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ABSTRACT

he current paradigm of Cosmology is founded on the A Cold Dark Mat-
ter (ACDM) prescription, thanks to the enormous amount of experiments in
23 agreement with it. The building process of the ACDM paradigm has three pil-
lars, namely: General Relativity, the Cosmological Principle and the presence of a
puzzling Dark Sector. However, ACDM model is not able to answer all questions. For
example, about the intrinsic nature of the Dark Sector, certain issues on the for-
mation of structures in the Universe and current tensions between datasets. Conse-
quently, the last word has yet to be spoken regarding the description of the Cosmos.
Because of that, this PhD dissertation intends to be a step forward in the improve-
ment of our cosmological knowledge.

After two chapters devoted to the current concordance model and its main prob-
lems respectively, as an introduction, the main topic of this PhD thesis is presented
in the third chapter: the so-called pure momentum transfer models. They are an
alternative description of the Cosmos which add to the concordance scenario the
presence of a momentum exchange between certain components of the Universe in-
volving the Dark Sector. That kind of interactions preserve the background cosmol-
ogy while modifying the perturbation regime, where precisely certain tensions have
emerged in recent times. Moreover, we can also understand them as the macroscopic
description of a microscopic force acting in the Dark Sector due to a yet invisible
charge. The main implication of this pure momentum exchange is the freezing of the
density perturbations of the pressureless fluid, leading to a late-time mechanism
eraser of structure. In this thesis, we first present three different momentum trans-
fer models to subsequently thoroughly study, both analytically and numerically,
their background cosmology and their linear perturbation regime. We then explore
all the different effects on several observables to later use the most recent data to
constrain the model parameters along with the cosmological parameters. After that,
we devote a chapter to the analyses of how future planned surveys will be capable
or not of disentangling the presence of the pure momentum transfer interactions.
In the final chapter, we focus on the very small scales where the non-linear physics
takes place, as the next natural step once the background and linear cosmology has
been studied along with the performance of future surveys. We analyse how these
models affect the formation of structures in our Cosmos, using the first one pre-
sented before as a proxy. Finally, we summarise the work done and we present our
conclusions together with the possible future prospects and open questions.
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RESUMEN

Swa | paradigma actual de la Cosmologia es el modelo de Constante Cosmologica
3 %%%8 con Materia Oscura Fria, llamado modelo ACDM, debido a la gran cantidad de

=) experimentos que asi lo confirman. Dicho paradigma cosmolégico esta basado
en tres pilares: Relatividad General, el Principio Cosmolégico y un enigmatico Sector
Oscuro. Sin embargo, el modelo ACDM no es capaz de resolver satisfactoriamente
todas las cuestiones que se le plantean, como puede ser la naturaleza intrinseca de
dicho Sector Oscuro, diferentes problemas en las formacion de las estructuras del
Universo o las recientes inconsistencias entre diferentes experimentos. De tal forma
que aun queda camino por recorrer para poder hallar una descripcion plenamente

satisfactoria para nuestro Cosmos, siendo este el objetivo de esta tesis doctoral.

SO\

Comenzaremos dedicando dos capitulos a explicar el modelo de concordancia
ACDM vy sus principales problemas, sirviéndonos pues de introduccion, para luego
presentar el principal tema de esta tesis doctoral: los modelos de transferencia de
momento. Se tratan de descripciones alternativas al ACDM para nuestro Universo
que agregan a la descripcion actual la posible presencia de un cierto intercambio
de momento entre distintos componentes del Universo, especialmente de aquellos
pertenecientes a su Sector Oscuro. Tienen la peculiaridad de preservar la cosmologia
de fondo y por tanto s6lo actuar a nivel de las perturbaciones, donde precisamente
han surgido discrepancias ultimamente entre distintos experimentos. La anterior
interaccion puede ser entendida como el resultado macroscopico de una fuerza aun
por descubrir actuando dentro del Sector Oscuro y causada por una carga oscura
que nuestros detectores no han podido desentranar debido a su propia naturaleza.
A nivel de consecuencias, dichas interacciones se manifiestan como una reduccion
en el proceso de acrecion de materia en las distintas estructuras del Universo que
es eficiente en los estadios mas tardios del Universo. En esta tesis doctoral, primero
presentamos tres modelos diferentes donde se da tal transferencia de momento para
luego estudiarlos detalladamente tanto de forma analitica como de forma numérica.
Se analizara su cosmologia de fondo y el régimen lineal de perturbaciones para
luego determinar sus posibles efectos en diferentes observables y, para finalizar,
confrontarlos a los datos mas recientes disponibles con el fin de constrefir sus
parametros. En el siguiente capitulo, analizaremos como los futuros experimentos
seran capaces o no de detectar las interacciones estudiadas. Finalmente, en el iltimo
capitulo, estudiaremos como es el régimen no lineal de dichos modelos viendo como
pueden cambiar el proceso de formacion de estructuras en el Cosmos. Para acabar
y asi cerrar, presentaremos nuestras conclusiones sobre el trabajo aqui realizado y
comentaremos sobre cuestiones futuras a continuar.
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CHAPTER

INTRODUCTION

josmology is nothing but the attempt of adults to answer the question every
j child asks: what is that up in the skies and why does it work like it does? As
{ i Carl Sagan said: The cosmos is within us. We are made of star-stuff. We are
a way for the Universe to know itself. The wish to understand the Cosmos has been
with humanity since its beginning of times, since humans could be called humans.
This should not come as a surprise to us. Although now ruined in the cities by light
contamination, the breathtaking experience of being in the countryside, far from city
lights, in a cloudless night looking up to the skies poses too many questions while
making us very small in front of such a vast infinity. Maybe one of the first discov-
ered evidences of those everlasting questions is at the caves of Lascaux, where the
Pleiades were left for eternity by our ancestors. Temples astronomically oriented are
another example that goes from the Stonehenge and the Pyramids in every culture
to recent catholic churches. The ancients looked up to the sky in order to search
for answers in the regular patterns that celestial objects have while they configured
their lives, their harvests and ceremonies according to those patterns. Hence, Cos-
mology, as a science, is just the modern manifestation of such quest for answers
humanity has been making since the dawn of mankind.

As any other science, Cosmology deals with a subject of study. In this case the
Universe, also called the Cosmos from ancient Greek meaning order. Because of
that, it is a peculiar science in the sense it deals with the origin, evolution and death
of everything that was, is and will be, placing Cosmology in a complex interplay with
philosophy and religion. In fact, some of the questions Cosmology tries to answer
were addressed by all the different religions and, historically, the descriptions of the
Cosmos came from religion not from science. What we may call Modern Cosmology
relates to the pursuit of understanding how the Cosmos works under the scientific
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CHAPTER 1. INTRODUCTION

method. The very first attempts in that way appeared when we first took our tele-
scopes up to the sky, showing that there were more stars than those seen by naked
eye, showing that some of them formed structures and discovering certain patterns.
This historical event led to questioning our position in the Cosmos, thought to be
in the centre, driving us to the Copernicus Principle. Even though technology pro-
gressed very fast in the subsequent centuries, we were only able to observe our very
local Universe bringing, of course, enormous advances to Astrophysics. But this also
implied theoretical progresses. For example, Kepler Laws or Newton Laws, which,
although in principle applied to our Solar System dynamics, now we use them for
several cosmological purposes. Despite all the previous progress, we may consider
that the founding events leading to Modern Cosmology date back from the twentieth
century. If we have to highlight some of them in this preface, we may split them
into theoretical and observational events. In the theoretical realm, the appearance
of General Relativity [1] stands out among the rest. Even if it was first applied to the
dynamics of the Solar System as a new theory of gravity, quickly showed its value
when applied to the whole Universe. In the observational domain, the discovery of
other galaxies and the expansion of the Universe changed forever our conception of
the Universe. Milky Way was no longer the only system but a vast number of galaxies
began to appear. Moreover, the Cosmos was not static but evolving in time, making
us wonder if there was a beginning and if there will be an end. Since those early
century milestones, Cosmology took his own path to become a respectable science
in its own right. But the process was not easy and we are yet on it. Although there
was a large amount of remarkable events and discussions, we cannot comment all
here but only some of them. For instance, the presence of the Cosmological Constant
in our cosmological models in the last one hundred years. First considered in the
pursuit of a closed and static Universe by Einstein, then intriguingly not observed
when the expansion of the Universe was discovered and finally resurrecting when
the expansion was observed to be accelerating. Dark Matter also has a turbulent
history. Never detected in our Earth experiments, no theory able yet to explain it
but cosmological experiments continuously indicating it is there, for instance with
rotational curves of galaxies or when measuring the total matter abundance. The
Cosmic Microwave Background is without any doubt the most amazing cosmologi-
cal observational discovery in the twentieth century. Light emitted in the beginning
of the Universe that travelled until now and containing an enormous amount of in-
formation. Up to now, it is the main cosmological observable and, ironically, it was
discovered serendipitously by Penzias and Wilson. In their antenna they had a signal
that they were unable to remove nor identify its origin, it was spread all around the
sky, day and night. The next landmark arrived with the discovery of the accelerated
expansion in the late nineties, changing completely the paradigm. In recent years,
another turning point is happening as now we have a vast quantity of datasets with
a percentage level of precision. This has been called the era of precision Cosmology,
although such a name is now rather hackneyed. Nowadays, we have observations



from the Baryonic Acoustic Oscillations [2], the Cosmic Microwave Background both
from Earth [3, 4] and extraterrestrial probes [5], Supernovae experiments [6], Large
Scale Structure surveys [7], Gravitational Waves observations [8], Lyman-« data [9]
or Cosmic Chronometers [10], to name just a few of the uncountable list of observa-
tions.

The previous process, from which we have just barely commented certain achieve-
ments, took place for more than one century and it concluded with the establish-
ment of a concordance model: the so-called A Cold Dark Matter model (ACDM). It
is able to account for most of our datasets. It explains, with the addition of the in-
flationary paradigm, how the very early, hot and dense Universe ended up in our
current Cosmos. How different structures were formed. How the abundances of the
different components balance. And, at the end, it gives us a coherent description
of the Cosmos. Because of that, Chapter 2 will be solely dedicated to it. There, we
will speak about the pillars ACDM is built upon, which description ACDM gives to
the background and large scale cosmology and which formularisation gives to the
perturbation sector. Finally, we will devote a section to explain the most important
observables both for the concordance model and for this thesis. Nevertheless, we
should not forget that ACDM model is nothing but an effective theory which, even
though it is able to explain most of our Universe, is not ultimately perfect. Due to
that, we will devote Chapter 3 to briefly explain which problems have appeared in-
side it in recent years in the form of tensions among datasets or inconsistencies in
the process of formation of structures. That will allow us to motivate the main topic
of this PhD dissertation: finding a better and well motivated alternative description
of the Cosmos. In our case, we will focus on what is commonly called pure momen-
tum transfer interactions. They basically consist in having some kind of coupling
between certain components of the Universe which implies a momentum transfer
between them with, however, no energy transfer. That will be Chapter 4. In that
chapter, we will make use of the most updated datasets to fully analyse the models
under consideration. Since the next years are enormously populated with new ex-
periments, in Chapter 5 we will perform several forecasts for future surveys. Up to
now, only linear analyses have been considered, thus in Chapter ¢ we will analyse
how the non-linear dynamics are when a pure momentum transfer is included. We
will present our conclusions and future work in Chapter

Notation and conventions

Here we want to fix the notation used in this thesis according to the following rules:

* Metric signature is (—, +, +, +), unless specified.

* Indices with Greek letters represent both time and spatial coordinates while
indices with Latin letters represent only spatial coordinates, unless specified.

* Having a subscript "0" in a cosmological quantity means it is measured today.

3



CHAPTER 1. INTRODUCTION

* Scale factor today is normalised to ap = 1.

nmen

* We denote the derivative with respect to cosmic time ¢ by and with respect

n/n

to conformal time 7 by .

* (;(a) represent the density evolution of the i-th component of the Universe in
units the critical density, while having just ©; means Q; = Q0 = Q(ag)









CHAPTER

THE STANDARD COSMOLOGICAL MODEL

RS ince the discovery of the accelerated expansion of the Universe in the late
(ﬁﬁ nineties, cosmologists have established a concordance model to describe the
XYL Universe, called the Lambda Cold Dark Matter model (ACDM). It is able to
explain the evolution of the Universe from the initial moments after the Big Bang to
the current observable Universe with all the structures present in it, such as galax-
ies, clusters, superclusters, etc. With an astonishing simplicity, since it only needs
six free parameters, it allows us to explain most of the observables we have, like
the Cosmic Microwave Background, the Baryonic Acoustic Oscillations or the Large
Scale Structure. The concordance model bases its success in three pillars: General
Relativity, the Cosmological Principle and a Dark Sector. The first pillar, General Rel-
ativity, has been tested up to Solar Scales, with Gravitational Waves and, recently
with the shadow of black holes. On the other hand, the Cosmological Principle is
tested above 100 Mpc. However, the Dark Sector was an ingredient added to explain
observations like the accelerated expansion of the Universe or the rotational curves
of galaxies, but its nature remains completely elusive for us.

In this chapter, we want to show the basics of this model. For this purpose, our first
stop of the journey will be the assumptions and mathematical tools required. After
it, we will present and deepen into the ACDM model, firstly its constituents, then its
parameters. When the background theory has been explained, we will analyse the
perturbation regime around it to finish with the main observables.

2.1 Assumptions, foundations and mathematical tools

Before delving into the concordance model of Cosmology, the first step in the amaz-
ing journey of understanding the whole Universe ought to be defining what is Cos-
mology itself and under which assumptions our concordance model should be relied

7



CHAPTER 2. THE STANDARD COSMOLOGICAL MODEL

upon. After that, we need to explain the main concepts we will deal with, so we can
finally focus on the standard cosmological model.

Cosmology is the scientific field inside physics knowledge which tries to study
the Universe as a whole, focusing on its composition, origin, evolution, dynamics
and final fate. Gravity is one of the main rulers of the Universe and, hence, the
first pillar of our concordance model is General Relativity as the standard theory to
describe the gravitational interaction.

General Relativity is the geometrical theory of Gravitation developed by Albert
Einstein [1] in the early twentieth century, which explains the gravitational force as
an intrinsic property of the space-time itself, related to its curvature'. The construc-
tion of General Relativity can be summarised as follows. We want an action principle
from which we can derive the equations of motion for our field and such that it re-
spects all the symmetries required. As we are dealing with gravity, the metric g,,
is the field in our theory. In principle, we usually work with second-order theories
described by a Lagrangian that, as typically, is of first-order. By general covariance,
our symmetry here, we want to write the Lagrangian as an unknown scalar of the
metric times the volume form. But the metric is a 2-covariant tensor, thus contract-
ing the metric with a derivative to have a first-order Lagrangian will not give us a
scalar and, therefore, we cannot construct a first order Lagrangian as we wished.
Unavoidably, we need a second-order Lagrangian. Now, considering second deriva-
tives and linearity in them, we can construct the Ricci scalar and, thus, our theory
emerges from

_ 1 4
S—2N/VR\/ gdiz,

where N is a certain normalisation factor, R is the Ricci scalar and g,,, is the metric
and g its determinant. There is one subtlety that, at the end, will be strongly relevant
as we will see. One can always add a constant to the Lagrangian, there is nothing
preventing us from doing it. Thus, in principle, it is allowed from the theoretical
point of view. Also, if there is matter its corresponding Lagrangian should appear.
Consequently, the full description of Gravity is

1
S:/(R—QA),/—gd% + Sm
ON Jy

where numerical factors have been chosen by convenience. At the moment, A is just
a constant but we will see through this PhD dissertation its crucial significance.
Also, Sy, corresponds to the action of the matter fields in the Universe.

For the purposes of this thesis, we can condense the General Relativity Theory
into the Einstein Field Equations, which are derived from the previous equation ,
encoding the relation between the space-time geometry and the matter content in it,

! Although equivalent formulations can be done relating the gravitational force to torsion or non-
metricity [11].
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as follows:

1
R,, — igle + Agy =81G T, ,

where R, is the Ricci tensor, A will be called the Cosmological Constant, G the
gravitational constant and 7),, the stress-energy tensor, related to the previous Sy,.
Although later we will explain it in detail, as a brief introduction the left-hand side
of the equation describes the shape of the space-time while the right-hand side the
energy and matter living in that space-time. In equation , we named for the first
time one of the two main ingredients of the concordance model, the Cosmological
Constant A, which from General Relativity ought to be understood just as one of its
parameters. As a historical curiosity, it was introduced by Einstein to counteract
gravity in his pursuit of a static and closed Universe, which was how the Universe
was though to be in those days. He supported its inclusion in General Relativity even
when astronomical data started to suggest the Universe was not static but expand-
ing. At the end, under the overwhelming evidence of the expansion of the Universe,
he finally accepted A was not there, describing its inclusion in the field equations
as "the greatest blunder of his life", as reported by physicist George Gamow in his
autobiography [12]. The reason for that strong statement was that he could have
predicted the expansion of the Universe with his theory more than a decade before
observations did. Consequently, the question in that moment was posed: if the cos-
mological constant is allowed in the theory, why is it not really there? Nevertheless,
in the late nineties the Supernova Search Team [13] and the Supernova Cosmology
Project Collaboration [14] discovered the accelerated expansion of the Universe. In a
Universe only filled with matter nothing can prevent gravity to gradually decelerate
its expansion. Therefore, this unexpected discovery led to the revival of the Cos-
mological Constant as the leading force of such accelerated expansion. Since that
moment, we are trying to discover the underlying nature of the greatest blunder of
Albert Einstein. Unfortunately, Einstein passed away in 1955, being unable to see
his Cosmological Constant was really there at the end~.

The second assumption in the building process of the ACDM model is the Cos-
mological Principle. It states the Universe is spatially homogeneous and isotropic for
cosmological scales, that is scales larger than 100 Mpc. We must be aware that the
typical size of a galaxy is 1 kpc and the average distance between two galaxies is
1 Mpc, while the size of the observable Universe is of the order of 10 Gpc. Then, the
Cosmological Principle rules over very large scales of the Universe, indicating there
is no special place in the Universe and that we should see no privileged direction in
the sky. Moreover, the isotropy is extended to any observer due to the homogeneity
and, therefore, the sky one sees is the same wherever one looks to and from wher-
ever one looks. The inclusion of "spatially” is necessary as we know, and inexorably

2Maybe at the end A is not there and what we are seeing is something else dubbed as Dark Energy
in the cosmologist community. Dark Energy is an extension of ACDM model where a new fluid, maybe
a new field, an undiscovered interaction, the consequences of a breakdown of General Relativity or
something else we cannot even imagine provokes the accelerated expansion of the Universe or maybe
the accelerated expansion of our region of the Universe.

9



CHAPTER 2. THE STANDARD COSMOLOGICAL MODEL

feel, time has a privileged direction”. Finally, we should remark, as a historical fact,
that the Cosmological Principle evolves from the Copernican Principle, which states
we live in no particular place of the Universe.

Combining the previous assumptions one can find a solution of the Einstein Field
Equations which is usually called the Friedman-Lemaitre-Robertson-Walker metric
(FLRW). This is a family of metrics, which of course are isotropic and homogeneous,

of the form

dr?

1 — kr?
where t is the cosmic time and r, § and ¢ are the comoving coordinates. Cosmic time
t is not the sole definition of time we use in Cosmology. In fact, we usually speak
about conformal time 7, both times related by dt = a d7. Thus, using conformal time
the FLRW metric is

ds? = —dt? + a2(t) < + 72 d#? + r’sin0 d¢2> ,

dr?
1 — kr2

ds? = —a?(7) A7 4 a®(7) ( + 72 d6? + r’sin%0 d¢2> :
In equation we have two key objects to describe the Universe, the scale factor
a(t) and the spatial curvature k, described as:

* Scale factor a(t): it accounts for the expansion of the Universe and, generally, it
is normalised to be one today as a(t = ty) = ap = 1°. We can use the scale factor
to define the expansion rate of the Universe as H = a/a, whose current value is
the Hubble constant Hy = H(t = to).

® Spatial curvature k: it encodes the curvature of the spatial part of the metric.

When k£ = —1 we have negative curvature (open Universe), £ = 0 no curvature
(flat Universe) and k£ = 1 positive curvature (closed Universe), as shown in Fig-
ure

With the previous FLRW metric the left-hand side of equation is fully charac-

terised. Therefore, we have to study the right-hand side which tells us about the
energy and matter budget of the Universe. We can define the stress-energy tensor as

=2 65y
YT /=g ogm
where g is the determinant of the metric and S,, is the action of each component of
the Universe. It is customary to describe the matter fields as fluids whose elements

are described by a unitary time-like field u, which is the 4-velocity. In the most
general case, we can write the stress-energy tensor as

Ty

T = (p+p) U Uy + PYurv + qQutiy + Qg + 1

3There was a time when the Universe was thought to satisfy the Perfect Cosmological Principle, that
is, the Universe was homogeneous and isotropic both in time and space. But the Hubble expansion
was discovered [15] and Big Bang was proposed by Georges Lemaitre [16].

“We remind here that all quantities with a sub-index O refer to today.

10
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Figure 2.1: Geometries of the Universe according to their curvature k: closed Uni-
verse k = 1 (right), flat Universe k = 0 (centre) and open Universe k = —1 (left).

where p is the energy density, p the pressure, ¢, the heat flux and II,,, the anisotropic
stress. Commonly, we work with no heat flux and no anisotropic stress, while we
can relate the energy density and the pressure by an equation of state defined as
w = p/p. In that case, we are dealing with perfect fluids whose stress-energy tensor
simply reads as

T = (p+p) uptty + PG

where v, is the 4-velocity of the fluid, which is u, = (1,0,0,0) as we are in the
comoving rest-frame in an isotropic and homogeneous Universe. Perfect fluids are
expected to satisfy a conservation law of its stress-energy tensor V, 7" = 0, which
leads to the following conservation equation for the density evolution

p+3H(p+p) =0.

We can characterise the different components of the Universe and its evolution ac-
cording to the equation , provided we set the equation of state of each compo-
nent. Thus, we can classify the energy budget of the Universe in three main cate-
gories, namely: matter, radiation and the Cosmological Constant. Each one has the
following features:

* Matter: non-relativistic component of the Universe and, then, pressureless since
w = % o % < 1, thus one simply sets w = 0. From equation one finds the
solution p « a~3. We are seeing nothing but matter energy density diluting with
the volume of the expanding Universe as the scale factor « measures precisely

the expansion, as illustrated in Figure

* Radiation: relativistic component, similar to the Photon gas so we can model
it with w = % Solving equation one finds it evolves as p « a~*. The extra
factor of the scale factor accounts for the dilution of the intrinsic wavelength as
we are dealing with a relativistic component and then its energy is redshifted
as F « % o L

o

11



CHAPTER 2. THE STANDARD COSMOLOGICAL MODEL

Figure 2.2: Schematic representation of the dilution of density of matter inside an
expanding box of volume V  a®. For radiation we should also take into account the
dilution of its intrinsic wavelength.

¢ Cosmological constant: although we may argue A belongs to the geometric part
of equation , it is completely equivalent to having an energy associated
with the vacuum whose stress-energy tensor is 7),, = —% guw- In combination
with the form of the stress-energy tensor for perfect fluids of equation , it
naturally leads to p = —p = %, then in a cosmological fluid description its
equation of state is w = —1. The name constant is perfectly reflected since from
equation we have pp = 0.

Once we have defined the geometric part of Einstein Field Equations via the FLRW
metric and the energy/matter part via the stress-energy tensor, we can obtain the
so-called Friedmann equations with the 0-O and i-j components of Einstein Field
Equations , leading to

a 4G A
- - _ 07 3 -
- 3 (p+ p)+3,
a\*  8rGp+A k
a a 3 a?’

Finally, before delving into the concordance model, let us explain in some detail
some concepts that will appear in next sections:

* Critical density p.,: defined as p., = %. If the total density of the Universe is

larger than the critical density we have a closed Universe, whereas the other
way round it should be an open one. A Universe with the same density as the
critical one is flat.

* Density parameter (2: the energy density in units of the critical density pc,,

since Q; = p”—i. We can rewrite the Friedmann equations defining Q) = ﬁ and
Ccr
_ k
Q= —45.7 as

U=1-0Q.

* Redshift z: due to the expansion of the Universe the emitted wavelength \. will
be shifted when observed )\,. We can define the change of the wavelength with

12
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the redshift due to the expansion as z = 2% = % _ 1 Then, provided we

e Qe

customarily set ap = 1, we have

a=(1+2)""1.

2.2 The ACDM model

As scientists, we usually tend to describe each area of physics by a standard or
concordance model which should be able to describe all the physics involved. Or,
in a more effective field perspective, all the physics involved in the relevant scales
for the system under consideration. In the case of Cosmology, it is the Lambda Cold
Dark Matter model (ACDM), which is considered by the cosmologist community as
the concordance model because of its astounding capability of explaining the pro-
cess of formation of structures from the very initial quantum fluctuation to the large
scale structure we see today. This process extended for 13.8 billion years from the
"unique atom"” until us, forcing the ACDM model, or any cosmological model, to be
able to explain how a very non-structured, dense and hot Universe evolved during
different cosmological eras until our current, structured, empty and cold Universe.
Moreover, any cosmological model must be able to explain at the same time the ex-
tremely accurate observations we have today from a plethora of scales and times.
In following sections, we will explain the foundational aspects of the Lambda Cold
Dark Matter model and its astonishing capability of explaining almost everything of
our elderly and vast Universe. We leave to Chapter 5 all the tensions, problems and
disadvantages of the ACDM model, since that chapter will help us to motivate the
search for new physics in the cosmological dynamics, which is the main aim of this
PhD dissertation.

In the previous section, we explained how assuming General Relativity and the
Cosmological Principle leads to a metric, called FLRW, which is able to describe the
geometry of our Universe. Now, we should focus on the ingredients needed in our
ACDM recipe of the Universe we live in. For the concordance model that recipe states
the following constituents:

* Cosmological Constant: the perpetrator of the unexpected accelerated expan-
sion of the Universe discovered in the late nineties. It is assumed to have an
equation of state wy, = —1 leading to a negative pressure equal to minus its
density py = —pp with a constant density parameter Q) (a) = Q4.

°In 1931, Georges Lemaitre suggested in Ref. [16] the Universe should have started from an initial,
unique and unstable atom with atomic weight as the total mass of the universe, which due to its
instability will divide and divide into other atoms. Fred Hoyle called it jokingly Big Bang, a name that
lasted until today although with a different meaning. Nowadays, Big Bang is thought to be the moment
after inflation not that primordial atom.

13
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¢ Cold Dark Matter: matter which only interacts gravitationally”, hence it is neu-
tral for the electromagnetic, weak nuclear and strong nuclear forces. It should
cluster and be almost pressureless leading to an equation of state wq,, ~ 0.

Solving equation , its fractional density should behave as Q4 (a) = Qqma>.

* Baryons: here we refer to every type of matter described by the standard model
of particle physics. Provided atomic nuclei are much more massive than Elec-
trons, and Protons are the stable hadrons of the standard model of particle
physics, the non-dark matter component of the Universe is mainly made up
by Protons. Of course, it should cluster and be pressureless, which as before
means non-relativistic matter. As before, its equation of state is w;, ~ 0 and,
thus, its fractional density should evolve as Qy(a) = Q,a73.

¢ Radiation: we are dealing with a relativistic component which we can model
using the Photon gas. Consequently, we have the Photon gas relation for the
pressure and energy density p, = %pr, then its equation of state is w, ~ %
Solving equation , the evolution of the radiation fractional density is given
by Q(a) = Qa™?.

Parameters of the concordance model

Once we have the ingredients, we can introduce the parameters of our concordance
model. We can group the parameters involved in the concordance model in three
different categories according to their role: free parameters, derived parameters and
fixed parameters. The first group represents the minimum set of parameters re-
quired to explain all the observables we have, whose values will be determined by
data. Only six parameters compose this group for the baseline model, although we
can extend it allowing room for alternative models. From this previous group we ob-
tain the derived parameters, which are completely determined once we have fitted
the free parameters. Of course, we can interchange parameters between both free
and derived groups since some of them are intrinsically related as we will see later.
Finally, fixed parameters are set to a certain value due to the ACDM itself. Again,
some extensions of the concordance model propose a different fixed value or even
promoting certain parameters to the free parameters group.

As introduced before, the Lambda Cold Dark Matter model needs only six free
parameters to fully explain all the observables we have from a wide range of scales
and times. These free parameters are the fractional density today of Baryons and
Cold Dark Matter denoted by ), and 4, respectively, the angular sound horizon
scale at recombination 6, the primordial amplitude of scalar fluctuation A and the
tilt of this initial power spectrum ng; and the optical depth to reionization 7y¢;,. We
summarise those parameters in Table with the measured value by the Planck

8Among all the plethora of candidates of Dark Matter, some proposals like WIMPs (see Ref. [17] for
a review) can interact weakly in addition to gravitationally.
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H Symbol Description Value from [5] H
Qp Baryon fractional density today Qph? = 0.02237 +0.00015
Qdm Dark Matter fractional density today Qamh?® = 0.1200 £ 0.0012
0, Recombination angular scale 10065 = 1.04092 £ 0.00031
Ng Spectral index of primordial fluctuations 0.9649 £ 0.0042
As Primordial amplitude of scalar fluctuations | In(101°4) = 3.044 + 0.014
Treio Optical depth 0.0544 4+ 0.0073

Table 2.1: The six free parameters of the concordance model, named A Cold Dark
Matter model, with the measured value by the Planck experiment [5].

H Symbol Description Value from [5] H
Hy Hubble parameter 67.36 + 0.54 Km s~! Mpc ™’
to Age of the Universe 13.797 + 0.023 Gyr
Om Total matter fractional density today 0.3153 £ 0.0073
Qa Cosmological cta. fractional density today 0.6847 £ 0.0073
of Amount of clustering 0.8111 +£ 0.0060
Ss Amount of clustering 0.832 +0.013

Zreio Reionization redshift 7.67+£0.73

Table 2.2: Derived parameters parameters of the concordance model, named A Cold
Dark Matter model, with the measured value by the Planck experiment [5].

experiment [5] using the Cosmic Microwave Background. The previous set of param-
eters represents the minimum array of parameters needed to explain the data, but
of course there are more parameters that contain valuable cosmological information
For example, the so-called derived parameters, which once data have set the free
parameters to certain values they will get fixed. In this group, we can highlight the
current expansion parameter Hj (also called Hubble constant), the age of the Uni-
verse tg, the total current fractional density of matter 2,, and of the Cosmological
Constant (2, the root mean square of matter fluctuation on spheres of 8h~! Mpc
radii denoted by og (or equivalently the parameter Sg) and the redshift of reionization
Zreio- In Table , we summarise most of previous parameters with their value from
the Planck experiment [5]. Finally, we have the so-called fixed parameters, repre-
senting those set to a certain and unique value by the ACDM model itself, although
some extensions may give freedom to them. For example, we have the Dark Energy
equation of state w, whose value is fixed to w = —1, or the spatial curvature of the
Universe, fixed to £ = 0. In this group, we gather the most important ones in Ta-
ble with the fixed value and some typical extensions.

To conclude, we want to explain the information each parameter carries and how
they are related or derived according to the ACDM model, something we schemati-
cally present in Figure . Then we have:
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H Symbol Description fixed value H
. -1
v A equation of state typical extension: w € [—1,—1/3]
k or Qy Flat Universe 0
Q Total amount of matter today 1
Neg Relativistic d.o.f 3.046
. . 0
2y Massive Neutrinos typical extension: m, = 0.06 eV
To CMB temperature 2.72548 4+ 0.00057 K [18]

Table 2.3: List of fixed parameters in the ACDM model and values for typical exten-
sions of ACDM.

* Hubble parameter and related quantities: the Hubble function H(a) = % mea-
sures the expansion of the Universe, then its current value is the Hubble pa-
rameter Hy. In certain situations, we prefer to use the reduced Hubble param-
eter h given by Hy = h 100. Moreover, we can also use the function E(a), which
is just defined as F(a) = %Z) Following the Friedmann equation , the

Hubble function for the ACDM model is

H = Hov/Qa + Qa3 + Qama—3 + Qa—? .

[o

a

From the very definition of the Hubble function H(a) =
relate it to time, then we have
¢ da
t(a) =
(a) /0 aH(a) '

and, thus, the age of the Universe ¢, arises from ¢y = t(a = 1).

The angular scale of the comoving sound horizon at recombination §; measures
the ratio between the sound horizon scale at last scattering rs and the comoving
angular diameter distance to last scattering D4’ as

8l
&

, one can easily

Ts

" Dalz)

o,

where z; ~ 1100 is the redshift of the last scattering surface and the angular
distance is defined as

B 1 * dz

- H0(1+Z) 0 E(Z) ’

DA(Z)

as explained in Appendix

“Consider a non-pointlike object with scale r in the sky that we need to cover all its amplitude (from
extreme to extreme) an angle 0. One wants to calculate the distance from us to one of its extremes,
that we call angular distance D. Provided objects in the Universe are very far away from us, we should
see a small § and, hence, the relation 6 ~ r/D holds.
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* Cosmological constant related quantities: we can describe A by its fixed equa-
tion of state wp, = —1 and its fractional density today, whose value according
to Planck 2018 experiment [5] is 2y = 0.6847 £ 0.0073. This result indicates that
almost seventy percent of our current Universe is composed by an unknown
component which we cannot measure in our laboratories and whose nature is
a mystery to us.

* Fractional densities today € : in this group we have the Baryon (), and Cold
Dark Matter 4, fractional densities as free parameters, the total matter Q,
and the Cosmological Constant one {2, as derived parameters. They usually
appear in the literature related to the reduced Hubble parameter as Q;h? to
avoid a degeneracy . Commonly, one sets as free parameters to be fixed by data
Qamh? and Q,h? and, since the concordance model establishes the Universe is
flat kK = 0 (Qx = 0), thus Q) = 1, one can obtain the derived fractional densities as

Qm = Qdm"i_Qba
Qp = 1—-Qn—Q,.

¢ Radiation related quantities: in this sector we have both Photons and Neutri-
nos. Despite the fact both are hot components of the Universe, that is relativis-
tic components, they do not have the same evolution history. Firstly, Photons
are massless particles but Neutrinos have mass”. As a consequence, Neutrinos
become non-relativistic at some moment of the evolution history. Secondly,
they decoupled at different epochs, therefore they are not affected by the same
processes, for example the Electron-Positron annihilation into Photons increas-
ing their density and, consequently, their temperature. Finally, they are not the
same type of particles, Photons are bosons and they have only one family while
Neutrinos are fermions with three different families according to the standard
model of particles physics. Consequently, we study them separately:

- Photons: with them it is customary to work with their temperature instead
of the fractional density. The temperature of the Cosmic Microwave back-
ground, that is photons, is measured to be Ty = 2.72548 +0.00057 K [18]. By
the Stefan-Boltzmann law we can relate the temperature and the density
at any moment by

w2 4
=—gT
p’Y 309 ’

8Consider an experiment that measures the Hubble function, which we know is H oc Ho+/3, Qi(a).
Having the density parameters Q; a factor n? larger while having the Hubble constant H, a factor n
smaller will give the same result for the Hubble function as with the original values of ; and Ho,
according to that experiment. Then, unless we have another experiment which can measure 2; and/or
Hy independently, usually called braking the degeneracy, we should use as parameters ;4% in order
to avoid a biased result due to the explained degeneracy.

°In fact, the non-conservation of Neutrino flavour, so-called Neutrino oscillations, provides a strong
proof for massive Neutrinos as it has been detected by several experiments from nuclear reactor ex-
periments (e.g [19]), atmospheric experiments (e.g [20]) or solar physics experiments (e.g [21]).
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with ¢ = 2 as we have two Photon helicities, and one can recover the frac-

tional density of Photons today as 2, = % .

— Neutrinos: ACDM model does not contain massive Neutrinos and, there-
fore, we can model them as Photons in principle. However, we have to take
into account they are fermions not bosons, the 3 generations of Neutri-
nos and absence of Electron-Positron annihilation'”. Then, the Neutrino

density is
7/ 4 4/3
Pv = 3§ <11> Py s

and we can recover its fractional density today as Q,9 = pﬁ:o. A very classic
extension of the concordance model consists in adding one massive Neu-
trino, usually with mass m, = 0.06, thus its fractional density today can be

described by

_ my(eV)
Y 94h2 eV

With the previous information about Photons and Neutrinos, one would naively
consider that the radiation sector is described by a total energy density of the

form
7 74\ /3
1+3-(— .
+35 (1)
However, this is not true as we have to take into account the non-instantaneous
decoupling of Neutrinos and the non-equilibrium corrections from early radi-

ation dominated Universe. To account for it, we use the parameter N as the
effective number of relativistic degrees of freedom, inducing a correction of the

form
7 4 4/3
1+ Neg—- | —
+ eff8<11> ] 5

with N.g fixed to N.g = 3.046, which accounts for all the previous deviations.

Pr = Py

Pr = Py

* Reionization parameters: when the first stars and quasars emerged they reion-
ized the cosmic medium. We encode this process by the redshift when the Uni-
verse reionizes z..j, and the probability of a Photon being scattered between a
past time and today, usually called optical depth 7,, defined as

T0
Treio = / Ne o A dT |
T

where n. is the Electron number density, ot is the Thomson cross-section and
7 is the conformal time.

19The Electron-Positron annihilation provokes an increase of the Photon temperature, but as Neu-
trinos are decoupled from them they evolve independently. This leads to the following relation between
4 )1 /3

Photon and Neutrino temperatures % = (11
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Free parameters Derived parameters

Figure 2.3: Main relations between free and derived parameters within the ACDM
model. Green lines represent background relations, blue lines account for informa-
tion from the perturbation sector while red line from reionization process.

¢ Primordial spectrum quantities: the primordial perturbations in the very early
Universe are assumed to be adiabatic and mostly scalar. Simplest, but yet ac-
curate, inflationary models suggest they can be described by an almost scale-
invariant primordial spectrum of the form

ns—1
Ps = As <k> ’
kp

where k), is the pivot scale. Consequently, Ay encodes the amplitude of scalar
primordial perturbations while the spectral index n, establishes the spectral tilt
of such a initial spectrum.

* Parameters measuring clustering: both o3 and Ss measure the amount of struc-
tures formed today inside certain scales. Specifically, og is defined as the root
mean square of density fluctuations inside spheres of radius of 8h~! Mpc when
using a top-hat filter

1
02 = 27T2/W3 k? P(k)dk

with W the top-hat filter function and P(k) the Matter Power Spectrum' '. How-
ever, as already explained with €2; and Hj, some experiments are not sensitive
independently to og but a degeneration with (2, emerges. To avoid it, the pa-
rameter Sg was defined as Sg = o3 (%)0'5, following the direction of degeneracy
in weak lensing measurements. As before, it is convenient to work with Sg al-
though other cosmological probes can break the degeneracy.

UExplained in Section
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2.3 Perturbations: from initial seeds to structures

So far our cornerstone was the isotropy and homogeneity of the Universe. Although
that is an extremely good assumption for investigating the Universe as a whole, we
know our Universe is not perfectly homogeneous nor isotropic. In fact, wherever we
look in our local Universe we see structures in the form of planets, stars, galaxies,
cluster, etc. Thus, the current Universe is not perfectly homogeneous. Also isotropy
is broken around us. For example, we are moving toward the constellation of Leo,
that is, we have a preferred direction. At the end, we are seeing nothing but the
break of the symmetries of the Cosmological Principle for small scales

As almost everything in physics this is an issue of scales, in this case a matter
of spatial scales. When we look at scales larger than 100 Mpc we are under the
mandate of the Cosmological Principle [22, 23]. When we consider smaller scales
the Cosmological Principle is dethroned and we enter in the realm of perturbations.
We see around us structures in several ways below 100 Mpc. The first question one
may ask is where these structures have come from. The second is how they have
evolved. Consequently, in this section we want to briefly explain how the very small,
very early and very quantum initial perturbations evolved until forming the current
lumpy Universe. The formalism for this purpose is called linear theory of scalar
cosmological perturbations and, schematically, it describes the competition between
gravitational instability leading to the collapse and pressure preventing it. We will
focus only in scalar perturbations as they will be the ones used during this thesis.
Also, we will remain in the linear regime as for most of the evolution and the scales
of our Universe perturbations were small enough to be considered linear. However,
we will devote a section of this thesis to non-linear regime and how the perturbations
should be treated. Before starting that journey, we need to get the tools needed to
work with perturbations.

Mathematical tool: metric perturbations and gauge

Following the same agenda as for the background, we first want to study the per-
mutations in the space-time geometry, that is the left-hand side of equation

The geometry was set by the metric, in our case the Friedman-Lemaitre-Robertson-
Walker (FLRW) metric, then this is our first step.

Considering the general FLRW metric defined by the scale factor ¢ in comoving co-
ordinates 7’ and conformal time 7

ds? = —CLQ(T) dr? + a2(7)5ij datda? |

2From a more philosophical and anthropic point of view, we all are the sons of the inhomogeneities
since we would not be here to study the cosmos if the Universe were perfectly homogeneous and
isotropic.
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the most general perturbed definition of the FLRW metric can be written as
ds® = —a®(1 4+ 2A4) d7? + 2a*B; dz'dr + a® [(1 — 20)6;j + xij] da’da? |

where A, B;, C and x;; are general functions of time and space. Provided in the
scalar-vector-tensor decomposition each type of perturbation does not mix with the
others at linear order when studying their evolution, we can split B; and y;; as

Xij = 28[183]E + 28(115773) + QEZ] 5
with B; and E; divergenceless 0'B;, = 9'F; = 0 and Eij divergenceless and traceless,
d'F;; = 0 and F, = 0. Then, we have ten degrees of freedom. However, we have
not uniquely defined the metric perturbations as we need to fix the gauge to have

the six degrees of freedom needed. In this thesis, we will mainly work with scalar
perturbations and in the following gauges:

* Newtonian gauge: the perturbations are characterised by only two scalars ¥
and @, with ¥ being the gravitational potential in the Newtonian limit, such
that

ds? = —a?(1 +2%) dr? + a*(1 — 2®)6;; dz'da? .

