 10232 12,420 0.04 5463 3813
cov+ 213,065,122 53 a7 7.640430 2404422 020 35495 109,192 005 7414 12,654
HCFO/- 139,362,722 22 76 13,183,284 3,245,136 200 291,200 756,346 0.02 3209 5,041
HCFO/ + 214,001,657 26 71 11,732,144 5,394,168 0.40 66,681 149,711 0.02 2531 3,504

per sample (=33 Phred score). After eliminating host sequences, 159 million reads per sam-
ple were obtained, with the Bacterio domain being the most abundant (47% to 76%)
(Table 1). The large number of unidentified sequences (no hits) in all groups (22% to 53%)
was striking; there were more in the CO groups (Table 1) The similarities between HCFO
groups are worth noting, as they had lower percentages of unidentified sequences and simi-
lar relative frequency for each taxonomic group found, characterized by a high percentage
of bacteria.

The bacterial population compasition in each group described by 165ANA marker
reads had different profiles for each group. Bacteroides, Lachnospira, and Osciospira domi-
nated in the CO/~ and CO/+ groups (Fig. 1A}, while Enterobacteriaceae and Pseudomonas
increased in the HCFO/ and HCFO/+ groups (Fig. 1A).

The relative abundance of differentially abundant species identified by metagenomic
sequencing had characteristic patterns (Fig. 2). For instance, we highlight a marked
increase in common pathogens such as Klebsiella pneumoniae, Enterobacter cloacae, and
Kiebsiella variicola, along with an overall increase of Pseudomonadota phylum-related reads
in the CO/+ group (Fig. 1B, green box). Few benefidal species accompanied by Eggerthella
lenta were found in the HCFO/- group (Fig. 1B, blue baxes). The CO/- and CO/+ groups
were characterized by greater diversity of members which have been assoclated with a
beneficial profile; species from the Bacteroddota and Bacillota phyla were found, such as
Odonbacter splanchnicus, Bacteroides uniformis, Roseburia foects, and Roseburia inulinivorans
(Fig. 1B). On the other hand, Akkermansia muciniphila was a species with a high relative
abundance in all evaluated groups.

The analysis of differentially abundant species revealed 51 bacterial and archaeal
species in the groups and the absence of up to 80% of the microorganisms described
in 5/8 HCFO/- group samples (Fig. ZA, blue box). Differentially abundant species-
based principal-coordinate analysis (PCoA)} showed that both the HCFO (R* =
0.12289, P = 0.001) and CO groups (R* = 0.07584, P = 0.001) tended to cluster sepa-
rately (Fig. 2B and CJ.

External validation of differentially abundant species in the studied groups
with potential association with CDI. Analysis of compaositions of microblomes with bias
comection (ANCOM-BC) allowed us to deepen into the spedes with a relative differential
abundance in the CDI+ groups (HCFO/+ and CO/+) to determine which microorganisms
had a potential association with the presence of C. difficle. The ANCOM-BC was performed
on the study samples and displayed 48 spedes with a differential abundance. Some of
these species had been previously described in the MetaPhlAn analysis (see Fig. 51 in the
supplemental material). We camed out a validation of these differentially abundant species
with a potential association with CDI by employing 27 publicly available samples belong-
ing to two different studies, which we analyzed separately. Initially, the five samples
belonging to the study of Milani et al. (25) reported less than | millon reads per sample,
whereas the 22 samples belonging to the study of Verma et al. (26) ranged from 23 to 34
million reads per sample. The ANCOM-BC performed on the data set of Milani et al. along
with the negative samples of the present study indicated a total of 13 differentially abun-
dant spedies. In contrast, the same analysis camed out on the data from Verma et al. along
with the negative sampies of our study yielded 52 differentially abundant species (Fig. 51).
Clostridium clostrdioforme was identified as the commeon differentially abundant species
for the three data sets (Herrera [this study], Milani et al. [25], and Verma et al. [26]) in the
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samples positive for CDI. We found four different bacterial and archaeal species in Milani et
al. and the other studies (two Milani and Herrera, two Milani and Verma), whereas we
found six differentially abundant species herein and in the data set of Verma et al. (Fig. S1).

