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ABSTRACT 

This thesis proposes a set of tools for measuring and managing financial risks related to the 

stability of banking systems and for establishing macroprudential policies aimed at 

preventing the materialization of systemic risks. It is based on accurately modeling 

probability density functions associated with banking stability indicators. The methodologies 

used respond to the second pillar of the Basel Committee on Banking Supervision agreement, 

which states the need to determine and monitor the Economic Capital banks' need to cover 

losses caused by the materialization of financial risks with a certain level of confidence and 

for a given time horizon. Semi-nonparametric statistics were used to parameterize stylized 

facts such as asymmetries and heavy and wavy tails observed in the empirical probability 

distributions of financial stability indicators. Analytical and simulated solutions for 

probability measures and economic capital settings are proposed. Applications are made on 

aggregate solvency indicators and their components, the bank leverage indicator for 

developed and emerging economies, and interactions between these indicators and monetary 

policy were analyzed. The results point to the need to model the skewness and kurtosis of the 

probability distributions of the financial stability indicators for not to underestimate risk and 

the level of economic capital. The hypothesis of an interaction between prudential and 

monetary policy and the need to jointly consider the decision-making of both policies is 

confirmed. 
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RESUMEN 

 

Esta tesis propone un conjunto de herramientas para la medición y administración de riesgos 

financieros relacionados con la estabilidad de los sistemas bancarios, y para el 

establecimiento de políticas macroprudenciales destinadas a prevenir la materialización de 

riesgos sistémicos. Se parte de la modelación precisa de las funciones de densidad de 

probabilidad asociadas a indicadores de estabilidad bancaria. Las metodologías utilizadas 

responden al segundo pilar del acuerdo del Comité de Supervisión Bancaria de Basilea, el 

cual plantea la necesidad de determinar y monitorear el Capital Económico que necesitan los 

bancos para cubrir las pérdidas ocasionadas por la materialización de riesgos financieros, con 

un determinado nivel de confianza y para un horizonte temporal dado. Se utiliza estadística 

semi-noparamétrica que permite la parametrización de hechos estilizados como asimetría, y 

colas pesadas y ondeadas observadas en las distribuciones de probabilidad empíricas de los 

indicadores de estabilidad financiera. Se proponen soluciones analíticas y simuladas para las 

mediciones de probabilidad y el establecimiento del capital económico. También, se realizan 

aplicaciones sobre los indicadores agregados de solvencia y sus componentes, y el indicador 

de apalancamiento bancario para economías desarrolladas y emergentes. Además, se analizan 

interacciones entre estos indicadores y la política monetaria. Los resultados señalan la 

necesidad de modelar el sesgo y la curtosis de las distribuciones de probabilidad de los 

indicadores de estabilidad financiera, para no subestimar el riesgo y el nivel de capital 

económico. Se confirma la hipótesis de interacción entre la política prudencial y la política 

monetaria y la necesidad de considerar la toma de decisiones de ambas políticas de manera 

conjunta. 
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CHAPTER I. Introduction to the study 

I.1. Introduction 

The limitation of human beings as finite individuals attempting to understand an infinite 

world has led to the construction of the cultural idea of uncertainty, which in general is related 

to the ignorance of the occurrence of future unknown events (Martı́nez, 2006). 

The concept of uncertainty has been developed in different fields of knowledge, such as 

philosophy, where authors such as Plato in the myth of the Cave pose how human beings are 

denied absolute knowledge of the world and only manage to see shadows and reflections of 

this (La República, 2009); Kant states the impossibility of knowing " Thing-in-itself" and 

that it is only possible to construct an idea of things for ourselves (Kant, 1967, p. 48); Albert 

Camus in his book the myth of Sisyphus (Camus, 2021) assumes existential uncertainty as a 

human condition and renounces the support offered by the gods, to adhere to the metaphysics 

of the absurd, of what is hidden from human lucidity and becomes gods.  

The concept of uncertainty in physics has been developed within the framework of 

measurement and probability theory (Alemán Berenguer, 2010). From the perspective of 

physics, uncertainty refers to imprecision or inaccuracy in measurements and predictions of 

physical phenomena caused by sources such as imprecision in measurement instruments, 

limitations of theory, the impossibility of simultaneously measuring certain variables, and 

the presence of random and systematic errors in the data, among others (Smith & Vul, 2013; 

Taylor, 1997). Although Einstein asserted that "God does not play dice," quantum theory and 

chaos theory have had to introduce uncertainty in the face of the impossibility of knowing 

the physical laws that govern the universe with sufficient precision. 

In economics and finance, uncertainty about the future of the different financial and 

macroeconomic variables plays a fundamental role in decision-making (Martı́nez, 2006). The 

complexity of the interactions between the agents and economic factors and the incomplete 
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information has led to the development of decision-making models where the uncertainty 

about the expected results is considered. 

Probability is a field of mathematics concerned with quantifying and modeling uncertainty 

or randomness in events (Evans & Rosenthal, 2004). In particular, the probability is used to 

address the problem of forecasting uncertain or random future events, i.e., to determine the 

probability that a given event will occur. Probability theory provides a formal framework for 

dealing with uncertainty. It is applied in different fields such as economics, physics, 

medicine, engineering, and biology, among others., where future outcomes are uncertain, and 

decision-making depends on the probability of occurrence of certain events. 

The normal distribution is one of the most important and widely used distributions in 

probability theory and statistics since the central limit theorem states that the sum of a large 

number of independent random variables approximates a normal distribution regardless of 

their distribution (Durrett, 2019). This theorem is fundamental to inferential statistics, as it 

allows us to use normal distribution to make inferences about population means from 

samples. 

Within the economic and financial theory, the normal distribution has played a fundamental 

role in developing probabilistic models since the behavior of many economic and financial 

phenomena approximates the behavior of Gaussian random variables. The normal 

distribution has been widely used in the analysis of risk and uncertainty in investments, the 

valuation of financial assets, the analysis of income and wealth distribution, the modeling of 

macroeconomic phenomena, and the analysis of economic and financial data. Some financial 

models widely used by academics and practitioners assume the normality assumption. 

Markowitz's portfolio optimization model assumes that financial asset returns follow a 

normal distribution (Markowitz, 1959), the option pricing model proposed by Black-Scholes 

assumes that stock prices follow Gaussian stochastic processes (Merton, 1973), the CAPM 

model (Sharpe, 1964) which is widely used for estimating the cost of capital allocated to 

project finance. In the context of credit risk, Vasicek (2002) proposes a model that starts from 

a Gaussian stochastic process to determine the probability distribution of the value of a credit 

portfolio. Chava et al. (2011). Belkin et al. (1998) and Schönbucher (2002), among others, 

have also modeled the distribution of credit risk materialization losses from the normality 
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assumption. Frachot et al. (2001) approximated the loss distribution for operational risk VaR 

estimation to a Gaussian distribution in the context of operational risk. 

In financial risk measurement, it is common for empirical probability distributions to have 

certain distortions concerning the normal distribution, such as skewness and heavy tails. 

Authors such as Rosenberg & Schuermann (2006), Daníelsson et al. (2013), Sandström 

(2007), Bølviken & Guillen (2017), Brio et al. (2009), Le Maistre & Planchet (2013), Dutta 

& Perry (2006), De Fontnouvelle et al. (2003), Feria-Domı́nguez et al. (2015), Kretzschmar 

et al. (2010); Bateni et al. (2014); Madan (2009); and Lynn Wirch & Hardy (1999) Jiménez 

et al. (202020), Brio et al. (2009), Del Brio et al. (2011), have addressed the problem of bias 

and heavy tails in the measurement of market, credit, operational, liquidity and solvency 

risks, both univariate and multivariate. 

The problem addressed in this research project is the study of the probability distributions 

involved in the integral management of financial risks to which banking institutions are 

exposed. The objective is to propose models that adjust more precisely to the empirical 

characteristics of the risk distributions generated by the financial intermediation activity. 

For fitting more accurate pdfs, this paper uses models that generalize the normal pdf from 

the Taylor series expansion of its characteristic function (which is the Fourier transform of 

the pdf) and recovering the pdf from the inverse of the Fourier transform. (Cohen, 1998; 

Dharmani, 2018; Kolassa, 2006). 

These procedures make explicit the parameters for modeling high-order moments, such as 

skewness and kurtosis, and allow relaxing the assumption that these high-order moments are 

equal to zero, as in the normal distribution. This natural extension of the normal distribution 

is obtained from Taylor series expansions truncated at a finite order, so that parameters 

modeling the higher order moments can be estimated from data. This procedure is known as 

Gram-Charlier and Edgeworth expansions and is framed in Semi-Non-Parametric statistics 

(SNP) fields, since although the asymptotic expansions capture the true data generating 

process, the truncated expansions result in parametric pdfs. SNP distributions have some 

critical advantages over parametric and nonparametric distributions. The SNP approach is 

more flexible than the parametric distributions from which they start since they can be 
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adapted to different shapes of the empirical distributions. Concerning nonparametric 

distributions, SNP pdfs have properties of parametric pdfs that allow unique identification of 

the pdf, facilitate comparison between measurements, and can be more efficient in parameter 

estimation. 

Gram-Charlier expansions have been applied in various fields where the accuracy in tail 

fitting of pdfs is essential for the correct measurement of the occurrence of outliers. In 

finance, Mauleon & Perote (2000), Mora-Valencia et al. (2017), Ñíguez & Perote (2012), 

and Perote (2012) have developed and made use of these methodologies for modeling 

univariate and multivariate financial phenomena. 

I.2. Objectives of the study 

I.2.1 General Objective 

This thesis proposes methodologies for financial risk management within the prudential 

policy based on the adjustment of SNP probability distributions. As an application case, this 

manuscript measures macrofinancial risks required in the macroprudential decision-making 

process. 

The economic costs caused by the financial crisis of 2007-08, unleashed by the 

materialization of systemic risks in the banking system in the United States and some 

countries globally, have led macroprudential policy to establish itself as an area of financial 

policy to prevent excessive risk-taking in the financial sector and mitigate its effects on the 

real economy (Bengtsson, 2020). The relationship between the stability of the financial 

system as a whole and the economy's performance has become a priority for policymakers 

and academics as the conception of financial stability policy has changed (Ebrahimi Kahou 

& Lehar, 2017). 

I.2.2 Specific objectives 

In this framework, the study accomplishes several targets: 

- Determine the empirical characteristics of probability distributions of macrofinancial 

stability indicators. 
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- Introduce SNP models based on the Gram-Charlier series to quantify macro-financial 

risks and contrast their accuracy of fit with the results obtained under parametric 

distributions. 

- Apply the proposed models for risk measurement in international banking systems to 

monitor macro-financial stability indicators and thus infer the best macro-prudential 

policies. 

The results show that the empirical pdfs associated with bank solvency and leverage present 

significant skewness and kurtosis distortions concerning the normal distribution. These 

distortions could be modeled from SNP econometric models that allowed the estimation of 

higher-order moments. These models serve as an early warning tool for systemic risks and 

for formulating macroprudential policies such as creating countercyclical capital buffers. In 

addition, the multivariate approach allows the formulation of macroprudential stress test 

models used in decision-making under uncertainty. 

The main contributions of this research are a set of tools for the measurement and 

management of financial risks in the banking system and for the establishment of prudential 

policies, which respond to the principles established in the Second Pillar of the Basel 

Committee on Banking Supervision agreements. It proposes univariate and multivariate 

models better adapted than the normal distribution to the particular conditions of the observed 

risk distributions of the financial stability indicators. It incorporates parameters that model 

the general cyclical behavior of credit portfolios and businesses. 

These models are applied to measure the probability that bank capital will absorb losses due 

to the materialization of financial risks breaching regulatory limits and generating imbalances 

in banking systems. They are also used to establish prudential policies in terms of the amount 

of capital that banks must hold in order not to cross regulatory limits, for a given time horizon, 

with a certain level of confidence that depends on risk appetite. Models are included to 

estimate countercyclical capital buffers to absorb systematic risks in their time dimension. 

The analytical solution for estimating countercyclical capital buffers to absorb systematic 

risks in their time dimension is highlighted. This solution is similar to the model proposed 

by Black-Scholes for estimating the financial option premium, where the regulatory 

thresholds are analogous to the exercise price of the options. 
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Another methodological contribution is the proposal of models that combine harmonic 

analysis with SNP probability distributions in the context of financial risk modeling. At this 

point, contributions are made to estimate the harmonic components. 

The notation used to describe semi-nonparametric statistical models is based on literature 

from the fields of physics. It is more compact than the notation typically used in finance. 

I.3. Structure of the document 

This thesis is written as independent and self-contained chapters that are divided as follows: 

Chapter II proposes risk measures based on SNP distributions on the changes of the bank 

solvency indicator and its components, which allows the measurement of the probability of 

regulatory intervention and the establishment of prudential policies related to the capital 

destined to absorb losses generated by the materialization of financial risks. A case analysis 

is made of the effect of the monetary policy measures used to respond to the COVID-19 

pandemic in Colombia on the aggregate solvency indicator in Colombia. 

Chapter III presents a long-run model that assumes that the Capital Adequacy Ratio (CAR) 

follows a generalized Ornstein Uhlenbeck stochastic process under SNP expansions. 

Harmonic analysis is used to model the financial cycles to incorporate periodic functions in 

the mean CAR. This model estimates the probability of breaching the minimum capital 

threshold and the countercyclical bank capital buffer established as a macroprudential 

measure in the Basel III agreement. As a case of analysis, the model was adjusted to the 

observed time series of the CAR for the United States, Germany, the Netherlands, and 

Colombia. 

Chapter IV presents a model for macroprudential stress testing based on the joint modeling 

of the probability distributions of a leverage indicator and the monetary policy interest rate. 

For the modeling of the marginal probability distributions, the DCC-SNP model is used, 

which allows the modeling of the dynamic conditional correlation and the skewness and 

kurtosis of the marginal pdfs. In addition, bivariate harmonic analysis is applied to analyze 

the dynamics between the cycles of the analysis variables. This chapter also includes 
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applying the proposed stress test model to analyze the impact of different regimes of 

monetary policy interest rate scenarios on a bank leverage indicator. 
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CHAPTER II. Prudential regulation and Bank 

Solvency Based on Flexible Distributions: An 

Example for Evaluating the Impact of Monetary 

policy1 

II.1. Introduction 

Prudential regulation has become more relevant in recent years for preserving investors' 

protection and the financial system's stability. Prudential regulation seeks to promote the 

solvency and liquidity of financial institutions and ensure their ability to meet their 

obligations and manage risks. At the International level, Basel Committee on Banking 

Supervision (BCBS) defines capital adequacy as the main way to cover losses that can 

destabilize a bank and the financial system (BCBS, 1988). The indicator used in BCBS 

for measuring capital adequacy is the solvency ratio (SR), calculated by dividing 

regulatory capital (RC) by risk-weighted assets (RWAs) whose value should not fall below 

a certain value set by regulators. However, the Basel accord was insufficient for 

protecting the banking system in the 2008 financial crisis, which revealed the need to 

reevaluate policies, business models, and financial risk management systems (Borio, 

2008). A significant concern in measuring, monitoring, and controlling solvency risk is 

the provision of accurate and flexible methodologies. In this framework, we focus on 

modeling probability density functions (pdfs) that can be applied in the context of the 

Basel Accords to measure and limit solvency risk. 

We measure the probability that a bank may fall below the minimum solvency required 

as a prudential policy and for controlling risk by setting regulatory constraints based on 

defining minimum solvency levels from quantile risk measures. These pdfs reflect banks' 

risk profile and can be used in the context of prudential regulation to dampen banks' 

appetite for risk. Also, stylized facts of the pdfs, including skewness and excess kurtosis 

observed in the sample data, should be considered because these parameters contain more 

precise information about the bank risk profile. Therefore, to estimate the pdf of the 

variations in the SR, the risk portfolio, and the capital supporting this portfolio, we 

propose seminonparametric (SNP) techniques based on Gram–Charlier (GC) expansions. 

 
1 A version of this Chapter has been accepted for publication in The World Economy. 
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The SNP distribution enables us to capture the stylized facts in the tails of the probability 

distribution, such as skewness, leptokurtosis, and other aspects, such as multimodality in 

the extreme values of the distribution, which would not be possible under the assumption 

of normality and other typical parametric specifications. This approach is consistent with 

autoregressive moving average (ARMA) and generalized autoregressive conditional 

heteroscedasticity (GARCH) models for capturing the mean-variance time-varying 

patterns in the solvency risk measures.  

As a case study, we apply the proposed methodology using Colombian data from the 

following variables: (i) the solvency decline rate (SDR), which is calculated as the 

negative first logarithmic difference of the SR; (ii) the portfolio growth rate (PGR), which 

is calculated as the first logarithmic difference of the value of the risk portfolio; (iii) the 

tier decline rate (TDR), which is calculated as the negative first logarithmic difference of 

the value of tier capital that supports the risk portfolio of the banks. These risk measures 

can be used to estimate the risk of regulatory intervention and define policies that 

establish the minimum SRs required by bank regulators based on an estimation of 

Quantile Risk Metrics (QRMs). For this purpose, we collected data on the solvency 

indicators of the banking system in Colombia (a country that has followed the standards 

set by the Basel Committee) and data on the monetary measures implemented by its 

central bank to deal with the effects of COVID-19 on economic performance. The 

rationale behind this case study is that banks regulated through prudential policy are used 

as a transmission channel for monetary policy. Emphasis is placed on the period 

corresponding to the COVID-19 pandemic, given that during this period, an extraordinary 

monetary policy regime was applied to mitigate the effects of the lockdown.  

According to our findings, implementing COVID-19 monetary policy measures in 

Colombia increased banks' regulatory intervention risk by acting as a transmission 

channel. Also, we find that the frequency distributions of SDR and its components (TDR 

and PGR) have time-varying patterns in the mean and variance, which can be captured 

using ARMA-GARCH models. The modeling of excess kurtosis at higher moments of 

the probability distributions is significant for all the variables, and the same is true of 

skewness for PGR. Overall, the performance tests indicate that GC densities fit the 

observed frequency histograms of solvency risk better than normal densities; thus, they 

are an adequate tool for ensuring the implementation of prudential policy. 
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Since 2008, most central banks have adopted unprecedented expansionary monetary 

policy measures to inject liquidity into their economies in an attempt to restore economic 

stability. This response, however, posed higher financial and reputational risks for banks 

involved in the transmission mechanism of monetary policy, as it increased (or reduced) 

their level of leverage (solvency) and led to unsustainable debt levels (International 

Monetary Fund, 2020). This scenario created several uncertainties in the banking 

industry, as stated by KPMG (2020): Will some companies' SR plunge to the point that 

they require regulatory actions? What is the impact of these decreases on solvency? How 

does the decline in equity ratios affect rating agencies’ opinions at the corporate and 

industry level?  

The answers depend on the “risk-taking channel,” which links monetary policy and the 

perception and valuation of risk by financial institutions used as a transmission 

mechanism (Borio and Zhu, 2012). One of the main drawbacks is that the current 

macroeconomic models are not flexible enough to incorporate such a channel, reducing 

their effectiveness in designing monetary policy. Many studies provide empirical 

evidence of monetary policy's impact on transmission channel risk. However, these 

studies are focused mainly on the effects of risk in banks’ loan portfolios, which affect 

bank solvency, as suggested by de Moraes et al. (2016), who stated that banks react to 

monetary policy by changing the amount of loan-loss provisions and the capital adequacy 

ratio (CAR).  

The rest of this paper is structured as follows. Section 2 provides the theoretical 

framework, which decomposes the solvency risk into different risk sources and accurately 

estimates regulatory capital. Section 3 proposes solvency risk measures and models to 

estimate them. Section 4 describes the dataset used in this study and the monetary policy 

measures adopted by the central bank of Colombia during the COVID-19 period. In 

addition, it presents the results of the detection and adjustment of the PGR, TDR, and 

SDR time series by Additive Outliers, the results of the unit root tests, and the results of 

the tests for detecting structural changes. Section 5 presents the empirical results. Finally, 

Section 6 draws our conclusions and offers some practical recommendations. 
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II. 2 Theoretical Framework 

The Basel Accords are founded on three pillars. The first pillar requires SR to be measured 

in a standard manner so that different agents' aspects can be compared and aggregated. 

The second pillar calls for banks to develop more precise risk management techniques 

that consider the relationship between these risks and banks’ risk profile and environment. 

This pillar, in turn, requires banks to measure their capital requirements using regulatory 

and rigorous models to calculate economic capital (EC), defined by Elizalde and Repullo 

(2007) and Tiesset and Troussard (2005) as the level of capital required to cover banks' 

losses at a given confidence level for a given time horizon. Balthazar (2006) stressed the 

importance of pillar 2 in the regulatory framework's evolution. This pillar promotes EC, 

instead of RC, as the capital necessary to cover the losses of a risk portfolio. The reason 

for this is that EC is calculated using internal models, adapts to the risk profile of each 

bank, and considers their risk appetite, as it is based on QRMs, which generalize the 

concept of value at risk (VaR). In calculating QRMs (see Section 3), excess kurtosis and 

skewness must be considered characteristics of banks' risk portfolio components 

(commonly described in the financial literature) so that risks are not underestimated. The 

third pillar is associated with market discipline and complements the other two pillars by 

allowing market players to assess banks’ capital adequacy.  

Capital adequacy requirements (CARs) encompass both regulatory and economic capital. 

Basel II aims to establish more risk-sensitive minimum capital requirements so that 

regulatory capital is closer to a bank's economic capital (Caruana, 2005). According to 

the BCBS (1998), tier regulatory capital is divided into two components: (1) Tier 1 

capital, or core capital, which includes equity capital and disclosed reserves, and (2) Tier 

2 capital, or supplementary capital, which includes revaluation reserves, general 

provisions, hybrid capital instruments, and subordinated debt. RC and EC requirements 

are determined as a function of the risk portfolio. From a modeling and computational 

perspective, accurately calculating risk portfolios takes work (Wason et al., 2004). The 

risk of each module that makes up the risk portfolio can be measured, and these modules 

can be aggregated at different levels.  

Greater disaggregation implies a more accurate, but also more complex measurement 

(Sandström, 2007). Assuming a multivariate normal distribution and a linear correlation 

between the risk modules to be aggregated, the solvency capital required to cover the 
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portfolio can be estimated as the 𝛼 percentile. As described by Wason et al. (2004), this 

method coincides with the one used under the Solvency II guidelines in European Union 

law, which states that the solvency capital requirement must be sufficient for surviving 

extreme losses over a one-year horizon (with a minimum confidence level of 99.5%). The 

solvency capital requirement incorporates insurance, market, credit, operational, and 

counterparty risks and must be recalculated at least once a year. 

From the regulatory perspective of the BCBS framework, the CAR establishes the 

proportion of RC required to support a certain amount of RWAs, which determines the 

value of the risk portfolio (consisting of credit, market, and operational risks), as 

expressed in Equation 1. 

𝑅𝑊𝐴 = ∑ 𝑤𝑖
𝑛
𝑖=1 ∗ 𝑎𝑠𝑠𝑒𝑡𝑖.      (1) 

Under the standard method, each source of risk (i) is multiplied by a standardized factor 

(𝑤𝑖), which is expected to be conservatively set in each jurisdiction. In this weighted 

aggregation of the risk portfolio, correlations between assets are not considered, and 

relative weights (𝑤𝑖) are assigned as arbitrary constants. Under Basel’s internal models’ 

approach, banks, subject to certain minimum conditions and disclosure obligations, can 

develop their internal estimates of risk components to determine the capital requirement 

for that position. Banks sometimes have to use a supervisory value instead of an internal 

estimate for one or more risk components (BCBS, 2004). The internal models approach 

assumes that the loss distributions are close to the normal distribution and consider 

correlations between assets. These correlations are defined in a regulatory manner for 

certain groups of assets. However, the assumption of a normal distribution of the risk 

portfolio components in finance and insurance is implausible because of the high 

occurrence of outliers and a high level of skewness (Wason et al., 2004). 

