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Resumen 

In the era of genomics, efficient and accurate analysis of genomic sequences is essential. Next-generation sequencing (NGS) 

technology has revolutionised the field of genomics by providing a massive volume of data on an unprecedented scale. One 

of the critical steps in the analysis of this data is variant calling, where genetic variations are identified from DNA sequences. 

In this context, we have explored the use of Deep Symbolic Learning (DSL) as an innovative computational approach that 

combines deep learning with symbolic representations. In this article, we discuss the principles of DSL and its applicability in 

genomics. We examine the advantages and challenges of its use in the context of variant calling and highlight the importance 

of meticulous validation. To ensure the quality of the results, it is essential to adopt appropriate validation techniques and 

specific software tools. We provide a detailed overview of these techniques and tools, with the aim of establishing clear 

standards for the implementation and validation of DSL algorithms in genomic pipelines. This research highlights the 

potential of the DSL to improve the accuracy of variant discovery, offering promising prospects for the genomics of the 

future. 
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Introducción 

The vast universe of the human genome has been a subject 

of fascination and study since the conception of molecular 

biology. With the advent of next-generation sequencing 

(NGS) technology, an unprecedented window into the detailed 

study of our genetic information has opened, allowing us to 

unravel mysteries related to disease, evolution and other 

fundamental aspects of biology. NGS has driven an 

exponential growth in the generation of genomic data, making 

the analysis of this data a complex but crucial task. 

 

Within this analysis, one of the most relevant phases is 

variant calling, or variant detection. This stage consists of 

identifying the differences between a genomic sample and a 

reference, thus allowing mutations, polymorphisms and other 

genetic variants to be recognised. These variants are essential 

for understanding genetic diversity, predisposition to disease 

and, in many cases, response to treatment. Accurate and 

reliable variant identification is therefore essential to translate 

the vast amount of data generated by NGS into biologically 

relevant and applicable information. 

 

However, the task is not simple. Genetic variations may be 

subtle or in regions of the genome that are difficult to 

sequence. In addition, intrinsic errors in sequencing 

techniques, as well as the inherent complexity of molecular 

biology, present challenges in accurately detecting variants. 

This is where advanced computational techniques, such as 

Deep Symbolic Learning (DSL), present themselves as 

promising tools, capable of integrating and learning from large 

volumes of genomic data, and offering accurate and reliable 

results in the task of variant calling. 

 

Throughout this article, we will explore the potential of 

DSL in the context of variant calling, outlining its integration 

into a genomic data analysis pipeline and discussing the 

validation techniques needed to ensure the quality of its 

results. 
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Next-generation sequencing technology, commonly known 

as NGS (Next-Generation Sequencing), represents a 

revolution in the way genetic information is analysed and 

understood. Prior to the advent of NGS, DNA sequencing was 

mainly performed using the Sanger technique, a costly and 

relatively slow process that allowed small DNA fragments to 

be sequenced individually. While this technique was 

pioneering and fundamental for flagship projects such as the 

sequencing of the human genome, the growing need to analyse 

multiple samples and large genomic regions required more 

efficient technology. 

 

NGS arose in response to this need. Unlike Sanger 

sequencing, NGS allows millions of DNA fragments to be 

sequenced simultaneously, in a single experiment. This "high-

throughput" capability has drastically reduced sequencing 

costs and times, allowing genomics to become more 

accessible and huge volumes of data to be generated in 

relatively short timescales. 

 

The general NGS process begins with the preparation of a 

library of DNA fragments to be sequenced. These fragments 

are attached to a surface and amplified to generate clonal DNA 

colonies, each corresponding to a single starting DNA 

molecule. Sequencing is then performed cycle after cycle, 

incorporating fluorescently labelled nucleotides. Upon 

incorporation, each nucleotide emits a specific light signal, 

which is detected and translated to determine the sequence of 

the fragment. 

