FACULTY OF ECONOMICS AND BUSINESS
DEPARTMENT OF ECONOMICS AND ECONOMICS HISTORY

X

VNiVERSiDAD
b SALAMANCA

23 B

MACRO-FINANCIAL STABILITY UNDER A
SEMI-NONPARAMETRIC APPROACH

DOCTORAL THESIS

JUAN FERNANDO RENDON GARCIA

Thesis directors:

JAVIER PEROTE PENA
LINA MARCELA CORTES DURAN

June 2023, Salamanca






Esta tesis esta dedicada:

A mis sobrinos Matias y David, para quienes quiero ser
ejemplo de transformacién a través del conocimiento. A mi
amada Diana que me ha brindado su amor, apoyo moral,
psicoldgico y logistico para que yo pudiera sacar adelante
este proyecto. A mi mama y a mis hermanas que siempre me
han apoyado de manera incondicional y que han sido
fundaméntales no solo en este proceso, sino en todos los
procesos de mi vida. Por ultimo, a mis perros Nietzsche, Lou,
Quevedo y Copito y a mis gatos, Pulga, Chuchu y la negrita,
que han sido tan importantes en mi bienestar.






AGRADECIMIENTOS

Afortunadamente existe esta seccion en donde puedo hacer explicito mi profundo
agradecimiento a mis directores de tesis, la Doctora Lina Marcela Cortés y el Doctor Javier
Perote Pefia por haber hecho posible este proceso. Especificamente quiero agradecerles haber
posibilitado el cambio personal que ha implicado para mi este proyecto; su calidez humana,
su experiencia como investigadores, su produccion cientifica que es una guia, que facilita los
avances en cada capitulo, y su experiencia en la redaccion cientifica de la cual saco uno de
los mayores aprendizajes obtenidos. Destaco la disposicion de la Doctora Lina para atender
con paciencia y dedicacidn las tareas que le implicaron su labor como directora, y a el Doctor
Javier por su hospitalidad, su disposicién para atender rapidamente las solicitudes y su

eficiencia comunicativa.

Agradezco al Instituto Tecnoldgico Metropolitano (ITM) de Medellin que es la institucion
que ha patrocinado este proceso otorgandome una comision de estudios y brindandome
apoyo para asistir a eventos cientificos en donde he presentado avances de la tesis doctoral.
Agradezco al ITM su compromiso con la formacion integral de los docentes y la confianza

que depositaron en mi al apoyarme.

También quiero aprovechar esta ocasion a la Doctora Inés Jiménez y al doctor Andrés Mora
Valencia por facilitarme su desarrollo computacional del modelo DCC-SNP y al Doctor

Alfredo Trespalacios quien me introdujo en el proceso de estimacion de los modelos SNP.



Vi



ABSTRACT

This thesis proposes a set of tools for measuring and managing financial risks related to the
stability of banking systems and for establishing macroprudential policies aimed at
preventing the materialization of systemic risks. It is based on accurately modeling
probability density functions associated with banking stability indicators. The methodologies
used respond to the second pillar of the Basel Committee on Banking Supervision agreement,
which states the need to determine and monitor the Economic Capital banks' need to cover
losses caused by the materialization of financial risks with a certain level of confidence and
for a given time horizon. Semi-nonparametric statistics were used to parameterize stylized
facts such as asymmetries and heavy and wavy tails observed in the empirical probability
distributions of financial stability indicators. Analytical and simulated solutions for
probability measures and economic capital settings are proposed. Applications are made on
aggregate solvency indicators and their components, the bank leverage indicator for
developed and emerging economies, and interactions between these indicators and monetary
policy were analyzed. The results point to the need to model the skewness and kurtosis of the
probability distributions of the financial stability indicators for not to underestimate risk and
the level of economic capital. The hypothesis of an interaction between prudential and
monetary policy and the need to jointly consider the decision-making of both policies is

confirmed.
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RESUMEN

Esta tesis propone un conjunto de herramientas para la medicion y administracion de riesgos
financieros relacionados con la estabilidad de los sistemas bancarios, y para el
establecimiento de politicas macroprudenciales destinadas a prevenir la materializacion de
riesgos sistémicos. Se parte de la modelacion precisa de las funciones de densidad de
probabilidad asociadas a indicadores de estabilidad bancaria. Las metodologias utilizadas
responden al segundo pilar del acuerdo del Comité de Supervisién Bancaria de Basilea, el
cual plantea la necesidad de determinar y monitorear el Capital Econémico que necesitan los
bancos para cubrir las pérdidas ocasionadas por la materializacion de riesgos financieros, con
un determinado nivel de confianza y para un horizonte temporal dado. Se utiliza estadistica
semi-noparamétrica que permite la parametrizacion de hechos estilizados como asimetria, y
colas pesadas y ondeadas observadas en las distribuciones de probabilidad empiricas de los
indicadores de estabilidad financiera. Se proponen soluciones analiticas y simuladas para las
mediciones de probabilidad y el establecimiento del capital econémico. También, se realizan
aplicaciones sobre los indicadores agregados de solvencia y sus componentes, y el indicador
de apalancamiento bancario para economias desarrolladas y emergentes. Ademas, se analizan
interacciones entre estos indicadores y la politica monetaria. Los resultados sefialan la
necesidad de modelar el sesgo y la curtosis de las distribuciones de probabilidad de los
indicadores de estabilidad financiera, para no subestimar el riesgo y el nivel de capital
econdmico. Se confirma la hipotesis de interaccion entre la politica prudencial y la politica
monetaria y la necesidad de considerar la toma de decisiones de ambas politicas de manera

conjunta.
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CHAPTER I. Introduction to the study

1.1. Introduction

The limitation of human beings as finite individuals attempting to understand an infinite
world has led to the construction of the cultural idea of uncertainty, which in general is related
to the ignorance of the occurrence of future unknown events (Martinez, 2006).

The concept of uncertainty has been developed in different fields of knowledge, such as
philosophy, where authors such as Plato in the myth of the Cave pose how human beings are
denied absolute knowledge of the world and only manage to see shadows and reflections of
this (La Republica, 2009); Kant states the impossibility of knowing " Thing-in-itself" and
that it is only possible to construct an idea of things for ourselves (Kant, 1967, p. 48); Albert
Camus in his book the myth of Sisyphus (Camus, 2021) assumes existential uncertainty as a
human condition and renounces the support offered by the gods, to adhere to the metaphysics
of the absurd, of what is hidden from human lucidity and becomes gods.

The concept of uncertainty in physics has been developed within the framework of
measurement and probability theory (Aleman Berenguer, 2010). From the perspective of
physics, uncertainty refers to imprecision or inaccuracy in measurements and predictions of
physical phenomena caused by sources such as imprecision in measurement instruments,
limitations of theory, the impossibility of simultaneously measuring certain variables, and
the presence of random and systematic errors in the data, among others (Smith & Vul, 2013;
Taylor, 1997). Although Einstein asserted that "God does not play dice,” quantum theory and
chaos theory have had to introduce uncertainty in the face of the impossibility of knowing

the physical laws that govern the universe with sufficient precision.

In economics and finance, uncertainty about the future of the different financial and
macroeconomic variables plays a fundamental role in decision-making (Martinez, 2006). The
complexity of the interactions between the agents and economic factors and the incomplete



information has led to the development of decision-making models where the uncertainty

about the expected results is considered.

Probability is a field of mathematics concerned with quantifying and modeling uncertainty
or randomness in events (Evans & Rosenthal, 2004). In particular, the probability is used to
address the problem of forecasting uncertain or random future events, i.e., to determine the
probability that a given event will occur. Probability theory provides a formal framework for
dealing with uncertainty. It is applied in different fields such as economics, physics,
medicine, engineering, and biology, among others., where future outcomes are uncertain, and

decision-making depends on the probability of occurrence of certain events.