For instance, Balthazar (2006) highlights the presence of heavy tails to the right of the 

loss distribution. Measuring the solvency risk of a bank's portfolio depends on measuring 

each portfolio component's risk, and the loss probability distribution estimation is 

fundamental. In the literature, it is common to find models that assume Gaussian 

distributions, such as those proposed by Merton (1973), Merton (1974), Vasicek (2002), 

Jiménez and Mencía (2009), Chava et al. (2011), Belkin et al. (1998), Frachot et al. 

(2001), and Shevchenko (2010), which, in most cases, underestimate risk by overlooking 
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the frequency of extreme events that cause distortions in the tails of the probability 

distributions. 

Several studies have demonstrated that the normal distribution differs significantly from 

the distributions observed in the variables related to banks’ financial risks. Regarding 

deviations from normality, Sandström (2007) analyzes the skewness of the probability 

distributions of the different components of a bank’s risk portfolio and the effect of not 

parameterizing it using some underlying distribution. This author proposes using a 

Cornish–Fisher expansion to parameterize it and finds that if a normal multivariate risk 

distribution is assumed (without considering module skewness), the capital requirement 

can be well below the risk threshold when skewness is omitted. According to Bølviken 

and Guillen (2017), the accuracy of risk aggregation in solvency can be improved by 

recursively updating skewness when the risk of specific instruments is measured. For 

their part, Del Brio et al. (2009) demonstrate that Pearson’s correlation coefficients differ 

depending on whether they are estimated under the assumption of normality or using SNP 

approaches. Le Maistre and Planchet (2013) show that the standard approach used in the 

Basel Framework to assess interest rate risk leads to biased risk measurement.  

In the context of operational risk measurement, Dutta and Perry (2006), De Fontnouvelle 

et al. (2003), and Feria-Domínguez et al. (2015) reveal that the distributions of losses due 

to the materialization of operational risks exhibit skewness and have fat tails. Kretzschmar 

et al. (2010), Bateni et al. (2014), Madan (2009), and Wirch and Hardy (1999) study 

probability distributions in the estimation of both aggregated and disaggregated solvency 

risks and reported that skewness and kurtosis do not correspond to the parameters of a 

normal distribution.  

To correct the distortions between the loss frequency distributions of the components of 

a bank’s risk portfolio and the normal distribution, recent studies propose using GC 

expansions. These expansions were introduced by Edgeworth (1896) and have been 

widely studied and employed to approximate the probability curves of random variables 

in various scientific fields. Sargan (1975) introduced this methodology in SNP 

econometrics to approximate the confidence intervals of t ratios and concluded that these 

intervals are more accurate than the usual asymptotic confidence intervals for large 

samples. Since then, the use of GC expansions in econometrics has been expanded to 

model random variables that show significant deviations from the normal distribution. 

Jarrow and Rudd (1982), Lee (1984), Corrado and Su (1996), Mauleón and Perote (2000), 
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Jondeau and Rockinger (2001), Ñíguez and Perote (2012), and Brio and Perote (2012) 

are among those who use GC expansions in financial econometrics. In addition to the 

problems of skewness and excess kurtosis that arise in measuring financial portfolio risks, 

banking regulations can also negatively affect solvency risk. 

II.3. Description of the Proposed Solvency Risk Measures and Estimation 

Methodology 

The proposed methodology provides accurate probability measures to estimate the loss 

distribution and thus measure solvency risk. This measurement can be performed at 

different levels of aggregation of the solvency risk components. The SDR variable has the 

highest level of aggregation, which groups all the components of the risk portfolio and 

capital supporting it. The TDR and PGR variables have the first level of disaggregation. 

II.3.1.  Probability of Regulatory Intervention 

Let 𝜂 be the minimum SR at time t, defined by a banking regulator to cover unexpected 

losses in the risk portfolio. Thus, a bank must maintain a 𝑆𝑅𝑡 equal to or greater than 𝜂 

in order to avoid regulatory intervention  (𝑆𝑅𝑡 ≥ 𝜂). 

𝑆𝑅𝑡 is calculated by dividing 𝑇𝑖𝑒𝑟𝑡 by 𝑅𝑊𝐴𝑡; hence, at 𝑡 + 1, it can be expressed as in 

Equation 2. 

𝑆𝑅𝑡+1 =
𝑇𝑖𝑒𝑟𝑡∗𝑒𝑥𝑝(−𝑇𝐷𝑅𝑡+1)

𝑅𝑊𝐴𝑡∗𝑒𝑥𝑝(𝑃𝐺𝑅𝑡+1)
=

𝑇𝑖𝑒𝑟𝑡

𝑅𝑊𝐴𝑡∗𝑒𝑥𝑝(𝑃𝐺𝑅𝑡+1+𝑇𝐷𝑅𝑡+1)
                       (2) 

Because 𝑆𝐷𝑅𝑡+1 = 𝑃𝐺𝑅𝑡+1 + 𝑇𝐷𝑅𝑡+1, then 𝑆𝑅𝑡 ∗ 𝑒−𝑆𝐷𝑅𝑡+1 ≥ 𝜂 must be satisfied to 

avoid regulatory intervention. Therefore, given a regulatory SR, (𝜂), the maximum 

value that 𝑆𝐷𝑅𝑡+1 can take is given by Equation 3. 

𝑅𝐼𝐷𝑡 = ln (𝑆𝑅𝑡) − ln(𝜂).       (3) 

where 𝑅𝐼𝐷 is the logarithmic regulatory intervention distance. Thus, the probability of 

regulatory intervention can be expressed as in Equation 4. 

𝑝(𝑆𝐷𝑅𝑡+1 > 𝑅𝐼𝐷𝑡) = 1 − 𝐹𝑆𝐷𝑅(𝑅𝐼𝐷𝑡).          (4) 
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where 𝐹𝑆𝐷𝑅 is the cumulative density function (CDF) of SDR. Therefore, if a decline in 

the SR is only due to an increase in the risk portfolio or tier capital, the probability of 

regulatory intervention is 1 − 𝐹𝑃𝐺𝑅(𝑅𝐼𝐷) for the risk portfolio component and 1 −

𝐹𝑇𝐷𝑅(𝑅𝐼𝐷) for the capital component. In this case, 𝐹𝑃𝐺𝑅 and 𝐹𝑇𝐷𝑅 are the CDFs of PGR 

and TDR, respectively. 

The need for regulatory action against a bank with a SR below the regulatory minimum 

is justified by its solvency and the reputational risks involved. 

II.3.2. Policies Based on Quantile Risk Metrics (QRMs) 

The second pillar established by the Basel Committee requires the development of risk 

management policies based on measures that reflect banks’ risk profile and appetite. 

Under this framework, EC should be estimated as a quantile of the pdf of losses in a 

bank’s risk portfolio (RWA). The estimation of this quantile considers the bank’s risk 

profile, which is reflected in the different parameters of the pdf (e.g., those that capture 

variance, skewness, and kurtosis), as well as its risk appetite associated with the loss 

probability (𝛼) assumed in the decision-making process. Alexander (2009) defines 

quantile risk metrics (QRMs), for any 𝛼 between 0 and 1, as the 𝑥𝛼 quantile of the 

distribution of a continuous random variable (𝑋) such that 𝑃(𝑋 < 𝑥𝛼) = 𝛼. 𝑄𝑅𝑀𝑠 can 

be calculated using the quantile function (𝐹𝑋
−1) of a given CDF 𝐹𝑥, as defined in Equation 

5. 

𝑄𝑅𝑀𝑠𝛼 = 𝐹𝑋
−1(𝛼) =  𝑖𝑛𝑓{𝑥 ∈ 𝑅: 𝛼 ≤ 𝐹𝑋(𝑥)}.           (5) 

Policies based on QRMs make it possible to set the minimum SR in which a bank can 

withstand the maximum expected shock, 𝐹𝑋
−1(𝛼), which would reduce solvency if it falls 

below the minimum regulatory ratio (𝜂). In general, random variable X is any source of 

risk on which banks’ solvency depends, such as the PGR, the TDR, or the SDR. Let 𝑆𝑅𝑡
𝜂,𝛼

 

(SR based on QRMs) be the SR required to withstand the maximum expected shock, 

𝐹𝑋
−1(𝛼). Then, given a confidence level of 1 − 𝛼, it can be expressed as in Equation 6. 

𝑆𝑅𝑡
𝜂,𝛼

= 𝜂 ∗ 𝑒𝐹𝑋
−1(𝛼).          (6) 

If the risk portfolio cannot be rebalanced, then SR will depend on an EC readjustment. 

Therefore, the EC that must be held at the beginning of period 𝑡 + 1 to support 𝐹𝑋
−1(𝛼) 
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meets the following condition: 𝑇𝑖𝑒𝑟𝑡 ≥ 𝜂 ∗ 𝑅𝑊𝐴𝑡 ∗ 𝑒𝐹𝑋
−1(𝛼). Thus, EC depends not only 

on the value of the risk portfolio and the minimum regulatory ratio (𝜂) but also on the risk 

appetite (𝛼) and the risk profile, which are reflected in 𝐹𝑋
−1. 

II.3.3. Determination of the Probability Density Functions of 𝑷𝑮𝑹, 𝑻𝑫𝑹, and 𝑺𝑫𝑹 

To measure the probability of regulatory intervention and establish policies based on 

𝑄𝑅𝑀𝑠𝛼, the conditional pdf of the sources of solvency risk must be determined. For this 

purpose, we assume that ARMA and GARCH models, respectively, can determine the 

dynamics of the mean and variance. The estimation of the higher-order moments, 

however, requires specification of the full pdf, which we model with the SNP approach 

based on the GC expansion. For notational convenience, the pdf of a random variable 𝑋 

(representing any source of solvency risk) is defined in its standardized form (i.e., with 

location and scale parameters of 0 and 1, respectively). 

Mean-variance model 

We propose using ARMA models to calculate the mean of random variable 𝜔 because 

they are sensitive to short-term variations and capture the time-varying dependence 

patterns observed in the series under analysis. Let 𝜔 represent a random variable that 

captures any source of solvency risks, such as PGR, TDR, or SDR. The dynamics of these 

variables are characterized by the ARMA(p,q) model in Equation 7: 

𝜔𝑡 = 𝜙0 + ∑ 𝜙𝑖
𝑝
𝑖=1 𝜔𝑡−𝑖 + ∑ 𝜃𝑗

𝑞
𝑗=1 𝑎𝑡−𝑞 + 𝑎𝑡.                   (7) 

where 𝜙 is the autoregressive (AR) parameters; 𝜃 is the moving average (MA) 

parameters; and 𝑎 is model errors. The conditional variance (𝜎𝑡) of errors is assumed to 

follow a GARCH(i,j) model, i.e., 

𝑎𝑡 = 𝜎𝑡𝑋𝑡.            (8) 

where 

𝜎𝑡 = √𝛼0 + ∑ 𝛼𝑖𝑎𝑡−𝑖
2𝑚

𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑗
2𝑠

𝑗=1 .    (9) 

and 𝑋𝑡 is randomly distributed as a standard GC pdf as described below.  
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Gram–Charlier expansion 

To introduce the GC pdf, we follow the methodology Davis (1976) and Kolassa (2006) 

used. They propose a model that considers high-order approximations of a density 𝑓𝑋 of 

random variable 𝑋 from a reference density 𝑓𝑌 of a random variable 𝑌. We define 𝑋 =

𝑍 + 𝑌, where Z is a pseudovariate with a zero mean and variance (because the mean and 

variance of X and Y are assumed to be equal) with the same higher-order cumulants 

(𝑘3, 𝑘4, . ..) as 𝑋, which contain the corresponding information about the distortions of 𝑓𝑋 

with respect to the normal distribution. 𝑍 and 𝑌 are orthogonal, which implies that they 

are linearly independent. 

Let 𝑍 =
∑ 𝑌𝑗

𝑛
𝑗=1

√𝑛
 be the standardized sum of independent and identically distributed 

(i.i.d.) 𝑛 variables (𝑌1, 𝑌2, 𝑌3, . . . , 𝑌𝑛). Then, its characteristic function, 𝜁(𝑢), defined as 

the Fourier inverse transform of a 𝜇 probability measure into 𝑅𝑛, can be written as in 

Equation 10. 

𝜁(𝑢) = ∫ 𝑒𝑖(𝑢,𝜗)𝜇(𝑑𝜗).          (10) 

where 𝑖 is the imaginary unit. Hence, the characteristic function of 𝑍 is 𝜑𝑍(𝑢) =

𝐸[𝑒𝑖(𝑢,𝑍)] = ∫ 𝑒𝑖(𝑢,𝑧)𝑓𝑍(𝑑𝑧), where 𝑓𝑍 is the pdf of 𝑍 and always exists because they are 

just Fourier transforms of the probability measures (Jacod & Protter, 2012). By 

conditioning 𝑍 = 𝑧, 𝑋 has a pdf, and by expanding 𝑓𝑌 as a Taylor series, we have 𝑓𝑌(𝑥 −

𝑧) = ∑ 𝑓𝑌
(𝑗)∞

𝑗=0 (𝑥)(−𝑧)𝑗/𝑗!. Thus, according to Kolassa (2006), the unconditional 

density of 𝑋 is given by Equation 11. 

𝑓𝑋(𝑥) = ∑ 𝑓𝑌
(𝑗)∞

𝑗=0 (𝑥)
(−1)𝑗𝜇𝑗

∗

𝑗!
.        (11) 

where 𝜇𝑗
∗ denotes the moments of 𝑍 that need to be added to 𝑌 to obtain 𝑋. Furthermore, 

the 𝑗th-order cumulant (𝑘𝑗
∗) associated with 𝑍 is the cumulant 𝑗 of 𝑋 minus the 

corresponding cumulant of 𝑌. Multiplying 𝑓(𝑥) by 𝑓𝑌(𝑥) in the numerator and the 

denominator, we obtain the following equation: 

𝑓𝑋(𝑥) =
𝑓𝑌(𝑥) ∑ 𝑓𝑌

(𝑗)∞
𝑗=0 (𝑥)(−1)𝑗𝜇𝑗

∗

𝑗!𝑓𝑌(𝑥)
 , and 
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by defining ℎ𝑗 =
(−1)𝑗𝑓𝑌

(𝑗)
(𝑥)

𝑓𝑌
, it can be expressed as 

𝑓𝑋(𝑥) =
𝑓𝑌(𝑥) ∑ ℎ𝑗

∞
𝑗=0 (𝑥)𝜇𝑗

∗

𝑗!
.          (12) 

ℎ𝑗  is the ratio between 𝑓𝑌
(𝑗)

, which is the 𝑗th-order derivative of the weight function 𝑓𝑌, 

and 𝑓𝑌 . If 𝑓𝑌 is the normal density pdf, 𝜙(𝑥), then ℎ𝑗  corresponds to the polynomial 

functions known as Hermite polynomials (HPs), which are orthogonal to 𝜙(𝑥). The 

infinite series in terms of HPs express a function 𝜃(𝑥) such that 𝜃(𝑥) = ∑ 𝛿𝑗
∞
𝑗=1 ℎ𝑗 , where 

𝛿𝑗 is given by Equation 13. 

𝛿𝑗 =
1

𝑗!
∫ ℎ𝑗

∞

−∞
(𝑥)𝜙(𝑥)𝑑𝑥.          (13) 

In addition, 𝑓𝑋 and 𝜙(𝑥) have the same mean and variance. 

ℎ𝑗  is given by: 

ℎ𝑗 =
(−1)𝑗[

𝑑𝑗

𝑑𝑥𝑗𝑒
−𝑥2

2 ]

𝑒
−𝑥2

2

.          (14) 

The orthogonality condition is satisfied such that: 

∫ ℎ𝑗
∞

−∞
(𝑧)ℎ𝑖(𝑧)𝜙(𝑥) = 0, ∀𝑗 ≠ 𝑖.        (15) 

According to Equation 15, HPs represent an orthogonal basis for weight function 𝜙(𝑥). 

In the empirical application of the model, this property of orthogonality with respect to 

the weight function makes it possible to truncate the HP series to an order 𝑛, thus defining 

a family of functions as in Equation 16. Because of this orthogonality property, this family 

defines the GC pdfs in regions that were recently described by Wu et al. (2020). 

𝑓𝑋,𝑛(𝑥) =
𝜙(𝑥) ∑ ℎ𝑗

𝑛
𝑗=0 (𝑥)𝜇𝑗,𝑛

∗

𝑗!
.         (16) 

This expansion density may also be characterized in terms of CDFs. In particular, 𝐹𝑌 and 

𝐹𝑋 are the CDFs of 𝑓𝑌 and 𝑓𝑋, respectively. Then, 𝐹𝑋 can be approximated as follows: 
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𝐹𝑋 = 𝐹𝑌(𝑥) − 𝑓𝑌(𝑥) ∑ ℎ𝑗−1
∞
𝑗=1 (𝑥)𝜇𝑗

∗/𝑗!.       (17) 

If the weight function is the normal density 𝜙(𝑥), with CDF denoted by Φ(𝑥), the CDF 

is given by Equation 18. 

𝐹𝑋,𝑛 = Φ(𝑥) − 𝜙(𝑥) ∑ ℎ𝑗−1
𝑛
𝑗=1 (𝑥)𝜇𝑗,𝑛

∗ /𝑗!.       (18) 

For convenience, moments 𝜇𝑗
∗ are replaced with cumulants 𝑘𝑗

∗, and it is usually assumed 

that 𝜇0,𝑛
∗ = 1, 𝜇1,𝑛

∗ = 𝜇2,𝑛
∗ = 0. Thus, 𝑓𝑋,𝑛(𝑥) = 𝑔(𝑥; 𝑑) is expressed as in Equation 19, 

as stated by Cortés et al. (2016) and other authors. 

𝑔(𝑥; 𝒅) = [1 + ∑ 𝑑𝑗
𝑛
𝑗=3 ℎ𝑗(𝑥)]𝜙(𝑥).        (19) 

In Equation 19, the vector of parameters 𝒅 = (𝑑1, 𝑑2, , . . . . , 𝑑𝑛, ) contains the 

corresponding information about the distortions of 𝑓𝑋 with respect to the normal 

distribution 𝜙(𝑥) and guarantees that 𝑔(𝑥; 𝑑) ≥ 0 ,∀𝑥 ∈ ℝ. The GC series can accurately 

approximate the sample distribution as 𝑓𝑋 because lim
𝑛

𝑔(𝑥; 𝑑) = 𝑓𝑋. In practice, most 

applications of this distribution include only third- and fourth-order HPs, which are 

related to skewness and excess kurtosis (Del Brio and Perote, 2012), i.e., 

𝑔(𝑥; 𝑑3, 𝑑4) = [1 + 𝑑3(𝑥3 − 3𝑥) + 𝑑4(𝑥4 − 6𝑥2 + 3)]𝜙(𝑥).     (20) 

Estimation of Gram–Charlier Parameters 

In most applications of GC expansions, parameters are estimated with the maximum 

likelihood (ML) method. Assuming that the first two moments of the distribution are well 

specified, the global optima guarantees that 𝑔(𝑥; 𝒅) is positive. Del Brio and Perote 

(2012) compare parameter estimation via the ML method using the method of moments 

(MM) and conclude that both methods provide similar results. However, the MM can only 

guarantee positive values for 𝑔(𝑥; 𝒅) in the asymptotic expansion and does not ensure 

positivity when the series is truncated with few terms. In our applications, we use the ML 

method and expand the series until the fourth moment to capture skewness and kurtosis. 

Thus, for a sample size T, the log-likelihood function, 𝑙𝑜𝑔(𝐿), is given by Equation 21: 

𝑙𝑜𝑔(𝐿) = −
𝑇

2
𝑙𝑜𝑔(2𝜋) −

1

2
∑ 𝑙𝑇

𝑡=1 𝑜𝑔(𝑥𝑡
2) + ∑ 𝑙𝑇

𝑡=1 𝑜𝑔([1 + ∑ 𝑑𝑗
𝑛
𝑗=3 ℎ𝑗(𝑥𝑡)]).   (21) 
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II.4. Case study 

This section applies the methodology proposed in this study to measure the solvency risk 

of the Colombian banking system, emphasizing the period at the beginning of the 

COVID-19 pandemic, in which an extraordinary monetary policy regime was applied to 

mitigate the impact of the lockdown on the local economy. This case study allows us to 

analyze the impact of the application of this extraordinary monetary policy regime on the 

risk of regulatory intervention due to the solvency deficit of the banks used as a 

transmission channel. 

We collected monthly data on the solvency of fifteen banks in Colombia from January 

2002 to November 2021.2 In the sample under analysis, 60% of the banks are international 

banks that hold more than 80% of total domestic banking assets. Colombian banking 

regulations are currently transitioning from Basel II to Basel III. Hernández et al. (2018) 

provide a general overview of the implementation of Basel III standards in Colombia and 

highlight the need to add a capital conservation buffer of 2.5%, a countercyclical buffer 

between 0% and 2.5%, and a systemic buffer between 1% and 3.5% for minimum 

solvency of 9%, as established by Basel III. With this adjustment, the minimum SR of 

some financial institutions could reach 16.5%. To analyze solvency in Colombia, we 

calculated Tier capital by adding up the capital of all the banks in the sample, and RWA 

was calculated by adding up the portfolio, i.e., 𝑇𝑖𝑒𝑟 = ∑ 𝑇𝑖𝑒𝑟𝑗
𝐾
𝑗=1  and 𝑅𝑊𝐴 =

∑ 𝑅𝐾
𝑗=1 𝑊𝐴𝑗, where 𝑇𝑖𝑒𝑟𝑗 and 𝑅𝑊𝐴𝑗  are the capital and portfolio of bank 𝑗, respectively, 

and 𝐾 is the aggregate number of banks. 

COVID-19 Monetary Policy Measures 

Cantú et al. (2021) present a global database of central banks' monetary responses to 

COVID-19 and divide them into five types of tools: interest rate measures, reserve 

policies, lending operations, asset purchase programs, and foreign exchange operations. 

Table II.1 reports the number of monetary policy announcements by the central bank of 

Colombia at the beginning of the COVID-19 pandemic (March, April, May, and June 

2020). It announced four asset purchases, eleven foreign exchange operations, twelve 

lending operations, and one reserve policy. These measures adopted by the central bank 

 
2 The database is available on the website of the Superintendencia Financiera de Colombia (Financial 

Superintendence of Colombia, https://www.superfinanciera.gov.co/jsp/index.jsf/), which is responsible for 

regulating the Colombian banking system. 

https://www.superfinanciera.gov.co/jsp/index.jsf
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to inject liquidity into the economy sought to protect the payment system, maintain the 

credit supply, stabilize key markets under pressure, and stimulate economic activity. 

Asset purchase operations comprised public and private debt securities and swaps of 

public debt securities with the Colombian government, delivering short-term debt 

securities and receiving long-term debt securities. A new exchange rate hedging 

mechanism was adopted through non-deliverable forwards. US dollars were auctioned in 

swaps (FX Swaps), in which the Central Bank sells dollars in cash and will buy them in 

futures contracts (at 60 days), and IMF approved a successor two-year arrangement for 

Colombia under the flexible credit line (FCL), designed for crisis prevention. 

Table II.1 Monetary responses by the central bank of Colombia to COVID-19 

Row labels Asset purchases 

Foreign exchange 

operations Lending operations Reserve policies 

Mar 2 4 5 0 

Apr 1 2 3 1 

May 1 3 2 0 

Jun 0 2 2 0 

Total 4 11 12 1 

Notes: This table reports the number of monetary policy announcements by the central bank of Colombia 

at the beginning of the COVID-19 pandemic (March, April, May, and June 2020).  

Source: Cantú et al. (2021). 

 

In lending operations, private debt was allowed, new access to the central bank’s 

transitory repurchase agreements was expanded, and definitive expansion auctions were 

conducted using public and private debt instruments, among other measures. Among the 

reserve policies, reserve requirements for liabilities were reduced. 