 

There are several platforms and methodologies within the 

NGS spectrum, such as Illumina, Roche's 454 and Ion Torrent, 

each with its own particularities, advantages and limitations. 

However, they all share the basic principle of sequencing 

multiple fragments in parallel, which gives NGS its power and 

versatility. 

 

The advent of NGS has driven significant advances in areas 

such as personalised genomics, metagenomics, evolutionary 

genomics, among others. However, the flood of data it 

produces has posed computational and analytical challenges, 

making the integration of advanced tools such as Deep 

Symbolic Learning essential to extract the maximum value 

from the genetic information obtained. 

 

Deep Symbolic Learning (DSL) has positioned itself as an 

innovative approach in the world of machine learning and 

artificial intelligence, merging two traditionally distinct 

paradigms: deep learning and symbolic learning. 

 

Deep learning, mainly represented by deep neural 

networks, is known for its ability to handle large amounts of 

data, learn features automatically and perform prediction tasks 

with high accuracy. However, their models are often seen as 

"black boxes", because the interpretation of their internal 

processes can be complex. 

 

On the other hand, symbolic learning, which has roots in 

logic and knowledge-based artificial intelligence, focuses on 

the manipulation and reasoning of explicit symbols and rules. 

This approach offers transparency and explainability, but can 

be limited in terms of adaptability and generalisability to large 

volumes of data or complex tasks. 

 

DSL combines the best of both worlds. Through this fusion, 

it is possible to train models that are not only powerful and 

accurate, but also interpretable and based on rules and 

symbolic structures. This means that the DSL can leverage the 

ability of deep learning to automatically learn from data, while 

retaining a logical and symbolic structure that facilitates 

interpretation and decision making based on clear rules. 

 

In the context of genomics, this combination is particularly 

valuable. Genomic data is inherently complex, with 

hierarchical structures, non-linear relationships and subtle 

patterns that can be crucial for tasks such as variant calling. 

The DSL, being able to effectively model both explicit and 

implicit patterns, positions itself as a promising tool for 

genomics. 

 

For example, while a deep learning model could identify 

complex patterns in genomic sequences that indicate the 

presence of a variant, the symbolic component could represent 

known biological rules, such as the functional implications of 

a mutation in a particular region of the genome. This 

combination allows the analysis process to be both adaptive 

and based on previously established knowledge, thus 

optimising the accuracy and interpretability of the results.. 

 

Given the growing need for robust and explainable 

computational methods in genomic analysis, the DSL presents 

itself as a potentially revolutionary solution, offering a balance 

between analytical power and transparency in the decision-

making process.. 

 

DSL Fundamentals 

Deep Symbolic Learning (DSL) arose in response to a 

palpable need in the field of artificial intelligence: to combine 

the efficiency and generalisability of deep learning with the 

explainability and structure of symbolic learning. 

Deep learning is based on neural networks with multiple 

layers, known as deep neural networks. These networks are 

capable of modelling complex, non-linear relationships 

between inputs and outputs, and have been noted, especially 

in recent years, for their performance in image processing, 
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natural language and other tasks. Their strength lies in their 

ability to learn features and data representations automatically 

and hierarchically, i.e. without requiring manual feature 

engineering. However, the interpretation of what these 

networks "learn" can be opaque, giving rise to the term "black 

box". 

Symbolic learning, on the other hand, is a branch of 

artificial intelligence that uses symbols to represent 

knowledge. Unlike deep learning, which is usually inductive 

(learning from data), symbolic learning is mainly deductive 

(learning from pre-established rules and facts). In this 

paradigm, knowledge is represented by rules, facts and 

symbols, allowing for logical reasoning and easy 

interpretation. Symbolic learning has been fundamental in 

areas where explainability is essential, such as in expert 

systems and rule-based decision making. 

DSL seeks to integrate these two approaches to take 

advantage of their complementary strengths. In a typical DSL 

system, the representations learned by deep neural networks 

are translated or transformed into symbolic structures. These 

structures can be rules, decision trees, or any other 

representation that allows for clear interpretation. Conversely, 

symbolic knowledge can also be incorporated into deep 

learning, guiding or constraining the neural network's learning 

process. 

