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Abstract  
 

A simple computational method that can be used to simulate TEM image contrast of 

an electron beam diffracted by a crystal under two-beam dynamical scattering 

conditions is presented. The approach based on slicing the shape factor is valid for a 

general crystal morphology, with and without crystalline defects, avoids the column 

approximation, and provides the complex exit wave at the focal and the image planes 

also under weak-beam conditions. The approach is particularly efficient for large 

crystals and the 3D model required for the calculations can be measured 

experimentally using electron tomography. The method is applied to show that the 

shape of a diffracted spot can be affected by shifts, broadening and secondary maxima 

of appreciable intensity, even for a perfect crystal. The methodology is extended for 

the case of electron precession diffraction, and to show how can be used to improve 

nanometrology from diffraction patterns. The method is used also to perform 

simulations of simple models of crystalline defects. The accuracy of the method is 

demonstrated through examples of experimental and simulated dark-field images of 

MgO and ZrO2 nanocrystals and thin layers of CeO2.  
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1. Introduction 
 

Transmission electron microscopy (TEM) is widely used to provide important information about 

the crystalline structures of materials using imaging and diffraction. Real space information is 

obtained by recording the intensity 𝐼(𝑥, 𝑦) at points in the image plane of the objective lens, 
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while reciprocal space information is obtained by recording the intensity 𝐼(𝑞𝑥 , 𝑞𝑦) in a 

diffraction pattern formed in the focal plane of the objective lens [1-3]. Images acquired using 

conventional TEM (bright-field (BF) and dark-field (DF) modes) are directly interpretable when 

used for studying amorphous specimens in which the contrast is dominated by mass-thickness 

contrast. However, when studying crystalline materials, dynamical scattering complicates the 

interpretation of recorded intensities.  

 

Different theories and algorithms have been proposed to predict and understand TEM images 

and diffraction patterns, including solutions to full dynamical many-beam calculations using 

Bloch wave methods for perfect crystals, exit wave reconstruction and multislice methods for 

general crystals. These approaches can be used to calculate the complex exit surface wave 

function at atomic resolution, and hence, the diffraction pattern [4-7]. Bloch wave methods can 

only be used for perfect crystals and exit wave restoration methods are demanding regarding 

the acquisition of experimental data. A difficulty of multislice methods is that of choosing the 

right slice thickness for general orientations of the crystal. And they can be computationally 

demanding for simulating large nanocrystals, as they require atomistic models (which may 

contain thousands of atoms even for small crystals) and a full recalculation of the propagation 

of the electron wave is needed each time certain parameters (e.g., the sample or beam tilt) are 

changed. An alternative simpler low-resolution method of simulating bright-field and dark-field 

images is based on the solution of the Howie-Whelan differential equations in their two-beam 

form [1, 8]. Image contrast features (in two-beam mode), are qualitatively the same at all 

acceleration voltages and independent of the crystal structure. These equations provide a 

complex solution but are typically solved for simulating the image intensities with the so-called 

“column approximation”, and in some situations they can fail to reproduce image details of 

defects or even of perfect crystals under weak-beam conditions [9, 10]. Alternatively, in the 

kinematical approximation, the fine structure of the image intensities of a diffraction spot 

recorded from a crystal has been simulated in a simple manner by slicing the shape factor [11]. 

This approach has involved the formulation of analytical solutions to describe the shapes of 

specific nanocrystal geometries [11-14]. 

 

 Here, we present a numerical method, the ‘single slice approach’, which can be used to 

efficiently generate simulations of two-beam dynamical complex amplitudes of diffracted spots 

in the focal and image planes of an electron microscope. We describe the theoretical framework 

of the method and we introduce the concept of the g-shape function that can be used to model 

defects in crystals within the ‘single slice’ framework. And we evaluate the accuracy of the 

method by comparing simulations with experimental images of different crystalline materials. 

 

2. Methods and Results 
2.1. Slicing the kinematical shape factor. 

 Within the framework of kinematical diffraction theory, the complex amplitude of a diffracted 

beam 𝜙𝑔 scattered in the direction 𝒌′ = 𝒌 + 𝒈 + 𝒒  at distance r is given by the expression 

𝜙𝑔(𝒒) =  
1

𝑟

𝐹𝑔

V𝑐
 ∭ exp [−2𝜋𝑖(𝒒 · 𝒓) 𝑑𝒓      (1) 
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where V𝑐 is the volume of the unit cell, 𝐹𝑔 is the structure factor, a real constant of the unit cell 

when absorption is not considered for the reflection corresponding to the reciprocal vector g, 𝒌 

is the incident electron beam direction and 𝒒 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧) is a reciprocal lattice vector, whose 

origin is at the reciprocal lattice point g. The integral in Eq. 1 is, by definition, the three-

dimensional Fourier transform of an oriented crystal, whose shape in real space can be defined 

by the function 𝒟(𝒓)= 𝒟(𝑥, 𝑦, 𝑧), which takes a value of unity inside the crystal and zero outside 

it.  

𝒟(𝒓) = {
𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 →     1

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 →  0
 

Equation 1 can therefore be written as a product in the form 

𝜙𝑔(𝒒) =  
1

𝑟

𝐹𝑔

V𝑐
 ℱ𝑇3𝐷{𝒟(𝒓)} ≡

1

𝑟

𝐹𝑔

V𝑐
 𝐷(𝒒) ,    (2) 

where 𝐷(𝒒) is referred to as the shape transform and is a complex quantity. In the kinematical 

approximation, which is often valid for X-rays and for small crystals in weakly diffracting 

orientations for electrons, each reciprocal lattice spot is convoluted with the function 𝐷(𝒒), 

whose spatial orientation is linked to that of the crystal (Fig. 1a). For example, for a thin 

crystalline slab, each reciprocal lattice spot is elongated in a direction parallel to the shortest 

dimension of the crystal. Fig. 1b shows examples of crystal shape (for a cuboctahedron, a disc 

and an octahedron) and corresponding shape factor (i.e., the modulus squared of the shape 

transform) |𝐷(𝒒)|𝟐. 

According to Eq. 2, the fine structure of a diffraction spot from a nanocrystal depends on its 

morphology and crystallographic structure, on the atomic species present and on the 

orientation of the crystal and the direction, shape and wavelength of the electron beam. In this 

context, it is convenient to refer to the Ewald sphere geometrical interpretation of diffraction. 

A plane electron beam of wavelength λ that illuminates a crystal can be represented in reciprocal 

space by a sphere of radius 1 𝜆⁄ . It is only when the shape factor that is associated with each 

reciprocal lattice spot is intersected by the Ewald sphere that the corresponding beam will 

diffract (Fig. 1a). Typically, in electron diffraction many reciprocal points may be crossed by the 

Ewald sphere and correspondingly many beams may be excited at any time. When the electron 

beam is tilted by an angle Δ𝜃, the Ewald sphere rotates by angle Δ𝜃 around a point on the 

circumference of the sphere; if the sample is rotated by an angle Δ𝜃,  then the sphere is fixed 

and the reciprocal lattice points rotate by an angle Δ𝜃. Because of the high energy of the incident 

electron beam, the Ewald sphere can be approximated locally as a plane. Moreover, because  

𝒌′ ≅ 𝒌, the plane is approximately perpendicular to the electron beam direction at each 

reflection and intersects the shape factor at a distance 𝑞𝑧 = 𝑠𝑔, which is referred to as the 

deviation parameter (Fig. 1b). For example, the technique of coherent diffraction tomography 

uses a tilted series of diffraction patterns to rebuild the three-dimensional shape factor [15].   In 

general, 𝑠𝑔 is different for each reflection g and is given by the expression 𝑠𝑔 = |𝒈| Δ𝜃. If we use 

the Ewald sphere interpretation to Eq. 2 the complex amplitude ∅𝑔 of a scattered beam g is then 

described by a cross-section of the kinematical shape factor in the form 

∅𝑔(𝑞𝑥 , 𝑞𝑦) =
1

𝑟

𝐹𝑔

V𝑐
 𝐷(𝑞𝑥 , 𝑞𝑦;  𝑞𝑧 = 𝑠𝑔) ≅

𝐹𝑔

V𝑐
 𝐷(𝑠𝑔),           (3) 
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where the factor 1/𝑟 has been dropped in the rightmost term because the Bragg scattered wave 

is close to being planar at large distances 𝑟 compared with the unit cell dimensions (Fraunhofer 

diffraction).  

 

       Fig. 1. (a) Schematics of a transmission electron microscope. The diffraction pattern and the image plane of the 
objective lens are conjugated planes. The objective aperture at the focal plane can be used to select only one 

diffracted beam 𝜙𝑔(𝑞𝑥, 𝑞𝑦), thus forming a DF image. (b) Nanocrystal shapes 𝒟(𝑥, 𝑦, 𝑧), for a cuboctahedron, a disc 

and an octahedron and their corresponding shape factors, which are given by the modulus squared of 𝐷(𝑞𝑥, 𝑞𝑦 , 𝑞𝑧) 

in reciprocal space. (c) Detail of the three-dimensional shape factor of one cuboctahedrom in random orientation. 

The amplitude in the diffraction plane ∅𝑔(𝑞𝑥, 𝑞𝑦) corresponds to a planar intersection of the Ewald sphere with the 

shape factor 𝐷(𝑞𝑥, 𝑞𝑦 , 𝑞𝑧 = 𝑠𝑔) at the deviation parameter 𝑠𝑔. 