Table II.2 lists the changes and targets of the interest rate measures adopted in Colombia 

from March 2020 to December 2021. In March 2020, the annual interest rate was 4.25%, 

and in September 2020, it fell to a historic low of 1.75%. 

Table II.2 Interest rates in Colombia during the COVID-19 period 

Date Variation Target 

03/29/20 
 

4.25% 

03/30/20 -0.50% 3.75% 

05/04/20 -0.50% 3.25% 

06/01/20 -0.50% 2.75% 

07/01/20 -0.25% 2.50% 

08/03/20 -0.25% 2.25% 

09/01/20 -0.25% 2.00% 

09/28/20 -0.25% 1.75% 

10/01/21 0.25% 2.00% 

11/02/21 0.50% 2.50% 

12/20/21 0.50% 3.00% 
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Notes: This table presents the variations and targets of the interest rate measures adopted in Colombia from 

March 2020 to December 2021.  

Source: Authors’ calculations based on data from the central bank of Colombia 

(https://www.banrep.gov.co/es/estadisticas/tasas-interes-politica-monetaria/). 

 

Figure II.1 Monthly time series of the aggregate solvency ratio (SR) (a), tier capital 

(b), and risk-weighted assets (RWAs) (c) in the Colombian banking system 

 

Figure II.1 illustrates the evolution of the SR, tier capital, and RWA in Colombia from 

2005-2020. In Figure II.1a, SR trended upward and reached a peak (17%) in February 

2013. In 2017, it reached a value close to 16% and then decreased to 14.5% in February 

2020. In March 2020, the central bank of Colombia began to implement monetary policy 

measures to mitigate the effects of COVID-19 on its economy, which caused the banking 

system's solvency to fall to 13.6%. These trends have yet to be observed since the end of 

2013. From February to June 2020, SR decreased by more than 7%, whereas RWAs 

increased by almost 10% (Figure II.1c). Tier capital (Figure II.1b) showed no significant 

changes at the beginning of the COVID-19 pandemic. An increase in RWAs without an 

increase in tier capital led to a marked decline in solvency. 

Table II.3 shows the correlations between PGR, TDR, and SDR, in which the correlation 

is much greater between SDR and TDR than between SDR and PGR, which implies that 

solvency is more sensitive to variations in tier capital than to variations in the risk 

portfolio. The low correlation (negative sign) between PGR and TDR suggests that tier 

https://www.banrep.gov.co/es/estadisticas/tasas-interes-politica-monetaria
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capital does not increase as the value of the risk portfolio increases. It also indicates that 

the conversion of tier capital to RWAs does not always occur in the same period.3 

Table II.3 Correlation matrix of the variations in the components of SR 

 PGR TDR SDR 

PGR 1.000 -0.065 0.402 

TDR -0.065 1.000 0.888 

SDR 0.402 0.888 1.000 

Note: This table presents the correlations between PGR, TDR, and SDR.  

Source: Authors’ calculations based on data from the Financial Superintendence of Colombia. 

 

Table II.4 presents the basic descriptive statistics on PGR, TDR, and SDR, in which the 

average monthly growth rate of RWAs was 1.1% and that of tier capital was 1.3%, 

indicating that tier capital grew in proportion to risk. However, the standard deviation of 

TDR was higher than that of PGR, and the mean of SDR was close to zero. The positive 

excess kurtosis in all the time series suggests the presence of fat tails. PGR skewed to the 

right, whereas TDR and SDR skewed to the left 

Table II.4 Descriptive statistics 

 Min Max Mean 
Std. 

deviation 
Skewness 

Excess 

kurtosis 
q5 q10 q90 q95 

PGR -0.093 0.112 0.011 0.018 0.192 11.179 -0.006 -0.003 0.026 0.037 

TDR -0.180 0.113 -0.013 0.035 -1.054 4.942 -0.081 -0.050 0.015 0.031 

SDR -0.170 0.124 -0.002 0.038 -1.006 4.216 -0.069 -0.040 0.030 0.054 

Note: This table presents the descriptive statistics of PGR, TDR, and SDR.  

Source: Authors’ calculations based on data from the Financial Superintendence of Colombia. 

 

Figure II.2 shows both time-varying patterns in the mean (given the frequency of the 

reported financial statements) and volatility clusters in the time series. In March, April, 

and June 2020, RWAs had positive shocks, which represented an increase of more than 

12% over the January levels, followed by a fall of 9.25% in July 2020 (which was the 

maximum historical negative variation) and a cumulative drop of almost 24% by January 

2021. According to the Q-Q plots of PGR, TDR, and SDR (Figures II.2b, 2e, and 2h), the 

quantile of the normal distribution was close to that of the frequency distribution, whereas 

the right and left tails of the frequency distribution were fatter than those of the normal 

distribution. Regarding dispersion in the time series, the SDR time series (Fig. 2d) had 

 
3 The cross-correlation diagram in Appendix Figure II.1 shows that the highest correlation between PGR 

and capital CDR occurs at lags 5 and 10, which means that tier capital adjustments are five months ahead 

of the variations in this component. However, a high correlation is also observed in period -2, which means 

that some increases in the risk portfolio are compensated by capital increases two months later. 
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volatility clusters. The autocorrelation function (ACF) correlograms (Figs. 3c, 3f, and 3i) 

show that the most significant autocorrelations are those of orders 6, 12, and 18. 

 

Figure II.2 Monthly time series, Q-Q plot, and correlogram of portfolio growth rate 

(PGR) (a, b, c), tier decline rate (TDR) (d, e, f), and solvency decline rate (SDR) (g, h, 

i) 

 

 

Figures II.2a, 2d, and 2g show potential Additive Outliers that, according to Franses & 

Haldrup (1994), can produce spurious stationarity, thus rejecting the null hypothesis of 

the presence of unit roots. Haldrup et al. (2005) point out that outliers can severely affect 

the inference of seasonal unit roots depending on their frequency, magnitude, and 

persistence. To control the effect of Additive Outliers on unit root tests, we apply the 

approach described by Chen & Liu (1993) and computationally implemented in Lopez-

de-Lacalle (2019). Under this approach, outliers are detected in the series in levels 

through the t-statistics associated with the parameters that measure the effect of the 

outliers modeled from the incorporation of dummy variables in the estimation of the 

ARMA model used in the unit root tests. Perron & Rodriguez (2003) demonstrate, 

through simulations, that the test on the variable in levels is appropriate for detecting a 

single outlier under the null hypothesis of no outliers. Still, it can yield excessive outliers 

when applied iteratively to select multiple outliers. The outliers must have enormous 

values for the power of the test to be acceptable. As an alternative, they offer a 

methodology based on the first difference in the data. This alternative presents a better 

test power, but compared to the procedure based on the data series in levels, it has the 
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disadvantage that the limiting distribution depends on the specific distribution of the 

model errors. 

 

Figure II.3 Monthly time series adjusted for additive outliers and outliers’ effects of 

portfolio growth rate (PGR) (a), tier decline rate (TDR) (b), and solvency decline rate 

(SDR) (c) 

 

 

 

Figure II.3 presents the time series adjusted by Additive Outliers and the effects of the 

PGR, TDR, and SDR outliers. The PGR time series presents four positive outliers in July 

2005, June 2006, September 2007, and March 2020 and two negative outliers in July 2020 

and January 2021. The TDR time series presents five negative outliers in July 2005, 

January 2006, January 2013, March 2014, and January 2021, and two positive outliers in 

August and October 2013. The SDR time series presents four negative outliers in January 

2013, March 2014, July 2020, and January 2021, and one positive outlier in August 2013. 

The outliers in 2020 and 2021 are related to the implementation of monetary policy during 

COVID-19 and to prudential policy adjustments aligned with the regulatory framework 

established in Basel III. 

Table II.5 presents the results of the unit root tests for the PGR, TDR, and SDR time 

series adjusted for Additive Outliers. The classical Augmented Dickey-Fuller test was 

performed, with one lag selected by the BIC criterion. However, the hypothesis of the 

existence of unit roots is rejected, given the seasonal behavior of the analyzed series. The 

DF-GLS test, proposed by Elliott et al. (1996), improves the power of the test by taking 

into account the serial correlation of the error term, and the HEGY test proposed by 

Hylleberg et al. (1990), which tests for the presence of seasonal unit roots, are also 

displayed. Drift was included in both tests. The DF-GLS test's lag selection was 

performed using the BIC criterion. Elliott et al. (1996) indicate that this criterion 

   

(a) (b) (c) 
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represents a reasonable trade-off between size and power. The selection of the number of 

lags for the HEGY test is based on the AIC criterion since, according to Barrio Castro et 

al. (2016), this criterion provides a more reliable size than lag selection methods based 

on hypothesis testing or the BIC criterion. At the 1% significance level, all hypotheses 

stating the presence of unit roots are rejected, except for the Hd hypothesis of the HEGY 

test stating the existence of unit roots of the quarterly seasonal component, where the 

rejection of the hypothesis is done at a 10% significance level. The Ljung-Box serial 

autocorrelation test reveals autocorrelation in all three series. 

Table II.5 Unit Root tests 

 p-value (PGR) p-value (TDR) p-value (SDR) 

Augmented Dickey-Fuller 

𝑦𝑡−1 0.000 0.000 0.000 

ADF-GLS 

𝑦𝑡−1 0.001 0.000 0.000 

HEGY 

Ha 0.053 0.059 0.003 

Hb 0.000 0.000 0.000 

Hc 0.000 0.000 0.000 

Hd 0.000 0.095 0.064 

He 0.000 0.001 0.001 

Hf 0.000 0.019 0.034 

Hg 0.000 0.000 0.000 

Ljung-Box 

X-squared 0.000 0.000 0.000 

Note: This table presents the p-values of the Augmented Dickey-Fuller, DF-GLS, and HEGY unit root tests 

and the Ljung-Box autocorrelation test of PGR, TDR, and SDR. The Augmented Dickey-Fuller test and 

ADF-GLS test include drift, and the number of lags is selected using the BIC criterion (1 lag for three 

variables in the Augmented Dickey-Fuller test and four lags for the three variables in the ADF-GLS test). 

The HEGY test includes drift, and the number of lags is selected using the AIC criterion. The presence of 

unit roots is tested with the corresponding null hypotheses: Ha: non-seasonal unit root, Hb: bi-monthly unit 

root, Hc: unit root for four-month periods, Hd: quarterly unit root, He: semi-annual unit root, Hf: root a the 

frequency 5π/6, Hg: annual unit root. The Ljung-Box test was performed on 20 lags.  

Source: Authors’ calculations based on data from the Financial Superintendence of Colombia. 

 

To analyze potential structural changes in the mean and variance of the models, we used 

the methodology proposed by Bai & Perron (1998) on the Additive Outliers adjusted time 

series of PGR, TDR, and SDR. Table II.6 presents the values obtained from the BIC 

criterion to detect between 0 and 5 break points in the mean and variance of the analyzed 

series. Since the data-generating process is assumed to be an ARMA process, lags up to 

order 12 were used as regression variables for the mean. The variance was estimated as 

the square of the errors of the mean model, and only structural level changes from a 

constant were considered. The BIC criterion states that the models should include no 

structural changes for both mean and variance. 



30 
 

 

Table II.6 Structural Changes detection 

Breakpoints  0 1 2 3 4 5 

BIC (PGR) 

mean -1.29E+03 -1.25E+03 -1.20E+03 -1.14E+03 -1.08E+03 -1.01E+03 

variance -2.96E+03 -2.96E+03 -2.95E+03 -2.94E+03 -2.93E+03 -2.92E+03 

BIC (TDR) 

mean -1.08E+03 -1.04E+03 -9.91E+02 -9.40E+02 -8.86E+02 -8.24E+02 

variance -2.65E+03 -2.65E+03 -2.64E+03 -2.63E+03 -2.62E+03 -2.61E+03 

BIC (SDR) 

mean -1.01E+03 -9.65E+02 -9.13E+02 -8.51E+02 -7.89E+02 -7.26E+02 

variance -2.50E+03 -2.49E+03 -2.49E+03 -2.48E+03 -2.47E+03 -2.46E+03 

Note: This table presents the value of the BIC criterion for the Bai and Perron test to detect between 0 and 

5 breakpoints in the mean and variance parameters of PGR, TDR, and SDR. For the mean, lagged regressors 

up to order 12 were used as regression variables. The variance is estimated from the square of the errors 

obtained from the mean model with regressors lagged up to order 12, and level changes are analyzed from 

a constant. 

 

II.5. Results   

II. 5.1 Fitted distribution 

Table II.7 lists the estimated parameters of the conditional moments of the probability 

distributions of PGR, TDR, and SDR. In the three-time series, the mean had significant 

time-varying patterns in quarterly multiples (3, 6, and 12 months). Additionally, PGR had 

an autoregressive effect on order 1. The estimated variances correspond to the ARCH(2) 

process for TDR and SDR (parameters a0, a1, and a2) and the ARCH (1) process for PGR 

(parameters a0 and a1). The kurtosis parameters for GC were significant for the three 

series, whereas skewness was significant only for PGR. 
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Table II.7 Fitted conditional densities of the ARMA-GARCH model under a GC probability distribution 

PGR parameters 

 Estimate Std. error t-value p-value 

ar1 0.225 0.062 3.610 <.0001*** 

ar3 0.183 0.062 2.936 0.003*** 

intercept 0.007 0.001 4.743 <.0001*** 

a0 0.000 0.000 16.470 <.0001*** 

a1 0.508 0.066 7.649 <.0001*** 

d3 0.091 0.034 2.645 0.008*** 

d4 0.119 0.014 8.400 <.0001*** 
 

TDR parameters 

 Estimate 

Std. 

error t-value p-value 

ar6 0.203 0.056 3.629 <.0001*** 

ar12 0.692 0.067 10.314 <.0001*** 

ma12 -0.418 0.089 -4.686 <.0001*** 

a0 0.000 0.000 8.477 <.0001*** 

a1 0.517 0.089 5.814 <.0001*** 

a2 0.149 0.056 2.673 0.008*** 

d4 0.094 0.015 6.388 <.0001*** 
 

SDR parameters 

 Estimate Std. error t-value p-value 

ar6 0.284 0.059 4.856 <.0001*** 

ar12 0.400 0.061 6.555 <.0001*** 

a0 0.001 0.000 11.696 <.0001*** 

a1 0.000 0.058 0.000 1.000 

a2 0.113 0.062 1.840 0.066* 

d4 0.129 0.015 8.560 <.0001*** 
 

Notes: This table presents the estimated parameters of the portfolio growth rate (PGR), tier decline rate (TDR), and solvency decline rate (SDR) under an ARMA-GARCH 

with Gram–Charlier distributed errors. *, **, and *** significant at the 10%, 5%, and 1% levels, respectively. The ARMA-GARCH models were selected based on AIC. 
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Figures II.4a, 4c, and 4e compare the fit of the GC pdf to the PGR, TDR, and SDR series, 

respectively, to the normal fit. The GC pdfs captured the fat tails of the frequency histograms 

and the right-tail skewness of PGR. Figures II.4b, 4d, and 4f compare the GC CDFs of PGR, 

TDR, and SDR to their normal counterparts. For PGR, the differences between the CDF of 

the GC and the normal in the left tail were less pronounced than in the right tail. This 

difference between the right and left tails was not marked for TDR and the SDR. 

Figure II.4 Comparison between the frequency histograms of the standardized residuals 

of the mean model, the normal (solid line), and GC (dotted line) probability density 

functions of portfolio growth rate (PGR), tier decline rate (TDR), and solvency decline rate 

 

II. 5.2 Performance Testing 

We used Kupiec's and Lopez's tests to measure and compare the performance of the QRMs 

estimated using a GC pdf and a normal pdf for PGR, TDR, and SDR. Table II.8 presents the 

results of both tests. According to the results, Kupiec's test only rejected the normal model 

for TDR, which compares the theoretical and empirical quantiles through a ratio comparison 

hypothesis test. Meanwhile, the results of Lopez’s test, which considers the distance between 

the estimated QRMs and the exceptions observed, revealed that the score obtained was lower 

when using a GC distribution than when using a normal distribution in all the series: the 

scores obtained were 50% lower using GC pdfs than with normal pdfs for TDR and SDR and 

40% lower for PGR. 
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Table II.8 Forecasting performance tests under Gram–Charlier and normal distributions 

  p-value p-value Score Score p-value 

Component 
Kupiec’s test 

Gram–Charlier 

Kupiec’s test 

Normal 

Lopez’ test 

Gram–

Charlier 

Lopez’ test 

Normal 

log-likelihood 

ratio test 

PGR 0.865 0.376 4 7.002 <.0001 

TDR 0.403 0.075 2.001 4.003 <.0001 

SDR 0.303 0.321 1.002 4.004 <.0001 

Note: This table reports the log-likelihood ratio (LR) between the normal and Gram–Charlier 

pdfs, and the results of Kupiec’s and Lopez’s tests, which were used in this study to measure 

the performance of the QRMs estimated using GC and normal distributions.  

 

Table II.8 also reports the log-likelihood ratio p-value between the normal and GC pdfs for 

PDR, TDR, and SDR. In both cases, the results show strong evidence favoring the GC model. 

This log-likelihood ratio test confirmed that incorporating the ds parameters is critical and 

enables the GC model to outperform the normal model. This evidence reinforces the 

flexibility of the model to dynamically adapt skewness and kurtosis (and higher-order 

parameters, if necessary) to the new scenarios (structural breaks) triggered by extreme events, 

such as those produced by the COVID-19 crisis and the monetary policy unconventional 

measures in response to them. 

II. 5.3 Measuring the Impact of COVID-19 Monetary Policy Measures on Solvency Risk 

Table II.9 reports the estimated GC quantiles associated with SDR, PGR, and TDR during 

the implementation of COVID-19 monetary policy measures in Colombia. The measures 

adopted in March 2020 increased the risk portfolio by 6.04% (exceeding the 99th percentile 

of the 𝐹𝑃𝐺𝑅 and a decline in the solvency of 3.9% (exceeding the 94th percentile of the 𝐹𝑆𝐷𝑅. 

This increase is associated with the twelve monetary policy measures that were implemented. 

For instance, the repo operations quota was increased by 38 percent. Also, the term for repo 

operations was extended from 30 to 90 days. Moreover, the purchase operations for the 

permanent injection of liquidity totals COP 2 trillion in private securities and COP 2 trillion 

in public securities, and the intervention rate was cut by half a percentage point. 
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Table II.9 Quantiles associated with SDR, PGR, and TDR 

Date Quantile_SDR Quantile_PGR Quantile_TDR 

01/01/20 42.11% 40.87% 26.10% 

02/01/20 61.84% 71.47% 47.78% 

03/01/20 94.32% 99.92% 27.86% 

04/01/20 74.53% 55.17% 54.00% 

05/01/20 15.12% 0.80% 73.13% 

06/01/20 91.61% 91.60% 19.47% 

07/01/20 0.00% 0.02% 1.84% 

08/01/20 8.97% 54.52% 44.63% 

09/01/20 24.03% 12.08% 38.47% 

10/01/20 22.36% 43.30% 70.26% 

11/01/20 59.02% 34.57% 80.24% 

12/01/20 7.51% 0.05% 89.78% 

01/01/21 0.02% 3.39% 0.12% 

Note: This table reports the estimated GC quantiles associated with SDR, PGR, and TDR during the 

implementation of COVID-19 monetary policy measures in Colombia. 

 

Solvency fell to its lowest value during the pandemic in June 2020, when all the other 

COVID-19 monetary policies had been implemented. From May to June 2020, it declined by 

2.7% (which corresponds to the 92nd percentile of 𝐶𝐷𝐹𝑆𝐷𝑅 because of an increase in 𝑅𝑊𝐴𝑠 

of 4.6% (which corresponds to the 92nd percentile of 𝐶𝐷𝐹𝑃𝐺𝑅. In July 2020, the risk portfolio 

decreased by 9%, which was below the first percentile of 𝐶𝐷𝐹𝑃𝐺𝑅, and coincided with the 

extension of the maturity period of the March repos to 90 days. Tier capital increased by 

more than 5% (which corresponds to the second percentile of 𝐶𝐷𝐹𝑇𝐷𝑅. A decrease in the risk 

portfolio and an increase in tier capital led to an increase in the solvency of more than 14%, 

from 13.5 to 15.7 percentage points (this variation was below the first percentile of  𝐶𝐷𝐹𝑆𝐷𝑅. 

The value of the risk portfolio continued to fall through January 2021. PGR values were 

below the first percentile of 𝐶𝐷𝐹𝑃𝐺𝑅 by December 2020 and below the fourth percentile by 

January 2021. Tier capital increased by more than 10% in January 2021, which was below 

the first percentile of 𝐶𝐷𝐹𝑇𝐷𝑅. These risk portfolio and tier capital variations resulted in a 

17% increase in solvency, bringing SR to nearly twenty percentage points. The increases in 

tier capital are associated with an increase in the capital required to face shocks as a result of 

the early adoption of the Basel III framework by twelve of the banks under analysis, which 

is equivalent to 30.24% of the equity margin at the end of 2020. 
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II. 5.4 Probability of Regulatory Intervention 

Figure II.5a shows the probability of regulatory intervention for different values of 𝜂 over 

different periods during the COVID-19 crisis. Values of 𝜂 of more than 9% were analyzed, 

considering the capital conservation and countercyclical buffers that must be added to abide 

by Basel III requirements. From January to April 2020, the curve shifts to the left, increasing 

the probability of regulatory intervention for different values of 𝜂. Beginning in July 2020, 

the curve shifts to the right. By January 2020, the probability of regulatory intervention was 

nearly zero for 𝜂 all the values under analysis. For 𝜂 < 13%, the probability of regulatory 

intervention was nearly zero for all the periods under analysis. For 𝜂 ˃13%, the probability 

of regulatory intervention was critical between March and June 2020, as shown in Figure 

II.5b, between 2.6% and 4.6% when estimated using a GC CDF (solid line) and between 

0.7% and 5.9% when estimated using a normal CDF (dashed line). In most periods, the 

probability of regulatory intervention estimated using a normal CDF was below that when 

estimated using a GC CDF, except in April and June 2020, when the probability estimated 

using a normal CDF exceeded that estimated using a GC CDF. 

Figure II.5 (a) Comparison of the probability of regulatory intervention estimated using 

the GC CDF for different regulatory solvency levels over different periods during the 

COVID-19 crisis. (b) The probability of regulatory intervention was estimated using a GC 

C 
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II. 5.5 Solvency Ratio Based on Quantile Risk Metrics over SDR 

Based on the parameters estimated for the probability distributions of SDR, we calculated the 

QRM-based SR, which provides estimated scenarios involving banks’ solvency loss, given a 

risk appetite 𝛼. Figure II.6 compares the monthly observed SR time series and the QRM-

based SR estimated using a GC CDF (dashed black line) and a normal CDF (dashed blue 

line). Until the COVID-19 lockdown (February 2020), the observed SRs remained above the 

QRM-based SR. In March, April, May, and June 2020, when the COVID-19 monetary policy 

measures began to be implemented, the solvency observed fell below the QRM-based SR. 

The average difference between the QRM-based SR estimated using a GC CDF and that 

estimated using a normal CDF was 0.3 percentage points. 

Figure II.6 Comparison between the monthly observed SR time series (solid line) 

and the QRM-based SR estimated using a GC CDF (dashed black line) and a 

normal CDF (dashed blue line) for a minimum regulatory solvency ratio (SR) of 

13%  (with a confidence level of 99% 99%) between January 2015 and December 2020 
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II. 6. Conclusions and Recommendations 

This paper proposes risk measures for the risk-taking channel by modeling the probability 

functions of solvency risks. Modeling the pdfs of the solvency risk sources can be used to 

measure and constrain the impact of monetary policy on the banks' solvency used as a 

transmission channel. This is particularly useful for estimating the likelihood of an agent’s 

SR falling below a given threshold at which the prudential regulator must intervene. Along 

these lines, to limit the solvency risk, we propose using a SR based on QRMs. Furthermore, 

the GC pdfs make it easier to manage solvency risk and improve the convergence of RC to 

EC. As a result, the risk profile can be incorporated by estimating the parameters that model 

the distortions caused by the higher-order moments of the observed frequency distributions 

concerning the normal distribution. This methodology is consistent with the requirements of 

the second pillar of the Basel framework and limits the risk appetite through the 𝛼 parameter 

used in the value-at-risk model.  