* Synchronous gauge: we can define comoving observers with synchronous time,
then perturbations are characterised by

ds® = —a? dr? + a*(d;; + hyj) da'da?
¢ Spatially-flat gauge: extremely useful when dealing with inflation, defined by

ds? = —a2(1 +2A) dr? + 24®°B; dztdr + a25ij dztda? .

Mathematical tool: matter perturbations and gauge

Once we have perturbed the space, inexorably we have to perturb the matter in it.
For that purpose, we need to calculate the linear perturbations of the stress-energy
tensor in the Newtonian and Synchronous gauges. Considering the stress-energy
tensor 7, for a perfect fluid previously shown in equation
T = (p+p) UpUy + Dpv
if we consider perturbations of the perfect fluid as
p(r) = p(1) +op(Z,7),

)
p(t) — p(7)+0p(Z,7),
uy, = Uy 4 ouu(Z,T),
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then the stress-energy tensor up to linear order 7", — T", + §T", has the following
components:

5T00 = _5p7
5T, = =Ty = (p+p)ui,
§T'; = opd;+ 3,

where p and p are the background density and pressure, v; is the perturbed velocity
defined as v; = ‘ff;’ and X' ; is the anisotropic shear perturbation, which satisfies
¥, =0.

Now we have all the tools to obtain and derive the linear theory of cosmological
perturbations but, however, there would be no structures today without an initial
seed. Then, in the very early Universe there should be a mechanism generating some
kind of fluctuations and, at the same time, promoting them to the seeds of all the

structures we see today in the Universe.

Inflation

When dealing with perturbations we cannot omit saying a few words about infla-
tion as the underlaying thought phenomena giving birth to them. Before that, we
may ask where does inflation come from as a theory. The answer is the horizon and
the flatness problem. Regarding horizon problem, we see for example in the Cos-
mic Microwave Background areas that were not in causal contact at any moment,
but they are now in thermodynamic equilibrium. In fact, having the same temper-
ature in all the Cosmic Microwave Background cannot be explained naturally. On
the other hand, the flatness problems relates to the fact that the total energy density
is extremely close to the critical one, making the Universe flat. But, this extremely
similar value should have been like that from the very early Universe or, otherwise,
we could see certain departures with cosmic evolution.

Consequently, inflationary paradigm comes as a natural solution to both issues. It
postulates that the Universe went through a brief but intense phase of exponential
expansion in its very first moments. Because of that, what we consider our Uni-
verse was actually in that moment a small patch, which was small enough to have
achieved both a thermal equilibrium and a curvature extremely close to zero due
to its smallness. In its simplest form, inflation is conducted by the inflaton scalar
field ¢(¢) which can only depend on time by the virtue of the Cosmological Principle.
Given a standard scalar field, its density and pressure are simply

1-

%)
wy = — .
¢ P
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Therefore, to have the inflationary paradigm we need that the potential energy domi-
nates over the kinetic one, that is, we need the field to slow roll, so we have wy — —1
and, thus, expansion due to the inflaton field happens. However, to have the Uni-
verse with the structures we see today, ¢ cannot be slowly rolling perennially but it
will reach at a certain moment to the bottom of the potential and oscillate around it,
presumably generating the standard model particles in a process called reheating.
For the purposes of the following derivations, there are certain consequences from
standard inflation that we are interested in:

* Primordial perturbations have to be mainly adiabatic, gaussian and isotropic.
* The curvature perturbation R is conserved outside the horizon.

* Primordial perturbations spectrum should be close to a Harrison-Zeldovich
one, that is, a scale invariant spectrum.

Where does the initial fluctuation come from?

As this PhD dissertation is not devoted to early Universe physics, we will only explain
schematically how the initial seeds were created to, after it, focus on the evolution
of such initial seeds into the structures we see today.

Consider a perturbation of comoving scale k~! and the comoving Hubble hori-
zon defined by (aH)~!, whose evolution is symbolically represented in Figure
where the y-axis represents comoving scales and the z-axis time. In the very early
Universe, we have inflation which in its simplest but yet accurate version is char-
acterised by the inflaton field ¢. This inflaton field should have some fluctuations
that, again in the simplest form, we characterise by J¢ that depends on both time
and space. Those perturbations were initially inside the horizon, but due to inflation
itself they exit the horizon at a moment. When each mode k exits the horizon we
can describe the perturbations d¢ by the curvature perturbations R'". It is a known
result that appears in almost each Cosmology book (see for example [25]) that the
relation between the inflaton fluctuations d¢ and the curvature perturbations R in
the spatially-flat gauge is

R,
We are interested in computing the variance of such perturbations, as that is the

—.

power spectrum which is formally defined for a quantity a(k) as

(a(k) a*(K")) = (27)3 Pa(k) 83 (k — k') .

13In some sense, we are just the sons of the Uncertainty Principle postulated by Werner Heisenberg
in his original paper [24], as all the current structures we see today have their origin in the initial
perturbations in the early Universe, which belong to the quantum regime.

“The interpretation of R as a curvature perturbation can only be done in the comoving gauge.
However, R is a gauge invariant quantity and, therefore, its meaning is preserved in any other gauge
we may consider.
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Quantum Classical Perturbation
Regime stochastic linear
field theory
rA "0’ o't (aH)_1
"0 0” .
’0. o
* *
0‘ ‘0
* *
-----"%-----------“---h- k_1
0“ ”0: .
* -
0‘ ‘0
* *
0“ ‘Q
* *
0‘ ‘0
0‘ *
*e o
0“"‘0
— — —_)
Perturbation Perturbation us
exits the reenters the
horizon horizon

Figure 2.4: Schematic evolution of a perturbation compared to the horizon and the
respective theory to study each regime.

Therefore, we simply have the following relation between the power spectrum of the
very primordial quantum fluctuations of the inflaton field ¢ and the power spectrum
of the curvature perturbation R, that will be the initial conditions for the perturba-

tion theory, as
27\ 2
e (B) e

which for scalar and adiabatic perturbations with a slow-roll inflation description
one simply recovers the nearly scale-invariant primordial spectrum explained be-
fore in equation . However, this last sentence represents an enormous leap
divided into two steps. First, we are assuming the inflaton field, which is intrinsi-
cally quantum, can be now described by a classical stochastic field represented by
the curvature perturbation. This is provided by the horizon exit. Second, this power
spectrum Py is calculated for each mode £ precisely when it exits the horizon, but
the initial conditions for our perturbation linear theory have to be applied when each
mode reenters the horizon. Then, connecting both times is only allowed by the con-
servation of the perturbations outside the horizon. As already mentioned, these two
steps are well known results that appear in every Cosmology book and they are un-
correlated to the topics of this thesis, because of that we only mentioned them here
without demonstrating.
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Evolution of perturbations

Now, our purpose is to exhibit the formalism of how those perturbations evolved
from when they reentered until us, which corresponds to the yellow region of the
schematic Figure . Here, we will only consider the linear regime and scalar per-
turbations.

As done for the background, let us consider a cosmological perfect fluid described
by its perturbed stress-energy tensor of the form 7}, + 67,,. When in the previous
section we applied the conservation of the stress-energy tensor V,7*" = (0, we ob-
tained the background continuity equation for the » = 0 component, depicted in
equation , while the v = i component was identically zero provided the definition
of the 4-velocity. Now this is no longer true. The perturbed 4-velocity is

1-v 7
ut = < , U) Newtonian gauge ,
1 7
ut = (=, - Synchronous gauge ,
a
with the 3-velocity defined as ¢ = g—f in each gauge with the respective spatial co-
ordinates. Before applying the conservation law, we have to set the dictionary of
the linear theory of cosmological perturbations. It is customary to work with the

density contrast § and the velocity divergence 6 instead of the density and velocity
perturbation, both defined as

(e
I
5

Y

)
|

~.
T

.67

where 6 is defined in the Fourier space. Also, given the properties of the anisotropic
shear perturbation ¥;, we can define in Fourier space the following variable encoding
the anisotropic stress perturbations o = —(k;k; — %(Sij) Z; It is also preferred to use
the equation of state w instead of the pressure p. Finally, as done with the equation
of state which relates the density and the pressure, we have for the perturbations
the sound speed, defined as
2 Op
C = % )

restframe

in the rest frame of the fluid to be gauge invariant. We can also define the adiabatic
sound speed of the fluid as

both being related in an arbitrary frame by [26]

H(L+w)(c2 — c2) pb

Sp=ciop+3 12
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Thus, applying the conservation of the perturbed stress-energy tensor, we obtain the
following system of equations in the Newtonian Gauge

5
§ = —3H(£—w)5—(1+w)0+3(1+w)‘1>',
w' (ka,Q
0 = —H(1-3w)0- SRR P =
1+w 14+w

If we consider the Synchronous gauge, the previous system of differential equations
reads as

!/

f - _3H(——w)5—(1+w)9—(1+w)%’

/ pr]{;Q
w
0+ -2

— 5 — k%o .
14+ w 1+w

0 = —H(1-3w)b

The previous equations should be adapted to each component of the Universe as
follows:

* Dark Energy sector: for the Cosmological Constant A one sets the equation of
state to w = —1 and v’ = 0. If we consider a general Dark Energy fluid, one
has w = w(z) # —1, while one may or not change also the sound speed but
preserving c2 >> 0 or otherwise it will cluster.

¢ Cold Dark Matter: given it is cold, that is, non-relativistic, one has w ~ 0 and
w' ~ 0. As it clusters ¢ ~ 0 and one typically sets ¢ = 0. In the synchronous
gauge, Cold Dark Matter particles are used to define synchronous observers,
provided that if one sets 0(r,;) = 0 it satisfies 6(7) = 0 for any time.

e Baryons: also non-relativistic matter, then w ~ 0, w’ ~ 0, ¢? ~ 0 and, again, one
typically sets ¢ = 0. In the case of Baryons, there should be an additional term
in the Euler equation due to the Thomson scattering with Photons as

4
0 = MO, +Tr(0,—6y), Tr=-ancor,
3ph
with n. the abundance of free Electrons and o1 the Thomson scattering cross

section.

* Photons and Neutrinos: for the previous cases, Dark Matter, Baryons and Dark
Energy, only having the first two equations for 6 and § was enough as they were
non-relativistic. But now both have a relativistic nature during all (photons)
or a large part of the cosmic evolution (neutrinos). Therefore, its description
requires a differential equation for 4, a differential equation for # and an infinite
hierarchy of moment equations, for which we refer to classical papers like [27].
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2.4. COSMOLOGICAL OBSERVABLES

2.4 Cosmological observables

In the previous sections, we have introduced the model to describe the Universe on
cosmological scales and up to first order in perturbation theory. However, theory
without observations is empty space and, thus, we should now focus our attention
on the observations that led to the establishment of the theoretical frame. Here,
we will explain those which stand out among the plethora of observables by their
enormous importance or by the utility in this thesis.

Expansion of the Universe

500KM

DISTANCE

o o*pPaRsECS 210 PARSECS

Figure 2.5: Iconic figure from the original paper [15] where Edwin Hubble first dis-
covered the relation between velocity (redshift) and distance.

In March 1929, Edwin Hubble published in the Proceedings of the National Academy
of Sciences journal a paper [15] which stands as the first milestone of Modern Cos-
mology . It left us for the eternity the Figure . Hubble proposed and measured
using cepheids a proportionality factor between the distance island universes '~ were
and the velocity they moved away from us. Modern measurements make use of the
fact that spectral lines of galaxies are redshifted, that by the very definition of red-
shift can be written as
z=Hyd,

where 2 is the redshift, H, is the Hubble constant and d is the distance to the galaxy.
For the very local Universe z < 1, this can be interpreted as the Doppler effect
of galaxies receding from us and, thus, z ~ v. Spectral lines are relatively easy to

151t would be fair to also comment about the fact that Georges Lemaitre published before this relation
but in a french-tongue small journal and, when translating this part for the Royal Society, he omitted
it as more recent and accurate results appeared in the meanwhile. Also, the work of Henrietta Leavitt
on cepheids was essential for this discovery.

16At that time, there was a discussion on whether the nebulae or island universe were part of our
galaxy or new galaxies.
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measure, but not the distance. For measuring distance we have to resort to the so-
called cosmic ladder. That means using overlapping measurement on redshift scales
to calibrate the next observable. Also the definition of distance in Cosmology is not
unique as we can see in Appendix

The most recent observations correspond to Hy = 73.04 &+ 1.04 by Ref. [28] using the
cosmic ladder for the local Universe, while to Hy = 67.4+0.5 by Ref. [5] using the very
early Universe measurement of the CMB integrated until us by using the standard
cosmological model. This gruesome discrepancy is gaining a large attention in the
field and it will be commented in Section

Cosmic Microwave Background

Consider the very early Universe which was hot enough to have Photons interact-
ing continuously with the matter (Baryons) forming a plasma in combination with
Electrons. At the same time, Dark Matter was clustering as it had decoupled much
earlier. Due to the expansion of the Universe itself, the density of this plasma de-
creases and, thus, its temperature. When the Universe was cold enough, Electrons
and Protons formed atoms leading to a transparent Universe for Photons. This pro-
cess is known as recombination. After that, the Photons free-stream until reaching
us as the Cosmic Microwave Background (CMB), having with them a snapshot of
the very Early Universe. Specifically, given temperature scales with expansion as
Tp = 1222 while Ty ~ 2974 K, then CMB happened at 2. ~ 1090.

The Cosmic Microwave Background is a perfect black-body radiation spectrum
with temperature 7y = 2.72548 + 0.00057 K [18], showing inhomogeneities in the tem-
perature field of order ATOT ~ 107° once the dipole due to our motion has been re-
moved, hence supporting the Cosmological Principle. The characteristic shape of
the spectrum of the anisotropies of the CMB is determined mainly by the primary
anisotropy contributors, that is Acoustic Oscillations explained later in Section
and Diffusion Damping due to the increasing mean free path of Photons as the initial
plasma rarefies with the expansion of the Universe, and the finite depth of the last
scattering surface, that is, the set of places where decoupling occurred. The Acoustic
Oscillations gave birth to the wiggle structure while the Diffusion Damping induced
the damping tail for small scales.

Secondary anisotropies are related to the phenomena happening after recombina-
tion that may modify the shape of the CMB. As we will see, the most relevant ones
to the topics of this thesis are:

* Thermal and Kinetic Sunyaev-Zeldovich effect: CMB Photons are scattered by
unbound high energetic Electrons living in the Intergalactic Medium.

* Integrated Sachs-Wolfe effect: due to the time dependence of the gravitational
potential along the line of sight.

The information of the CMB is mainly carried by its perturbations as from the black
body background temperature we can only extract the time of decoupling. Perturba-
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tions of the CMB are a photograph of the perturbations in the matter fields by the
time of decoupling, given they have been less contaminated by gravitational insta-
bilities. Since we are dealing with perturbations, we are no longer in the realm of the
Cosmological principle and then we have that the temperature field can be described
by
7(0) =70 (14 5 @)
To

where 7 is the direction of incoming Photons. In order to extract information from
the anisotropies, it is customary to expand the temperature perturbations field in
spherical coordinates # and ¢ as follows

5T A
T 09 =22 > amYin(6,0)

{=1 m=—¢

where Yy, are the orthogonal basis of spherical harmonics. The expansion coeffi-
cients ay,, are Gaussian random variables where the information of a cosmological
model is encoded, and they are calculated as

Apm = /T(ﬁ)yz;ndg .

There are certain requirements that the coefficients of the expansion should fulfil:

* Zero mean (as,) = 0: as deviation around the reference temperature ought to
be zero on average.

* Statistical independence: (asna;,,) = 0 for ¢ # ¢’ or m # m/, as the a, are
independent random variables.

* Isotropy: (asmay,,) should be independent of m.

* Ergodicity hypothesis: an ensemble (the average ( )) of Universes should be the
same as an ensemble of all independent points of one Universe. Applied to the
CMB, this means that although we would like to study all the possible final
configurations of the CMB in all possible universes, we can extract the same
information by studying the ensemble of all possible and independent patches
of our realisation of the CMB.

Consequently, all the cosmological information of a model is encoded in the variance
of the expansion coefficients, that we define as

<a€m azm> = 56[’6mm’ CZ )

and we show in Figure for the temperature spectrum . The very same can be
done for the polarisation, shown for example in Figure , or the cross correlation
of temperature and polarisation as shown in Figure . The case of polarisation has

"Not exactly the same, cosmic variance will have an important effect on low I observations.

8In the plots, the customary prefactor is % is used. However, if we plot it with % or with
Mfi“) in { linear or logarithm scale, the area under the curve is actually the temperature variance.

™
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Figure 2.6: Cosmic Microwave Background as detected by Planck 2018 experi-
ment [29]: Temperature

further complexities as we are dealing with a vector field rather than a scalar field,
as it was with temperature. Any linear polarisation pattern can be decomposed in
the @ and U Stokes parameters, but it is more convenient to work with the curl-free
component, named the E-mode, and the divergence-free component, named the B-
mode. To do so, we decompose the combination (@ £ iU)(f, ¢), which has a 2-spin
behaviour, into the spherical harmonics as follows

(Q +iU)(6,¢) = ZZ afn Vi 2 (0,6)

=0 m=—¢

where Y( )(9, ¢) are the +£2-spin spherical harmonics. Defining the following linear
comblnatlons

G = 5 (a§2+ ém))’

ohn = 5 (el =)

we obtain the curl-free E-mode and the divergence-free B-mode as

00 l
E@0,0) = Y > apnYm(0,0),

=0 m=—¢
S l

B(#,¢) = Y > apYm(0,0
=0 m=—¢
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Figure 2.7: Cosmic Microwave Background as detected by Planck 2018 experi-
ment [29]: Polarisation
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Figure 2.8: Cosmic Microwave Background as detected by Planck 2018 experi-
ment [29]: Temperature-Polarisation

Planck-SZ data

Here we refer to the data from Ref. [30], which we devote a full explanation due to
the importance along this PhD dissertation.

Consider a cluster which due to its temperature has hot gas with X-ray emission.
This translates into very hot Electron gas emitting while having its internal motion.
At the same time, we have the Photons of the CMB coming from all directions which
were, at that moment structures formed, cold particles, that is, low frequency or low
energy Photons. Inescapable, scattering happens. Then, the source of what is called
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Thermal Sunyaev-Zeldovich effect is the change of frequency, that is temperature,
of the CMB Photons due to the interaction with hot Electrons in the clusters. The
interaction is an inverse Compton scattering, then producing a shift in the energy
of the Photons and changing the shape of the CMB, as Thermal Sunyaev-Zeldovich
constitutes one of the main contributors to the CMB secondary anisotropies.

The importance of this effect remains in its sensitivity to the total matter 2, and
to the parameter capturing the amount of perturbations og, since the abundance
and evolution of clusters depend on both parameters. As the sources of the Thermal
Sunyaev-Zeldovich are the clusters, a good measurement of this signal can constrain
them. Usually, both parameters are strongly degenerated and that is the reason why
we defined the parameter Sg, as explained in Section . The data of Sunyaev-
Zeldovich effect typically come as a likelihood of the form

(SS,model - SS,obs)Q

2
2058

log Lg, = — )
which of course constitutes an extremely oversimplified method. In particular, for
the case of the Thermal Sunyaev-Zeldovich effect the value corresponds '~ to

Sgs7 = 08 (2m/0.27)°? = 0.782 + 0.010.

which appeared in Table 2 of Ref. [31] as obtained from the combination of data-
sets P1lanck2013+BA0+BBN and for a fixed mass bias 1 — b = 0.8. It is implemented
in MontePython [32, 33] under the name of Planck_sz. Even though it is a very
simplified application of the observable, there are numerous papers showing how
adding this likelihood leads to strong constraints inside the pure momentum trans-
fer models. Hence, a question arises: why such oversimplified data can have such
an enormous impact? In any case, in the following we should not forget that the
analysis to obtain that value was done for the ACDM, while the models we will study
alter the clustering already at the linear regime so a warning should be remarked.

Matter Power Spectrum

Consider each perturbation is defined as J§(Z, ) at a given time. The two-point corre-
lation function for density perturbations at a certain moment is defined as

¢(z) = (0(2) 6(27)) -

However, it is more convenient to work in Fourier space. Then, for a given density
perturbation at a certain time one can define the density perturbation in Fourier
Space by just Fourier transforming §(Z, t) into (k). Therefore, the power spectrum for
the density perturbations is defined as the Fourier transform of the auto-correlation
function as

P(k) o (|6(K)%)

19A small variation compared to the typical definition of Ss given by Ss = o (%)0'5 .
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Figure 2.9: Last data available from Temperature (TT), polarisation (EE) and lens-
ing (¢¢) of CMB experiment Planck [34], the Cosmic shear Dark Energy Survey
(DES) data [35] and the galaxy clustering data from the Sloan Digital Sky Survey
(SDSS) [36], using the Matter Power Spectrum figure tools developed in Ref. [37].

where the normalisation depends on the convention used. In Figure , we display
the Matter Power Spectrum data available from Planck experiment [34], cosmic shear
DES experiment [35] and clustering SDSS survey [36].

Supernovae type Ia

A Supernova constitutes the explosion of a star by some astrophysical process and
it is nowadays one the most important standard candles we have. A standard candle
is an object or process such that we know its energy emission per second, called
the absolute luminosity L. As we can measure the energy received per area and per
second, called the observed flux F', we can obtain from the relation between L and
F the Luminosity distance Dy, as

s L

L=
to measure distances as explained in Appendix
The usual classification of Supernovae relies on the spectral properties of the emis-
sion associated with them. In our case, we here focus on type Ia Supernova, whose
emission has no hydrogen lines associated, since the emitter star has burned all the
hydrogen fuel, but a strong emission in the Silicon line II (A = 615 nm). Supernovae
Ia (SN Ia) are explained by the explosion of a white dwarf star which has evolved
until a stage such that its interior pressure cannot counteract gravity leading to the
explosion of the star. Until now, there are two mechanisms which can produce that
stage. The first one is related to binary systems where the white dwarf is obtaining
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matter from its companion until the mass exceeds a limit where the gravity over-
comes the pressure, leading to the collapse of the star and, after that, its explosion.
On the other hand, a merger of two white dwarf stars exceeding that mass limit
would end up in the same explosion. SN Ia explosions constitute an extremely good
standard candle as their luminosity curve should be similar, standarisable, for all
events in the case of the binary systems. Provided that, we can use them to measure
the expansion of the Universe since we can obtain the redshift from the spectrum.

Baryonic Acoustic Oscillations
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Figure 2.10: Iconic figure from the original paper [38] where the Sloan Digital Sky
Survey (SDSS) firstly detected the BAO characteristic scale in the large scale redshift
space correlation function of Luminous Red Galaxies. Lines correspond to different
cosmological models with both Baryons and Dark Matter, except from magenta line
which only includes Cold Dark Matter.

Baryonic Acoustic Oscillations, denoted by BAO, are the sequences of oscillations
that appear in the CMB spectrum and in the Matter Power Spectrum, just evolved
in time with the effects of gravity, which have a characteristic scale constituting a
standard ruler. A standard ruler is an object of a known physical size R. As we can
measure the actual angular size Af in the sky, we can relate both R and A6 by the
angular distance Dy as
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to measure distances as explained in Appendix

Its origin comes from the epoch before recombination, where Baryons and Photons
were strongly coupled while Cold Dark Matter was not. Consequently, as nothing
prevented the clustering of Cold Dark Matter its perturbations started to grow by
the gravitational instability, creating potential wells. On the other side, Baryons did
have a repulsive force opposing gravity given by its coupled partner, Photons. Due
to gravity Baryons fall into the Cold Dark Matter potential wells, getting compressed
and, unavoidably, increasing the temperature of the Photon-Baryon plasma. Thus,
increasing its radiation pressure which points outwards the potential well. The ra-
diation pressure necessarily increases until at a certain moment it overcomes the
gravitational attraction provoking an acoustic spherical expanding wave that ex-
pands the plasma, but not the Cold Dark Matter, beyond the potential well. This
creates a shell of baryonic matter at a fixed radius, which is the sound horizon. The
process may restart, then accreting more matter until another shock wave appears,
and so forth until decoupling, when Baryons can no longer couple to Photons and
fall irrevocably into the potential wells. This sequence of shock waves and the pos-
terior action of gravity leaves an overdense peak with some echo shell around it for
each perturbation. Something which can be seen clearly in the very shape of Cosmic
Microwave Background as Photons after decoupling evolve mostly free preserving
such shock waves in the form of oscillation in the perturbations of the temperate
field. Also in the Matter Power Spectrum, although diluted since the Baryon distri-
bution is erased by gravity trying to cluster everything, or in the correlation function
as shown in Figure

Galaxy Number Counts

Consider a mean density of galaxies per redshift and per steradian defined by 7(z).
Due to the isotropy and homogeneity of the Universe, it cannot depend on the po-
sition of the sky we are looking to, defined by i, but only on the redshift. However,
when having real data the observed density distribution of galaxies has fluctuations
around the mean value that we can encode into a generic function A(7, z). Therefore,
the observed distribution of galaxies reads as

n(f, z) = n(z) [1 + A7, 2)] ,

which, of course, now it depends on the patch of the sky we are looking to, along with
the redshift. The contributors to the fluctuations are many and with varied origins,
so we can decompose them as follows

A(7i, z) = AP (7, z) + ARSP (7, 2) + AL(7, 2) + AREL |
each one accounting for different effects:

* Density term AP: it accounts for the pure contribution from the matter distri-
bution in the sky but corrected by a certain function b, called the bias, which
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encodes the differences induced by using a certain tracer for the underlaying
matter field. We can write this term as

with D the growth function.

 Redshift-Space Distortions term ARSP: it corresponds to the over and under-
counted galaxies due to the distorted observed position of galaxies in redshift
space caused by its peculiar velocity along the line of sight, defined as

ARSD(7 2y = H 192V |

with # the conformal Hubble function and V' the velocity potential for the pe-
culiar velocity in the longitudinal gauge.

* Lensing term A': it encodes the possible departures on the area and apparent
magnitude of the different patches of the sky due to lensing effects on the
Photons detected when performing the survey. It is defined as

ALY (7, 2) = —(2 - 5s)k

with s the magnification bias and « the lensing convergence defined in Ref. [39]
as

KR =

30, H2 / X&) x(x(2) ) dy
0

- X)
2 x(2) o

with x(z) the comoving distance.

* Relativistic corrections ARFL: they correspond to corrections to the redshift in
order to have a correct estimation of the physical depth and width of the red-
shift bins used. We will study them when speaking about the dipole of the
power spectrum, otherwise we will neglect them.

Provided for a certain redshift A(7, z) is just defined in the sphere, we can proceed
as done with the CMB before. Hence, using the spherical harmonics we have that
the fluctuations can decompose into

9] l
ZZ 2) Y (), with  agy,(z /AnzYZm )dQ .
¢=1 m=

which leads, as before, to the variance as the spectrum we are interested in, defined
as

(@pm apy,) = 0000y Co(2) .
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CHAPTER

PROBLEMS IN THE ACDM MODEL

1 the previous chapter we presented the concordance model in Cosmology.
i We have shown the ability of the A Cold Dark Matter model to explain the
t==a-id evolution of the Universe from its initial stages until now, being able to match
our observations. However, it would be presumptuous to think about the ACDM as
the ultimate framework to describe the Universe we live in. Even before data can
make a judgement, if we look at how the content of the Universe is shared we find
that almost all the Universe today is made up of something that we do not know
and that we have not detected in our laboratories. Even worse, our best description
to the particle world has nothing to describe such dark part of our Universe. One
may consider that our time is particular in some sense, but the situation persists
in time. In any moment of our Universe there was, and there will be, around five
times more Dark Matter than Baryons as both densities dilute with expansion in
the same way', as pgm ~ a2 and p, ~ a~3. In addition to Dark Matter we have the
Cosmological Constant A, or in a more general description Dark Energy. According to
General Relativity is just one parameter, but we do not understand its nature or its
origin. When we try to describe it as a general fluid permeating the Universe, called
Dark Energy, the situation does not improve since, then, we should have been able to
see, detect or describe it, which has not happened yet. Both components have elusive
properties as they are neutral for the electromagnetic or nuclear forces in a situation
which resembles excessively to the postulated aether before modern physics solved
the problem of light going through the space. Even if our datasets agree on most of
the predictions of ACDM, some problems have emerged in the last years. Particularly
when precise data appeared. We have some deviations from the structures predicted
by the concordance model and, at the same time, different datasets give different

'In the concordance description, while there is no extra interaction changing how each fluid be-
haves.
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values to the model parameters with a specific trend we will later comment.

In this chapter, we want to summarise most of the previous tensions of the model
as a way to motivate the alternatives we have developed, something which is the
main subject of this PhD dissertation. First, we will expose the elusive nature of the
Dark Sector, to later on speak about how the Cosmological Constant dynamic seems
to be strange to us. After that, we will enumerate the unexplained problems in the
formation of structures detected when comparing the predictions of the standard
model and the observations. Finally, we will focus on the tensions between datasets
that have appeared with the very precise data of the last missions.

3.1 Dark Sector: unknown nature

Regarding Dark Matter, we infer it is there not because we have seen it directly
but because of the gravitational effects on systems like galaxies or structure forma-
tion processes. We only know it must be something mainly non relativistic (cold),
able to cluster and form structures and almost inert to standard model interac-
tions. Moreover, when we go down to laboratory, or even Solar System dynamics,
the influence of Dark Matter should be negligible. Even more intriguing is the fact
that our concordance model for particle physics has no particle able to mimic Dark
Matter or, on the other side, even some modifications of gravity have been proposed
with limited success. However, the presence of such something is supported by sev-
eral cosmological evidences. The classical example is the flatness of rotation curves
of galaxies discovered by Rubin and Ford [40], but moderns probes have emerged
in the last twenty years. For instance, CMB measuring Dark Matter density differ-
ent from zero since Qg,,h%? = 0.1200 £+ 0.0012 [5]. Also, early Universe observations
point towards a significant fraction of matter being dark to fulfil the requirements
of Big Bang Nucleosynthesis (see for example Ref. [41]). Even visual evidences have
appeared in the last years like gravitational lensing images or the bullet cluster.
Notwithstanding the foregoing, no experiment has been able to directly detect Dark
Matter. Different approaches have been considered, for example calorimeters like
Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) [42],
Xenon detectors as XENONIT [43] or Argon detectors like ArDM [44]. All the pre-
vious experiments had limited success at directly detecting Dark Matter although
with them we were able to exclude large portions of the parameter space, constrain-
ing at the end the possible properties of Dark Matter. Therefore, the first problem in
ACDM model arises from one of its main ingredients as we both lack of a theoretical
description and/or a direct observation of Dark Matter.

In the case of the Cosmological Constant, it was introduced in General Relativity
by Einstein to counteract gravity and, hence, having a static and closed Universe
as it was though to be at that moment. But when the expansion of the Universe
was firmly demonstrated its role disappeared. However, General Relativity perfectly
accommodates the presence of the A term and then its absence posed the question of
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why it was not there. In the late nineties, the discovery of the accelerated expansion
of the Universe brought the comeback of A. With this comeback, a new problem
appeared: why its value is that small one compared to the radiative correction of
vacuum energy? Again, we know nothing about its nature and we are unable to
detect it directly but because of its effects in the expansion of the Universe. From
the point of view of General Relativity, it is just a parameter of the theory with
no further meaning. From the cosmological point of view where A lies into one of
the possible descriptions of Dark Energy, it is the reason why the Universe entered
recently in a phase of accelerated expansion and it should had been negligible in the
rest of the epochs. Other attempts to explain such accelerated expansion invoked
some modification of General Relativity but not great advances have been made. The
discovery of the accelerated expansion by the Supernova Search Team [13] and the
Supernova Cosmology Project Collaboration [14] constitutes the classical evidence
for the Cosmological Constant. Also, modern observations, like the CMB, constrain
its current magnitude to be ) = ﬁ = 0.6847 + 0.0073 [5].

With all the previous information we can conclude that the unknown intrinsic
nature of the Dark Sector, which accounts for the 95% of the energy budget today of
the Universe, constitutes the first flaw in the concordance model. Because of that,
further descriptions of Dark Matter and Dark Energy are needed to discover their
properties with the ultimate objective of unveiling the nature of such a mysterious
Dark Sector.

3.2 A related problems

Even though we have no knowledge about the nature of the Cosmological Constant
A, its measured value represents an enormous challenge in two different ways to our
poor theoretical description. Either its observed value compared to the natural one is
problematic, usually called the Cosmological Constant Problem, and its contribution
today to the energy budget of the Universe as compared to the matter sector forces
us to ask questions about the nature of A, called the Coincidence Problem. Let us
start with the first one.

Consider again the Einstein Field Equations that we have already introduced in
equation . But now we will reformulate them explicitly including the vacuum
fluctuations that unavoidable gravitate as dictated by General Relativity. Then, we
have 1

RW - igWR + AQW =81G (le + <Tul’>) )

where (7),,) is the expected value of the stress-energy tensor for the vacuum fluctu-
ations. Given the vacuum state must be invariant under any change of the observer,
the expected value reads as

(Tuv) = =Py G »
where p, is the vacuum density. Consequently, the vacuum fluctuations contribute
to the Cosmological Constant measured value or, equivalently, the Cosmological
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Constant contributes to the measured value of vacuum energy as

Aops = A+87TGPV < Pobsv=Pv T 5~ -
87G

The problem arrives when measuring the Cosmological Constant as its value should
be inferred as

Aobs
81G

where both the Cosmological Constant density and reduced Hubble parameter are
order one as measured by Planck (or any other) experiment, as explained in Sec-
tion . This value is enormously different form the value one would expect from
the vacuum fluctuations encoded in p,. A typical calculation using only the zeroth
order diagrams would give contributions like p ~ )\ﬁutoﬁc, where \..of 1S a cut-off scale
of the effective theory we are dealing with. In our case, we could naively set this to
correspond to the Planck scale which is to mp; ~ 10!? GeV. Therefore, only a mirac-
ulous precise cancellation among all the different contributions to the vacuum from
our laboratory scales up to the Planck scales would save us from the Cosmologi-
cal Constant Problem. The previous calculation can be refined by considering the
standard model contributions although the problems persist. For example, for the
weak interaction p ~ 105 GeV* or for the strong interaction, quantum chromodynam-
ics, the difference in order of magnitudes improves since p ~ 1075 GeV*. However,
still extremely inconsistent in both cases with the measured cosmological value un-
less a precise cancellation happens among all the contributions to the total vacuum
energy.

Secondly, a quick analysis on the time evolution of each component of the Uni-
verse shows that the Cosmological Constant has no similarity with matter, baryonic
or dark, or with radiation as it is constant for all the evolution of the Universe.
However, today both matter and Dark Energy are of the same amount in the en-
ergy budget of the Universe”. In the future, matter will continue to dilute with the
expansion of the Universe and, then, they will be no longer of the same order. This
"coincidence" poses a maybe philosophical but also scientific question: why such
different types of energy/matter are the same today?

There are other coincidences, less often commented in the literature. For example,
the Dark Energy scale today is pqeo ~ Pero ~ meV* while the Neutrino scale is also
~ meV*. Both coincidences may not just be a coincidence but a consequence. If an
undetected interaction is acting between Dark Energy and Dark Matter or between
Dark Energy and Neutrinos, the scale coincidence emerges naturally. We also have
the coincidence between the Planck Mass Mp;, the observed value of the Cosmologi-
cal Constant p, and the electro-weak scale Mgw, being the latter one the geometrical

mean of the other two, since Mgrw ~ 1/ Mp; ,011\/ 1)

Aobs = 3QAHE ~ 10783 Qph? GeV? <= popsy = ~ 1078 Qpn% GeV?

2However, it should be said that such Coincide Problem is strongly dependant on the time variable
used since when we work with cosmic time the amount of time both fluids are of the same order
enlarges.
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3.3 Small scales related problems

When we go to smaller scales, that is < 1 Mpc, the observations from the matter
distribution do not match perfectly with the predictions from the standard ACDM
model. We should not forget here that Dark Matter governs how structures formed,
although what we detect is baryonic matter. First, because in the early Universe the
starter in the race to cluster was Dark Matter since Baryons were coupled through
Thomson scattering to Photons. Consequently, the gravitational potentials were ini-
tially created by Dark Matter overdensities. After that, and looking to the abundance
of both matter components, Dark Matter was and still is the main contributor to the
gravitational potentials where structures form. Therefore, the following list of issues
in the small scales regime can be understood as an alert of our enormous ignorance
on the Dark Matter nature. The following list does not intend to be a full and self-
explanatory list, but rather a short compendium of all the most important issues
with a brief explanation to motivate the future alternative models. For more details,
we refer to dedicated reviews like Refs. [45, 46].

Cusp-vs-core problem

N-body simulations where only Dark Matter is considered show that Dark Matter
halos should have a density profile increasing around the centre of the halo. This is
the well-known Navarro-Frenk-White density profile (NFW) [47], described by

p(r) dc

Per - (T/Ts)(l + T/TS)Q ’

where 6. and rg are a characteristic density and a characteristic radius, respectively.
Then, simulations predicts what is known as a "cusp" density profile. On the other
hand, one can look at Dark Matter dominated galaxies to test these predictions.
What it is found is that such galaxies have a "core" density profile, that is a con-
stant density near the centre of the halo, which creates a conflict between core-like
observations and cusp-like predictions. This problem has been with us for a long
time, pointed out in the classical paper [48], with several proposed solutions like
interacting models for Dark Matter. Despite it, we still miss an ultimately solution
for it.

Missing-satellite problem

As before, we have that N-body simulations predict a large number of sub-halos
structures per halo. In particular, simulations of the Milky Way-like halos predict
a number of ~ 100 — 1000 sub-halos. However, our observations point to a number
of ~ 10 — 100 sub-halos, that is an order of magnitude lower than expected as it
was first noticed in Ref. [49]. Increasing observational capabilities, which help us to
detect fainter and fainter galaxies, have reduced the tension but still a reasonable
doubt is placed in the community.
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Too-big-to-fail problem

Using the standard model, N-body simulations predict large massive satellite galax-
ies in our Local Group that have enough mass, they are "too big", to form a corre-
sponding galaxy, that is, stars we can see. However, we cannot find enough of them
around [50], which points to an erasing mechanism yet to be discover. This incon-
sistency has also been found in our Milky Way [51] and in Andromeda galaxy [52].

Other problems

The previous issues constitute the more challenging problems to the standard ACDM
model emerging from small scales. However, they are not the only ones. Issues like
the angular momentum catastrophe [53], the satellite planes problem [54] or certain
inconsistencies in baryonic Tully-Fisher Relations [55] still seek for an explanation.
Several solutions have been proposed. From increasing the capabilities of N-body
simulations or a more rigorous inclusion of the feedback from Baryons to changing
the nature of Dark Matter, like in the case of having a fraction of it as "warm", or
even modifying General Relativity (see Ref. [56] for a review). The intrinsic nature
of Dark Matter is completely unknown to us, despite the fact we know it clusters,
a significant portion should be cold, interactions with standard model particles, if
there, are strongly suppressed, its abundance today and with the current experi-
ments we have been able to heavily constrain the parameter space ruling out several
Dark Matter proposals. However, no Dark Matter particle or field has been detected
and we have not developed any theory that fully explains Dark Matter. Thus, the
previous small scales problems are merely the hallmark of our ignorance about the
intrinsic nature of Dark Matter.

3.4 Cosmological tensions

In the last years, our technology has facilitated the development of a large number of
very high precision experiments, entering in what is popularly called the era of preci-
sion Cosmology in the literature. This means we have an enormous collection of data
with a precision never achieved before. However, having several very precise probes
constraining the same parameters has brought some inconsistencies. It is not yet
well delimited when an inconsistency between two different surveys is problematic
or not, but generally we consider a tension when the inconsistency is 30 or more
and a crisis when the discrepancy rises to the 50 level. Contemporaneously to this
thesis, we are on the edge of a crisis as the discrepancy on the Hubble parameter is
around 50, while we are on the verge of a tension with the og parameter. Maybe more
important than the amount of discrepancy is the trend exhibited by both tensions.
They are not a tension/crisis between two particular datasets, but a tension between
two methods of measuring the parameters. For most of the observables, the value
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Figure 3.1: Cosmological constraints on the Hubble parameter from different sur-
veys, namely: Atacama Cosmology Telescope (ACT) Hy = 67.3 £+ 3.6 [3], Planck 2018
(P18) Hy = 67.4+0.5 [B], Cosmic Chronometers method (CC) Hy = 66.5+5.4 [57], Grav-
itational Waves method (GW) Hy = 681“%2 [8], Baryon Acoustic Oscillation and Big
Bang Nucleosynthesis observables (BAO+BBN) H, = 68.3"1 [58], extended Baryon
Oscillation Spectroscopic Survey with Planck 2018 best-fit (eBOSS+P18) Hy =
69.6 + 1.8 [59], Tip of the Red Giant method (TRGB) Hy = 69.6 + 2.5 [60], Wilkin-
son Microwave Anisotropy Probe (WMAP) Hy = 70.0 £ 2.2 [61], South Pole Telescope
(SPT) Hy = 71.3 + 2.1 [4], Hubble Space Telescope (HST) Hy = 72 £+ 8 [62], the SHOES
team Hy = 73.04 4+ 1.04 [28] and the HOLiCOW collaboration Hy = 73.3"1 % [63].

in each case depends on whether they are direct/local or indirect/early-Universe
techniques, as we will explain now.