 

The complex diffracted amplitude in Eq. 3 depends on the reciprocal space coordinates 𝑞𝑥 and 

𝑞𝑦, which correspond to the coordinates of the diffraction pattern in the back focal plane of the 

objective lens. Figure 1b shows a representation in Fourier space of a shape factor intersected 

by two possible planar cross-sections at 𝑠𝑔 = 0 and 𝑠𝑔 ≠ 0. When referred to the origin g, points 

within the slices are defined by the vectors  𝒒 = (𝑞𝑥, 𝑞𝑦, 𝑠𝑔). The parameter 𝑠𝑔 is fixed 

experimentally by the tilt of the crystal relative to the incident electron beam. The intensity that 

is measured on a detector is then given by the expression 

𝐼𝑔(𝑞𝑥, 𝑞𝑦) = ∅𝑔 ∙ ∅𝑔
∗ = (

𝐹𝑔

V𝑐
)

𝟐

|𝐷(𝑠𝑔)|
2

                   (4) 

Note that Eq. 3 does not describe the atomic potential within the unit cell but only the variations 

of the crystal shape from unit cell to unit cell. The phase obtained of the Fourier component in 

reciprocal space using Eq. 3 is a “crystalline phase”, linked to description of the shape of the 

crystal [16].  
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Fig. 2. (a) Two-dimensional crystal with a square shape 𝒟(𝑥, 𝑧) and (b) the corresponding kinematical shape factor. 
The dotted lines represent one-dimensional Ewald sphere (ES) slices through the two-dimensional shape factor for 

𝑠𝑔 = 0 and 𝑠𝑔 ≠ 0 . The electron beam direction is from top to bottom. (c) The deviation parameter 𝑠𝑔 and the 

effective deviation parameter  𝑠𝑔,𝑒𝑓𝑓  plotted for the kinematical and dynamical cases using Eq. 11 for 𝒈 = (2 0 -2), Vg 

= 6.688 V and 𝜉𝑔 = 64.988 nm. (d) Effective shape factor calculated by re-stacking slices of the kinematical shape 

factor using the effective deviation parameter 𝑠𝑔,𝑒𝑓𝑓 using Eq. 13. 

 

2.2. Slicing the kinematical shape factor and the column approximation. 

 According to the Howie-Whelan equations, under two-beam kinematical conditions the 

intensity diffracted from a thin film in the direction 𝒌′ is given by the expression  

𝐼𝑔 = |∅𝑔|
2

=
𝜋2

𝜉𝑔
2  

𝑠𝑖𝑛2 𝜋𝑡𝑠𝑔

(𝜋𝑠𝑔)2
  ,      (5) 

where 𝜉𝑔 = 𝜋 𝑉𝑐  cos 𝜃𝐵 𝜆𝐹𝑔⁄ ≈ 𝜋 V𝑐 𝜆𝐹𝑔⁄  is the extinction distance for reflection g and 𝑡 is the 

specimen thickness.  Equation 5 simulates the real space intensity of a thin crystal in the column 

approximation [10]. Since the scattering angles are small, electron diffraction is essentially a 

forward scattering process. Therefore, even after being scattered several times, most electrons 

will travel nearly parallel to the incident electron beam direction. It is then generally assumed 

that an electron which enters the foil at one point never leaves a cylindrical column centred on 

that point. The crystal is then divided into columns that lie parallel to the direction 𝒌 and the 

image intensity is calculated column-by-column for different local values of specimen thickness, 

t, and deviation parameter, 𝑠𝑔. 

Following a similar derivation given by Humphreys [17] we illustrate next that the Howie-Whelan 

solution given by Eq. 5 is a particular solution of the “Ewald sphere” approach (of slicing the 

shape factor) given by Eq. 3.  
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Consider a thin crystalline slab that has lateral dimensions A x B and thickness 𝑡, where A, B >> 

t, according to Eq. 3, the intensity scattered in a direction 𝒌′ = 𝒌 + 𝒈 + 𝒒  at a large distance 𝑟 

can be obtained slicing the shape factor with a deviation parameter as 

𝐼𝑔(𝑞𝑥, 𝑞𝑦) = (
1

𝑟

𝐹𝑔

V𝑐
)

2

|𝐷(𝑠𝑔)|
2

= (
1

𝑟

𝐹𝑔

V𝑐
)

2

(
𝑠𝑖𝑛 𝜋𝑡𝑠𝑔

𝜋𝑠𝑔
)

2

(
𝑠𝑖𝑛 𝜋𝐴𝑞𝑥

𝜋𝑞𝑥
)

2

(
𝑠𝑖𝑛 𝜋𝐵𝑞𝑦

𝜋𝑞𝑦
)

2

.  (6)  

For large values of A and B, the terms that involve A and B tend to 𝛿 functions and 

𝐼𝑔(𝑞𝑥 , 𝑞𝑦) = (
1

𝑟

𝐹𝑔

V𝑐
)

2

 (
𝑠𝑖𝑛 𝜋𝑡𝑠𝑔

𝜋𝑠𝑔
)

2

𝐴 𝛿(𝑞𝑥)𝐵 𝛿(𝑞𝑦) .               (7) 

If we consider the intensity scattered about the diffracted beam 𝒌′ = 𝒌 + 𝒈  into solid angle 𝑑Ω 

by an element of area 𝑑𝑆 of radius 𝑟 at the exit surface of the crystal then 𝑟2𝑑Ω = 𝑑𝑆. In 

reciprocal space 𝑑Ω = 𝑑𝑞𝑥  𝑑𝑞𝑦 𝜆2/ cos 𝜃𝐵 (where 𝜃𝐵 is the Bragg angle for reflection g) and the 

total intensity scattered over a sphere of radius r about the diffracted beam direction 𝒌′ is 

∫ 𝐼𝑑𝑆 =
𝐴𝐵 𝐹𝑔

2𝜆2

V𝑐
2 cos 𝜃𝐵

(
𝑠𝑖𝑛 𝜋𝑡𝑠𝑔

𝜋𝑠𝑔
)

2

 ∫ 𝛿(𝑞𝑥)𝑑𝑞𝑥 ∫ 𝛿(𝑞𝑦)𝑑𝑞𝑦  .      (8)  

As AB cos 𝜃𝐵 is the area of the crystal projected along 𝒌′ and the integrals are 1, the intensity 

per unit area of the diffracted beam, i.e., the diffracted beam flux, is 

𝐼𝑔 =
 𝐹𝑔

2𝜆2

V𝑐
2 cos 𝜃𝐵

2
 (

𝑠𝑖𝑛 𝜋𝑡𝑠𝑔

𝜋𝑠𝑔
)

2

=
𝜋2

𝜉𝑔
2  (

𝑠𝑖𝑛 𝜋𝑡𝑠𝑔

𝜋𝑠𝑔
)

2

  .             (9) 

Summarising, slicing the shape factor using Eq. 3 (or 4) is a valid approach for calculating electron 

diffraction under kinematical conditions, and it does not require the column approximation. The 

classical Howie-Whelan two-beam solution (Eqs. 9 or 5) is recovered as a particular solution of 

Eq. 3 when an infinite crystal with finite thickness is considered.  

 

 2.3. Simulation of the fine structure of two-beam dynamical diffraction.  

2.3.1 Diffracted spots. 

Although the kinematical theory of diffraction provides a useful qualitative guide to the 

interpretation of transmission electron micrographs of crystals, it is valid only when the 

amplitude ∅𝑔 of the diffracted wave is small in comparison with that of the incident wave ∅𝑜. If 

the amplitude of the diffracted wave becomes large, then it can be scattered again. For crystals, 

whose thickness is comparable to or greater than 𝜉𝑔, the kinematical approximation is usually 

not valid and dynamical theory must be used [8, 9]. The dynamical intensity of a diffracted beam 

g in a two-beam condition is given by the expression 

𝐼𝑔 = |∅𝑔|
2

=
𝜋2

𝜉𝑔
2  

𝑠𝑖𝑛2 𝜋𝑡𝑠𝑔,𝑒𝑓𝑓

(𝜋𝑠𝑔,𝑒𝑓𝑓)2
 ,         (10) 
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or the Howie-Whelan two-beam solution under dynamical conditions. This equation has exactly 

the same form as that for the kinematical intensity in Eqs. 5 and 9. The only difference being 

that 𝑠𝑔 is replaced by the “effective” deviation parameter 

𝑠𝑔,𝑒𝑓𝑓 = √𝑠𝑔
2 +

1

𝜉𝑔
2    .                     (11) 

Just as we did for the kinematical case, we reinterpret Eq. 10 as an approximation of the more 

general Eq. 4, in which the kinematical shape factor 𝐷(𝒒), now under dynamical conditions, is 

sliced at an effective distance 𝑠𝑔,𝑒𝑓𝑓 instead of 𝑠𝑔, using the expression 

𝑠𝑔,𝑒𝑓𝑓 = 𝑠𝑖𝑔𝑛(𝑠𝑔) × √𝑠𝑔
2 +

1

𝜉𝑔
2    .                     (12) 

Then, the amplitude of a diffracted beam 𝜙𝑔 scattered under dynamical two-beam conditions 

in the direction 𝒌′ = 𝒌 + 𝒈 + 𝒒  is  

𝜙𝑔(𝑞𝑥 , 𝑞𝑦) =  
𝐹𝑔

V𝑐
 𝐷(𝑞𝑥, 𝑞𝑦; 𝑞𝑧 = 𝑠𝑔,𝑒𝑓𝑓) ≡

𝐹𝑔

V𝑐
 𝐷(𝑠𝑔,𝑒𝑓𝑓) .     (13) 