The magnitude of the impacts caused by the implementation of COVID-19 monetary policy 

measures in Colombia was calculated using the pdfs of variations in SRs in the risk portfolio 

and the capital supporting it. According to our findings, the frequency distributions of SDR 

and its components (TDR and PGR) had time-varying patterns in the mean and variance, 

which can be captured using ARMA and GARCH models, respectively. Regarding the higher 

moments of the probability distributions, the frequency distributions of the variables under 

analysis were leptokurtic, and PGR showed marked skewness to the right. The results of the 

performance tests indicate that the 𝑄𝑅𝑀s estimated using GC pdfs were more accurate than 

those estimated using normal pdfs. Also, the difference between the maximum likelihood fit 

of the GC pdf and that of the normal pdf is highly significant. Because of the lack of 

intramonthly data, the effects caused by the implementation of COVID-19 monetary policy 

measures in Colombia on the transmission channel were analyzed by considering aggregate 

monthly data on the policies implemented. This analysis leads us to conclude that the 

variations observed in SRs and their components are atypical, as they were found at the 

extreme end of the distribution tails. In the first four months after the COVID-19 monetary 

policy measures were implemented, solvency declined. However, the anticipated transition 

of twelve Colombian banks from Basel II to Basel III led to positive changes in solvency and 
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reduced risks to insignificant levels. These results confirm the hypothesis that transmission 

channel operators have a higher risk appetite in the context of the risk-taking channel and 

highlight the importance of considering this in implementing monetary policies.  

Furthermore, we examined the probability of regulatory intervention under different 

intervention threshold scenarios. Because the Colombian banking system is transitioning 

from Basel II to Basel III, this implies an increase in the minimum SRs required by the 

prudential regulator. In this study, we considered a regulatory SR of 13%, which includes the 

capital conservation and countercyclical buffers established under Basel III. According to the 

results of this analysis, the probability of regulatory intervention significantly increased in 

the first four months after the COVID-19 monetary policy measures were implemented in 

Colombia, exceeding 4% (assuming an intervention threshold of 13%), which is beyond the 

risk appetite limit of 1% defined in the Basel framework for the estimation of VaR and EC. 

Concerning SRs based on QRMs, we analyzed historical data from 2015 to 2021. We found 

that, for a minimum regulatory SR of 13% and a risk appetite of 1%, solvency remained 

above the ratios based on QRMs, except between March and June 2020, which coincides with 

the period in which the COVID-19 monetary policy measures started to be implemented in 

Colombia. The SRs based on QRMs experienced an extreme shock, which corresponded to 

the percentile —a conservative scenario consistent with the Basel framework’s provisions. 

Relative to the increase in the minimum regulatory SRs due to the Colombian banking 

system’s transition from Basel II to Basel III, the risks assumed by the monetary policy 

transmission channel could be in a more critical position because the SRs based on QRMs 

increase exponentially as the minimum regulatory SRs and the risk appetite increase. The 

shock suffered by the risk portfolios at the beginning of the crisis because of the injection of 

liquidity into the different economies proves that this type of event must be considered when 

EC is allocated to support portfolio risk.  

In the context of the Basel framework, the risk-taking channel needs to be included in the 

possible scenarios. The methodology proposed in this paper enables us to estimate the 

increases in SRs needed to absorb these types of shocks. Based on our findings, we 

recommend implementing prudential policies based on the estimation of QRMs, as merely 

considering the distance between the solvency observed and the regulatory threshold is 
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insufficient because each agent’s risk profile is not considered, and these risk appetites cannot 

be regulated. Higher levels of disaggregation of the risk portfolio allow correlations between 

different risk modules and submodules to be analyzed, thus enabling portfolio rebalancing 

and optimization under certain capital constraints and assuming a minimum SR. The 

methodology proposed in this study can be applied to all levels of aggregation of the risk 

portfolio and the capital supporting it. It can also be used with more straightforward or 

complex models. If the components of creditworthiness are disaggregated, multivariate 

approaches could provide important information about the dynamics of the correlations 

between these components. Moreover, standard models could be made more flexible and 

adjusted to the dynamics of the risk portfolio and economic capital, tailoring them more to 

each financial institution. Also, future studies could consider the dynamics of the different 

distribution moments while maintaining simplicity.  
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Appendix II.1 

 

Appendix II.1 Figure 1. Cross-correlation between variations in the risk portfolio and in tier 

capital. 

Notes: This cross-correlation diagram shows that the highest correlation between PGR and 

TDR occurs at lags 5 and 10, which means that tier capital adjustments are five months ahead 

of the variations in this component. However, a high correlation is observed in period -2, 

which means that some increases in the risk portfolio are compensated by capital increases 

two months later. 
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CHAPTER III. Countercyclical Bank Capital 

Buffer estimation and its relation to monetary 

policy 

III.1. Introduction 

The banking system has become essential to worldwide economies, being fundamental in 

financial intermediation and monetary policy transmission, thus its proper regulation have a 

deep impacting economic growth (see e.g., Stewart et al. (2021)). The role of banks as 

financial intermediaries involves the assumption of financial risks that can lead to 

bankruptcy, which represents a systemic risk for the economy. In this context, prudential 

regulation ensures the financial system's stability by strengthening solvency and liquidity. At 

the international level, the Basel Committee on Banking Supervision (BCBS) has defined 

capital adequacy as a pillar to support the financial risks faced by banks. The BCBS proposed 

the Capital Adequacy Ratio (CAR) as a solvency indicator calculated from a bank's Capital 

to its Risk Weighted Assets (RWA). For a bank to be considered solvent, its CAR must be 

above a certain minimum threshold established as a prudential policy.   The bank capital 

framework based on the Basel I (BCBS, 1988) and Basel II (Basel, 2004) accords was 

insufficient to protect the international banking system from the events that triggered the 

2008 financial crisis, revealing the need for changes in prudential regulation (Borio, 2008). 

In response to this requirement, the Basel III Accord (BCBS, 2011) introduced a capital 

conservation buffer equivalent to 2.5% of RWA and a Countercyclical Capital Buffer (CCB) 

between 0% and 2.5% of RWA. These buffers complement the minimum Capital required 

by Basel III. They were added to absorb losses that could cause the bank's solvency to fall 

below the minimum solvency level set by Total Capital.  

The need to incorporate appropriate measures of solvency risk in prudential policy decision-

making is still an open question. It involves the measurement of the probability of exceeding 

the minimum capital threshold set and the establishment of the CCB set under the Basel III 

accord, which mitigates insolvency and systemic risks. In this paper, we propose solvency 

risk measures based on the semi-nonparametric modeling of the probability density function 

(pdf) of the CAR proposed by the Basel Committee. A stochastic Ornstein-Uhlenbeck model 
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is used to measure the Probability of Breaching the Minimum Capital Threshold (PBT) and 

estimate the size of the CCB that must be kept above a minimum level for a one-year horizon, 

based on the modeling of the CAR’s pdf. For this purpose, the cyclical behavior of the CAR 

is incorporated by using Fourier series accounting for in the first moment of the pdf. 

Furthermore, the salient empirical features of the CAR pdf are fitted by a flexible Gram-

Charlier distribution, which allow the modeling of skewness and kurtosis. The estimation of 

the CCB is achieved from Quantile Risk Metrics (QRMs), which are an extension of the 

Value at Risk (VaR) concept used in the Basel regulatory framework. Additionally, this paper 

provides evidence of the existence of the bank-capital and risk-taking channels based on the 

relationship between the monetary policy interest rate and the PBT. 

The rest of the paper is organized as follows: Section 2 presents a literature review on PBT 

measurement and determination of CCB size and timing. Section 3 presents the methodology 

applied, including the basics of the Ornstein-Uhlenbeck process and the Gram-Charlier 

expansions. Section 4 presents the empirical analyses for four representative countries and 

discusses the PBT in relation to the recent monetary policy. Section 5 summarizes the 

conclusions. 

III.2. Literature review 

The problem raised by the probability of exceeding the minimum capital threshold has been 

analyzed by authors such as Borio & Zhu (2012), who study the Capital Threshold Effect, 

defining it as the effect of the minimum level of Capital set by prudential policy on banks' 

lending decisions. The bank must support the funding costs of the Capital backing the loan 

portfolio to avoid the costs generated by failing to meet the minimum capital threshold 

regarding restrictive regulatory interventions, reputational costs, and adverse market 

reactions. The Capital Threshold Effect is considered a cost that varies with the size and 

volatility of the capital buffer above the regulatory minimum and operates over the long term, 

given the expectation that the bank will breach the minimum capital requirement. Under the 

Basel framework (BCBS, 1988), the restriction imposed by financial regulation on the 

transmission channel operates through the threat of non-compliance with the minimum 
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solvency levels, which depends on the distance between the level of bank solvency and the 

minimum regulatory threshold, measured through the CAR, and the volatility of the CAR.   

The PBT has been modeled by authors such as Spiegeleer et al. (2017) through a geometric 

Brownian stochastic process without drift, i.e., the probability that the Basel III Common 

Equity Tier 1 (CET1) ratio reaches a certain threshold that determines the activation (trigger) 

of Contingent Convertible bonds or CoCos, for a specific time horizon. Russo et al. (2020) 

use the CET1 model proposed by Merton (1974) to estimate the probability that a financial 

institution fails to comply with the capital requirements under the Basel III regulatory 

framework, adapting a geometric Brownian motion to model bank assets that allows 

estimating their implied volatility. Jarrow (2013) defines the probability of insolvency at time 

t projected to time 𝑡 + 𝛥 as the probability that debt is greater than assets, i.e., the probability 

that equity is negative. Modeling bank solvency risk based on stochastic processes that do 

not allow incorporating terms that take into account the cyclical behavior of businesses may 

not be appropriate in prudential policy decision-making since the size of the capital buffer 

may depend on exogenous factors, such as the state of the economic cycle, idiosyncratic 

shocks to the bank's balance sheet and the bank's optimization strategies (Borio, 2008).   

The Basel III accord (BCBS, 2011) argues that it is not possible to increase the risk sensitivity 

of banks at a given point in time without introducing some degree of cyclicality in minimum 

capital requirements over time and introducing a framework that promotes the reduction of 

procyclicality through the preservation and accumulation of capital buffers above the 

minimum threshold, which contribute to increasing resilience in recessionary phases and can 

be used in times of stress. Athanasoglou et al. (2014) analyze the effect that procyclicality 

has on the financial system, making an account within the literature of the causes of 

procyclicality and proposals to mitigate it. Under BCBS rules, credit, market, and operational 

risk estimates assume that loss distributions approximate the normal distribution. This 

assumption may be implausible given that, in the modeling of banking risks, evidence is 

found that the pdfs associated with banking risks show significant distortions with respect to 

the normal distribution that may lead to the under or overvaluation of risks, especially when 

quantile measures such as the VaR are used. Different authors have documented in the 

financial literature the presence of heavy tails in the loss distributions of financial solvency. 
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Authors such as Sandström (2007), Bølviken & Guillen (2017), and Le Maistre & Planchet 

(2013) conclude that in order not to underestimate the capital requirements, the bias in the 

aggregation of the different risk modules must be considered. 

For calibration of the timing and size of the CCB, the Basel III framework establishes 

guidelines for prudential authorities applying the CCB regime (BCBS, 2010). These 

guidelines use the credit-to-GDP gap, defined as the difference between the credit-to-GDP 

ratio and its long-term trend. High levels of the credit-to-GDP ratio indicate that credit is 

growing out of proportion to the economy and leading to a financial crisis. Drehmann & 

Tsatsaronis (2014) point out the limitations of the credit-GDP gap in determining the size 

and timing of the CCB, focusing on the appropriateness of the indicator given the purpose of 

the CCB, its properties as an early warning indicator, and its practical measurement 

problems. The Hodrick-Prescott filter recommended by the BCBS to filter the trend in the 

credit-to-GDP ratio uses an arbitrary smoothing parameter that assumes a much longer credit 

cycle than has been empirically documented in many countries (Galán, 2019). 

Finally, in this paper, we explore the relationship between PBT and monetary policy since 

the effect of monetary policy on the real and financial economy is one of the main instruments 

available to the economic authorities to achieve their growth and stability objectives. PBT 

can restrict the transmission of monetary policy, and monetary policy can affect PBT. Bruno 

& Shin (2015) underline the little attention that conventional monetary economics has paid to 

the role of the banking sector in the management of the financial conditions of the 

transmission channel, where changes in monetary policy interest rates affect the term spread 

of the yield curve, which affects the profitability of new loans and, thus, the decisions to 

grant new loans. The interaction of monetary and prudential policies raises the need to jointly 

analyze them. Central banks should adopt interest rate strategies that take into account capital 

adequacy requirements to avoid conflict between monetary policy, which seeks to ensure that 

there is sufficient lending to support stable economic growth, and prudential policy, which 

seeks to prevent excessive risk-taking and may limit banks' lending capacities (Cecchetti & 

Li, 2008). Angeloni & Faia (2013) suggest the possibility of interactions between the conduct 

of monetary policy and prudential regulatory policies through the combination of 

countercyclical capital ratios, such as those proposed by Basel III, and monetary policy 
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responding to shocks to asset prices or bank leverage, to help control systematic risk in the 

financial sector. 

The interest rate channel is the conventional channel through which monetary policy is 

transmitted to households and firms' saving and investment decisions. Bernanke & Gertler 

(1995) also document the credit channel and the Balance Sheet Channel. The Credit Channel 

is defined as the interest rate's effect on credit volumes and is an amplifier of the interest rate 

channel. The Balance Sheet Channel is defined as the potential impact of changes in 

monetary policy on borrowers' balance sheets and income statements, including variables 

such as net worth, cash, and liquid assets. Recent advances in prudential policy have made 

regulatory bank capital more relevant in lending decisions (Markovic, 2006). Thus, the 

effectiveness of banks in transmitting monetary policy impulses will depend on how well-

capitalized they are to cover the risks of their assets. Minimum capital requirements have an 

increasing influence on the behavior of banks and have implications for the transmission 

mechanism based on the differential cost of funding Capital, which is called the Bank-Capital 

Channel that operates on the transmission channel through the threat of non-compliance with 

minimum capital requirements, and through the Risk-Taking Channel defined as the effect 

that monetary policy has on the perception and valuation of risk by economic agents, and 

which affects banks' risky asset portfolios, altering lending decisions (Borio & Zhu, 2012).   

 The Bank Capital Channel, which operates through the constraints imposed by bank capital 

requirements on the effects of monetary policy on the economy, has been studied by authors 

such as Van den Heuvel (2007), Imbierowicz et al. (2021), Aiyar et al. (2016), Cappelletti et 

al. (2022), Gambacorta & Mistrulli (2004), Gambacorta & Shin (2018), Markovic (2006), 

among others. They generally find that low bank capital levels or increases in capital 

requirements weaken the transmission of monetary policy by affecting credit growth and 

causing banks to react in a lagged and amplified manner to changes in interest rates. On the 

other hand, they conclude that actions that increase bank capital, such as profit retention, 

contribute to monetary policy transmission.   Adrian et al. (2019), Dell'Ariccia et al. (2017), 

Angeloni & Faia (2013) De Moraes et al. (2016) present empirical evidence of the Risk-

Taking-Channel from the effect of monetary policy on risk appetite and risk pricing of bank 

assets.  
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III.3. Methodology 

It is assumed that bank solvency, which determines capital adequacy, follows a mean-

reverted Ornstein-Uhlenbeck process, as expressed in Eq.1. 

𝐶𝐴𝑅𝑡 = 𝜇(𝑡) + 𝑋𝑡 ,             (1) 

where 𝜇(𝑡) is a deterministic function in the time domain, and 𝑋𝑡 is the stochastic process 

described in Eq.2. 

𝑑𝑋𝑡 = −𝜅𝑋𝑡𝑑𝑡 + 𝜎𝑑𝑊,             (2) 

where 𝜅 > 0 is a parameter measuring the speed of reversion of CAR to 𝜇(𝑡), 𝜎 is a constant 

representing the volatility of demand, and 𝑑𝑊 = 𝜖√𝑑𝑡 is the spread of a standard Wiener 

process (𝜖 being a standard normally distributed random variable). It is also assumed that for 

t=0, solvency has a known value of 𝐶𝐴𝑅0. Following Lucia & Schwartz (2002), the stochastic 

differential equation can be expressed as in Eq. 3:  

𝑑𝐶𝐴𝑅𝑡 = 𝜅(𝜇(𝑡) − 𝐶𝐴𝑅𝑡)𝑑𝑡 + 𝜎𝑑𝑊.           (3) 

The conditional mean and variance of the process are given by expression 4: 

𝐸0(𝐶𝐴𝑅𝑡) = 𝐸(𝐶𝐴𝑅𝑡/𝑋0) = 𝜇(𝑡) + (𝐶𝐴𝑅0 − 𝑓(0))𝑒−𝜅(𝑡−𝑡𝑜) 

𝑣𝑎𝑟0(𝐶𝐴𝑅𝑡) = 𝑣𝑎𝑟(𝐶𝐴𝑅𝑡/𝑋0) =
𝜎2

2𝜅
(1 − 𝑒−2𝜅(𝑡−𝑡0)) 

𝑋0 = 𝐶𝐴𝑅0 − 𝜇(0)             (4) 

To measure the probability of insolvency, we start from the Capital Threshold Effect 

described by Borio & Zhu (2012), in which the threshold effect varies with the size and 

volatility of the buffer above the threshold and operates in the long run. 
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Figure III.1 Illustration of the mean reversion model 

 

Figure III.1 illustrates the functioning of the mean reversion model. The blue line represents 

the expected solvency value, modeled through the linear combination of trigonometric 

functions that model the cyclicality of the CAR solvency indicator. The red line represents 

the 0.1% percentile, so the probability that CAR is below this percentile is 0.1%. The dotted 

line is the minimum regulatory threshold, and there is a probability 𝛼 that the CAR indicator 

is below the minimum threshold. The black lines are paths simulated under the normality 

assumption, with a scale parameter equal to 0.5 and a parameter 𝜅 of 0.5. It is observed how 

the probability of breaching the minimum threshold increases in the downward phase of the 

cycle. 

Measurement of the Probability of Breaching the Minimum Capital Threshold (PBT) 

Suppose 𝜂 is the regulatory minimum threshold at a time 𝑡0. In that case, one can express the 

𝑃𝐵𝑇0 at a given time 𝑡 in the future (e.g., one year ahead), as expressed in Eq. 5: 

𝑃𝐵𝑇0(𝐶𝐴𝑅𝑡 < 𝜂) = 𝐹𝐶𝐴𝑅(𝑑), 

𝑑 =
𝜂−𝜇(𝑡)−(𝐶𝐴𝑅0−𝜇(0))𝑒−𝜅(𝑡−𝑡0)

𝜎√1−𝑒−2𝜅(𝑡−𝑡0)

2𝜅

,           (5)  

where 𝐹𝐶𝐴𝑅 is CAR's standard cumulative density function (CDF) at time 𝑡 in the future. 

The parameter 𝑑 depends on the distance between the minimum threshold 𝜂 and the function 

𝜇 at time 𝑡, on the distance between the observed solvency and the value of the function 𝜇, 

at time 𝑡0, affected by an exponential decay factor that depends on the decay rate 𝜅, on the 
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time horizon 𝑡 − 𝑡0, and the scaling parameter 𝜎. Finally, 𝑃𝐵𝑇0 depends on the functional 

form of 𝐹𝐶𝐴𝑅, especially on the shape of the tail over which the risk of non-compliance with 

the regulatory minimum threshold occurs. 

Policies for determining the Countercyclical Capital Buffer (CCB), based on Quantile 

Risk Metrics (QRMs) 

Alexander (2009) defines QRMs, for some 𝛼 between 0 and 1, as the quantile 𝑥𝛼 of the 

distribution of a continuous random variable 𝑋 such that 𝑝(𝑋 ≤ 𝑥𝛼) = 𝛼. 

𝑄𝑅𝑀𝛼
𝑋 = 𝐹𝑋

−1(𝛼) = 𝑖𝑛𝑓{𝑥 ∈ 𝑅: 𝛼 ≤ 𝐹𝑋(𝑥)},       (6) 

𝐹𝑋
−1 is the quantile function associated with 𝑋. 

Determining prudential policies of CCB size from QRMs allows limiting the risk assumption 

from the parameter 𝛼 and incorporating stylized features from the pdf with which the 

insolvency risk is measured. 

By equating the value of the minimum solvency threshold to the 𝑄𝑅𝑀𝛼
𝐶𝐴𝑅 of CAR 

(𝑄𝑅𝑀𝛼
𝐶𝐴𝑅 = 𝜂), it is possible to determine the size of the 𝐶𝐶𝐵0, that a financial institution 

must have above the minimum regulatory threshold at a time 𝑡0, such that the probability of 

being below the threshold 𝜂 at a horizon 𝑡 − 𝑡0 (e.g., one year ahead) is equal to the parameter 

𝛼, which the prudential regulator must set as a policy 𝑝𝑜(𝐶𝐴𝑅𝑡 ≤ 𝜂) = 𝛼), to limit the risk 

of insolvency. 

𝐶𝐶𝐵0 = 𝑚𝑎𝑥 {𝜇(0) + 𝜂(𝑒𝜅(𝑡−𝑡0) − 1) − (𝜇(𝑡) + 𝐹𝑠𝑡𝑑
−1 (𝛼)𝜎√𝑒2𝜅(𝑡−𝑡0)−1

2𝜅
) 𝑒𝜅(𝑡−𝑡0), 0}.    (7) 

In Eq. 7, the 𝐶𝐶𝐵0 must be positive and depends on the level of the regulatory threshold, the 

time domain function 𝜇, the standard quantile function evaluated at 𝛼 (𝐹𝑠𝑡𝑑
−1 (𝛼)), the speed of 

reversion to the mean 𝜅 and the projection horizon 𝑡 − 𝑡0. 

Incorporating the Fourier series in the function 𝜇 allows us to parameterize the characteristics 

of CAR dynamics, such as seasonal patterns generated by banks' frequency of financial 

reporting and cyclical phenomena typical of banking systems. In addition, the particularities 

of the probability distribution of solvency (e.g., volatility, skewness, and kurtosis) can be 

modeled through the quantile function and the scale parameter 𝜎. 
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Determination of the pdf of CAR 

For the measurement of the probability of default of the minimum capital threshold and the 

determination of the capital buffer based on QRMs, it is required to model the pdf of the 

CAR indicator. This paper makes use of the Fourier transform as a tool for modeling the 

cyclicality of the stochastic process with which the solvency indicator is characterized 

through spectral analysis and deviations of the tails of the empirical risk distributions, 

concerning the normal distribution, accounted by the Taylor series expansion of the conjugate 

Fourier transform of the normal pdf, which is known as Gram-Charlier expansion. 

Deterministic component 

As BCBS (2011) established, a certain degree of cyclicality must be included in the minimum 

capital requirements to increase risk sensitivity. Spectral analysis allows the determination 

of Fourier series that model bank solvency's cyclical and seasonal behavior based on the 

linear combination of trigonometric functions. Thus, the deterministic component 𝜇(𝑡) can 

be expressed according to Eq. 8. 

𝜇(𝑡) = 𝜃 + ∑ 𝐶𝑖 ∗ 𝑐𝑜𝑠 (𝜏𝑖 +
𝜔𝑖2𝜋∗𝑡

𝑇
)𝑛

𝑖=0 ,          (8) 

Where 𝜃 is a constant, 𝐶𝑖, 𝜏𝑖 , 𝜔𝑖 are the amplitude, phase, and frequency of each cycle 𝑖, and 

𝑇 is the number of observed periods per year. 