H, tension

The Hubble constant measures the expansion rate today. As explained in Sec-
tion , it corresponds to the current value of the Hubble function Hy = H(z = 0).
We have two different methods to constrain its value as, on one hand, we have the
distance ladder method which is based on the Hubble Law

Z:H()d,

where d is the distance to any other object from us. In the local Universe, the redshift
provides us a way to measure the velocity any object is receding from us since z ~ v
and, hence, the Hubble parameter is just the proportional factor between the reced-
ing velocity and the distance to the object. On the other hand, we have the CMB
which happened in the early Universe and, thus, we have to reconstruct the path of
this primordial light from recombination to us, requiring necessarily the assumption
of a cosmological model and obtaining from the fitting the value of Hj in such fidu-
cial model used. There are other methods like using the tip of the red-giant branch
or even nowadays gravitational waves. However, different methods measure different
values for Hj, having a tension among them, and of particular concern is the fact
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that a trend seems to exist. Direct methods, which usually correspond to late and lo-
cal Universe with less influence of the fiducial cosmology, tend to get larger values of
the Hubble parameter. For example, the SHOES team with Hy = 73.04+1.04 [28] using
the cosmic ladder. Indirect methods, which typically means early Universe observ-
able and the requirement of a fiducial cosmology to extrapolate it until now, point to
lower values. For example, the last Planck data report the value Hy = 67.4 £ 0.5 [5].
The discrepancy has grown in time and, today, we have a ~ 50 tension depending
on the surveys compared as seen in Figure , which definitely calls for more at-
tention, and may even suggest new physics is hidden.

In the literature, we have several proposals to answer this problem. For example,
a miscalibration of the SHOES collaboration avoiding universal colour-luminosity re-
lation in Cepheids [64] may alleviate the tension or, although now ruled out, a local
under-density [65]. Modifications on the pillars of Cosmology have been studied, for
example all modified gravity theories (see Ref. [56] for a review) or questioning the
FLRW metric [66]. Even the bases of particle physics have been revised, like having
a not constant electron mass [67]. Also extensively studied, certain modifications in
the ACDM model like wCDM or Early Dark Energy models [68] in the side of Dark
Energy, and warm Dark Matter [69] or decaying Dark Matter [70] regarding Dark
Matter. Also Dark Radiation has been proposed [71]. Interactions between different
sectors of the Universe have been widely analysed, for example between Dark En-
ergy and Dark Matter [72] or between Dark Energy and Baryons [73]. Changing the
cosmology is a natural solution to the previous problem. The large impact of the
chosen cosmology in indirect methods compared to direct methods made any devia-
tion from the standard cosmological description a suitable escape hatch, reconciling
both methods.

Despite the enormous ability of ACDM to fit most of our datasets, the H, ten-
sion emerges as a disturbing consequence of our experimental precision. Therefore,
a question should be asked: are there systematics spoiling certain results or are
there new physics we have not accounted for? If not due to systematics, we should
analyse all the possible alternatives to the standard model with our current and fu-
ture datasets, with the ultimate duty of finding the most accurate description of our
Universe.

og or Sg tension

The parameter os encodes the root mean square of matter fluctuations on spheres
of 8h~! Mpc radii. This means it accounts for the amount of clustering of matter
in the Universe, serving as a measure of the growth of structures. Again, we have
two main methods of measuring the value of the parameter. We can use our local
Universe to set a value for og, then a direct method, or we can re-evolve the CMB be-
tween today and recombination using a fiducial cosmology to set its value, thus an
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Figure 3.2: Cosmological constraints on the Ss parameter from different surveys,
namely: Baryon Oscillation Spectroscopic Survey (BOSS) Sg = 0.729 +0.048 [74], Kilo-
Degree Survey (KiDS-1000) Ss = O.759J_r818§‘11 [75], Dark Energy Survey (DES Y3) Sg =
0.75970:92> [76], Atacama Cosmology Telescope (ACT) Ss = 0.830+0.043 [77] and Planck
2018 (P18) Sg = 0.832 £ 0.013 [5].

indirect method. Again the same duality appears. Now, direct methods tend to give
lower values while indirect methods have larger ones. Due to the strong degeneracy
between Dark Matter current density (),, and the parameter og in weak lensing mea-
surements as already said in Section 2.2, it is convenient to work with the parameter

Sg defined as
0,0\ 0

Regarding Sg, local Universe probes like for example the Kilo-Degree Survey sets
Ss = 0.7597005] [75] while early Universe probes like Planck experiment has a differ-
ent value Sg = 0.832+£0.013 [5]. This implies a 2 — 3¢ tension as depicted in Figure
Although not as perturbing as the tension in Hj, certain attention is required.

There are several proposals in the literature to overcome this emerging tension.
For example, a miscalibration due to the value of the optical depth used was sug-
gested in Ref. [78], or due to the value of the mass bias used as explained in Ref. [79]
and, even, massive Neutrinos with no positive result [80]. As before, extensions of the
Dark Matter being not cold or decaying appear as alternatives as seen in Refs. [81,
82]. An enormous field of undiscovered interactions opened in the last years, for ex-
ample Refs. [83, 84, 85, 86, 87, 88, 89, 89, 90, 91] or the review [72]. In particular,
pure momentum transfer interactions have gained interest in the last years regard-
ing the oy tension (see Refs. [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104])
as a possible solution. Part of this PhD dissertation is devoted to this type of inter-
actions and its relation with the og tensions.

Although less disturbing than the Hj tension, the og or Sg tension also shows
the same trend. Low redshift probes, that is in our local Universe, seem to prefer
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lower values of the parameter in comparison with early Universe measurements.
It is true that they require more control on the systematics, something that is not
always achievable as with the CMB. But, on the other hand, the impact of a wrong
modelling of the cosmology is less significant as they look into the local Universe,
while early Universe methods have to extrapolate the observable until today with
the chosen cosmology. Whether the current tension is due to systematics not under
control, a bad fiducial model or something we are yet to discover, time alone will tell.

Other tensions

Previous Hj, and Sy tensions get most of the attention nowadays. The two main rea-
sons for that is the large difference in values, specially for Hj, and above all because
of the notorious splitting between direct and indirect methods. However, they are
not the only claimed tensions on the cosmological parameters.

The lensing amplitude parameter A, used by the Planck experiment [29], captures
the effects of weak lensing on the CMB photons. If no lensing happens, it should
vanish and for the lensed CMB spectrum it should be A;, = 1. However, the last re-
sult from the Planck Collaboration is Ap, = 1.180 + 0.065 [5], clearly pointing towards
Ar, > 1. Also, the consideration of our Universe to be flat is not free from controversy.
In the last years, there are claims of a closed Universe according to CMB data as
explained in Ref. [105], which can be connected to the previous Ap, results. More-
over, in Ref. [106] they also suggested a possible tension between Planck data [29]
and Atacama Cosmology Telescope [77] regarding the spectral index ng. Also, in the
last years some studies found some redshift evolution of the parameters Hy and ),
inside the standard model, see for example Ref. [107], which may indicate a bad
modelling of the background dynamics.

Whether the previous tensions are simply systemics not under control, bad mod-
elling, a wrong fiducial cosmology or new physics yet to be discovered, it is unavoid-
able that with the increase in precision of current and future surveys this type of
tensions will exacerbate at the moment we miss something in the analyses. More-
over, if now being at the 1% precision in most of the parameters we have an almost
50 tension, with future and more precise surveys the pressure will grow. Because of
that, it is extremely important to study and analyse all possible alternatives to the
current scenario, as we partially do in this PhD dissertation.
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CHAPTER

MOMENTUM TRANSFER INTERACTIONS

e have seen in the previous chapter that Cosmology is not perfectly pleased
{with its standard model. Certain theoretical and observational issues hover
4laround our theoretical description of the Universe. In the theoretical sector,
we have seen how those controversies might be related with our poor knowledge of
the constituents of our Universe, while in the observational side future surveys will
disentangle if such tensions are really there or just an act of statistics and mis-
calibrations. Consequently, our duty is to test the current theoretical description
against alternatives, analyse how data relate with tensions and how future surveys
will shed light on the previous questions. We devote this Chapter to the first two
questions in the realms of linear scales, while the third one is discussed in Chap-
ter 5. A non-linear analysis is shown in Chapter

In this thesis, the global and main aim is to transcend the current standard de-
scription of our Universe, called the ACDM model, to find a more suitable portrayal
of it. However, we should not forget the great achievements of the ACDM model
since it is able to accurately describe the whole evolution history or the formation
of structures while matching most of the observables we have. Accordingly, we want
to walk around the ACDM model and add something to it capable of correcting its
small shortcomings while respecting its enormous achievements. Moreover, we do
not want to wackily change the picture but we prefer to have a certain motivation
to choose that modification. Because of that, we will study here a certain class of
alternative models usually called pure momentum transfer interactions. The pivot
idea here is the presence of a certain and yet undetected interaction involving the
Dark Sector whose microphysics is invisible to us by the proper nature of the Dark
Sector, but whose expressed effects in the large picture of the Cosmos are modelled
by a momentum interchange, at the same time there is no energy transfer between
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coupled fluids. The consequences of that exchange is a suppression of structures as
we are adding some impulse to the pressureless matter, dark or not, by the momen-
tum transfer and, thus, allowing matter to escape from gravitational potentials. A
similar idea is already in our picture. In the Thomson Scattering where two fluids,
one with pressure and one without it, have a certain interaction whose microphysics
belongs to quantum electrodynamics. However, for the cosmological concerns the
microphysics is not relevant, so we include it as a momentum exchange between the
cosmological Baryon fluid and the cosmological Photon fluid.

Here, we will first explain the so-called Covariantised dark Thomson-like scat-
tering which includes a Thomson-like interaction between Dark Energy and Dark
Matter or Baryons, invoking the already commented pure momentum transfer be-
tween both fluids. After that, we will also explain the so-called Velocity-entrainment
coupling model, which induces a more sophisticated momentum transfer and adds a
new dark component in the form of radiation, all of these derived from a Lagrangian.
In each case, we will explain the main effects on observables of the previous models
and, then, explain the results from the Monte Carlo Markov Chain (MCMC) analyses
using the latest available data.

This chapter is partially based on the following published papers:

* Title: On cosmological signatures of Baryons-Dark Energy elastic couplings.
Authors: Jose Beltran Jiménez, Dario Bettoni, David Figueruelo and Florencia
A. Teppa Pannia.

DOI: 10.1088/1475-7516/2020/08/020

Published in: Journal of Cosmology and Astroparticle Physics 08 (2020),
020 [108].

e-Print: 2004.14661 [astro-ph.CO]

¢ Title: J-PAS: Forecasts for Dark Matter - Dark Energy elastic couplings.
Authors: David Figueruelo et al.
DOI: 10.1088/1475-7516/2021/07 /022
Published in: Journal of Cosmology and Astroparticle 07 (2021), 022 [109].
e-Print: 2103.01571 [astro-ph.CO]

¢ Title: Velocity-dependent interacting Dark Energy and Dark Matter with a La-
grangian description of perfect fluids.
Authors: Jose Beltran Jiménez, Dario Bettoni, David Figueruelo, Florencia A.
Teppa Pannia and Shinji Tsujikawa.
DOI: 10.1088/1475-7516/2021/03/085
Published in: Journal of Cosmology and Astroparticle 03 (2021), 085 [110].
e-Print: 2012.12204 [astro-ph.CO]

* Title: Probing elastic interactions in the Dark Sector and the role of Ss.
Authors: Jose Beltran Jiménez, Dario Bettoni, David Figueruelo, Florencia A.
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53



CHAPTER 4. MOMENTUM TRANSFER INTERACTIONS

4.1 Covariantised dark Thomson-like scattering: Dark
Energy-Dark Matter

In this PhD dissertation, our purpose is to study alternative descriptions to our
current concordance model explained in Chapter 2. To this end, we do not want
to completely repudiate our current description of the Universe since its successes
outweigh its failures. Regarding the description of the Dark Sector, here we will still
consider a pressureless, non-relativistic dark component of matter. On the side of
the other dark component, instead of just considering a Cosmological Constant we
will treat it more generally as the so-called Dark Energy. In the concordance sce-
nario no interaction in the Dark Sector is included, but we know the visible sector is
fully populated with particle interactions with cosmological implications and effects.
Then, it would be a mistake to not even consider the possibility of interactions tak-
ing place in the Dark Sector, even more so if we take into account all the issues of
the concordance paradigm shown in Chapter 3. However, as the ACDM model has
proven to be an extraordinary accurate description, we want to remain close to it.
Thus, we want to preserve its background prescription as much as possible, while
the modifications considered should have a motivation in some sense. Here is where
Covariantised dark Thomson-like scattering belonging to the Dark Sector can help.

The philosophy of the Covariantised dark Thomson-like scattering is an interac-
tion between Dark Energy and a matter fluid similar to the Thomson scattering prior
to recombination. In that epoch, Dark Matter had already decoupled but the rest of
components were part of a plasma where Photons and Electrons were coupled as
they experience the Thomson scattering, that is the elastic scattering of Photons by
the free charged Electrons present in that plasma. Because of this process, Baryons
could not collapse to form bounded structures, while uncoupled Dark Matter was
already clustering at that moment by the action of gravity, forming the seeds of the
future halos. Then, whereas Thomson scattering was efficient, the radiation pres-
sure of Photons counteracted the gravitational collapse of Baryons, preventing them
from forming gravitational bounded structures. Here, the philosophy of this inter-
action is similar. If we have an interaction between Dark Energy and a matter fluid,
the pressure of Dark Energy can counteract the gravitational collapse of the coupled
matter component. This inevitably leads to less structures in the Universe. We know
from Chapter 3 that late Universe experiments seem to prefer lower values of the pa-
rameter o3 . Hence, one would naturally expect a late-time mechanism that erases
the extra structure predicted by early Universe measurements, leading to less struc-
tures as we measure today. This kind of interaction was firstly explored in Ref. [101],
and then revisited in Refs. [109, 111] in order to expand its understanding. More-
over, this interaction is grouped into a more general group of couplings, dubbed as

!As explained in Section , the cosmological parameter o5 captures the amount of structures in
the Universe today by measuring the root mean squared of mass fluctuation on spheres of 82" Mpc
radii.
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pure momentum transfer models, provided the net effect of them is an interaction
with no energy transfer but a momentum transfer between coupled fluids.

With this philosophy and the targeted problem in mind, the Covariantised dark
Thomson-like scattering formalism commences from the non-conservation of the
stress-energy tensor of the coupled components as

Vil = Q"5 VuTi =-Q",  with Q"= a(uge — tgm)

where Q¥ encodes the interaction and & the coupling function controlling the strength
of the interaction. The previous equations ensures the global conservation of the cou-
pled system Dark Energy-Dark Matter, since we have ).V, 7/ = 0. It is convenient
to work with adimensional couplings, then we can normalise it as

rG

Given the Covariantised dark Thomson-like scattering interaction is proportional to
the relative velocity of the coupled fluids, the background evolution cannot be af-
fected unless we violate the Cosmological Principle. As we have that the 4-vector
describing an element of any fluid is the same for all components v, = ug‘ pro-
vided we are in the comoving rest-frame of an isotropic and homogeneous Universe,
then Q" o< uj, —uy,, — 0. However, when dealing with perturbations this is no longer
true. Now the velocity takes the form u# = %(1 — U, 7) in the Newtonian Gauge~, with
U= %. When deriving the differential equations governing the linear perturbation
dynamics as explained in Section , we will see the density contrast ones will re-
main unaltered, while modifications will take place only on the Euler equations of
the coupled fluids. Nevertheless, there is a more sound theoretical explanation for
this result as we are dealing with an interaction similar to the Thomson scattering.
That means a low-energy interaction which does not alter the number of particles
or the kinetic energy of the incident Photons, which translated to the cosmological
description means no modification on related quantities to number or energy den-
sity. Therefore, having the continuity and the density contrast equations preserved
while modifying the Euler equation emerges as a natural consequence of the Co-
variantised dark Thomson-like scattering. Consequently, the equations governing
the background cosmology, that is Friedmann equations, continuity equations or
the Hubble function, are the same explained in Chapter 2. There is only one subtle
point here. We cannot use a ACDM model but a wCDM. As we will see later, the new
term in the perturbation sector will be proportional to 7, then having a Cosmolog-
ical Constant w = —1 would not be compatible with this interaction. It is important
to highlight that preserving the background cosmology is an appealing property of
this type of models as we know most of our datasets favour the concordance model

2The coupling is gauge independent as by a gauge transformation of the form dz* = ¢* the interac-
tion transforms as §Q* = —L:Q" = 0, where L is the Lie derivative and Q* is the background coupling.
Thus, we do not need to care about the gauge for that explanation.
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and, thus, we may only expect small deviations around it. Consequently, preserving
its background evolution is a strongly supported advantage due to the success of
the concordance model, although it will be a weak point regarding the H, tension.
In principle, the coupling parameter o can have time and/or scale dependence. As
we will explain later, in the case of the Dark Energy-Dark Matter interaction we will
explore a cut-off scale as a proxy of a scale dependence, finding no preferred scale
at least for the scales explored by data. Regarding the time dependence, in this PhD
dissertation we only consider the case such that « is constant in time. We can see
such a simple case as a proof-of-concept of having a late-time efficient coupling able
to erase structures and its relation with the og tension. In any case, we did try to
investigate if a time dependence could be convenient in two different cases. First,
we considered a power-law dependence with the scale factor as a(a) = ap o™ where
the power n should keep the late time efficiency of the coupling. On the other side,
a CPL-inspired or Taylor expansion around today given by a(a) = ap + a1(1 — a) was
considered, having the parameters oy and «; such that they preserve the desired
late-time behaviour. However, we found data is not enough precise to disentangle
the possible scale factor dependence when doing MCMC analyses and, provided with
both cases we can recover the constant case, we, therefore, keep those ideas for when
future data will be available in the next generation experiments.

As the background evolution is the same as in a wCDM model, we shall focus
now in the perturbation sector that emerges from this interaction. Given the perfect
fluid description for each component of the Universe, with no anisotropic stress and
same background evolution, one can obtain the equations governing the perturba-
tion sector of the interacting components~ by the non-conservation of the perturbed
stress-energy tensor

V(T 4 0TW) = (uhy — ) o V(T8 4 6TI) = —a (uf, — uly)

with ! the perturbed 4-velocity. Following the formalism of Ref. [27] and explained
in Chapter , the equations governing the perturbation sector, that is the density
contrast § and the velocity variable ¢, are in the Newtonian gauge

5</im = _edm + 34)/ s
0, = —HOqm +E*® +T'(0ge — Oam)
2 _
She = —3H (2 —w)bae+3(1 4 w)® — Oge(1 +w) <1 L oS - “’> :
k2¢2
0h = (—1+43c2) Hbge + k*® + 5 6de — TR(Odge — Oam)

1+w

5The non-interacting components have the same equations as in the standard model explained in
Section
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while in the synchronous gauge we have

Ogm = — <9dm + ;h') ;
Oy = —HOam +T(0dge — Odam) ,
' 2 L., 202 —w
0pe = —3H (¢ —w)dae — (1 +w) <9de +5h > +9(1 + w)H* =5 bae ,
9& = (—1 + 362) HOqe + ﬁéd —TR(04e — Oam)
e S (5} 1 +w e e m/ »

with I' the interaction rate between Dark Energy and Dark Matter and R the Dark
Matter-to-Dark Energy ratio, both defined as

I = o’zi,
Pdm
Pdm
R = ———M .
(1 + w)pde

As seen from previous equations, the interaction only introduces an additional
term in the perturbed Euler equations, both for Dark Matter and Dark Energy,
proportional to the relative perturbed velocity between both coupled fluids. We can
clearly see the resemblance between the new term due to the interaction I'(fge — 0qm )
and the Thomson scattering term™ I'r (6, — 6;,) where I't = %aneaT with n. the abun-
dance of free Electrons and o1 the Thomson scattering cross section. However, the
crucial differences between both interactions are the scales involved. For being ef-
ficient, the Covariantised dark Thomson-like scattering requires peculiar velocities
between interacting components, or for 64, ~ 64, the coupling term necessarily van-
ishes, a feature shared with the Thomson scattering. Thus, the interaction is only
efficient for small scales where peculiar velocities arise, as for large scale all com-
ponents share the same rest-frame. But, regarding the time scales, the Thomson
scattering needs a non negligible fraction of free charges as I't ~ n., something that
only occurred in the early Universe before recombination or during reionization. On
the other hand, Covariantised dark Thomson-like scattering becomes efficient at
late-times for a constant coupling « as I' ~ a*. In fact, it dominates for a completely
general coupling «(7, k) the dynamics of the Euler equations when I" > #.

In principle, the coupling can have a scale and/or time dependence «a(7, k). Here,
we will explore two scenarios, one with neither time nor scale dependence a(r, k) = «,
and the other scenario with a cut-off scale of the form «(k) = ae k/ks | where kg sets
such cut-off scale’. From a very phenomenological point of view, this interaction
was motivated as a late-time mechanism to erase structures with the goal of finding

*See equation of Chapter

5We may think of existing screening mechanisms like chameleon, symmetron, K-mouflage or Vain-
shtein mechanisms (see for instance [112]), but here we do not intend our previous parameterisation of
the coupling to reproduce any of the previous mechanisms. With that parameterisation we only want
to explore if cutting-off small scales from a certain ks could improve the compatibility with data.
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an agreement between early and late-time measurements of the parameter og. As
we said, the interaction becomes efficient when I' > H, then for the late Universe
and assuming a Dark Energy equation of state not too far away from w — —1 we
need ' > H ~ a. Hence, a constant coupling parameter suits the purpose of this
mechanism. Moreover, one can understand a constant coupling parameter as the
zeroth order term of a CPL-like description for the coupling parameter, that is a
Taylor expansion around us, since the og tension suggests a late-time interaction.
From a bit more fundamental point of view, let us consider that we assume Dark
Energy is described by a scalar field ¢ having an approximate shift symmetry, while
a natural dependence for the interaction might be o x ¢, which is nothing but an in-
teraction proportional to the gradient of the scalar field. From that, we can naturally
expect ¢ « t and thus «a « cte as we are supposing here. Moreover, this interaction
can be the consequence of a U(1) charge in the Dark Sector, that given its still un-
known nature we are not able to detect directly, yielding to a Thomson-like scattering
whose cosmological effects we might be able to spot. As commented, this is a late-
time interaction departing then from Thomson scattering which was mainly active
in the very early Universe. However, we know Thomson scattering reappeared later
when reionization happened, so we could speculate our dark Thomson-like scatter-
ing might be mediated by a dark reionization taking place in the late Universe. Of
course, the microphysics explanation to this interaction is still an open question.
Until we do not detect the dark particles, if they exist, the previous discussion only
belongs to the speculative world.

We include the different modifications due to the interaction in the Boltzmann
code CLASS [113, 114] to obtain a full adapted code to the Dark Energy-Dark Matter
Covariantised dark Thomson-like scattering. With that modified code we study the
evolution of the density contrast ¢ and the velocity perturbation 6 of the different
components and we analyse the effects of the interaction in several observables.
However, before delving into that, in Ref. [108] it was studied the different regimes
of this interaction for the case Dark Energy-Baryons. Here, we will perform a similar
analysis for the Dark Energy-Dark Matter scenario.

4.1.1 Regimes

Before analysing the effects of the interaction in observables like the Matter Power
Spectrum or the CMB, it will be of particular interest trying to understand the dif-
ferent regimes and scales involved. We have already commented how this interaction
can only be relevant for small scales regime where peculiar velocities arise as, oth-
erwise, the coupling term vanishes since 64, ~ 64,,- We have also purposely chosen
a constant coupling, then it appears as a late-time interaction which may naturally
alleviate the og tension. Provided that, in this section we will analyse the different
regimes to give a first taste so then we can fully understand the effects observed in
the numerical codes when we compute certain observables.
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Super-horizon modes

Let us consider the super-horizon regime, that is 4 > k. For super-horizon modes,
we can safely consider the gravitational potential is constant as those modes re-
main frozen until they reenter the horizon. Thus, provided %22 > 1, the perturbation
equations read as

5/dm - _Odm bl
0y = —HOqm +E*® +T(0qc — Oam)
/ 2 203 —w
Ve = —3H (cs — w) dge — (1 4+ w)9H 2 Ode ,
k2c2
0he = (—1+3c2) Hbge +E°® + = ;5(16 —TR(b4e — Odm) -

Firstly, we consider the interaction is not efficient which we can describe by the
criterion I' <« H for Dark Matter and RI' <« #H for Dark Energy. This accounts for
most part of the evolution history choosing a constant coupling function «(t, k) = «,
which gives rise to a very late-time interaction. In that case, the equations will be
just as in the standard cosmological scenario with some very minimal deviation due
to the required w # —1. Consequently, the evolution will not be modified and we
refer to classical textbooks like [25, 115] where it is comprehensively described. On
the other hand, if we consider the interaction is efficient, then late-time Universe
according to the previous criterion, we again should expect no modification by just
looking at the coupling term. For such very large super-horizon modes, peculiar
velocities between components should not appear given they are in cosmological
scales inside the realm of the Cosmological Principle. Although that argument might
be enough, we can demonstrate it. Firstly, the interaction will act on Dark Energy
provided RI' > I' as R > 1. Then, in that scenario RI' > H > I the Dark Matter
equations will remain unaltered but for Dark Energy we would have

2
i —w

5216 k2

—3H (cg —w) ge — (1 + w)9H?
0., ~ -TROg+ k?®+TRbyy, ,

ede )

with both equations having as homogeneous solution a decaying mode. Particularly,
for Euler equation where the interaction explicitly appears we have Qgéom) o e~ JTRdT
since I'R > 1. Then, the only departure from non-interacting evolution might emerge
from the inhomogeneous part of Dark Energy Euler equation but as it is mainly de-
termined by the primordial spectrum which is purely adiabatic, thus same velocities
for all components so vanishing interacting term. Then, we keep the behaviour un-
altered as the coupling term is negligible for 64, ~ 64,,. Even later in time when
RI' > T" > H, we will continue to have the decaying modes in the homogeneous part

and, hence, the scenario should be the same.
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Tight coupling regime: Dark Energy

We now consider sub-horizon modes # < k at late-time Universe z < 1 and for
scales where gravity does not control the dynamics k?® < H6, where the interaction
is efficient provoking a tight coupling between Dark Energy and Dark Matter leading
to the exchange of momentum and then both velocities couple 64, — 04.. This sce-
nario is similar to the Baryon-Photon tight coupling regime before recombination,
which was induced by a Thomson scattering. Again, we clearly see the resemblance
between this interaction and the Thomson scattering, motivating once again the pos-
sible presence of this coupling.

Consequently, we have for the zeroth order 951?31 ~ 640 while using the Dark Matter
Euler equation we can write the relative velocity up to first order corrections as

oY) ~ g0 — %(egm 4 HOdp — K2D) .

dm —

In Section , we will numerically confirm how both, Dark Energy and Dark Mat-
ter, velocities will couple when the interaction becomes efficient. This will provoke
that Dark Matter no longer follows Baryons and then it will not fall into the potential
wells due to the interaction, at least for the scales where gravity is not the leading
force. For that last scenario, we will see how even in such case the tight coupling
will leave an imprint.

Once we have a first insight of the Dark Matter velocity divergence variable, we are
now interested in understanding the Dark Energy density contrast evolution, which
we will later confirm in Section . For this purpose, we first have to rewrite the
equation under the approximation considered for the sub-horizon modes, then

She = —3H (2 — w) bae + 3(1 + w)®' — Oae(1 + w) .
In order to get a second order differential equation for é4., we obtain from equa-
tion bae = Ode(0), dde, ®) and its derivative 6/, = 04c(04,, 04, dde, P), then we insert
them into equation including the approximation obtained before for 6,4,,. Hence,

the second order differential equation controlling the evolution under the previous
approximation of dq. is

6£i/e + 5&67—[ [1 - 3(’LU - CgHR)] + 6de [kQCgff + mgff] = (1 + w)f(q)”? (I)la (I)) ’

where m?; and c%; are the squared effective mass and squared effective sound speed,
defined as

mZy = 3(c2—w)[(1 -3 H +H] ,
2 Cg
Cf = 71 R

while the function f(®”, &', ®) depends just on the matter clustering. Given R > 1 we
can further simplify the differential equation as
2.2

Gho b 8 (1= 300~ )] b | % 4| = (1 w)p(@”. 0, 9),
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which immediately invokes a damped oscillator with a certain force whose general
equation is & + As + Bx = F(t). Consequently, the competition between the effective
mass m?; and the effective sound speed c¢?; sets the natural not damped not forced
frequency of the system, while the clustering (mainly Dark Matter one) controls the
force applied to the system. In any case, the clustering rate of Dark Energy should
be negligible, then we can focus on the Dark Matter one.

Tight coupling regime: Dark Matter

For sub-horizon modes H < k, the density contrast equations for Dark Matter and
Dark Energy are

5(/im = —Qdm+3q),,
She = —3H(c? —w)dge + 3(1 +w)® — (1 + w)bye -

As already done in Ref. [101], we can combine both equations to obtain the following

coupled equation

e + 3H (2 — w)dge
14+w

S — = 04e — Bdm -

As a first approximation, just to get the idea of the implications due to the pure
momentum transfer, we can neglect the second term in left-hand side provided Dark
Energy barely clusters through all cosmic evolution and, then, those perturbations

are extremely small and barely growing. Thus
O < Ode — Odm -

Therefore, when the interaction couples both fluids 64, ~ 64., Dark Matter density
perturbations get frozen leading to a reduction of structures in the late Universe
and, then, one can expect a suppression on the Matter Power Spectrum for sub-
horizon modes. As the final consequence, a lowering in the og parameter should
appear, which may alleviate its related tension by this late-time mechanism which
leaves the CMB physics untouched. We will numerically compute those observables
in Section to confirm the previous derivation.

Gravitational pull

The tight coupling regime was obtained assuming gravity was not the leading force
but it was competing against the interaction. In other words, during tight coupling
we have gravity trying to cluster Dark Matter while Dark Energy pressure is trying
to put everything apart, as it did happen with Thomson scattering before recombi-
nation. Then, the final regime of interest would be what happens for smaller scales
where gravity overcomes the interaction and becomes the leading force.

Considering again sub-horizon modes H < k for the late-time Universe when the in-
teraction is only efficient as it needs I"' > #, matter dominated epoch and very small
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scales where gravity dominates g4, > 04, the Euler equation for Dark Matter is
0 = —Oqm (T + H) + k2 + Tge = 0y, + Dam =~ k23 .

It is more convenient to have the following change of variable dz = I'd7 so that the
previous equation can be rewritten as follows

dbgm k*®
9 m =~ Y
dx Tl r
which can be solved as the sum of the solution of the homogeneous differential

equation plus a particular solution of the full equation
k2@
Ogm = Ce ™ + e * / e”:?dx ,
where C' is integration constant. Given we are in matter dominated epoch we have ®
is constant and I' = Ty7® provided a ~ 72, then we have that z = {To7® = {T¢a”? > 1
which allows as to solve easily the integral in equation since the exponential

varies much faster than the I', then

kP k*®

Oam = — = ——a™*,
r Iy

where I'y captures all the constant factors we are not interested in for this derivation.

As in matter dominated epoch the gravitational potential is constant, we also have

the density contrast from equation as
A
Sam =~ C + —a” /2
dm + 7F0 a )

where C is the integration constant giving the initial conditions. Here, we can clearly
see the suppression of structures acting as the density contrast of Dark Matter
rapidly saturates remaining constant from then.

I" as starting shot of the interaction

We can perform the same trick done for Dark Energy with Dark Matter to obtain a
second order differential equation for Dark Matter density contrast dq,,. As before,
using equation we can obtain an equation of the form 64y, = 04m (0}, ®) and,
then, ¢, = 0 (3],, ) which can be plugged into equation leading to

dm>’
S+ 0k (H+T) =30" +3(H + )& + k*® + Iy .

As a first approximation, one may consider 64, is negligible for the scales where
clustering occurs and that the gravitational potential is mainly determined by Dark
Matter not by Dark Energy. Then, the relevant departure from the non-interacting
scenario can only take place when I' > #, which for a non-time dependent coupling
function « only happens for the very late-time Universe, as already explained. This
confirms what we already commented when presenting this interaction. The specific
form of the coupling function a(r, k), that determines I', will mark the time scales
when the Covariantised dark Thomson-like scattering is efficient and, in particular
we need I' > H to have deviation from the standard scenario.
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Stability condition

In the implementation done in the numerical codes CLASS [113, 114] and CcAMB [116],
we found that negative values of the coupling parameter (along with Dark Energy
equation of state w > —1) were numerically problematic to the code. In order to un-
derstand such situation, in this section we want to explore the potential emergence
of instabilities provoked by the interaction.

Our first step is to derive the second order differential equations system for Dark
Matter and Dark Energy density contrasts. We already have equation , al-
though this time we will not neglect the velocity potential contribution of course.
We will remain in the sub-horizon modes and in Dark Matter dominated epoch. We
neglect the super-horizon potential instabilities as they cannot be caused by the
interaction given its intrinsic properties. Now, we will use the Dark Energy Euler
equation in the sub-horizon regime to eliminate Dark Energy velocity as

5</ie o 3H(C§ — w)

0, 3P’ .
1+ w 1+ w de F

Hde:_

Provided we consider the matter dominated epoch, we can use that ¢ is constant
and k*® ~ —%H25dm, thus the second order differential equation reads as

2
w—cséd ~0
e >~0.

14+w

L

S + O (T +H) — T w

8he — g#(sdm + 3HT

We now need the corresponding equation for Dark Energy. Under the previous as-
sumption of matter dominated epoch, considering equation and its derivative,
we can insert them in the Dark Energy Euler equation for sub-horizon modes

2.2
k*cg

Ohe = (=1 +3c2) Hbge + K* @ + 7

5de - I‘Fi(ede - edm) )

w
using that in this regime ¢}, ~ —64m We obtain
o + 046 [(1 = 3w)H + TR] + 84e [k*c2 + 3TRH(c2 — w)] ~
3
5'H2(1 + W) 6gm + TR(1 + w)d), -

Hence, we can rewrite it in a more compact way as

O | L | HAT ~ .
o —(1+w)TR (1-3w)H +RT e
w—cg
N —3H? 3 HT dam |
—3(1+w)H?  2k?+3(c? — w)HRT dde

Our main concerns are not about UV Laplacian instabilities, given no change due to
the interaction for high frequency modes with k? > max{H?2 RT'H}, neither with IR
instabilities, since for very large scales the interaction term vanishes. But we do have
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a new sound horizon scale induced in Dark Energy due to the modified prefactor in
d4e Of equation , which is
k2 = ’3 (1 - “;) RF?—L‘ .
CS
Let us consider only sub-Hubble modes that are inside this horizon when the inter-
action dominates the dynamics of the system, that is H < k < k, . In that regime the

mass matrix, the matrix accompanying the
de

idm ] term, has

det M ~ —g(cg — w)RTH? |

and, hence, its sign is determined by the sign of . To have the required unstable
mode leading to collapse it has to obey det M < 0, so for w > —1 we need « > 0. With
these results and the numerical issues seen in CLASS, we will restrict our analyses
to positive values of the coupling parameter « or, if negative, having |«| close to zero.

4.1.2 Linear effects

Once we have studied the interaction at certain regimes of interest, we should anal-
yse with full detail the evolution of the perturbations and the possible effects on
observables due to the pure momentum transfer. In this task, we have used the
Boltzmann solver code CL.ASS [113, 114], which allows us to reproduce the evolution
of the background cosmology and the linear perturbations while computing certain
observables. We have created a modified version of CLASS which includes the Co-
variantised dark Thomson-like scattering scenario between Dark Energy and Dark
Matter, both for a constant coupling parameter «o(7, k) = « and for the case with a
scale cut-off a(7, k) = e ¥/%s, This was achieved by including the new terms in the
Euler equations (see equations and ) and adding the new parameters, «
or o and kg, to the code. We will first explore comprehensively the case where the
coupling has neither time nor scale dependence, that is «(7, k) = a, as a very general
proxy to study this type of interactions. After that, we will explore the main conse-
quences of adding a cut-off scale using the coupling (7, k) = ave#/ks,

For our analyses, we set the cosmological parameters to be Hy = 67.4 Km/s/Mpc,
Qph? = 0.0224, Q4mh? = 0.120, Treio = 0.054, Ag = 2.1 107°, ng = 0.965, w = —0.98 and
c? = 1, while any other parameter is set to the default value of the code. As previ-
ously explained, we are using as background cosmology a wCDM model as required
by this interaction. Then, our reference model to compare the effects of the interac-
tion should be also the wCDM model to avoid any degeneracy with the Dark Energy
equation of state w equal to —1 or not. The implementation is done in the Newto-
nian gauge in CLASS code, but in Ref. [109] another complementary implementation
was done but using the Synchronous gauge in the numerical code CAMB [116]. We
found no difference between the results obtained in both codes with different gauges.
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Figure 4.1: Matter Power Spectrum for different values of the coupling parameter «
and its ratio with respect to the reference model.

As for the case «(7,k) = o we are not introducing any new time or scale depen-
dence, the interaction has to preserve the aforementioned properties. That is only
small scales and late-time physics can be affected. Given the potential utility of this
interaction in the og tension, one should look first at the clustering to infer any
signal of the interaction. For that purpose, we explore how this interaction modi-
fies the Matter Power Spectrum P(k) for different values of the coupling parameter
a, as shown in Figure . As expected, the interaction leaves no imprint on large
scales, that is small k-modes, and only the small scale regime is affected where we
see a suppression of the Matter Power Spectrum proportional to the value of the
parameter . We can trace back such suppression to the analytical study done in
Section . There, we inferred how the Dark Matter perturbations stop growing
when the interaction couples both, Dark Energy and Dark Matter, velocities. More-
over, the suppression exhibits two different regimes as inferred from the relative
difference between the interacting Matter Power Spectrum and the wCDM one in the
lower panel of Figure . For intermediate scales it shows a k-dependence, while
when we go to smaller scales it saturates becoming k-independent. We can under-
stand such saturation of the suppression since we are dealing with very small scales
where gravity is the dominant force overcoming the interaction, something already
suspected from the analysis of Section
A remarkable property, with the capability of being a smoking gun for this inter-
action, is the shift of the turnover of the Matter Power Spectrum. Generally, its
peak scale is determined by the matter-radiation equality time, as in the radiation
dominated epoch density perturbations necessarily grow slower than in the matter
dominated epoch. But here we are not modifying the background cosmology. This
implies that we have the same values for the matter and radiation density as in the
reference wCDM model, no matter which value of o we use. Hence, the shift of the
peak of the Matter Power Spectrum is purely a feature of the pure momentum trans-
fer. Moreover, this shift effect has an analogous origin to the previously explained
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Figure 4.2: Cosmic Microwave Background (TT, TE) for different values of the cou-
pling parameter « and its ratio with respect to the reference model.

radiation-matter equality time effect. Due to the interaction, when both Dark Energy
and Dark Matter are coupled, the pressure of Dark Energy prevents the clustering
of Dark Matter and, then, the density perturbations necessarily grow slower or even
freeze as happened in the radiation dominated epoch. We will numerically confirm
this when analysing the density contrast evolution.

Once we have seen the effects on the Matter Power Spectrum, we now focus our
attention in the Cosmic Microwave Background. In Figures and , we show the
CMB power spectra for temperature TT, EE-polarization, its cross-correlation and
BB-polarization for different values of o and for the reference model wCDM. In the
case of the temperature power spectrum, the main signal of the interaction appears
at large scales through a novel Integrated Sachs-Wolfe (ISW) effect. As expected,
since the interaction is relevant at very late-times modifying the clustering and,
then, modifying the evolution of the gravitational potential. The more it modifies
the gravitational potential, that is the larger the value of «, the larger the late-time
ISW effect is. There is also a small scale effect in the form of oscillations for very
high-¢, but this effect is more notorious in the polarisation power spectrum and
in the TE cross-correlated spectrum. It is worth mentioning that this effect only
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Figure 4.3: Cosmic Microwave Background (EE and BB) for different values of the
coupling parameter « and its ratio with respect to the reference model.

appears in the lensed power spectrum due to the modifications on lensing of this
interaction and, thus, o controls the amplitude of the oscillations. In the case of the
BB-power spectrum the interaction also induces a global correction proportional to
the value of a. Also, since the coupling reduces the clustering of matter, the lensing
potential decreases as « increases leading to less structures, as shown in the lensing
spectrum of Figure , something already inferred from the Matter Power Spectrum.

In the previous paragraphs, we have explored the main consequences of the Co-
variantised dark Thomson-like scattering on the observables Matter Power Spectrum
and Cosmic Microwave Background. Those effects appear as consequence of the new
term in the Euler equations of Dark Matter and Dark Energy . Hence, in
order to understand why those effects appeared, we should analyse the evolution of
the perturbation equations due to the new terms. Now, we focus on the evolution of
the density perturbation of Dark Matter whose equation remains formally invariant
due to the interaction but, as it is coupled to the velocity equation where we have
the new interacting term, it will have a different evolution. In the upper panel of Fig-
ure 4.5, we have the 4, evolution using different values of the coupling parameter «
for three k-modes. For the very large scale mode k = 0.001 hMpc ™!, we see it remains
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Figure 4.4: Cosmic Microwave Background (¢¢) for different values of the coupling
parameter « and its ratio with respect to the reference model.

invariant as both fluids share the same rest-frame and, then, the coupling term van-
ishes leaving the Euler equations as in the reference wCDM model. For small scales
modes, k£ = 0.01 hMpc~! and & = 1 hMpc™!, we see how the density contrast gets
frozen when the interaction becomes dominant. Again, we already inferred analyti-
cally this behaviour in Section . The larger the value of the coupling parameter,
the earlier the mode stops growing since the earlier both velocities couple 04, ~ 64e
and, then, ¢/, — 0. This freezing of the density contrast explains the suppression
on the Matter Power Spectrum and its shift. When a mode enters the horizon, it
does not grow due to the interaction while smaller scale modes have suffered such
freezing for a very long time, as we see for example in the upper panel for the mode
k =1 hMpc~!. As a consequence of this late-time freezing, the gravitational potential
is modified and, then, it acquires a time dependence which induces the late-time
ISW effect we have seen in the temperature CMB power spectrum. Moreover, lensing
will depart from the reference wCDM model leading to the suppressed lensing power
spectrum and the oscillations which appeared in the TT, TE and EE-power spectrum
of the CMB.