The normal distribution is one of the most important and widely used distributions in
probability theory and statistics since the central limit theorem states that the sum of a large
number of independent random variables approximates a normal distribution regardless of
their distribution (Durrett, 2019). This theorem is fundamental to inferential statistics, as it
allows us to use normal distribution to make inferences about population means from

samples.

Within the economic and financial theory, the normal distribution has played a fundamental
role in developing probabilistic models since the behavior of many economic and financial
phenomena approximates the behavior of Gaussian random variables. The normal
distribution has been widely used in the analysis of risk and uncertainty in investments, the
valuation of financial assets, the analysis of income and wealth distribution, the modeling of
macroeconomic phenomena, and the analysis of economic and financial data. Some financial
models widely used by academics and practitioners assume the normality assumption.
Markowitz's portfolio optimization model assumes that financial asset returns follow a
normal distribution (Markowitz, 1959), the option pricing model proposed by Black-Scholes
assumes that stock prices follow Gaussian stochastic processes (Merton, 1973), the CAPM
model (Sharpe, 1964) which is widely used for estimating the cost of capital allocated to
project finance. In the context of credit risk, Vasicek (2002) proposes a model that starts from
a Gaussian stochastic process to determine the probability distribution of the value of a credit
portfolio. Chava et al. (2011). Belkin et al. (1998) and Schénbucher (2002), among others,
have also modeled the distribution of credit risk materialization losses from the normality

2



assumption. Frachot et al. (2001) approximated the loss distribution for operational risk VaR

estimation to a Gaussian distribution in the context of operational risk.

In financial risk measurement, it is common for empirical probability distributions to have
certain distortions concerning the normal distribution, such as skewness and heavy tails.
Authors such as Rosenberg & Schuermann (2006), Danielsson et al. (2013), Sandstrém
(2007), Bolviken & Guillen (2017), Brio et al. (2009), Le Maistre & Planchet (2013), Dutta
& Perry (2006), De Fontnouvelle et al. (2003), Feria-Dominguez et al. (2015), Kretzschmar
et al. (2010); Bateni et al. (2014); Madan (2009); and Lynn Wirch & Hardy (1999) Jiménez
et al. (202020), Brio et al. (2009), Del Brio et al. (2011), have addressed the problem of bias
and heavy tails in the measurement of market, credit, operational, liquidity and solvency

risks, both univariate and multivariate.

The problem addressed in this research project is the study of the probability distributions
involved in the integral management of financial risks to which banking institutions are
exposed. The objective is to propose models that adjust more precisely to the empirical
characteristics of the risk distributions generated by the financial intermediation activity.

For fitting more accurate pdfs, this paper uses models that generalize the normal pdf from
the Taylor series expansion of its characteristic function (which is the Fourier transform of
the pdf) and recovering the pdf from the inverse of the Fourier transform. (Cohen, 1998;
Dharmani, 2018; Kolassa, 2006).

These procedures make explicit the parameters for modeling high-order moments, such as
skewness and kurtosis, and allow relaxing the assumption that these high-order moments are
equal to zero, as in the normal distribution. This natural extension of the normal distribution
is obtained from Taylor series expansions truncated at a finite order, so that parameters
modeling the higher order moments can be estimated from data. This procedure is known as
Gram-Charlier and Edgeworth expansions and is framed in Semi-Non-Parametric statistics
(SNP) fields, since although the asymptotic expansions capture the true data generating
process, the truncated expansions result in parametric pdfs. SNP distributions have some
critical advantages over parametric and nonparametric distributions. The SNP approach is

more flexible than the parametric distributions from which they start since they can be



adapted to different shapes of the empirical distributions. Concerning nonparametric
distributions, SNP pdfs have properties of parametric pdfs that allow unique identification of
the pdf, facilitate comparison between measurements, and can be more efficient in parameter

estimation.

Gram-Charlier expansions have been applied in various fields where the accuracy in tail
fitting of pdfs is essential for the correct measurement of the occurrence of outliers. In
finance, Mauleon & Perote (2000), Mora-Valencia et al. (2017), Niguez & Perote (2012),
and Perote (2012) have developed and made use of these methodologies for modeling

univariate and multivariate financial phenomena.

1.2. Objectives of the study
1.2.1 General Objective

This thesis proposes methodologies for financial risk management within the prudential
policy based on the adjustment of SNP probability distributions. As an application case, this
manuscript measures macrofinancial risks required in the macroprudential decision-making

process.

The economic costs caused by the financial crisis of 2007-08, unleashed by the
materialization of systemic risks in the banking system in the United States and some
countries globally, have led macroprudential policy to establish itself as an area of financial
policy to prevent excessive risk-taking in the financial sector and mitigate its effects on the
real economy (Bengtsson, 2020). The relationship between the stability of the financial
system as a whole and the economy's performance has become a priority for policymakers
and academics as the conception of financial stability policy has changed (Ebrahimi Kahou
& Lehar, 2017).

1.2.2 Specific objectives

In this framework, the study accomplishes several targets:

- Determine the empirical characteristics of probability distributions of macrofinancial

stability indicators.



- Introduce SNP models based on the Gram-Charlier series to quantify macro-financial
risks and contrast their accuracy of fit with the results obtained under parametric
distributions.

- Apply the proposed models for risk measurement in international banking systems to
monitor macro-financial stability indicators and thus infer the best macro-prudential

policies.

The results show that the empirical pdfs associated with bank solvency and leverage present
significant skewness and kurtosis distortions concerning the normal distribution. These
distortions could be modeled from SNP econometric models that allowed the estimation of
higher-order moments. These models serve as an early warning tool for systemic risks and
for formulating macroprudential policies such as creating countercyclical capital buffers. In
addition, the multivariate approach allows the formulation of macroprudential stress test

models used in decision-making under uncertainty.

The main contributions of this research are a set of tools for the measurement and
management of financial risks in the banking system and for the establishment of prudential
policies, which respond to the principles established in the Second Pillar of the Basel
Committee on Banking Supervision agreements. It proposes univariate and multivariate
models better adapted than the normal distribution to the particular conditions of the observed
risk distributions of the financial stability indicators. It incorporates parameters that model

the general cyclical behavior of credit portfolios and businesses.

These models are applied to measure the probability that bank capital will absorb losses due
to the materialization of financial risks breaching regulatory limits and generating imbalances
in banking systems. They are also used to establish prudential policies in terms of the amount
of capital that banks must hold in order not to cross regulatory limits, for a given time horizon,
with a certain level of confidence that depends on risk appetite. Models are included to

estimate countercyclical capital buffers to absorb systematic risks in their time dimension.

The analytical solution for estimating countercyclical capital buffers to absorb systematic
risks in their time dimension is highlighted. This solution is similar to the model proposed
by Black-Scholes for estimating the financial option premium, where the regulatory
thresholds are analogous to the exercise price of the options.

5



Another methodological contribution is the proposal of models that combine harmonic
analysis with SNP probability distributions in the context of financial risk modeling. At this

point, contributions are made to estimate the harmonic components.

The notation used to describe semi-nonparametric statistical models is based on literature
from the fields of physics. It is more compact than the notation typically used in finance.

1.3. Structure of the document

This thesis is written as independent and self-contained chapters that are divided as follows:
Chapter Il proposes risk measures based on SNP distributions on the changes of the bank
solvency indicator and its components, which allows the measurement of the probability of
regulatory intervention and the establishment of prudential policies related to the capital
destined to absorb losses generated by the materialization of financial risks. A case analysis
is made of the effect of the monetary policy measures used to respond to the COVID-19

pandemic in Colombia on the aggregate solvency indicator in Colombia.

Chapter 111 presents a long-run model that assumes that the Capital Adequacy Ratio (CAR)
follows a generalized Ornstein Uhlenbeck stochastic process under SNP expansions.
Harmonic analysis is used to model the financial cycles to incorporate periodic functions in
the mean CAR. This model estimates the probability of breaching the minimum capital
threshold and the countercyclical bank capital buffer established as a macroprudential
measure in the Basel 11l agreement. As a case of analysis, the model was adjusted to the
observed time series of the CAR for the United States, Germany, the Netherlands, and

Colombia.