And the diffracted intensity in the focal plane of the objective lens is therefore identical to that 

in a planar slice of the kinematic shape factor at a distance 𝑞𝑧 = 𝑠𝑔,𝑒𝑓𝑓, given by the expression 

𝐼𝑔(𝑞𝑥 , 𝑞𝑦) = ∅𝑔 ∙ ∅𝑔
∗ = (

𝐹𝑔

V𝑐
)

𝟐

|𝐷(𝑞𝑥 , 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)|
2

≡ (
𝐹𝑔

V𝑐
)

𝟐

|𝐷(𝑠𝑔,𝑒𝑓𝑓)|
2

  .    (14) 

Figure 2b shows the kinematical shape factor 𝐷(𝑞𝑥 , 𝑞𝑧) of a bi-dimensional crystal with square 

shape 𝐷(𝑥, 𝑧) shown in Fig. 2a. The “dynamical” shape factor shown in Fig. 2d is obtained by 

restacking slices from  𝐷(𝑞𝑥 , 𝑠𝑔) to 𝐷(𝑞𝑥, 𝑠𝑔,𝑒𝑓𝑓) using Eq. 11. The gap in Figs. 2c-d exists when 

the scattering is dynamical and the deviation parameter |𝑠𝑔| ≥  1/𝜉𝑔. 1 

 

2.3.2. Precession electron diffraction. 

 Precession electron diffraction, PED [18] is a technique that permits the acquisition of quasi-

kinematical electron diffraction patterns and provides a powerful approach for the ab initio 

solution of crystal structures. Equation 14 can be used to simulate the influence of electron 

precession on a diffraction pattern. The technique relies on tilting the incident electron beam 

by an angle ф and precessing the beam about the optical axis of the microscope. The diffraction 

pattern is measured over a much longer acquisition time than the period of precession. With 

reference to the Ewald sphere interpretation of diffraction, the measurement corresponds to 

 
1 The meaning of the gap is explained in terms of the Bloch wave formalism. In two-beam conditions the 

diffracted beam g inside the crystal is a periodic wave with a wavevector of modulus Δ𝑘 = |𝒌(2) − 𝒌(1)|, 

which results from the sum of two Bloch waves with wavevectors k(1) and k(2) that interfere. The periodic 

wave (and the diffracted beam g) can exist only when Δ𝑘 = |𝑠𝑔,𝑒𝑓𝑓|. 
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not a single slice of the shape factor but an incoherent sum of 2 slices with deviation parameters 

of 𝑠𝑔
𝑖 = [−𝑔

∅

2
 , −𝑔

∅

2
 ]  given by the expression 

𝐼𝑔,𝑝𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛(𝑞𝑥, 𝑞𝑦) = (
𝐹𝑔

V𝑐
)

𝟐

∑|𝐷(𝑞𝑥 , 𝑞𝑦; 𝑠𝑔
𝑖 )|

2

𝑖

≡ (
𝐹𝑔

V𝑐
)

𝟐

∑|𝐷(𝑠𝑔
𝑖 )|

2

𝑖

         (15) 

 

2.3.3. Simulation of Dark-field TEM images.  

The image plane and the focal plane (Fraunhoffer diffraction) in the electron microscope are 

Fourier conjugate planes, and the objective lens of the microscope effectively performs a Fourier 

transform between both planes (Fig. 1a). Therefore, the complex amplitude in the image plane 

for a reflection g, ∅𝑔(𝑥, 𝑦), can be calculated by taking the two-dimensional Fourier transform 

of a planar slice of the complex amplitude ∅𝑔(𝑞𝑥, 𝑞𝑦) at a distance 𝑞𝑧 = 𝑠𝑔,𝑒𝑓𝑓 given by the 

expression, 

∅𝑔(𝑥, 𝑦) = ℱ𝑇−1{∅𝑔(𝑞𝑥, 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)}  .                  (16) 

And the diffracted intensity in the image plane of the objective lens will be 

𝐼𝑔(𝑥, 𝑦) = |∅𝑔(𝑥, 𝑦)|
2

= |ℱ𝑇−1{∅𝑔(𝑞𝑥, 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)}|
2

= (
𝐹𝑔

𝑉𝑐
)

𝟐

∙ |ℱ𝑇−1{𝐷(𝑞𝑥 , 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)}|
2

 .     (17) 

 

2.2.4. Simulation at the image and focal planes including absorption 

A more accurate simulation of the images must take into account that the intensity does not 

remain localized in the Bragg reflection. The diffuse electron scattering between the Bragg 

diffraction spots by inelastic and thermal diffuse scattering causes a decrease of intensity in the 

Bragg spots themselves [19]. Also, for dark field simulation normal absorption must be 

considered [20, 21] which has the effect of attenuating the intensities with increasing thickness 

of the crystal. Normal absorption can be modelled at the image plane by adding an exponential 

factor to the image intensity,  

𝐼𝑔(𝑥, 𝑦) = (
𝐹𝑔

𝑉𝑐
)

𝟐

∙ |ℱ𝑇−1{𝐷(𝑞𝑥 , 𝑞𝑦;  𝑠𝑔,𝑒𝑓𝑓)}|
2

∙ 𝑒
−2𝜋

𝜉𝑜
′  𝑧(𝑥,𝑦)

    ,      (18) 

where 𝑧(𝑥, 𝑦) is the projected thickness of the crystal taken along the 𝑧-direction, the direction 

of the incoming electron beam, and 𝜉𝑜
′  is a real value proportional to the extinction distance, 𝜉𝑔. 

The function 𝑧(𝑥, 𝑦) can be calculated numerically integrating the function 𝒟(𝒓)= 𝒟(𝑥, 𝑦, 𝑧) 

along 𝑧, or alternatively, by slicing the calculated shape factor, 𝐷(𝒒), at 𝑞𝑧 = 0, 

𝑧(𝑥, 𝑦) = |ℱ𝑇−1{𝐷(𝑞𝑥, 𝑞𝑦 , 𝑞𝑧 = 0)}| ≡ |ℱ𝑇−1{𝐷(0)}|   , (19) 

for which we have taken into account the equivalence stated by the Central Slice Theorem (see 

Supporting information). 
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Combining the Eqs. 18 and 19 the two-beam dynamical image intensity in the image plane for a 

reflection g including normal absorption is 

𝐼𝑔(𝑥, 𝑦) = (
𝐹𝑔

𝑉𝑐
)

𝟐

∙ |ℱ𝑇−1{𝐷(𝑞𝑥 , 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)}|
2

∙ 𝑒
−2𝜋

𝜉𝑜
′  |ℱ𝑇−1{𝐷(𝑞𝑥,𝑞𝑦; 0)}| 

 , (20) 

and the complex amplitude in the image plane is given by 

∅𝑔(𝑥, 𝑦) =
𝐹𝑔

𝑉𝑐
∙ ℱ𝑇−1{𝐷(𝑞𝑥 , 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)} ∙ 𝑒

−𝜋

𝜉𝑜
′  |ℱ𝑇−1{𝐷(𝑞𝑥,𝑞𝑦;0)}| 

 .     (21) 

At the focal plane of the objective lens the amplitude 𝜙𝑔(𝑞𝑥 , 𝑞𝑦) is the Fourier transform of 

the amplitude at the image plane (Eq. 21), or 

𝜙𝑔(𝑞𝑥 , 𝑞𝑦) =  
𝐹𝑔

V𝑐
∙ ℱ𝑇 {ℱ𝑇−1{𝐷(𝑠𝑔,𝑒𝑓𝑓)}} ∗ ℱ𝑇 {𝑒

−𝜋

𝜉𝑜
′  |ℱ𝑇−1{𝐷(0)}| 

}

=
𝐹𝑔

V𝑐
∙ 𝐷(𝑠𝑔,𝑒𝑓𝑓) ∗ ℱ𝑇 {𝑒

−𝜋

𝜉𝑜
′  |ℱ𝑇−1{𝐷(0)}| 

}  .    (22) 

The Fourier transform of the decaying exponential has the following transform, 

𝐹𝑇[𝑒−𝜋𝑘𝑜𝑥] =
2

𝜋

𝑘𝑜

𝑘𝑜
2 + 𝑞2

  ,     (23) 

being 𝑘𝑜 a real constant, and Eq. (22) becomes 

𝜙𝑔(𝑞𝑥 , 𝑞𝑦) =  
𝐹𝑔

V𝑐
∙ 𝐷(𝑞𝑥 , 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓) ∗   

2

𝜋
∙

1
𝜉𝑜

′

(
1
𝜉𝑜

′ )
2

+ 𝐷(𝑞𝑥 , 𝑞𝑦; 0)
2

≡  
𝐹𝑔

𝑉𝑐
∙  𝐷(𝑠𝑔,𝑒𝑓𝑓) ∗   

2

𝜋𝜉𝑜
′ ∙  

1

(
1
𝜉𝑜

′ )
2

+ 𝐷(0)2

              .     (24) 

At the focal plane the amplitude is the convolution (operator *) of one slice of the shape 

transform with a function of the slice 𝐷(0) through the centre (the projected thickness of the 

crystal).  And finally, the intensity in the focal plane including absorption is the modulus squared 

of Eq. 24,  

𝐼𝑔(𝑞𝑥, 𝑞𝑦) =   ||
𝐹𝑔

𝑉𝑐
∙ 𝐷(𝑠𝑔,𝑒𝑓𝑓) ∗  

2

𝜋𝜉𝑜
′ ∙    

1

(
1
𝜉𝑜

′ )
2

+ 𝐷(0)2

||

2

   .          (25)   

In summary, Eqs. 20 and 25 can be used to simulate the dynamical diffracted intensity in two-

beam condition at the focal and image planes of a TEM, including the effect of normal 

absorption.  
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2.2.5. The g-shape factor and the simulation of defects. 