Provided the og tension induced us to conjecture about a late-time mechanism
which could erase the extra structure, our next step is to analyse the value of og
depending on the value of «. In the lower panel of Figure , we plot the value of
og calculated by CLASS for different values of a with respect to the non-interacting
case, as a first taste of the interaction effect on that parameter. We infer how val-
ues of the coupling parameter of order a ~ 1072 or smaller provoke no change in
og. Nonetheless, larger values of a encode a significant amount of suppression of
structures as the value of o3 decreases, until it saturates for values of the coupling
parameter of order o ~ 10%. With this result, we can justify the normalisation done
in equation as a way to naturally obtain non-negligible and detectable effects
with values of the adimensional coupling parameter of order o« ~ 1. Consequently,
this interaction has the ability of lowering the value of the cosmological parameter
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Figure 4.5: Upper panel: Dark Matter density contrast evolution for different values
of the coupling parameter «.

Lower panel: ratio between the og parameter for different values of the coupling
parameter o and its non-interacting value.

og by a late-time mechanism and without modifying the background cosmology or
the matter content, leading to the potential alleviation of the og tension explained in
Section . However, this result can only be confirmed when doing a proper Monte
Carlo Markov Chain with real data, as we will do in Section . There, we will
also study if the potential ability of this model to alleviate the og tension brings the
worsening of other tensions, like the Hj one, as it usually happens.

Finally, and given this interaction is dictated by the relative velocity between
coupled fluids, the last thing we should study is how the evolution of the perturbed
velocity 6 departs from the reference wCDM model. In the upper panel of Figure ,
we have the relative velocity between Dark Energy and Dark Matter today for differ-
ent values of the coupling parameter «. It indicates that the larger the value of the
coupling «, the smaller the relative velocity between the interacting components. For
larger scales, the reduction of the relative velocity is not relevant as it is already neg-
ligible provided both components share the same rest-frame. However, for smaller
scales, the reduced relative velocity demonstrates how Dark Matter couples Dark
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Figure 4.6: Upper panel: relative velocity between Dark Energy and Dark Matter for
different values of the coupling parameter a.

Lower panel: relative velocity between Dark Matter and Baryons for different values
of the coupling parameter «.

Energy due to the interaction, leading to 64, ~ 64, and then suppressing structures
as 0}, ~ (0ge — bam) ~ 0, as analytically explained in Section and numerically
shown in the above paragraphs. This motivates the perception of the Covariantised
dark Thomson-like scattering as a pure momentum transfer interaction leading to
a coupling in velocities between both fluids. The consequence of this velocity cou-
pling is even more noticeably seen in the relative velocity between Dark Matter and
Baryons in lower panel of Figure . It is shown how Dark Matter and Baryons rel-
ative velocity is negligible no matter the scale (while we are in linear scales) as both
fluids are falling into the gravitational potential wells created by the initial seeds. As
anticipated, for the late-time Universe, when the interaction becomes efficient, this
relative velocity has a kick which represents the Dark Matter no longer falling into
the gravitational potential wells as Baryons, but coupling to Dark Energy due to the
momentum transfer of this interaction. The pressure of Dark Energy induces a mo-
mentum transfer to Dark Matter, preventing it from falling into the potential wells.
As a consequence, the Dark Matter density perturbation stops growing and then a
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Figure 4.7: Velocity perturbation variable # today of Dark Energy (blue), Dark Matter
(red) and the non-interacting Baryons (black) for different values of the coupling
parameter a.

suppression in the power spectrum should appear, as we already saw in previous
figures. It is worth mentioning the oscillations that appear at the intermediate scales
but, however, it is more illustrative to look at Figure where we can infer the three
regimes of this interaction to understand such oscillations. For very large scales all
components, that is Dark Energy, Dark Matter and Baryons, have the same velocity,
no matter the value of the coupling parameter « as all components of the Universe
share the same rest-frame. When we deal with intermediate scales where the inter-
action becomes efficient, Dark Matter velocity no longer follows Baryons velocity, but
it tries to couple the Dark Energy one. In this process, if the interaction is strong
enough, the Dark Acoustic Oscillations appear. They are the imprint of Dark Energy
pressure, trying to put everything apart, fighting with gravity, trying to collapse Dark
Matter. As a consequence of this competition between gravity and pressure, the os-
cillations appear in a very similar process to the Baryons Acoustic Oscillations due
to Thomson scattering before decoupling. In that early Universe process, radiation
accounts for the pressure while now it is Dark Energy, and Baryons were the mas-
sive fluid while Dark Matter plays its role now. When we analyse very small scales,
the gravitational pull overcomes the interaction drag and, then, Dark Matter velocity
tries again to follow the potential wells.

Cut-off scale

In the previous section, we have shown how the Covariantised dark Thomson-like
scattering naturally prevents any effect on very large scales but leaves freedom to
modify the small scale regime. Provided this, we can study the possibility of having a
screening mechanism which suppresses the interaction at some characteristic scale.
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Figure 4.8: Matter Power Spectrum for different values of the cut-off scale parameter
ks fixing o = 1, and its ratio with respect to the reference model.

Among all the plethora of possible scale dependencies, we will focus on a very general
and phenomenological dependence defined by a cut-off scale ki, given by

a(k) = ae Fhs

Of course, we are aware of already known mechanisms like Vainshtein or chameleon
screening that have a well defined theory behind. But here, with that cut-off, we are
only interested in a very phenomenological description that can allow us to detect
any relevant scale in this kind of models and/or improve the compatibility with
current datasets. Given we are not modifying the time-scale dependence of the cou-
pling, we do not expect any variation in the general mechanism driving this interac-
tion. Moreover, the cut-off only introduces a suppression of the interaction for scales
larger than the cut-off scale, that is a(k > ks) — 0. Consequently, the evolution of the
perturbation equations has to mimic the results of the previous section for k£ < k.
Instead, for k£ > ks, the evolution ought to follow the one in the reference wCDM
model. To confirm our findings we will analyse the Matter Power Spectrum, while
the value of og should reflect its consequences in the previously explained tension.
Regarding the Matter Power Spectrum in Figure , we plot it for a fixed value
of the coupling parameter o = 1, while we select different cut-off scales, namely
ks = 0.001 Mpc™!, ks = 0.1 Mpc~! and ks = 10 Mpc~!. We also plot the reference model
and the previous case without cut-off scale for « = 1. We can infer that for those
modes smaller than the cut-off scale in each case k < ks the power spectrum tracks
the results of the previous section with no cut-off scales, while for larger modes
k > ks in each case the spectrum tends to the non-interacting case represented by
the wCDM model.
In the case of the og parameter, we should keep in mind it measures the amount of
clustering inside spheres 8 h~'Mpc radii. Then, in Figure we can see, for a fixed
value of the coupling «, that when the cut-off scales are much smaller than the og
characteristic scale its value is not affected by the cut-off. On the other case, when
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fixing @ = 1 and its non-interacting value.

the cut-off scale includes inside it the og scale, no lowering appears in the parameter.

The results found above were easily predictable before using the numerical code.
However, the key point of adding such cut-off will appear when doing a MCMC anal-
yses, since the goal is to find if a certain scale is preferred by the interaction or
not.

Adding extra radiation via a free N4

In all the previous analyses, we set the effective number of relativistic degrees of
freedom N.¢ to its standard model value N.g = 3.046. However, nothing prevents us
from extending the model allowing for a varying N.g that will be fixed by data. The
goal of this extension is, on the one hand, see the possible degeneracy between the
coupling parameter and N.g, since radiation also suppresses structures and, there-
fore, both the interaction and a larger value of N, would act similarly. On the other
hand, we know this interaction cannot alleviate the H, tension as the background
cosmology remains unchanged, but it is a known result that a larger N.g implies a
lower value of Hy. However, it is common in the literature that when one alleviates
one of the tensions, og or Hy, the other gets worse, as it is the case with a larger N g
to alleviate H, (see for example Figure 35 of Ref. [5]). Thus here, as we already have
the momentum transfer dealing with og, we want see if the easing of both tensions
can happen simultaneously. Then, we want to study the behaviour of N.g while the
interaction is on under a MCMC analysis. Finally, as we will study another momen-
tum transfer model in Section where a new Dark Radiation emerges, we want
to compare both models under similar conditions, that is, leaving room for extra
radiation. Consequently, we will consider in our MCMC analyses this extra degree of
freedom.
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4.1.3 MCMC results

In the previous sections, we have fully characterised the evolution and main effects
on observables due to this interaction both from an analytic point of view and using
numerical codes. However, we are still completely blind to what the interaction really
looks like in our Universe, given we are yet ignorant to the allowed cosmological and
coupling parameters values when the Covariantised dark Thomson-like scattering is
taken into account. To fulfil this purpose, we use the public code of Markov Chains
Monte Carlo called MontePython [32, 33] applied to our modified CLASS code. We
will not enter in the details of Bayesian statistics here to avoid loosing attention on
the models studied. For that, we refer to Appendix /A where the basics of Bayesian
inference and Markov Chain Monte Carlo techniques, denoted by MCMC, are ex-
plained.

In our analyses, and unless specified otherwise, we use the full Planck 2018
data [5, 29] compiling data from the high-/ and low-¢/ modes from the Cosmic Mi-
crowave Background (CMB) temperature (TT), polarisation (EE), cross-correlation
of temperature and polarisation (TE) and the CMB lensing power spectra, the JLA
survey with data from supernovae [117], the Baryonic Acoustic Oscillation data of
Refs. [118, 119, 120], the Planck_sz likelihood of the Planck Sunyaev-Zeldovich ef-
fect [30] and the weak lensing likelihood CFHTLens [121]. The previous two datasets
are implemented in MontePython as priors on S5% = 05(0,,/0.27)%3 and S§FHTL =
05 (m/0.27)046 respectively. The use of Planck Sunyaev-Zeldovich data presents some
caveats that we have already discussed when presenting the observable in Sec-
tion . In any case, the value of the Planck_sz likelihood can be found in Table
2 of Ref. [31] as obtained from the combination of P1lanck2013+BA0O+BBN and for a
fixed mass biased 1 — b = 0.8. It is implemented under the name Planck_sSz in the
likelihood gallery of MontePython. Although the previously explained caveats and
the over-simplified prior method, this likelihood was used in Refs. [95, 97, 101, 103]
where similar Thomson-like scatterings were analysed, giving equivalent results as
we will see.

In our analyses and unless specified, we will set as cosmological parameter the
following combination {Qh?, Qqmh?, ns, As.Treio, w, 10005} and, in addition to that, the
model parameters in each case. We also consider as derived parameter the following
list {zrei0, Ho, 08, 2 } and the nuisance parameter associated with each likelihood. We
restrict ourselves to values of the Dark Energy equation of state fulfilling w > —1,
while the coupling constant « should be positive or at least with not a large negative
value for stability purposes, as explained in Section . We consider flat priors for
all parameters and any parameter not mentioned here is set to its default value in
CLASS. Our reference model will be a wCDM model rather than a ACDM one, as we
want to avoid any effect of using an equation of state for Dark Energy w = —1 or not.
Hence, any departure from the reference scenario must be solely attributed to the
Covariantised dark Thomson-like scattering.
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We will firstly analyse at length the case where there is no time or scale depen-
dence as a proxy to understand how the interaction changes the picture. Later, we
will analyse other scenarios around it.

Logarithm sampling log,, «

In order to provide the most unbiased approach to the model parameter a estima-
tion, we firstly perform an analysis considering as a parameter log,, o with a very
large range of possible values as log;, o € [—8,4]. Such huge range is inspired by the
results obtained in the previous Section (for example in Fig. ), where values
of the coupling parameter such that o < 10~ give no departure from the standard
scenario and values fulfilling o > 10* give completely unrealistic effects. We allow up
to the very low limit o > 1078 just to consider a non-interacting-like situation in our
first analysis. In any case, we will later study when o = 0 is consistently included
into the allowed MCMC parameter space to fully discriminate if the interaction is
allowed or not.

In Table and Figure we display the results obtained for the reference sce-
nario wCDM and the Covariantised dark Thomson-like scattering when using as
a coupling parameter log,, @ as explained. Here, the data used is the full Planck
2018+JLA+BAO+CFHTLenS+Planck_SZ combination, each one explained before.
With this analysis, we have confirmed the previously expected values of the coupling
parameter a ~ O(1), given the result is log;, a = 0.003Jj8:}g. In principle, the poste-
rior for the coupling parameter « indicates the interaction is preferred by data, as a
non-interacting scenario preference would be represented by very small values of the
coupling. However, the non-interacting scenario is not perfectly considered as a = 0
is not allowed. Thus, our next step should be setting a narrower range of allowed
values for o with the non-interacting scenario included. In this second approach, we
will also analyse the shift in the other cosmological and derived parameters when
the momentum transfer is considered.

Linear sampling o

Once the previous analysis has determined the coupling parameter is o ~ O(1),
we repeat the same analysis considering now the parameter a per se, inside the
range « € [—0.1,100]". Thus, we do now consider the non-interacting case inside our
parameter space, represented by o = 0. We again consider the same datasets as
before, that is the combination Planck 2018+JLA+BAO+CFHTLenS+Planck_SZ, and
the result are shown in Table and Figure

The result for the coupling parameter is

0.26
o = 1.00575% |

SWe checked that the negative values of o up to a > —0.1 remain numerically in the safe zone for
not having the instabilities studied in Section
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Covariantised dark Thomson-like scattering: dark energy-dark matter
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Figure 4.10: In this plot, we show the two-dimensional 10 and 20 posterior of several
parameters for a wCDM model (gray) and for the interacting model using a logarith-
mic sampling on the coupling parameter « (red).

which points towards a possible detection of the interaction according to the data
used, being one of the most notable results of this PhD dissertation. Even more, we
find that the MCMC analysis indicates a more than 30 detection of the interaction,
provided « 360 [0.25,1.89]. Regarding the parameter o3, we find a large shift on its value

when compared to the reference wCDM model. Of course, this result is directly ex-
plained by a non-zero value of the coupling parameter « previously encountered.
The connection between the interaction and the suppression of structures was ex-
plained in Section 4.1.2, and even in Figure 4.5 we already saw the direct connection
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wCDM model Elastic Interaction log;, o
Param. meanto 20 lower | 20 upper meanto 20 lower | 20 upper
100Q,h% || 2.26470012 2.235 2.295 2.24370016 2.211 2.275

Qamh? || 0.1163750010 | 0.1143 0.1183 || 0.119370003 | 0.1168 0.1218

N 0.97211050%3 | 0.9638 0.9808 || 0.9662700555 | 0.9572 0.9753

109 A 2.06310 051 1.991 2.133 2.10570037 2.035 2.177

Treio 0.050210-0%57 | 0.0322 0.0686 || 0.056275:9082 | 0.0392 0.0733

w —0.948150%2 | —0.999 | —0.888 || —0.979700%° | —0.999 | —0.939
100 65 1.04275:0003% | 1.041 1.043 1.04275:0003% | 1.041 1.043
Zreio 7.147099 5.18 8.94 7.8470% 6.15 9.53
Ho [ || 67.887330 65.70 69.98 67.5810 % 65.97 69.19
o8 0.7907005% 0.770 0.810 0.752700:2 0.727 0.776
O 0.30270:009% | 0.281 0.323 0.310415-0053 | 0.2925 0.3291
log, o o - - - 0.003%5:13 —0.27 0.30

Table 4.1: In this table, we show the mean and lo values and the 20 limits for the
cosmological and derived parameters for a wCDM model (left) and for the interacting
model using a logarithmic sampling on the coupling parameter « (right).

between the interaction and the amount of clustering, measured by the o3 parame-
ter. This lowering should be highlighted, since in Section we introduced the oy
tension that emerged between local and early Universe measurements. This possi-
ble extension of the concordance model alleviates such tension while not changing
anything about the background cosmology. Moreover, it has a well sound motivation
regarding its analogy with the already known Thomson scattering as previously ex-
plained.

Regarding the matter content, we find a small enhancement of Dark Matter and
total matter abundance when comparing the cosmological 4, parameter and the
derived (2,,, parameter, due to the presence of the momentum transfer. On the other
hand, there is a tiny lowering of Baryons abundance represented by €;,. The initial
power spectrum is slightly more blue-tilted with a small increase of its amplitude.
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However, all these shifts are not statistically relevant as they fall into the 1 — 20
level. Other parameters, like the Hubble parameter, remain completely unmodified
by this interaction as already expected. Consequently, the alternative Covariantised
dark Thomson-like scattering provides, according to the data used, a mechanism to
alleviate the so-called og tension without shifting the other parameters that are well
constrained by current datasets. Of course, the Hj tension cannot be addressed by
the pure momentum transfer since the background remains absolutely unmodified.

Furthermore, we find a huge improvement of the y? compared to the reference
wCDM model Ax? = 23.4 which, using the information criterion explained in Ap-
pendix A, leads to AAIC = 21.4. This indicates an extraordinary improvement of the
fitting power of the Covariantised dark Thomson-like scattering as it strongly sup-
ports the new model compared to the reference wCDM model. Combined with the
constraint for the coupling constant « that rules out the standard scenario, it calls
for more attention in order to fully understand the results obtained. For that pur-
pose, we will now analyse how each dataset used behaves when the interaction is
turned on.

Analysing dataset per dataset

The huge improvement of the x? value while strongly constraining the coupling pa-
rameter far away from the non-interacting scenario calls for more attention in order
to fully understand the results. Regarding the tensions explained in Section
between different local and early Universe experiments, we will now analyse the
impact of each dataset on the determination of the model parameter a. In pre-
vious analyses like in Ref. [109], we already determined that the key role for the
detection was set by the weak lensing likelihood CFHTLens [121] survey and, par-
ticularly, by the Planck_sz likelihood of Planck Sunyaev-Zeldovich effect [30]. On
the other hand, the Planck 2018, BAO and JLA data give similar results. Then,
in Figure we show the results when using the Planck 2018+JLA+BAO com-
bination of datasets (green), Planck 2018+JLA+BAO+CFHTLenS (blue) and Planck
2018+JLA+BAO+Planck_Sz (purple). While most cosmological parameters converge
to the same value no matter which datasets combination is used, the coupling pa-
rameter « is only fully constrained when the Planck_sz likelihood is considered.
When Planck 2018+JLA+BAO data, or adding CFHTLenS likelihood, we can only es-
tablish an upper limit for «.

As a consequence, the previously seen shift in og clearly responds to the value of
«, as only when Planck_sSz likelihood is used (and then « is constrained) the oy is
solved. As a matter of fact, we should also highlight the behaviour of the CFHTLens$S
likelihood. In the one-dimensional constraint for log,, «, we see it also peaks around
a ~ O(1) although it is not able to put a lower constraint on it. This can be con-
nected to the og two-dimensional posteriors, as for the CFHTLenS case a 20 lower
og value appears. We want to highlight here that we used as convergence criteria
for the previous chains the Gelman-Rubin criteria satisfying R — 1 < 0.01 for all pa-
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Figure 4.11: In this plot, we show the two-dimensional 1o and 20 posterior of several
parameters for a wCDM model (gray) and for the interacting model (red).

rameters, as explained in Appendix /A. Hence, the extended 20 region has nothing
to do with a problem in the convergence of the chains. Moreover, other momentum
transfer models studied in the literature (see for example Refs. [95, 97, 103]) also
point toward lower values of the og parameter. This general result can be explained
by the dynamics of every Dark Sector momentum transfer and the local Universe
likelihood measurements like CFHTLenS and Planck_SZ. Both likelihoods, and most
local Universe measurements, indicate there are less structures than what early Uni-
verse surveys suggest. This is the so-called og tension explained in Section 3.4. In
the Covariantised dark Thomson-like scattering, a late-time/small-scale mechanism

79



CHAPTER 4. MOMENTUM TRANSFER INTERACTIONS

wCDM model Elastic Interaction «
Param. meanto 20 lower | 20 upper meanto 20 lower | 20 upper
100,02 || 226470012 2.235 2.295 2.24115:51% 2.211 2.272
Qamh? | 0.1163100010 | 0.1143 0.1183 || 0.1194F5:0015 | 0.1171 0.1218
ns 0.972115-00%2 | 0.9638 0.9808 || 0.9659700042 | 0.9575 0.9748
10% A 2.06370 051 1.991 2.133 2.11575057 2.048 2.183
Treio 0.05025-508T | 0.0322 0.0686 || 0.0582+3-9%81 | 0.0415 0.0747
w —0.94870022 1 _0.999 | —0.888 | —0.98173%% | —0.999 | —0.943
100 6, 1.04270000% | 1.041 1.043 1.0427005052 | 1.041 1.043
Zreio 7.1470:99 5.18 8.94 8.057059 6.46 9.69
[cm] || 67.887450 65.70 69.98 67.1070:7 65.63 68.46
o8 0.79010015 0.770 0.810 0.746 70013 0.722 0.769
O 0.30270009° | 0.281 0.323 0.31661 0 00% | 0.3010 0.3338
a - - - 1.0051028 0.44 1.65

Table 4.2: In this table, we show the mean and lo values and the 20 limits for the
cosmological and derived parameters for a wCDM model (left) and for the interacting
model « (right).

appears erasing structures while Planck data is obtained integrating the very early
Universe CMB signal until us using a ACDM model. Then, those late-time probes
like CFHTLenS or Planck_SZ which already pointed toward a lower value of og, can
naturally accommodate a late-time mechanism that precisely erases structures and
thus lowers oy.

The above explanation also accommodates the huge improvement of the x? value,
which should be capitalised by those surveys as they were already claiming for a
lower value of og. In order to summarise all this information, we display the main
results in Table . With it, we reveal the crucial role of P1anck_Sz likelihood on the
detection (with some help of CFHTLenS likelihood) that clearly sets a lower limit on
a while lowering the og parameter thanks to the interaction, since in the reference
model this is not the case. We also show the Hubble parameter Hy which, as ex-
pected, given this interaction cannot modify the background cosmology, it remains
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Figure 4.12: In this plot, we show the two-dimensional 1o and 20 posterior of several

parameters for the Covariantised dark Thomson-like scattering, considering differ-
ent datasets.

unchanged by the presence of the coupling.

As a conclusion, the presented interaction is able to erase structures by a late-
time mechanism naturally explaining local probes measurements of g and, conse-
quently, alleviating its related tension, while, however, it is blind to the H, tension.
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Pl k2018 | +JLA+BAO | +CFHTLenS | +P1 k_sz All All
anc en anckKk__ wCDM
log;o a < 2.8 < =20 <0.9 —0.0187915 | 0.003%913 —
o8 0.797T003> | 0.81270038 | 0.7987055¢ | 0.753T0015 | 0.75270013 || 0.79070515
Hy 65257280 | 67.47088 | 67.670% | 674705 | 67.5870%53 || 67.887030

Table 4.3: In this table, we show the mean and 1o values of certain parameters for
the Covariantised dark Thomson-like scattering considering different datasets and
for the reference model when all data is applied.

Cut-off scale

In Section , we have considered the possibility of having a screening mechanism
for the coupling. Although there are several theories where screening mechanisms
appear, we considered a very phenomenological approach defined by a(k) = ae #/%s
where k; was a certain cut-off scale. Then, we now consider this scenario in our
MCMC analyses with the same previous combination of datasets defined by Planck
2018+JLA+BAO+CFHTLenS+Planck_sSz. We remind that the goal here is to infer if a
certain characteristic scale is present in our model and if compatibility with data
improves with it. If so, further theoretical investigations would be needed to explain
why. Our bounds for the coupling parameter « are the already used « € [—0.1, 100],
while for the cut-off scale we will follow the same strategy considering first as pa-
rameter log;, ks with extremely wide bounds defined by log; ks € [—4, 21].

In Table , we show the constraints obtained for the coupling with the screening
scale k5. The cosmological and derived parameters are identical to the ones obtained
for the constant coupling before, provided the differences appear inside the 1o range
in each one. The coupling parameter « is again more than 3¢ away from a non-
interacting value, while it has a slightly higher value compared to the previous case,
although not statistically significant. The cut-off scale represented by the parameter
ks is sparsely constrained and pointing to very small scales. Those scales represent
non-linear regimes where neither the code CLASS used nor the data considered in
the MCMC analysis are reliable. Hence, one can conclude that for the linear scales of
interest no cut-off scale is preferred by data and, consequently, neither a screening
mechanism. Giving the vague constraints obtained, there is no need for an analysis
using a linear sampling on ks, since the results will not improve.

Adding extra radiation

As explained in Section , we may consider the scenario where the effective num-
ber of relativistic degrees of freedom N.g is not fixed but acts as a free parameter.
Apart from the already used data of Planck 2018 CMB [5, 29] and the Planck_Sz
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wCDM model Elastic Interaction ae#/ks
Param. meanto 20 lower | 20 upper meanto 20 lower | 20 upper
1009, h2 2.26415:012 2.235 2.295 2.2401501% 2.209 2.270
Qamh? 0.1163700010 | 0.1143 0.1183 || 0.119670003 | 0.1172 0.1219
ng 0.972115-00%2 | 0.9638 0.9808 || 0.9656700972 | 0.9574 | 0.9747
10° A 2.06370 051 1.991 2.133 2.1017005% 2.036 2.169
Treio 0.0502F0:9%87 | 0.0322 | 0.0686 || 0.055270:00% | 0.0392 | 0.0722
w —0.94815:0%2 | —0.999 | —0.888 | —0.9791509] | —0.999 | —0.943
100 65 1.042700005 | 1.041 1.043 1.04270000% | 1.041 1.043
Zreio 7.1470% 5.18 8.94 7.7510 78 6.13 9.38
Hy [ ] 67.88% 50 65.70 69.98 67.4470:53 65.98 68.92
o8 0.790700%5 0.770 0.810 0.74831001% | 0.725 0.772
O 0.30270:9095 | 0.281 0.323 0.31270-008 0.295 0.329
o - - - 1.137028 0.53 1.78
log1o ks[Mpc ] - - - g.5122 ~1.1 16.6

Table 4.4: In this table, we give the obtained constraints for the cosmological and
derived parameters for a wCDM model (left) and for the interacting model with the
coupling parameter constant screened (right).

likelihood of Planck Sunyaev-Zeldovich effect [30], here we will promote the data of
BAO and Supernovae to the most-updated data of BAO [2, 119, 120] and of Pan-
theon [6], which at the moment this investigation was performed was available. In
Figure and in Table , we display the main results. We find no significant dif-
ference with respect to our previous cases, which is translated into the new param-
eter N.g that is compatible in all cases with the standard model value N.g = 3.046.
The previous characteristic effect of the Sunyaev-Zeldovich data appears again, as
the interaction is only detected once we add that dataset. Likewise, once we add the
Sunyaev-Zeldovich data we have lower values of the og parameter alleviating its cor-
responding tension while the Hj tension is barely alleviated by the free N.g. In any
case, the inconvenient effect of alleviating one of the tensions necessarily implying
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Figure 4.13: In this plot, we show the two-dimensional 10 and 20 posterior of several
parameters for the Covariantised dark Thomson-like scattering, considering differ-
ent datasets when we promote N.g to be a free parameter.

the worsening of the other is not present in this model.

84



4.1.

COVARIANTISED DARK THOMSON-LIKE SCATTERING: DARK ENERGY-DARK

MATTER

P18+BAO P18+Pantheon+BAO | P18+BAO+SZ | P18+Pantheon+BAO+SZ
logig a || < —1.5 <-15 ~0.0610:18 ~0.057045
os || 0.804190% 0.80870:02) 0.75170013 0.75370-013
Hy 66.8+13 67.3712 66.7+14 67.2712
Negt 2.9970-29 2.9910-19 2.9610-39 2.9615:350

Table 4.5: In this table, we show the mean and 1o values of certain parameters for

the Covariantised dark Thomson-like scattering considering different datasets when
N is a free parameter.
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4.2 Covariantised dark Thomson-like scattering: Dark
Energy-Baryons

In the previous scenario, the interaction purely belongs to the Dark Sector. Nev-
ertheless, the philosophy of this interaction is more general as it only implies a
pressureless matter fluid interacting with a fluid whose pressure erases structure.
Thus, we can now involve the cosmological Baryon fluid instead of the Dark Matter
component. This work was partially motivated by Ref. [73] where a similar inter-
action was studied. There, however, they do not found any relevant effect on the
cosmology neither in the observables. The key difference between their case and
the one studied here is the time dependence of the coupling. In that case, it closely
follows the Thomson scattering time dependence, then being not relevant for late
times when precisely Dark energy is relevant. Here, we consider a time dependence
which makes the interaction relevant by the time Dark Energy is also relevant for
the cosmological evolution. Although it therefore departures from a Thomson scat-
tering, since our interaction is mediated by Dark Energy it becomes natural to think
its time dependence can correlate with the time when Dark Energy is non-negligible
in the Universe. Under this logic, a dark reionization can activate the interaction as
standard reionization does with Thomson scattering. Thus, only when Dark Energy
is relevant in cosmological scales the interaction would be efficient and its effects
seen. Of course, this is not a rigorous motivation. But since we have never detected
a field of Dark Energy in our laboratories or we do not have any theory to explain
its nature we can only speculate if an interaction associated to Dark Energy should
appear when it is relevant in the Cosmic cake. In any case, further investigation
must be performed.

As in the previous scenario nothing happens due to the interaction for the back-
ground cosmology, then our starting point is the non-conservation of the perturbed
stress-energy tensor for the coupled system as

V(T +0T)") = B(uge —up) o Vu(Tae +0T4) = =B (uge —up)

where now the coupling parameter is /3, which we again normalise to get the adimen-
sional coupling parameter § = $7¢ 3. As before, following the formalism of Ref. [27]

3H3

and explained in Chapter , the 0equations governing the perturbation sector in the
Newtonian gauge are

5{) = 0, + 3% ,

0, = —Hby+k*®+T7(0, —0p) +T(0ge — ) ,

7_[2
O = —37’[(63 —w)dge — (1 +w) |1+ 9? (cg — w) Oge + 3(1 +w)d |
k22
Oh = (=143 Hbqe + k*® + T Ode = TR(Bac = ) .
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while in the synchronous gauge we have

(5{) = —(9b+1h/>,

0, = —HOy+ k>0, + (0, — 6p) + T(0ge — 6) ,
rH2
0e = —(1+ <9de+ h’) (2 — w)dage — 9(1 + w) (¢ — w) e
2
9(/16 = ( 1+3C)H9de T+ (5 —FR(Qde—eb)

where 't is the interaction rate due to the Photon-Baryon Thomson scattering de-
fined as I't = %aneoT with n. the abundance of free Electrons and ot the Thomson
scattering cross section. Now the interaction rate of the coupling studied here I' and
the Baryons-to-Dark Energy ratio R are

r = g—,
P
Ph
R = —— .
(1+w)pde

Given the previous results for the Dark Energy-Dark Matter case, here we will only
study the case where the coupling has a constant value (7, k) = (. Therefore, the
interaction is relevant for small scales where peculiar velocities between compo-
nents arise 4. # 6, and, then, the new interacting term does not vanish. Moreover,
the interaction is relevant for the late Universe when we have I' > #, provided j
is constant. In equation we can clearly see the analogy between this interac-
tion and the Baryon-Photon Thomson scattering. As explained, both couplings have
completely different time-scales due to the time dependence of the interaction rates,
I' and I't, in each case. However, the process is similar leading to the analogue of
Baryon Acoustic Oscillation, which we called Dark Acoustic Oscillations.

In the following sections, we will investigate the main effects of this coupling. As
the similarities with the Dark Matter interacting case are obvious we will focus on
the main differences.

4.2.1 Regimes

In this subsection, we could present a similar analysis as in the previous sec-
tion where we studied the model in different regimes. We could reproduce
the same investigation here but the results will be similar to the previous case just
replacing Dark Matter by Baryons. There is, however, one subtlety since in this case
the gravitational potential can be treated as an external field mainly created by Dark
Matter. However, we will see numerically that the effects in both cases are inter-
changeable and, thus, we can omit the same analyses here.
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4.2.2 Linear effects

As done for the previous case, we have created a modified version of the Boltzmann
solver code CLASS [113, 114] where the new interacting terms are included in the
Euler equations for Baryons and for Dark Energy. At the same time, in Ref. [108]
a version of the CAMB code was also created, finding no differences between both
codes. Compared to the Dark Energy and Dark Matter case, here we have a sub-
tlety due to modifying the evolution of the baryonic matter. Baryons are coupled
via Thomson scattering to Photons beforehand, something particularly important
for the early Universe before recombination and for the reionization process. Before
recombination, Baryons and Photons formed a coupled system via their respective
Euler equations, something which numerically can be extremely problematic when
the different integrator algorithms are used. To avoid that, codes like CLASS or CAMB
use the Tight Coupling Approximation (TCA) scheme which uses the approxima-
tions developed for the coupled Baryon-Photon system in Ref. [122]. Because of the
Thomson scattering and the consequent TCA scheme, also radiation sector could be
affected when we include our momentum transfer terms, even though the coupling is
not to any radiation component. Photons are also treated under one approximation
called the Radiation Streaming Approximation (RSA) scheme. Then, our first step
has been to test how we should include the new terms in our equations and in the
two different schemes, both fully explained in Ref. [114]. We found that no relevant
difference appears if we consistently modify both schemes, TCA and RSA, propa-
gating the new coupling terms through them, or if we only modify the equations
for Baryons and for Dark Energy. The reason is that the coupling becomes relevant
at low redshifts, where these approximations are not acting as we are significantly
after recombination or reionization. Therefore, no matter if we propagate the terms
through the schemes as they are not being used for the very late Universe when
this interaction is acting. For our analysis, we set the same cosmological parameters
as in the previous case, that is: Hy = 67.4 Km/s/Mpc, Q,h? = 0.0224, Qq,h? = 0.120,
Treio = 0.054, Ag = 2.1 107Y, ng = 0.965, w = —0.98 and ¢? = 1. Any other parameter is
set to the default value of the code and our background cosmology is a wCDM model
as required. Here, the implementation is done in the Newtonian gauge in CLASS, but
the implementation in CAMB of Ref. [109] was done in the Synchronous one, with no
differences found.

In Figure , we plot the Matter Power Spectrum for different values of the
coupling parameter 5 and we compare it to the reference wCDM model. As before,
we have a suppression for intermediate scales that saturates for smaller scales.
The reason is the same as in the Dark Matter case and as analytically explained in
Section . When the interaction is efficient, we have that both velocities couple
0, ~ 04c and, since 0}, x fqc — 6y, the Baryons perturbations stop growing. That is
reflected as a suppression in the Matter Power Spectrum. Again, we have a shift in
the peak of the spectrum which no longer is only set by the equality time. The only
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Figure 4.14: Matter Power Spectrum for different values of the coupling parameter
and its ratio with respect to the reference model.

difference compared to the case where Dark Matter was the interacting pressureless
fluid is the amount of suppression. As 4,/ ~ 5, we have proportionally less
capability of suppression, which is clearly inferred if we compare both spectra for
Dark Energy-Dark Matter of Figure and for Dark Energy-Baryons of Figure

Regarding now the Cosmic Microwave Background, we again have the additional
Integrated Sachs-Wolf effect for low-/ in the TT-spectrum as shown in Figure
As before, the suppression of structures induces a time dependant gravitational
potential which happens for very late times. We also find in the cross-correlated
TE and EE-polarisation spectra the oscillations whose amplitude depends on the
value of 3, for the high-/ and only for the lensed spectra as depicted in Figures
and . The BB-polarisation spectrum also has a correction while, as shown in
Figure , as there are less structures due to the coupling the lensing spectrum
has a suppression proportional to the value of f.

One can understand the previous effects analysing the density perturbations
of Baryons, shown in the upper panel of Figure . For late times and smaller
scales, the Baryon density perturbation gets frozen in time once the interaction is
efficient. This means we no longer have creation of structures, at least those as-
sociated with Baryons. However, one noticeable difference appears compared to the
previous case. When we analysed the Dark Energy-Dark Matter interaction, the sup-
pression started at z ~ 2.5 for very small scales k = 1 hMpc~! and a = 100. Now, for
the case of Baryons and the same scales, for g = 100 we already have suppression at
z ~ 3.5. The reason for that emerges from the definition of the interaction rate I" in
each case: I'y = a7~ and I'g = (-. Although both couplings have the same normal-
isation, for a given value such that a = 5 we have I's ~ 5I',,. Therefore, one naturally
expects to modify earlier the evolution of the density perturbations in the case of
Baryons. In the lower panel of Figure , we plot the value of the og parameter
divided by its non-interacting value. We find that the larger the value of the coupling
B, the stronger the suppression of structures, as reflected in the figure. Again, this
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Figure 4.15: Cosmic Microwave Background (TT, TE) for different values of the cou-
pling parameter $ and its ratio with respect to the reference model.

result has powerful implications when dealing with the og or Sg tension explained in
Section , as this type of interactions can alleviate the tension as we will see.

Finally, we should look at how the velocity perturbation variable works. In the
upper panel of Figure , we display the relative velocity today between Dark En-
ergy and Baryons. As expected and analysed before, the interaction induces a strong
coupling between both fluids which is translated into coupled velocities. Then, as a
result, we see in the panel how the larger the value of the coupling g, the less the
relative velocity. This confirms our expectations of 6, — 64, when the interaction
becomes efficient and, consequently, the freeze of Baryons perturbations seen in
Figure , since when the coupling dominates we have ¢{ x 64, — 6, — 0. In the
lower panel of Figure , we have the evolution of the relative velocity between
both matter components, that is Baryons and Dark matter. For most of the time,
its relative velocity is small as what we are seeing is both components falling into
the potential wells at the same rate, as it should be expected from the Equivalence
Principle. However, once the interaction is efficient, the relative velocity has a quick.
This comes from the injection of pressure of Dark Energy into Baryons via a momen-
tum transfer given by the interaction, which prevents Baryons from falling into the
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Figure 4.16: Cosmic Microwave Background (EE and BB) for different values of the
coupling parameter § and its ratio with respect to the reference model.

potential wells. Even more clearly is seen in Figure . For the reference wCDM
model, we have that both matter components are equivalent today no matter which
scale we look into. If the interaction is there, the velocity of Baryons tries to couple
Dark Energy velocity, although for very small scales gravity overcomes the coupling
drag and, thus, Baryons also fall into the potential wells. As previously noticed, we
have some oscillations which we can call here partially’ Dark Acoustic Oscillations.
As before, they reflect the competition between gravity trying to cluster Baryons and
Dark Energy pressure trying to put everything apart. This is the very similar process
as in the Dark Matter case and very similar to Baryons Acoustic Oscillations, but
now the pressure is not due to Photons but due to Dark Energy.

4.2.3 MCMC results

As done in the previous case, we now want to see how data constrain the cou-
pling parameter 8 and how the other cosmological parameters are modified due
to the presence of the interaction. To do that, we apply to our modified version

"For the case of Dark Energy-Dark Matter they were Dark Acoustic Oscillations, but now one of the
coupled components is Baryons.
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Figure 4.17: Cosmic Microwave Background (¢¢) for different values of the coupling
parameter S and its ratio with respect to the reference model.

of CLASS the Bayesian statistics code MontePython [32, 33]. As already said, the
basics of Bayesian inference and MCMC techniques are explained in Appendix A. To
be consistent, we will use the same datasets as before, that is the full Planck 2018
likelihood [5, 29] with data from the high-/ and low-¢ from CMB temperature (TT),
polarisation (EE), cross-correlation of temperature and polarisation (TE) and the
CMB lensing power spectra (¢¢), the JLA survey with data from supernovae [117],
the Baryonic Acoustic Oscillations data of Refs. [118, 119, 120], the Planck_S7Z
likelihood of Planck Sunyaev-Zeldovich effect [30] and the weak lensing likelihood
CFHTLenS [121]. As parameters, we consider as cosmological parameters the follow-
ing list {Q,h%, Qqmh?, ns, As.Treio, w, 10005} and {2yeio, Ho, 03, O + as derived parameters.
We also add the nuisance parameters corresponding to the previous likelihoods and
our coupling parameter 5. We consider flat priors for all the previous parameters,
but we add a bound to the Dark Energy equation of state as w > —1, following the
stability condition derived in Section , which should also hold in this case.

As done in the case of Dark Energy-Dark Matter, we will first perform an analysis
sampling the logarithm of the parameter log;, § to set the expected order of magni-
tude.

Logarithm sampling log,, 3

In this first step, we want to establish the order of magnitude of the new parameter j,
which controls the amount of momentum transfer. To do so, we consider a flat prior
on log;, 8 over the large range log;, 8 € [-8,4]. Although the non-interacting case,
that is 8 = 0, is not properly considered, values of the coupling smaller than g < 1072
give no significant deviation from the non-interacting case. In any case, later we will
consider that case properly.

We display in Table and Figure the results obtained for the Dark Energy-
Baryons Covariantised dark Thomson-like scattering and the reference model for
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Figure 4.18: Upper panel: Dark Matter density contrast evolution for different values
of the coupling parameter £.

Lower panel: ratio between the og parameter for different values of the coupling
parameter $ and its non-interacting value.

the combination of data Planck 2018+JLA+BAO+CFHTLenS+Planck_SZ. Regarding
the constraints of the coupling parameter, we have 5 ~ O(1 — 10) given the result we
obtain is log;, 5 = 0.631“8:2?, as expected by the normalisation chosen. This indicates
we can move to a linear sampling of the parameter § to better constrain its value
and, there, we will analyse how the other parameters are modified.

Linear sampling 3

Once we have the order of magnitude, we repeat our experiment with a linear sam-
pling of the coupling parameter 5 bounded inside the range § € [—0.01, 100]. Thus,
this time we do consider the non-interacting case. The results are shown in Table
and in Figure

However, in this case we are not able to constrain the coupling parameter more than
the 1o region, as the 20 upper limit is cut by the upper bound chosen and the very
same happens for the lower limit. We did try with other bounds having no better
results as shown in Ref. [108]. This implies that the data cannot set reliable limits
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Figure 4.19: Upper panel: relative velocity between Dark Energy and Dark Matter for
different values of the coupling parameter g.