The autocovariance function 𝛾(𝜏) can be expressed in terms of the combination of variances 

such that 𝛾(𝜏) = ∑ 𝜎𝑖
2𝑛

𝑖=1 𝑐𝑜𝑠(𝜔𝑖 ⋅ 𝜏), where 𝜎𝑖
2 is the variance of the harmonic with 

frequency 𝜔𝑖. Thus, the variance of a stochastic process can be expressed as 𝛾(0) = ∑ 𝜎𝑖
2𝑛

𝑖=1 . 

Gram-Charlier expansions 

The CAR pdf's distortions concerning the normal distribution (e.g., skewness, excess 

kurtosis, or wavy tails) may lead to underestimating the risk of non-compliance with the 

minimum capital threshold and the amount of regulatory Capital required to cover the risk 

with a given probability level. The Gram-Charlier expansions make the distributional 

assumption flexible by explicitly incorporating skewness, kurtosis, and high-order moments. 
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Based on a reference parametric pdf 𝑓𝑌 associated with a random variable 𝑌, an 

approximation of a pdf 𝑔𝑌 is obtained from the conjugate Fourier transform of the reference 

parametric pdf. The Fourier transform 𝜁 of a pdf is a parameterized function on an auxiliary 

real variable 𝛽 (frequency) defined by applying the expectation operator 𝐸 to the complex 

function 𝑒𝑖𝛽𝑌 (i is the imaginary unit). The so-obtained characteristic function characterizes 

the pdf in a univocal way from the application of the Fourier inversion theorem. Moreover, 

this function always exists since it is defined on a complex plane. The derivative of the 

characteristic function at the point 𝛽 = 0 generates the ordinary moments of the distribution, 

corresponding to the order of derivation. 

𝜁𝑓(𝛽) = 𝐸[𝑒𝑖𝛽𝑌] = ∫ 𝑒𝑖𝛽𝑦∞

−∞
𝑓(𝑥).          (9) 

Following Kolassa (2006) and Davis (1976), the characteristic function can be expressed in 

terms of the power series expansion: 

𝜁𝑓(𝛽) = 𝑒𝑥𝑝 [∑ (𝜅𝑗)∞
𝑗=1

(𝑖𝛽)𝑗

𝑗!
].          (10) 

The coefficients 𝜅𝑗 of the power series terms correspond to the 𝑗 th order cumulants of 𝑓𝑦 , and 

𝑙𝑜𝑔(𝜁𝑌(𝛽)) defines the cumulant generating function. We define the differential operator 𝐷𝑌 

and its adjoint 𝐷𝑌
†
 as: 

𝐷𝑌 =
𝑑

𝑑𝑦
, 𝐷𝑌

† = −
𝑑

𝑑𝑦
.           (11) 

Following Cohen 1988), given two density functions, 𝑓(𝑦) and 𝑔(𝑦), and their respective 

characteristic functions 𝜁𝑓(𝛽) and 𝜁𝑔(𝛽), these can be related through a kernel 𝛹(𝛽) which 

is a function of the two pdfs, such that: 

𝛹(𝛽) =
𝜁𝑔(𝛽)

𝜁𝑓(𝛽)
.            (12) 

Given the property of the derivative of the Fourier transforms, 𝐷𝑌
†𝑒𝑥𝑝(−𝑖𝛽𝑦) = −𝑖𝛽 ∗

𝑒𝑥𝑝(−𝑖𝛽𝑦), we replace −𝑖𝛽 with the differential operator 𝐷𝑌
†
 such that: 

𝑔(𝑦) = 𝛹(𝐷𝑌
†)𝑓(𝑦), 
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𝑔(𝑦) =
𝜁𝑔(𝛽)

𝜁𝑓(𝛽)
𝑓(𝑦), 

𝑔(𝑦) = 𝑒𝑥𝑝 [∑(𝜅𝑗
𝑔

− 𝜅𝑗
𝑓

)

∞

𝑗=1

(𝑖𝛽)𝑗

𝑗!
] 𝑓(𝑦), 

𝑔(𝑦) = 𝑒𝑥𝑝 [∑ (𝜅𝑗
𝑔

− 𝜅𝑗
𝑓

)∞
𝑗=1

(𝐷†)
𝑗

𝑗!
] 𝑓(𝑦),         (13) 

𝜅𝑗
𝑔

 and 𝜅𝑗
𝑓
 are the cumulants of 𝑔(𝑦) and 𝑓(𝑦), respectively. 

Taking the standard normal distribution 𝜙(𝑦) as a reference pdf, 𝑔(𝑦) can be expressed in 

terms of the conjugate inverse Fourier transform, such that: 

𝑔(𝑦) =
1

2𝜋
∫ 𝑒

∞

−∞
𝑥𝑝[−𝑖𝛽𝑦] ∗ 𝑒𝑥𝑝 [∑

(𝜅𝑗
𝑔

)(𝑖𝛽)𝑗

𝑗!
∞
𝑗=1 ] 𝑑𝛽.      (14) 

Expanding the first two terms of the series and substituting 𝑖𝛽 for the operator 𝐷𝑌
†
 we have 

that: 

𝑔(𝑦) = exp [∑ 𝜅𝑗
∞
𝑗=3

(𝐷𝑌
†)

𝑗

𝑗!
] ∗

1

2𝜋
∫ 𝑒

∞

−∞
𝑥𝑝[−𝑖𝛽𝑦] ∗ 𝑒𝑥𝑝 [𝑘1𝑖𝛽 −

𝑘2

2
𝛽2] 𝑑𝛽 (15) 

The term 
1

2𝜋
∫ 𝑒

∞

−∞
𝑥𝑝[−𝑖𝛽𝑦] ∗ 𝑒𝑥𝑝 [𝑘1𝑖𝛽 −

𝑘2

2
𝛽2] corresponds with the inverse transform of 

the characteristic function that recovers the normal pdf, therefore if 𝑘1 = 𝜇, 𝑘2 = 𝜎2, 𝑔(𝑦) 

is expressed as in Eq. 16: 

𝑔(𝑦) = exp [∑ 𝜅𝑗
∞
𝑗=3

(𝐷𝑌
†)

𝑗

𝑗!
] 𝜙(𝑦),        (16) 

where 𝜙(𝑦) is the normal standard pdf with mean 𝜇 and variance 𝜎2. 

Thus exp [∑ 𝜅𝑗
∞
𝑗=3

(𝐷𝑌
†

)
𝑗

𝑗!
] is the kernel 𝛹(𝐷𝑌

†) which relates 𝑔(𝑦) to 𝜙(𝑦) and is orthogonal 

to 𝜙(𝑦|𝜇, 𝜎2). Following Davis (1976), the kernel can be expressed as a Maclaurin series: 

𝑔(𝑦) = [∑ 𝑐𝑗
∞
𝑗=3

(𝐷𝑌
†)

𝑗

𝑗!
] 𝜙(𝑦|𝜇, 𝜎2).         (17) 
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For empirical applications of the model, the orthogonality property of 𝛹 concerning 𝜙 allows 

truncating the kernel to finite order 𝐽, thus: 

𝑔(𝑦) = [∑ 𝑐𝑗
𝐽
𝑗=3

(𝐷𝑌
†)

𝑗

𝑗!
] 𝜙(𝑦).         (18) 

Assuming that 𝜙 is the standard normal distribution with 𝜇 = 0 and 𝜎2 = 1, we expand the 

series up to 𝐽 = 4, such that: 

𝑔(𝑦) = [1 +
𝑐3(𝑥3 − 3𝑥)

6
+

𝑐4(𝑥4 − 6𝑥2 + 3)

24
] 𝜙(𝑦) 

= [1 +
𝑐3ℎ3

6
+

𝑐4ℎ4

24
] 𝜙(𝑦).           (19) 

In general: 

ℎ𝑗 =
𝐷𝑌

†(𝑗)
𝜙(𝑦)

𝜙(𝑦)
,            (20) 

ℎ𝑗  corresponds with a polynomial function known as Hermite Polynomial (HP) of order j, 

which forms an orthonormal basis with respect to the reference function 𝜙(𝑥), such that: 

∫ ℎ𝑗
∞

−∞
(𝑧)ℎ𝑖(𝑧)𝜙(𝑦) = 0, ∀𝑗 ≠ 𝑖.        (21) 

This property allows truncating the series of HPs at finite order 𝑗 = 𝐽, preserving up to one 

integration of 𝑔(𝑦) under certain regularity conditions (Cramér, 1925). 

In general, 𝑔(𝑦) can be expressed as 

𝑔(𝑦; 𝑑) = [1 + ∑ 𝑑𝑗
𝐽
𝑗=3 ℎ𝑗(𝑥)]𝜙(𝑥),         (22) 

where 𝑑  is a vector of parameters (𝑑1, 𝑑2, . . . . , 𝑑𝐽, ) containing the corresponding 

information of the distortions of the cumulants of 𝑔(𝑦) with respect to those of the normal 

distribution. 

Integrating on both sides of Eq. 22 yields an approximation to the CDF of 𝑌, as expressed in 

23: 

𝐺(𝑦; 𝑑) = ∫ 𝑔𝑛
𝑦

−∞
(𝑡)𝑑𝑡, = 𝛷(𝑦) − ∑ ℎ𝑗−1

𝐽
𝑗=1 (𝑦)𝑑𝑗𝜙(𝑦).        (23) 
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In Eq. 23, 𝛷 is the standard normal CDF. 

Parameter estimation 

Deterministic component 

The deterministic component 𝜇(𝑡), expressed in Eq. 8, depends on the amplitude, phase, and 

frequency parameters of the wave spectrum used to describe the periodic behavior of CAR. 

To identify the contribution of each wave function with frequency 𝜔𝑖 to the variance of the 

stochastic process describing CAR, we use the periodogram, which is a function 

corresponding to the discrete Fourier transform of the autocovariance function 𝛾(𝜏). The 

frequencies 𝜔𝑖 that contribute most to the variance of the stochastic process will be those 

where the value of the periodogram function is the largest. Since the discrete Fourier 

transform starts from an arbitrary set of frequencies, the exact value of the frequencies 𝜔𝑖 is 

unknown; therefore, the frequency parameter must also be estimated. For the estimation of 

these parameters, a nonlinear least squares regression is carried out, for which the frequencies 

of the periodogram are used as the initial values for 𝜔𝑖. Following Lucia & Schwartz (2002), 

the discrete version of Eq. 3 can be written according to Eq. 24: 

𝐶𝐴𝑅𝑡 = 𝜙𝐶𝐴𝑅𝑡−1 + 𝜇(𝑡) − 𝜙(𝜇(𝑡 − 1)) + 𝑎𝑡 ,        (24) 

𝜅 = 𝜙 − 1 and 𝑎𝑡 is a random error. 

Gram-Charlier parameters 

In most applications of Gram-Charlier expansions, the parameters are estimated using the 

Maximum Likelihood (ML) method. Assuming that the first two moments of the distribution 

are well specified, global optima guarantee that 𝑔(𝑦; 𝑑) is positive (Del Brio &Perote, 2012). 

For a sample of size 𝑇, the log-likelihood function 𝑙𝑜𝑔(𝐿) is given by: 

𝑙𝑜𝑔(𝐿) = −
𝑇

2
𝑙𝑜𝑔(2𝜋) −

1

2
∑ 𝑙𝑇

𝑡=1 𝑜𝑔(𝑦𝑡
2) + ∑ 𝑙𝑇

𝑡=1 𝑜𝑔([1 + ∑ 𝑑𝑗
𝑛
𝑗=3 ℎ𝑗(𝑦𝑡)]).  (25) 

III.4. Empirical Analysis  

This section presents the results of the empirical analysis of the application of the model on 

a sample of the historical time series of the CAR of four countries, the Netherlands, the 
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United States of America (USA), Germany, and Colombia. In the first part, a description of 

the sample data is given. The second part presents the pdfs' estimated parameters and then 

the estimated PBT and CCB series. Finally, the VAR model results that relate the PBT to the 

monetary policy interest rate are presented. 

The historical CAR time series sample was taken from the CEIC database, which provides 

the CAR reported by different countries. For modeling, we take complete available data from 

the most ancient date till the most recent date at the moment of the sampling, at the higher 

disposable frequency. 

The countries to be analyzed were selected based on the size of the available samples so that 

their behavior at critical moments, such as the 2008 crisis and the impact of COVID-19, could 

be observed, and their global systemic importance. Banking in the USA is of great 

importance globally due to the size of its financial market, the dominance of the US dollar, 

its role in financial innovation, and its regulatory influence. As a result, banks in USA are 

essential players in international financial markets, and their performance impacts the global 

economy. European Union (E.U.) banking is also one of the critical global players due to the 

size of its financial market, its economic influence, and its role in financial regulation 

globally, with regulations such as Basel III and MiFID II (Markets in Financial Instruments 

Directive II) having a significant impact on banking and financial markets worldwide. On 

the other hand, banking in emerging countries is becoming increasingly important globally 

due to economic growth, geographic diversification, innovation, and new players in 

international financial markets. As these banks expand and acquire a more significant 

presence in global financial markets, they are expected to have an increasing impact on the 

global economy and the banking industry worldwide. 

 

 

III.4.1 Description of the sample 

Table III.1 presents descriptive statistics for the four countries in the sample. The frequency 

of the series for the Netherlands, USA, and Germany are quarterly, while for Colombia, the 
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data are monthly. Germany has an average CAR of 17.62%, the highest in the sample, 

followed by the Netherlands, with an average of 15.28%. The USA has the lowest average 

but has the lowest volatility (1.03 quarterly). The highest volatility is that of the Netherlands, 

being 4.38% quarterly, followed by Colombia, which has a monthly volatility of 1.81%, 

which under the normality assumption is equivalent to 3.62% quarterly. The Netherlands and 

Colombia have a positive skewness, while the USA and Germany have a negative skewness. 

The Netherlands and USA series are platykurtic, while the German and Colombian series are 

leptokurtic. 

 

Table III.1 Descriptive statistics for CAR 

Country Frequency Start End Average Std  Skew K Min Max 

Netherlands Quarterly 1998-03 2021-06 15.28 4.38 0.79 -1.09 10.90 23.20 

USA Quarterly 2001-12 2021-06 13.82 1.03 -0.21 -1.40 12.15 15.57 

Germany Quarterly 2008-12 2020-12 17.62 1.53 -1.03 0.01 13.54 19.38 

Colombia monthly 2002-01 2021-11 14.48 1.81 1.03 2.18 10.91 20.39 

Note: This table shows the descriptive statistics for the four countries in the sample: the Netherlands, the United 

States (USA), Germany, and Colombia. Start and End correspond to the dates the series begins and ends, 

respectively. Std=standard deviation, Skew=skewness, K=excess kurtosis coefficient, Min= minimum CAR, 

Max=maximum CAR. 

 

III.4.2 Outlier detection 

Figure III.2 presents the CAR's time series graph, adjusted for outliers and outliers for the 

analyzed sample. The series for the Netherlands shows an exponential growth trend after the 

2008 financial crisis. The average solvency of the Netherlands until 2008 was 11.77%. 

However, after the crisis, the average increased to 18.25%, implying a more than 50% rise in 

the indicator level. The USA series also shows a significant increase in solvency levels after 

the 2008 financial crisis, with the average rising from 12.71% to 14.68%. The time series of 

bank solvency in Germany converges logarithmically to a value close to 19%. For Colombia, 

the series converges to a value close to 15% until December 2020. In January 2021, a 

significant increase in solvency levels was observed, reaching a level close to 20%. 

According to Franses & Haldrup (1994), the existence of outliers can generate type I error 

by rejecting the null hypothesis that states the presence of unit roots. To control for the 
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existence of outliers in the unit root hypothesis testing, we apply the approach described by 

Chen & Liu (1993) in which the detection of additive innovational outliers ("IO"), additive 

outliers ("AO"), level shifts ("LS"), temporary changes ("TC") and seasonal level shifts 

("SLS") is implemented. The Netherlands series presents AO in February and April 2008, 

February 2010, and LS in March 2009, March 2009, March 2014, January and April 0216, 

and February 2017. The USA series presents AO in January 2016 and January 2022. 

Germany presented a level change in January 2016, and Colombia presented LS in May 2006, 

August 2013, July 2020, and January 2021. 

 

Figure III.2 Evolution of CAR, CAR adjusted by outliers, and outliers for the Netherlands, 

USA, Germany, and Colombia 
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Table III.2 Unit root test 

 p-value (Netherlands) p-value (USA) 
p-value 

(Germany) 

p-value 

(Colombia) 

Augmented Dickey-Fuller 

𝐲𝐭−𝟏 1.90e-06 0.087020 0.01089 0.0785 

ADF-GLS 

𝐲𝐭−𝟏 0.01715 0.001840 0.0568 0.00082 

HEGY 

Ha 0.0652 0.0655 0.0433 0.044 

Hb --- --- --- 0.0013 

Hc --- --- --- 3e-04 

Hd --- --- --- 0.0492 

He 0.0069 0.0115 0.0182 0.0027 

Hf --- --- --- 0.0632 

Hg 0.000 0.000 0.000 0.000 

Note: This table presents the p-values of the Augmented Dickey-Fuller, DF-GLS, and HEGY unit root tests of 

CAR adjusted for the Netherlands, USA, Germany, and Colombia. The Augmented Dickey-Fuller test includes 

drift for the Netherlands, Germany, and Colombia and trend for Germany, and the number of lags is selected 

using the BIC criterion. The ADF-GLS test includes drift for the Netherlands and Trend for the United States 

(USA), Germany, and Colombia. The HEGY test consists of drift and seasonal dummies for the Netherlands 

and Germany and drift and trend for the USA and Colombia. The number of lags is selected using the AIC 

criterion. The presence of unit roots is tested with the corresponding null hypotheses: Ha: non-seasonal unit 

root, Hb: bi-monthly unit root, Hc: unit root for four-month periods, Hd: quarterly unit root, He: semi-annual 

unit root, Hf: root at the frequency 5π/6, Hg: annual unit root.  

 

Table III.2 presents the p-values of the unit root tests for the time series analyzed. For the 

classical Dickey-Fuller test, the null hypothesis that states the presence of unit roots is 

rejected at 1% significance for the Netherlands, 5% for Germany, and 10% for the USA and 

Colombia. The DF-GLS test proposed by Elliott et al. (1996), which improves the power of 

the test by considering the serial correlation, rejects the null hypothesis at 1% for USA and 

Colombia, 5% for the Netherlands, and 10% for Germany. The HEGY test proposed by 

Hylleberg et al. (1990), which tests for the presence of seasonal unit roots, rejects the null 

hypothesis that states the existence of non-seasonal and seasonal unit roots at a maximum 

significance level of 10%. 

 

III.4.3 Estimated parameters 

Table III.3 presents the estimated parameters of the deterministic component and the Gram-

Charlier pdfs of the series under analysis. For the Netherlands, cycles with periods of 

approximately one year, 7.5 years, and 0.5 years (annual frequency of 0.952, 0.133, and 

2.11), respectively, are identified (annual frequency of 0.952, 0.133, and 2.11, respectively), 
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being the cycle with a period of 7.5, the one with the largest amplitude, with a difference 

between peak and trough of 1.46%. Given the exponential growth of the Dutch time series, 

a trend parameter is included, which indicates that solvency grows approximately 0.2% 

quarterly, implying annual growth of 0.82%.  

For the USA, cycles with periods of 10.5 years, six years, 0.5 years, and 1.9 years are 

identified, with the cycle with a period of 0.5 being the one with the largest amplitude, with 

a difference between peak and trough of 1.52%. Given the jump observed in the USA. series 

after the 2008 financial crisis, a dummy variable is included, which indicates that the 

solvency level increased by 1.57% on average. For Germany, cycles of one year, 4.6 years, 

and 0.5 years are identified, being the 4.6-year cycle the one with the highest variability, with 

a difference between peak and trough of approximately 1%. For Colombia, cycles with 

periods of 0.5 years, four years, and one year are identified. The 4-year cycle has the highest 

variability, with a difference between peak and trough of approximately 1.7%. In terms of 

the Gram-Charlier parameters, it is found that the skewness and excess kurtosis parameters 

are significant for the Netherlands and Colombia. 

In contrast, for Germany, only the excess kurtosis parameter is significant. For the USA, 

neither parameter is significant, which implies that the normality assumption can be assumed 

without significant loss of precision. The standard deviation of USA solvency is less than 

half that of the other countries (under the assumption of normality, Colombia's standard 

deviation is 0.93% quarterly). 

 

Table III.3 Fitted parameters of the Ornstein-Uhlenbeck process under Gram-Charlier 

pdf 
 

Netherlands USA Germany Colombia 

parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

𝜽 4.54 0.201 14.609 0.000 18.799 0.000 15.379 0.000 

𝑪𝟏 0.142 0.018 -0.761 0.000 -0.208 0.002 0.164 0.001 

𝝉𝟏 17.67 0.000 10.209 0.000 18.699 0.000 4.116 0.000 

𝝎𝟏 0.952 0.000 0.096 0.000 0.997 0.000 2.052 0.000 

𝑪𝟐 -0.73 0.062 0.286 0.001 0.48 0.069 0.859 0.027 

𝝉𝟐 25.02 0.000 3.282 0.000 19.657 0.000 1.34 0.154 

𝝎𝟐 0.133 0.000 0.169 0.000 0.218 0.000 0.241 0.000 

𝑪𝟑 0.112 0.007 -0.032 0.024 0.153 0.003 0.199 0.042 

𝝉𝟑 18.022 0.000 3.756 0.000 20.543 0.000 5.267 0.000 

𝝎𝟑 2.11 0.000 1.907 0.000 2.04 0.000 0.993 0.000 

𝑪𝟒   0.061 0.091         
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𝝉𝟒   -0.108 0.927         

𝝎𝟒   0.527 0.000         

Dum Crisis     -1.569 0.000      

Trend 0.205 0.000       

  0.940 0.000 0.739 0.000 0.898 0.000 0.965 0.000 

Std  dvt 0.541  0.157  0.403  0.536  

𝒅𝟑 0.12297 0.007         0.0795 0.024 

𝒅𝟒 0.07361 0.003 
 

  0.10603 0.002 0.10347 0.000 

Note: This table presents the estimated parameters and p-values of the deterministic component and the Gram-

Charlier pdfs of the series under analysis. The countries in the sample are the Netherlands, the United States (USA), 

Germany, and Colombia. 𝜃 is a constant, 𝐶𝑖 , 𝜏𝑖 , 𝜔𝑖 are the amplitude, phase, and frequency of each cycle 𝑖. 

 

Figure III.3 Comparison between the frequency histograms of the normalized residuals of 

the mean model, the normal (solid line), and G.C. (dashed line) probability density 

functions 

 

This Figure compares the fits of the normal and the Gram-Charlier pdfs to the frequency histogram of the 

analyzed series. In general, it is observed that the right tail of the Gram-Charlier pdf is fatter than the normal 

pdf, except for the USA series, for which no significant differences are observed. 

 

Figure III.4 presents the PBT within one year, estimated from Eq. 5. The minimum solvency 

levels were arbitrarily set such that the probability was binding. The minimum solvency 

requirements have varied over time, according to the regulatory changes introduced in the 

different versions of the Basel Accord. This risk indicator has a cyclical behavior governed 
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by the estimated mean function. It depends on the estimated standard deviation, skewness, 

and kurtosis, as well as the speed of mean reversion. 