Viral populations did not display differences between groups. Viral communities
accounted for 0.07% to 2% of all reads from the different groups, with the HCFO/- group
having the highest percentage of these microorganisms (Table 1) (no statistically signifi-
cant differences). Characteristic viral community profiles were observed in each group;
IAS virus and Faecalibacterium phages predominated in the CO/- group, representing a
third (33%) of this group’s viral populations, while the CO/+ group composition was
characterized mainly by members of the Siphoviridae family (80% of the reads identified
as wvirus), and Bactercides phages were the most abundant (Fig. 52). There was an
increase in Siphoviridae and Autographiviridae family members in the HCFO/- group
{62% of viral sequences), accompanied by a relatively high abundance of Kiebsiella
phages, coinciding with the previously described differentially abundant spedes compo-
sition. Enterobacter phages such as those for Escherichia and Enterococcus dominated in
the HCFO/+ group. However, such differences between viral families and species when

Bacterial and viral populations depicted a strong correlation. Cooccumence net-
works between wiral families and archaeal and bacterial phyla revealed differences
between groups (Fig. 3). Interestingly, the CO/- and HCFO/+ groups had fewer comela-
tions, all being inverse (p <—0.75) in the group associated with intrahospital onset. For this
type of onset, we observed an inverse proportional relationship between the abundances
of some phages of enterobacteria, as well as other viruses with various bacterial families.
The CO/+ group had numerous correlations, mainly between the Siphoviridae family and
different bacterial and archaeal families, indicating the importance of this phage family
and the wide range of hosts it can infect. Complex negative correlations were found in the
HCFO/- group between viral families such as Picomavindae and Microviridae with the
same bacterial phylum such as Fusobacteria. A direct correlation between Siphoviridae
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FIG 2 (DX and non-CDi diarheic patients’ differentially sbundant bactenal and archaesl spacies contribute to special differentiation. (A) Heatmap of §1 diferentially
abundant archaeal and bacterial species found in the study groups. (B) Prinopalcoondinate analyss (PCoA) based on the 51 differentially abundant species found in
the study, showing the samples’ spatal separation for each group. (C) Pincipal-coordinate analysis (PCoA) showing sample separation according to onset.

and Adenoviridae with many archaeal and bactenial phyla was observed. Likewise, the
complex correlations between the different families of Archaea, Bactena, and wviruses sug-
gest an Interaction between the domains, which may play a relevant rofe in the develop-
ment of various diseases (Fig. 3).

Metabolic pathways exhibited no differences between groups. Multhanate
analysis of the samples’ functional profiles revealed differences between the groups
regarding the genes associated with 17 pathways; 5 were related to biological proc-
esses, and the other 12 were related to metabolic functions (Table 2). There were
marked differences between the CDI-positive and -negative community groups com-
pared to the HCFO/- group, as there were statistically significant differences concemn-
ing all the genes (Table 2). Analysis of butyrate metabolism proved interesting due to
its potential impact on CDI's natural history; there was an increase in bactena contrib-
uting to such metabolic processes, mainly in the CO groups, accompanied by a reduc-
tion of all microorganisms potentially associated with butyrate metabolism in the
HCFO/- group (Figure 4a; P values reported in Table 2).

Statistically significant differences were observed when comparing relative abundance
between groups regarding genes and onset (Fig. 4B, Table 2). There were statistically signifi-
cant differences regarding the microorganisms invalved in such metabolic processes between
goups and onset, ie. Coprococcus comes (Kruskal-Walls chi-squared value = 15477,
P = 0001451, W = 422, P = 00004825), Flavobactena bacterium (Kruskal-Walls chi-
squared value = 78338 P = QOM957; W = 3665, P = 002415), and Gemmiger formicilis
(Kruskal-Walls chi-squared value = 17.658, P = 0.0005173; W = 460.5, P = 0.00008817) (Fig. 4B
and Q)

Differences were found regarding the metabolic process associated with oxidore-
ductase activity concemning the abundance of genes associated with such processes
between groups (Kruskal-Wallis chi-squared value = 12542, P = 0.005739) and onset
(W = 4465, P = 0.0007032) (Fig. S3A). Statistically significant differences were found
regarding the contribution of Faecalibactenum prausnitzii to this process in the HCFO
groups (Kruskal-Wallis chi-squared value = 14.22, P = 0.00262) (Fig. 538)
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networks are shown for each study group with correlations higher than 0.75 and lower than —0.75.