Lower panel: relative velocity between Dark Matter and Baryons for different values
of the coupling parameter £.

when the linear sampling on the parameter is used, while when we were setting just
the scale in the logarithm case we were able to fit its value inside g £ [0.63,34.67]

and even inside the 30 region g 36 [0.25,120.23]. Regarding the other parameters, we
g

find a strong shift to lower values in the og parameter. This results directly con-
nects with the og or Sg tension explained in Section as, given the two trends in
its value, a late-time mechanism which keeps the CMB unaltered but modifies the
late-time clustering perfectly matches the problem. We can connect the lowering in
the oy parameter with the results obtained in Section . There, we found that
the density perturbations of the matter fluid get frozen once the interaction is effi-
cient, something that happens for the late Universe, as shown in the upper panel of
Figure . This freezing has two consequences, the first one in the Matter Power
Spectrum where we have a suppression for small scales, as shown in Figure

The second one is directly on the og parameter, as depicted in the lower panel of
Figure . We found that the larger the amount of momentum, that is the larger
the value of 3, the lower the value of og, since that parameter precisely captures the
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Figure 4.20: Velocity perturbation variable ¢ today of Dark Energy (blue), non-
interacting Dark Matter (red) and the Baryons (black) for different values of the
coupling parameter £.

amount of clustering. We also have some small shift in the density parameters, like
a slight decrease in the Baryon density with an increase in the Dark Matter density
but they remain well inside the 20 region so not a remarkable effect.

Finally, we find a large improvement in the x? value when comparing the reference
wCDM model and our coupling. We have a Ayx? = 26 improvement which trans-
lates into AAIC' = 24 and ABIC = 17 using the information criteria explained in
Appendix A. This indicates that both criteria strongly prefer the interaction as com-
pared to the wCDM. One would wonder what happens when comparing with the
pure ACDM model. We have to take into account two factors. First, the y? of wCDM
would be better or equal than the ACDM case as introducing an extra parame-
ter, w, will always give better results than not introducing it. On the other hand,
information criteria penalise adding new parameters. Our model compared to the
ACDM has two extra parameters, w and . However, comparing to the ACDM we
have AAICxcpmp = 22 and ABICxycpm, = 8 that, although smaller evidence, we
still have the interaction preferred by the criteria.
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wCDM model Elastic Interaction log,, 5
Param. mean=to 20 lower | 20 upper meanto 20 lower | 20 upper
100,02 || 2.264700:2 2.235 2.295 2.24375:01% 2.210 2.275
Qamh? || 01163739015 | 0.1143 0.1183 || 0.1193%00013 | 0.1166 | 0.1218
N 0.972170:0042 | .9638 0.9808 || 0.9662+3:9947 | 0.9573 0.9757
10% A, 2.06370 051 1.991 2.133 2.10710 054 2.037 2.182
Treio 0.05025-0087 | 0.0322 0.0686 || 0.056750085 | 0.0391 0.0744
w —0.94870022 | _0.999 | —0.888 | —0.98170:0% | —0.999 | —0.938
100 65 1.0427000555 | 1.041 1.043 1.04275:00535 | 1.041 1.043
Zreio 7.1410-99 5.18 8.94 7.881052 6.22 9.67
Hy [ |l 67.88%550 65.70 69.98 67.6505 66.12 69.22
o8 0.79075:081, | 0.770 0.810 0.756 10013 0.733 0.779
O 0.30270015 0.281 0.323 || 0.309710 0053 | 0.2923 0.3272
logy, /3 - - - 0.637042 ~0.20 1.54

Table 4.6: In this table, we show the mean and 1o values and the 20 limits for the
cosmological and derived parameters for a wCDM model (left) and for the interacting
model using a logarithmic sampling on the coupling parameter g (right).
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Figure 4.21: In this plot, we show the two-dimensional 1o and 20 posterior of several
parameters for a wCDM model (gray) and for the interacting model using a logarith-
mic analysis on the coupling parameter S (red).
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wCDM model Elastic Interaction 3

Param. mean=to 20 lower | 20 upper meanto 20 lower | 20 upper
10002 || 2.26470512 2.235 2.295 2.237T00%2 2.205 2.267
Qamh? || 01163739015 | 0.1143 0.1183 || 0.1200%00013 | 0.1175 | 0.1226
N 0.972170:0092 | 0.9638 0.9808 || 0.96471090%2 | 0.9554 0.9737
10% A, 2.06370 051 1.991 2.133 2.11815:0% 2.045 2.194
Treio 0.05025-0087 | 0.0322 0.0686 || 0.05817590082 | 0.0411 0.0761
w —0.948%0922 1 _0.999 | —0.888 | —0.992139%4 | _0.999 | —0.961
100 65 1.0427000555 | 1.041 1.043 1.04275:00532 | 1.041 1.043

Zreio 7.1410-99 5.18 8.94 8.0510 54 6.34 9.79

Hy [ |l 67.88%550 65.70 69.98 67.661038 66.32 68.97
o8 0.7909:01L 1 0.770 0.810 0.74970:01, 0.728 0.771
O 0.30210-019 0.281 0.323 0.31170068 0.295 0.327
B - - - 26.71385, — <100

Table 4.7: In this table, we show the mean and 1o values and the 20 limits for the
cosmological and derived parameters for a wCDM model (left) and for the interacting
model using a linear sampling on the coupling parameter 5 (right).
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Figure 4.22: In this plot, we show the two-dimensional 1o and 20 posterior of several
parameters for a wCDM model (gray) and for the interacting model using a linear
sampling on the coupling parameter g (red).
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4.3 Velocity-entrainment coupling

In the previous two models, our starting point was a broken conservation law for the
individual coupled fluids, given by V”Tlgf,) # 0, where (s) is the index representing
each component. However, that was a very phenomenological approach and, there-
fore, we may think of a more systematic way of proceeding. Here, we consider an
alternative model to the standard scenario with some sort of momentum transfer,
but now from the point of view of a Lagrangian theory. Hence, from the Lagrangian
we will derive the relevant equations, as before, to describe the cosmological dynam-
ics both for the background cosmology and the linear perturbations.

We consider a general action taking into account the gravity sector in the standard
way, that is General Relativity; the matter content including Dark Energy in the
Schutz-Sorkin formalism [123, 124] and an interaction term described by, in prin-
ciple, a general action Sj,;. Then we have

M2
S = ;/d‘lx\/—gR - > /d‘*:c[\/—gp(s)(n(s)) + Il Oul(s) | + Sint

(s)=dm,de,b,r

where the first term corresponds to the General Relativity action already explained in
equation . The second term is the Schutz-Sorkin action for the different compo-
nents in the Universe, namely: Dark Matter, Dark Energy, Baryons and the radiation
part, respectively. We also have the energy density p(), the number density n () and
the current Ji), while /() are the Lagrange multipliers to ensure the particle number
conservation. They satisfy the following relations for each fluid

9urTie) Tl
Ny = 77
Jog = nV=gufy
1= gy

where v is the 4-velocity, as before.

Both, the General Relativity and the Schutz-Sorkin action, have been thoroughly
studied in the literature, then we focus on the interaction encoded in the, so far,
general action Sj,; . To begin with, we parameterise the interacting term with a gen-
eral function f of a coupling variable that we will call Z, so that the action reads
as

St = / Aoy =g f(Z) .

In the previous scenarios, we considered an interaction between Dark Energy and
Dark Matter and between Dark Energy and Baryons. But realising how the effects
and detectability were larger in the first case, as of course expected since we have
more structures due to Dark Matter than due to Baryons, here we will consider the
interaction only belonging to the Dark Sector. In any case, the following derivation
should be similar with Baryons instead of Dark Matter. Once settled the interacting
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fluids, we want to build the scalar variable Z such that it encodes an interaction
that carries momentum interchange in the Dark Sector. Although we can build in
principle any order quantity, we will remain at lowest order and, thus, the following
quantity emerges

_ © v
Z = Guw Uy Uge

where /| , u}, are the 4-velocity of Dark Matter and Dark Energy respectively. The
reason for this choice can be understood as follows. If one considers the Universe
is homogeneous and isotropic at least for large scales, all fluids should have the
same rest-frame and then u!' ~ uy . This implies the coupling quantity Z satisfies
equation no matter we are considering different fluids as all have the same
rest-frame. This translates into /' ~ ug‘ and, thus, Z — —1 which keeps the dynamics
unaltered for the background cosmology as we will see. Although we will derive this
in detail, we are just following the same philosophy as in the Covariantised dark
Thomson-like scattering. As before, no background quantity will be affected and
when we consider perturbations where v}’ ~ ) does not hold anymore we will have
different dynamics related to the momentum exchange, as exactly happened before.
For the convenience of the following calculations we can rewrite the coupling variable
Z in terms of the currents Ji,) and the number densities n,, so it reads as

Tl
g NdmNde

Now that we have the full action, we want to compute the equations of motion.
Varying it with respect to the Lagrange multipliers we have

oL

ol ~
oL
IR S

and then we obtain the conservation rule for the currents of each fluid as the equa-
tions of motion are simply

Ho_
ully =0,

which is an expected result as we do not want any non-conserved currents in our
description. Moreover, we can also vary with respect to the currents having

oL _ 0
0 8UJ(‘;) -
oL Ip(s) Ongs) of 0z
a7 = Ol +vV—y +V-957 :
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Using the previous relations we can compute each of the previous terms as

e I
(9J(lg) g TL(S)
07 1 (Jaep ., ZJampu
IO + J
0J 5 Ndm g \ Nde Mdm
8Z —1 Jdm w ZJde 1%
o * ‘
de Nde § \ Ndm Nde

Combining the previous equations and using that J(*; ) = )V =9 ué ) as depicted in
equation , we have

hlam = %udmu+rﬁl(udeu+zudmu)a
Oubie = 5 aep+ 22 (tamy + Ztaes)
Ouly, = gﬁubw
Oty = gf;uw,

where we shorten the notation by defining f; = g—é. These relations allow us to
rewrite the Lagrange multipliers in terms of the energy and number density, the
coupling and the velocity.

Background dynamics

We have now set the general action describing this model and then the next step
corresponds to compute the field equations for the cosmology described. We will start
by computing the background field equations which, in our case, will be composed
of three different parts: General Relativity, Schutz-Sorkin matter description and
the interacting term. In the case of the gravity part, its action will give the standard

result as
2 dLar _

0\/—g 1
2 — _~./=
T—ig Sgh =M G where Sg 2\/ 9 Guv -

For the matter field part and the new interacting term £,, + Li,; we have

2 (Lt Lin) (s) in
V=g g (S)=dmz,de,b,r () + 73

where the stress-energy tensor for the standard part is just described by

T8 = (p(s) + P(s)) Us sy + P(s) Gy -

Thus, we penned all the new terms in the corresponding stress-energy tensor T/ij;t,
which reads as
. Z
Tl‘ﬁ} = guwfZ)+f(2)z ugm ud® + 3 (ugm ud™ 4 uie ud®) |,
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where we have used that

0z dm , de Z dm dm de , de
5guv_uﬂ u,,—i—;(uu + Uy, Uy, )

Finally, the gravitational equations of motion read as

M2 G = > TS +Ti.
(s)=dm,de,b,r

Consequently, we are introducing new terms to the field equations proportional both
to f(Z) and to f(Z) z, which no longer preserve the background untouched. However,
we will see later how those new terms can be absorbed by a redefinition of the Dark
Energy sector when we assume the Universe is both homogeneous and isotropic.

We can further simplify our equations since for the background cosmology, where
isotropy and homogeneity are preserved, we have that all fluids share the same rest-
frame. This translates into having

0 _ 3
J(s) = n(s)a )
The conservation rule obtained before in equation for the currents of each

fluid simply translates into
J(OS) = n(s)a3 = constant = N(S) ,

which is nothing but the conservation of the number particle of each fluid. As it
is more convenient to speak about the energy density, we can expand the previous
conservation equation as follows

0 J(S) On (n(s) V=9 uéls)) — vy ul{S) Iun(s) + 1) V=g V' =

where we used in the last equality that V,u® = %8 (y/gu®). Introducing the relations

to energy density and pressure density as gzs ()6 N(s) = u( ) Oups) and as p) =
n() SZE ' — p(s), we rewrite it as

Ulé) Oup(sy + (Pes) + Ds)) Vuu’é) =0,

which in our case simply reduces to the standard conservation equation for each
fluid

Po) +3H (ps) +p) = 0.
Although here we have formally the same expression as in the standard case, the
Einstein Field Equations have new terms as we have seen before. Thus, we are
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unavoidably modifying the background cosmology as now we have

2 772
3]\Jpl'[{ = Z P(s) — I
(s)=dm,de,b,r
MSI (2H + 3H2> = - Z Pi) — f )
(s)=dm,de,b,r
where we should remark that no f(Z) ; terms appear from equation as for the
background with Z = —1 all fluids are comoving at the background level. This implies

that the modifications in the Field Equations are only proportional to the general
function f(Z), which now is constant, for the background cosmology. Therefore, we
can reabsorb it by the following redefinition of the Dark Energy density and pressure
as a term acting like a cosmological constant since

ﬁde = pde_fa
Pde = DPdet [ -

which represents nothing but a shift in the value of the cosmological constant
and, therefore, it will not alter the conservation rule previously obtained in equa-
tion , but now for pjge.

Perturbations dynamics: general description

Now the background cosmology is described, we turn our attention to the pertur-
bation sector. Due to the complexity required by the following calculations to obtain
the equations governing the perturbations, the software of symbolic computations
Maple [125] was required.

As we have seen with the background, provided Z = —1 we have no deviation
from the standard scenario. This continues with the philosophy of the momentum
transfer models where no background deviations appear due to the interaction. Also
for the perturbation part, pure momentum transfer manifests explicitly only by a
modification on the Euler equation that is proportional to the relative velocity of the
interacting fluids. Here, we want to preserve those properties.

For the convenience of the following, we consider a FLRW perturbed metric without
choosing a particular gauge of the form

ds® = —(1 + 2a) dt* + 20;x dtdz’ + a*(t) [(1 + 2¢)ij + 20,0, F] da'da? |

and, in principle, we will work with a general function f(Z) to remain as general as
possible. We can define the perturbations for the previous variables in the following
way:

1 ik -
J(l;) = (./\/(S)—i-(SJ(S), aQ(t)d 8k5j(s)> ,
N = Ns) +0ng)
Pis) = Ps) T 0Ps)

f(2) = f+of=[f+[z0Z,
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where we have denoted with a bar the background quantities although we will sim-
plify the notation in the next steps. With the definition of n, in equation and
the relation of equation , we have now that the perturbations in the number
and energy density, in the velocity and in the perturbation variable Z are

S = N | _Ore 90 (3¢ +0°E)
° a® | ps) tPe) P TP

. 2
_ (%) ¥ Nig0n)” _ SCHPE)EC- B |

2N e
p S +p S
S = " [0 — Ny (3¢ + 2°B)]
(s)
i
uu(s) = (—1 -, —82'1)(5)) where U(S) = _/\‘Z‘((:; - X,
1 2
0Z = _ﬁ (aivde - 8ivde) .

Now that we have all the physical variables expanded, we only need to do the same

with the Lagrangian multipliers defined in equations -(4 . As we have that
for the background cosmology where all fluids are comoving /(s = —gz Ei , we rewrite

the multipliers as

lim = — t ZZZII: di — gfbjz Vdm 7,];“1 (Vde — Vdm)
loge = — gfbjz dt — gzzz Ude — f’Ze (Vam — Vde)
b, = — gﬁdf - gzz b
RN L

With the previous relations expanded for the perturbations we can write a perturbed
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up to quadratic order action, which as before we will decompose as follows:

M2 . .
Lar = % {2{3&}1(2{ +3H() — 2HO*x — 20°C}a — 3a*(2¢* + 3H?a?)
+ 2000 4+ 3H*(Dix)? + 4662x]
+ M2 [25 Y 2H (3¢ — a)} 0%E

a®M? .
+ 2 (20 +3H2) [3C + 0°E(2 — 20— 0°B)] |
2

¢ S
Ly = N d%:de ) ra3 [(@(s) — 3H (v — @)dp(s) — T <+) ™ 3p(s)
_ PO TPE) )2: Pes) Div(s) (8 V() + 2(9@)() /2);5) (Dix)* + %oﬂ
+ p(;) (¢ + O2E) (3¢ — 0°E)
+ Lo +pe)) (610 — 3HS 0 ) — pa} (3¢ +02E )}
Ling = ga [(0ix)? + a* {2(3¢ + O*E)a — o® + (¢ + 0*E) (3¢ — 9°E) }] +
L 8pde 8pdm
— a3 f 4 [Pde — Tam + 3H(Vde — Vam)] <pde ’fpde - pdm’f:pdm) .

fz
2

a (81 Vde

— 9;Vdm)”

Varying the action with respect to a, x, v), F and ¢ we can obtain the following

equations

6H M (Ha — g’) + 2‘2?1 (32< + H9?*x — a2H82E)

+ Z dpe) =0,

(s)=dm,de,b,r

oM (Ha=C) = 30 (o +pe) v =0
(s)=dm,de,b,r

Op) + 3H (1+ ¢y ) pis) +3 (pio) +p9) €

1 .
=5 (09 +p) (v + 9*x — @0 =0,

(4 3HC — Hi— (3H2—|—H)a

1 .
gz 2 (P tre) (3H o)Vee) v(s>) =0,

pl (s)=dm,de,b,r

a+C+X+Hx—a2<E+3HE>:O,

which remain unaltered due to the interaction. As in the previous scenarios studied,
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the only modification will appear in the Euler equations that now read as

2 6pdm
dm Pdm + Pdm
fz
Pdm + Pdm

2 5pde

de Pde 1+ Pde

s
Pde + Pde

: 2 > 0py

Up — 3Hcpvp — a0 — cbpb o

2 O0pr

' pr+ Dr B

Dam — SHCS Vam — @ —
[@de — Udgm + 3H (Ude - Udm)] =0,
. 2

Ude — SH 3 Vde — ¢ — ¢

wde — Uqm + 3H (Ude - Udm)] =0,

z)r—SHc?vr—a—c

From the previous equations, we can infer that the same formal structure that with
the Covariantised dark Thomson-like scattering appears. All the formal structures
remain unaltered except the Euler equations, which for the interacting fluids have
a new term depending on the relative velocity and acceleration between both fluids.
However, now the interacting term in Euler equations does depend on the relative
acceleration between fluids, something that in the Thomson-like scattering was not
happening. We will see later how this will be translated into a momentum transfer
as before.

However, the previous equations are not invariant under gauge transformations.
For example, under the coordinate transformation defined by t — t + ¢ and #° —
z' + 699;¢. To do that, following the definitions of Ref. [126], we have the following
gauge-invariant variables

vy = a+ % (X — aQE) ,
o — —g—H<X—a2E) :
OpsN = 0p@s) + Ps) (X - a2E) :
VN = U)X — a’E ,

which lead to the final result we were searching for. A general gauge invariant set of
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equations governing the perturbations dynamics for our interacting model as

2 (a 2k°
6H M2, (<I> + H\I/) +ISMAO Y Spn =0,
(s)=dm,de,b,r
2M3 (& + HE) = 37 (p + ) v =0
(s)=dm,de,b,r
. . k2
dpeN +3H (1 + Cé)) Sps)N — 3(p(s) + Ps)) P + o (ps) +ps)) VN =0,

. ) ) ) 1
b+ 3HO + H + (312 + ) W + e > (e +pe) (BHE veN — i)
P! (s)=dm,de,b,r

g 2
VdmN — SHCdmvdmN — \I/

(Pae + Pac) [, 0pamn + 3H fz{(1 + 2 )vamn — (1 + c3.)vaen}] — f.2(c3,,0PdmN + €3.0pdeN)

(Pdm + Pdm)(Pde + Pae) — f.z(Pdm + Pdm + Pde + Pde)
=0,

. 2
UdeN — 3H cgoVden — ¥

(Pam + Pam)[C3e0pden + 3H f z{(1 + 3, )vaen — (1 + c3,)vamn}] — f2(c3,,0pdmN + 30pdeN)

(pdm + pdm)(pde + pde) - f,Z(pdm + Pdm + Pde + pde)
=0 ,

‘
Pb + Pb
2
@rN—?)Hc?er—\I/— ~—dpn =0,
Pr + Dr

tpN — 3Hcgvpn — ¥ — dppn =0,

U=2a0.

With the previous set of equations we have fully characterised the dynamics for
the general action of equation , both for the background dynamics and the
perturbations sector. Now we will focus on a particular case that continues with
the philosophy of the interaction studied across this document. But other cases for
different functions f(Z) can be derived following the previous equations at will.

Perturbations dynamics: particular example

In the previous derivation we considered a general function f(Z), which is a gen-
eral interaction that is dependant on the previous variable Z. However, we already
commented about the particular case satisfying f (Z = —1) = 0. This is nothing more
than a standard background keeper interaction, as we want in this PhD dissertation.
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For the perturbation sector, this implies a new parameter defined as

b= (fz) ;

Z=—1

which is a constant parameter capturing all the previous family of functions. For the
energy content, we will consider a departure from the standard scenario. In the case
of Dark Matter, however, we will follow the standard definition, that is

pdm(ndm) = Mdm Ndm ,
Wdm = 0 P
Cﬁm = 0,
Pdm = 0 )
where mq, is a constant. But for the Dark Energy sector we will consider it is

made up of a Cosmological Constant part plus a time dependant component. Con-
sequently, we can parameterise it as

1+4c2
pde(nae) = pa <1+?”0nde S) ;
1 2
1-— cg 70 ndjcs
Wde = ————F, 35 >
1+ 1+4cg
’r‘onde
2 2
Cde = G5
2 1+c2
pie = —pn (1= Eronti)

where g and ¢ are positive constants corresponding to the fraction of the extra dark
component to the Dark Energy sector and to the propagation speed squared of the
whole Dark Energy sector, respectively. Considering the evolution of the equation of
state of the new Dark Sector, given Dark Energy number density n4. should satisfy
the conservation of particle number N = n) a?, we need ng, < a~3. Then, the equa-
tion of state will evolve from wq, = ¢2 to a Cosmological Constant behaviour, that is

wge = —1, at late times. Consequently, we have to specify the value of the propagation
speed. Regarding a potential effect on the H, tension~ explained in Section , we
will choose
2 _ 2 1
Cde = CS = g .

With that choice, the previous equations are rewritten as

pie = pa(l+ra™?),
ro

Pde = _PA<1_§G 4),
1—ra*/3
w = _—
de 1+ra* "’

8The oy tension is already addressed by the momentum transfer directed by the new parameter b.
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where r = roniég and ngeo is the current Dark Energy number density. Then, the
parameter r accounts for the ratio of abundances between the extra component and
the cosmological constant part, thus 24, = rQ2,. It is clear from equation that
the Dark Energy sector is composed by the standard Cosmological Constant given by
pa and by a "Dark Radiation" given its time dependence « a~*. In principle any choice
of the propagation speed ¢, is acceptable. But with ours, and a reasonable amount
of extra Dark Radiation Q4,, we are adding an extra early radiation to the Universe
which, as known, tends to alleviate the H tension since it reduces the sound horizon
at recombination implying a larger value of the Hubble constant to keep unaltered
the position of the acoustic peaks of the Cosmic Microwave Background. This choice
was one of the reasons to study in the Covariantised dark Thomson-scattering the
case with free N.g, as the idea is to have an extra radiation in the early Universe
alleviating the H, tension without worsening the og tension, which is addressed in
both cases by the momentum transfer.

Now for the perturbation equations we have

ydmN = 39— QdmN ,

Shen = —3H (i — wde) daen + 3(1 + wae) " — (1 + wae)faen

Oy = —HOamn + K20

3H(1 + wae) pde [BamnN — (1 + ¢34 )0den] — k*€3pacdaen
(1 + wde)pde(Pdm — b) — bpdm

Ohen = H(3cA. — 1)baen + k@

Pdm [kQC?iepdeédeN + 3HbH{(1 + Cge)edeN — amn}] — kzbcﬁepdeCSdeN

(1 + wde) pde(Pdm — b) — bpdm

+b

)

_l’_

)

which are written in the same form as the previous models so we can implement
them into our numerical codes.

Once we have derived the equations controlling the dynamics in this case, we can
proceed with the numerical analyses. For that, we will resort to numerical codes as
we have already done in previous sections.

4.3.1 Linear effects

Once we have developed the theoretical description for the background and the per-
turbations, we should focus our attention on the effects of the interaction in ob-
servables. To do so, a numerical code was required as before. A modified version of
the Boltzmann solver code CLASS [113, 114] was created, although it was unable to
reproduce faithfully this model or suitably accommodate our modified version of the
Dark Sector’, since the analytical solutions previously found gave different results.
However, a modified and correctly working version of CAMB [116] was developed by

9Although it is still not clear where the problem came from, it had some relation with having a
Dark Energy related component being significant for the early Universe. It was also spotted a bug in
the initial conditions module in the version of CLASS in use that, however, was already solved in the
posterior version v2.9.

110



4.3. VELOCITY-ENTRAINMENT COUPLING

o 10% i E
e F . e
S 1035 E
8 _ - —— ACDM E
z 10% b=0, Qg =105
< 10— p=-1,04=10"5 3
% 10% — b= -10,04=10"° .
10—1; b= —-100, Q4 =107> 7;
S (.0 ——— A
Q
2 -0.5-
5_107 | | | Lol | L
1074 1073 1072 101 100
k (h/Mpc)
" 104;7 T T \\\\‘ T T T 1 T T \\\;
S s :
g 0% _— E
o} 102:,_ NACDM ]
s W Qu=0,b=~1
2 10'%F — 04 =10, b= -1 <
& 10% — Qu=1075b= -1 .
10—1; er=10_4,b= -1 é
T 0.0F—————— — ==t ===k
2 0.5+ -
S .
5_107 | | | Lol | ]
1074 1073 1072 101 100
k (h/Mpc)

Figure 4.23: Matter Power Spectrum for several values of the coupling parameter
b (top) and the extra Dark Radiation (24, (bottom) and its ratio with respect to the
reference model.

a collaborator in our group, Florencia Anabella Teppa Pannia. In that code, the new
terms in the Euler equations alongside with the extra Dark Radiation were included.
The outcomes of the code were tested against analytical solutions confirming the
validity of this code.

For our analyses, we choose the cosmological parameters to be Hy = 67.4 Km/s/Mpc,
Qph? = 0.0224, Qgmh? = 0.120, Treio = 0.054, Ag = 2.1 107? and ns = 0.965, which repre-
sent the same cosmology as before. Any other parameter is set to the default value
of the code. This time our reference model is a truly ACDM instead of a wCDM as be-
fore, since now we have no incompatibility with our model provided the Dark Energy
sector does behave as a Cosmological Constant for late times. Given now we have two
parameters, the momentum transfer parameter b and the amount of Dark Radiation
Qq4r, we will study separately how each one modifies the different observables. Fi-
nally, we normalise b as we have done before, so we will work with the adimensional

parameter as follows
b
b— —.
Per

Regarding the Matter Power Spectrum shown in Figure both for different
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Figure 4.24: Cosmic Microwave Background (TT) for several values of the coupling
parameter b (top) and the extra Dark Radiation 24, (bottom) and its ratio with respect
to the reference model.

values of the coupling parameter b and amount of Dark Radiation 4,, we see how
the interaction suppresses structures mainly for small scales. Specifically, the pa-
rameter b controls the amount of suppression, being larger for larger |b|, while the
amount of Dark Radiation 4, sets the largest scale suppressed. We also have a shift
in the peak of the Power Spectrum, but in this case it is an expected result. Now we
are modifying the amount of radiation by adding an extra dark one 4, which pre-
cisely modifies the matter-radiation equality time, something that did not happen in
the previous two models. The role of b is the same as in the previous cases with « or
B. It encodes the amount of momentum transfer and, consequently, it controls the
amount of suppression. Again, we see three different regimes. For very large scales,
where both fluids share the same rest-frame, nothing happens while for smaller
scales, where peculiar velocities emerge, the coupling induces a k-dependant sup-
pression until it saturates for very small scales.

In the case of the Cosmic Microwave Background, we display it for the temper-
ature and polarisations in Figures , , and . In each figure we
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Figure 4.25: Cosmic Microwave Background (TE) for several values of the coupling
parameter b (top) and the extra Dark Radiation 24, (bottom) and its ratio with respect
to the reference model.

have the temperature, cross-correlation between temperature and E-polarisation,
E-polarisation and B-polarisation spectrum, respectively. We clearly see how only
small scales are modified, as expected by the nature of the interaction. The main
modification emerges from the extra Dark Radiation represented by (4,, shifting and
changing the amplitude of the peaks, as one would expect. We are changing the bal-
ance of components by adding an extra radiation that is non-negligible in the early
Universe, that is by the time of recombination when, precisely, CMB was emitted.
Also, there is a certain modulation of the amplitude of the CMB peaks by the mo-
mentum transfer parameter b, which as before it reflects the erasure of structures
due to the momentum interchange.

In Figure , we show the ratio between the value of the parameter og and the
ACDM value for different values of the coupling parameter b in three different cases
with extra Dark Radiation, namely 4, = 1074, 107° and 10~°. The larger the absolute
value of b, the lower its value as we are suppressing more structures as seen before
in the Matter Power Spectrum. On the other hand, also having more Dark Radiation
implies less structures as expected.
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Figure 4.26: Cosmic Microwave Background (EE) for several values of the coupling
parameter b (top) and the extra Dark Radiation 24, (bottom) and its ratio with respect
to the reference model.

At the moment, we have analysed the potential effects of the interaction studied
here and the addition of extra Dark Radiation. We did it for several values of the
parameters involved in this model, the one controlling the momentum transfer b and
the other the amount of extra Dark Radiation 4,. Hence, now it is the moment to
set the allowed values for b and 24, according to available data. For this task, we will
resort to MCMC codes as we did before with the other models studied.

4.3.2 MCMC results

Until now, we have analysed the modifications due to the interaction and its im-
prints in different observables. However, we have no information about the value of
the model parameter b and 24,. Therefore, here we will perform Bayesian statistical
analyses using the Markov-Chain Monte-Carlo code CosmoMC [128, 129] to the mod-
ified version of CAMB previously created. The data will correspond to the full Planck
2018 likelihood [5, 29] compiling data from the high-¢ and low-¢ from Cosmic Mi-

114



4.3. VELOCITY-ENTRAINMENT COUPLING

_0.10F S _
¥ 0.08
- 0.06"
0.04
0.02

0.00
0.00

2

BB

C

LL+1)
2n

|
o
8]

ACPBICRE
|
=
o

__0.10
% 0.08
8. 0.06
. 0.04
0.021
0.00-

2

C

2(£+1)

oo
ops

|1
oo
pH

ACPBICRE,,,

Figure 4.27: Cosmic Microwave Background (BB) for several values of the coupling
parameter b (top) and the extra Dark Radiation 24, (bottom) and its ratio with respect
to the reference model.

crowave Background (CMB) temperature (TT), polarisation (EE), cross-correlation of
temperature and polarisation (TE) and the CMB lensing power spectra, the Pantheon
survey with data from supernovae [6], the Baryonic Acoustic Oscillation (BAO) data
of Refs. [2, 119, 120] and the Planck_sSz likelihood of Planck Sunyaev-Zeldovich
effect [30]. We consider the following list {10092,h2, Qqmh?, ns, 10° Ag.Treio, Wae, 10005} as
cosmological parameters and {zeio, Ho, 03, 2} as derived parameters. Moreover, we
add the nuisance parameters corresponding to the likelihoods used in each case
and our model parameters b and Q4,. We set flat priors for all the parameters with
bounds in the model ones given by log;, |b| € [~4,0] and Qpg € [1078,1077].

The results obtained for the different combinations of datasets are shown in Ta-
ble and Figure . When no Sunyaev-Zeldovich data are applied we cannot
constrain the coupling parameter b, while we do observe that larger values of the
Hubble constant Hy are now allowed compared to the standard ACDM model. The
reason for that is the presence of extra radiation, in this case a dark one, encoded
in the variable q4,. From the Figure , we infer that the larger the value of Qg,,
the larger the parameter Hj, getting closer to the local Universe measurements and,
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Figure 4.28: Ratio between the parameter og for different values of the coupling
parameter b and the extra Dark Radiation {24, and its non-interacting value.

thus, alleviating the H, tension explained in Section . In the case of o5 and with-
out Planck_Sz data, its central value closely follows the early Universe measure-
ments although we do have an enlargement of the lower limit allowed, therefore
alleviating the og or Sg tension at a certain extent.

Once we add the local Universe P1anck_Sz data the picture completely changes. Now
we do have a detection of the coupling parameter b around values of [b| ~ O(1071).
A proper analysis would require using b instead of log;, |b|, but we did not find the
data were precise enough to be used in that scenario. In any case, this is a very sim-
ilar scenario to the one with the dark Covariantised Thomson-like scattering where
firstly the logarithm samplings served us to set the order of magnitude and later, only
if data allowed us, the linear samplings set the precise value. Because of that, we
can conclude here that the interaction is preferred by data compared to the standard
scenario, something also strongly suggested by the AIC criteria shown in Table

In any case, future surveys will be crucial to precisely establish its constraints, al-
lowing us to perform the appropriate linear sampling on the coupling parameter b.
Regarding the other parameters, we see that the value of o5 is now lowered as already
expected by previous examples and as one can infer from figure . Therefore, the
og or Sg tension is alleviated when the interaction is on, since this interaction pro-
vokes a momentum transfer that erases structures in the late Universe. As before,
the Hj tension is also alleviated as the extra Dark Radiation induces larger values of
the Hubble parameter. There is a remarkable result here. It is a known result that
when alleviating one of the tension the other tends to increase, but here and thanks
to the combination of extra radiation in the early Universe and a late-time erasing
mechanism, we avoid such behaviour. Consequently, both tensions can be alleviated
to some extent although not simultaneously, since the region in the og-H, plot where
both would is not allowed at the 20 level.
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Figure 4.29: In this plot, we show the two-dimensional 1o and 20 posterior of several
parameters for the interacting model using different datasets, namely Planck 2018
and BAO data (green), Planck 2018, BAO and Pantheon data (blue), Planck 2018,
BAO and Planck_S7z data (yellow) and all the previous datasets (purple). This figure
was obtained using the code GetDist [127].
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ACDM P18+BAO P18+BAO+Pantheon | P18+BAO+S7Z All

Ho s || 67625075705 67.677041 081 68587030 070 | 68-587035 0,75
os || 0811EGERET0 | 08115000 0013 | 0.795X0:003 0010 | 0-79525.005 0010
Q|| 031240006 0017 | 0311 006 toon1 | 0-29970505 000 | 0-29926:605 50609
G e e e 1ne O e o e e
bCDM P18+BAO P18+BAO+Pantheon P18+BAO+SZ All

Ho e || 68.7059 955563 68.7977 93163 68.095057 150 | 68.1470587 15
o || OSWIREGHS | 0m0YG | 0msTRARE | oras it
N I e 1 A e 0 e
Sy || 0822000110038 | 082170010 0031 | 0.7705010 0030 | 0-770% 561070050

er .10-6 < 2‘O+0.6+2.6 < 2‘1—0—0.54-2‘7 < 1‘0—&-0.14—2.3 < 0'9+0.1+2.3
logyo o] || < —3.1703+11 < —3.1103+11 ~1.370370 % ~1.370970%
Ax? -2 -3 16 15

AAIC —6 -7 12 11

Table 4.8: In this table, we show the mean, the 1o values and the 2¢ limits of certain
parameters for the interacting model using different datasets as labelled.
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4.4 Discussion and final comments on momentum
transfer interactions

In this chapter, we have studied three different cosmological models which share a
common property: the presence of a pure momentum transfer between one of the
matter components and the Dark Energy sector. The momentum transfer models
studied were characterised by an interaction between the coupled fluids that was
mainly proportional to their relative velocity. In particular, we considered the follow-
ing three different scenarios:

¢ Covariantised dark Thomson-like scattering between Dark Energy and Dark
Matter.

¢ Covariantised dark Thomson-like scattering between Dark Energy and Baryons.

* Velocity-entrainment coupling between a modified Dark Energy sector and Dark
Matter.

In all the previous scenarios, we have first presented and motivated the model
under consideration to later perform an analytical derivation. After that, we made
use of the linear Boltzmann solver codes CLASS and/or CAMB to further expand our
knowledge of the models. To that end, we had to first modify the codes to add the
new terms required. Once that was done, we have comprehensively studied the ef-
fects of each model in different observables. The general conclusion we obtained was
that this kind of models tend to erase structures and, hence, reduce the clustering.
Combining the analytical and numerical investigations performed, we know that the
general mechanism of these models acts as follows. First, the interaction in each
case is non-efficient for early times. When it does become efficient, at late times, the
pressurefull interacting fluid couples the other pressureless partner, which previ-
ously to that moment was falling into the potential wells due to gravity. The pressure
of the pressurefull fluid counteracts the gravitational force acting in the pressureless
fluid which was provoking its clustering. This results in a substantial pure momen-
tum exchange from the pressurefull fluid to the pressureless one. Consequently, the
second fluid is no longer falling into the potential wells and, thus, the density pertur-
bations stop growing. The final result is a reduced clustering rate which translates
into less structures in the Cosmos.

The previous mechanism was proposed as a way to alleviate the well-known og
or Sg tension. As already explained in the first chapters of this PhD dissertation, the
tension appears between early measurements, which have to be extrapolated until
today, and the local/late Universe measurements. Therefore, having an interaction
that erases structures would naturally accommodate both measurements to a com-
patible value of og/Ss. Precisely, the previous mechanism acts in that way. For the
considered scenarios, the interactions become efficient in the very late Universe and,
as explained, they act reducing the clustering, that is, erasing structures. Moreover,
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we also tried to address the other well-known tension, the H; tension. In this re-
spect, we introduced extra radiation in our cosmologies, as a free N.g parameter in
the case of the Covariantised dark Thomson-like scattering and as an extra Dark
Radiation making up the Dark Energy sector for the velocity-entrainment model. It
is a well-known discouraging fact that when one tries to alleviate one of the previous
tensions the other gets worse.

In our MCMC analyses, we first demonstrated that those previous models con-
sidered tend to ease only one tension at a time as the sweet spot in the Hy — o3
plane where both tensions would be simultaneously alleviated was outside the 20
region. However, a remarkable accomplishment was achieved: the typical property
of worsening one of them while alleviating the other tension is not present here
anymore. Apart from H, or og, the other cosmological parameters remained virtu-
ally unchanged. However, the case of the coupling parameters constraints is note-
worthy. When we used data from CMB, BAO and Supernovae Ia, only an upper
bound was given by the data to «, § or b in each case. In contrast, when we also
added the Sunyaev-Zeldovich cluster counts data from Planck experiment, in an
oversimplified Gaussian likelihood, the situation dramatically changes. In the first
model, the Covariantised dark Thomson-like scattering between Dark Energy and
Dark Matter, we did find a more than 30 evidence for the interaction being detected
by data. Moreover, the information criteria used also claimed for a strong support
of such a detection. In the second scenario presented, the same coupling as before
but with Baryons, the results were similar although less constrained due to the fact
there are less Baryons to interact with. Similar results were inferred from the third
scenario, the velocity-entrainment coupling, as the interacting parameter was only
constrained when we added the Sunyaev-Zeldovich data. Indeed, this prominent re-
lation between momentum transfer models and local Universe data, like the case of
Sunyaev-Zeldovich one, has been found in several research works in the last years,
with different models but all of them sharing the presence of momentum exchange
like in Refs. [95, 103, 108, 130]. These results, in combination with ours, invoke for
more investigation to be performed related to pure momentum transfer models.

To summarise, we have studied three different scenarios theoretically and nu-
merically, and later we have tested them with latest available data, where a momen-
tum transfer interaction happens. We have proven how those momentum exchanges
provoke a reduction of the clustering, having as a result the alleviation of the og ten-
sion without worsening the Hj, tension as a side effect. Finally, we have shown the
remarkable relation between those models and the local Universe data on og/Ss pa-
rameter, no matter the specificities of each model, leading to a significant detection
of this kind of interactions.
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CHAPTER

FORECASTS WITH PURE MOMENTUM TRANSFER INTERACTIONS

71N the previous chapter, we studied different alternatives to the standard
ACDM model which can describe in more appealing ways our Cosmos and
can reveal the nature or some novel properties of the unknown Dark Sector
of the Universe, that is the majority of our current cosmic pie. The motivations were
varied, but the ultimate step was always to see what data could tell us about those
models, if they were preferred or not. Until now, the main tool when constraining
the cosmological, or our model, parameters has been the Cosmic Microwave Back-
ground. With the Planck experiment [5], most of the standard model parameters
were fitted with uncertainties below the 1% level, a precision never reached before.
But each pro has it cons, and with such high precision the cosmological tensions
emerged, as explained in Section

Contemporaneously to this thesis and in the future, several experiments are
planned or already on-going which will shed light on the dynamics and the content
of the Cosmos. With those surveys, we expect to go below the 1% level of precision in
the measurement of the cosmological parameters and, even more importantly, clar-
ify those tensions and problems that we already spoke about in Chapter 5. There
are plenty of different techniques in those upcoming experiments, but we will start
with the galaxy surveys, which study the galaxy distribution. We can classify the
galaxy surveys in two types depending on the technique used. Spectroscopic sur-
veys rely on the decomposition in wavelengths of the light emitted by an object, then
getting its intensity in the different wavelengths, that is a spectrum. As advantage
they are able to obtain the spectroscopic redshift with very accurate precision. As
downside, they obtain no lensing information as they are insensitive to the shape of
the objects observed. Examples of this type are the Baryon Oscillation Spectroscopic
Survey (BOSS) [131] and Dark Energy Spectroscopic Instrument (DESI) [132]. On the
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other hand, photometric experiments base their utility on passing the emitted light
through filters getting the intensity of the wavelength allowed by the filters used.
They have the advantage of detecting a larger amount of objects due to the filter
system carrying also shape information but, on the other hand, they are less sensi-
tive to the redshift. As examples, we have the Dark Energy Survey (DES) [133] and
the Large Synoptic Survey Telescope (LSST) [134]. There is a third alternative called
spectro-photometric surveys which operate with a combination of broad, medium
and narrow band filters to have photometry in several wavelength. Then, they are
able to produce a pseudo-spectrum and, at the same time, having larger samples
and shape information. Experiments with this technique are the Physics of the Ac-
celerating Universe survey (PAU) [135], the Javalambre Photometric Local Universe
Survey (J-PLUS) [136] and the Javalambre Physics of the Accelerating Universe As-
trophysical Survey (J-PAS) [137]. On the other side we have the radiotelescopes.
Instead of mapping the Universe distribution of matter by its emission in the optic
or in the infrared, they search for radio sources. With the detected radio emitters,
they reconstruct the matter distribution in the same way as galaxy surveys do. As
an example we have the Square Kilometre Array experiment (SKA) [138].