Chapter 1V presents a model for macroprudential stress testing based on the joint modeling
of the probability distributions of a leverage indicator and the monetary policy interest rate.
For the modeling of the marginal probability distributions, the DCC-SNP model is used,
which allows the modeling of the dynamic conditional correlation and the skewness and
kurtosis of the marginal pdfs. In addition, bivariate harmonic analysis is applied to analyze

the dynamics between the cycles of the analysis variables. This chapter also includes



applying the proposed stress test model to analyze the impact of different regimes of

monetary policy interest rate scenarios on a bank leverage indicator.
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CHAPTER II. Prudential regulation and Bank
Solvency Based on Flexible Distributions: An
Example for Evaluating the Impact of Monetary

policy?
I1.1. Introduction

Prudential regulation has become more relevant in recent years for preserving investors'
protection and the financial system's stability. Prudential regulation seeks to promote the
solvency and liquidity of financial institutions and ensure their ability to meet their
obligations and manage risks. At the International level, Basel Committee on Banking
Supervision (BCBS) defines capital adequacy as the main way to cover losses that can
destabilize a bank and the financial system (BCBS, 1988). The indicator used in BCBS
for measuring capital adequacy is the solvency ratio (SR), calculated by dividing
regulatory capital (RC) by risk-weighted assets (RWAs) whose value should not fall below
a certain value set by regulators. However, the Basel accord was insufficient for
protecting the banking system in the 2008 financial crisis, which revealed the need to
reevaluate policies, business models, and financial risk management systems (Borio,
2008). A significant concern in measuring, monitoring, and controlling solvency risk is
the provision of accurate and flexible methodologies. In this framework, we focus on
modeling probability density functions (pdfs) that can be applied in the context of the
Basel Accords to measure and limit solvency risk.

We measure the probability that a bank may fall below the minimum solvency required
as a prudential policy and for controlling risk by setting regulatory constraints based on
defining minimum solvency levels from quantile risk measures. These pdfs reflect banks'
risk profile and can be used in the context of prudential regulation to dampen banks'
appetite for risk. Also, stylized facts of the pdfs, including skewness and excess kurtosis
observed in the sample data, should be considered because these parameters contain more
precise information about the bank risk profile. Therefore, to estimate the pdf of the
variations in the SR, the risk portfolio, and the capital supporting this portfolio, we

propose seminonparametric (SNP) techniques based on Gram—Charlier (GC) expansions.

1 A version of this Chapter has been accepted for publication in The World Economy.
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The SNP distribution enables us to capture the stylized facts in the tails of the probability
distribution, such as skewness, leptokurtosis, and other aspects, such as multimodality in
the extreme values of the distribution, which would not be possible under the assumption
of normality and other typical parametric specifications. This approach is consistent with
autoregressive moving average (ARMA) and generalized autoregressive conditional
heteroscedasticity (GARCH) models for capturing the mean-variance time-varying

patterns in the solvency risk measures.

As a case study, we apply the proposed methodology using Colombian data from the
following variables: (i) the solvency decline rate (SDR), which is calculated as the
negative first logarithmic difference of the SR; (ii) the portfolio growth rate (PGR), which
is calculated as the first logarithmic difference of the value of the risk portfolio; (iii) the
tier decline rate (TDR), which is calculated as the negative first logarithmic difference of
the value of tier capital that supports the risk portfolio of the banks. These risk measures
can be used to estimate the risk of regulatory intervention and define policies that
establish the minimum SRs required by bank regulators based on an estimation of
Quantile Risk Metrics (QRMSs). For this purpose, we collected data on the solvency
indicators of the banking system in Colombia (a country that has followed the standards
set by the Basel Committee) and data on the monetary measures implemented by its
central bank to deal with the effects of COVID-19 on economic performance. The
rationale behind this case study is that banks regulated through prudential policy are used
as a transmission channel for monetary policy. Emphasis is placed on the period
corresponding to the COVID-19 pandemic, given that during this period, an extraordinary
monetary policy regime was applied to mitigate the effects of the lockdown.

According to our findings, implementing COVID-19 monetary policy measures in
Colombia increased banks' regulatory intervention risk by acting as a transmission
channel. Also, we find that the frequency distributions of SDR and its components (TDR
and PGR) have time-varying patterns in the mean and variance, which can be captured
using ARMA-GARCH models. The modeling of excess kurtosis at higher moments of
the probability distributions is significant for all the variables, and the same is true of
skewness for PGR. Overall, the performance tests indicate that GC densities fit the
observed frequency histograms of solvency risk better than normal densities; thus, they

are an adequate tool for ensuring the implementation of prudential policy.
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Since 2008, most central banks have adopted unprecedented expansionary monetary
policy measures to inject liquidity into their economies in an attempt to restore economic
stability. This response, however, posed higher financial and reputational risks for banks
involved in the transmission mechanism of monetary policy, as it increased (or reduced)
their level of leverage (solvency) and led to unsustainable debt levels (International
Monetary Fund, 2020). This scenario created several uncertainties in the banking
industry, as stated by KPMG (2020): Will some companies’ SR plunge to the point that
they require regulatory actions? What is the impact of these decreases on solvency? How
does the decline in equity ratios affect rating agencies’ opinions at the corporate and

industry level?

The answers depend on the “risk-taking channel,” which links monetary policy and the
perception and valuation of risk by financial institutions used as a transmission
mechanism (Borio and Zhu, 2012). One of the main drawbacks is that the current
macroeconomic models are not flexible enough to incorporate such a channel, reducing
their effectiveness in designing monetary policy. Many studies provide empirical
evidence of monetary policy's impact on transmission channel risk. However, these
studies are focused mainly on the effects of risk in banks’ loan portfolios, which affect
bank solvency, as suggested by de Moraes et al. (2016), who stated that banks react to
monetary policy by changing the amount of loan-loss provisions and the capital adequacy
ratio (CAR).

The rest of this paper is structured as follows. Section 2 provides the theoretical
framework, which decomposes the solvency risk into different risk sources and accurately
estimates regulatory capital. Section 3 proposes solvency risk measures and models to
estimate them. Section 4 describes the dataset used in this study and the monetary policy
measures adopted by the central bank of Colombia during the COVID-19 period. In
addition, it presents the results of the detection and adjustment of the PGR, TDR, and
SDR time series by Additive Outliers, the results of the unit root tests, and the results of
the tests for detecting structural changes. Section 5 presents the empirical results. Finally,

Section 6 draws our conclusions and offers some practical recommendations.
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1. 2 Theoretical Framework

The Basel Accords are founded on three pillars. The first pillar requires SR to be measured
in a standard manner so that different agents' aspects can be compared and aggregated.
The second pillar calls for banks to develop more precise risk management techniques
that consider the relationship between these risks and banks’ risk profile and environment.
This pillar, in turn, requires banks to measure their capital requirements using regulatory
and rigorous models to calculate economic capital (EC), defined by Elizalde and Repullo
(2007) and Tiesset and Troussard (2005) as the level of capital required to cover banks'
losses at a given confidence level for a given time horizon. Balthazar (2006) stressed the
importance of pillar 2 in the regulatory framework's evolution. This pillar promotes EC,
instead of RC, as the capital necessary to cover the losses of a risk portfolio. The reason
for this is that EC is calculated using internal models, adapts to the risk profile of each
bank, and considers their risk appetite, as it is based on QRMs, which generalize the
concept of value at risk (VaR). In calculating QRMs (see Section 3), excess kurtosis and
skewness must be considered characteristics of banks' risk portfolio components
(commonly described in the financial literature) so that risks are not underestimated. The
third pillar is associated with market discipline and complements the other two pillars by

allowing market players to assess banks’ capital adequacy.