C. difficile infection-positive groups had increased virulence factors. Analysis of
virulence factors (placing special emphasis on toxins) revealed an increase in toxin-
related genes in CDl-positive groups, especially intrahospital-related ones (Fig. 5A),
with the Escherichia coli toxins (astA) heat-stable enterotoxin 1 (W = 405, P = 0.003821)
and (rtx8) RTX toxin transporter, and ATPase protein (W = 378.5, P = 0,03206) being dif-
ferent. C difficile-encoding virulence factors, which were only found in the HCFO/+
and CO/+ groups, were analyzed (Fig. 58). It was noted that the HCFO/+ group had
the largest number of these vinulence factors, including toxin A- and B-related genes
which were not found in the CO/+ group.

The HCFO groups presented multiple antibiotic resistance genes compared to
the other groups. Genomic and plasmid analysis of antiblotic-resistant genes revealed
that the HCFO groups had more antibiotic resistance marker (ARM) reads, especially in
the HCFO/ + group (not statistically significant) (Fig. 6). Analyzing ARM genomic com-
position (Fig. 6A) revealed that most markers were fluorogquinolone-resistant ARMs;
however, there were no statistically significant differences regarding any of the ARMs
analyzed, while statistically significant differences were observed when grouping sam-
ples according to CDI state between the percentages of ARM-encoding genes associ-
ated with aminoglycoside resistance (P = 0.0096), with CDi-positive groups having the
largest number of these markers.

Plasmid ARMs were mostly cephalosporin- and aminoglycoside-resistant markers
(Fig. 6D). An increase in the relative abundance of cephalosporin-specific ARMs was
observed in the CDI-positive patient group (P = 0.0224). Differences were consistent
with genomic findings, as no statistically significant differences were observed regard-
ing the other ARMs (Fig. 6E and F).

DISCUSSION

The study groups’ bacterial taxonomic composition (Fig. 1A) agreed with the infor-
mation obtained by previous deep sequencing of a single 165 rRNA gene marker in a
set of samples which included those analyzed in this study (9). Analysis of some 165-
rRNA hypervariable regions enabled precise characterization of the bacterial popula-
tions and accounted for C difficile’s negative impact on beneficial bacterial populations
(Fig. 1). This impact has been observed in many studies (10, 14, 15, 25, 27); it has been
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TABLE 2 P values for multiple comparisons of potential gene-assoclated functions

CO/-vs CO/-vs CO/+vs CO/-vs CO/+vs HCFO/-vs

Feature Process CO/+ HCFO/- HCFO/- HCFO/+ HCFO/+ HCFO/+
Butyrate metabolic process Biologicsl process 0468  0.002 0.000 0.040 a.008 0.186
Cell wall assembly Biological process  1.000 0.001 0.000 0207 0174 0022
o-ribose catabolic process Biological process 0916  0.002 0.002 0.007 0.008 0354
Regulation of apoptotic process Biological process 0425 0006 0037 a1z 0.346 0152
Response 1o oxidative stress Biological process  0.801 aocar 0.001 0013 a.010 0242
Acetane carboxylase activity Metabolic function 0452 0005  0.001 0476 0174 0035
Aryl-alcohol dehydrogenase (NAD + ) activity Metabolic function  0.956 a.003 0002 0.006 0.007 0417
Glucose-6-phosphate dehydrogenase activity Metabolic function 0600 0002  0.007 a21s Q.100 0.046
Gl ynthase (ferredoxin) activity Mewbolic function 0682 00 0002 0012 0.005 0437
Glycerophosphainositol glycerophosphodi activity Metabolic function 0997 @017 0010 0062 0.051 0331
N by “panning p in tyrosine phosph activity Metabolic function 0.952 0.005 oore 018 0222 0.122
Oligosaccharide reducing-end xylanase activity Metabolic function 0534 Q006  0.002 0022 0.005 0.408
Oxidoreductase activity, acting on iron-sulfur p asdonors Metabolic function 0989 Q026 0014 0068 0.054 0384
Peptide-methionine (S}-S-oxide reductase activity Meuwbolic function 0501 0002 0.000 0482 0206 0.019
Phosphatidylinositol-4-phosphate binding Metabolic function  0.705 Q.002 0.004 0.498 0674 0013
Tyrasine decarboxylase activity Metabolic function  0.945 0.045 0.030 0295 0212 0243
Uridylyltransfersse activity Metabolic function 0484 0008 0002 0.043 0.009 0336