The essence of the DSL lies in its ability to learn end-to-

end, i.e. from raw data to rules and symbolic representations, 

without losing the power of deep learning or the clarity of 

symbolic learning. This integration is achieved through 

various mechanisms, such as knowledge-based regularisation, 

conversion of neural networks into decision trees, among 

others. 

In summary, the DSL represents a promising fusion of two 

worlds, allowing the inherent complexity of real data to be 

modelled, while providing clear, rule-based interpretations, 

facilitating decision making and reliability in a variety of 

applications. 

 

Advantages and disadvantages of the DSL in the 

context of genomics 

 

Genomics is a discipline that, by its nature, generates 

massive volumes of data. This data is intricate and has 

complex structures, subtle patterns and multi-level 

relationships. When approaching genomics through the lens of 

Deep Symbolic Learning (DSL), a number of notable 

advantages and disadvantages emerge: 

 

Advantages: 

 

1. Modelling Complex Relationships: Genomic data often 

contains non-linear, hierarchical and multi-factorial 

relationships. The deep learning component in the DSL allows 

capturing and modelling these intricate relationships with high 

accuracy.. 

 

2. Interpretability: One of the most common criticisms of 

deep learning models in genomics is their lack of 

explainability. With DSL, symbolic reasoning is integrated, 

providing clear interpretations in terms of rules or symbolic 

structures, which is crucial for understanding biological or 

genetic implications.. 

 

3. Incorporation of Prior Knowledge: Genomics has 

decades of research and accumulated knowledge. DSL allows 

the integration of this knowledge in the form of rules or facts, 

which can guide or improve the learning and prediction 

process.. 

 

4. Flexibility: DSL is adaptable. It can be tuned to prioritise 

accuracy (deep learning) or explainability (symbolic learning) 

according to the needs of the genomic analysis in question.. 

 

Disadvantages: 

 

1. Computational complexity: Merging deep learning with 

symbolic learning can increase computational complexity, 

requiring more resources and time, especially with large 

genomic datasets.. 

 

2. Integration challenges: It is not always easy to combine 

symbolic knowledge with deep models. This can lead to 

situations where the model does not converge or fails to 

adequately represent prior knowledge.. 

 

3. Overfitting to Rules: When integrating rules and known 

facts, there is a risk that the model will overfit to these rules 

and lose the ability to generalise to new data or situations not 

covered by prior knowledge.. 

 

4. Dual Expertise Need: Implementing DSL in genomics 

requires a deep understanding of both machine learning and 

genetics and molecular biology. This can make the barrier to 

entry higher compared to using more conventional 

techniques.. 

 

In conclusion, while the DSL offers significant potential to 

address the challenges of genomic analysis, it also presents 

challenges inherent to its hybrid nature. As with any tool, its 

effectiveness will largely depend on proper implementation 

and adaptation to the specific problem at hand.. 

 

Application of the DSL in the variant calling phase in 

NGS 
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Variant calling is an essential process in genomic data 

analysis, which identifies variants (such as SNPs and indels) 

from sequencing data. Given the crucial nature of this task, 

accurate, robust and explainable tools are imperative. Deep 

Symbolic Learning (DSL) offers a promising approach in this 

area, and we detail its application in the variant calling phase 

below. 

 

1. Modelado de Características Genómicas: 

Genomic sequences have a variety of features that can be 

crucial for identifying variants. While deep learning in DSL 

can automatically extract features from reads and their 

context, the symbolic component can represent prior 

biological knowledge, such as conserved regions, splicing 

sites or mutation-prone areas.. 

 

2. Incorporation of Prior Knowledge: 

There are rules and facts in genetics that are widely known. 