Capital adequacy requirements (CARs) encompass both regulatory and economic capital.
Basel Il aims to establish more risk-sensitive minimum capital requirements so that
regulatory capital is closer to a bank's economic capital (Caruana, 2005). According to
the BCBS (1998), tier regulatory capital is divided into two components: (1) Tier 1
capital, or core capital, which includes equity capital and disclosed reserves, and (2) Tier
2 capital, or supplementary capital, which includes revaluation reserves, general
provisions, hybrid capital instruments, and subordinated debt. RC and EC requirements
are determined as a function of the risk portfolio. From a modeling and computational
perspective, accurately calculating risk portfolios takes work (Wason et al., 2004). The
risk of each module that makes up the risk portfolio can be measured, and these modules
can be aggregated at different levels.

Greater disaggregation implies a more accurate, but also more complex measurement
(Sandstrém, 2007). Assuming a multivariate normal distribution and a linear correlation

between the risk modules to be aggregated, the solvency capital required to cover the
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portfolio can be estimated as the a percentile. As described by Wason et al. (2004), this
method coincides with the one used under the Solvency Il guidelines in European Union
law, which states that the solvency capital requirement must be sufficient for surviving
extreme losses over a one-year horizon (with a minimum confidence level of 99.5%). The
solvency capital requirement incorporates insurance, market, credit, operational, and

counterparty risks and must be recalculated at least once a year.

From the regulatory perspective of the BCBS framework, the CAR establishes the
proportion of RC required to support a certain amount of RWAs, which determines the
value of the risk portfolio (consisting of credit, market, and operational risks), as
expressed in Equation 1.

RWA =Y, w; x asset; (1)

Under the standard method, each source of risk (i) is multiplied by a standardized factor
(w;), which is expected to be conservatively set in each jurisdiction. In this weighted
aggregation of the risk portfolio, correlations between assets are not considered, and
relative weights (w;) are assigned as arbitrary constants. Under Basel’s internal models’
approach, banks, subject to certain minimum conditions and disclosure obligations, can
develop their internal estimates of risk components to determine the capital requirement
for that position. Banks sometimes have to use a supervisory value instead of an internal
estimate for one or more risk components (BCBS, 2004). The internal models approach
assumes that the loss distributions are close to the normal distribution and consider
correlations between assets. These correlations are defined in a regulatory manner for
certain groups of assets. However, the assumption of a normal distribution of the risk
portfolio components in finance and insurance is implausible because of the high

occurrence of outliers and a high level of skewness (Wason et al., 2004).

For instance, Balthazar (2006) highlights the presence of heavy tails to the right of the
loss distribution. Measuring the solvency risk of a bank's portfolio depends on measuring
each portfolio component's risk, and the loss probability distribution estimation is
fundamental. In the literature, it is common to find models that assume Gaussian
distributions, such as those proposed by Merton (1973), Merton (1974), Vasicek (2002),
Jiménez and Mencia (2009), Chava et al. (2011), Belkin et al. (1998), Frachot et al.

(2001), and Shevchenko (2010), which, in most cases, underestimate risk by overlooking
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the frequency of extreme events that cause distortions in the tails of the probability

distributions.

Several studies have demonstrated that the normal distribution differs significantly from
the distributions observed in the variables related to banks’ financial risks. Regarding
deviations from normality, Sandstrom (2007) analyzes the skewness of the probability
distributions of the different components of a bank’s risk portfolio and the effect of not
parameterizing it using some underlying distribution. This author proposes using a
Cornish—Fisher expansion to parameterize it and finds that if a normal multivariate risk
distribution is assumed (without considering module skewness), the capital requirement
can be well below the risk threshold when skewness is omitted. According to Bglviken
and Guillen (2017), the accuracy of risk aggregation in solvency can be improved by
recursively updating skewness when the risk of specific instruments is measured. For
their part, Del Brio et al. (2009) demonstrate that Pearson’s correlation coefficients differ
depending on whether they are estimated under the assumption of normality or using SNP
approaches. Le Maistre and Planchet (2013) show that the standard approach used in the

Basel Framework to assess interest rate risk leads to biased risk measurement.

In the context of operational risk measurement, Dutta and Perry (2006), De Fontnouvelle
et al. (2003), and Feria-Dominguez et al. (2015) reveal that the distributions of losses due
to the materialization of operational risks exhibit skewness and have fat tails. Kretzschmar
et al. (2010), Bateni et al. (2014), Madan (2009), and Wirch and Hardy (1999) study
probability distributions in the estimation of both aggregated and disaggregated solvency
risks and reported that skewness and kurtosis do not correspond to the parameters of a

normal distribution.

To correct the distortions between the loss frequency distributions of the components of
a bank’s risk portfolio and the normal distribution, recent studies propose using GC
expansions. These expansions were introduced by Edgeworth (1896) and have been
widely studied and employed to approximate the probability curves of random variables
in various scientific fields. Sargan (1975) introduced this methodology in SNP
econometrics to approximate the confidence intervals of t ratios and concluded that these
intervals are more accurate than the usual asymptotic confidence intervals for large
samples. Since then, the use of GC expansions in econometrics has been expanded to
model random variables that show significant deviations from the normal distribution.
Jarrow and Rudd (1982), Lee (1984), Corrado and Su (1996), Mauledn and Perote (2000),
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Jondeau and Rockinger (2001), Niguez and Perote (2012), and Brio and Perote (2012)
are among those who use GC expansions in financial econometrics. In addition to the
problems of skewness and excess kurtosis that arise in measuring financial portfolio risks,

banking regulations can also negatively affect solvency risk.

11.3. Description of the Proposed Solvency Risk Measures and Estimation

Methodology

The proposed methodology provides accurate probability measures to estimate the loss
distribution and thus measure solvency risk. This measurement can be performed at
different levels of aggregation of the solvency risk components. The SDR variable has the
highest level of aggregation, which groups all the components of the risk portfolio and
capital supporting it. The TDR and PGR variables have the first level of disaggregation.

11.3.1. Probability of Regulatory Intervention

Let n be the minimum SR at time t, defined by a banking regulator to cover unexpected
losses in the risk portfolio. Thus, a bank must maintain a SR, equal to or greater than n

in order to avoid regulatory intervention (SR; = 7).

SR, is calculated by dividing Tier; by RW A;; hence, at t + 1, it can be expressed as in

Equation 2.

Tiergxexp(—=TDR¢+1) Tiert
SRt+1 = = (2)
RWAt*exp(PGRt+1) RWAt*exp(PGRt+1+TDRt+1)

Because SDR;,; = PGR;;; + TDR;,,, then SR, * e ~SPRt+1 > 1 must be satisfied to
avoid regulatory intervention. Therefore, given a regulatory SR, (1), the maximum

value that SDR,,, can take is given by Equation 3.

RID; = In (SR;) — In(n). 3

where RID is the logarithmic regulatory intervention distance. Thus, the probability of

regulatory intervention can be expressed as in Equation 4.

P(SDRy1 > RID,) = 1 — Fypg(RID)). )
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where Fspr is the cumulative density function (CDF) of SDR. Therefore, if a decline in
the SR is only due to an increase in the risk portfolio or tier capital, the probability of
regulatory intervention is 1 — Fpsr(RID) for the risk portfolio component and 1 —
Frpr(RID) for the capital component. In this case, Fpgr and Frpg are the CDFs of PGR
and TDR, respectively.