described as altered microbiota regarding ecosystem balance, having reduced
Bacteroidota and Bacillota phyla (11, 13), probably due to the administration of antibi-
otics, thereby producing an increase in inflammatory processes facilitating the prolifer-
ation of pathogenic bacteria from the Pseudomonadota phylum. This would sustain
patients’ adverse conditions, leading to a recurrence of CDI and making them suscepti-
ble to other infections (11).

The changes between taxonomic groups in this study could show that the CDI-
related microbiota imbalance arises from the relationships between intestinal ecosys-
tem elements, .2, not being modulated by an isolated member. Evidence of this is the
impact (even at the metabolic level) of relationships established between different
beneficial markers, such as Odoribacter, Faecalibacterium, and Roseburia in community-
associated groups. (Fig. 1B and Fig. 53); this is related to a positive influence on intesti-
nal ecosystem homeostasis, bearing in mind the ability to produce SCFA (Le, butyrate),
which has been associated with triggering Inhibitory signals concerning the expression
of proinflammatory cytokine transcription factors creating an environment with low
inflammation levels (28-33).

A reduction in the amount of these beneficial microorganisms has an impact on intesti-
nal microbiota; this is taken advantage of by common pathogens such as Pseudomonas,
Morganella, Kiebsiella, and Enterococcus (as observed in the intrahospital groups: Fig. 1B),
which have been assodated with inflammatory states and the worsening of patients’ states
In other studies, thereby hampering their clinical and therapeutic management (34-37).
The presence of other microorganisms such as Eggerthella lenta in the HCFO/- group
(Fig. 1B) suggested a negative effect on intestinal microbiota, which has been associated
with inflammatory diseases such as colitis and other comglications such as bacteremia,
even though its mechanisms of pathogenicity are poorly understood (38-41).

The observed profiles of the differentially abundant species with potential association
with CDI between the data sets may be due to clinical and sododemographic factors. Due 1o
the absence of dlinical data from our samples, we could not establish comparisons at this
level with the other data sets. Thus, it is relevant to highlight that the absence of the factors
here and the technical differences (sequence length and amount) represent the principal lim-
itations of this investigation. Therefore, there is a need to deepen both the resuits obtained
here and future comparisons based on dinical and population data. Consequently, this infor-
mation will allow a more in-depth evaluation of the potentid assodations between CDI and
microorganisms that contribute to the imbalance of the intestinal ecosystem, which occurs
in CDI and other inflammatory pathologies. Moreover, the impact of individual and temporal
variations on the intestinal microbiota composition (42) hinders the extrapolation of the
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results to studies caried out in diverse populations such as European and American ones.
For this reason, it is fundamental to increase the data at a regional scale to obtain more accu-
rate comparisons that lead to promising results in the management and treatment of CDI.

Despite the lack of differences between the groups’ viral communities’ taxonomic
compasition, the cooccurrence networks indicated direct correlations in most groups
(Fig. 3); this could have been related to the viral lysogenic cycle, suggesting provirus-
related phage populations and that their increase resulted from an increase in Bacteria
and Archaea populations which they infected. Recent reports suggest that this could
have arisen from a reduction in available nutrients due to phage ability to obtain infor-
mation from inside a host cell regarding the metabolic activity of the bacterial popula-
tions they infect, Le,, for determining whether such conditions might promote phage
proliferation (43, 44).

Similarly, a model of interaction between phage P22 and Salmonelia enterica sero-
var Typhimurium led to identifying subpopulations which were provisionally resistant
to phage infection, enabling phage production without leading to a reduction of host
populations (45). However, further studies are required for demonstrating the impact
of such relationships, since little is known about the switch between lytic and lysogenic
cycles in the intestinal microbiota.

The reduction of butyrate metabolism-associated genes found in this study, mainly
in intrahospital groups (Fig. 4), was an extremely relevant finding, as this metabolite
contributes to intestinal homeostasis regarding immune and inflammatory response
maodulation, intestinal barrier formation, and maintenance of colonocyte energy me-
tabolism (28, 46). Such a reduction might be related to a deterioration in HCFO
patients’ condition compared to that of CO patients; this highlights the importance of
controlling the intestinal microbiota balance for patients’ gradual improvement.