One of the goals of image simulation is understanding the contrast of experimental images of 

crystalline sample with defects. Images of defects are often acquired experimentally in dark field 

mode under two-beam conditions, and they are simulations using the Howie-Whelan equation 

and the column approximation. However, these fail in some situations like for single points 

defects and even in weak-beam images of perfect films. To remedy this, the Howie-Basinski 

equation set can be used, which avoids the column approximation and gives approximate 

solutions of the time-independent Schrödinger equations describing high-energy electrons 

propagating through a crystalline foil containing a defect [9, 22].  

 

Here instead, we study the feasibility of the single slice approach for simulating the contrast 

arising from defects. Firstly, we note that the shape function 𝒟(𝒓) used in Eq. 2 was defined as 

a function that describes the boundaries of a perfect crystal. The shape factor was calculated as 

the Fourier integral of 𝒟(𝒓), a function which contains all of the information of the geometry of 

the perfect crystal.  𝒟(𝒓) is the same for every diffracted beam 𝒈. The only difference between 

different reflections is the value of the structure factor of the reflection, which is related to the 

Fourier component of the electrostatic potential by the expression  

𝐹𝑔 𝑉𝑐⁄ =  𝜎 𝑉𝑔 𝜆⁄   ,      (26) 

where 𝜎 is the interaction constant (𝜎 = 2𝜋𝑚𝑒𝜆/ℎ2). A defect displaces the positions of the 

unit cells of the perfect crystal, thus, altering the electrostatic scattering potential 𝑉𝑔 seen by an 

electron. The amount of change of 𝑉𝑔 is a function of the local distortion of the family of 𝒈-

planes.  Therefore, when a defect occurs 𝒟(𝒓) is no longer the same for every diffracted beam. 

Instead, in general each set of 𝒈-planes will have associated a ‘𝒈-shape function’, 𝒟𝑔(𝒓) that 

describes how 𝐹𝑔 (or 𝑉𝑔) changes locally with the local displacement 𝑹(𝒓) of the unit cells, so 

that the amplitude of a diffracted beam in two-beam condition will be given by  

𝜙𝑔(𝒒) = 𝜙𝑔(𝒒) =  
𝐹𝑔

V𝑐
 ∭ 𝒟𝑔(𝒓) exp [−2𝜋𝑖(𝒒 · 𝒓) 𝑑𝒓 = 

=
𝐹𝑔

V𝑐
 𝐷𝑔(𝒒),      (27) 

The subscript 𝒈 is added to indicate that for imperfect crystals the shape function will be 

different for different sets of lattice planes.  

We define such a modified shape function as follows, 

𝒟𝑔(𝒓) = {

 𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 𝑔 → 1
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑜𝑟 𝑎𝑡 𝑎 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 → 0

   𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔 𝑝𝑙𝑎𝑛𝑒𝑠 →  𝑒−2𝜋𝑖 𝒈∙𝑹(𝒓)         

,            (28) 

where three cases are considered: 

(i) 𝒟𝑔(𝒓) is 1 wherever the 𝒈-set of planes are not distorted (the potential is 𝑉𝑔 ).  

(ii) 𝒟𝑔(𝒓) is zero whenever the periodicity of the 𝒈-planes is broken, such as at the facets 

of the crystal, or whenever the crystal planes change direction abruptly, like for 

example, at a stacking fault.  
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(iii) Where the 𝒈-set of planes is strained, the shape function 𝒟𝑔(𝒓) is a complex function 

that depends on the local displacement field, 𝑹(𝒓). This is a well-known result of 

diffraction theory of defects that models the effect of local strain as a phase change 

given by 𝑒−2𝜋𝑖 𝒈∙𝑹(𝒓) , and the problem of calculating Eq. 27 reduces to finding the scalar 

product 𝒈 ∙ 𝑹(𝒓). 

If 𝒟𝑔(𝒓) is known, the two-beam dynamical diffracted amplitude and intensity can be simulated 

in the focal and image planes as in the case of a perfect crystal by single slicing the 𝒈-shape 

factor 𝐷𝑔(𝒒). The intensity in the focal plane is then given by the expression 

𝐼𝑔(𝑞𝑥, 𝑞𝑦) = (
𝐹𝑔

V𝑐
 )

𝟐

|𝐷𝑔(𝑞𝑥, 𝑞𝑦; 𝑠𝑔,𝑒𝑓𝑓)|
2

≡ (
𝐹𝑔

V𝑐
 )

𝟐

|𝐷𝑔 (𝑠𝑔,𝑒𝑓𝑓)|
2

 ,    (29) 

and the intensity in the image plane is  

𝐼𝑔(𝑥, 𝑦) =  (
𝐹𝑔

V𝑐
 )

𝟐

∙ |ℱ𝑇−1{𝐷𝑔 (𝑠𝑔,𝑒𝑓𝑓)}|
2

 .                (30) 

And if normal absorption is included, the intensities in the focal and image plane are respectively 

𝐼𝑔(𝑞𝑥, 𝑞𝑦) =   || 
𝐹𝑔

𝑉𝑐
∙ 𝐷𝑔(𝑠𝑔,𝑒𝑓𝑓) ∗

2

𝜋𝜉𝑜
′ ∙  

1

(
1
𝜉𝑜

′ )
2

+ 𝐷(0)2

 ||

2

,      (31) 

and 

𝐼𝑔(𝑥, 𝑦) =  (
𝐹𝑔

V𝑐
 )

𝟐

∙ |ℱ𝑇−1{𝐷𝑔 (𝑠𝑔,𝑒𝑓𝑓)}|
2

∙ 𝑒
−2𝜋

𝜉𝑜
′  𝑧(𝑥,𝑦)

      ,          (32) 

 

3. Results 
 

In the following sections we apply the single slicing approach to simulate dark-field electron 

diffraction contrast in a variety of practical problems. 

3.1. Simulations of the fine structures of diffracted spots.  

3.1.1. Diffracted spots of MgO crystals. 

Figure 3 illustrates the application of Eq. 14 to the simulation of the diffracted intensities of MgO 

crystals for different orientations. A sample of MgO smoke crystals was prepared by placing a 

holey C film on a Cu TEM grid close to a burning MgO wick. Selected area electron diffraction 

patterns were recorded on a charge-coupled device (CCD) camera using a JEOL 2100 LaB6 TEM. 

Figure 3a shows bright-field TEM images of three crystals with cubic shapes viewed along [110], 

[100] and [111] directions for crystal sizes of approximately 160, 750 and 200 nm, respectively. 

In diffraction mode, the strongest diffracted beams were identified: (220) for the [111] 

orientation and (200) for the other two orientations. The chosen crystals have sizes well above 
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the extinction distances for MgO of 𝜉220 = 64.988 nm (𝑉𝑔,220 = 6.68 V) and 𝜉200 = 43.64 nm  

(𝑉𝑔,200 = 9.96 V).  

 

Fig. 3. (a) Experimental bright-field TEM images acquired at 200 keV of three MgO smoke crystals at different 
orientations. Right, the corresponding experimental diffracted spots acquired with a selected area diffraction 
aperture and a CCD camera. (b) Simulated diffracted spots calculated by slicing the shape factor of the 3D model of a 
cube oriented approximately along the same zone axes of the particles shown in (a), i.e., [110], [100] and [111]. The 
simulated fine structure of the spots display some differences with the experiment. (c) Full diffraction pattern of the 
MgO crystal oriented close to a [111] zone axis. The crystal is not diffracting in two-beam conditions, and the six 
reflections are excited at different deviation parameters (see discussion in the text). (d) Diffraction pattern of the 
powder of MgO crystals supported on amorphous carbon. The rings of the Contrast Transfer Function (CTF) of the 
objective lens are visible. Also, the background intensity is non zero, primarily because of a combination of the effect 
of the Thermal Diffuse Scattering (TDS) of the sample and the Point Spread Function (PSF) of the scintillator-camera 
system. The edge of the blocking pin was used to calculate the Point Spread Function shown in the right. 

 

In order to obtain the results shown in Fig. 3b, a three-dimensional model of a cube with a lateral 

size of 80 nm was built in a volume of 128 x 128 x 128 pixels using a voxel size of 1 nm,  with the 

normals parallel to the x, y and z axes. The use of a small simulation volume is computationally 

effective but the 3D model in Figure 3 is smaller than the size of the experimental cubes shown 

in Fig. 3. Nonetheless, smaller models have a large shape factor in reciprocal space, thus 

increasing the resolution (the number of slices available) in the range of low values of 𝑠𝑔 (or 

𝑠𝑔,𝑒𝑓𝑓). Note that according to Eqs. 13 or 14 the contrast features do not depend on the size of 
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the crystal in real space but only on the deviation parameter selected to slice the shape factor. 

The incident electron beam in Figure 3b is the z direction. The 3D model of the cube was rotated 

by 43° about the y direction to perform simulations close to [110], while a [111] orientation was 

obtained by rotating the 3D model by 45° about the y and x directions. Equation 13 was applied 

to the 3D Fourier transforms (the shape factor 𝐷(𝒒)) of the models. 𝐷(𝒒) for each orientation 

was computed in a volume of size 128 x 128 x 128 pixels using a reciprocal space pixel size of 

0.0078 nm-1. This value determines the minimum slice thickness Δ𝑠𝑔,𝑒𝑓𝑓 that can be used. 