The need for regulatory action against a bank with a SR below the regulatory minimum

is justified by its solvency and the reputational risks involved.
11.3.2. Policies Based on Quantile Risk Metrics (QRMs)

The second pillar established by the Basel Committee requires the development of risk
management policies based on measures that reflect banks’ risk profile and appetite.
Under this framework, EC should be estimated as a quantile of the pdf of losses in a
bank’s risk portfolio (RWA). The estimation of this quantile considers the bank’s risk
profile, which is reflected in the different parameters of the pdf (e.g., those that capture
variance, skewness, and kurtosis), as well as its risk appetite associated with the loss
probability (a) assumed in the decision-making process. Alexander (2009) defines
quantile risk metrics (QRMs), for any a between 0 and 1, as the x, quantile of the
distribution of a continuous random variable (X) such that P(X < x,) = @. QRMs can
be calculated using the quantile function (Fyx 1) of a given CDF E,, as defined in Equation
5.

QRMs, = Fyl(a) = inf{x € R:a < Fy(x)}. (5)

Policies based on QRMs make it possible to set the minimum SR in which a bank can
withstand the maximum expected shock, Fy 1 (a), which would reduce solvency if it falls
below the minimum regulatory ratio (»). In general, random variable X is any source of
risk on which banks’ solvency depends, such as the PGR, the TDR, or the SDR. Let SR?’“
(SR based on QRMs) be the SR required to withstand the maximum expected shock,

Fy (). Then, given a confidence level of 1 — a, it can be expressed as in Equation 6.

SRP =« efx' (@, (6)

If the risk portfolio cannot be rebalanced, then SR will depend on an EC readjustment.

Therefore, the EC that must be held at the beginning of period t + 1 to support Fy(a)
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meets the following condition: Tier, = n * RW A, * efx (@ Thus, EC depends not only
on the value of the risk portfolio and the minimum regulatory ratio () but also on the risk

appetite () and the risk profile, which are reflected in Fy !,
11.3.3. Determination of the Probability Density Functions of PGR, TDR, and SDR

To measure the probability of regulatory intervention and establish policies based on
QRMs,, the conditional pdf of the sources of solvency risk must be determined. For this
purpose, we assume that ARMA and GARCH models, respectively, can determine the
dynamics of the mean and variance. The estimation of the higher-order moments,
however, requires specification of the full pdf, which we model with the SNP approach
based on the GC expansion. For notational convenience, the pdf of a random variable X
(representing any source of solvency risk) is defined in its standardized form (i.e., with

location and scale parameters of 0 and 1, respectively).

Mean-variance model

We propose using ARMA models to calculate the mean of random variable w because
they are sensitive to short-term variations and capture the time-varying dependence
patterns observed in the series under analysis. Let w represent a random variable that
captures any source of solvency risks, such as PGR, TDR, or SDR. The dynamics of these

variables are characterized by the ARMA(p,q) model in Equation 7:
we = ¢o + 2?:1 b Wi + Z?:l 0;ai_q + a.. 7
where ¢ is the autoregressive (AR) parameters; 6 is the moving average (MA)

parameters; and a is model errors. The conditional variance (o;) of errors is assumed to
follow a GARCH(i,j) model, i.e.,

a; = 0 X;. (8)

where

o, = Jao T YR @l + X5 fio? . )
and X, is randomly distributed as a standard GC pdf as described below.
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Gram-Charlier expansion

To introduce the GC pdf, we follow the methodology Davis (1976) and Kolassa (2006)
used. They propose a model that considers high-order approximations of a density fyx of
random variable X from a reference density f,, of a random variable Y. We define X =
Z +Y, where Z is a pseudovariate with a zero mean and variance (because the mean and
variance of X and Y are assumed to be equal) with the same higher-order cumulants
(ks3, k4,...) as X, which contain the corresponding information about the distortions of fy
with respect to the normal distribution. Z and Y are orthogonal, which implies that they
are linearly independent.

LetZ = % be the standardized sum of independent and identically distributed

(i.i.d.) nvariables (Y;,Y,, Y5, ..., Y,,). Then, its characteristic function, {(u), defined as
the Fourier inverse transform of a u probability measure into R™, can be written as in

Equation 10.

() = [ e ™Pu(do). (10)

where i is the imaginary unit. Hence, the characteristic function of Z is ¢,(u) =
E[e!®D] = [ ! £, (dz), where f; is the pdf of Z and always exists because they are
just Fourier transforms of the probability measures (Jacod & Protter, 2012). By
conditioning Z = z, X has a pdf, and by expanding f; as a Taylor series, we have f;, (x —
z) = Zﬁofy(j) (x)(—2z)’/j!. Thus, according to Kolassa (2006), the unconditional
density of X is given by Equation 11.

—1)yt
(=1)u;
I

fr() = T2 7 () (11)

where y; denotes the moments of Z that need to be added to Y to obtain X. Furthermore,
the jth-order cumulant (k;) associated with Z is the cumulant j of X minus the

corresponding cumulant of Y. Multiplying f (x) by fy(x) in the numerator and the

denominator, we obtain the following equation:

Fr0 T £ (-1
Jify(x)

fx(x) = , and
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_a\i £
by defining h; = (nfﬂ it can be expressed as
Y

fr() Z52o hj(0u]
J! '

fx(x) = (12)

h; is the ratio between fy(j), which is the jth-order derivative of the weight function fy,
and fy. If f, is the normal density pdf, ¢(x), then h; corresponds to the polynomial

functions known as Hermite polynomials (HPs), which are orthogonal to ¢(x). The

[ee]

infinite series in terms of HPs express a function 6 (x) such that 6 (x) = X%, 6; h;, where

d; is given by Equation 13.

6 =57 by (D ()dx. (13)
In addition, fyx and ¢ (x) have the same mean and variance.

h; is given by:

L2
(—1)i[;7]je7}
hj = ——F— (14)

e 2

The orthogonality condition is satisfied such that:
[2 h Dh@(x) =0, Vj#i. (15)

According to Equation 15, HPs represent an orthogonal basis for weight function ¢ (x).
In the empirical application of the model, this property of orthogonality with respect to
the weight function makes it possible to truncate the HP series to an order n, thus defining
a family of functions as in Equation 16. Because of this orthogonality property, this family
defines the GC pdfs in regions that were recently described by Wu et al. (2020).

)Xo hjCOU]
J! '

fun(x) = (16)

This expansion density may also be characterized in terms of CDFs. In particular, Fy and

Fy are the CDFs of f;, and fy, respectively. Then, Fyx can be approximated as follows:
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Fy = Fy(x) — fy(x) Z;o=1 hj_4 (x),u;‘/]' (17)

If the weight function is the normal density ¢ (x), with CDF denoted by ®(x), the CDF
is given by Equation 18.

Fxn = @) = ¢ (x) Xjoq hj—1 (Otn /it (18)

For convenience, moments y; are replaced with cumulants k;, and it is usually assumed
that o, =1, Ui, = Uz, = 0. Thus, fx,(x) = g(x; d) is expressed as in Equation 19,
as stated by Cortés et al. (2016) and other authors.

g d) = [1+ XT3 d; hj(0)]p (). (19)

In Equation 19, the vector of parameters d = (d,,d,,,....,d,, ) contains the
corresponding information about the distortions of fy with respect to the normal
distribution ¢ (x) and guarantees that g(x; d) = 0,Vx € R. The GC series can accurately

approximate the sample distribution as fy because limg(x; d) = fx. In practice, most
n

applications of this distribution include only third- and fourth-order HPs, which are
related to skewness and excess kurtosis (Del Brio and Perote, 2012), i.e.,

g(x;ds,dy) = [1+4d3(x® — 3x) + dy(x* —6x2 +3)]¢p(x). (20)
Estimation of Gram—Charlier Parameters

In most applications of GC expansions, parameters are estimated with the maximum
likelihood (ML) method. Assuming that the first two moments of the distribution are well
specified, the global optima guarantees that g(x; d) is positive. Del Brio and Perote
(2012) compare parameter estimation via the ML method using the method of moments
(MM) and conclude that both methods provide similar results. However, the MM can only
guarantee positive values for g(x; d) in the asymptotic expansion and does not ensure
positivity when the series is truncated with few terms. In our applications, we use the ML
method and expand the series until the fourth moment to capture skewness and kurtosis.