The goal of this chapter is to perform forecast analyses for future surveys. This
means, we will simulate with how much precision a future survey is able to con-
strain certain parameters, analysing how the configuration of the survey will affect,
how different surveys behave, which signals are more important and/or how neglect-
ing certain contributions to the modelling of the observable will change the results.
In a forecast, a certain fiducial cosmology needs to be assumed. In our case, we
will use the Covariantised dark Thomson-like scattering for the case of Dark Energy
and Dark Matter interaction. This particular model constitutes a general proxy for
studying the pure momentum transfer, as we have seen in previous Chapter 4 and in
the literature, since very different models lead to the same conclusions when data is
confronted with them. Moreover, its simplicity and similarity to the standard model
make it the ideal candidate to test as alternative, since we can use most of the work
already done and, at the same time, test a departure from the standard scenario.
In particular, we have three different general analyses: galaxy surveys (clustering
and lensing), dipole of the power spectrum and cluster counts. In each analysis, a
certain survey will be the reference one.

This chapter is partially based on the following published papers:

¢ Title: J-PAS: Forecasts for Dark Matter - Dark Energy elastic couplings.
Authors: David Figueruelo et al.
DOI: 10.1088/1475-7516/2021/07 /022
Published in: Journal of Cosmology and Astroparticle 07 (2021), 022 [109].
e-Print: 2103.01571 [astro-ph.CO]

124



e Title: Momentum transfer in the Dark Sector and lensing convergence in up-
coming galaxy surveys.
Authors: Wilmar Cardona and David Figueruelo.
DOI: 10.1088/1475-7516/2022/12/010
Published in: Journal of Cosmology and Astroparticle 12 (2022), 010 [139].
e-Print: 2209.12583 [astro-ph.CO]

And partially based on the following pre-print:

¢ Title: A smoking gun from the power spectrum dipole for elastic interactions
in the Dark Sector.
Authors: Jose Beltran Jiménez, Enea Di Dio and David Figueruelo.
e-Print: 2212.08617 [astro-ph.CO] [140].
Sent to: Journal of Cosmology and Astroparticle.
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5.1 Galaxy survey and J-PAS

The first forecast analysis is devoted to clustering and lensing observations in the
context of the J-PAS survey [137], since we are part of its working group of Theo-
retical Cosmology and Fundamental Physics. J-PAS is a spectro-photometric survey
installed in Pico del Buitre in the Sierra de Javalambre, Teruel, Spain. The facili-
ties in the Observatorio Astrofisico de Javalambre (OAJ) consist of a 2.5m diameter
telescope equipped with the 7 square degree Field of View Javalambre Panoramic
Camera (JP-Cam). As a spectro-photometric survey, it has a total of 54 narrow-band
filters and 2 broad-band filters covering all the optical wavelength range as shown in
Figure . The expected area covered by the survey is 8000 square degrees of sky
in the northern hemisphere.

Here, we will study both the clustering and weak lensing data, the latter being
possible provided J-PAS is a spectro-photometric experiment. In order to compare
the future results of J-PAS, we will perform the same analysis for DESI experi-
ment [132] in the case of clustering (not being possible the lensing counterpart as
DESI is a spectroscopic survey) and both clustering and lensing for EUCLID exper-
iment [141]. For our analysis, we will follow the formalism of Ref. [142] and use the
numerical code for galaxy survey Fisher Matrix' computations FARO [143], obtaining
the cosmological functions from our modified version of CLASS for the case of the
Covariantised dark Thomson-like scattering between Dark Energy and Dark Matter,
explained in Section

5.1.1 Modelling the clustering

The first step consists in analysing how the data from clustering will constrain the
model parameter «. Basically, it consists of measuring the matter perturbations
through different times using as tracers to do so the galaxy positions in redshift
space, rather than real space. When having a galaxy survey measuring the galaxies
distribution per redshift, the observed spectrum is given by [144]

D% E _Kude?  Mujo]
Pij (kv pir. 2) = g (0D + fDp?) (0D + fDp?) P(k)e™ 3 e 2
AT

where subindices i and j set the different tracers used while » means that the quan-
tity is evaluated in the fiducial cosmology. The term b;D + fDy? encodes the density
perturbations and the redshift space distortions, with b the bias, D the growth func-
tion, f the growth rate and p the angle of separation with the line of sight. The

Matter Power Spectrum is P(k) and the exponential accounts for the photometric
D% E
D:%ET
D, is the angular distance and E the normalised to today’s value Hubble function,
accounts for the Alcock-Paczynski effect. Such a effect is the induced distortions in

the galaxy distribution positions obtained due to having a wrong geometry, that is

redshift error 0z inside o;, defined as o; = §z;(1 + z)/H(z). The prefactor , where

!See Appendix
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Figure 5.1: Filter distribution along with its efficiency for the J-PAS experiment [137].

a wrong cosmology. Also due to the Alcock-Paczynski effect, we have the following
relations

\/DAX 3 — D%, 3 (uE 1)

FE
¥ with (;)
" quX

E.Q
being y the comoving distance explained in Appendix

Then, the Fisher matrix for two different tracers at a certain redshift for two param-
eters a¢ and b is [142]

oP, k:
G(z) = 5 2/ du/ 0 5 ”’ZS)

where V; is the volume of each redshift bin V; = %’r foky [X (28)3 —X (28_1)3] with fq, the

fraction of sky covered by the survey and ki, = 0.007 hMpc~!. The covariance matrix
is defined as C;; = P;j + 5( 5 with n,(zs) the mean galaxy density in the s-th redshift
bin for the i-tracer. The exponential acts as a cut-off scale to avoid non-linear physics
contamination. We should bear in mind that we are using our modified version of
CLASS and, then, only linear scales are obtained for functions like the Matter Power
Spectrum. Therefore, non-linear scales are not properly calculated. For our cut-off
prescription, one would need a proper characterisation of the non-linear dynamics,
but given the similarities of this model to the standard one we will adopt the same
prescription as in the ACDM model. This choice would not be appropriate when
dealing with real data, where a full non-linear analysis is required as we pioneer
in Chapter 6. However, when performing a Fisher analysis this will not be relevant.

k=Qk, and pu=

)

C' 1 0Py (K, i, 25)

C_l e_k.ZEQ k2 2(22 Ei)
0b

)

s T
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Then, the ACDM prescription is given by

S1(2) = 0.785D(2)%,
S(2) = 0.785D(z)[1+f(z)}20,

where ¥y = 11 Mpc/h.

5.1.2 Modelling the weak lensing

The second observable we use is the weak lensing signal. It is one of the main con-
sequences of General Relativity as it consists of the distortion of light paths due to
the presence of gravitational potentials between the emitter and the observer, which
can be latter used to reconstruct the distribution of matter as those gravitational
potentials are generated by that matter. Consequently, only photometric or spectro-
photometric surveys are sensitive to it. For this effect, the observed convergence
power spectrum under the Limber and flat-sky approximation is [145]

9HZO2 [ D(2)%(1 + 2)? 14
Pl = 22070 ()90 P (5 ) s
=" T e PO
where indices s and s’ indicate the redshift bin while the corresponding multipole is

¢ and the scale k, which are simply related by k& = ¢/x(z). As we want to analyse the
weak lensing tomographically, we use the window functions g5 as follows

g9s(2) = /:o <1 - ;f%) ne(z')dz’

where n4(z) is the galaxy density function in the s-th redshift bin defined as

_ (z’—z)2

[Z n(z)e 2% dz inside s-bin
Zs—1

with n(z) = i,22«5’_(”2/%)3/2 )

ns(z) o = 2'23

0 outside s-bin

such that it should satisfy the normalisation condition [, ns(z) dz = 1 and where we
have 2, = Zmecan/ V2, with 2. the mean redshift of each survey.
Then, the Fisher matrix for two different parameters a and b is [142]

K (20 +1)0 0Py (£) -1 8PPP’ (4)
= Joy DA I R
g T

-1
CplS 9
T
where we sum from /i, = 5 t0 . = 906 with a step Aln/ = 0.1. The matrix Cgy
is defined as Csy = Psy + 72,715 'dss, With the intrinsic ellipticity i, = 0.22, and the
number of galaxies per steradian
f;;l ns(z)dz

Ng = NP —g—————

fooo ns(z)dz

where ny is the areal galaxy density of the survey.
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J-PAS
z || LRG | ELG [ QSO

0.3 ][ 226.6 [ 2958.6 | 0.45

0.5 156.3 | 1181.1 | 1.14

0.7 || 68.8 | 502.1 | 1.61

0.9 || 12.0 | 138.0 | 2.27 DESI

1.1 09 412 | 2.86 : || BGS | LRG | ELG | @SO
1.3 0 6.7 | 3.60 0.1]]2240] O 0 0
1.5 0 0 3.60 0.3 || 240 0 0 0
1.7 0 0 3.21 0.5 6.3 0 0 0
1.9 0 0 2.86 0.7 0O |48.7]69.1]2.75
2.1 0 0 2.55 0.9 0 19.1 | 81.9 | 2.60
2.3 0 0 2.27 1.1 0 1.18 | 47.7 | 2.55
2.5 0 0 2.03 1.3 0 0 |28.2] 250
2.7 0 0 1.81 1.5 0 0 |[11.2]2.40
2.9 0 0 1.61 1.7 0 0 [1.68]2.30
3.1 0 0 1.43

3.3 0 0 1.28

3.5 0 0 1.14

3.7 0 0 0.91

3.9 0 0 0.72

Table 5.1: Galaxy densities are in units of 107> 2*Mpc =2 for the surveys J-PAS and
DESI.

5.1.3 Modelling of the forecast

Once we presented the two observables we will use, we want to summarise all the
details concerning the surveys specifications used and how we set the fiducial cos-
mology. We consider as parameters to analyse in our forecast the model parameter
«, which controls the strength of interaction, and the total matter density today 2,,.
Then, we compute the Fisher Matrix~ as

F— ( Faa Fan ) )
Fo,e Fonom

As said, we focus on the J-PAS survey [137], but we also use the DESI [132] and EU-
CLID [141] experiments for completeness and as a way to compare the capabilities
of the different surveys. The tracers are the Luminous Red Galaxies (LRG), Emis-
sion Line Galaxies (ELG), Quasars (@SO) and Bright Galaxies (BGS), with the galaxy
densities distributed as shown in Table for J-PAS and DESI and in Table for
EUCLID.

For the bias prescription we perform two different analyses. First, we consider the
standard bias prescriptions for J-PAS and DESI given in Ref. [142] for each tracer

2See Appendix A for a description of Fisher techniques.
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EUCLID,y,
= || ELG
0.3 || 7440
0.5 || 6440
0.7 || 5150 EUCLIDg,
0.9 || 3830 = || ELG
1.1 2670 1.0 | 68.6
1.3 |[ 1740 1.2 | 55.8
1.5 | 1070 1.4 || 42.1
1.7 || 620 1.6 | 26.1
1.9 || 341
2.1 178
2.3 883
25| 41.8

Table 5.2: Galaxy densities are in units of 10~ h*Mpc ™ for spectroscopic EUCLID
and photometric EUCLID.

as
bLrc = L7
D(z)’
beLc = 0.8
D(z)’
bgso = 0.5340.289(1 + 2)?,
besc = L3
D(z)’

while for EUCLID, that only has ELG as a tracer, we have the following prescrip-
tion [141]
berc =V1+z.

After that, we will also perform a second analysis where we marginalise the bias as a
free parameter in each redshift bin z;. The reason for this second analysis is to avoid
that a plausible modification in the bias, due to the different clustering provoked by
the interaction, can spoil our results.

For the photometric redshift error 6z, in the case of the clustering analysis we have
0z = 0.003 for LRG, ELG and QSO in the case of J-PAS survey, dz = 0.0005 for BGS,
LRG and ELG and 6z = 0.001 for QSO in the case of DESI, while for EUCLID is
0z = 0.001 for ELG. In the lensing analysis, ¢z = 0.03 for J-PAS and ¢z = 0.05 for
Euclid. The mean redshift for each survey is zyean = 0.5 for J-PAS and zyean = 0.9 for
Euclid. The areal galaxy density is ny = 12 for J-PAS and ny = 30 for EUCLID.

For the binning, in the case of the clustering analysis of the different scales k& and
angle of the line of sight 1, we have k € [0.007, 10] hMpc ™! with 20 bins logarithmically
equispaced and p € [—1,1] with 200 bins linearly equispaced. For the case of the
lensing analysis, we consider ¢ € [5,906] with Aln/ = 0.1. For the redshift binning, we
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| | a=0 | a=1 |
Survey A1UQm Alo'a Angm Alaa
J-PAS || 0.0022 | 0.132 || 0.0014 | 0.061
Euclid || 0.0015 | 0.176 || 0.0011 | 0.052
DESI | 0.0015 | 0.111 || 0.0010 | 0.054

Table 5.3: Marginalised errors for the forecasted parameters (2, and « using cluster-
ing data and having the bias fixed to the one in ACDM for J-PAS, Euclid and DESI
surveys.

follow the ones of Tables and .

Our analyses require the choice of a certain fiducial cosmology. Following previous
results of Section , we take the Covariantised dark Thomson-like scattering for
the case of the Dark Energy and Dark Matter interaction. We use as cosmological
parameters (), = 0.310, h = 0.6774, w = —0.98 and ns = 0.96 while the coupling param-
eter a = 1. In addition to that, we also consider the case with a« = 0 for completeness
and following results of Section that suggested Sunyaev-Zeldovich data is the
culprit of such detection.

5.1.4 Results

Once we have all the formalism presented we can perform the forecast. We consider
the model parameter «, which sets the strenght of the momentum transfer, and the
cosmological parameter 2, as the parameters to be forecasted. Making use of our
modified version of the cosmological Boltzmann solver CLASS, we obtain the relevant
functions required by the Fisher Matrix code FARO [143] to obtain the projected
uncertainties in each experiment. We consider three scenarios, namely: clustering
signal when bias follows the standard prescription, clustering when we marginalise
the bias in each redshift bin and, finally, weak lensing signal.

Clustering: standard bias prescription

In our first analysis, we have the case of clustering data following the prescriptions
of Section for the three surveys, that is J-PAS, DESI and EUCLID. Our tracers
are Luminous Red Galaxies (LRG), Emission Line Galaxies (ELG), Quasars (QSO)
and Bright Galaxies (BGS).

In Figure and Table we summarise the results obtained. If the cosmology
is the one obtained when adding the Sunyaev-Zeldovich data, that is o = 1, the
expected errors for the three surveys are around ~ 5 — 6% for the model parame-
ter. Comparing this result with the already obtained in Section o = 1.00570-28
for the combination of Planck 2018+JLA+BAO+CFHTLens+PlanckSZ data, the fore-
casted error considerably enhances the previous constraints and, then, future sur-
veys will be capable of further detecting the interaction. When our fiducial cosmology
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Figure 5.2: For the case of clustering signal, here we show the 1o contour errors for
O and « using as fiducial cosmology a = 0 (top) and « = 1 (bottom), while fixing the
bias to the standard model one of equation

is the standard one o = 0, the future constraints show how the three surveys will
be able to strongly reduce the values of « allowed. These outcomes indicate that a
future survey will serve to discriminate the presence or not of this interaction. The
comparison between surveys demonstrates how J-PAS experiment will be as capable
as the other surveys considered.

Clustering: marginalising the bias

Now, we perform the same analysis but not using the standard bias prescriptions
displayed in Section . Instead of that, we marginalise the bias in each redshift
bin for the three experiments. The logic behind this is to avoid any possible bias
because of a wrong election of the bias. Previous prescriptions were developed for
the standard model from different numerical simulations where non-linear scales
were studied. Then, a proper modelization of such scales when using another model
is required. In Chapter 6 we commence the desirable study, but here we adopt a
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Figure 5.3: For the case of clustering signal, here we show the 1o contour errors for
Qmn and « using as fiducial cosmology « = 0 (top) a = 1 (bottom), while marginalising
the bias.

| | =0 | a=1 |
Survey Alon Alga Algﬂm Alga
J-PAS || 0.0038 | 0.155 || 0.0029 | 0.068
Euclid || 0.0028 | 0.182 || 0.0025 | 0.062

DESI || 0.0025 | 0.159 || 0.0021 | 0.062

Table 5.4: Marginalised errors for the forecasted parameters (2,, and « using cluster-
ing data and marginalising the bias in each redshift bin for J-PAS, Euclid and DESI
surveys.

very conservative perspective. As we marginalise over the bias in each redshift, we
are avoiding any possible incorrect information coming from it. As drawback, we
unavoidable increase the expected uncertainty due to the marginalisation.

We summarise the results in Figure and Table and, again, we obtain very
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| [ e=0 | a=1 |
Survey Alan Alaa Alan Alo'a
J-PAS || 0.0070 | 0.55 || 0.0239 | 2.24
Euclid || 0.0021 | 0.26 || 0.0070 | 0.74

Table 5.5: Marginalised errors for the forecasted parameters 2, and « using lensing
data for J-PAS and Euclid surveys.

similar results. If the cosmology is o = 1, each future survey will be capable of
detecting the interaction with strong significance, while if « = 0 strong constraints
on the model parameter will be established. Finally, J-PAS is as competitive as the
other surveys considered.

Weak lensing

Finally, we consider the case of lensing data from future surveys as explained in the
previous Section . Now only J-PAS and EUCLID are considered since for weak
lensing we need shape information, something only photometric surveys have.

In Figure and Table we summarise the results obtained. Although the cos-
mological parameter (2, is well constrained, the model parameter « is poorly con-
strained, as errors are much larger than what we already obtained with current data.
Particularly, J-PAS will not be able to distinguish the presence of the interaction
while the results from EUCLID, although better, will not be competitive. The cause
of these results is that the interaction modifies the weak lensing signal slightly.
When the interaction becomes efficient, which happens in the very late Universe,
perturbations get frozen and then structure formation stops. As a consequence of
this, gravitational potentials are altered but not enough to change considerably the
signal. Also, no anisotropy is induced due to this interaction. We have already seen
the small impact in lensing when studying the CMB in Section , where we saw
how lensed CMB spectra have some oscillations depending on the model parameter
but they were small compared to the other modifications. Moreover, the Cf ¢ spec-
trum was very slightly modified, at least for realistic values.

Consequently, this interaction affects stronger the clustering than the lensing and,
thus, future galaxy survey signal from clustering will be key to confirm or rule out
the detection of this interaction.

5.1.5 Final discussion

Cosmology is now living in the era of very high precision surveys. Already finished
missions, like the Planck satellite, have established strong constraints on the al-
lowed values for the cosmological parameters. Moreover, a myriad of ongoing and
planned surveys for this decade will establish even lower constraints. Having such
future precision data will unavoidable rule out a large number of alternative models.
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Figure 5.4: For the case of weak lensing signal, here we show the 1o contour errors
for ., and « using as fiducial cosmology « = 0 (top) and « = 1 (bottom).

But, at the same time, new tensions may emerge motivating different alternatives,
as it is now happening with the tensions explained in Section

In the previous sections, we have tested the future abilities of J-PAS, DESI and
EUCLID surveys to constrain the coupling parameter « of the model studied in Sec-
tion . In our analyses, we have considered two different signals, namely the clus-
tering and the weak lensing signal. In the case of clustering, we studied two different
cases. Either we consider the bias prescriptions of each survey and tracer are not
altered by the interaction or we include the possible modifications in the bias by
marginalising it in each redshift bin. In both cases, we found that J-PAS will be able
to establish strong constraints in the parameters leading rapidly to a more than a
3o detection of the interaction in future data. Moreover, a 100 detection of the in-
teraction will be achieved, if the interaction is there, when the mission will come
to an end. Even more remarkable is the fact that with only ~ 1000 square degrees

J-PAS will find a 50 detection of the coupling, as inferred from o}, = y/deg? / deg? 0. .
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We have seen comparable results with both EUCLID and DESI, which denotes the
future capabilities of the survey J-PAS. The previous results improve by a factor ~ 4
previous constraints with current data and, then, J-PAS or the other surveys will be
able to confirm or rule out the Covariantised dark Thomson-like scattering.

In the case of weak lensing, results were not promising. In particular, J-PAS,
but also EUCLID, will give very large errors in comparison with clustering and not
even better that those with current data. Therefore, and as explained before, we can
deduce lensing signal is not a powerful tool when dealing with a pure momentum
transfer model like this one.

In conclusion, we have shown firstly that clustering signal in future surveys will
be capable of detecting or ruling out a pure momentum transfer interaction. Sec-
ondly, we have proven that J-PAS survey is as powerful as other future surveys like
DESI or EUCLID when dealing with this pure momentum transfer model. We have
to remark here that this result should not be considered only in the realms of this
particular model but, as it was a general proxy for pure momentum transfer mod-
els, similar outcomes should emerge when considering other momentum transfer
models of the literature.
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5.2 Dipole of the power spectrum and SKA

The Einstein equivalence principle is one of the cornerstones of our current un-
derstanding of the gravitational interaction inside the General Relativity theory. It
states that all bodies, independently of their intrinsic compositions, should fall at
the same rate given a gravitational field. In other words and applied to cosmology,
the movement of Dark Matter and Baryons has to follow the same geodesics, pro-
vided of course there are no extra interactions. Therefore, detecting any departure
between both movements indicates a violation of that principle unless an interac-
tion is acting on one of them, since for cosmological scales we only know about
gravity. The alternative answer would be some yet undetected interaction, in our
case, for example, a pure momentum transfer acting on Dark Matter following the
Covariantised dark Thomson-like scattering developed in Section . In previous
literature [146, 147, 148], it has been shown how the dipole of the Matter Power
Spectrum is useful for measuring violations of the equivalence principle. Since fu-
ture surveys like the Square Kilometre Array experiment (SKA) [138] will measure
the dipole of the Matter Power Spectrum, here we try to compute the potential ability
of a SKA-like experiment to detect the Covariantised dark Thomson-like scattering
by using the dipole.

The Square Kilometre Array experiment is a ground-based probe consisting of
two different facilities, one in South Africa and the other in Australia, whose first-
light of the observatory is planned to be in 2027. It consists of a giant distribution
of small radiotelescopes in both sites that, once combined, will mimic a single giant
radiotelescope with a collecting area of around one square kilometre.

5.2.1 Modelling the dipole of the Matter Power Spectrum

In section , we explained how the spectrum of Galaxy Number Counts was de-
scribed. Its last term corresponded to the relativistic corrections and was negligible
for our previous purposes. Here, however, it will acquire a core role as we will ex-
plain. As the other terms were already explained there, let us focus on it and, then,
as a starting point, the general description of the relativistic contribution reads as

—92 !
51% —;2—53—fevo>z7~ﬁ+%117"

Su

AREL — =15 ¥ 4 (

where ¥ corresponds to the gravitational potential in the Newtonian gauge, s is the
magnification bias, x is the comoving distance and f.,, is the evolution bias. We
denote by ¢ the peculiar velocity of the matter distribution while 7 is the unit vector
pointing from the source to the observer. We are now going to further simplify the
full spectrum of number counts fluctuation by doing the following. First, we work
with the radial velocity field defined by v = ¢ 77, up to linear order in #/k and, now,
neglecting lensing contributions. We use the Euler equation to simplify the spectrum
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and, finally, we move to Fourier space’ as we are interested in the power spectrum.
Given the fact we use the Euler equation as stated, for the velocity field of galaxies
it reads simply as

0+ HT+ VI =0.

in the standard scenario. However, in our case we have a modification of Euler
equation due to the momentum transfer. In fact, the only relevant change due to
our model takes place here. Thus, we first have to derive our new Euler equation.
Recalling from Section , we had

0 = —HOqm + ¥ + T (Age — Bam)

where we have applied that there is no anisotropic stress and, then, ® = U. If we
consider small enough scales, where precisely this interaction is efficient, and under
realistic values of the coupling parameter, a ~ O(1), Dark Energy velocity is negligible
compared to the Dark Matter one (see Figure of Section 4.1). Thus, we simplify
the previous equation as

0, =~ —HOqm + E*® — Ty, .
Provided 0 = ik - ¥ with v = U -7, we have
’U||/—|—7’[(1+@>’UH -0, ~0,

where the deviation from the standard scenario is only encoded in the variable O,
following the notation of Ref. [146]. In our case, it reads as

o= r CLHO
= =0 -
H Qdm(a)’H
However, a big conceptual step is pending. The velocity of equation is the Dark

Matter radial peculiar velocity but as a SKA-like, or any other survey, only measures
galaxies, we need to connect the Dark Matter one to the galaxy peculiar velocity.
Here, for completeness, we consider two extreme and opposed scenarios leading to
two conceptual assumptions as follows:

* Dark Matter tracers: galaxies comove with Dark Matter (for example Refs. [146,

147, 149]), meaning galaxies are faithful tracers of the Dark Matter velocity
field.

¢ Gravitational potential tracers: galaxies move according to the linear geodesic
equation, so they move according to the gravitational potential (see Ref. [150]).

5We use the following convention
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Finally, assuming the flat-sky approximation, we can define the estimator of the
dipole as

. 3 dQ;
P () = o [ S et 49 a% (k)

where V is the survey volume.

Dark Matter tracers

Assuming the galaxy velocity field perfectly matches the Dark Matter velocity, then
we have ngal = dem . This situation is expected by the following reasoning. The struc-
tures, galaxies, formed much earlier than the time this interaction is efficient. Then,
following the standard scenario, galaxies have formed at the bottom of the gravita-
tional potential due to Dark Matter. But, once this interaction becomes efficient, it
acts as a friction term avoiding structures of Dark Matter to grow but not being able
to detach them from Baryons under realistic value of «. Thus, they follow the Dark
Matter gravity field. Therefore, under all the previous assumptions discussed, the
relativistic number counts spectrum of galaxies is described by

" 2-5s

A(x) = b6 +H " vy + (HQ T

55— foso @) o+ O (H2/K?) .
Given we do not modify the continuity equation, we can use that
(9T1)||dm = fdeu25dm and ’UHdm = —ipfamOdmH/k ,

with ;= % - k. Then, our expression for the number counts spectrum reads as

A (k) = b(S(k) + fdeQ—iufdm%R Odm (k) ,

where
H 2 —5s
R = ﬁ—i_ XH +53_fevo+@7
T aHO
0O = —=a———.
H~ “Qam(a)H

However, here we face one inconsistency as we have § and dq4,,, where the extra
Baryon or Dark Energy density contrasts make the difference between both vari-
ables. To overcome it, we assume the ratio d4,,/0 is almost constant for the scales
and redshifts of interest. This was numerically tested as we show in Fig. . Pro-
vided that, we finally get our answer for the spectrum of Galaxy Number Counts
fluctuation in Fourier space

4 H
A (k) = |b+ fdeQ_ZMfdmZR 0 (k) :
Now we have the full power spectrum for two different populations called A and B
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Figure 5.5: In this figure, we plot the ratio of the density contrasts of the Dark
Matter component and the total matter (Dark Matter plus Baryons). We can see that
the error of assuming that the ratio dq,,/9 is constant and scale independent is below
the 1% level, which, as we will see, is below the sensitivity for the measurement of
the interaction parameter «. This justifies our assumption since including this effect
will lead to a correction smaller than the precision of the measurement.

as
AB 2 . H
P2 (k) = [bA + fdamp —ZﬂfdmkRA]
9 . H
X b+ famp jL“‘fdeRB P (k) .

which we can expand into the multipoles and different redshift bins as

2
PP (k,z) = [bAbB + % (ba +bB) fam + fdf)m} P(k,z)+ O (H*/K?) ,
PP (k,z) = —i fdm% [g fam(Ra — Rp) + (bpRa — bARB)] P (k,z)
+0 (H?/K?) ,
PAB (k _ 2 % 2 /1.2
57 (k2) = |3f(batbp)+ =22 Pk 2)+ O (H/K)
P{B (k,z) = —%ifgm% [Ra —Rp] P (k,z) +O (H*/K?) |
PIP (k) = o i+ O (H2/R?)

As one infers from the previous expressions, relativistic effects only appear at linear
order in the odd multipoles while their contributions to the even multipoles go as
O (H?%/k*) and, then, negligible for our purposes here. Once the decomposition into
the different multipoles is done, the only thing we still need is the variance of the
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dipole. Following the definition of equation , its variance is

(BB (k) BIAB () = — / 1 A 1A% (1) AP (k) A% (—q) AP (q))

“wz ) or on
9 3 dQ; dQe
= 200 (0 @0’ / o tttg [P (k) PP (k) 0p (k — q)

+PAB (k) PPA (k) 6p (k + q)]
9 (2m)% 630 6p (k — q)
4 V2 2 k2

<Y [P ) PEP (0= PAP (0 PEA ) | [ e, () £ (1)
0102

(3) 6 _
_ 6p (0) (2m)° dp (k —q) [i (bgRa — bARB)2

or V2 k2

18 H?
+7fdm (Ra—Rp) (bpRAa —baRB) + fo, (Ra — RB)} = A P? (k)
2m)2 6p (k —q) [9
18 2 H? 2 p2
+7fdm (Ra—Rp) (bBRA —baRE) + fim (Ra — RB) pfdmp (k)

where we have used that 5533) (0) ~ V/ (2r)? for a finite volume survey. We also need
to include the shot-noise contribution. Only the monopole of the auto-correlation

power spectra have a non-vanishing shot-noise contribution, therefore we need to
add the following term

P (k) PEP (k) —  (PAY(K) + de,0Na) (PEP (k) + 66,0NB)
= P (k) PEB + 60,0P N + 00,0PPP N + 64,000,0NaNE

where Ny and Np are the shot-noise power spectra of the populations A and B
respectively. Combining all together, we find the following variance for the dipole of
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the power spectrum
(P{ (k) {4 (@), =
9 9
= { |:10 (bBRA - bARB)2 + ?fdm (RA - RB) (bBRA - bARB)

2
fdm

M

2
(R =R | 2 72 0

3 9 9
+ [2 (ANB +b5Na) + gfdm(bAJ\fB +bgNa) + ﬂfgmm + Np)

9 o, H? 3 (2n)%6p (k —q)

+ﬁf§mﬁ (NgR% + NARQB)} P (k) + QNANB} % 3

9 2 23 2 36

= {—5(P1AB(’€)) —g(P:f‘B(k)) ~ 3 5 (k) PP (k)
1 1 1 1
#3 (G707 09+ 2PPP (0) N+ (3R (9 + 1P ) N

1 (2m)% 6p (k — q)

+2NANB} } VR

2 —

Gravitational potential tracers

In the second scenario, we consider that galaxies are just test particles moving in
geodesics controlled by an external gravitational field of matter distribution. Then,
the interaction is not directly acting on galaxies. This has a first consequence,
the density contrast perturbation now is all the matter perturbation and, thus,
fam — fam+b+de that we simply denote by f for simplicity of the notation. The sec-
ond consequence is that we should set in previous equations © = 0 and, thus, the
dipole is sensitive only through modification in cosmological functions involved in
the multipoles. In our case, only in the growth rate f and growth function D, the
gravitational potential, the Matter Power Spectrum and the og parameter. Just by
the equivalence principle, we get the Euler equation in ACDM as galaxies are now
test particles with no extra interaction acting directly on them”. Of course the in-
teraction is there but, as it is acting on Dark Matter, galaxies only feel it through a
different gravitational potential sourcing the geodesics.

5.2.2 Modelling of the forecast

In this case, we will follow a Fisher analysis” for unveiling the detectability of the
coupling parameter for a SKA-like survey. We consider that SKA will measure tomo-

4The additions coming from Dark Energy are negligible both to the density contrast, as Dark Energy
does not form structure, and to the growth rate as the clustering of Dark Energy is strongly suppressed
by its own nature.

5See Appendix C of Ref. [140] for the full derivation.

5See Appendix
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graphically a redshift range from z,,;, = 0.1 to zpax = 2, and we divide such redshift
range into nineteen bins of width Az = 0.1, having in each bin the galaxy bias and
the number density reported in Table , following data of Ref. [151]. Considering
two populations, A and B, we set the bias for each one as

ba(z) = b(2)+0.25,
bp(z) = b(z)—0.25,

such that b4 (z) — bp (z) = 0.5, as reported in Ref. [146]. For the number density
of each population, we simply use the prescription n4(z) = np(z) = n(z)/2. In
principle, we will make our forecast setting for simplicity fe,o = 0 and s = 0 for
both populations. This is a very simplistic prescription, but we should remember
that the larger the difference between both populations, the better the detectability
by relativistic effects sourcing the dipole. Thus, having a very simplistic but equal
prescription for both populations will give us the worst scenario on detectability
terms. For the shot-noise spectrum we use Ny = 1/n4 and Np = 1/np. The volume
of each redshift bin is

47

Vi=
3

foky [x (2max)” — X (Zmin)g} :
where x(z) is the comoving distance to redshift » and fy, is the fraction of the
sky covered, that for SKA [152] survey is fg, = 30000/(360%/x). Finally, we set our
fiducial cosmology to be a = 1 inside the Covariantised dark Thomson-like scattering
between Dark Matter and Dark Energy, with the other cosmological parameters set
to Qph? = 0.02264, Qgmh? = 0.1163, ng = 0.9721, Ag = 2.063 1077, Treio = 0.0502, w = —0.948
and h = 0.6788.

Considering a general redshift bins splitting without correlations between dif-
ferent bins, in Fourier space from a ki, to kna.x and two parameters a and b, the
corresponding Fisher element is

Vi o (OP1(k,z)\ (0P (k,z)\" _,
Fap = Z47r2 /dkk: ( om 5 op (k,zi)

where the summation is on the different bins considered. In principle, one should
compute the Fisher element for © but as both, o and O, are simply related by

Hy

O A +72)

a,

and since the interaction has no impact on background quantities, both Fisher el-
ements Fge and F,, are directly related. Also, no correlations with the background
parameters need to be considered when passing from Fgg to F,,. Consequently, the
Fisher element for the model parameter is simply

Vi 9
Faazzw/dkk
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| 2min | zmin || n(2) Mpe™®] | b(2) |
0.1 | 0.2 6.20 1072 | 0.623
0.2 | 0.3 3.631072 | 0.674
0.3 | 04 2.16 1072 | 0.730
04 | 05 1.311072 | 0.790
0.5 | 0.6 8.07107% | 0.854
0.6 | 0.7 5.111072 | 0.922
0.7 | 0.8 3.27107% | 0.996
0.8 | 0.9 2111072 | 1.076
09 | 1.0 1.36 1073 1.163
1.0 | 1.1 8.70 1074 1.257
1.1 | 1.2 5.56 107* | 1.360
1.2 | 1.3 3.53107* 1.472
1.3 | 14 2.22 1074 1.594
14 | 15 1.39 1074 1.726
1.5 | 1.6 8.55107° 1.870
1.6 | 1.7 5.20107° | 2.027
1.7 | 1.8 3.12107° | 2.198
1.8 | 1.9 1.83107° | 2.385
1.9 | 2.0 1.05107° | 2.588

Table 5.6: Galaxy bias b (z) and number density used, following Table 3 of Ref. [151]
for SKA.

and, then, we have

2

1/2 7
oo

Aga =

as explained in Appendix A. Once the procedure has been explained, we will show
the results obtained in the different scenarios commented before.

5.2.3 Results

Now we have all the tools developed, we take our modified version of CLASS code [113,
114] explained in Section including the Dark Energy-Dark Matter Covariantised
dark Thomson-like scattering to compute the numerical quantities required in pre-
vious equations. With it, we have created a forecast FORTRAN code to compute the
corresponding Fisher elements. In each case, we compute the forecasted error for
the coupling parameter a under the conditions of the scenario considered and all
results are compressed into Figures and
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Dark Matter tracers

Here we have assumed that galaxies are perfect tracers of the underlaying total
matter distribution and then ngal = dem. In this case, we obtain the expected un-
certainty for the coupling parameter using the dipole in a SKA-like survey would
be

A a0 =0.198,
where we have assumed a = 1. Comparing it to the constraints with current data ob-
tained in Section , namely a = 1.0057)35, the forecasted error considerably en-

hances the previous constraints. Therefore, we can conclude the following: should
the interaction be there, a SKA-like survey will detect it through the dipole of the
Matter Power Spectrum. This conclusion should be extended to any similar model
with pure momentum transfer as here we are only using this model because of
its simplicity and similarity to the ACDM model, combined with its capabilities of
alleviating the og or Sy tension. Therefore, this calls for more attention in future ex-
periments as the dipole of the Matter Power Spectrum can be a smoking gun for this
interactions in the Dark Sector of the Universe.

We can go one step further and consider different prescriptions. In our case, we
keep the same magnification bias s; = 0 but now we follow for the evolution bias the
one of Ref. [153], given by fo,, = (b—1)fd., as a simple proxy to test the implications.
The expected result is an improvement of the forecasted error since now both pop-
ulations have different f..,, provided b4 (z) — bp (2) = 0.5. We should remember that
the relativistic effects were sourced in the dipole (or any odd multipole) weighted
by the difference in the two populations considered. Another issue one may won-
der is which value of the critical spherical collapse density should be used here.
Although some corrections from the interaction may appear to the standard model
value . ~ 1.686, we ought to remember this is a late-time interaction and, then,
for most of the structure formation process ¢. remains unaffected. Once we have
real data, a precise analysis on the corrections will be required but, for our forecast
purposes, we use the standard value. By doing that, the uncertainty lowers to

Ay a0 =0.166 .

In all the previous cases, most of the information is coming from linear scales
as clearly depicted in Figure where we can interpret that no extra constraining
power emerges from scales larger than kp,.x ~ 0.1 h/Mpc.

Gravitational potential tracers

Now we consider the movement of galaxies is fully determined by the gravitational
potential, which is affected by the interaction via the Dark Matter contribution. Then,
galaxies just follow the corresponding geodesics. In that case, the forecasted uncer-
tainty is

A, =1.30.
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Real Dataj- ®
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Figure 5.6: Constraining power for the case when Dark Matter halos and galaxies are
comoving with feyo A = fevo,B = 0 (purple), with feyo1 = (b7 —1)fé., I = A, B (green) and
the case when galaxies are just test particles moving with the gravitational potential
created by Dark Matter halos (blue). The black line corresponds to the constraints
obtained with real data for this model, as shown in Chapter

This result indicates that if galaxies just move in the geodesics, a future SKA-like
survey will not be capable enough by the means of the dipole of the Matter Power
Spectrum, at least compared with current constraints. The paradigm is, then, com-
pletely different from the first case studied. One can understand these results as
follows. In the previous cases, galaxies directly feel the interaction as their veloc-
ity was attached to the Dark Matter velocity, that was completely modified by the
interaction. But now this is not the case since the velocity of galaxies is no longer
directly attached to the Dark Matter one but to the geodesic movement. It is true
that the geodesics are sourced by the gravitational potential which is mainly de-
termined by Dark Matter, but now the effect is diluted. First, Dark Energy has to
change Dark Matter velocity by transferring momentum, this reduces the clustering
of Dark Matter, then gravitational potentials change due to the different clustering.
Consequently, geodesics for galaxies, that are sourced by the gravitational poten-
tials, change.

Degeneracy between o and f.,,

Recall the form of the Galaxy Number Counts fluctuations shown in equation
as

H({H 2-5s
A k = b m 27 m; A9 A7 - Jevo 5 k 9
(k) + famp~—ipfa k(%ﬁ T, + 55 — f. +®> (k)
where we have used the definition of R of equation . From its apparent func-

tional dependence, one can expect a degeneracy between © and fe,, that might spoil
our results and, thus, a more detailed analysis is required.
To do so, we now compute the Fisher matrix for the parameter of the model o and
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Figure 5.7: Constraining power as a function of the k.« used for the case when
Dark Matter halos and galaxies are comoving with feyo A = fevo3 = 0 (purple), with
fevoq = (b —1)fé., I = A, B (green) and the case when galaxies are just test particles
moving with the gravitational potential created by Dark Matter halos (blue). The
black region corresponds to the constraints obtained with actual data for this model,
as shown in Chapter

the evolution bias f.,, as follows

F — Faa Faf evo ,
Ffevoa Ffevofevo
where the element £, was already calculated in equation , while the new ones
Fafevo and Ffevofevo read as

oP; (k, zz) oP (k,z)\" _
2 1 1 ; 2
FOéfeVO = 247[_2 /dkk ( afevo > UPl (kﬂzi) bl

Py (k, z)|?
— 2 1 i
Ffevofevo - 247_[_2 /dkk ar

8fev0
In the case of the F,,, the derivatives inside it were not analytical as o« modifies
not only R but also the power spectrum P(z,k) or the growth rate f. But now the
derivative of the dipole P; with respect to the evolution bias f., is fully analytical,
since d‘?R = —1and by (2) — bp (z) = 0.5. Thus we have

_12 (k, zi) .

8P1 (kﬁ, ZZ')
8fevo

Therefore, we can just get the forecasted error for the model parameter by marginal-
ising over the evolution bias as

= —z’f%P(kz, z) .

Ay a =21/ Fad = 0.242,

where we have considered the case of Dark Matter tracers with f.,, = 0 for simplic-
ity. Moreover, we can also compute the marginalised error for the evolution bias as
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A1g fevo = 24 /Fji Vlo oo = 0.553 . Consequently, we conclude the possible degeneracy is
not there and results are not spoiled. The reason is clearly seen in Figure . If one
considers only one redshift bin, no matter which one, the degeneracy is very strong
leading to the impossibility of measuring both f.,, and « at the same time. But the
direction of the degeneracy rotates with the redshift bin such that when combin-
ing all the bins the constraints are smaller. We can find the answer to that in the
combination of two facts. The first thing is the different redshift dependence, as one
deduces from Figure . The parameter « is only strongly constrained by the lower
redshift bins as that is precisely the time when the interaction is efficient. This is
not true for f.,,. The second fact comes from the other elements that depend on the
model parameter «, as for example the Matter Power Spectrum. Both combined lead
to the break of the degeneracy.