Images and diffraction patterns were recorded at an accelerating voltage of 200 kV, 

corresponding to a de Broglie wavelength of electrons of λ = 0.0025 nm and a radius of the Ewald 

sphere 1/λ of 1/0.0025 nm−1, which is much larger than |g20-2|=6.718 nm−1 and |g002|=4.751 

nm−1 for MgO. The Ewald sphere in the vicinity of the reciprocal lattice points can therefore be 

approximated with a plane. The slices of the diffracted spots in Fig. 3b were chosen by selecting 

slices of 𝐷(𝒒) perpendicular to the direction qz, which best matched visually the symmetries of 

the fine structures of the experimental images. In order to reduce the high dynamic range of the 

intensities, approximately 107, the contrast and intensity of the images were adjusted.  

The symmetries and features of the experimental images shown in Fig. 3a are well reproduced 

by the simulations although they display some differences. Fig. 3c shows a full diffraction pattern 

of the MgO crystal oriented close to a [111] zone axis. Four of the reflections are single big spots 

with a very large intensity, and the other two have a fine structure with three small spots at the 

corners of a triangle. The crystal is not diffracting in two-beam conditions, and the six reflections 

are excited with different deviation parameters. The four spots with large intensities must be 

cuts through the shape factor with a deviation parameter closer to zero. They look like single 

spots but in reality, each of them must have three spots, but they are very close to each other, 

and the saturation of the camera does hide their fine structure. But the experiment indicates 

also that the two-beam approximation, at least in qualitative terms, is a valid approximation for 

simulating diffracted spots even though the crystal is not diffracting in two-beam condition.  

The experiment shows also a lower level of contrast and detail of the experiment compared with 

the simulated patterns. The origin of this difference may be because neither the background 

intensity due to thermal diffuse scattering (TDS) [19] nor the modulation transfer function (MTF) 

of the CCD camera were taken into account when performing the simulations [23]. Fig. 3d shows 

the diffraction pattern of the powder of MgO crystals supported on amorphous carbon. The 

latter is responsible for the observation of rings of intensity linked to the Contrast Transfer 

Function (CTF) of the objective lens that modify the background intensity of the diffracted spots. 

Also, TDS of the carbon film and of the crystals, being one of the sources of normal absorption 

contribute to the intensity observed in the background of the pattern. As it is shown 

theoretically in Eqs. 25 and 31, normal absortion is a non constant function of reciprocal 

coordinates that attenuates the diffracted intensities. Moreover, the amount of image detail of 

the pattern that is transferred to the recorded image is strongly dependent of the optical 

properties o fthe detector system. The MTF of one detector is the Fourier Transform of its Point 

Spread Function (PSF). In non ideal detectors the Point Spread Function (PSF) is responsible for 

a loss of detail of the image. In TEM it may be originated for instance by the multiple scattering 

of an electron impinging on the scintillator of the CCD camera.  In Fig. 3d is shown an estimation 

of the PSF using the slanted-edge method. The Edge Spread Function was measured as the 

intensity profile of one edge of the blocking pin (white arrow in Fig. 3d), and the directional PSF 
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was calculated as the derivative of the profile. The FWHM of the peak of about 8 pixels gives a 

estimation of the smoothing effect of the PSF on the recorded diffraction pattern. In order to 

evaluate more accurately the influence of the PSF and the TDS on the simulated images, future 

experiments could be carried out cooling the sample to reduce TDS and with direct detectors 

which have better MTF (and lower PSF) [24]. 

3.1.2. Simulations of the distorted fine structures of diffracted spots with and without 

precession.  

 The fine structure of diffraction spots (splitting, symmetries and shifts) have been explained 

using the concept of dispersion surfaces.  The method of slicing the shape factor introduced in 

this work can be used also to understand the factors that influence the positions and shapes of 

diffracted spots that are frequently observed experimentally [12, 25]. This information is 

important for accurate metrology from diffraction patterns (using both X-rays and electrons). 

Diffraction patterns are used for the identification of crystal phases that depends on the 

accurate measurement of reciprocal distances (moduli |𝑔|) and angles of g -vectors between 

the direct beam and diffracted beams. Also, small shifts of |𝑔| can be used for measuring crystal 

distorsions that can be linked for example to small compositional changes [26].  

 

Fig. 4. (a) Simulations of the fine structure of a diffracted spot for a wedge-shaped crystal for deviation parameters 
of sg=0 and sg=0.039063 nm-1.  The right column shows intensity profiles along (sgx, 0) and (0, sgy). The lowest row 

shows a simulation about sg=0.039063 nm-1 with a beam precession angle of 2°.  (b) As for (a), but for an octahedral 
crystal with one of its faces oriented perpendicular to the incident electron beam direction. The shifts occurs 

whenever the crystal contains asymmetries of the shape. 

 

Figures 4a and 4b show simulations of diffracted spots for a wedge-shaped crystal and a crystal 

with an octahedral shape, respectively, for three different experimental conditions. The first row 
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shows three-dimensional models and corresponding shape factors. The next two rows show 

simulations for deviation parameters of 𝑠𝑔 = 0 (i.e., for the kinematical case) and 𝑠𝑔 = 0.39063 

nm-1. Intensity profiles were generated from each of the simulated diffractograms along the (sgx, 

0) and (0, sgy) directions. The fourth row in Fig. 4 shows a simulation of the effect of precessing 

the electron beam by a tilt of 2° for a crystal with 𝑠𝑔  = 0.39063 nm-1 using Eq. 15. Figure 4 reveals 

the presence of shifts, high intensity subsidiary peaks and peak broadening when the deviation 

parameter is non-zero, even for perfect crystals with uniform composition. The shifts of the peak 

maxima and asymmetries of the fine structure happen whenever the crystal shape seen along 

the electron beam direction is asymmetric. 

 

3.2. Simulations of dark-field images  

3.2.1 Pendellosung fringes of an ensemble of MgO crystals. 

The image in Figure 5a is an experimental bright-field (BF) TEM image of smoke of MgO crystals 

deposited on a thin carbon film. The dark-field (DF) TEM image in Fig. 5b was formed selecting 

a (220) strong reflection with the objective aperture. The cubes are similarly oriented in a [113] 

zone axis geometry according with the FCC cubic structure of MgO (Fm-3m, a=4.213 Å). 

 

 Fig. 5. (a) BF TEM image of a sample of MgO cubes. (b) DF TEM image of the inset in (a) obtained by inserting an 
aperture at the diffraction plane and selecting one (220) diffracted spot. The cubes are oriented close to a [1 3 3] 

zone axis.  (c) 3D model of shape of three cubes built and spatially oriented to resemble the BF image shown in (a). 
(d) The deviation parameter 𝑠𝑔 and the effective deviation parameter  𝑠𝑔,𝑒𝑓𝑓 plotted for the kinematical and 

dynamical cases using Eq. 11 for 𝒈 = (2 2 0), Vg = 6.688 V and 𝜉𝑔 = 64.988 nm. (e) The simulation of three diffracted 

spots and the corresponding DF images was calculated by inverse Fourier transforming slices (called slices 0, 3 and 4 
in (d)) of the shape transform of the 3D model. Slice 0 only exists in the kinematical approximation (yellow circle on 
the dotted curve in (d)) and corresponds with uniform contrast (without Pendellossung fringes). Experimentally, we 

observed that the two largest crystals displayed Pendelossung fringes at any value of 𝑠𝑔 what confirms that 

dynamical diffraction dominates. Nevertheless, the smallest cube displayed uniform intensity at certain orientation, 
what indicates that kinematical approximation is valid for that size of crystal.   
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The simulations shown in Figure 5 where obtained as follows. A 3D model (𝒟(𝒓)) of three cubic 

shapes was built with a volume of 128 x 128 x 128 pixels and a pixel size of 1 nm (see Fig. 5c). 

The cubes were resized and rotated to match the orientation of the crystals located inside the 

square shown in Figure 5a. The three-dimensional Fourier transform (shape transform, 𝐷(𝒒)) of 

the 3D model was computed resulting in a volume with a size of 128 x 128 x 128 pixels and a 

reciprocal pixel size of 0.0078 nm-1. This value determines the minimum thickness Δq of the 

slicing scheme for the pixel resolution used. The DF TEM images were simulated using Eq. 20 by 

selecting the slices of 𝐷(𝒒) perpendicular to the direction qz that best matched the experimental 

images, and normalized to 1. While experimentally it has been shown that typically  𝜉𝑜
′ ≈ 10 𝜉𝑔 

[20], a better match in our experiments between the experimental and simulated images was 

found using lower values 𝜉𝑜
′ < 10 𝜉𝑔. The images of the diffracted spots displayed in Figure 5e 

were calculated without absorption using Eq. 14 at the same values of 𝑠220,𝑒𝑓𝑓 found optimal to 

simulate the DF TEM images. 