 

Figure III.4 Estimated series of the probability of breaching the minimum solvency 

requirements one year ahead 

 

III.4.4 Estimated CCB 

Figure III.5 presents the CCB estimated from Eq. 7, assuming that the probability of breaking 

the minimum solvency requirement threshold within one year is less than or equal to 1%. For 

the Netherlands and the USA, the required CCB levels decreased markedly after the shock 

caused by the 2008 crisis. For Germany and Colombia, the required levels of the CCB 

fluctuate more homogeneously within the analyzed period.   
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Figure III.5 The Countercyclical Capital Buffer estimated series with parameter =1% 

for a time horizon of one year 

 

Figure III.6 shows the responses of the probability of breaching the minimum solvency 

threshold (𝑃𝐵𝑇0) to monetary policy interest rate shocks (6a, 6c, 6e, and 6g) and the 

responses of the volume of loans granted by banks to changes in the probability of breaching 

the minimum solvency threshold (6b, 6d, 6f, and 6h). These results are then obtained from 

the estimation of Vector Autoregressive (VAR) models where the 𝑃𝐵𝑇0 is chosen as the most 

endogenous variable. The variables used in the model for each country are the unemployment 

level indexes, the GDP indexes, the monetary policy interest rate, the level of loans granted 

by banks, and the inflation indexes with a quarterly frequency. Figures III.6a, 6c, 6e, and 6g 

show that interest rate raises lead to an increase in 𝑃𝐵𝑇0, although, for Germany and 

Colombia, the change in 𝑃𝐵𝑇0 is initially negative. For the Netherlands and the USA, the 

effect of monetary policy interest rate shocks persists up to about two years; for Germany, 

the effect persists up to about five years; for Colombia, the effect persists for four years. The 

response of lending volumes to increases in 𝑃𝐵𝑇0 is positive for the USA and negative for 
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the Netherlands and Germany. Colombia presents a negative response in the first year and a 

positive one after that, persisting for approximately five years. 

 

Figure III.6 Responses of the probability of breaching the minimum solvency threshold to 

monetary policy interest rate shocks (6a, 6c, 6e, and 6g). Response of the volume of credit 

provided by banks to changes in the probability of breaching the minimum solvency 

threshold (6b, 6d, 6f, and 6h) 

 

III.5. Conclusions   

This article proposes a model to estimate the PBT and the CCB established in the Basel III 

agreement, considering the cyclical behavior of business that affects bank solvency levels 

and the characteristics of the bank solvency ratio pdf. As a by-product, and on the basis of a 

Vector Autoregressive model, the effect of the monetary policy interest rate on the 

probability of breaching the minimum capital threshold and the effect of this probability on 

credit granting decisions is discussed. 

The results indicate that prudential policies based on the accurate estimation of regulatory 

Capital are relevant in lending decisions, affecting banks' effectiveness in transmitting 

	

Netherlands	 USA	 Germany	 															Colombia	

	 	 	 	

(a)	 (c)	 (e)	 																									(g)	

	 	 	 	

(b)	 (d)	 (f)	 																									(h)	
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monetary policy. The effect of the interest rate on PBT is a combined effect of the Bank-

Capital Channel and the Risk-Taking Channel, referred to as the bank-solvency channel. 

These channels are key to understand how monetary policy decisions affect financial 

stability. Monetary policy interest rate shocks affect lending decisions through the effect of 

the monetary policy interest rate on PBT. This evidence suggests that prudential and 

monetary policy decisions should be made jointly. 

The significance of the skewness and kurtosis parameters proves that the solvency pdfs 

exhibit heavy tails. Failure to consider these stylized facts leads to under- or overestimating 

risk, which can affect lending decisions. Given the convergence of CAR to levels that limit 

insolvency risk and do not make banks' profitability more expensive, the mean reversion 

assumption underlying the Ornstein-Uhlenbeck processes seems appropriate for CAR 

modeling. 

Determining the CCB through QRMs allows for limiting the risk through insolvency by 

considering the risk appetite, the distance between the observed solvency and the minimum 

capital threshold, the volatility of solvency, and the behavior of the tails of its probability 

distribution. Spectral analysis is a practical methodology for determining insolvency risk and 

the size of CCB. 

The analyzed samples of the bank solvency indicator present short and long-term periodic 

behaviors. The estimated waves with periods of one year or less can be explained by seasonal 

effects related to the frequency of accounting reports and distribution of dividends; cycles 

with periods longer than one year can be associated with phenomena related to business 

cycles and credit activity. In the analyzed sample, the cycles with the most extended duration 

also have the most significant variability. 

The effects of the monetary policy rate increase the PBT, and the effect persists in the long 

term. Increases in the PBT negatively affected the credit supply for the Netherlands, 

Germany, and Colombia, which can be associated with an increase in the cost of Capital. For 

the USA, increases in interest rates increased lending levels, which may be associated with 

the higher profitability of loans associated with higher interest rates. 
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PBT measurement and CCB determination are essential tools for financial institutions and 

regulators because they help to anticipate potential losses and take preventive measures to 

avoid insolvency, increase resilience, facilitate effective regulation, and maintain 

transparency and confidence in the financial system. On the other hand, the analysis of the 

relationship between the PBT and the monetary policy interest rate is of particular importance 

for economic regulation, given the effect it has on inflation, investment decisions, 

consumption, and employment. A change in the interest rate can increase the risk of PBT and 

decrease banks' capacity as a transmission channel for monetary policy. 

A potential limitation of our methodology is the fact that the analyses of the CAR series are 

performed at a univariate basis. For future research, the multivariate analysis of CAR with 

macroeconomic variables, such as GDP and the monetary policy interest rate, could allow 

cross-correlation parameters to identify lags between CAR and economic cycles so that 

prudential decisions can be made depending on the phases of the economic cycle. 
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CHAPTER IV. Macroprudential Stress Testing 

Using a Semi-nonparametric Approach 

IV.1 Introduction 

Monetary policy is today one of the main elements in maintaining economic stability. The 

central bank strategy of target inflation that seeks to stabilize prices in the economy by 

controlling the money supply and the reference interest rate has been implemented in 

different economies globally (Vega & Winkelried, 2005). Within economic stability, the 

prudential policy plays a fundamental role, given that the financial system is essential for 

economic transactions and represents the main transmission channel for monetary 

policy(Claessens, 2015) . A stable financial system efficiently allocates economic resources 

and manages financial risks, which implies the absorption of losses caused by materializing 

risks. 

The financial crisis in 2007-08, unleashed by the materialization of systemic risks in the 

banking sector in the United States and some countries globally, have raised the relevance of 

macroprudential policy to prevent excessive risk-taking in the financial sector and mitigate 

its potential effects on the real economy (Bengtsson, 2020).. The relationship between the 

stability of the financial system as a whole and the economy's performance has become a 

priority for policymakers and academics as the conception of financial stability policy has 

changed (Ebrahimi Kahou & Lehar, 2017) . After the 2008 financial crisis, the Basel 

Committee of Banking Supervision (BCBS) recognized in the Basel III accord the 

importance of macroprudential policies and, particularly, (i) the provision of countercyclical 

capital buffers and additional buffers for the most systemically entities at the global and local 

level; and (ii) the implementation of stress testing as a fundamental risk management tool for 

banking supervisors and macroprudential authorities(Committee, 2018). 

 

Le Quang & Scialom (2022) argue that before the crisis, it was assumed that the combination 

of microprudential policies based on the individual stability of financial institutions and 

monetary policies that kept inflation under control was sufficient to ensure financial stability.. 
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Borio (2003) makes a comparison between micro and macroprudential perspectives, noting 

that while the microprudential perspective aims to limit the risks of individual institutions in 

order to protect depositors and investors, the macroprudential policy aims to limit risks in the 

financial system to avoid the costs generated by banking instability on economic growth. In 

addition, it is crucial to consider correlation and common exposures across the system from 

the macroprudential perspective. 

At the beginning of the 2020s, financial stability had to face the effect of the coronavirus 

pandemic (COVID-19), where policymakers adopted expansionary monetary policy regimes 

to ensure a sufficient supply of credit, which caused a generalized increase in leverage levels 

and a substantial decline in creditworthiness (Rendón et al., 2021). Subsequently, inflation 

globally began to accelerate, driven mainly by low-interest rates, the climate crisis, the war 

in Ukraine, and increased geopolitical risks caused by political tensions between China and 

the United States (IMF,2023). 

In response, central banks rapidly increased monetary policy interest rates. For example, the 

US Federal Reserve's interest rate rose from 0.25% to 5% between the first quarter of 2022 

and the first quarter of 2023. This situation has led to banking instability, which has resulted 

in a decrease in liquidity and bank solvency, and the collapse of Silicon Valley Bank (SVB) 

in early 2023. SVB had concentrated most of its assets in fixed-income instruments, such as 

US Treasury bonds. These bonds fell sharply in value as interest rates rose. When they were 

required to meet the demand for liquidity generated by deposit withdrawals that exceeded 

cash reserves, they realized losses that undermined the confidence of their customers, leading 

to a run on the banks. The collapse of SVB increased systemic risk, with consequences for 

other banks, such as Signature Bank, which also had to be closed. In April 2023, First 

Republic Bank (FRB) collapsed for similar reasons to SVB, having to be intervened by the 

Federal Deposit Insurance Corporation (FDIC), which as a rescue strategy, allowed the 

acquisition of FRB by JP Morgan Chase. 

The International Monetary Fund in the Global Financial Stability Report published in April 

2023 (IMF, 2023) lays out the challenge for policymakers to safeguard financial stability in 

an environment of high inflation, high geopolitical risks, and fragile financial market 

confidence. Le Quang & Scialom (2022) argue that, although the 2007-08 crisis has prompted 
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a renewal of financial regulation toward adopting macroprudential policies, this regulation is 

still incomplete, failing to consider extreme external risks such as a pandemic, geopolitical 

or climate risks.  Borio & White (2004) posits the need to modify the current monetary and 

prudential policy frameworks to mutually reinforce price and financial stability to prevent 

financial imbalances that might jeopardize the objectives of both policies.  

In this context, monetary and prudential policy decisions are linked. Monetary policy must 

consider the capital constraints due to the composition of the risk and liquidity portfolios of 

the banks used as transmission channels. On the other hand, prudential policy should be set, 

considering the needs of monetary policy transmission. Formulating macroprudential 

policies requires methodologies allowing adequate systemic risk measurement in both its 

cross-sectional and time series dimensions (Borio, 2003). In its cross-sectional dimension, it 

is required to establish the connection between financial entities and their contribution to the 

systemic risk − see Adrian & Brunnermeier (2011) for a VaR measure based on the marginal 

contributions of financial entities to systemic risk. The time series dimension is also relevant 

for measuring the procyclicality between macrofinancial stability indicators and 

macroeconomic variables.  

This paper proposes a methodology for conducting macroprudential stress tests, focusing on 

the joint modeling of the probability distributions of a leverage indicator (used as an indicator 

of the stability of a financial system) and the monetary policy interest rate (as a variable that 

can affect the stability of a financial system). For modeling the dynamics between variables 

and their probability distributions, we use the Dynamic Conditional Correlation - Semi-

nonparametric (DCC-SNP) model that allows modeling stylized facts such as the skewness 

and kurtosis of the marginal probability density function (pdf) and the dynamic conditional 

correlation between variables. In addition, bivariate spectral analysis is applied to analyze 

the cyclical dynamics between interest rate and bank leverage. As an application case, we 

use the monthly series of the ratio of equity to total assets of US commercial banks as an 

indicator of leverage and the 3-month Treasury Bill as an indicator of the interest rate to 

estimate the model parameters. Finally, we performed macroprudential stress tests of the 

impact of the interest rate on the leverage indicator for a 5-year horizon, using Monte Carlo 

simulations. We find that, for the projection period, high and low-interest rate scenarios 

increase leverage, while a medium-rate scenario has a decreasing effect on bank leverage. 
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The Dynamic Conditional Correlation (DCC) model (Engle, 2002) is one of the most 

successful approaches to parameterizing the variance-covariance matrix. This model presents 

the dependence structure in a parsimonious way. However, its extension beyond the 

normality assumption is not trivial. Therefore, different solutions have been provided to 

model the non-Gaussian multivariate distribution (Engle & Gonzalez-Rivera, 1991; Engle & 

Sheppard, 2001; Bauwens, Laurent, & Rombouts, 2006). Another approach is the semi-

nonparametric approach (SNP) corresponding to an extension of the multivariate Gaussian 

through the Gram-Charlier series that are valid asymptotic approximations to any empirical 

distribution under regularity conditions (Sargan, 1975; Phillips, 1977). In the field of finance, 

different authors have used a multivariate SNP extension to capture the distribution of 

financial returns, with a applications to different fields, including risk quantification or 

cryptocurrency portfolios (Mauleón, 2003; Mauleón, 2006; Del Brio et al., 2011; Mora-

Valencia, 2017; Jiménez et al., 2020). 

Stress testing encompasses different methodologies that can be performed at different 

degrees of portfolio aggregation, ranging from the individual analysis of an asset to an 

institutional and systemic level of aggregation that assesses the effects of possible extreme 

macroeconomic stress events. The Basel Committee on Banking Supervision (BCBS) 

published 2018 a document that updates the guidelines for conducting stress tests as a tool 

for risk management and informing business decision-making. This document states that the 

models and methodologies to assess the impact of different macroeconomic scenarios must 

have the appropriate level of sophistication to achieve the objectives of the exercise and for 

the importance of the portfolios that these models are monitored (BCBS, 2018). 

Stress tests are performed on various indicators that evaluate a financial institution's capacity 

to withstand adverse market shocks. The leading indicators used include (i) the Capital 

Adequacy Ratio, which is a solvency indicator calculated as the ratio between Tier Capital 

and risk-weighted assets; (ii) liquidity indicators that measure the capacity of a financial 

institution to meet its short-term obligations without incurring losses from the liquidation of 

assets; and (iii) the Leverage Ratio, which measures the ratio between Tier Capital and total 

non-risk-weighted assets. These indicators are subject to adverse shocks related to interest 

rate changes, increases in credit default levels, and increased market risks. 
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The results show that stress tests should consider the asymmetries and heavy tails of the pdfs 

associated with financial stability indicators and the dynamics of the correlation between 

financial stability indicators and macroeconomic variables. 

The remainder of this article is organized as follows: Section 2 presents the methodology 

employed, including the mathematical model and the methodology for parameter estimation. 

Section 3 presents an application case for the United States, discussing the results on the 

model estimation and the stress testing analysis of different interest rate scenarios. Finally, 

concluding remarks and recommendations are presented in the last section. 

IV.2. Methodology 

IV2.1 Stochastic process 

Let the interest rate and the leverage ratio (LR) follow a multivariate Ornstein-Uhlenbeck 

stochastic process as expressed in equation 1, 

𝑌𝑡 = 𝜇(𝑡) + 𝑋𝑡,                                                     (1) 

where 𝑌𝑡 is a multi-dimensional vector representing the interest rate, and LR.  𝜇(𝑡) is a multi-

dimensional vector containing deterministic functions in the time domain for each variable 

and 𝑋𝑡 is a multi-dimensional stochastic process governed by a Stochastic Differential 

Equation (SDE) described below. 

𝑑𝑋𝑡 = −𝜅𝑋𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡,                                              (2) 

where 𝜅 y 𝜎 are real square matrices of order 𝑑, and 𝑊𝑡 is a standard Wiener process. 

Therefore, it follows that 

𝑑𝑋𝑡 = 𝜅(𝜇(𝑡) − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡,                                     (3) 

and, according to Vatiwutipong & Phewchean (2019), the conditional mean and variance of 

the process are given in equation 4: 

𝑀0(𝑡) = 𝐸(𝑌𝑡/𝑋0) = (𝐼 − 𝑒−𝜅𝑡)𝜇(𝑡) + (𝑋0)𝑒−𝜅(𝑡) 

𝑋0 = 𝑌0 − 𝜇(0) 
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𝛴0(𝑡) = 𝑣𝑎𝑟(𝑌𝑡/𝑋0) = ∫ 𝑒𝜅(𝑡−𝑠)
𝑡

0

𝜎𝜎𝑇𝑒𝜅𝑇(𝑠−𝑡)𝑑𝑠.                         (4) 

The joint pdf of 𝑌𝑡 is  

𝑓(𝑌𝑡) =

𝑒𝑥𝑝 (−
1
2 (𝑌𝑡 − 𝑀0(𝑡))

𝑇
)Σ0

−1(𝑡)(𝑌𝑡 − 𝑀0(𝑡)))

√|2𝜋𝛴0(𝑡)|
,            (5) 

and each component 𝜇𝑖(𝑡) of the vector 𝜇(𝑡) can be expressed as in equation 6: 

𝜇𝑖(𝑡) = 𝛼𝑖 + ∑ 𝐶𝑗𝑖 ∗ 𝑐𝑜𝑠 (𝜏𝑗𝑖 +
𝜔𝑗𝑖2𝜋 ∗ 𝑡

𝑇
)

𝑛

𝑗=0

,                        (6) 

where  𝑖 is a constant; 𝐶𝑗𝑖 , 𝜏𝑗𝑖 ,  and 𝜔𝑗𝑖 are the amplitude, phase, and frequency of each wave 

component; and T is the number of observed periods per year. 

IV.2.2 Joint DCC-SNP density function. 

The multivariate Ornstein-Uhlenbeck stochastic process assumes that the pdf presented in 

equation 5 is a multivariate normal distribution with constant variance-covariance matrix. In 

order to capture stylized facts of the marginal distributions of the interest rate and LR, such 

as skewness and kurtosis, and the correlation dynamics, we use the DCC-SNP model 

proposed by Del Brio et al. (2011) and Jiménez et al. (2020), which generalizes the Dynamic 

Conditional Correlation model proposed by Engle (2002), from the Taylor series expansion 

of the characteristic function of the gaussian pdf, which allows the estimation of parameters 

for the upper moments of the marginal pdfs. 

Following the vector notation proposed by Dharmani (2018), we define 𝑌𝑡 = (𝑦1, 𝑦2, . . . , 𝑦𝑑) 

as a d-dimensional random vector, and 𝑓(𝑌𝑡) being the joint pdf associated with 𝑌𝑡. The 

characteristic function ℱ(β) associated with 𝑌𝑡 is defined as the expected value of 𝑒𝑖𝑌𝑡
´𝛽, with 

𝑖 being the imaginary unit and 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑑) ∈ ℝ𝑑. 

ℱ(β) = 𝐸[𝑒𝑖𝛽𝑌𝑡
′
] = ∫ .

∞

−∞

. . ∫ 𝑒𝑖𝛽𝑌𝑡
′

∞

−∞

𝑓(𝑌𝑡)𝑑𝑌𝑡 .                    (7) 

Expanding ℱ(β) as a Maclaurin series, we have that  
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ℱ(β) = ∑ 𝑐𝑗
′

∞

𝑗=0

(𝑖𝛽)⊗𝑗

𝑗!
= 𝑒𝑥𝑝 [∑ 𝜅𝑗

′

∞

𝑗=1

(𝑖𝛽)⊗𝑗

𝑗!
] ,                            (8) 

where 𝑐𝑗 and 𝜅𝑗 correspond to the vector of moments and the vector of cumulants of order 𝑗, 

respectively, ⊗ is the Kronecker product operator and (. )⊗𝑗 = (. ) ⊗ (. ) ⊗. . .⊗ (. ) (𝑗 

times). 

Let the differential operator ∇𝑌 and its adjoint ∇𝑌
†
 be 

∇𝑌= (
∂

∂𝑦1
,

∂

∂𝑦2
)

′

and ∇𝑌
†= (−

∂

∂𝑦1
, −

∂

∂𝑦2
)

′

.                              (9) 

Assuming that function 𝑓(𝑌𝑡) is differentiable 𝑚 times, the Kronecker product between ∇𝑌 

and 𝑓(𝑌𝑡.) is 

∇𝑌
⊗𝑓(𝑌𝑡) = 𝑉𝑒𝑐 (

∂𝑓

∂𝑌𝑡

) ",                                        (10) 

where ∇𝑌
⊗

 is the Kronecker derivative operator, and 𝑉𝑒𝑐 is an operator that converts the 

𝑚 × 𝑑 matrix into a column vector 𝑚𝑑 × 1. 

Following Cohen (1998), given two joint density functions 𝑓(𝑌𝑡) and 𝑔(𝑌𝑡), and their 

respective characteristic functions  𝜁𝑓(𝛽) and 𝜁𝑔(𝛽)  and these can be related through a 𝛹(𝛽) 

kernel that is a function of the two pdfs, such that 

𝛹(𝛽) =
𝜁𝑔(𝑖𝛽)

𝜁𝑓(𝑖𝛽)
.                                                     (11) 

Given the properties of the derivative of the Fourier transform, where ∇𝑌
†𝑒𝑥𝑝(−𝑖𝛽𝑌𝑡

´) =

−𝑖𝛽 ∗ 𝑒𝑥𝑝(−𝑖𝛽𝑌𝑡 )', the differential operator ∇𝑌
†
 that can replace −𝑖𝛽: 

𝑔(𝑌𝑡) = 𝛹(∇𝑌
†)𝑓(𝑌𝑡).                                            (12) 

The kernel 𝛹 and 𝑓 are orthogonal. 

𝑔(𝑌𝑡) =
𝜁𝑔(𝛽)

𝜁𝑓(𝛽)
𝑓(𝑌𝑡),                                        (13) 
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𝑔(𝑌𝑡) = 𝑒𝑥𝑝 [∑(𝜅𝑗
𝑔

− 𝜅𝑗
𝑓

)
′

∞

𝑗=1

(𝑖𝛽)⊗𝑗

𝑗!
] 𝑓(𝑌𝑡),                 (14) 

𝑔(𝑌𝑡) = ∑(𝑐𝑗
𝑔

− 𝑐𝑗
𝑓

)
′

∞

𝑗=0

∇𝑌
†⊗𝑗

𝑗!
𝑓(𝑌𝑡) = 𝑒𝑥𝑝 [∑(𝜅𝑗

𝑔
− 𝜅𝑗

𝑓
)

′
∞

𝑗=1

∇𝑌
†⊗𝑗

𝑗!
] 𝑓(𝑌𝑡).  (15) 

 

If 𝛷(𝑌𝑡) is the multivariate normal distribution and assuming 𝜅1
𝑔

= 𝜅1
𝛷, 𝜅2

𝑔
= 𝜅2

𝛷 and 

knowing that 𝜅𝑗>2
𝛷 = 0  

𝑔(𝑌𝑡) = [∑(𝑐𝑔)´

∞

𝑗=3

∇𝑌
†⊗𝑗

𝑗!
] 𝛷(𝑌𝑡).                               (16) 

For empirical applications of the model, the orthogonality property of 𝛹 concerning 𝛷 allows 

the kernel to be truncated to finite order 𝐽, thus 

𝑔(𝑌𝑡) = [∑ (𝑐𝑔)´𝐽
𝑗=3

∇𝑌
†⊗𝑗

𝑗!
] 𝛷(𝑌𝑡)                               (17) 

In general, 

𝐻𝑗 =
∇𝑌

†⊗𝑗
𝛷(𝑌𝑡)

𝛷(𝑌𝑡)
.                                         (18) 

𝐻𝑗 corresponds to a vector of polynomial functions known as Hermite Polynomials (HPs), 

such that: 

𝑔(𝑌𝑡) = [∑
(𝑐𝑗

𝑔
)

´

𝑗!

𝐽

𝑗=3

] 𝐻𝑗𝛷(𝑌𝑡).                           (19) 

The pdf 𝑔(𝑌𝑡) is known as the multivariate Gram Charlier Type A distribution. 

For empirical applications, Del Brio et al,(2011) and Jiménez et al. (2020) formulate in terms 

of the product of the marginal Gram-Charlier distributions of each component of 𝑌𝑡, 
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𝑔(𝑌𝑡) =
1

𝑑
∏ 𝜙𝑑

𝑚=1 (𝑦𝑚𝑡) ∑ ℋ𝑚
𝑑
𝑚=1 (𝑦𝑚𝑡) =

1

𝑑
𝛷(𝑌𝑡) ∑ ℋ𝑚

𝑑
𝑚=1 (𝑦𝑚𝑡),  (20) 

where 𝜙(𝑦𝑚𝑡) corresponds to the standard normal pdf, and ℋ𝑚(𝑦𝑚𝑡) is a j-order Gram- 

Charlier expansion (without loss of generality, the same J is considered for all dimensions) 

expressed in terms of the HPs: 

ℋ𝓂(𝑦𝑚𝑡) = [1 + ∑ 𝛿𝑗𝑚

𝐽

𝑗=2

ℎ𝑚(𝑦𝑚𝑡)] ,                         (21) 

ℎ𝑗(𝑦𝑚𝑡) =
𝐷𝑌

†(𝑗)
𝜙(𝑦𝑚𝑡)

𝜙(𝑦𝑚𝑡)
,                           (22) 

where 𝐷𝑌
† = −

𝑑

𝑑𝑦
. 