For example, certain variants in specific regions may be 

pathogenic or have a certain functional effect. DSL allows the 

integration of this knowledge into the variant calling process, 

prioritising or assigning reliability to variants based on 

previously established biological facts. 

 

3. Probabilistic Reasoning and Variant Determination: 

The variant calling process is not always binary. 

Sometimes, the evidence may be ambiguous or insufficient to 

make a clear determination. DSL, by combining symbolic 

reasoning with neural networks, can provide a probability-

based decision framework, weighing the evidence in the data 

and prior knowledge.. 

 

4. Call Evaluation and Validation: 

Once variant calling is done, it is vital to validate the 

accuracy and reliability of the calls. With DSL, this validation 

can be based not only on performance metrics, but also on the 

interpretation and consistency of the derived rules and 

symbolic representations.. 

 

5. Explainability and Reporting: 

Finally, once variants have been identified, researchers or 

health professionals may require clear explanations of how 

and why a specific variant was determined. The symbolic 

component of the DSL facilitates this task by providing rule- 

or fact-based justifications that are easily understandable.. 

 

In summary, the application of DSL to variant calling in 

NGS promises to improve not only the accuracy and 

robustness of the process, but also its interpretability and 

reliability. By integrating advanced machine learning with 

logical and symbolic reasoning, the door is open to more 

informed and reliable genomic analysis.. 

Validations techniques 

Traditional validation techniques 

 

Validation is a crucial step in the variant calling process, as 

it ensures that the variants identified are authentic and not 

artefacts or errors of the sequencing or analysis process. In the 

context of variant calling, there are several traditional 

validation methods that have been used extensively: 

 

1. Replication validation: This involves sequencing the 

same sample several times and comparing the results. If a 

variant is consistently identified in independent replicates, it 

is likely to be genuine. This technique is straightforward but 

can be costly in terms of time and resources.. 

 

2. Comparison with Reference Databases: The set of 

identified variants is compared with known variant databases, 

such as dbSNP or gnomAD. If a variant has been previously 

reported and validated, there is a high probability that it is real. 

However, this does not guarantee the identification of new or 

rare variants.. 

 

3. Homozygosity analysis: Variants occurring in regions of 

homozygosity (regions of the genome where an individual has 

two identical copies) may be easier to validate because any 

heterozygous variants in these regions are likely to be 

artefacts.. 

 

4. Sanger techniques: Sanger sequencing is considered the 

"gold standard" for variant validation. It consists of 

resequencing a specific region using the Sanger methodology 

and comparing the results with those obtained by NGS. If both 

techniques identify the same variant, it is considered 

validated.. 

 

5. Quality and Coverage Analysis: Assess base quality and 

coverage at positions where variants were detected. Variants 

identified in regions with poor quality or coverage should be 

treated with caution, as they have a higher probability of being 

artefacts.. 

 

6. Bioinformatics tools: There are several tools and 

software specifically designed for variant validation, such as 

GATK's VariantFiltration, which apply a series of filters and 

criteria to discern between real variants and artefacts.. 

 

These traditional methods have been mainstays in the 

validation of variant calling. However, with the incorporation 

of advanced techniques such as Deep Symbolic Learning, new 

validation strategies may be required or can be developed, 

combining the robustness of traditional methods with the 

advantages of machine learning and symbolic reasoning.. 
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Particularities of validation when using DSL 

By incorporating Deep Symbolic Learning (DSL) into the 

variant calling process, new dimensions and challenges in 

validation emerge. Some of the particularities and special 

considerations when validating variants identified through 

DSL are described below.: 

 

1. Validation of Symbolic Rules: DSL, when generating 

symbolic rules or structures, requires validation of these 

representations. It is essential to ensure that the rules generated 

make biological sense and are not the product of overfitting or 

artefacts of the model.. 

 

2. Interaction between Deep and Symbolic Components: In 

DSL, deep and symbolic learning components interact. When 

validating, it is crucial to understand how these interactions 

affect variant identification and whether they introduce biases 

or errors.. 