The broad variety of microorganisms associated with butyrate metabolism found in
all groups studied (Fig. 4) could have resulted from a broad group of commensal and
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pathogenic bacteria’s ability to produce this metabolite from different substrates (47).
The forgoing is very important due to butyrate's many benefits regarding intestinal ho-
meostasis and lipid and carbohydrate metabolism (46, 48-50), meaning that it must be
maintained within the intestinal ecosystem for promoting microbiota equilibrium.

Virulence factor analysis revealed an increase in the genes encoding Escherichia coli-
associated toxins in the HCFO/~ group, mainly the secreted autotransporter toxin (Sat)
(Fig. 5A) Inducing cell damage during enteroaggregative infection by this microorganism
{51), which could trigger complications for patients in this group. It is worth stressing the
increase in sequences identified as C difficle virulence factors in the HCFO/+ group com-
pared to the CO/+ group (Fig. 5B). The HCFO/+ group had a higher degree of microbiota
imbalance, which would have provided suitable environmental conditions for pathogenic
microorganism profiferation and the transfer of genes playing an important role regarding
health (52). This would support the hypothesis that the presence of C. difficle along with
the imbalance caused in the microbiota produced by an increase in virulence factors leads
to a worsening of patients’ health-related conditions.

It is also worth noting that antibiotic administration could contribute to eliminating
bacterial populations; this would create disturbances in their equilibrium due to an impact
on many members’ diversity and abundance, in turn contributing to the development of
resistance to antibiotics among members of the micobiota by acquiring genes from the
environment and other bacteria (53), representing a threat to public health. Factors which
could be related to determined ARMs must thus be identified, as in this study the ARMs
where identified in RCFO group (Fig. 6); however, future studies are nesded to identify the
factors that could be related to its presence in this population in developing countries as
Colombéa. The available works that have analyzed antimicrobial resistance in HCFO have
provided an association between the environment of the patients and the multiple treat-
ments to which they are subjected due to the diseases they suffer from (54, 55).
Chromosome and plasmid resistance markers’ differential pattems (Fig. 6) reveal the
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imbalance in these patients’ intestinal microbiota generated by many factors, such as the
presence of C. difficiie, which could contribute to the transfer of resistance genes among
microorganisms, thereby worsening patients’ clinical condition, imiting their treatment,
and even placing their fives at risk.

This has thus been the first metagenomics study regarding the setting for C. difficile-
associated diarrheic patients in Colombia. The results suggested that individual microbial
members do not cause microbiota imbalance but, rather, that microbial ecology (the rela-
tionships established with other individuals and their environment [56]) plays an essential
role, and thus any imbalance affects microbial communities’ composition to different
extents, including a possible metabolic impact and thus an impact on patients’ health,

Further studies are required for determining the impact on the expression of the
genes found here. Pharmacological surveillance of antibiotic treatment in the general
population must be strengthened, as this could be triggering an increase in different
microorganisms’ resistance. These results should contribute to identifying pathogenic
microorganism’s characteristic of the imbalance produced by CDi and potentially ben-
eficial ones that could counteract the infection’s impact and which, therefare, might
be candidates for probiotics; however, future research must be aimed at verifying dif-
ferentially abundant species’ roles regarding health and establishing these microorgan-
isms’ intestinal ecosystem homeostasis.

MATERIALS AND METHODS

M“ﬂmm-_ﬁ' Amld“DMliﬂd‘
Universidad de Rosario’s Centro de | T biclogia and Bic gia (OMBIUR) cryo-
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Mmfmvmm«ﬁghhmdmmmh 4 had been acqusred, fi
Soceety for Meal Epidemiology of America and Ins M—Mdm;:ﬂm
(58) as described in Mufioz et i, (59 community onset pasitive for CDY (CO/+, n = 13), community
onset negative for CDI (CO/-, » = 14}, health care faclity-acquired positive for CDI (HCFOV -+, n = 13), and
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Data availability. The data are publicly avadable at the Ewropean Nudeotide Archive (ENA| repos-
tory under accession number PRIEBS0313.
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