 

Fig. 6. (a) Tilt series of experimental DF TEM images of MgO cubes acquired with a tilt step of 0.05 degrees (∆𝑠220 =
𝑔220 Δ𝜃 = 0.0059 nm-1). (b) 3D model of shape of four cubes built and spatially oriented to resemble the area of 
the DF image shown inside the rectangular box in the image number 7 in (a). (c) Simulated diffraction pattern of 
MgO cube oriented close to a [4 4 1] zone axis. The unit cell has Fm-3m symmetry and the simulated diffraction 

pattern show that the strongest reflections are the (220)-type. This reflection has an extinction distance at 200 keV 
of 64.988 nm.  (d) Six simulated images of the fine structure changes of a (220) spot as a function of the deviation 

parameter. They were calculated by taking the modulus square of slices of the shape transform of the 3D model at 
the values of the deviation parameter s indicated on the curve shown in (e). These results can be replicated using 

the Matlab code provided in the Appendix.  
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3.2.2. Simulations of a tilt series of dark-field TEM images using the single slice approach. 

The collection of images numbered 1 to 10 in Figure 6a is an experimental tilt series of DF TEM 

images of similarly oriented MgO crystals. The objective aperture was used to select a (220) 

strong reflection that agrees with the geometry of the cubes and the fcc cubic structure of MgO 

(Fm-3m, a=4.213 Å) oriented in a [4 4 1] zone axis (see Figure 6c). The tilt series was acquired at 

increasing tilt angles of the sample holder using a tilt step of 0.05 degrees, effectively varying 

the deviation parameter 𝑠220 in steps of ∆𝑠220 ≈ 0.0059 nm-1. A detailed two-beam simulation 

of the series of images (and the fine structure of the diffracted spot) was carried out (Figure 7). 

The simulations can be replicated using the Matlab code provided in the Appendix.  

 
Fig.7. Experimental and simulated DF TEM images at six different values of the deviation parameter of the MgO 

cubes shown in Figure 6. The simulation of the DF images was calculated by inverse Fourier transforming slices of 
the shape transform of the 3D model with a normal absorption coefficient 𝜉𝑜

′ ≈ 4 𝜉𝑔, and normalized to 1. The 

slices were chosen to best fit the contrast features observed in the experimental images in terms of the number, 
shape and intensity of the Pendellossung fringes. Below each image, are plotted the intensity profiles (in red colour) 
measured on a central line perpendicular to the fringes as indicated with the dashed line in the top left images. The 
splitting of (and the separation between) the diffracted spot shown in Figure 6 is a measure of the spacing between 

Pendellosung fringes. These results can be replicated using the Matlab code provided in the Appendix. 
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The results shown in Figures 6d and 7 were obtained as follows. A 3D model of four cubic shapes 

was built with a volume of 128 x 128 x 128 pixels and a pixel size of 1 nm (see Fig. 6b). The cubes 

were resized and rotated to match the size and orientation of the crystals located inside the 

square of the image 7 in Figure 6a. The three-dimensional Fourier transform (shape transform, 

𝐷(𝒒)) of the 3D model was computed resulting in a volume with a size of 128 x 128 x 128 pixels 

and a reciprocal pixel size of 0.0078 nm-1. This value determines the slice thickness Δq of a single 

slice. And the intensity of the DF TEM images normalized to 1 in Figure 7 were simulated using 

Eq. 20 by selecting the slices of 𝐷(𝒒) perpendicular to the direction qz that best matched the 

experimental images. For the simulation of the DF TEM images we adjusted the value of 

absorption until a best much was found between the contrast of the line profiles measured on 

the simulated and experimental images using a value 𝜉𝑜
′ = 5 𝜉𝑔. The experimental (blue colour) 

and simulated (red colour) profiles are shown below each image. Experimental images have a 

background intensity due to the carbon layer used to support the crystals.  For comparing the 

experimental with the simulated profiles, the background profile of each image (black lines) was 

constructed by interpolating the throughs of the curves. The red profiles below each 

experimental image were obtained by subtracting the corresponding background line. The 

images of the diffracted spots displayed in Figure 6d were calculated using Eq. 14 at the same 

values of 𝑠220,𝑒𝑓𝑓 found optimal to simulate the DF TEM images.  

The number and structure of Pendellosung fringes in Figure 7 changes with tilt what indicates 

that the shape factors of each crystal have been sampled. The tabulated value of the extinction 

distance of g = (220) of MgO,  𝜉220(MgO) = 64.98 nm, was used to plot the 𝑠220 - 𝑠220,𝑒𝑓𝑓 curve 

of Figure 6e. Each simulated image have a different value of 𝑠220 or of 𝑠220,𝑒𝑓𝑓 depending on 

whether a crystal is diffracting under kinematical or dynamical conditions, corresponding with 

points on one of the two curves of Figure 6e. The two largest crystals in Figure 7 display 

Pendellosung fringes whose number decreases from slice 1 to 5, and when the deviation 

parameter changes sign the number of fringes increases again from slice 6 to 10 (see Figure 6a). 

In none of the experimental images the two large crystals display uniform contrast that would 

happen only if 𝑠𝑔= 0, and indicates that those crystals are scattering dynamically (the effective 

deviation parameter is 𝑠220,𝑒𝑓𝑓 ≠ 0). This observation agrees with the fact that those crystals 

have thicknesses that are larger than ≈65 nm (the extinction distance 𝜉220 of MgO). On the 

contrary, Pendellosung contrast of smaller crystals (marked with white arrows in Figure 6a) 

disappears at certain tilt angles and display uniform bright contrast. This is an indication that the 

smaller crystals are diffracting under kinematical conditions what agrees with the fact that those 

crystals have thicknesses that are below ≈ 65 nm (the extinction distance 𝜉220 of MgO). Notice 

that in the Figures 6 to 8, the models of the crystals are made of several crystals while a single 

slice is calculated. The single slice approach does not require choosing in advance if the 

scattering is kinematical or dynamical. The shape factor does not change, the free parameter is 

the slice chosen to cut through reciprocal space. What changes is which slice is being excited for 

a given orientation/tilt of the crystal. The shape factor of the crystals 𝒟(𝒒) in Figs. 6 to 8 is a 

convolution of four shape factors with exactly the same shape but with different sizes, one for 

each of the crystals. Smaller crystals have bigger shape factors and viceversa. When a slice is 

taken in Fourier space, the four shape factors are sliced differently giving rise to different 

contrast features. 
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The experimental tilt series combined with the simulations of Figure 6 can be used to estimate 

the extinction distance of a reflection. For example, the contrast of the Pendellosung fringes of 

the largest crystal in Figure 6a is dynamical and it has an inflection point at the tilt shown in 

image 5. Thus, the deviation parameter value of image 5 obtained with simulations must then 

be close to the minimum of the curve 𝑠𝑔 − 𝑠𝑔,𝑒𝑓𝑓 which is equal to 𝑠𝑔,𝑒𝑓𝑓(min) = 1 𝜉220⁄ (MgO). 

Then 𝜉220 (MgO simulated) = 1/0.015625 nm-1 ≈ 64 nm that is close to the tabulated value of 

64.98 nm.  

Finally, let’s note that a better fitting between experiment and simulations can be obtained. The 

single slice method proposed is based on building a numerical model of the shape of a crystal 

(not analytically). The results presented were obtained using 3D models with a numerical 

resolution of 128 x 128 x 128 pixels. The 3D Fourier transform of the model will be also 

discretized with a resolution of 128 x 128 x 128 pixels. And the maximum number of slices in 

reciprocal space is 128. In order to obtain a better fitting, the number of pixels of the 3D models 

must be increased, for example up to 256 x 256 x 256, effectively doubling the resolution 

(dividing by two the thickness of the slices). 

3.2.3. Simulations of a tilt series of dark-field TEM images using Howie-Whelan equation. 

Next we performed the simulation of the collection of images numbered 1 to 10 in Figure 6a 

using the 3D model of Figure 6b and the two-beam form of the Howie-Whelan equation given 

by 

𝐼𝑔 = |∅𝑔|
2

=
𝜋2

𝜉𝑔
2  

𝑠𝑖𝑛2 𝜋𝑡𝑠𝑔,𝑒𝑓𝑓

(𝜋𝑠𝑔,𝑒𝑓𝑓)2
∙ 𝑒

−2𝜋

𝜉𝑜
′  𝑧(𝑥,𝑦)

 ,        (33) 

where it has been added the exponential term that accounts for normal absorption. The 

calculated images whose intensities are normalized to 1 are shown in Figure 8. We found that 

the match between experiment and simulation diverge when the value of the deviation 

parameter is larger than approximately 0.0234 nm-1. Specifically, the central part of the two 

larger MgO crystals do not display the structure (number, width and position) of the thin 

Pendellosung fringes observed in the experimental images. The result seems to corroborate that 

in some situations the Howie-Whelan equation can fail to reproduce image details even for 

perfect crystals under weak-beam conditions [9, 10, 22].  
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Fig. 8. Experimental and simulated DF TEM images at six different values of the deviation parameter of the MgO 
cubes shown in Figure 6.  The simulation of the DF images was calculated using Howie-Whelan equation (22) and 

with a normal absorption coefficient 𝜉𝑜
′ ≈ 5 𝜉𝑔. The slices were chosen to best fit the contrast features observed in 

the experimental images in terms of the number, shape and intensity of the Pendellossung fringes. The match 
between experiment and simulation fails when the value of the deviation parameter is larger than approximately 

0.0234 nm-1.  