 

3. Sensitivity to Training Data: Like any machine learning 

model, DSL-based models are sensitive to the data they are 

trained on. Cross-validation and testing must be performed on 

independent data sets to ensure model generalisability.. 

 

4. Explainability versus Accuracy: A trade-off may arise 

between the accuracy of the model and its explanatory power. 

In validation, it is essential to consider both aspects and 

determine whether one is being sacrificed at the expense of the 

other.. 

 

5. Iterative Validation: Since DSL combines machine 

learning techniques with symbolic reasoning, it can be 

beneficial to adopt an iterative approach to validation. For 

example, after a first round of variant calling, the symbolic 

rules can be refined and the model retrained for a second 

round, thus improving accuracy and reliability.. 

 

6. Ambiguity Assessment: Symbolic reasoning in DSL can 

introduce or resolve ambiguities in the variant calling process. 

During validation, it is crucial to identify and deal with these 

ambiguities in an appropriate way.. 

 

7. Use of Complementary Validation Metrics: In addition 

to traditional validation metrics, such as accuracy, recall and 

F1-score, it may be useful to introduce metrics that assess the 

quality and consistency of the generated symbolic 

representations.. 

 

In summary, while the DSL presents promising potential 

for variant calling, it also introduces validation peculiarities 

that must be approached with care. These considerations 

ensure that the results are not only accurate but also 

biologically meaningful and explainable.. 

Considerations on the validation dataset 

 

By introducing advanced techniques such as Deep 

Symbolic Learning (DSL) into the variant calling process, the 

validation dataset becomes even more important. Here are 

some key considerations when selecting and working with 

validation datasets in this context: 

 

1. Genomic diversity: It is essential that the validation 

dataset reflects the genomic diversity of the population under 

study. This ensures that the model can identify variants in a 

wide variety of genomic contexts and not just those present in 

the training set.. 

 

2. Data Set Size: While it is tempting to opt for larger 

datasets due to the perception that they provide more robust 

results, it is crucial that these data are of high quality. 

Sometimes, a smaller but meticulously curated dataset is 

preferable.. 

 

3. Independent Data Sets: To avoid overfitting and ensure 

model generalisation, it is vital to use validation datasets that 

are completely independent of the training set.. 

 

4. Known versus Unknown Variants: The validation set 

should contain both previously identified and validated 

variants (to assess the accuracy of the model) and new 

unknown variants (to assess the model's ability to identify 

previously unseen variants). 

 

5. Biological Representativeness: In addition to variants, it 

is important that the validation dataset reflects other biological 

aspects of the genome, such as highly conserved regions, 

mutation-prone areas or regulatory regions.. 

 

6. Associated metadata: Whenever possible, it is useful to 

have access to metadata associated with the samples in the 

validation set. This may include information about the 

individual's clinical condition, phenotype, or any treatment 

received. This metadata can help interpret the results and 

provide additional context.. 

 

7. Known Errors and Artefacts: It is beneficial to be aware 

of errors and artefacts associated with the sequencing 

technologies used in the validation dataset. These may 

influence the interpretation of the results and should be 

considered when validating the identified variants.. 

 

8. Flexibility in Evaluation: Due to the particularities of the 

DSL, it may be necessary to adapt or develop new validation 

protocols. The validation dataset must be flexible enough to 

allow for these adaptive approaches.. 
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Ultimately, the validation dataset is not only a tool for 

assessing the effectiveness of a model, but a key component 

that, if properly selected and used, can significantly improve 

the accuracy and reliability of the variant calling process in a 

DSL context.. 

 

Metrics and evaluation tools 

Quantitative validation of variant calling is crucial to 

ensure the quality and reliability of the results. Evaluation 

metrics provide a way to measure the effectiveness of the 

variant calling process. Here, we describe some of the key 

metrics used in this context: 

 

1. Accuracy: This metric assesses the proportion of correct 

predictions (both true and non-true variants) relative to all 

predictions made. It is a global metric that considers both true 

positives and true negatives.. 