To avoid possible negativity problems in the truncated Gram-Charlier pdf, one could use the 

modification proposed by Ñíguez & Perote (2012)and presented in Equation 23. This 

transformation can be necessary when applying backtesting techniques: 

ℋ𝓂(𝑦𝑚𝑡) =
1

1 + ∑ 𝑗𝐽
𝑗=2 ! 𝛿𝑗𝑚

2
[1 + ∑ 𝛿𝑗𝑚

2

𝐽

𝑗=2

ℎ𝑗(𝑦𝑚𝑡)2].          (23) 

HPs satisfy the well-known orthogonality properties, 

∫ ℎ𝑗

∞

−∞

(𝑦𝑚𝑡)𝜙(𝑦𝑚𝑡) = 0, ∀𝑗 > 0.                          (24) 

∫ ℎ𝑗

∞

−∞

(𝑦𝑚𝑡)ℎ𝑛(𝑦𝑚𝑡)𝜙(𝑦𝑚𝑡)𝑑𝑦𝑚𝑡 = {

0, ∀𝑗 ≠ 𝑛,

𝑗!, ∀𝑗 = 𝑛,
               (25) 

∫ ℎ𝑗

∞

−∞

(𝑦𝑚𝑡)2ℎ𝑛(𝑦𝑚𝑡)2𝜙(𝑦𝑚𝑡)𝑑𝑦𝑚𝑡 = 𝑗! 𝑛!,  𝑗 ≠ 𝑛.           (26) 

Given the orthogonality condition HPs multivariate SNP distributions satisfy specific 

properties presented in Del Brio et al., (2011), among which it is stated that the marginal pdfs 

are also Gram-Charlier. The marginal pdf is expressed as in equation 27, considering 

equation 23. 
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𝑔𝑚(𝑦𝑚𝑡) = 𝜙(𝑦𝑚𝑡) [
𝑑−1

𝑑
+

1

𝑑
(

1

1+∑ 𝑗
𝐽
𝑗=2 !𝛿𝑗𝑚

2 [1 + ∑ 𝛿𝑗𝑚
2𝐽

𝑗=2 ℎ𝑚(𝑦𝑚𝑡)2])]            (27) 

Another property of multivariate Gram-Charlier pdf is that the linear transformations and 

combinations are also Gram-Charlier distributed. This property is exploited to incorporate 

the correlation between variables. Given the linear transformation 𝒰t = Rt
1/2

Yt with zero 

mean and variance-covariance matrix 𝛴𝑡 that can be decomposed in terms of a diagonal 

matrix of the conditional standard deviations 𝐷𝑡 = 𝑑𝑖𝑎𝑔[𝜎1𝑡 , 𝜎2𝑡 , . . . , 𝜎𝑑𝑡] and the correlation 

matrix 𝑅𝑡, as presented in equation 28. 

𝛴𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 = 𝐷𝑡𝑅𝑡
1/2

𝑅𝑡
1/2

𝐷𝑡 ,                                                   (28) 

where 𝑅 = 𝑅1/2𝑅1/2 is a symmetric spectral decomposition. Given the standard vector 𝜖𝑡 =

𝐷𝑡
−1𝒰𝑡, its multivariate SNP density can be expressed as 

𝐹(𝜖𝑡) = (2𝜋)−
𝑗
2|𝑅𝑡|−

1
2𝑒𝑥𝑝 [−

1

2
𝜖 ´𝑅−1𝜖] ×

1

𝑑
[ ∑ ℋ𝑚

𝑑

𝑚=1

(𝑦𝑚) (𝑅−
1
2𝜖)].           (29) 

 

IV.2.3 The Dynamic Conditional Correlation Model. 

Engle (2002) introduces a new class of multivariate Gaussian GARCH model, and its 

estimators called dynamic conditional correlation or DCC from the variance-covariance 

matrix decomposition in equation 28. Equations 30, 31, 32, 33 and 34 present the statistical 

specification of the DCC model. 𝜄 is a vector of ones 𝐴, B, and 𝜄𝜄′ − 𝐴 − 𝐵 are positive 

definite matrices and ∘ is the Hadamard product obtained by multiplying element by element 

two matrices of the same size. 

For a d-dimensional vector 𝑌𝑡 the full DCC model can be parameterized as follows: 

𝑌𝑡 ∣ 𝛺𝑡−1~𝑁(0, 𝐷𝑡𝑅𝑡𝐷𝑡),                                            (30) 

𝐷𝑡
2 = 𝑑𝑖𝑎𝑔{𝜔𝑖} + 𝑑𝑖𝑎𝑔{𝜔𝑖} ∘ 𝑌𝑡−1𝑌𝑡−1

´ + 𝑑𝑖𝑎𝑔{𝜆𝑖} ∘ 𝐷𝑡−1
2 ,                       (31) 

𝜖 = 𝐷−1𝒰.                                                             (32) 
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𝑄𝑡 = 𝑆 ∘ (𝜄𝜄′ − 𝐴 − 𝐵) + 𝐴 ∘ 𝜖𝑡−1𝜖𝑡−1
´ + 𝐵 ∘ 𝑄𝑡−1,                      (33) 

𝑅𝑡 = 𝑑𝑖𝑎𝑔{𝑄𝑡}−1𝑄𝑡𝑑𝑖𝑎𝑔{𝑄𝑡}−1.                                    (34) 

Let the parameters in D be denoted by 𝜃, and the other parameters in R be denoted by 𝜌. The 

log-likelihood can be written as the sum of volatility and correlation components. 

𝐿(𝜃, 𝜌) = 𝐿𝑣(𝜃) + 𝐿𝑐(𝜃, 𝜌).                                          (35) 

Del Brio et al. (2011) propose the DCC-SNP model where the shape parameters (𝛾) are 

estimated jointly with those of the correlation component, allowing estimation in two stages: 

In the first stage, the dynamic variances of the d variables are fitted, and in the second stage 

the correlation parameters and the shape parameters are estimated by maximizing the log-

likelihood 𝐿𝐶𝑆𝑁𝑃(𝜃, 𝜑), 𝜑 = (𝜌, 𝛾).  

IV.2.4 Parameter estimation. 

Deterministic Component 

To model the deterministic component 𝜇(𝑡), we used harmonic analysis, which allows for 

representing a time series as a trigonometric Fourier series, as expressed in equation 6. To 

estimate the frequency parameters, we used the cross-spectrum, which corresponds to the 

Fourier transform of the cross-correlation function and determines the relationship of two-

time series in the frequency domain from the contribution of each spectral component to the 

total correlation. The contribution is estimated as the modulus of the complex number 

resulting from the transformation. The cross-spectrum can be plotted on a contour plot. 

For the estimation of the amplitude, phase, and reversion-to-mean parameters (parameter k 

of equations 2 and 3) of each spectral component, the nonlinear least squares (NLS) method 

suggested by Lucia & Schwartz (2002) is used. 

 

Estimation of dynamic variance, correlation, and shape parameters. 

The conditional variance, dynamic conditional correlation and the shape parameters are 

estimated by maximum likelihood method, given the log-likelihood functions in Equations 

36 and 37 and the two-step procedure described in the above section. 
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𝐿𝑉(𝜃) = −
1

2
∑ [𝑇𝑙𝑛(2𝜋) + ∑ 𝑙

𝑇

𝑡=1

𝑛(𝜎𝑚𝑡
2 ) +

(𝑦𝑚𝑡 − 𝜇𝑚𝑡)2

𝜎𝑚𝑡
2 ]

𝑑

𝑚=1

,               (36) 

𝐿𝐶𝑆𝑁𝑃(𝜃, 𝜑) = ∑{

𝑇

𝑡=1

𝑙𝑛 [ ∑ ℋ𝑚

𝑑

𝑚=1

(𝑦𝑚)(𝑅𝑡
−1/2

𝜖𝑡)] −
1

2
(𝑙𝑛|𝑅𝑡| + 𝜖𝑡

´ 𝑅𝑡
−1𝜖𝑡)}.        (37) 

 

IV.3 Empirical application 

Description of the data. 

The proposed methodology is applied to monthly series of the Leverage Ratio of all US 

commercial banks from January 2000 until February 2023, calculated as the ratio between 

total equity (difference between total assets and total liabilities) and total assets of all 

commercial banks, not seasonally adjusted and extracted from the Federal Reserve Bank of 

St Louis and the US. 

According to BCBS (2014), the leverage ratio is calculated based on Tier capital. We use 

total equity since the Tier time series is published at quarterly basis, which provides little 

data for estimation. Comparing the quarterly Tier 1 Leverage Capital series published by the 

Federal Reserve Bank with the total capital series, they correlate over 99%, and Tier 1 is, on 

average, 92% of total capital. The benchmark monetary policy interest rate in the United 

States is the Federal Funds Effective Rate (FFER), which is calculated as a weighted average 

of the rates at which depository institutions exchange federal funds with each other overnight. 

It is market-determined but is influenced by the Federal Reserve through open market 

operations to achieve the Fed's target rates. This series remains constant during some sample 

periods. Therefore, we used the 3-month Treasury bill secondary market rate to proxy the 

monetary policy rate. This variable exhibits variations for all periods and correlates more 

than 99% with FFER. 
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IV. 4 Results 

Figure IV.1 shows the interest rate and LR evolution from January 2000 to February 2023. 

It can be seen that in 2000 the interest rate (Figure IV.1.a) had values close to 6% per annum 

and that by 2001 it fell rapidly to a level close to 1.6%, which implies a decrease of more 

than 70% in its value, while the LR had an increase of approximately 9% for this same period. 

From 2002 until 2004, the rate continued to fall to levels close to zero, from where it began 

to rise again in an accelerated manner, until the beginning of 2007, reaching levels close to 

5%, to then fall again to levels close to zero that were maintained until 2017 where the interest 

rate began to rise to levels above 2% until the end of 2019. 

The LR maintained an increasing trend until the end of 2008, when a sudden drop was 

observed. However, it quickly returned to growth until the beginning of 2012, when it 

reached a maximum of 11.58% and then remained at levels close to 11% until the beginning 

of 2020, when an accelerated drop was observed, reaching levels close to 9% by the end of 

2022, which implied a decrease in the LR value of approximately 20%. Although the average 

correlation between the interest rate and LR is about -50%, the evolution of the interest rate 

and LR presents different relationships between their trends, showing that the relationship is 

positive in some time intervals; but negative in others. The interest rate can affect the LR 

both for the equity and for the assets. On the one hand, equity is sensitive to the cost of 

capital, which depends directly on the interest rates of the economy. On the other hand, bank 

assets are affected by the interest rate through the sensitivity of credit demand to the interest 

rate or through changes in the value of assets in the investment portfolio, such as bonds, 

stocks, and other types of financial instruments that depend on the interest rate. 
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Figure IV.1 Monthly evolution of interest rate and Leverage Ratio 

 

Table IV.1 presents the descriptive statistics for the interest rate and LR. The minimum 

interest rate is close to zero. This value corresponds to the period starting after the 2008 crisis, 

where a near-zero interest rate regime was maintained until the beginning of 2017. The 

maximum value is close to 6% and is found at the beginning of the series. The monthly 

average interest rate has been 1.5%, and its monthly volatility is 1.75%. The skewness 

parameter indicates right tail skewness and excess kurtosis is close to zero. LR has ranged 

from 8.35% to 11.6% and averaged 10.4% with monthly volatility of 0.86%. The skewness 

and excess kurtosis are close to zero. 

 

Table IV.1 Descriptive statistics for Interest Rate and LR 

 Max Min Mean Std Skew K 

Interest Rate 6.170 0.010 1.545 1.751 1.079 -0.018 

LR 11.586 8.349 10.365 0.859 -0.511 -0.821 

Note: This table shows the descriptive statistics for the Interest Rate and Leverage Ratio. Max and Max 

correspond to the maximum and minimum value, respectively. Std=standard deviation, Skew=skewness, 

K=excess kurtosis coefficient. 
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Figure IV.2 depicts the cross-periodogram between interest rate and LR. The horizontal axis 

corresponds to the annual frequencies of LR, and the vertical axis corresponds to the annual 

frequencies of the interest rate. The contour map corresponds to the modulus of the complex 

value corresponding to the cross-periodogram between the interest rate and LR, where the 

warmer colored areas represent the absolute and local maxima of the cross-periodogram 

function. In comparison, the darker areas correspond to the minimum values. Figure IV.2.a 

shows a maximum at a frequency of 0.04 cycles per year (24-year period) and a maximum 

at a frequency of 0.17 cycles per year, corresponding to a cycle of 6 years. Figures IV.2.a, 

2.b, 2.c, and 2.d show other local maxima at frequencies near 0.8, 1.3, and 2, among other 

local maxima. The maxima of the function indicate the frequencies at which the interest rate 

and LR are most closely related. 

 

Figure IV.2 Cross Periodogram Interest Rate and Leverage Ratio 

a          b 

 

c         d 
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c.                                                                              d.                                 

Table IV.2 shows the amplitude and phase parameters for 14 different frequencies 

determined from the interest rate and LR cross-periodogram. The frequencies with the 

highest amplitudes for the interest rate and LR are those of the annual frequencies 0.167, 

0.042, and 0.125, corresponding to periods of 6, 24, and 8 years, respectively. The high-

frequency spectra tend to have lower amplitudes. 

 

Table IV.2 Estimated parameters for the moments of the pdfs and the correlation of 

interest rate and LR 

  Interest Rate  Leverage Ratio 

  Estimate Std. Error t value p-value Estimate Std. Error t value p-value 

𝛼𝑖 1.699 0.041 40.973 0.000 10.403 0.098 105.933 0.000 

𝜔1 0.167 0.167 

𝐶1 -1.665 0.059 -28.187 0.000 -0.219 0.093 -2.354 0.019 

𝜏1 2.648 0.034 78.414 0.000 2.780 0.408 6.815 0.000 

𝜔2 0.042 0.042 

𝐶2 -1.706 0.059 -28.696 0.000 -0.931 0.139 -6.684 0.000 

𝜏2 2.535 0.034 75.381 0.000 12.071 0.137 88.138 0.000 

𝜔3 0.125 0.125 

𝐶3 1.193 0.06 19.858 1.193 0.234 0.105 2.238 0.026 

𝜏3 6.439 0.045 142.694 6.439 -9.081 0.455 -19.980 0.000 

𝜔4 0.250 0.33 

𝐶4 -0.484 0.050 -9.606 0.000 0.116 0.057 2.048 0.042 

𝜏4 4.272 0.105 40.504 0.000 3.408 0.477 7.144 0.000 

𝜔5 0.2 0.42 

𝐶5 -0.495 0.058 -8.569 0.000 0.128 0.045 2.827 0.005 
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𝜏5 3.305 0.113 29.279 0.000 -1.220 0.357 -3.422 0.001 

𝜔6 0.5 0.5 

𝐶6 -0.168 0.039 -4.353 0.000 0.096 0.039 2.465 0.014 

𝜏6 -0.175 0.231 -0.759 0.449 -18.141 0.403 -45.033 0.000 

𝜔7 0.29 0.7 

𝐶7 0.228 0.050 4.556 0.000 0.085 0.029 2.945 0.004 

𝜏7 0.438 0.207 2.118 0.035 -87.264 0.341 -256.014 0.000 

𝜔8 0.46 0.95 

𝐶8 -0.125 0.041 -3.061 0.002 -0.048 0.021 -2.273 0.024 

𝜏8 -0.062 0.320 -0.192 0.848 3.792 0.440 8.616 0.000 

𝜔9 0.54 1.5 

𝐶9 0.138 0.037 3.733 0.000 0.026 0.014 1.907 0.058 

𝜏9 -2.975 0.267 -11.126 0.000 -0.330 0.522 -0.632 0.528 

𝜔10 0.63 0.63 

𝐶10 -0.059 0.033 -1.787 0.075 0.090 0.032 2.844 0.005 

𝜏10 0.033 0.557 0.059 0.953 -1.466 0.354 -4.147 0.000 

𝜔11 1.12 1.2 

𝐶11 -0.041 0.021 -1.960 0.051 0.051 0.017 2.999 0.003 

𝜏11 -0.251 0.509 -0.492 0.623 -0.134 0.332 -0.404 0.687 

𝜔12 2 2 

𝐶12 0.032 0.013 2.495 0.013 0.031 0.010 3.002 0.003 

𝜏12 -0.464 0.399 -1.162 0.246 -1.292 0.333 -3.875 0.000 

𝜔13 0.58 3.16 

𝐶13 -0.120 0.036 -3.383 0.001 -0.019 0.007 -2.693 0.008 

𝜏13 -11.850 0.294 -40.322 0.000 -0.092 0.372 -0.248 0.804 

𝜔14 4 4.04 

𝐶14 -0.018 0.007 -2.442 0.015 0.011 0.006 1.852 0.065 

𝜏14 -10.886 0.409 -26.629 0.000 17.461 0.539 32.393 0.000 

1-𝜅  0.794 0.038 20.807 0.000 0.925 0.022 41.835 0.000 

𝜃0 0.001 0.000 2.772 0.006 0.002 0.001 1.606 0.108 

𝜃1 (ARCH) 0.457 0.107 4.253 0.000 0.349 0.101 3.445 0.001 

𝜃2 (GARCH) 0.523 0.084 6.209 0.000 0.506 0.168 3.015 0.003 

𝛿 3 -0.037 0.060 -0.617 0.537 -0.019 0.063 -0.298 0.766 

𝛿 4 0.096 0.032 3.018 0.003 0.090 0.031 2.937 0.003 

𝜌1 0.636 0.235 2.709 0.007     
𝜌2 0.087 0.047 1.865 0.062     

Note: This table shows the amplitude and phase parameters for 14 different frequencies determined from the 

Interest Rate and Leverage Rate cross-periodogram. 

 

Figure IV.3 shows the monthly series of the spectral components with periods of 6, 24, and 

8 years (figures IV.3.a, 3.b, and 3.c, respectively), which are the components that explain the 

most significant variability (given that the estimated amplitudes), and the series of the sum 

of the entire estimated spectrum (Figure IV.3.d) of the interest rate (continuous line) and the 

LR (dotted line). 

This graph allows us to analyze the relationship between interest rates and LR trends at 

different times. The trends of the variables overlap in the component with six years (Figure 
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IV.3.a) since there is no lag between the waves. When LR is in the low phase of the cycle, 

the decreases (increases) in the interest rate are procyclical (countercyclical). The last peak 

of this component was in June 2018, and the last trough was in June 2021. Its next peak and 

trough will be in June 2024 and 2027, respectively. 

The components with 24 years (Figure IV.3.b) present a half-cycle lag, which implies that 

the trends of the variables are inverse and that the peaks (valleys) of the interest rate 

component coincide with the valleys (peaks) of the LR. 

For the analysis horizon, the interest rate peaks in May 2002 and February 2026, and a trough 

in March 2014, while LR peaks in October 2013 and troughs in December 2001 and 

September 2025. In this phase, given that as the interest rate rises, LR falls, interest rate 

increases will have procyclical effects on LR. The components with eight years (Figure 

IV.3.c) also present a 4-year lag, which implies the coincidence of the interest rate peaks with 

the LR valleys. 

Figure IV.3.d presents the linear combination of the estimated frequency spectrum. It is 

observed that for the projection of the next five years (from February 2023 to February 2028), 

the combination of wave spectra produces low levels of LR, which is mainly determined by 

the 24-year component that has the highest amplitude (see Table IV.2) and reinforced by 

other cycles of lower amplitude that have valleys during this time interval. For this same time 

interval, the combination of the spectral components of the interest rate results in an 

increasing trend of the interest rate until September 2024, when it reaches a peak mainly 

determined by the peak of the 24-year component. From October 2025 onwards, a negative 

trend begins, mainly determined by the six and 8-year components, which coincide in a 

maximum (peak) in the first half of 2024 and a minimum in the second half of 2027. 
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Figure IV.3 Standardized estimated spectral components for the interest rate and LR 

 

Figure IV.4 shows the time series of the correlation estimated under the DCC-SNP model. It 

can be seen that the correlation sign shifts at different points in time. The maximum negative 

correlation value is observed in July 2004, when it reaches a value close to -50%, followed 

by the value in January 2023, which is close to -36%. The maximum positive correlation 

values are presented in the first half of 2020, just when the monetary policy interest rate 

measures to mitigate the effects of the COVID-19 pandemic began to be applied. The 

correlation rose from 14% in December 2019 to over 48% in January 2020, reaching a value 

above 99% in May 2020. 
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Figure IV.4 Dynamic Conditional Correlation Between the interest Rate and LR 

 

IV.4.1 Performance tests 

To compare the performance of the model concerning the estimation of the 1st percentile 

under the assumption of normality and constant variance-covariance matrix with the 

estimation of the 1st percentile under DCC-SNP, we use the test proposed by Kupiec (1995) 

and the test proposed by Lopez (1997) for the monthly series for the interval between 

February 2000 and February 2023. Table IV.3 shows the results of the tests. The null 

hypothesis, which states that the proportion of QRM exceptions is equal to 1%, is rejected 

for the model under the assumption of normality and constant correlation. In contrast, the 

DCC-SNP model is not rejected. In the Lopez test, the score under the assumption of 

normality and constant correlation is more than the double of the score obtained under DCC-

SNP. 

 

Table IV.3 Forecasting performance tests under DCC-SNP and normal distributions 

p-value p-value Score Score 

Kupiec’s test DCC-SNP Kupiec’s test Normal Lopez’ test DCC-SNP Lopez’ test Normal 

0.536 0.036 4.03 9.118 

Note: This table presents the performance of the model concerning the estimation of the 1st percentile under 

the assumption of normality and constant variance-covariance matrix with the estimation of the 1st percentile 

under DCC-SNP. 
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IV.4.2 Scenario simulation  

To graphically evaluate the behavior of the in-sample model, a 5-year Monte Carlo 

simulation is performed using the estimated parameters of the DCC-SNP model presented in 

Table IV.2. Figure IV.5 shows the simulation results from March 2018 to February 2023 with 

a monthly frequency. The solid blue line represents the simulated mean. The dashed blue line 

represents a bounded interval between the 1st and 99th percentiles of the marginal SNP pdfs 

of the interest rate and LR, and the solid black line is the observed variable. In the simulation, 

the interest rate was conditioned to positive values. The variables generally remain within 

the simulated interval, and only at the points where accelerated changes occur do the 

variables approach the interval limits. For the interval between the beginning of 2020 and the 

beginning of 2022, the 1st percentile is close to zero, given the non-negativity constraint in 

the simulation. 

 

Figure IV.5 Simulation monthly interest rate and LR 

 

 

Figure IV.6 depicts the results on the simulation of three scenarios for the interest rate and 

the monthly LR between February 2018 and February 2023. The proposed scenarios are 

obtained from the 10th, 50th, and 90th percentiles from the interest rate simulation under the 

SNP marginal pdf. The blue line corresponds to the scenario obtained from the 90th 

percentile. Under this scenario, the interest rate continues to rise from its initial value of 

4.65% in February 2023 to reach a level close to 7.8% in August 2024 and then declines to 
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levels between 3.5% and 4% by the end of 2027. The black line corresponds to the scenario 

obtained from the 50th percentile. In this scenario, the interest rate continues to rise until 

August 2024, reaching levels close to 6.5% before falling below 4% in early 2028. The red 

line corresponds to a scenario obtained from the 1st percentile of the simulated interest rate. 