Thus, for a sample size T, the log-likelihood function, log(L), is given by Equation 21:

log(L) = —~log(2m) = ~%1_; Log(x?) + Xy Log([1 + Xz d; by (x)]). (21)
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11.4. Case study

This section applies the methodology proposed in this study to measure the solvency risk
of the Colombian banking system, emphasizing the period at the beginning of the
COVID-19 pandemic, in which an extraordinary monetary policy regime was applied to
mitigate the impact of the lockdown on the local economy. This case study allows us to
analyze the impact of the application of this extraordinary monetary policy regime on the
risk of regulatory intervention due to the solvency deficit of the banks used as a

transmission channel.

We collected monthly data on the solvency of fifteen banks in Colombia from January
2002 to November 2021.2 In the sample under analysis, 60% of the banks are international
banks that hold more than 80% of total domestic banking assets. Colombian banking
regulations are currently transitioning from Basel Il to Basel 11l. Herndndez et al. (2018)
provide a general overview of the implementation of Basel I11 standards in Colombia and
highlight the need to add a capital conservation buffer of 2.5%, a countercyclical buffer
between 0% and 2.5%, and a systemic buffer between 1% and 3.5% for minimum
solvency of 9%, as established by Basel I1l. With this adjustment, the minimum SR of
some financial institutions could reach 16.5%. To analyze solvency in Colombia, we
calculated Tier capital by adding up the capital of all the banks in the sample, and RWA
was calculated by adding up the portfolio, i.e., Tier = ijleierj and RWA =

§-<=1 R W A;, where Tier; and RW A; are the capital and portfolio of bank j, respectively,

and K is the aggregate number of banks.

COVID-19 Monetary Policy Measures

Cantu et al. (2021) present a global database of central banks' monetary responses to
COVID-19 and divide them into five types of tools: interest rate measures, reserve
policies, lending operations, asset purchase programs, and foreign exchange operations.
Table 11.1 reports the number of monetary policy announcements by the central bank of
Colombia at the beginning of the COVID-19 pandemic (March, April, May, and June
2020). It announced four asset purchases, eleven foreign exchange operations, twelve
lending operations, and one reserve policy. These measures adopted by the central bank

2 The database is available on the website of the Superintendencia Financiera de Colombia (Financial
Superintendence of Colombia, https://www.superfinanciera.gov.co/jsp/index.jsf/), which is responsible for
regulating the Colombian banking system.
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to inject liquidity into the economy sought to protect the payment system, maintain the
credit supply, stabilize key markets under pressure, and stimulate economic activity.
Asset purchase operations comprised public and private debt securities and swaps of
public debt securities with the Colombian government, delivering short-term debt
securities and receiving long-term debt securities. A new exchange rate hedging
mechanism was adopted through non-deliverable forwards. US dollars were auctioned in
swaps (FX Swaps), in which the Central Bank sells dollars in cash and will buy them in
futures contracts (at 60 days), and IMF approved a successor two-year arrangement for

Colombia under the flexible credit line (FCL), designed for crisis prevention.

Table 11.1 Monetary responses by the central bank of Colombia to COVID-19

Foreign exchange

Row labels Asset purchases operations Lending operations  Reserve policies
Mar 2 4 5 0
Apr 1 2 3 1
May 1 3 2 0
Jun 0 2 2 0
Total 4 11 12 1

Notes: This table reports the number of monetary policy announcements by the central bank of Colombia
at the beginning of the COVID-19 pandemic (March, April, May, and June 2020).
Source: Cantu et al. (2021).

In lending operations, private debt was allowed, new access to the central bank’s
transitory repurchase agreements was expanded, and definitive expansion auctions were
conducted using public and private debt instruments, among other measures. Among the

reserve policies, reserve requirements for liabilities were reduced.

Table 11.2 lists the changes and targets of the interest rate measures adopted in Colombia
from March 2020 to December 2021. In March 2020, the annual interest rate was 4.25%,
and in September 2020, it fell to a historic low of 1.75%.

Table 11.2 Interest rates in Colombia during the COVID-19 period

Date Variation Target
03/29/20 4.25%
03/30/20 -0.50% 3.75%
05/04/20 -0.50% 3.25%
06/01/20 -0.50% 2.75%
07/01/20 -0.25% 2.50%
08/03/20 -0.25% 2.25%
09/01/20 -0.25% 2.00%
09/28/20 -0.25% 1.75%
10/01/21 0.25% 2.00%
11/02/21 0.50% 2.50%
12/20/21 0.50% 3.00%
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Notes: This table presents the variations and targets of the interest rate measures adopted in Colombia from
March 2020 to December 2021.

Source: Authors’ calculations based on data from the central bank of Colombia
(https://www.banrep.gov.co/es/estadisticas/tasas-interes-politica-monetaria/).

Figure 11.1 Monthly time series of the aggregate solvency ratio (SR) (a), tier capital
(b), and risk-weighted assets (RWAS) (c) in the Colombian banking system
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Figure 11.1 illustrates the evolution of the SR, tier capital, and RWA in Colombia from
2005-2020. In Figure 11.1a, SR trended upward and reached a peak (17%) in February
2013. In 2017, it reached a value close to 16% and then decreased to 14.5% in February
2020. In March 2020, the central bank of Colombia began to implement monetary policy
measures to mitigate the effects of COVID-19 on its economy, which caused the banking
system'’s solvency to fall to 13.6%. These trends have yet to be observed since the end of
2013. From February to June 2020, SR decreased by more than 7%, whereas RWAs
increased by almost 10% (Figure 11.1c). Tier capital (Figure 11.1b) showed no significant
changes at the beginning of the COVID-19 pandemic. An increase in RWAs without an

increase in tier capital led to a marked decline in solvency.

Table 11.3 shows the correlations between PGR, TDR, and SDR, in which the correlation
iIs much greater between SDR and TDR than between SDR and PGR, which implies that
solvency is more sensitive to variations in tier capital than to variations in the risk

portfolio. The low correlation (negative sign) between PGR and TDR suggests that tier
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capital does not increase as the value of the risk portfolio increases. It also indicates that

the conversion of tier capital to RWAs does not always occur in the same period.®

Table 11.3 Correlation matrix of the variations in the components of SR

PGR TDR SDR
PGR 1.000 -0.065 0.402
TDR -0.065 1.000 0.888
SDR 0.402 0.888 1.000

Note: This table presents the correlations between PGR, TDR, and SDR.
Source: Authors’ calculations based on data from the Financial Superintendence of Colombia.

Table 11.4 presents the basic descriptive statistics on PGR, TDR, and SDR, in which the
average monthly growth rate of RWAs was 1.1% and that of tier capital was 1.3%,
indicating that tier capital grew in proportion to risk. However, the standard deviation of
TDR was higher than that of PGR, and the mean of SDR was close to zero. The positive
excess kurtosis in all the time series suggests the presence of fat tails. PGR skewed to the
right, whereas TDR and SDR skewed to the left

Table 11.4 Descriptive statistics

Std. Excess

Min  Max Mean deviation Skewness Kurtosis g5 gl0 g90 95
PGR  -0093 0112 0.011 0.018 0.192 11179  -0.006  -0.003 0026 0.037
TDR  -0180 0113  -0.013 0.035 -1.054 4942  -0081  -0.050 0015 0.031
SDR  -0.170 0124  -0.002 0.038 -1.006 4216 -0.069  -0.040 0.030 0.054

Note: This table presents the descriptive statistics of PGR, TDR, and SDR.
Source: Authors’ calculations based on data from the Financial Superintendence of Colombia.