5.2.4 Final discussion

Regarding the discussed detection of the interaction using current data of Sec-
tion , finding a probe that can act as a smoking gun for detecting the interaction
would be crucial. Here is where a survey like SKA can help. SKA will be able to mea-
sure the dipole of the power spectrum with enough precision to test the equivalence
principle. Then, if the principle holds Dark Matter and Baryons (or any other mass)
have to follow the same geodesic. If a departure is found there are two possible an-
swers, either the equivalence principle does not operate on the Dark Sector or an
interaction we are not counting is happening. In this part of the thesis we have ex-
plored this last possibility.

Taken the Dark Energy-Dark Matter Covariantised dark Thomson-like scatter-
ing, we have investigated the future constraining power of a SKA-like experiment to
detect the imprints of the interaction in the dipole of the Matter Power Spectrum.
This type of interaction modifies the Euler equations as shown, leading to a cor-
rection in the relativistic contribution to the Galaxy Number Counts spectrum. We
considered two scenarios. In the first one, named "Dark Matter tracers", we have
assumed Dark Matter and galaxies comove and thus galaxies are perfect tracers of
the Dark Matter peculiar velocity field. In that case, the forecasted uncertainty is
A1, a = 0.198, which not only improves the results from current data but also indi-
cates SKA will serve as a smoking gun for this kind of interactions. In the second
scenario, called "gravitational potential tracer", we have considered galaxies move
according to their geodesic equation sourced by the gravitational field, that is af-
fected by the interaction via its Dark Matter part. In that case, results demonstrate
no competitive capabilities of detecting the interaction. Finally, we should comment
that, although our results were obtained under the model of Section , they can be
understood as general remarks on the future abilities of detecting pure momentum
transfer interactions.
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Figure 5.8: We show the 2-dimensional contour plot for the evolution bias f.,, and
the parameter a. Different colours refer to individual redshift bins. In the bottom
panel, we zoom in to see how the different degeneracies, generated by the redshift
evolution of «, strongly reduce the error-bars in f.,, and «. We can also see that most
of the information is carried by the lower redshift bins, where the dipole amplitude
is larger.

To conclude, upcoming surveys like SKA will have a definitive role on ruling out
or not several alternative model to the standard ACDM one. In particular, for pure
momentum transfer models which alleviate the og tension and are under debate if
current data have already detected them, the dipole of the Matter Power Spectrum
can act as a smoking gun since their effects leave a measurable imprint on it as
shown in this section.
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5.3 Cluster Counts and EUCLID

When performing a clustering survey there are two main useful tools. Either one
can use the Matter Power Spectrum in Fourier space or the angular Matter Power
Spectrum, both explained in the corresponding subsections of . In other parts
of this thesis we have proceeded with the Matter Power Spectrum P(z,k) for our
purposes but, however, there are some advantages of using the angular one, usually
denoted as Cy(z, 7'), since

* It is a direct observable as we can measure the distribution of galaxies in the

sky as a function of the angles.

* It has been demonstrated its frame independence property, while the Matter
Power Spectrum does depend [154].

* It can accommodate relativistic effects and different codes have been developed
for this purpose, for example the CLASSgal [155] which is now implemented
inside the CLASS code [113, 114].

Even though relativistic effects can be included, it is customary in the literature to
neglect some contributions when computing it. In particular, here we focus on the
lensing convergence contribution that, although we had already explained before in
subsection , encodes the modification of the area and magnitude of the different
regions of the sky due to lensing effects. Other previous works [39, 156, 157, 158,
159] have shown that when new and more precise surveys will start to operate, a
careful inclusion of lensing convergence will be crucial to avoid biased constraints
in certain cosmological parameters. Then, our purpose here is to investigate such
potential biased results under the pure momentum transfer models. In particular,
we focus on the Covariantised dark Thomson-like scattering in the Dark Energy
and Dark Matter momentum transfer case. There are two reasons to consider this
model appropriate for this kind of analyses: its simplicity and its similarity with
the standard model. By one side, having a forecast for a model which has identical
background and very similar perturbation dynamics to ACDM until very late times
would allow us to confirm previous results on the importance of not neglecting lens-
ing convergence. Moreover, results obtained here should not be understood as only
belonging to the realm of the Covariantised dark Thomson-like scattering, but as a
general warning. On the other side, the simplicity of the model, with only one new
parameter, enables us to avoid multiple complicated degeneracies with the lensing
part and, consequently, we may achieve a more clear conclusion on the importance
of including lensing convergence in future surveys.

In this part, we will focus on the EUCLID survey’, which is a forthcoming space-
based experiment developed by the European Space Agency (ESA) planned to be
launched contemporaneously to the publication of this thesis. When launched to the
outer space, it will be placed in the L2 lagrangian point of the system Earth-Sun, that

"Taking its name from one of the most famous mathematician of the ancient world Euclides of
Alexandria.
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is, in opposition to the sun in the straight line that connects the Earth and the Sun.
The survey is planned to operate for six years with a planned covering extension of
the sky of 15000 deg? and a redshift range up to z = 2. The satellite is equipped with
two main instruments, the near-infrared spectrometer and photometer (NISP) and
the visible imager (VIS), that will focus on unveiling the secrets of Dark Energy and
Dark Matter with a precision never reached before. For such purpose, it will map
the galaxy distribution in the sky by measuring weak lensing, Baryonic Acoustic
Oscillations (BAO) and Redshift Space Distortions (RSD). In the following, we will
attach to the survey specifications explained in Refs. [141, 160].

5.3.1 Modelling the Galaxy Number Counts

Let us start by explaining how we model the angular power spectrum of number
counts fluctuations in the forthcoming calculations. As starting point, we have what
we already explained in the subsection , where the galaxy cluster counts were
introduced. Considering a EUCLID-like survey, we divide the redshift range into
several redshift bins so we can compute auto- and cross-correlations among them.
We consider the spectrum, denoted by ClA’ij, which is the sum of three terms as

CM = CY + B} + NV

where the indices have the following meaning: i and j denote the redshift bins while
A corresponds to what we call the observed (obs) or the theoretical (th) spectrum.
The observed power spectrum C’;’bs’ij is calculated using CLASS only once for very
high precision parameters for the chosen fiducial cosmology with all the different
contributions to it, namely: lensing convergence, density perturbations and redshift
space distortions. On the other hand, in the forecast analyses using MCMC tech-
niques the theoretical spectrum C;h’ij is calculated with lower precision parameters,
that is in shorter time so MCMC analyses can be performed. Moreover, since here we
are interested in the relevance of lensing convergence, we compute the theoretical
angular power spectrum Cgh’ij in two situations

* Consistent computation where Czh’ij includes lensing convergence along with
density perturbations and redshift space distortions.

* Approximate computation where lensing convergence is neglected in the com-
putation of C}™.

Returning to the three contributors to the spectrum as depicted in equation ,
we have

° C;j: it represents the angular power spectrum of number counts fluctuations
computed directly by the Boltzmann solver CLASS.

i E;j: given the previous computation of Céj is done under the linear regime,
some non-linear contamination is happening. Non-linear options are available
in CLASS but they are computationally expensive in time and, then, activating
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| Parameter | Value ||

Ho (k) | 67.38
Qph? 0.02247
Qgmh? 0.1193
Treio 0.0543

N 0.9679

In 1010 A, 3.044

bo 1

> m, (eV) | 0.031
w —0.98

a 0.0723

Table 5.7: Parameters defining the fiducial model used in this forecast.

them would ruin our MCMC analyses. As a modest but well posed solution,
here we add this term which is defined as the difference when the non-linear
HALOFIT prescription option is on or off in our Boltzmann solver, then

ij _ ij,HALOFIT ON ij HALOFIT OFF
E; =C; -G .
This term is only calculated once, for high precision parameters and for the

fiducial cosmology including all the contribution to the number counts.

e N: it accounts for the shot-noise contribution due to the discreteness of our
sample and it will be survey-dependant.

Once we have the recipe to model the Galaxy Number Counts, we now focus on
the specifications required for a EUCLID-like survey. Regarding the galaxy bias, this
time we assume a scale-independent prescription of the form

b(Z) =byvV1+z,

where the parameter by is a constant and will enter in our MCMC analyses. In the
case of the magnification bias, our prescription follows the one of Ref. [161]

s(z) = 0.1194 + 0.2122z — 0.06712% + 0.10312° .

Several arguments can be said against the previous prescriptions as they were ob-
tained in the canonical way for a ACDM model, while here we have a different cos-
mology. However, such criticism, which will be relevant when dealing with real data,
has less impact when performing a forecast. Therefore, as a proof-of-concept here
we stick to them as the topic of this specific part of the thesis is to highlight the
necessity of considering lensing convergence for future surveys.

On the other hand, we model the number of galaxies per redshift and per steradian

from the distribution
3
dN 8 2 z\2
Lda =3.5 x10%2 exp[ <Zo) ] ,
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c*7 | 0™ Top-hat | C;Y Gaussian
H Parameter ‘ All 5 bins ‘ 10 bins | 5 bins ‘ 10 bins
1 switch_limber_for_nc_local_over_z 20000 | 20000 | 20000 | 20000 | 20000

1_switch_limber_for_nc_los_over_z 1000 1000 1000 1000 1000

selection_sampling_bessel 3 1.2 1.2 1.2 1.2
g_linstep 0.3 2.5 1.65 40 10
k_max_taul_over_1_max 15 2 2 2 2

Table 5.8: Precision parameters used in CLASS to compute the angular power spec-
trum of number counts fluctuations. For the observed spectrum C{", we use pa-
rameters yielding to a high precision computation. For the theoretical spectrum
C’;h’”, we adapt the precision parameters for each configuration in order to keep the
error due to using lower precision parameters bound to Ax? < 0.2 in the likelihood
used.

where the parameter z; is defined as zp = 752 and the mean redshift for the EUCLID
survey iS zmean = 0.9. Also, the galaxy density is set to d = 30 arcmin~? and the
fraction of the sky covered is f, = 0.364. Finally, we model the shot-noise spectrum

due to the discreteness of the sample as

1
N = Noins 36507 (802 -
A strongly delicate point is the shape and redshift distribution of the survey. Be-
cause of that, and with the ultimate goal of not biasing our results we will use four
different configurations as follows. For the redshift bins distribution, we consider
two possible answer as Np,s = 5,10. In the case of the shape of each bin, we will
use a Gaussian and a top-hat distribution for each case. In the four possible combi-
nations we make sure the number of galaxies per redshift bin is evenly distributed.
Finally, the fiducial cosmology corresponds to the Dark Energy-Dark Matter Covari-
antised dark Thomson-like scattering fully explained in Section , with the values
of the cosmological parameters defined in Table

5.3.2 Modelling of the forecast

Once the modelling of the number counts and survey is done, we should comment
how we assess the importance or not of lensing convergence. In our case, we will
follow a MCMC approach as we will explain now, using the public code of Bayesian
statistics MontePython [32, 33].

Our first point is to calculate only once the observed number count spectrum C’jbs’ij.
Then, we use the fiducial cosmology of Table with high precision parameters
of Table in CLASS considering all contributions to the number counts, namely:
lensing convergence, density perturbations and redshift space distortions. Once we
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have it, we include it in a MCMC analyses through a likelihood prescription as

Y, .

max dth dle _

Ay? = 2(21 + 1) foky <1n dTst + (jth - Nbins> + Z(mi - x?d)cz‘jl(xj - x?d) ’
= ¢ ¢ ij

where d? = det(Cf’ij) and d"* are calculated as di" but substituting in each term of
the determinant one factor by Cgbs’ij. The theoretical spectrum C;h’ij is calculated in
each case, including lensing or neglecting lensing, with lower precision given by the
parameters of Table . Nevertheless, we require that the possible error when calcu-
lating Cgh’ij due to the lower precision is bound to be Ax? < 0.2. To avoid contamina-
tion from non-linear scales, we bound the previous likelihood to /;,,x = 400. In order
to speed up the calculations, we add the second term, a gaussian prior, where x4 de-
notes parameters of the fiducial model as X = (Q,h?, Qamh?, ns, In 10'° A, Treio, Ho, w, )
and C is its covariance matrix that was calculated for such fiducial cosmology in
Ref. [139].

The previous likelihood was encoded in a python script and added to the MontePython
code as another likelihood to be used.

5.3.3 Results

The previous implemented likelihood of equation measures the departure from
the fiducial cosmology when computing the theoretical spectrum C;h’ij in a certain
cosmology and with a certain contribution or precision. As we have chosen the pre-
cision parameters of CLASS to satisfy Ay? < 0.2, the departure of the likelihood will
account for how we compute the spectrum. Here, using the four possible config-
urations already explained, we perform in each case a MCMC analysis in the two
following situations:

* Consistent computation of leh’ij: including lensing convergence, density pertur-
bations and redshift space distortions. Thus, we expect to recover the fiducial
values of the cosmological parameters as the result of the MCMC for all four
configurations and with Ax? — 0.

* Approximate computation of C;h’ij: only with density perturbations and redshift
space distortions. If in a EUCLID-like survey neglecting lensing can bias the
results, the fiducial cosmology will not be recover from the MCMC analysis. If
not, we will recover the fiducial cosmology.

The following figures have been obtained using the code GetDist [127].

Top-hat: 5 redshift bins

The outcomes of the MCMC analyses for both cases, consistently including lensing
and neglecting it, are reflected in Table and in Figure . As expected, when
lensing convergence is considered the constrained parameters are identical to the
fiducial cosmology, represented by the black dashed and dotted lines. Of course,
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i) Consistently including lensing: Ax? = 0
Parameter | Mean | Bestfit| o [ shift: Mean | shift: Best fit

Qph? 0.02244 | 0.02248 | 0.00011 0.20 0.1c
Qdmh? 0.1195 | 0.1193 | 0.0006 0.30 0.10
N 0.9681 | 0.9691 | 0.0029 0.1c 0.40
In 1019 A, 3.045 3.049 0.013 <0.1c 0.40
Treio 0.0544 | 0.0570 | 0.0059 <0.10 0.50

Ho () | 6720 | 6740 | 042 0.20 <0.10
w —0.9781 | —0.9794 | 0.01 <0.10 0.1c
bo 1.007 0.999 0.011 0.7¢ 0.1c

S m, (eV) || 0.0758 | 0.0357 0.05 0.90 <0.1o
a 0.0718 | 0.0708 0.01 <0.10 0.1c

ii) Neglecting lensing: Ax? = 1636
Parameter H Mean \ Best fit \ o \ shift: Mean \ shift: Best fit

Qph? 0.02240 | 0.02238 | 0.00012 0.50 0.7¢
Qimh? 0.1198 | 0.1196 | 0.0008 0.60 0.3¢0
N 0.9673 | 0.9684 | 0.0029 0.20 0.20

In 1010 A, 3.0398 3.041 0.014 0.30 0.20
Treio 0.0523 | 0.0516 | 0.0060 0.30 0.40

Ho () | es67 | 6672 | 047 1.50 140
w —0.9608 | —0.9613 | 0.014 1.20 1.20

bo 1.0503 | 1.0499 | 0.012 4.20 4.20

S m, (eV) 0.276 0.273 0.056 4.30 4.30
a 0.0686 | 0.0683 | 0.011 0.3¢0 0.40

Table 5.9: The statistical results and the respective shifts with respect to the fiducial
cosmology when we consider all the contributions to the angular power spectrum of
number counts fluctuation (up) and when we neglect lensing convergence (down) for
a b redshift bins top-hat galaxy density distribution.

they coincide with the gaussian prior as both used the same fiducial cosmology.
This is strongly imprinted in the shifts on the mean and on the best-fit values with
respect to the fiducial cosmology used, reflected in the upper part of Table , where
all the parameters are well inside the 1o region and, thus, no deviation occurs. Also
the relative x? is zero as expected.

Nonetheless, when we neglect lensing convergence this is no longer true. Even if we
have added a gaussian prior on the Dark Energy equation of state w and on the Hub-
ble parameter Hj, they have a ~ 1 — 20 shift with respect to the fiducial cosmology,
both in the mean and best fit values. In the case of the bias parameter b, and the
neutrino mass ) m,, which were not affected by the gaussian prior, the shifts with
respect to the fiducial cosmology used are ~ 40, pointing towards the importance
in future surveys of considering lensing convergence. It is nonetheless disturbing
that in the case of the neutrino mass we have obtained a spurious detection, since
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Figure 5.9: The 1-D and 2-D posteriors for the cosmological survey and model pa-
rameters. Here the analysis uses a 5 redshift bins top-hat galaxy density distri-
bution. Gray (red) contours indicate results when lensing convergence is included
(neglected), whereas in blue we show the Gaussian prior distribution. Black, dashed,
vertical and black, dotted, horizontal lines indicate the values of the fiducial model.

when lensing is neglected we have a lower bound to it. This unavoidably remarks
the importance of considering lensing convergence or completely biased results will
be obtained.

Finally, we can see the strongly deviated value obtained for the og parameter when
lensing is neglected. The value obtained indicates a lower clustering in the Universe,
something that was one of the trademarks of pure momentum transfer models. How-
ever, in this case, we see the coupling parameter a remains unaltered when neglect-
ing lensing and, then, the shift in og is uncorrelated to the model. Relating this to
the og tension explained in Section , future surveys have to take care of properly
modelling the galaxy cluster counts or known tension will exacerbate.

The outcome of this first configuration with a top-hat distribution of each of the
five redshift bins has a clear message: lensing convergence in future surveys, like
a EUCLID-like one, must be considered or strongly errors will appear in the con-
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i) Consistently including lensing: Ax? = 0
Parameter | Mean | Bestfit| o [ shift: Mean | shift: Best fit
O h? 0.02244 | 0.02247 | 0.00011 0.30 <0.10
Qdmh? 0.1195 | 0.1193 | 0.0006 0.40 <0.1c
Ng 0.9678 0.9679 0.0028 0.10 < 0.1c
In 10'0 A 3.043 3.044 0.013 0.1c < 0.1
Ho () | 6727 | 6638 | 04 0.30 <010
> m, (eV) 0.06 0.03 0.04 0.60 <0.1o
bo 1.006 1.000 0.011 0.50 <0.10
w —0.98 —0.98 0.01 < 0.1c < 0.1c
Treio 0.0539 0.0543 0.0056 0.1c < 0.1c
« 0.0730 0.0723 0.0096 0.10 < 0.1c
ii) Neglecting lensing: Ax? = 1835
Parameter H Mean \ Best fit \ o \ shift: Mean \ shift: Best fit
O h? 0.02240 | 0.02240 | 0.00012 0.60 0.60
Qamh? 0.1197 0.1196 0.0007 0.50 0.40
Ng 0.9670 0.9680 0.0030 0.3c0 <0.1c
In 1010 A 3.039 3.035 0.014 0.40 0.60
Hy (&%) 66.31 | 6642 | 047 230 2.00
> m, (eV) 0.25 0.26 0.04 4.90 5.1c
bo 1.060 1.064 0.012 5.20 5.50
w —0.95 —0.95 0.01 220 2.00
Treio 0.0516 0.0493 0.061 0.40 0.80
o 0.0650 0.0689 0.0107 0.70 0.30

Table 5.10: The statistical results and the respective shifts to the fiducial cosmology
when we consider all the contributions to the angular power spectrum of number
counts fluctuation (up) and when we neglect lensing convergence (down) for a 5 bins
Gaussian galaxy density distribution.

straints of the cosmological parameters. As we will see, we will extend this warning
in the other configurations.

Gaussian: 5 redshift bins

Now we change the galaxy distribution to a gaussian one, while keeping the five
redshift bins. Results are shown in Figure and the statistical information in
Table with the same labels as in the previous case. Again when lensing conver-
gence is included, fiducial cosmology is recovered.

However, when we neglect lensing convergence we have ~ 20 biased constraints on
the Hubble constant H, and on the equation of state w, a bit stronger than before
for the top-hat case. Also, ~ 50 shifts rise on the neutrino mass ) m, and the bias
parameter by. Again, uncorrelated to the model used, the og parameter is shifted to
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Figure 5.10: The 1-D and 2-D posteriors or the cosmological, survey and model
parameters. Here the analysis uses a 5 redshift bins Gaussian galaxy density dis-
tribution. Gray (red) contours indicate results when lensing convergence is included
(neglected), whereas in blue we show the Gaussian prior distribution. Black, dashed,
vertical and black, dotted, horizontal lines indicate the values of the fiducial model.

lower values, that is, less structure.

The results from the gaussian case are in good agreement with the top-hat sce-
nario used before, then the warning is the same: future surveys must carefully con-
sider lensing convergence in their analyses. Also, it seems to not depend on the
shape of the distribution used, although we will now confirm it with the 10 redshift
bins analyses.

Top-hat: 10 redshift bins

Now we go back to the first analysis, but splitting the redshift range into ten bins,
with the top-hat distribution in each one. We also summarise all the results in Ta-
ble and Figure . As before, when all contributions are considered we recover
the fiducial cosmology, as all shifts are well inside the 1o region. Also as before, when
lensing convergence is neglected we find again shifts in the same parameters as in
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i) Consistently including lensing: Ax? = 0
Parameter | Mean | Bestfit| o [ shift: Mean | shift: Best fit

QOph? 0.02245 | 0.02248 | 0.00011 0.20 0.20

Qdmh? 0.1195 | 0.1193 | 0.0006 0.30 0.10

N 0.9682 | 0.9690 | 0.0028 0.10 0.40

In 1019 A, 3.045 3.048 0.013 <0.1c 0.40

Treio 0.0544 | 0.0556 | 0.0058 <0.1c 0.30
Ho () | er32 | 6140 | 039 0.20 <010
w —0.9788 | —0.9792 | 0.011 <0.1c <0.1c

bo 1.006 1.004 0.010 0.60 0.40

S m, (eV) || 0.0705 | 0.0612 | 0.048 0.80 0.60

a 0.0718 | 0.0685 | 0.010 <0.1c 0.40

ii) Neglecting lensing: Ax? = 1988
Parameter H Mean \ Best fit \ o \ shift: Mean \ shift: Best fit

Qph? 0.02240 | 0.02237 | 0.00012 0.50 0.8¢

Qamh? 0.1197 | 0.1198 | 0.0007 0.5¢ 0.7¢

N 0.9678 | 0.9670 | 0.0029 <0.10 0.3¢0

In 1010 A, 3.0378 3.036 0.014 0.30 0.20

Treio 0.0516 | 0.0511 | 0.0061 0.40 0.50

Ho (&) || 6690 | 6701 | 042 11o 0.90

w —0.9691 | —0.9728 | 0.013 0.7¢ 0.40

bo 1.0384 | 1.0376 | 0.012 3.30 3.20

S m, (eV) 0.214 0.206 0.052 3.50 3.40
a 0.0708 | 0.0730 | 0.010 0.1c <0.1c

Table 5.11: The statistical results and the respective shifts with respect to the fidu-
cial cosmology when we consider all the contributions to the angular power spectrum
of number counts fluctuation (up) and when we neglect lensing convergence (down)
for a 10 redshift bins top-hat galaxy density distribution.

the other two cases. Even though the shifts are slightly smaller, they are still im-
portant for parameters like the neutrino mass or the Hubble parameter, thus future
surveys must care about modelling lensing. One may understand the smaller shifts
as the effect of enlarging the precision due to more bins used to cover the same
redshift range.

Gaussian: 10 redshift bins

As done before, we now consider a gaussian distribution for the ten redshift bins
configuration. Results are shown in Figure and Table . Similar conclusion
are found, when lensing convergence is not neglected we do recover the fiducial
cosmology, with almost perfect compatibility with the gaussian prior used. Once we
neglect that contribution, shifts, both in the mean and best-fit value, start to appear
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Figure 5.11: The 1-D and 2-D posteriors for the cosmological, survey and model
parameters. Here the analysis uses a 10 redshift bins top-hat galaxy density distri-
bution. Gray (red) contours indicate results when lensing convergence is included
(neglected), whereas in blue we show the Gaussian prior distribution. Black, dashed,
vertical and black, dotted, horizontal lines indicate the values of the fiducial model.

in certain parameters. The Hubble constant Hy and the Dark Energy equation of
state w have ~ 1—2¢ shifts while the neutrino mass and the bias parameter have ~ 4o
shifts. The parameter oy emerges with a lower value that is uncorrelated to the
coupling parameter, which remains unaltered when lensing is neglected.

Consequently, we can infer that whatever configuration a EUCLID-like survey
uses, lensing convergence inclusion is of crucial importance to avoid strong errors
in the determination of cosmological parameters.

5.3.4 Final discussion

In this section, we have assessed the relevance of including or not lensing conver-
gence when modelling the galaxy cluster counts in a future EUCLID-like survey.
There has been an ongoing discussion on how relevant some contributions were,
like the lensing one, in order to have unbiased results. Previous works (see for ex-
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i) Consistently including lensing: Ax? = 0

Parameter | Mean | Bestfit| o [ shift: Mean | shift: Best fit
Q12 0.02245 | 0.02242 | 0.00011 0.20 0.50
Qdmh? 0.1195 | 0.1195 | 0.0006 0.30 0.40

s 0.0682 | 0.9687 | 0.0029 0.10 0.30

In 1010 A, 3.044 3.046 0.013 <0.1c 0.10

Ho () | 6720 | 6726 | 04 0.20 0.30
S m, (€V) || 0.06 0.06 0.04 0.70 0.80
bo 1.006 | 1.005 | 0.010 0.60 0.5

w —0.980 | —0.983 | 0.011 <0.10 0.20

Treto 0.0540 | 0.0549 | 0.0057 <0.10 0.10

o 0.0717 | 0.0715 | 0.0102 0.10 0.10

ii) Neglecting lensing: Ax? = 2435

Parameter H Mean \ Best fit \ o \ shift: Mean \ shift: Best fit
Qph2 0.02239 | 0.02245 [ 0.00012 0.60 0.10
Qamh? 0.1197 | 0.1196 | 0.0007 0.60 0.40

N 0.9672 | 0.9681 | 0.0029 0.20 0.1c

In 1010 A, 3.037 3.035 0.014 0.50 0.70
Hy (&%) 66.49 | 66.66 | 0.42 210 1.70
S my, (eV) 0.19 0.20 0.04 4.00 410
bo 1.045 1.048 0.011 410 440

w —0.955 | —0.961 | 0.014 1.80 1.40
Treio 0.0511 | 0.0513 | 0.0060 0.50 0.50

a 0.0675 | 0.0695 | 0.0104 0.50 0.30

Table 5.12: The statistical results and the respective shifts to the fiducial cosmology
when we consider all the contributions to the angular power spectrum of number
counts fluctuation (up) and when we neglect lensing convergence (down) for a 10
bins Gaussian galaxy density distribution.

ample [156, 157, 158, 159]) demonstrated how not taking into account lensing con-
vergence will lead to biased results for future surveys. In particular, mild or strong
shifts can be induced in parameters like the Dark Energy equation of state w, non-
Gaussianity fyr, neutrino mass ) m, or spoil certain hints inside Modified Gravity
scenarios. We want to highlight the case of the neutrino mass, that as we know by
neutrino oscillations they are massive. Future surveys will certainly measure it as
currents one are only able to set an upper limit. Therefore, having a wrong modelling
of the galaxy cluster counts will spoil such results.

In our case, we used as a proxy the Dark Matter-Dark Energy Covariantised dark
Thomson-like scattering for our fiducial cosmology and a EUCLID-like survey con-
figuration. Results are not expected to be strongly dependant on the model due to
its similarity to ACDM and its simplicity.
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Figure 5.12: The 1-D and 2-D posteriors for the cosmological survey and model
parameters. Here the analysis uses a 10 redshift bins Gaussian galaxy density dis-
tribution. Gray (red) contours indicate results when lensing convergence is included
(neglected), whereas in blue we show the Gaussian prior distribution. Black, dashed,
vertical and black, dotted, horizontal lines indicate the values of the fiducial model.

For the possible four configurations, that is five or ten bins and gaussian or top-
hat galaxy distribution, we have seen continuously partially biased results on the
Hubble parameter Hjy and in the Dark Energy equation of state w. Considering the
fiducial cosmology used, when lensing is neglected in the analyses, some ~ 1 — 20
shifts with respect to such fiducial values have been found in all the four config-
urations. Provided such parameters were affected by a gaussian prior, these shifts
should draw attention on how important is a good modelling of galaxy cluster counts
in order to avoid wrong constraints. Considering the disruptive Hubble tension, here
we have seen how neglecting the lensing convergence contribution may exacerbate
the discrepancies between low and high redshift probes. Even more worrying is what
happens with the bias parameter b, and the neutrino mass »_ m,, as the shift with
respect to the fiducial cosmology can be as larger as a 50 shift. In the case of the neu-
trinos, there is even a full, wrong, detection of the combined mass when lensing is
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neglected. Finally, also a shift to lower values appears in the og parameter, again ex-
acerbating the tension between low and high redshift experiments. It is worth saying
the coupling parameter is insensitive to the use or not of lensing convergence, there-
fore one can conclude the results are insensitive to the fiducial cosmology used here.

Since we have a very similar cosmology to the standard scenario without a large
dependence on its coupling parameter shown, and that results are not strongly sen-
sitive to the galaxy survey configuration used, we conclude the following: future
surveys must consider lensing convergence in their analyses or biased result will
appear.
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5.4 Discussion and final comments on forecasts

In this chapter, we have performed three different forecast analyses considering
as the fiducial cosmology the Covariantised dark Thomson-like scattering between
Dark Energy and Dark Matter studied in the previous Chapter 4. Each analysis had
a different aspiration and, for that goal, each one had different reference surveys. In
particular, the three cases were:

* Galaxy survey and J-PAS forecast: we studied how the future surveys J-PAS,
DESI and EUCLID measuring the clustering and the lensing signals will be able
to constrain the coupling parameter « of the model.

* Dipole of the power spectrum and SKA forecast: we analysed how the measure-
ment of the dipole of the Matter Power Spectrum can be used as a smoking
gun for the pure momentum transfer interactions. We used the future SKA
radiotelescope survey for that purpose.

* Cluster Counts and EUCLID forecast: we investigated the importance of a cor-
rect modelling of the lensing signal in future surveys like EUCLID to avoid
having spoiled results.

With the two first analyses, we found that all of the future surveys considered
will be able to strongly improve our constraints on the model studied. In particular,
in the first case we demonstrated how future surveys studying the clustering signal
would provide a 100 detection if the interaction is there according to our fiducial
cosmology. If we consider other scenarios where the cosmology might be different,
the constraints with future surveys will be four times better than the one presented
in Chapter 4 for the coupling parameter. However, lensing data will not have com-
petitive results due to the specificities of the interaction. In the case of the analyses
with the dipole of the Matter Power Spectrum, we have shown how the fact that this
interaction can mimic the break of the equivalence principle led to having the dipole
with SKA-like surveys as a smoking gun for the presence pure momentum transfer
interactions, according to the competitive results obtained.

The third analysis, Cluster Counts and EUCLID forecast, had a completely differ-
ent purpose. We tried to show how a bad modelling of the cluster counts observable
may lead to wrong results on the constraints of the cosmological or model parameter.
Specifically, we revealed how not including the lensing contribution resulted in hav-
ing biased constraints on several cosmological parameters like the Hubble Hj or the
og parameters, which are affected by the respective tensions explained in Chapter
Therefore, a careful modelling of cluster counts is essential for future experiments.

Although all the previous analyses were done using a particular model, it has to
be stressed that they are completely general to all the momentum transfer models,
since the model considered here was just a convenient description with appealing
properties as explained before. To conclude, future surveys will be able to strongly
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constrain, if not detect or rule out, momentum exchanges involving a Dark Sector
component.
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CHAPTER

NON-LINEAR SCALES

ntil now, we were only concerned about the large scale cosmological be-
aviour of the different models considered, meaning we were in the regime
where linear perturbation theory works. However, there are vast regions in
the Cosmos where perturbations have grown enough to overcome the linear regime.
In fact, those regions are where the formation of high density structures, like galax-
ies, Dark Matter halos or clusters, takes places. This is nothing but the consequence
of the Jeans instability, since matter has little pressure to counteract the gravita-
tional collapse where the linear regime breaks apart. Although the large scale results
give us the general dynamics of the Cosmos, we really need to understand how such
galaxies or halos are formed. The very first reason for that is quite evident and hu-
man: we live in a galaxy, that is, in one of those structures that formed non-linearly.
In some sense, non-linear analyses try to address the question of why we are here
in our galaxy and not in one of the vast amount of extremely low density regions
of the Cosmos. In a less philosophical sense, we try to understand how objects like
our galaxy are formed, how they are distributed in the Cosmos and how they evolve.
Thus, they are of crucial importance to fully characterise and test our cosmological
models and, then, we should carefully study how the dynamics work here to accu-
rately define how the Large Scale Structure is distributed. However, as the linear
perturbation theory is no longer valid and provided there are no global analytical so-
lutions for this regime in the literature, we have to resort to a new technique called
N-body simulations, which usually are expensive in terms of computation resources
and time.

The idea behind N-body simulations is very simple: consider a cubic box simulat-
ing a patch of the Universe and containing several point-like particles representing
the matter content. Those particles can be later labelled as Dark Matter, Baryons
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or anything we desire. Then, we should treat this system as a self-gravitating sys-
tem made up of a large number of particles in a large volume whose evolution is
dictated by the cosmological expansion, apart from gravity. This has three main
consequences. The first one is that gravity is the leading force in this systems while
the second one is the necessity of having a cosmological model to characterise the
cosmological evolution encoded in the scale factor a(t¢). The third one is that due to
the large amount of particles required, we are treating a statistical mechanical sys-
tem. This means that we are not really simulating the Universe in the sense we will
obtain the Milky Way or Andromeda galaxy there. But what it is required is to com-
pare the statistical properties extracted from the outcome of the N-body simulations
with the statistical properties of the distribution of matter observed in our Universe.
In that sense, observables like the profile of the halos, the amount of halos per cubic
volume or the relative abundance of structures are a subject of study.

We are dealing with very large systems where each particle we commented before
represents not a defined celestial body but a large amount of matter. We can do it
provided the scales we are studying are extremely large compared to the mass we as-
sociate to each particle. We also consider that the matter in our simulations, that we
now call particles of the simulation, are under weak gravitational potentials and the
velocities of each particle are non-relativistic, which is something reasonable in our
Universe for the times where structures formed. Since we are studying the dynamics
of the structures of the Cosmos where Newton’s laws are still valid, we can neglect in
principle the relativistic effects. Moreover, as we have the expansion of the Universe
according to a certain cosmological model, we will work with comoving coordinates
to account for it so it is not swarming uncomfortably through our equations. Given
the above, the master equation here is just the second law of motion according to
Newton but, however, we have to rewrite it in comoving coordinates so we have

d2z; dz;

ae PO
where ¥; and ¢; are the comoving coordinates and the perturbed gravitational poten-
tial of i-th particle of our system, while H(¢) is the Hubble function which encodes the
cosmological model. The first term is just the acceleration of the i-th particle, while
the second and third terms are the Hubble expansion and the gravitational force
created in the i-th particle by all the other particles in the simulation. Of course,
to close the system we need to define the form of the Hubble function H(¢) and the
gravitational potential ¢. The former is given by the cosmological model in each case
while the latter is obtained from the well-known Poisson equation

l = S
= _¥V¢’L(t7$) )

V24(t, %) = 4nGp(t)a®s(t, ) .

Here, we should not forget we are in the non-relativistic limit and the scales studied
are small in cosmological terms. The first condition now translates in our previous
equations to having particles of our system fulfilling the velocity condition v <« 1°,

In our units ¢ = 1.
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which is nothing but cold particles as we expect Dark Matter and Baryons are, and
feeling a gravitational potential such that ¢ < 1, as expected for the times structure
formation happens. The second one is just considering scales A ensuring A < 1/H(t)
for our system, that means well inside the horizon.

With the previous set of equations and once we choose the cosmological model,
we just need to compute the force between each pair of particles for each time given
certain initial conditions and evolve the system in time. Here is where it gets com-
putationally expensive. It is absolutely required to compute the force between each
pair of particle as we are dealing with gravity, a long range force. Accordingly, we
typically resort to codes like RAMSES [162] or Gadget [163, 164] to perform this task.
There are two main approaches when dealing with N-body simulations: Particle and
Grid based methods. In the case of Particle methods, the two main algorithms are
the Particle-Particle method and the Tree method. The first one basically consists
in computing the total force applied to the i-th particle as the direct sum of all the
forces each other particle exerts on the i-th particle. As for a very large amount
of particles the previous summation will increase enormously in length and then
in computational time, Tree methods appeared as an evolution of Particle-Particle
method. In Tree algorithms, bunches of particles that are close enough among them
and far away from the i-th particle are considered to form a group and the force
summed is the one of the group not each individual one, then saving computation
time. In the case of Grid methods, we have in the literature the Particle Mesh method
and its evolution the Adaptive Particle Mesh method (AMR). The first one uses a grid
over the simulation volume where each particle is assigned to the grid to have a
density and velocity field, which allows us to solve the corresponding Fourier space
Poisson equation with the help of Fast Fourier Transforms algorithms. In its evo-
lution, the AMR method, the grid is redefined with shorter spacing in high density
regions to obtain higher resolution there, without increasing the refining of the grid
in other low density regions where it is not required. Of course, new codes make use
of hybrid methods that basically profit the best parts of both techniques.

In this chapter, we will study how the non-linear dynamics behave with the help
of the N-body numerical code called RAMSES [162]. We will use the Covariantised
dark Thomson-like scattering in the case of Dark Energy and Dark Matter coupling,
explained in Section . We choose only that case due to four reasons. Firstly, it is
a simple model having similar background dynamics as the standard ACDM model
and only one modification in Euler equations. Secondly, the modifications required
are little and well located. As seen, we have three main equations, namely the co-
moving second law of motion, the Poisson equation and the Hubble equation, being
the first equation the only one that should be modified. Thirdly, Dark Matter created
the seeds for the formation of halos and galaxies and it is around five times more
abundant than Baryons. Therefore, any interaction affecting Dark Matter will change
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more the cosmological evolution than if it would affect Baryons. Finally, regarding
the data analyses performed in previous chapters, this case was the most favoured
by data. To end with, we want to highlight here that the analysis of non-linear scales
is the most natural next step regarding what has been done in Chapters 4 and 5,
since there all the linear investigation was completed including for future surveys.
The organisation of the chapter is the following. Firstly, we will present how the gen-
eral equations are modified in the context of N-body simulations while we explain
how to adapt the previous derivations to the RAMSES language, in order to show how
the code was modified to account for the model considered. After that, we will present
the main effects and consequences on the creation and evolution of structures in the
Cosmos due to the interaction. We finish with the conclusions and future work.

6.1 N-body implementation

Since we now want to analyse how the pure momentum transfer models change the
non-linear scales, we have to adapt the available numerical codes to our model. In
our case, we will work with the RAMSES code [162], although the following derivation
should be identical in other codes apart from the specificities of each code. We choose
to implement the Covariantised dark Thomson-like scattering studied in Chapter
Thus, we need to implement the changes due to our interaction which mainly consist
in adding the new term to the Euler equation. We had two different scenarios, the
first one was when Dark Energy is coupled to Dark Matter, having a modified Euler
equation for Dark Matter (up to linear order in perturbations) given by

0, = —HOqm + E>® + T (0ge — Oam) ,

where I' = @p‘: with the normalisation o« = g%ﬁa as explained in Section . The
am 0
second scenario was when the coupling acts between Dark Energy and Baryons,

giving the following modified Euler equation

0 = —Hoy + k*® + Tr (0 — 6y,) + T (0qe — ) ,
81G
3H§
vided Thomson scattering is negligible for the scales of interest where formation of
structures happened under the interaction being efficient, both cases are formally
identical. Moreover, as we are not going to make use of hydrodynamics simulations~,
we will have that all the particles in our codes are treated equally in the original algo-
rithm. Then, there is in principle no distinction between Baryons and Dark Matter.
However, we do not want to apply the interaction to both at the same time as oth-
erwise the interaction with the most abundance one, Dark Matter, would hide the

where I' = 6;% with the normalisation g = $ as explained in Section . Pro-

2Although that will be an interesting line of research in the future as it allows to perform simula-
tions where baryons are treated like a fluid rather than a particle, allowing to study certain processes
of formation of structures.
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other coupling. Consequently, the second modification required in the codes con-
sists in adding a categorisation or family, labelling if a particle is Dark Matter or
Baryons according to their relative abundance, so we can apply the interaction to
each one separately.

Since now we know both cases are formally equal and without hydrodynamics
simulation options, we will perform here the derivation for the case of Dark Matter
as the example. Consider the previous equation that we want to rewrite as

Gm;r;
__HUZ+Z m]/rj +FP Hdeaedm)u
J#i ”

where F (T, 04c,04m) is the new term due to the momentum transfer. This equation
corresponds to the second law of motion depicted in equation . Conversely, the
other relevant equations in N-body simulations, the Poisson and Hubble equations,
are not formally modified by the momentum transfer, rather than just adding the
very standard wCDM model. Thus, we focus our efforts in the velocity equation

for this model. In equation , the first two terms correspond to the standard ex-
pansion term and the gravity which will remain unaltered and correspond to the
first two terms of equation . Then we can forget about them in our derivation.