 

P =
Positivos Verdaderos + Negativos Verdaderos

Total de Predicciones
 

 

 

2. Sensitivity (Recall or True Positive Rate): Measures the 

proportion of true variants that were correctly identified by the 

model relative to all true variants present in the data.. 

 

Sensibilidad =
Positivos Verdaderos

Positivos Verdaderos + Falsos Negativos
 

 

 

3. Specificity (True Negative Rate): Evaluates the 

proportion of non-variants that were correctly identified in 

relation to all non-variants present.. 

 

Especificidad =
Negativos Verdaderos

Negativos Verdaderos + Falsos Positivos
 

 

 

4. Positive Predictive Value (PPV): This metric indicates 

the proportion of identified variants that are true variants 

relative to all identified variants.. 

 

VPP =
Positivos Verdaderos

Positivos Verdaderos + Falsos Positivos
 

 

 

5. Negative Predictive Value (NPV): Indicates the 

proportion of identified non-variants that are true non-variants 

relative to all identified non-variants.. 

 

VPN =
Negativos Verdaderos

Negativos Verdaderos + Falsos Negativos
 

 

6. F1-Score: This is a metric that combines accuracy and 

sensitivity into a single figure. It is especially useful when 

classes are unbalanced.. 

 

F1-Score = 2 ×
Precisión × Sensibilidad

Precisión + Sensibilidad
 

 

 

These metrics provide a quantitative view of the quality of 

variant calling. However, it is important to note that there is 

no single "perfect" metric and often they must be considered 

together to get a complete picture of the effectiveness of the 

variant calling process, especially in the context of Deep 

Symbolic Learning.. 

 

Recommended software tools 

 

As genomic analysis has advanced, various software tools 

have emerged designed to facilitate the assessment and 

validation of variant calls. These tools vary in their capabilities 

and applications, but many of them are widely recognized in 

the genomics community. Here, we present some of the most 

recommended ones for variant validation, particularly in the 

context of Deep Symbolic Learning-based models.: 

 

1. GATK (Genome Analysis Toolkit): Developed by the 

Broad Institute, GATK is perhaps one of the most popular 

software packages for genome analysis. While it is widely 

known for its variant calling tools, GATK also provides tools 

like `VariantEval` for variant call assessment and validation.. 

 

2. VCFtools: This is a suite of programs for working with 

VCF (Variant Call Format) and BCF (Binary Call Format) 

files. It provides utilities for comparing variants, analyzing 

variant sites and populations, and evaluating call quality.. 

 

3. bcftools: Similar to VCFtools, bcftools is a collection of 

utilities for the analysis of genetic variants in the VCF/BCF 

format. It is especially useful for filtering and statistics.. 

 

4. BEDTools: Although not strictly limited to variant 

validation, BEDTools is a powerful tool for working with 

genomic data in various formats, including BED. It can be 

useful for operations such as intersecting and comparing 

variant sets.. 

 

5. RTG Tools: Real Time Genomics (RTG) provides tools 

that enable the rapid and accurate evaluation of variants 

against a reference set. Its `vcfeval` function is particularly 

useful for variant call assessment.. 
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6. hap.py: It is a tool that compares genomic variant sets to 

find differences in calls and genotypes. It is based on the re-

genotyping of a truth set and produces detailed concordance 

metrics.. 

 

7. DeepVariant: While it is a variant calling tool itself based 

on deep learning, DeepVariant offers integrated capabilities to 

assess call quality. Its image-based approach may be of 

interest when considering alternative evaluation methods in 

the context of DSL (Deep Symbolic Learning).. 

 

When selecting tools for validation, it is crucial to consider 

the nature of the data, the specific project requirements, and 

the research team's expertise. The right combination of 

software and metrics can significantly improve the accuracy 

and reliability of variant calls in genomics analysis based on 

Deep Symbolic Learning. 
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