Figure 11.2 shows both time-varying patterns in the mean (given the frequency of the
reported financial statements) and volatility clusters in the time series. In March, April,
and June 2020, RWAs had positive shocks, which represented an increase of more than
12% over the January levels, followed by a fall of 9.25% in July 2020 (which was the
maximum historical negative variation) and a cumulative drop of almost 24% by January
2021. According to the Q-Q plots of PGR, TDR, and SDR (Figures 11.2b, 2e, and 2h), the
quantile of the normal distribution was close to that of the frequency distribution, whereas
the right and left tails of the frequency distribution were fatter than those of the normal

distribution. Regarding dispersion in the time series, the SDR time series (Fig. 2d) had

% The cross-correlation diagram in Appendix Figure I1.1 shows that the highest correlation between PGR
and capital CDR occurs at lags 5 and 10, which means that tier capital adjustments are five months ahead
of the variations in this component. However, a high correlation is also observed in period -2, which means
that some increases in the risk portfolio are compensated by capital increases two months later.
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volatility clusters. The autocorrelation function (ACF) correlograms (Figs. 3c, 3f, and 3i)

show that the most significant autocorrelations are those of orders 6, 12, and 18.

Figure 11.2 Monthly time series, Q-Q plot, and correlogram of portfolio growth rate
(PGR) (a, b, c), tier decline rate (TDR) (d, e, f), and solvency decline rate (SDR) (g, h,
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Figures 11.2a, 2d, and 2g show potential Additive Outliers that, according to Franses &
Haldrup (1994), can produce spurious stationarity, thus rejecting the null hypothesis of
the presence of unit roots. Haldrup et al. (2005) point out that outliers can severely affect
the inference of seasonal unit roots depending on their frequency, magnitude, and
persistence. To control the effect of Additive Outliers on unit root tests, we apply the
approach described by Chen & Liu (1993) and computationally implemented in Lopez-
de-Lacalle (2019). Under this approach, outliers are detected in the series in levels
through the t-statistics associated with the parameters that measure the effect of the
outliers modeled from the incorporation of dummy variables in the estimation of the
ARMA model used in the unit root tests. Perron & Rodriguez (2003) demonstrate,
through simulations, that the test on the variable in levels is appropriate for detecting a
single outlier under the null hypothesis of no outliers. Still, it can yield excessive outliers
when applied iteratively to select multiple outliers. The outliers must have enormous
values for the power of the test to be acceptable. As an alternative, they offer a
methodology based on the first difference in the data. This alternative presents a better

test power, but compared to the procedure based on the data series in levels, it has the
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disadvantage that the limiting distribution depends on the specific distribution of the

model errors.

Figure 11.3 Monthly time series adjusted for additive outliers and outliers’ effects of
portfolio growth rate (PGR) (a), tier decline rate (TDR) (b), and solvency decline rate
(SDR) (c)
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Figure 11.3 presents the time series adjusted by Additive Outliers and the effects of the
PGR, TDR, and SDR outliers. The PGR time series presents four positive outliers in July
2005, June 2006, September 2007, and March 2020 and two negative outliers in July 2020
and January 2021. The TDR time series presents five negative outliers in July 2005,
January 2006, January 2013, March 2014, and January 2021, and two positive outliers in
August and October 2013. The SDR time series presents four negative outliers in January
2013, March 2014, July 2020, and January 2021, and one positive outlier in August 2013.
The outliers in 2020 and 2021 are related to the implementation of monetary policy during
COVID-19 and to prudential policy adjustments aligned with the regulatory framework

established in Basel 111.

Table 11.5 presents the results of the unit root tests for the PGR, TDR, and SDR time
series adjusted for Additive Outliers. The classical Augmented Dickey-Fuller test was
performed, with one lag selected by the BIC criterion. However, the hypothesis of the
existence of unit roots is rejected, given the seasonal behavior of the analyzed series. The
DF-GLS test, proposed by Elliott et al. (1996), improves the power of the test by taking
into account the serial correlation of the error term, and the HEGY test proposed by
Hylleberg et al. (1990), which tests for the presence of seasonal unit roots, are also
displayed. Drift was included in both tests. The DF-GLS test's lag selection was
performed using the BIC criterion. Elliott et al. (1996) indicate that this criterion
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represents a reasonable trade-off between size and power. The selection of the number of
lags for the HEGY test is based on the AIC criterion since, according to Barrio Castro et
al. (2016), this criterion provides a more reliable size than lag selection methods based
on hypothesis testing or the BIC criterion. At the 1% significance level, all hypotheses
stating the presence of unit roots are rejected, except for the Hd hypothesis of the HEGY
test stating the existence of unit roots of the quarterly seasonal component, where the
rejection of the hypothesis is done at a 10% significance level. The Ljung-Box serial

autocorrelation test reveals autocorrelation in all three series.

Table 11.5 Unit Root tests

p-value (PGR) p-value (TDR) p-value (SDR)
Augmented Dickey-Fuller
Vi1 0.000 0.000 0.000
ADF-GLS
Vi1 0.001 0.000 0.000
HEGY
Ha 0.053 0.059 0.003
Hb 0.000 0.000 0.000
Hc 0.000 0.000 0.000
Hd 0.000 0.095 0.064
He 0.000 0.001 0.001
Hf 0.000 0.019 0.034
Hg 0.000 0.000 0.000
Ljung-Box
X-squared 0.000 0.000 0.000

Note: This table presents the p-values of the Augmented Dickey-Fuller, DF-GLS, and HEGY unit root tests
and the Ljung-Box autocorrelation test of PGR, TDR, and SDR. The Augmented Dickey-Fuller test and
ADF-GLS test include drift, and the number of lags is selected using the BIC criterion (1 lag for three
variables in the Augmented Dickey-Fuller test and four lags for the three variables in the ADF-GLS test).
The HEGY test includes drift, and the number of lags is selected using the AIC criterion. The presence of
unit roots is tested with the corresponding null hypotheses: Ha: non-seasonal unit root, Hb: bi-monthly unit
root, Hc: unit root for four-month periods, Hd: quarterly unit root, He: semi-annual unit root, Hf: root a the
frequency 57/6, Hg: annual unit root. The Ljung-Box test was performed on 20 lags.

Source: Authors’ calculations based on data from the Financial Superintendence of Colombia.

To analyze potential structural changes in the mean and variance of the models, we used
the methodology proposed by Bai & Perron (1998) on the Additive Outliers adjusted time
series of PGR, TDR, and SDR. Table 11.6 presents the values obtained from the BIC
criterion to detect between 0 and 5 break points in the mean and variance of the analyzed
series. Since the data-generating process is assumed to be an ARMA process, lags up to
order 12 were used as regression variables for the mean. The variance was estimated as
the square of the errors of the mean model, and only structural level changes from a
constant were considered. The BIC criterion states that the models should include no

structural changes for both mean and variance.
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Table 11.6 Structural Changes detection

Breakpoints 0 1 2 3 4 5

mean -1.29E+03 -1.25E+03 -1.20E+03 -1.14E+03 -1.08E+03 -1.01E+03
BIC (PGR) variance -2.96E+03 -2.96E+03 -2.95E+03 -2.94E+03 -2.93E+03 -2.92E+03
mean -1.08E+03 -1.04E+03 -9.91E+02 -9.40E+02 -8.86E+02 -8.24E+02
BIC (TDR) variance -2.65E+03 -2.65E+03 -2.64E+03 -2.63E+03 -2.62E+03 -2.61E+03
mean -1.01E+03 -9.65E+02 -9.13E+02 -8.51E+02 -7.89E+02 -7.26E+02
BIC (SDR) variance -2.50E+03 -2.49E+03 -2.49E+03 -2.48E+03 -2.47E+03 -2.46E+03

Note: This table presents the value of the BIC criterion for the Bai and Perron test to detect between 0 and
5 breakpoints in the mean and variance parameters of PGR, TDR, and SDR. For the mean, lagged regressors
up to order 12 were used as regression variables. The variance is estimated from the square of the errors
obtained from the mean model with regressors lagged up to order 12, and level changes are analyzed from
a constant.