 

3.2.4. Measuring the shape factor using electron tomography.  

We have shown that the Eqs. 14 and 17 (or 20 and 25) can be used to simulate the images of a 

diffracted beam formed at the focal and image planes of a TEM. The critical step is that of 

obtaining an accurate model of the real shape of the crystal. This can be done creating 

numerically a 3D model as shown in Figures 1-7. Alternatively, one can measure the 3D model 

experimentally using for example electron tomography. Figure 9a shows three representative 

images of a tilt series of BF TEM images of an MgO cube. The series was pre-processed for 

minimising the background intensity [27], and Figure 9b shows an isosurface visualisation of the 

cube obtained by segmenting the reconstructed tomogram. The two DF TEM images were 

calculated rotating the model close to a [1 0 1] and a [1 1 1] zone axis, and extracting one slice 

of the shape factor (Eq. 20) at each orientation using the single slice approach. 
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Fig. 9. (a). The shape function 𝐷(𝒓), required for performing a simulation within the single slice framework 

described in this work can be obtained experimentally using electron tomography. (a) Three images of an MgO cube 
representative of a tilt series of BF TEM images acquired between -65 to 75 degrees. (b) Isosurface visualization of 

the 3D model of the electron tomogram of the cube. Below, two DF TEM images of the cube obtained for two 
different orientations of the 3D model and using the single slice approach. (c) Experimental BF TEM image of one 

crystal of ZrO2. Below, two DF TEM images acquired selecting with the objective aperture a (1 0 1) or a (1 1 1) 
reflection. (d) Voltex visualization of an ensemble of ZrO2 crystals measured with HAADF STEM tomography. (e) DF 

TEM images simulated using the single slice approach for two values of the deviation parameter. 

 

Figure 9c shows a BF TEM image of a ZrO2 crystal (monoclinic), and two experimental DF TEM 

images acquired with two different values of the deviation parameter (e.g., by selecting different 

diffracted spots with the objective aperture). Figure 9d shows the 3D model of an ensemble of 

crystals of the same sample measured using HAADF STEM tomography and that was used for 

calculating (Eq. 20) the DF TEM images of Figure 9e. The tomogram was Fourier transformed 

and the 3D shape factor was sliced at two values of 𝑠𝑔. The crystals have elongated shapes with 

a high width/thickness ratio, contain pores and surface irregularities (thickness changes and 

pits). All these morphological features are visible in the DF images as points with high brightness 

(marked with arrows), Pendellosung fringes with non-uniform spacing, and speckle contrast. And 

the same features are reproduced in the simulated images. 

 

3.2.5. Simulation of defects in crystals: slicing the “g-shape factor”.  

Figure 10a shows an example of the application of Eq. 32 for simulating dark-field contrast in 

two-beam conditions of four types of defects. The top row shows the amplitude of the complex 

shape function 𝐷𝑔(𝒓) (see definition 28) of a reflection g of a crystal.   
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Fig. 10. Top row, model in 3D (amplitude) simulating the shape function of four types of defects for a family of 𝒈-
planes: a dislocation, a stacking fault (SF), a pore and a coherent precipitate. The defects are contained in a planar 
slab (substrate) that has a wedge shape in one side. Below, several DF TEM images simulated using the single slice 

approach described in the text. The 4 slices show the variation of the contrast features of the defects for increasing 
values of the deviation parameter (clockwise). 

 

The substrate is modelled as rectangular region with a value of 1 that can represent a reflection 

g = (1 1 1) of a crystalline substrate with face-centred cubic structure in a [111] zone axis. One 

side of the substrate has a wedge with orientation (1 -1 1) (45 degrees’ inclination). Inside the 

substrate the core of a linear dislocation is modelled by setting to zero a line inside the substrate. 

A planar stacking fault (SF) defined by a plane with normal (-1 1 1) is modelled by setting to zero 

a planar area inside the substrate. A pore has been modelled by setting to zero a small spherical 

region inside the substrate.  

The coherent precipitate with spherical shape is defined by those points (𝑥, 𝑦, 𝑧) of the substrate 

that are at a distance  𝑑 = √(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2 + (𝑧 − 𝑧𝑜)2 <  𝑅𝑜 from a point (𝑥𝑜, 𝑦𝑜, 𝑧𝑜). 

Strain contrast originated by the precipitate is due to the displacement of the family of 𝒈-planes. 

Theoretical models show that the displacement field inside a coherent precipitate is radial and 

increases linearly with 𝑑, i.e.,   𝑅 = 𝜀 𝑑   for 𝑑 ≤ 𝑅𝑜 being 𝜀 a value that describes an isotropic 

strain [1]. The phase change (Eq. 28) of the wave scattered at a point (𝑥, 𝑦, 𝑧) inside the 

precipitate is given by  𝒈 ∙ 𝑹(𝒓) = 𝑔 𝑅(𝒓)𝑐𝑜𝑠𝜑 = 𝑔 𝜀 𝑑 𝑐𝑜𝑠𝜑. Let’s consider that we forming a 
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DF TEM image using a reflection 𝒈 that is parallel to the y-axis. In spherical coordinates, the 

angle 𝜑 and the y-coordinate of a point P located at a distance 𝑑 from the origin are related 

simply as 𝑦 =  𝑑 𝑐𝑜𝑠𝜑, and the phase factor is given by 𝒈 ∙ 𝑹(𝒓) = 𝑔 𝜀 |𝑦 − 𝑦𝑜|, which is the 

function used for the simulation of the precipitate shown in Fig. 10 with 𝜀 = 0.05. 

Although the 3D model used for the simulations in Figure 10 is very simple, the contrast of the 

calculated images display several contrast features typically observed for these types of defects. 

The ondulatory contrast of the dislocation increases with the deviation parameter. The contrast 

of the coherent precipitate has a central band and two sidebands. The pore can be dark or bright 

as in Fig. 9. And the stacking fault shows Pendellosung fringes which interfere (Moiré-like) with 

the fringes of the wedge at the area of intersection of both defects. 

 

Fig. 11. (a) Top, BF and DF TEM images of two MgO crystals on [200] orientation with sizes of about 120 and 200 
nm. The crystals have a thin skin of CeO2. (b) DF TEM images of an ensemble of MgO/CeO2 crystals. Several of them 

are oriented close to a [110] zone axis. A bright rim surrounds most of the crystals. (c) 3D model of the shape 
function 𝒟(𝒓) of two cubes in [100] and [110] orientation (the Z-axis is the beam direction). (d) Calculation of DF 

TEM images using the 3D model shown in (a) in which only a thin skin was set to 1 (𝒟(𝒓 ∈ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 1) and the 
inside was set to 0 (𝒟(𝒓 ∉ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 0). The simulations display the bright rim and Pendellosung fringes observed 

in the experimental images. (e) Calculation of DF TEM images using the 3D model shown in (a) in which the cubes 
are solid, 𝒟(𝒓 ∈ 𝑐𝑢𝑏𝑒) = 1). The simulations do not display the bright rims observed in the experimental images.All 

the simulated images are normalized in intensity to 1. 

3.2.6. Simulation of DF TEM contrast of crystalline monolayers of CeO2 . 

Finally, we have applied the single slice approach to investigate the contrast of DF TEM images 

of a sample of MgO cubes synthetized with an atomically-thin crystalline layer of CeO2 which 

recovers their external surface [28]. The sample was prepared as a powder and deposited on a 

Cu grid with lacey carbon. Figures 11a and b show representative BF and DF TEM images of the 
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sample. The DF TEM images were acquired selecting with the objective aperture a diffracted 

spot corresponding to the crystalline phase CeO2. Most of the cubes are in [110] and [200] 

orientations, and their perimeters are surrounded with rims of bright intensity. The two cubes 

in the left of Fig. 11b show also Pendellossung fringes.  Using energy-dispersive x-ray 

spectroscopy in STEM mode it was possible to measure a higher signal of Ceria at the surface of 

the cubes. We have used the single slice approach to answer the following questions –can we 

link the bright rims with the Ceria layers? Can we use DF TEM contrast as a method for detecting 

the presence of atomically-thin layers?  

First, a 3D model of the CeO2 layer was defined. Figure 11c, shows a model of two MgO cubes 

with their shapes orientated like [200] and [110] zone axes, being Z-axis the direction of the 

electron beam.  The thin shell around a cube was modelled by setting the shape function 𝒟(𝒓) 

to 0 inside the cubes, and 𝒟(𝒓) to 1 just for a surface layer of 1 nm. Fig. 11d shows the single 

slice simulation of the CeO2 for two values of the deviation parameter. The simulation replicates 

the experiment correctly when 𝑠𝑔 ≈ 0, i.e., the continous bright rims appear surrounding the 

darker cubes. Moreover, the simulation whith 𝑠𝑔 > 0 displays Pendellossung fringes and a 

discontinuous bright rim at the top and bottom surfaces of the cube. These features appear also 

in the experiment. All the features are visible simultaneously in the Fig. 11b and indicates that 

different the cubes are diffracting under different conditions due to small differences in size or 

tilt. For comparison, Fig. 11e shows the single slice simulation of solid cubes of MgO for two 

values of the deviation parameter. The simulations do not show the bright rims observed 

experimentally when 𝑠𝑔 ≈ 0, neither for 𝑠𝑔 > 0. 

Nevertheless, some experimental contrast features cannot be explained only with the model of 

a thin shell. For instance, one of the cubes on the left side show that the bright rim has brighter 

contrast also at the left and right side edges. Also, some of the cubes display the bright rim on 

only one of the surfaces. The growth of the thin layer is expected to be coherent with the MgO 

support, and preferential orientation is likely, but synthesis is not perfect, the MgO surfaces are 

irregular and CeO2 forms also a polycrystalline phase of small crystals. These nanocrystals scatter 

on the surfaces of the cubes and attach coherent and incoherently to the MgO. They originate 

the bright mottled contrast observed in Fig 11 and when the cubes are seen edge-on they will 

seem to form a continuous layer of bright intensity, similar to the rims observed.  