We have the relation between the Fourier space velocity divergence and the velocity
and between conformal time and cosmic time, both given by 0 = ik-vand by adr = dt.
The final subtlety is the presence of the Dark Energy velocity divergence 64.. As N-
body simulations deal with self-gravitating systems made up of a large amount of
particles, there is no implementation of the Dark Energy fluid in principle. However,
we should bear in mind our purpose here: very small scales. In such non-linear
scales and for the standard scenario, Dark Energy velocity is negligible as the dy-
namics are controlled by gravity. But now, due to the coupling this might no longer
be true. However, coming back to Chapter 4, we demonstrated there how for small
scales and late times, when precisely the interaction was efficient and the formation
of structures happened, Dark Energy velocity contribution to the new term in the
Euler equation was negligible, while we consider sensible” values of the coupling
parameter. This can be seen for example in Figure or Figure . Consequently,
we can rewrite the Euler equation as

Gm;T; Hy
HUI+Z ]”—aQ O(t)vi.
7 i dm

We can apply the same logic to the Dark Energy-Baryon coupling having then

Gm]rl] Hy |
H’UZ—FZ - Qb(t)vi.
J#i ”

3By sensible we mean the values suggested by data in our MCMC analyses, that is a ~ 8 ~ O(1).
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Our previous approximation vgy, >> v4e O vy, > vge Will, however, produce wrong re-
sults when looking at larger scales where the previous consideration no longer holds.
The previous equation represents the master equation governing the behaviour of a
self-gravitating system where the action of Hubble expansion and a pure momentum
transfer takes place. To create the modified version of RAMSES code, the final step is

to adapt the previous equation to the supercomoving coordinates defined by
T

E?
dt

S
Il

dt

@M‘om

where L is the comoving size of the simulation box in Mpc/h and now & and t are
dimensionless. The previous modified master equation was included in RAMSES code
at the same time we add a label to the particles in the simulation, so that they are
split according to the relative abundance into Baryons or Dark Matter. This allows
us to switch on the interaction only to one of them or to both at the same time. For
this PhD dissertation, we will only apply the interaction to the Dark Energy-Dark
Matter case, since Dark Matter is more abundant and the possible consequences
will be easier to spot. Finally, the wCDM Hubble function was included in the code.
Before delving into the effects of the interaction, we may notice that we lack of a
starting point, that is initial conditions. Profiting that the interaction does not act
until very late times, we can use the standard generators of initial conditions as the
high redshift results are indistinguishable whether the interaction is there or not. In
our case, we use the MUSIC2-monofonIC code [165, 166].

6.2 Non-linear effects

Once the previous modifications were implemented, we tested the results from our
modified version of RAMSES with the results obtained from our modified version of
CLASS, giving different values for the coupling parameter. Although when seeing the
effects we will notice the following, in Figure we display the Matter Power Spec-
trum calculated from CLASS with and without the HALOFIT option and from RAMSES.
We use this plot to check that our implementation works correctly. We did find a
small difference in amplitude for very large scales k ~ 1073 —10~2 h/Mpc when the in-
teraction was switched on. The amplitude of the Matter Power Spectrum was smaller
calculated from RAMSES than when calculated from CLASS. The reason was already
explained before. In our implementation, we did take the approximation vy, > v4e,
which was true only in smaller scales. For large scales like k ~ 1073 — 10~2 h/Mpc,
both velocities should be similar as all components in the Universe share the same
rest-frame by the virtue of the Cosmological Principle. That unavoidably provokes
the interacting term vanishes as it is proportional to (vgy, — vge). With the approxi-
mation done to obtain the equations or the interacting term does not vanish,
thus acting like a friction term even for large scales and, then, suppressing the Mat-
ter Power Spectrum. This effect is corroborated by the larger wrong suppression for
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Figure 6.1: Matter Power Spectrum for different values of the coupling parameter «
computed from the modified version of CLASS without and with HALOFIT and from
RAMSES.

larger values of the coupling parameter. For very small scales k¥ > 10~! h/Mpc we
again found a difference. Of course, these are smaller scales where non-linear ef-
fects emerge and then the linear solver CLASS is no longer reliable. However, using
the non-linear prescription of CLASS called HALOFIT, we can see how the results
from our RAMSES implementation closely follow them up. This result is significant
as HALOFIT was designed for ACDM, but due to the similarities between our model
and the ACDM one, it can be also applied in our case. In very small scales, where
of course HALOFIT is not reliable either, again differences appear. In the case of in-
termediate scales, both codes RAMSES and CLASS perfectly match. It was therefore
concluded that the implementation was done correctly and we can proceed to study
the different effects of the interaction in the non-linear small scales where we know
our modified version of RAMSES is reliable.

In the following analyses, we will consider the case of Dark Energy-Dark Matter pure
momentum transfer, analysed in Section . As explained, the larger the abundance
of the interacting matter partner, the more evident and clear the effects are due to the
interaction. We consider a wCDM background cosmology with cosmological parame-
ters defined by Hy = 67.7 Km/s/Mpc, Q1, = 0.045, Qq,, = 0.269, As = 2.1 107, ng = 0.968
and w = —0.98. Finally, the initial conditions were obtained from MUSIC2-monofonIC
code with the previous chosen cosmology. The following results are obtained using
a simulation box with L = 10® Mpc/h populated with 5123 particles.

Continuing with the previous study of the Matter Power Spectrum, we display it
in Figure for several redshifts. Taking out the very large scales where we already
know our implementation fails, we can see how the interaction becomes efficient for
very late times since in the first plot for z = 1 there is no distinction between the stan-
dard and the interacting case. Once it becomes efficient, it first affects the smaller
scales as we can see in the second plot for z = 0.42. Eventually, more scales fall un-
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Figure 6.2: Matter Power Spectrum for different redshifts computed from the modi-
fied version of CLASS with HALOFIT and from RAMSES.

der the influence of the drag, having less structures formed and, hence, reducing the
clustering. We can infer the previous consequence from the reduced amplitude of the
spectrum comparing the standard scenario and the case with a = 1, in Figure
For very small scales k& > 1 h/Mpc, however, a different situation appears. We get an
enhancement of the spectrum when the interaction is efficient. This change on the
behaviour still represents an open question to be answered by future analyses.

Of course we did not perform N-body simulations in order to obtain a Matter
Power Spectrum reliable for very small scales. Here, we are actually interested in
how structures formed. To study that, we need to analyse how the basic compo-
nents of Large Scale Structure are created and evolve. Those elements are the Dark
Matter halos and the galaxies. We distinguish two basic types of analyses. On one
hand, what we can call the large picture where we study how the different halos
distribute and form. On the other hand, we can study each individual halo proper-
ties and how particles distribute to form each halo. We will focus here in the large
picture while we keep the other case as a future work to enlarge our knowledge
of pure momentum transfer interactions. Regarding that, we use the MatchMaker
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Figure 6.3: Spatial distribution in the simulation box of the halos found by
MatchMaker algorithm. Each dot is an halo whose colour and dot-size are corre-
lated to its mass.

algorithm™, a friend-of-friend halo finder, with standard options given by the link-
ing length in units of the mean inter-particle distance b = 0.2 and the minimum
number of particles per halo n,;, = 20. As we are interested in the large picture be-
haviour, we are not going to distinguish between Dark Matter and Baryon particles
to form the halo, although we should not forget the interaction does distinguish as
it is only applied to Dark Matter. This a priori loss of information can be motivated
as follows: galaxies form deep inside the potential wells created by Dark Matter,
thus the future halos found have Baryons also as constituent elements. Under the
previous considerations, we show in Figures and the spatial distribution of
halos found by MatchMaker algorithm. Each dot there represents one single halo
and the colour and dot-size are correlated to the amount of mass the halo has in
units of My /h. Although we will later analyse in more detail, in Figures and

we can see how the interaction reduces the creation of very massive halos. As larger
halos are formed later than smaller halos, the hierarchical formation of structures
inside Cold Dark Matter models, those larger ones feel the interaction when they are
forming since this interaction becomes efficient at late times. As it was analysed in

4MatchMaker can be found at https://github.com/damonge/MatchMaker.
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Figure 6.4: Spatial distribution in the simulation box of the halos found by

MatchMaker algorithm. Each dot is an halo whose colour and dot-size are corre-
lated to its mass.

Chapter 4, the momentum transfer does not destroy structures already formed but
it freezes the accretion process, stopping density perturbations to grow, as we saw

in Figure for example.
Investigating deeper on how halos are formed, we can perform a number counts
analysis to delve into the knowledge of such a process. In Figures and , We

display how many halos are created as a function of the number of particles each
one has and how many halos are created as a function of the mass in My/h units
each one has, respectively. While the differences between the ACDM and the interac-
tion on the amount of clusters with lower masses and less particles are statistically
not significant, when we look into the more massive halos with more particles a
departure appears. For early times z = 1, when the interaction is not efficient, no
significant differences emerge. This means that as both cases had the same initial
conditions and no different evolution yet, both simulated Universes create struc-
tures in the same way, as expected. When the interaction becomes efficient, less
very massive halos appear in the case of the pure momentum transfer simulation.
Also halos with a large amount of particles forming them are reduced in number.
This closely follows what we saw with the spatial distribution.
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Figure 6.5: Distribution of halos according to the number of particles contained for
the standard model and for the Covariantised dark Thomson-like scattering.

The first learnt conclusion is that the dynamics of smaller halos are not per-
turbed considerably by the interaction. This is explained by the fact the interaction
is efficient at late times and, in a hierarchical structure formation model, smaller
halos are formed the first, thus not being affected in their formation by the, at that
moment, inefficient momentum transfer. But for larger halos this is not true. As
they are formed later they do feel the interaction while they are under construction.
Dark pure momentum transfer models induce the freezing of clustering of Dark Mat-
ter and, precisely, Dark Matter is the governing component of structure formation.
Consequently, those larger halos cannot accrete more matter due to the interaction
and, then, larger halos are strongly suppressed.

6.3 Discussion and final comments on non-linear analysis

In this chapter, we conducted a first approach into the non-linear regime of the
pure momentum transfer models studied in Chapter 4. In particular, and due to its
simplicity and similarity with the concordance model alongside with the appealing
properties shown, we studied the non-linear dynamics of the Covariantised dark
Thomson-like scattering in the case of Dark Energy and Dark Matter having the
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Figure 6.6: Distribution of halos according to their mass in M /h units for the stan-
dard model and for the Covariantised dark Thomson-like scattering.

momentum exchange.

In our analyses, we first showed how, at the level of the Matter Power Spectrum,
the momentum transfer induces a suppression of structures up to very small scales
k ~ 1 h/Mpc, as reflected by the amplitude of the Matter Power Spectrum. This
continues with what we had already obtained for linear scales: once the interaction
becomes efficient for late times it couples the velocity of both interacting fluids via
a momentum exchange from Dark Energy to Dark Matter, leading to less matter
falling into the potential wells and, finally, having less clustering. On smaller scales
k > 1 h/Mpc, the situation seemed to change and more clustering, represented by a
larger amplitude of the spectrum, appeared. In principle, the refinement done should
ensure this was not a numerical issues due to the mesh used. Thus, a carefully
future study is required, using simulations with the focus on those very small scales,
although also analytical investigation can shed light to that regime. This represents
one of the main future targets in the wake of this PhD dissertation.

We have also studied the distribution of halos according to certain properties,
namely: spatial position, number of particles per halo and mass of each halo. The
results showed that the interaction provoked less abundance of larger halos, both in
mass and number of particles, while the smaller halos remained similar to the stan-
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dard scenario. The previous result is the consequence of the hierarchical process of
formation of halos, since larger halos formed latter when precisely this interaction
was efficient.

With the previous results we have mainly characterised the large picture of this
interaction, but it is evident there is still a large way to go. We still miss a study on
the individual properties of the halos, like for example the profiles or the distribution
of particles in each halo. In that respect, one of the main future investigations that
should emerge after this PhD dissertation would be seeing how the interaction affects
the cusp-vs-core problem or if the erasing of very massive structures worsens the
missing-satellite or the too-big-to-fail problems. Another interesting investigation
would be to see what happens when the interaction is applied to Baryons instead of
Dark Matter. In that context, the inclusion of hydrodynamics simulations could lead
to an important step forward in the knowledge of these models. We can conclude
that this part of the PhD dissertation should have a continuation in the future to
fully understand all the intricate implications of the presence of a pure momentum
transfer involving the Dark Sector.
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CONCLUSIONS AND PROSPECTS

he concordance model has faced in recent years certain observations that
{ =% have put pressure on it, then, taking into account most of our datasets agree
Fe Ry with it, possible minimal extensions may be needed. Because of that, this
PhD dissertation has been devoted to the examination of pure momentum trans-
fer models involving the Dark Sector, since those scenarios preserve the background
cosmology while only adding a minimal modification to the Euler equations. We have
first derived their main equations controlling the background and linear perturba-
tion dynamics and, after that, we have investigated the distinctive effects of each
model in order to search for specific footprints of the interactions. Subsequently, we
confronted our models to the latest data available to explore if they were preferred
by observations or not. We have also analysed how future experiments will be able
to detect or rule out the interactions presented. Finally, we have performed a first
approach to the non-linear dynamics of the previous models.

In this PhD dissertation, we analysed the Covariantised dark Thomson-like scat-
tering, first between Dark Energy and Dark Matter and, after, between Dark Energy
and Baryons, and the Velocity-entrainment coupling. The mechanism of action was
similar in all the cases. A late-time interaction between a pressurefull fluid and a
pressureless fluid, such that the later gains momentum from the former. This pro-
vokes that the pressureless fluid, a non-relativistic matter component, stops falling
into the gravitational potential wells due to that extra momentum acquired. Hence,
as it does not fall into the potential wells, density perturbations of the matter fluid
get frozen and, thus, the clustering is reduced and less structures are observed. This
mechanism was further seen up to smaller scales when we performed the non-linear
analyses thanks to the N-body simulations done with the first model studied.

With the previous analyses, we have demonstrated that those extensions tend
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to erase structures when efficient, mainly in the late Universe and in the small
scales regime. Moreover, thanks to the N-body simulations and the analyses of the
linear perturbations, we can conclude that a pure momentum transfer does not de-
stroy already virialised structures but it just freezes the growth of them. Particularly,
we discovered that the pure momentum exchange only prevents the formations of
very massive halos, keeping the small and middle size halos as in the concordance
model. Although the reduction of structures is a general effect of pure momentum
transfer models, the previous statement about the halo formation is arguably model
dependent. In particular, dependent on when the interaction becomes efficient. In
the cases studied, the suppression of only very massive halos was related to the
hierarchical process of formation of structures.

We have also performed Monte Carlo Markov Chain analyses with the previous

three models in order to see if current data prefer or not them to the concordance
model. We have found that a detection of the interaction is possible when the lo-
cal Universe data of the Sunyaev-Zeldovich effect on cluster count were used. With
the Cosmic Microwave Background, the Baryonic Acoustic Oscillations and the Su-
pernovae la data, we were only able to establish an upper limit for the coupling
parameter that, in any case, was compatible with the results when adding the Sun-
yaev—Zeldovich data. According to the recent literature, the relation between that
particular dataset and the pure momentum transfer models seems to be general,
calling for more investigation to clarify whether the momentum interactions are re-
ally seen by those datasets or not and, if so, why.
Regarding the other cosmological parameters, we should highlight the Hy, and og
parameters, which are affected by the two most prominent dataset tensions nowa-
days. In relation with the Hubble constant Hj, a pure momentum transfer cannot
modify its value as Hj belongs to the background cosmology, which remains unal-
tered in these scenarios. As expected, we did not see any significant alleviation of
this tension when only a pure momentum transfer was applied. Because of that, we
add the possibility of having extra radiation since that might alleviate both tensions
simultaneously by two independent mechanisms. Before commenting those results,
it is better to first explain what we have obtained for the os tension. We have found
how the pure momentum transfer induces a lower value of the og or Sg parameter
by its intrinsic mechanism of action, which reduces the clustering and the struc-
tures for late times. When the Sunyaev-Zeldovich data were used, and then the
interactions were detected, we had the og/Ss tension solved. But also without the
Sunyaev-Zeldovich likelihood we did have a substantial alleviation of the tension.
Coming back to the case when we had extra radiation, we have found how the al-
leviation of one of the previous tensions does not imply the worsening of the other,
something common as seen in the literature. However, the possibilities of alleviating
both tensions at the same time are limited as far as we have seen with the models
studied. Anyhow, the easing of each tension was due to uncorrelated mechanisms
in these scenarios, thus future models might better address both simultaneously.
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Finally, we have used the Covariantised dark Thomson-like scattering between
Dark Energy and Dark Matter to perform three different forecast analyses in this
PhD dissertation. In the first case, we have demonstrated how the clustering data
in the future J-PAS, DESI and EUCLID surveys will be able to heavily improve our
previous constraints from the MCMC analyses. In particular, a ~ 100 detection of the
model parameter will be found when the surveys will come their end, if the cosmol-
ogy is compatible with a = 1. If not, current constraints will improve by a factor ~ 4.
Furthermore, we have also investigated if the relativistic corrections that appear in
the dipole of the Matter Power Spectrum can be used as a smoking gun for these in-
teractions in future experiments. Using a SKA-like configuration, we have found that
these interactions will be spotted by the dipole with competitive constraints in the
probable scenario galaxies are still faithful tracers of the underlaying matter density
field. However, in the opposite case, a SKA-like survey will not be efficacious enough.
Lastly, we have analysed if a bad modelling of the cluster counts in a future EUCLID-
like survey could bias the cosmological constraints and/or provided a wrong detec-
tion of the interaction. We found that neglecting the lensing contribution to the clus-
ter counts modelling induces biased results in several parameters. In particular, we
showed that the Hy, og or bias parameter can get up to a 50 shift in their value when
lensing contribution was neglected. This can be connected with the well-known ten-
sions as, with this analysis, we have shown how any miss-calibration, neglection
of terms or anything similar can dramatically induce an apparent tension among
datasets.

From the forecasts analyses, we can affirm that future surveys will be crucial to
detect or rule out the pure momentum transfer interactions and that a correct mod-
elling of the different observables is absolutely required.

Looking ahead, the investigations this PhD dissertation have condensed leave
certain open questions. On one hand, the analysis of the non-linear dynamics still
needs a more comprehensive examination. Even though the large picture of the non-
linear scales has been studied, we should analyse the small picture. In particular, a
thorough inspection on the properties of the individual halos should be performed,
like for instance their density profiles or the formation of voids. Also, profiting the
already developed numerical codes, the current core-vs-cusp, the missing-satellites
or the too-big-to-fail problems will need to be examined under the pure momentum
transfer models. Another interesting investigation to perform in the future would be
to understand if when the interaction is applied to only one matter component, the
movement of virialised galaxies and halos is coherent. In other words, if galaxies are
still faithful tracers of the Dark Matter field when a momentum exchange appears
as it has been considered in certain parts of this PhD dissertation.

On the other hand, we have not questioned the possible microphysics behind a
pure momentum transfer. It is true that without any proper detection a Dark Matter
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particle or a Dark Energy field in our laboratory experiments, the task seems ar-
duous. But Physics has predicted particles from macro-effects even before we were
technologically capable of inspecting the related microphysics. The future surveys
will be able to set extremely precise constraints not only on cosmological parameters
but also in any model parameter invoking a hidden interaction. Consequently, the
space of parameters where a Dark Matter particle or a Dark Energy theory would
live will get smaller and smaller and, with it, the range of possible interactions in
the Dark Sector. Regarding this line of research and inspired by the similarity of
some of these interactions with the Thomson scattering, it will be interesting to see
if a recent dark (re)combination or dark (re)ionization would explain this coupling or,
maybe, a more general mechanism might be behind a pure momentum transfer.

Now the journey is nearing its end, we conclude this PhD dissertation has thor-
oughly investigated the pure momentum transfer interactions, showing how they
can be an appealing alternative to the current scenario and, at the same time, not
changing dramatically the current concordance paradigm.
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CONCLUSIONES Y EL PORVENIR

5/]1 modelo de concordancia de la cosmologia actual, si bien extremadamente
it preciso segun la mayoria de los observables disponibles, se enfrenta reciente-
=4 mente a ciertas observaciones que lo han puesto en duda o que han sugerido
la presencia de algo mas alla. Es por ello que esta tesis doctoral tiene por objetivo
el estudio de los modelos de intercambio puro de momento que involucran al Sec-
tor Oscuro del Universo. Dichos modelos tienen por atributos la no modificacion de
la cosmologia de fondo y solamente cambiar la descripcion actual anadiendo una
cierta modificacion en las ecuaciones de Euler. En esta tesis, hemos obtenido las
ecuaciones que gobiernan la cosmologia de fondo y sus perturbaciones lineales para
poder posteriormente investigar aquellos efectos de los modelos que nos permiten
detectar su presencia o no. Después, hemos usado aquellos datos cosmologicos mas
recientes para constrefir la presencia o no de las interacciones que describen esos
modelos. Ademas, hemos investigado como los experimentos futuros van a mejorar
o no los anteriores resultados. Por ultimo, hemos realizado un primer estudio de las
escalas no lineales del Universo bajo estos modelos.

En la presente tesis doctoral, hemos estudiado un modelo de dispersion de tipo
Thomson covariantizado entre Energia Oscura y Materia Oscura primero, y luego
entre Energia Oscura y Bariones, y otro modelo de acoplamiento por arrastre en las
velocidades perteneciente enteramente al Sector Oscuro. En los anteriores casos,
la forma de actuacion de las interacciones era similar, tratdndose de una interac-
cion eficiente en estadios tardios del Universo entre un fluido con presion y otro sin
ella, de tal manera que este ultimo ganaba momento del anterior. Esta transferencia
provocaba que el fluido sin presion, generalmente una componente fria de materia,
dejara de ser acretado por los pozos de potencial y, por tanto, sus perturbaciones de
densidad dejen de crecer reduciendo las acumulaciones de materia y las estructuras
en diferentes escalas de Universo. Con los anteriores analisis hemos demostrado que
dichas interacciones son capaces de eliminar estructuras en fases tardias y escalas
pequenas del Universo pero sin destruir las estructuras ya virializadas, sino que la
transferencia pura de momento resultaria en la congelaciéon de proceso de acumu-
lacion de materia. De hecho, s6lo aquellos halos mas masivos se verian afectados por
estas interacciones, siempre y cuando sean eficientes tardiamente, pues los menos
masivos se forman primero cuando la interaccion no es eficiente.

Por otro lado, hemos realizado diferentes analisis por medio de métodos de ca-
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denas de Markov Monte Carlo con los diferentes modelos estudiados con el fin de
saber si los datos cosmolégicos mas actuales prefieren o no dichos modelos frente
a la descripcion de concordancia. Gracias a dichos analisis, hemos descubierto el
rol que tiene los datos del efecto de Sunyaev-Zeldovich en los camulos, siendo este
conjunto de datos el unico que es capaz de dar una deteccion de las interacciones
estudiadas. Sin embargo, con los datos del Fondo Césmico de Microondas, de las
Oscilaciones Acusticas de Bariones o de las Supernovas de tipo Ia solamente se
pudo establecer un limite superior al parametro de la interaccion en cada caso. Esta
relacion entre los datos del efecto de Sunyaev-Zeldovich y los modelos con presencia
de un intercambio puro de momento se ha encontrado recientemente en numerosos
estudios con muy diferentes modelos en cada caso. Por tanto, mas investigacion es
necesaria para aclarar dicha particular relacion.

En los anteriores analisis, se hallé que el valor del parametro de Hubble Hy, el cual
esta afectado por la explicada tension, no se veia modificado por las interacciones de
trasferencia de momento. Dicho resultado era esperado pues en dichos escenarios
la cosmologia de fondo permanece impertérrita, siendo Hy un parametro que vive
precisamente en la cosmologia de fondo. En el caso del parametro og, que también
esta afectado por otra tension, si se vio como estas interacciones permiten reducir
su valor y por tanto aliviar, sino resolver cuando se usan los datos del efecto de
Sunyaev-Zeldovich, la anterior tension. La explicacion a ello se conecta con lo visto
anteriormente, pues og mide la cantidad de estructuras en el Universo y por tanto,
como estas interacciones las reducen, su valor se ve naturalmente menguado. De
cara a poder aliviar ambas tensiones simultaneamente, se estudi6 la posibilidad de
anadir radiacion extra en cada caso. Se vio que no era posible resolver ambas ten-
siones simultaneamente, si bien aliviar una no implicaba empeorar la otra tension
como suele ser comun vista la literatura. Cabe decir aqui que dado que el alivio de
cada tension se hace por mecanismos independientes, otros modelos podrian quiza
si resolver ambas tensiones.

Para terminar, hemos realizado diferentes analisis de tipo prospectivo usando el
primero de los modelos estudiados, aquel dado entre la Energia Oscura y la Materia
Oscura de dispersion de tipo Thomson covariantizado. En el primero de estos anali-
sis, hemos demostrado como los experimentos futuros J-PAS, DESI y EUCLID van
a ser capaces de darnos una deteccion de hasta 100 del parametro que controla la
interaccion si la cosmologia es compatible con el resultado obtenido en los analisis
anteriores o = 1. Si no fuera este el caso, los resultados de los futuros experimentos
se esperan mejoren hasta un factor cuatro aquellos resultados que ya disponemos.
Ademas de lo anterior, en otro analisis hemos investigado si las correcciones rela-
tivistas que aparecen en el dipolo del Espectro de Materia pueden ser usadas como
pruebas distintivas de la presencia de este tipo de interacciones. Gracias a una
configuracion similar al futuro experimento SKA, hemos encontrado que las interac-
ciones que impliquen una transferencia pura de momento en el Sector Oscuro van
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a poder ser detectadas con el dipolo en los futuros experimentos, siempre que las
galaxias sigan actuando, a pesar de la interaccion, como balizas de la distribucion
de la materia. En el caso que no fuera asi, el dipolo no daria resultados competitivos.
Finalmente, hemos analizado si una modelizacién incompleta, como se hace en oca-
siones, del observable que condensa la distribucion de los camulos puede resultar
en parametros mal medidos tanto de las interacciones como los cosmologicos. Si
bien el parametro de la interaccion permanecié inmutable, parametros como Hy, g
o el parametro de bias tuvieron errores de hasta 50, lo cual puede conectar con las
tensiones anteriormente comentadas siendo una alerta para futuros experimentos.

Podemos concluir por tanto que los experimentos futuros van a recavar grandes can-
tidades de informacién que nos va a permitir confirmar o descartar la presencia de
interacciones de tipo intercambio puro de momento, por supuesto siempre y cuando
su modelizacion sea la adecuada.

De cara al porvenir, sabemos que lo aqui investigado deja ciertos asuntos todavia
por resolver y clarificar. Por una parte, el analisis de las escalas no lineales realizado
es sb6lo un pequeno paso dentro de todo lo que se puede realizar a ese respecto.
Por ejemplo, queda pendiente un estudio sobre las propiedades individuales de cada
halo de materia, como podria ser sus perfiles de densidad, o, por otro lado, el es-
tudio de como se forman y evolucionan los vacios. Cabria también analizar como
se encuadran en estos modelos los problemas sobre formacion de estructuras an-
teriormente comentados o si el movimiento de las distribuciones de materia visible,
galaxias, y oscura, halos, son coherentes cuando se da el intercambio de momento.
Por otro lado, es cierto que durante esta tesis doctoral no se ha cuestionado el posi-
ble origen de dicha interaccion ni su posible descripcion microscopica. Si bien sin
una deteccion en nuestros laboratorios de una particula o de un campo de Energia
Oscura o Materia Oscura seria una tarea dificil, no es la primera vez en la historia
de la Fisica que se ha descrito a partir de los efectos macroscépicos un fenémeno
microscopico tecnolégicamente invisible en esas fechas. En esta linea, un proceso
parecido a la recombinacion o a la reionizacion pero en el Sector Oscuro podria
explicar los intercambios de momento macroscopicos. Todo lo anterior quedara su-
peditado a los futuros experimentos que se han planeado para los siguientes anos.

Ahora que se acerca el final del apasionante viaje que es una tesis doctoral, se
puede cerrar concluyendo que esta tesis doctoral ha servido para llevar a cabo una
profunda y detallada investigacion sobre modelos donde un intercambio de momento
puro se da, siendo estos una prometedora alternativa a la descripcion actual por las
propiedades descritas aqui.
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APPENDIX

STATISTICAL TOOLS

nalysing nature relies on two key concepts, the laws of nature and the obser-
ations we are able to perform. However, both concepts live in two different
=|worlds. Laws of nature establish unambiguous equations that dictate how
the world works while observations usually give raw data fully equipped with noise,
uncertainties, statistical fluctuations, etc. As we need both concepts to be consis-
tent between them to do science, we must be able to translate the laws of nature into
what we should observe and, vice-versa, we should be able to process raw data into
well defined distributions that will allow us to fit our laws of nature. Consequently,
we need to connect them and here is where statistics are needed.

Statistics are the mathematical tools that, first, allow us to convert raw data into
workable data and, then, use it to test and rule out or not a theory provided the
observations we have. Therefore, lying as a central pillar in the scientific method.
For the purpose of this thesis we are interested in Statistical Inference, which pro-
vides the tools to obtain the underlying distributions present in raw data observed
in the different experiments we perform in Cosmology and, then, infer the value of
the parameters of a certain theory. Once we know how current experiments behave,
the next question would be how future experiments can help us. To that end, we will
use the Fisher matrix formalism, a statistical tool that allows us to infer the good-
ness of a fit in a future experiment by only setting a fiducial model and the planned
experiment specifications.

Through this Appendix, we first explore the basic concepts and notation of statis-
tics and the notions of Bayesian inference. After that, we will explain how Markov
Chain Monte Carlo techniques are used and, finally, what kind of criteria we use
in the thesis when comparing different models. In the last part, we will explain the
basic concepts of Fisher matrix formalism.
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Basic concepts and notation

There are two main approaches to understand what probability of an event P(A)
really means, frequentist probability and Bayesian probability. From the frequentist
point of view, the repeatability is the core idea as probability is defined upon the
relative frequency of an event after many trials as

where N4 is the number of times the event A occurred and N,, is the total number of
times we measured. From the previous equation , it is clear that only when we
are able to repeat the experiment an infinite number of times the frequentist prob-
ability will converge to the "true" probability of the event. Hence, repeatability of an
experiment becomes a must. In a few words, one should understand probability as
frequency of an event.

On the other hand, Bayesian probability relies on the previous information we
have regardless the number of times we can measure an experiment. In a more ac-
curate way, Bayesian probability gives the degree of belief in a proposition based on
the previous knowledge and the data we have. Before defining mathematically what
Bayesian probability is, we need to understand what is joint probability, conditional
probability and prior probability:

* Joint probability P(A[) B): the probability of event A and B happening together.

* Conditional probability P(A|B): the probability of an event A given event B hap-

pened. It can be related to the joint probability as P(A|B) = £ (;1((31)3 ),

* Prior probability: probability distribution that captures our initial beliefs.

The cornerstone of Bayesian approach is the Bayes Theorem, which can be conden-

sated into
P(B|A) P(A)

pB)

where P(A|B) is called the posterior probability, P(B|A) is the conditional probability
of B given A, P(A) is called the prior probability of A.

The final key concept is the likelihood function which can be defined as follows.
Given a probability distribution function p(X|6), described by a parameter # and a
random variable X, and given data z, the likelihood function £ is

P(A|B) =

£(6) = p(X = x/6)

Then, in order to infer the best fit for the parameter we should obtain the value of the
parameter § that makes the observed data z most probable, what is just maximising
the likelihood or, equivalently, minimising the x? value since £(f) o e X*/2,

Finally, the Table summarises the main differences between the frequentist and
Bayesian approaches when dealing with probability distribution. Henceforth, we will
only focus on the Bayesian approach as it is the one used.
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Figure A.1: Joint probability P(A () B) given the probability of an event A, P(A), and
an event B, P(B). The 2-dimensional constraints are just the top view of this image
when A and B are parameters, as they should be understood as random variable in
the Bayesian approach.

I | Frequentist | Bayesian |
Core idea relative frequency degree of belief
Parameters fixed random variable
Limiting factor repeatability previous information

Table A.1: Main differences when dealing with the frequentist and Bayesian ap-
proaches.

Bayesian inference

We can use the Bayes theorem to infer the value of the parameters by promoting
the event A to be the parameters 6 = {91, 0o, ...,Gp} and the event B to be the data
r = {xl,xg, ,xn} Here, one can realise how we are promoting the parameters of
the model to be random variables instead of fixed constants we want to test, as in a
frequentist approach one would do. The first consequence of treating our parameters
as random variables is that they can be sampled from a probability distribution to
search for the best fit given our data z, that is maximizing the likelihood. Thus, we
can write the Bayes theorem as

P(|z) =

where P(f|x) is the posterior distribution (usually called just posterior), P(z|f) is the
likelihood function, P(0) is the prior distribution (usually called just prior) and P(z)
is called the marginal likelihood or the evidence, which guarantees the normalisation
of the posterior. Consequently, the posterior now reflects the degree of belief about
the value of the parameter 6 after seen the data, given the previous information en-
coded in the prior.
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Figure A.2: Example of a MCMC process with Ny = 1100 fitting a parameter 6. We see
the minimization of x? (left plot) while the parameter value converges to the "true"
value (right plot).

In view of the foregoing, how we select the prior becomes a central problem in
Bayesian inference. In the literature, we have several types of priors which we can
classify into the following categories:
¢ Informative priors: they reflect a known specific information about the param-
eter.

¢ Uninformative priors: they reflect unspecific or very general information about
the parameter.

* Improper priors: they are not a valid probability density in the sense they do
not converge as [ P(f)df = co. Although they do not converge, we can use them
while we are not interested in computing the evidence.

* Flat or uniform priors: a type of improper priors which reflect the completely
lack of information about the parameter 6, as the probability distribution is
constant for all possibles values of the parameter 6, then P(0) = constant.

Now that we have all the ingredients, we should explain the Bayesian inference

algorithm which works as follows.
Let us have a vector of observations called z = {161, To, xn} sampled from a prob-
ability distribution P(X|6), where § = {6;,0,,...,0,} are the parameters and X is a
random variable, then:
1. Before using the data, we set a prior for the parameters based on our previous
beliefs.

2. We set a likelihood for the experiment that gives us the data.

3. We use the Bayes theorem to obtain the posteriors based on our data and our
previous knowledge and, then, update our initial beliefs.

Markov Chain Monte Carlo techniques

For most of the cosmological datasets, the multi-dimensionality makes difficult and
computationally expensive to sample the parameter space in order to obtain the final
distribution for the parameters values. Here is where Monte Carlo methods appear
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and, in the cosmology and astrophysics community, the Markov Chain Monte Carlo
techniques (MCMC).

A Markov Chain is a sequence of events such that the i-th event only depends on
the (i — 1)-th event, that is, given an event the immediately previous event and the
immediately next event are independent events. For our Bayesian statistical pur-
poses, the most relevant property of the Markov Chains is the possible convergence
to a stationary stage, that is a step-independent stage, such that the elements in
the chain are samples from the posterior distribution we are interested in. Finally,
Monte Carlo techniques are the algorithms which are able to calculate the specific
value of a quantity by using a random number generator.

We are interested in obtaining the posterior distribution for a parameter 6, some-
thing which of course we can not do directly, but what we can do is to simulate a
Markov Chain whose equilibrium distribution is P(f|z). When the Markov Chains
enters the stationary stage, the samples in the chain are proportional to the poste-
rior we are trying to obtain. Consequently, the posterior mean for the parameter 6
reads as

é:/ (0)2) 0 do ~ — Ze . Ny— oo,

with Ny the number of steps.

Although we have in the literature plenty of different implementations of the MCMC
algorithm, here we will explain the Metropolis-Hasting (MH) algorithm [167, 168] as
it is the one used in this thesis. It works as follows

1. Start from a random value 6 with posterior probability P(0|z).

2. Set a transition probability function ¢(6,6’) that generates a possible new point
of the chain ¢'.

3. Obtain the posterior probability for the new point P(¢'|x).

4. Generate a random number v € [0, 1].

5. Calculate the acceptance ratio as a(f,6") = min{% 1} and accept the

new ¢’ as the next step in the chain after 6 if u < a, otherwise reject §' and the
new point in the chain is again 6.

6. Repeat from 2. until convergence.

The natural question that emerges now is: when have we reached the conver-
gence? In this thesis, to answer such question we use the Gelman-Rubin conver-
gence criteria [169]. Let us have M different chains with N points per chain such
that we call 9{ the value of the parameter 6 corresponding to the i-th step of the
j-th chain, with ¢ = 1,.., N and j = 1,..., M. Following the equation , the mean
value of the parameter 6 for the j-th chain #/ and the mean value considering all the
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chains 0 are
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The between chain variance B/N and the averaged within chain variance W are
defined as

Cn

1 M 1 M N
MZ M(N—I)ZZQJ_QJ

=1 j=11i=1

.

where 5]2- is the variance of the j-th chain. Then, the Gelman-Rubin statistic is

SEW + B+

R = W

In this thesis, we consider a MCMC analysis has converged when R — 1 < 0.01.

Lastly and regarding the parameters, we will see when doing the analyses with
the numerical codes that we have three different types of parameters, namely cos-
mological, nuisance and derived parameters. Of course in addition to the fixed pa-
rameters whose name self describe their role. The cosmological parameters are the
ones we are really interested in constraining by the data we use. While the nuisance
parameters, although they are also constrained by data, we are not interested in
their constraints. We cannot neglect or fix them to a certain value as then they will
spoil the constraints on the cosmological parameters since they have an impact on
data. For example, a nuisance parameter can describe some uncertainty on data or
it can be one of the parameters needed in the model describing the measurement
of certain observable. Finally, derived parameters are not fixed directly by data but
calculated from the cosmological parameters once data is applied to them.

Model selection and information criteria

Once we know how MCMC analysis works, one can apply it for several models and,
as a consequence, one may ask the following question: how can we compare the
goodness of the fit between different models? Our next step is, then, finding a tool
which allows us to choose the best model according to the data we have.

A first and naive approach would be compare the maximum likelihood, or equiv-
alently the minimum x?, as the Bayesian inference process tries to maximise the
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likelihood. However, one can easily understand that adding new parameters to a
fitting will always improve it, even if the new ones are completely irrelevant for the
problem under study.

As a consequence, the information criteria were born to study the goodness of a
fit weighing the number of parameters a certain model needs to explain the data.
Among all the criteria in the literature we want to focus on the Akaike Information
Criteria [170] and the Bayesian Information Criteria [171]:

¢ Akaike Information Criteria: AIC = —21n L.« + 2k, where L.« is the maximum
likelihood and & the number of parameters of the model.

¢ Bayesian Information Criteria: BIC = —21n Ly, + kIn N, where N is the number
of data points used in the fit.

The exact value that each model gives is not important but its difference, therefore
the model which has the lower AIC or BIC value will be the one preferred by data
taking into account how many parameters each models needs.

Fisher Matrix

When designing a new, cosmological or not, experiment one of the main aims is
finding improved constraints for the parameters under consideration. Of course, es-
timating the future constraints, usually called a forecast, is not an easy task as
one must consider the ability of the experiment combined with, for example, all the
possible uncertainties or the statistical fluctuations. Here is where Fisher Matrix
formalism [172] becomes a powerful tool. It allows us to estimate analytically and
quickly the precision with which a future experiment would measure the parameters
of a certain model, given the fiducial cosmology and the survey specifications.
Consider we have a likelihood £ based on a set of data x and a vector of parameters
f. We know from the Appendix A that in order to obtain the best fit for the param-
eters we have to find the maximum of the likelihood. Then, let us make a Taylor
expansion of In £ about its maximum #'. The 0-th order term of the expansion has
no dependence with the parameters 4 as it is just a constant, and the 1-st order term
has to vanish as we are in a maximum of the function. The 2-nd order term, usually
called the Hessian Matrix, condenses the information about the parameters errors
and their covariance, and when we average over the data defines the Fisher Matrix
as )
0°InL
Fop = _<aeaaeﬁ> ’

allowing us to rewrite the likelihood Taylor expansion as

AL x (0o — 0a)Fap(05 — 5) ,

'which will be the same maximum for In £ and for £ because of the properties of the logarithm
function.
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Figure A.3: Meaning of the entries of Fisher Matrix and its inverse matrix.

which of course collapses to computing Ay? x Aln£L « F,, (0, — 0,)%, when we have
only one parameter 6,. From equation it is clearly seen the analogy between
the Fisher Matrix and the inverse of the covariance matrix C,g. Finally, the Fisher
matrix formalism relates to the 10 uncertainty of a parameter once marginalised over

the rest ¢; as
2
g g
F*l C o af ’
of op (O‘aﬁ O‘%

where 0,3 = papoaos With p.s quantifying the correlation between the parameters.
Schematically, the meaning of the Fisher Matrix for two parameters is shown in
Figure . The representation of the 1o contour simply corresponds to the limits
(0o — kOw, 00 + koo) and (éﬂ — kog, ég + kog), where k ~ 1.52. Usually one denotes the
full length of the 1o region by

A1,00 = 21/ Faa .
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APPENDIX

DISTANCES IN COSMOLOGY

n Cosmology, the fact that the Universe is expanding forces us to think about
jwhat is the meaning of a distance. In principle, the most natural definition
imay emerge from the metric giving the well known proper distance. However,
in an expanding Universe, it suffers from it and we may want to avoid having two
object separating with time even though they do not move but expansion does. This
is the concept of comoving distance. Others distances like angular distance or lumi-
nosity distance emerge from observations and, then, it will be useful to relate them
to our previous more theoretical distances.

In this appendix, we summarise the previous distances with the main relations
among them.

Proper distance

The distance between two events that occur at the same time. For simplicity and as
we work along this thesis with it, we consider a flat Friedman-Lemaitre-Robertson-
Walker metric (FLRW) as

ds? = —dt* + a*(t) (dr® + r* d6® + r’sin®0 d¢®) .

Then, if we consider two simultaneous events the radial distance is

SB B
As = / ds’ = a(t)/ dr’.
SA TA

Considering null geodesics, that is ds = 0 we can simply relate dt?> = a(t)?dr? and
then the proper distance from us to an object reads as

W LAt at) [FdY
=0 | =, B
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Comoving distance y

The distance that remains constant for two points that move with the expansion of
the Universe with no peculiar movements. It simply derives from the proper distance
as

s 1 [* d

YT a T Ho o B()

Angular diameter distance

Consider an object of size R with extremes in (¢, x, 0, ¢) and (¢, x, 0 + A6, ¢), then as
the size of that object is very small compared to its distance we have

A ~ i ,
a(t)x
thus the angular diameter distance is defined as
R x(2)
Dy=— = = .
A= R T =
Luminosity distance
The luminosity distance is defined as
2 L
L= 4rF>

where L is the absolute luminosity and F' is the flux observed. The idea behind
this distance is to still have the flux of a source following an inverse-square law in
an expanding Universe, so now we the replace physical distance by this luminosity
distance to preserve it. It can be related to previous distances as

Dp=(1+2)x=(1+2)*Da.
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