11.5. Results

I1. 5.1 Fitted distribution

Table 11.7 lists the estimated parameters of the conditional moments of the probability
distributions of PGR, TDR, and SDR. In the three-time series, the mean had significant
time-varying patterns in quarterly multiples (3, 6, and 12 months). Additionally, PGR had
an autoregressive effect on order 1. The estimated variances correspond to the ARCH(2)
process for TDR and SDR (parameters a0, al, and a2) and the ARCH (1) process for PGR
(parameters a0 and al). The kurtosis parameters for GC were significant for the three

series, whereas skewness was significant only for PGR.
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Table 11.7 Fitted conditional densities of the ARMA-GARCH model under a GC probability distribution

PGR parameters TDR parameters SDR parameters
Estimate  Std.error  t-value p-value Std. Estimate  Std.error  t-value p-value
arl 0.225 0.062 3610 <.0001%* Estimate  error  tvalue  p-value o (9gy 0.059 4856  <.0001%*
ar3 0.183 0.062 2036  0.003%% aré 0203 0056  3.629 <0001 4112 0.400 0.061 6.555  <.0001***
intercept  0.007 0.001 4743 <.0001%* al2 0692 0067 10314 <0001 5 (o1 0.000 11696  <.0001%**
20 0.000 0.000 16470 <.0001%** mal2 ~ -0418 0089  -4686  <0001™** ., 4499 0.058 0000  1.000
al 0.508 0.066 7649  <.0001%* a0 0.000 0000 8477 <0001 2 0113 0.062 1840  0.066*
d3 0.091 0.034 2645  0.008%* al 0517~ 0089 5814 <000I*™* 1 199 0.015 8560  <.0001***
i 0419 0.014 6400 <0001w a2 0149 0056 2673  0.008%**
d4 0.094 0015 6388  <0001***

Notes: This table presents the estimated parameters of the portfolio growth rate (PGR), tier decline rate (TDR), and solvency decline rate (SDR) under an ARMA-GARCH
with Gram—Charlier distributed errors. *, **, and *** significant at the 10%, 5%, and 1% levels, respectively. The ARMA-GARCH models were selected based on AlC.
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Figures 11.4a, 4c, and 4e compare the fit of the GC pdf to the PGR, TDR, and SDR series,
respectively, to the normal fit. The GC pdfs captured the fat tails of the frequency histograms
and the right-tail skewness of PGR. Figures 11.4b, 4d, and 4f compare the GC CDFs of PGR,
TDR, and SDR to their normal counterparts. For PGR, the differences between the CDF of
the GC and the normal in the left tail were less pronounced than in the right tail. This
difference between the right and left tails was not marked for TDR and the SDR.

Figure 11.4 Comparison between the frequency histograms of the standardized residuals

of the mean model, the normal (solid line), and GC (dotted line) probability density
functions of portfolio growth rate (PGR), tier decline rate (TDR), and solvency decline rate
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I1. 5.2 Performance Testing

We used Kupiec's and Lopez's tests to measure and compare the performance of the QRMs
estimated using a GC pdf and a normal pdf for PGR, TDR, and SDR. Table 11.8 presents the
results of both tests. According to the results, Kupiec's test only rejected the normal model
for TDR, which compares the theoretical and empirical quantiles through a ratio comparison
hypothesis test. Meanwhile, the results of Lopez’s test, which considers the distance between
the estimated QRMs and the exceptions observed, revealed that the score obtained was lower
when using a GC distribution than when using a normal distribution in all the series: the
scores obtained were 50% lower using GC pdfs than with normal pdfs for TDR and SDR and
40% lower for PGR.
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Table 11.8 Forecasting performance tests under Gram—Charlier and normal distributions

p-value p-value Score Score p-value
Kupiec’s test Kupiec’s test Lopez” test Lopez’ test log-likelihood
Component . Gram- .
Gram—Charlier Normal ; Normal ratio test
Charlier

PGR 0.865 0.376 4 7.002 <.0001
TDR 0.403 0.075 2.001 4.003 <.0001
SDR 0.303 0.321 1.002 4.004 <.0001

Note: This table reports the log-likelihood ratio (LR) between the normal and Gram—Charlier
pdfs, and the results of Kupiec’s and Lopez’s tests, which were used in this study to measure
the performance of the QRMs estimated using GC and normal distributions.

Table 11.8 also reports the log-likelihood ratio p-value between the normal and GC pdfs for
PDR, TDR, and SDR. In both cases, the results show strong evidence favoring the GC model.
This log-likelihood ratio test confirmed that incorporating the ds parameters is critical and
enables the GC model to outperform the normal model. This evidence reinforces the
flexibility of the model to dynamically adapt skewness and kurtosis (and higher-order
parameters, if necessary) to the new scenarios (structural breaks) triggered by extreme events,
such as those produced by the COVID-19 crisis and the monetary policy unconventional

measures in response to them.
11. 5.3 Measuring the Impact of COVID-19 Monetary Policy Measures on Solvency Risk

Table 11.9 reports the estimated GC quantiles associated with SDR, PGR, and TDR during
the implementation of COVID-19 monetary policy measures in Colombia. The measures
adopted in March 2020 increased the risk portfolio by 6.04% (exceeding the 99th percentile
of the Fp¢ and a decline in the solvency of 3.9% (exceeding the 94th percentile of the Fgpp.
This increase is associated with the twelve monetary policy measures that were implemented.
For instance, the repo operations quota was increased by 38 percent. Also, the term for repo
operations was extended from 30 to 90 days. Moreover, the purchase operations for the
permanent injection of liquidity totals COP 2 trillion in private securities and COP 2 trillion

in public securities, and the intervention rate was cut by half a percentage point.
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Table 11.9 Quantiles associated with SDR, PGR, and TDR

Date Quantile_SDR Quantile_ PGR Quantile_TDR
01/01/20 42.11% 40.87% 26.10%
02/01/20 61.84% 71.47% 47.78%
03/01/20 94.32% 99.92% 27.86%
04/01/20 74.53% 55.17% 54.00%
05/01/20 15.12% 0.80% 73.13%
06/01/20 91.61% 91.60% 19.47%
07/01/20 0.00% 0.02% 1.84%
08/01/20 8.97% 54.52% 44.63%
09/01/20 24.03% 12.08% 38.47%
10/01/20 22.36% 43.30% 70.26%
11/01/20 59.02% 34.57% 80.24%
12/01/20 7.51% 0.05% 89.78%
01/01/21 0.02% 3.39% 0.12%

Note: This table reports the estimated GC quantiles associated with SDR, PGR, and TDR during the
implementation of COVID-19 monetary policy measures in Colombia.

Solvency fell to its lowest value during the pandemic in June 2020, when all the other
COVID-19 monetary policies had been implemented. From May to June 2020, it declined by
2.7% (which corresponds to the 92nd percentile of CDFsp,r because of an increase in RW As
of 4.6% (which corresponds to the 92nd percentile of CDFp . In July 2020, the risk portfolio
decreased by 9%, which was below the first percentile of CDFpsg, and coincided with the
extension of the maturity period of the March repos to 90 days. Tier capital increased by
more than 5% (which corresponds to the second percentile of CDFpg. A decrease in the risk
portfolio and an increase in tier capital led to an increase in the solvency of more than 14%,
from 13.5 to 15.7 percentage points (this variation was below the first percentile of CDFgpg.
The value of the risk portfolio continued to fall through January 2021. PGR values were
below the first percentile of CDFp;r by December 2020 and below the fourth percentile by
January 2021. Tier capital increased by more than 10% in January 2021, which was below
the first percentile of CDF;pg. These risk portfolio and tier capital variations resulted in a
17% increase in solvency, bringing SR to nearly twenty percentage points. The increases in
tier capital are associated with an increase in the capital required to face shocks as a result of
the early adoption of the Basel 11l framework by twelve of the banks under analysis, whic