In this scenario, the interest rate does not continue to rise and remains close to 5% until the 

end of 2024, when it begins to fall to levels close to zero. 

The LR results show that the most favorable scenario is obtained with the 50th percentile, 

and the most unfavorable scenario is obtained with the 90th percentile. The worst-case 

scenario for LR is that the rate continues to rise and remains relatively high. 

 

Figure IV.6 Monthly out-off sample simulation of interest rate and LR 

 

 

 

IV. 5 Conclusions and recommendations  

This paper proposes a mathematical model and a methodology for macroprudential stress 

testing based on the joint modeling of the probability distributions of macrofinancial stability 

indicators and the macroeconomic variables that affect them. Specifically, we have analyzed 

the Bank Leverage Ratio and the monetary policy interest rate in the United States. 
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One main conclusion from the results is that the relationship between the Leverage Ratio and 

the interest rate presents dynamic statistical conditions. Their marginal probability 

distributions present heavy tails reflected in the skewness and kurtosis parameters. These 

features should be incorporated in macroprudential stress test models to provide reliable and 

accurate risk measures. The evidence show that the assumption of a constant conditional 

correlation matrix and normal distributed marginals lead to the underestimation of the risk of 

the measurement model. However, by incorporating dynamic conditional correlation, 

conditional variance deviation, skewness, and kurtosis features simulations seem to 

successfully pass the performance tests. 

The harmonic analysis provides a tool to establish long-term relationships between the 

cyclical behavior of financial stability indicators and the macroeconomic variables that affect 

them, based on the contributions to the total variation of each wave component reflected in 

the amplitude parameters and the parameters that measure the lags between waves. This 

approach generalizes harmonic analysis by including wave spectra in which the cross-

periodogram modulus is maximized. This model could be used to establish simple timing 

rules for the accumulation and decumulation of countercyclical capital buffers. The DCC-

SNP model provides an early warning model for assessing the effects of macroeconomic 

shocks. The cross-periodogram allows us to identify the peaks (valleys) of the LR, where 

financial institutions will be more (less) leveraged. If required to adopt interest rate regimes 

such as those provided by the 1st and 90th percentile of the rate pdf, banks may need to raise 

more capital or decrease their assets to avoid excessive leverage. 

The effects of the interest rate on the LR change over time since the conditional correlation 

between the variables changes in sign and intensity over time, which implies that in specific 

periods increases (decreases) in the interest rate may cause an increase (decrease) in leverage 

levels and other periods may imply a decrease (increase) in leverage. 

The proposed model provides interest rate scenarios based on scenarios that depend on the 

pdfs of the interest rate and allows testing extreme scenarios, such as those obtained from the 

distribution's tails, as well as base scenarios that can be obtained from the center of the 

distribution. According to the results obtained for the projection horizon, the monetary policy 

interest rate regime obtained from the time series of the simulated median of the interest rate 
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pdf is recommended. The scenario obtained with the median is the one that most favor 

financial stability.  
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Conclusions  

This thesis proposes a methodology for measuring financial risks in banking systems based 

on modeling the pdfs associated with solvency and leverage risks, both in univariate and 

multivariate framework. The Gram-Charlier expansions are used to model stylized facts of 

the pdfs, such as asymmetry and heavy tails, which generalize the normal pdf.  Performance 

tests comparing models under normality assumptions and models under SNP assumptions 

indicate that they justify the use of Gram-Charlier expansions to obtain more accurate risk 

measures than those obtained under the normality assumption. 

The models are used to propose tools that facilitate macroprudential policy decisions to 

maintain a financial system's stability and can be used in financial systems operating under 

the parameters established by Basel Committee of Banking Supervision (BCBS) in BCBS 

(2011) since they are based on a common theoretical framework, where economic capital is 

established as the basis for maintaining financial stability. This methodology reinforces the 

second pillar established by BCBS, which implies the development of risk management 

policies based on measures that reflect banks' profiles and risk propensity. The models can 

be used under both standardized and internal risk measurement methods. 

The analysis of the characteristics of the empirical probability distributions of the 

macroprudential stability indicators shows that they present skewness and kurtosis distortions 

concerning the normal distribution. This result is evidenced in the literature review, where it 

is shown that these distortions are present in the measurement of banking risks associated 

with a wide range of financial variables, also exhibited by the descriptive statistics of the 

variables, but especially in the significance of estimated parameters of skewness and kurtosis. 

The analysis of the behavior of the first moment of the pdfs showed seasonal and cyclical 

behavior both in the first difference of the variables and in levels. The variables in the first 

difference were modeled from ARMA models. The variables in levels were modeled from 

stochastic processes of reversion to the mean where the expected value of the process 

incorporates a deterministic component that was defined using the harmonic analysis that 
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facilitates the decomposition of a time series in a set of trigonometric Fourier series, both in 

the univariate and multivariate cases. 

The analysis of the behavior of the second moment shows mixed behavior, given that 

significant GARCH parameter were found in the variance modeling. In contrast, for the 

models of the variables in levels, only significant GARCH parameters were found for the 

multivariate case. Heteroscedasticity was not detected in the variance of the univariate 

variables in levels. It was modeled from the historical estimator of the unconditional variance 

of the errors of the mean model. 

The results of the multivariate analysis between financial stability indicators and 

macroeconomic variables revealed the dynamic behavior of the correlation, where it varies 

in a wide range that fluctuates between positive and negative values. The change of sign in 

the correlation is an important finding since it reveals that the effects of macroeconomic 

variables on financial stability are time-varying, which implies that the application of the 

same macroeconomic policy (e.g., monetary policies) can have procyclical effects at some 

moments and countercyclical effects at others, therefore, decision-makers should use models 

that measure the correlation dynamics between financial stability indicators and 

macroeconomic variables. 

The results of the application of the proposed models for risk measurement in macro-financial 

stability indicators show that the use of monthly and quarterly data samples is appropriate; 

however, for many developed and emerging countries, the length of the data series published 

by the prudential authorities is not sufficient for the proposed models to be applied. In this 

sense, financial authorities should improve the availability of data in order to reinforce Pillar 

III established by the BCBS, which recommends that financial institutions provide clear 

information on their risk profile in order to be more transparent on their capital structure and 

adequacy, and risk exposure. 

Although this work only presents results at the macroprudential level, the models can be used 

in the microprudential context by regulators to monitor individual institutions and financial 

institutions, integrating them into their risk management system. This methodology can be 

used for different levels of data aggregation. It can be applied to levels of disaggregation that 
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involve the measurement of risk for a specific asset or a portfolio of assets, up to levels of 

aggregation that include the entire financial system. 

The main objective of Chapter II was to propose measures of the probability that a bank or 

banking system could fall below the minimum solvency level required by prudential policy 

and to define policies regarding the capital levels that a bank or banking system must 

maintain to restrict the probability of falling below the minimum solvency level required, 

based on QRMs. The methodology was based on Gram-Charlier expansions to model the 

higher moments and on ARIMA-GARCH models to model the mean and variance of the pdfs 

related to changes in Tier capital, Risk-Weighted Assets, and Solvency Ratio. As a case 

study, the methodology was applied using data from the Colombian banking system. An 

analysis was made of the effects that the monetary policy regime had on the probability of 

being below the minimum solvency level required during the period of the beginning of the 

COVID-19 pandemic, finding that the monetary policy measures applied generated a 

significant increase in the probability of being below the minimum solvency level required. 

Monetary policy measures can destabilize the financial system, highlighting the need to 

consider monetary and prudential policy decisions together. 

Chapter III proposes a new model for Measuring the Probability of Breaching the Minimum 

Capital Threshold (PBT) and estimating the countercyclical capital buffer (CCB) established 

in the Basel III Accord based on the assumption that the Capital-To-Risk Weighted Assets 

Ratio follows a stochastic Ornstein Uhlenbeck Gram-Charlier process. Analytical PBT and 

CCB solutions are obtained that depend on, the last observed solvency level, the minimum 

solvency level required by the regulator, a parameter that restricts risk appetite, and the 

parameters that model the moments of the pdf of the Capital Adequacy Ratio. The mean is 

modeled from harmonic analysis, introducing the Fourier series in the deterministic 

component of the model. These harmonic components allow businesses' cyclical behavior to 

be considered in estimating PBT and CCB. For the estimation of the second moment of the 

pdf, the unconditional variance estimator was used since no evidence of significant 

autocorrelations of the squared residuals resulting from the estimation of the mean models 

was found in the data analyzed. Once more, Gram-Charlier expansions were used to model 

the higher moments. 
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An application is made on a set of solvency ratio (SR) time series for the Netherlands, United 

States, Germany, and Colombia. PBT and CCB are estimated for the observed periods of 

each series. 

To analyze the interaction between the monetary policy interest rate and the PBT related to 

prudential policy, a Vector Autoregressive model (VAR) including macroeconomic variables 

and a credit volume indicator is estimated. The results indicate that PBT is relevant in lending 

decisions, affecting the effectiveness of banks in the transmission of monetary policy. On the 

other hand, interest rate shocks affect lending decisions through the effect of the interest rate 

on PBT. This evidence suggests that prudential and monetary policy decisions should be 

made jointly. 

This methodology could model the credit-to-GDP gap proposed in the Basel III agreement. 

The Fourier series can be used to avoid the problem of arbitrariness in the choice of the 

smoothing parameter of the Hodrick-Prescott filters used in this methodology. The results of 

this study indicate that assuming normality in the behavior of the pdf associated with the SR 

leads to an underestimation of PBT and CCB. Consistent with this result, it is suggested to 

include parameters that consider the bias and heavy tails in estimating regulatory capital. 

Finally, this study provides evidence of the existence of bank-capital and risk-taking channels 

from the relationship between the monetary policy interest rate and the PBT. 

Chapter IV proposes a methodology for macroprudential stress tests based on the application 

of the DCC-SNP model, which involves modeling the joint pdf between a bank leverage 

indicator (used as an indicator of macrofinancial stability) and the monetary policy interest 

rate (which is assumed to be related to macrofinancial stability). In this chapter, we make a 

multivariate generalization of the model proposed in Chapter III. Thus, we start from a 

multivariate Ornstein Uhlenbeck stochastic process as the underlying stochastic process that 

contains variables representing a set of macrofinancial stability indicators and a set of 

macrofinancial variables that are assumed to be correlated with macrofinancial stability 

indicators. Cross-harmonic analysis was used to incorporate the Fourier series in the 

deterministic components of the models. The cross-harmonic analysis provides a tool to 

establish long-term relationships between macrofinancial stability indicators and 

macroeconomic variables. Finally, the model is applied to an indicator of the leverage of U.S. 
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commercial banks and the policy interest rate set by the U.S. Federal Reserve. The model 

provides scenarios of interest rate regimes based on the estimation of quantiles of the 

marginal pdf of the interest rate and the effect these scenarios have on the bank leverage 

indicator. The backtesting tests applied to measure the performance of the estimated models 

showed the need to use dynamic estimators for variances and correlations and to model the 

tails of the distributions. The model assuming normality of the pdf and non-conditional 

variance and correlation estimators did not perform well, while the DCC-SNP model showed 

better performance. 

The methodologies proposed in this document focus on meeting the needs of the second pillar 

established by BCBS to acquire more accurate models for measuring financial risks, where 

in addition to considering credit, market, operational and liquidity risks, systemic risks 

should also be considered. In these terms, financial institutions and prudential authorities 

should implement models that consider the bias and kurtosis of financial stability indicators 

to avoid undervaluation of risks and the capital needed to cover them. These parameters can 

be estimated from sophisticated models such as the ones presented in this research and 

implemented in a standardized way (periodically updated) by incorporating factors that 

correct the financial stability indicators. These factors can be incorporated into the risk 

measurement models used by financial institutions and regulators, but it implies that the 

respective econometric measurements are made for each case. Given many methodologies 

academics and practitioners use for financial risk measurement, incorporating high moments 

pdfs constitutes a whole line of research within the financial risk area. 
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Conclusiones 

Esta tesis propone una metodología para medir los riesgos financieros en los sistemas 

bancarios basada en la modelización de las funciones de densidad de probabilidad (pdf por 

sus siglas en inglés) asociadas a los riesgos de solvencia y apalancamiento, de manera 

univariante y multivariante. Se utilizan las expansiones de Gram-Charlier que generalizan la 

pdf normal, para modelizar hechos estilizados de las pdf, como la asimetría y las colas 

pesadas.  Las pruebas de rendimiento que comparan modelos bajo supuestos de normalidad 

y SNP indican que se justifica el uso de las expansiones de Gram-Charlier para obtener 

medidas de riesgo que no subestimen el riesgo. 

Los modelos se utilizan para proponer herramientas que faciliten las decisiones de política 

macroprudencial para mantener la estabilidad de un sistema financiero y pueden ser 

utilizados en sistemas financieros que operan bajo los parámetros establecidos por el Comité 

de Supervisión Bancaria de Basilea (BCBS) en BCBS (2011), ya que se basan en un marco 

teórico común, donde el capital económico se establece como la base para mantener la 

estabilidad financiera. Esta metodología refuerza el segundo pilar establecido por el BCBS, 

que implica el desarrollo de políticas de gestión del riesgo basadas en medidas que reflejen 

los perfiles de los bancos y su propensión al riesgo. Los modelos pueden utilizarse tanto bajos 

métodos estandarizados e internos de medición del riesgo. 

El análisis de las características de las distribuciones empíricas de probabilidad de los 

indicadores de estabilidad macroprudencial evidencia la presencia de asimetría y curtosis con 

respecto a la distribución normal. Este resultado se verifica en la revisión de la literatura, 

donde se muestra que estas distorsiones están presentes en la medición de los riesgos 

bancarios asociados a una amplia gama de variables financieras, y en los estadísticos 

descriptivos de las variables analizadas, pero especialmente en la significación de los 

parámetros estimados de asimetría y curtosis. 

El análisis del primer momento de las pdf mostró un comportamiento estacional y cíclico 

tanto en la primera diferencia de las variables como en niveles. Las variables en primera 

diferencia se modelaron a partir de modelos ARMA. Las variables en niveles se modelaron 

a partir de procesos estocásticos de reversión a la media, donde el valor esperado del proceso 
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incorpora una componente determinista que se definió utilizando el análisis armónico que 

facilita la descomposición de una serie de tiempo en un conjunto de series trigonométricas 

de Fourier, tanto en el caso univariado como multivariado. 

El análisis del segundo momento muestra un comportamiento mixto, dado que se encontraron 

parámetros GARCH significativos en la modelización de la varianza. En cambio, para los 

modelos de las variables en niveles, solo se encontraron parámetros GARCH significativos 

para el caso multivariado. No se detectó heteroscedasticidad en la varianza de las variables 

univariantes en niveles. Se modeló a partir del estimador histórico de la varianza no 

condicional de los errores del modelo de medias. 

Los resultados del análisis multivariado entre los indicadores de estabilidad financiera y las 

variables macroeconómicas revelaron el comportamiento dinámico de la correlación, que 

varía en un amplio rango que oscila entre valores positivos y negativos. El cambio de signo 

en la correlación es un hallazgo importante, ya que revela que los efectos de las variables 

macroeconómicas sobre la estabilidad financiera son variables en el tiempo, lo que implica 

que la aplicación de una misma política macroeconómica (por ejemplo, políticas monetarias) 

puede tener efectos procíclicos en algunos momentos y efectos contracíclicos en otros, por 

lo tanto, los tomadores de decisiones deben utilizar modelos que midan la dinámica de 

correlación entre los indicadores de estabilidad financiera y las variables macroeconómicas. 

Los resultados de la aplicación de los modelos propuestos para la medición del riesgo en los 

indicadores de estabilidad macrofinanciera muestran que el uso de muestras de datos 

mensuales y trimestrales es adecuado; sin embargo, para muchos países desarrollados y 

emergentes, la longitud de las series de datos publicadas por las autoridades prudenciales no 

es suficiente para aplicar los modelos propuestos. En este sentido, las autoridades financieras 

deberían mejorar la disponibilidad de datos para reforzar el Pilar III establecido por el BCBS, 

que recomienda que las instituciones financieras proporcionen información clara sobre su 

perfil de riesgo para ser más transparentes sobre su estructura y adecuación de capital, y su 

exposición al riesgo. 

Aunque en este trabajo solo se presentan resultados a nivel macroprudencial, los modelos 

pueden ser utilizados en el contexto microprudencial por los reguladores para supervisar 

instituciones individuales y entidades financieras, integrándolos en su sistema de gestión de 
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riesgos. Esta metodología puede utilizarse para distintos niveles de agregación de datos. 

Puede aplicarse a niveles de desagregación que impliquen la medición del riesgo para un 

activo específico o una cartera de activos, hasta niveles de agregación que incluyan todo el 

sistema financiero. 

El principal objetivo del Capítulo II es proponer medidas de la probabilidad de que un banco 

o sistema bancario pudiera caer por debajo del nivel mínimo de solvencia exigido por la 

política prudencial y definir políticas relativas a los niveles de capital que un banco o sistema 

bancario debe mantener para restringir la probabilidad de caer por debajo del nivel mínimo 

de solvencia exigido, basándose en los QRM. La metodología se basó en expansiones de 

Gram-Charlier para modelar los momentos superiores y en modelos ARIMA-GARCH para 

modelar la media y la varianza de las pdf relacionadas con los cambios en el capital de nivel, 

los activos ponderados por riesgo y el coeficiente de solvencia. Como caso de estudio, se 

aplicó la metodología utilizando datos del sistema bancario colombiano. Se analizaron los 

efectos que tuvo el régimen de política monetaria sobre la probabilidad de estar por debajo 

del nivel mínimo de solvencia requerido durante el periodo de inicio de la pandemia COVID-

19, encontrando que las medidas de política monetaria aplicadas generaron un aumento 

significativo en la probabilidad de estar por debajo del nivel mínimo de solvencia requerido. 

Las medidas de política monetaria pueden desestabilizar el sistema financiero, lo que pone 

de relieve la necesidad de considerar conjuntamente las decisiones de política monetaria y 

prudencial. 

En el Capítulo III se propone un nuevo modelo para la Medición de la Probabilidad de 

Incumplimiento del Umbral Mínimo de Capital (PBT) y la estimación del colchón de capital 

anticíclico (CCB) establecidos en el Acuerdo de Basilea III basado en el supuesto de que el 

Ratio Capital-Activos Ponderados por Riesgo sigue un proceso estocástico Ornstein 

Uhlenbeck Gram-Charlier. Se obtienen soluciones analíticas de PBT y CCB que dependen, 

del último nivel de solvencia observado, del nivel de solvencia mínimo exigido por el 

regulador, de un parámetro que restringe el apetito por el riesgo, y de los parámetros que 

modelizan los momentos de la pdf del Ratio de Adecuación de Capital. La media se modela 

a partir del análisis armónico, introduciendo la serie de Fourier en el componente 

determinista del modelo. Estos componentes armónicos permiten considerar el 



112 
 

comportamiento cíclico de los negocios en la estimación de PBT y CCB. Para la estimación 

del segundo momento de la pdf se utilizó el estimador de varianza no condicional al no 

encontrarse en los datos analizados evidencia de autocorrelaciones significativas de los 

residuos al cuadrado resultantes de la estimación de los modelos de medias. Una vez más, se 

utilizaron expansiones de Gram-Charlier para modelizar los momentos superiores. 

Se realiza una aplicación sobre un conjunto de series temporales del coeficiente de solvencia 

(SR) para los Países Bajos, Estados Unidos, Alemania y Colombia. Se estiman PBT y CCB 

para los periodos observados de cada serie. 

Para analizar la interacción entre el tipo de interés de política monetaria y el PBT relacionado 

con la política prudencial, se estima un modelo vectorial autorregresivo (VAR) que incluye 

variables macroeconómicas y un indicador del volumen de crédito. Los resultados indican 

que el PBT es relevante en las decisiones de préstamo, afectando a la eficacia de los bancos 

en la transmisión de la política monetaria. Por otra parte, las perturbaciones de los tipos de 

interés afectan a las decisiones de préstamo a través del efecto del tipo de interés sobre el 

PBT. Esta evidencia sugiere que las decisiones de política prudencial y monetaria deberían 

tomarse conjuntamente. 

Esta metodología podría modelizar la brecha entre crédito y PIB propuesta en el acuerdo de 

Basilea III. Las series de Fourier pueden utilizarse para evitar el problema de la arbitrariedad 

en la elección del parámetro de suavización de los filtros de Hodrick-Prescott utilizados en 

esta metodología. 

Los resultados de este estudio indican que asumir normalidad en el comportamiento de la pdf 

asociada a la SR conduce a una subestimación de PBT y CCB. Consistente con este resultado, 

se sugiere incluir parámetros que consideren el sesgo y las colas pesadas en la estimación del 

capital regulatorio. Por último, este estudio aporta pruebas de la existencia de canales de 

capital bancario y asunción de riesgos a partir de la relación entre el tipo de interés de política 

monetaria y el PBT. 

En el Capítulo IV se propone una metodología para las pruebas de tensión macroprudencial 

basada en la aplicación del modelo DCC-SNP, que consiste en modelizar el pdf conjunta de 

un indicador de apalancamiento bancario (utilizado como indicador de estabilidad 
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macrofinanciera) y el tipo de interés de política monetaria (que se supone relacionado con la 

estabilidad macrofinanciera). En este capítulo, hacemos una generalización multivariante del 

modelo propuesto en el Capítulo III. Así, partimos de un proceso estocástico multivariante 

de Ornstein Uhlenbeck como proceso estocástico subyacente que contiene variables que 

representan un conjunto de indicadores de estabilidad macrofinanciera y un conjunto de 

variables macrofinancieras que se supone están correlacionadas con los indicadores de 

estabilidad macrofinanciera. Se utilizó el análisis armónico cruzado para incorporar las series 

de Fourier en los componentes deterministas de los modelos. El análisis armónico cruzado 

proporciona una herramienta para establecer relaciones a largo plazo entre los indicadores de 

estabilidad macrofinanciera y las variables macroeconómicas. Por último, el modelo se aplica 

a un indicador del apalancamiento de los bancos comerciales estadounidenses y al tipo de 

interés oficial fijado por la Reserva Federal de Estados Unidos. El modelo proporciona 

escenarios de regímenes de tipos de interés basados en la estimación de cuantiles de la fdp 

marginal del tipo de interés y el efecto que estos escenarios tienen sobre el indicador de 

apalancamiento bancario. 

Las pruebas de backtesting aplicadas para medir el rendimiento de los modelos estimados 

mostraron la necesidad de utilizar estimadores dinámicos para las varianzas y las 

correlaciones y de modelar las colas de las distribuciones. El modelo que asume la 

normalidad de la pdf y los estimadores no condicionales de varianzas y correlaciones no 

evidenciaron desempeños apropiados, mientras que el modelo DCC-SNP sí. 

Las metodologías propuestas en este documento se centran en satisfacer las necesidades del 

segundo pilar establecido por el CBSB de adquirir modelos más precisos para la medición 

de los riesgos financieros, donde además de considerar los riesgos de crédito, mercado, 

operacional y liquidez, también se deben considerar los riesgos sistémicos. En estos términos, 

las entidades financieras y las autoridades prudenciales deben implementar modelos que 

consideren el sesgo y la curtosis de los indicadores de estabilidad financiera para evitar la 

subvaloración de los riesgos y del capital necesario para cubrirlos. Estos parámetros pueden 

estimarse a partir de modelos sofisticados como los presentados en esta investigación e 

implementarse de forma estandarizada (actualizados periódicamente) incorporando factores 

que corrijan los índices de estabilidad financiera por asimetría y colas pesadas. Estos factores 
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pueden ser incorporados a los modelos de medición de riesgo utilizados por las instituciones 

financieras y los reguladores, pero implica que se realicen las respectivas mediciones 

econométricas para cada caso. Dadas las múltiples metodologías que académicos y 

profesionales utilizan para la medición del riesgo financiero, la incorporación de momentos 

superiores de las pdf constituye toda una línea de investigación dentro del área de riesgos 

financieros. 
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