Conclusions 

We have presented a simple method that can be used to calculate dynamical complex 

amplitudes ∅𝑔(𝑞𝑥, 𝑞𝑦) and ∅𝑔(𝑥, 𝑦) diffracted by a crystal under two-beam conditions (Eqs. 13 

and 16 respectively). Eqs. 14 and 17 (or 20 and 25 including normal absorption) provide the 

image intensities formed at the focal and image planes of a TEM. The method in non-atomistic 

but very efficient compared to multislice methods for simulating ensembles of crystals with large 

sizes and complex morphologies. The 3D models used as input for the calculations were 

obtained either numerically or using electron tomography. The approach relies on slicing the 

shape factor of the crystal at a distance in reciprocal space given by the effective deviation 

parameter. It provides combined real and reciprocal space information that is not available from 

the analytical solutions provided for instance by Kormska and Neumann [14], and the column 



25 
 

approximation is not necessary. In some of the experiments, it has been found that when 

compared with the classic Howie-Whelan equation and the column approximation, the single 

slice approach provides simulated images that match better the experiment (including weak-

beam imaging). 

The framework was validated comparing simulations with DF TEM images of real samples of 

MgO and ZrO2 nanocrystals larger than 100 nm, and with DF TEM images of thin layers of CeO2.  

A better accuracy of the simulations is expected by increasing the number of pixels used for 

modelling the shape. In this way, the slicing in Fourier space can be done with a finer step. 

 The fine contrast features and Pendellosung fringes observed in the experiments could be 

replicated even when the crystals were not in two-beam conditions. The two-beam condition of 

diffraction does not exist, it is only an useful simplification. Our experiments suggests that the 

total intensity of a diffracted beam will decrease or increase depending on the number of active 

reflections, but the fine structure of the intensity is mostly affected by the shape of the crystal 

(and the deviation parameter). The MgO crystals studied in this work have shapes with high 

symmetry hence, the scattered beams will display similar fine structures. The accuracy of the 

method has been evaluated also on an experimental series of DF TEM images of MgO crystals 

and it has been used to estimate the value of the extinction distance 𝜉220 of MgO and a normal 

absorption coefficient lower than expected, 𝜉𝑜
′ < 10 𝜉220. 

It has been defined a generalized shape function called ‘g-shape function’ (Eq. 28) that is in 

general different for each reciprocal spot and that it can be used to simulate two-beam electron 

diffraction by a crystal with defects within the single slice framework. Basic contrast features of 

dislocations, stacking faults, pores and precipitates were reproduced correctly, including 

interference fringes at the intersection of planar defects.  

The single slice approach presented here can be used to simulate the fine structures of diffracted 

spots without and with precession (Eq. 15), and it has been applied to show that even for perfect 

(undistorted) crystals, the diffracted peaks positions (the absolute maxima) can be shifted, and 

can have asymmetric distorted shapes with intense subsidiary maxima. Nonetheless, by 

precessing the beam using PED, most of the distortions of the peaks can be minimised and the 

spots can be used more reliably for metrological applications, such as for the measurement of 

crystal size from the peak width or for calibrations. Also, the single slice approach could be 

applied for simulating x-ray diffraction because the intensity of a diffracted x-ray beam is 

formally equivalent to the Eq. 1. 
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Supporting Information 
The Central Slice Theorem is widely applied for tomographic reconstruction. The theorem states 

that the projection of a real function in a direction z corresponds to a central section through 

the Fourier space in the 𝑞𝑥 , 𝑞𝑦 plane that crosses the origin (𝑞𝑧 = 0).   

 

𝐷(𝑞, 𝑞𝑦, 𝑞𝑧 = 0) = ∬ [∫ 𝐷(𝑥, 𝑦, 𝑧)𝑑𝑧] 𝑒(−2𝜋𝑖(𝑞𝑥𝑥+𝑞𝑦𝑦)𝑑𝑥𝑑𝑦

= ∬ 𝑧(𝑥, 𝑦) 𝑒(−2𝜋𝑖(𝑞𝑥𝑥+𝑞𝑦𝑦)𝑑𝑥𝑑𝑦               

and 

𝑧(𝑥, 𝑦) = |ℱ𝑇−1{𝐷(𝑞𝑥 , 𝑞𝑦, 𝑞𝑧 = 0)}| ≡ |ℱ𝑇−1{𝐷(0)}|      

In terms of the shape factor, given a three-dimensional object 𝐷(𝒓) = 𝐷(𝑥, 𝑦, 𝑧)  the projected 

thickness 𝑧(𝑥, 𝑦) along the direction 𝑧 it is just the modulus of the inverse Fourier Transform of 

a central slice of the complex shape factor (with 𝑞𝑧 ≡ 𝑠𝑔 = 0). 

 

Appendix 

Matlab code 

%1. PARAMETERS 
clear all 

  
s = 3; %slice number. Change this value to change sg  

  
lambda = 0.00251; % wavelenght of the electron at 200 keV 
ic = 0.007228; %interaction constant at 200 kV 
Vg = 6.688; %Fourier coefficient Vg of electrostatic potentialfor MgO 

(220)  
ed = pi / (ic*Vg);  %extinction distance 
K = (pi / (lambda*ed))^2; 
factor = 5; 
na = factor * ed; %normal absorption 

  
%Angle in degrees out of the zone axis 
angle = -5;  

  
%Initialization of the simulation volume D of 128 x 128 x 128 voxels 
dm = 128;  
D = double(zeros(dm,dm,dm));  

  
%2. CREATING THE 3D MODEL SHOWN IN FIGURE 6b 
for x = 1:dm-1 
  for y = 1:dm-1 
    for z = 1:dm-1   

          
    if abs(7-y+dm/2)+abs(10+z-dm/2)<=9 && abs(10+x-dm/2)<= 9    
      D(x,y,z) = 1; 
    end  
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    if abs(-6-y+dm/2)+abs(z-dm/2)<=12 && abs(25+x-dm/2)<= 9 
      D(x,y,z) = 1; 
    end 

  
    if abs(-28-y+dm/2)+abs(25+z-dm/2)<=28.5 && abs(-11+x-dm/2)<= 18 
      D(x,y,z) = 1; 
    end 

                                   
    if abs(21-y+dm/2)+abs(-16+z-dm/2)<=36  && abs(-18+x-dm/2)<= 24 
      D(x,y,z) = 1; 
    end 

  
    end 
  end 
end 

  

  
%3. ROTATION OF THE MODEL AND DISPLAY 
%The shape function is rotated around the x-axis 
for sl=1:size(D,2) 
   IM(:,:)=D(:,sl,:); 
    IMR = imrotate(IM,angle,'crop'); 
    D(:,sl,:)=IMR;     
end 

  
subplot(1,3,1)     
[f,v] = isosurface(D,0.9); 
p = patch('Faces',f,'Vertices',v); 
set(p,'FaceColor',[1 0.5 0.2]','EdgeColor','none'); 
alpha(0.9) 
daspect([1,1,1]) 
camlight(150, 40)  
lighting gouraud 
grid on 
xlabel('x (nm)'); 
ylabel('y (nm)'); 
zlabel('z (nm)'); 
title('3D shape function D(x,y,z)','Fontsize',12);   
set(gca,'fontsize',12) 
axis([dm/2-60 dm/2+60 dm/2-60 dm/2+60 dm/2-60 dm/2+60]) 
view([0, -90]);  

  
%4. SLICING THE 3D FT 
%3D Fourier transform of the shape function Dq 
Dq = fftn(D);  
Dq = fftshift(Dq); 

  
%Slice number referenced to the central slice of the reciprocal volume 
sg = dm/2 + 1 + s;  

  
%2D slice of the shape transform 
slice(:,:) = Dq(:,:,sg);  

  
%5. SIMULATED DIFFRACTED BEAM AT THE FOCAL PLANE 
%Image of diffracted spot at the focal plane (intensity) 
FP = K * abs(slice).^2; 

  
%Normalization to 1 
FP = FP / max(max(FP));  
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subplot(1,3,2) 
imshow(mat2gray(FP),[]) 
xlabel('q_{x} (nm^{-1})'); 
ylabel('q_{y} (nm^{-1})'); 
colormap('gray') 
colorbar  
title(['I_{g}(qx,qy)=|\phi_{g}|^{2} Focal plane, s_{g}= ' 

num2str(s)],'Fontsize',12);   
box on 
axis square 

  
%6. SIMULATED DIFFRACTED BEAM AT THE IMAGE PLANE 
%2D slice of the shape transform 
slice(:,:) = Dq(:,:,sg);  

  
% Modulus squared of inverse FT of slice of the shape factor 
Ig = K * abs(ifft2(slice)) .^2;  

  
% Thickness z(x,y) 
zmap = abs(ifft2(Dq(:,:,dm/2)));  

  
% DFTEM image at the image plane (intensity) 
Ig = Ig .* exp(-2*pi*zmap/na); 

  
%Normalization to 1  
Ig = Ig / max(max(Ig));  

  
subplot(1,3,3) 
imagesc(0:dm,0:dm,Ig, [0 1]) 
xlabel('x (nm)'); 
ylabel('y (nm)'); 
colormap('gray') 
colorbar  
title(['I_{g}(x,y)=|\phi_{g}|^{2} DFTEM, s_{g}= ' 

num2str(s)],'Fontsize',12);   
box on 
axis square 

 

 


